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Abstract This paper describes an algorithm for cardinality-constrained quadratic op-
timization problems, which are convex quadratic programming problems with a limit
on the number of non-zeros in the optimal solution. In particular, we consider prob-
lems of subset selection in regression and portfolio selection in asset management and
propose branch-and-bound based algorithms that take advantage of the special struc-
ture of these problems. We compare our tailored methods against CPLEX’s quadratic
mixed-integer solver and conclude that the proposed algorithms have practical ad-
vantages for the special class of problems we consider.

Keywords Mixed-integer quadratic programming · Branch-and-bound · Lemke’s
method · Subset selection · Portfolio selection

1 Introduction

We present a method for solving cardinality-constrained quadratic optimization prob-
lems (CCQO), i.e., quadratic optimization problems that limit the number of non-zero
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variables in the solution, using a tailored branch-and-bound implementation with piv-
oting algorithms. Specifically, we consider the following problem:

minimize 1
2x�Qx + c�x,

subject to Ax ≤ b,

| supp(x)| ≤ K,

xi ≥ αi, i ∈ supp(x),

0 ≤ xi ≤ ui, i = 1, . . . , d,

(1)

where Q ∈ R
d×d is symmetric positive semi-definite, c ∈ R

d , A ∈ R
m×d , b ∈ R

m,
αi > 0, ui is the nonnegative upper bound of xi , K is some positive integer, and
supp(x) = {i|xi �= 0}. The second set of constraints, referred to as the cardinality
constraint, and the third set of constraints, referred to as the lower bound constraints,
introduce discreteness to the problem, making this a quadratic mixed-integer opti-
mization problem.

Compared to linear integer optimization, quadratic mixed-integer optimiza-
tion problems have received relatively little attention in the literature. In the first
study of problems of type (1), [4] proposes a tailored branch-and-bound algorithm
and replaces the cardinality constraint | supp(x)| ≤ K with a surrogate constraint∑

i (xi/ui) ≤ K . Moreover, the x variables are branched on directly instead of in-
troducing binary variables, i.e., the constraint xj ≤ 0 is added when branching down
on xj and the constraint xj ≥ αi is added when branching up on xj . The underlying
quadratic solver used in [4] is a primal feasible algorithm that searches for feasible
descent directions, which includes Newton’s direction, steepest descent direction and
Frank-Wolfe’s method. Warm-starting was done at each branch-and-bound node by
using a quadratic penalty function.

Motivated by this work, we extend the algorithm of [4] by using Lemke’s pivot-
ing algorithm [7, 14] to solve the successive sub-problems in the branch-and-bound
tree. Unlike [4], we do not explicitly add the variable bound constraints, xj ≤ 0 and
xj ≥ αi , thus the size of the subproblems never increases. The other major distinc-
tion to [4] is that we use a pivoting algorithm to solve the subproblems, which al-
lows for efficient warm-starting. Section 2 elaborates on this general methodology
for solving CCQO’s. In Sect. 3, we further tailor our method to solve two impor-
tant problems in statistics and finance: subset selection in regression and portfolio
selection in finance. We illustrate the results of our computational experiments in
Sect. 4.

2 General methodology

In a branch-and-bound setting, we solve the convex relaxation of Problem (1) via
Lemke’s method, then choose a branching variable xs . When branching down, we
update the subsequent subproblem by deleting the data associated to xs and when
branching up, we modify Lemke’s method so that xs ≥ αs is enforced during pivoting.
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The relaxation we solve at each node is:

minimize 1
2x�Qx + c�x,

subject to Ax ≤ b,

x ≥ 0,

xi ≥ αi, i ∈ U,

(2)

where the cardinality constraint is removed and U is the set of indices of variables that
have been branched up. The lower bound constraints xi ≥ αi for αi strictly positive
are enforced by implementing Lemke’s method with non-zero lower-bounds (anal-
ogous to the simplex method with lower and upper-bounds). Section 2.1 describes
the use of Lemke’s method to solve Problem (2) in the context of branch-and-bound.
Section 2.2 illustrates the procedure for updating the subproblem after the branching
variable is deleted. Section 2.3 describes a heuristic based on our branch-and-bound
procedure for finding a good feasible solution.

2.1 Lemke’s method as underlying quadratic optimizer

We use Lemke’s pivoting method to optimize the convex relaxation of the sub-
problem at each branch-and-bound node. This method was originally developed to
solve linear complementarity problems (of which quadratic programs are a special
case) via pivoting akin to the simplex method. As with the dual simplex method
in linear optimization, the key advantage of Lemke’s method is its ease and effi-
ciency of starting from an infeasible basic solution. This is critical in the branch-
and-bound setting since the optimal solution of the parent node can be used as the
initial point to solve the problem of the current node. Thus, this approach has an ad-
vantage over interior point methods which may need to solve from scratch at each
node.

A linear complementarity problem (LCP) is the following: Given q ∈ R
n and M ∈

R
n×n, find z ∈ R

n and w ∈ R
n such that,

w = Mz + q, z ≥ 0, w ≥ 0, z�w = 0.

The above problem is referred to as LCP(q,M ). Clearly, the KKT necessary and
sufficient optimality conditions of a convex quadratic programming problem is an
LCP.

The Lemke’s method first checks whether q ≥ 0, in which case z = 0 and w = q
is a solution. Otherwise, it augments LCP(q,M ) to

w = q + hz0 + Mz ≥ 0, z0 ≥ 0, z ≥ 0, z�w = 0, (3)

where h is some user-defined covering vector with h > 0. We need to start the al-
gorithm with a complementary basis that does not necessarily satisfy the nonneg-
ativity constraint. A simple default basis is to have all the z variables be nonba-
sic and w be basic. We then set the auxiliary variable z0 to the smallest positive
value such that w ≥ 0 when z = 0, i.e., z0 = maxi (−qi/hi), i = 1, . . . , d . Thus,
ziwi = 0, i = 1, . . . , n and z0 > 0, and z0 is pivoted into the basis in place of wr ,



D. Bertsimas, R. Shioda

where r = argmaxi (−qi/hi). Such a point is called an almost complementary point
for the augmented problem (3). The algorithm follows a path from one almost com-
plementary basic solution to the next, until z0 is pivoted out to be a nonbasic variable
or LCP(q,M ) is shown to be infeasible [13].

During the branch-and-bound procedure, we want to resolve a new subproblem
starting with the basic solution of the parent subproblem. Let M and q be the
modified data for the current subproblem, and let B and N be the corresponding
columns of the basic and nonbasic variables, respectively, of the parent node. We want

Lemke’s method to solve LCP(M B̄ , q B̄ ), where M B̄ = −B
−1

N and q B̄ = B
−1

q ,
and have B as its initial complementary basis matrix. This basis is most likely not
feasible for LCP(M B̄ , q B̄ ), thus the problem is augmented by the auxiliary variable
z0, z0 is increased until the initial basis is feasible for the augmented problem, and
then we execute sequence of pivots until z0 is pivoted out or the LCP is deemed
infeasible.

2.2 Branching down

When branching down on xs , we delete all the data associated to xs for the
subsequent subproblems and update the basis accordingly. We chose to delete
the variable instead of explicitly adding the constraint xs = 0 to prevent in-
creasing the size of the subproblem as well as for numerical stability purposes.
We will show that in most cases, the inverse of the new basis can be effi-
ciently derived from the inverse of the old basis via elementary row opera-
tions.

Let us assume that xs is a basic variable and suppose B and N are basic and
nonbasic columns, respectively, of the previous solution. We delete the column and
row of B corresponding to xs and the column and row of N corresponding to its
dual variable ws . Although we can get the new inverse of the basis simply by in-
verting the modified basis, calculating the inverse can be a significant bottleneck.
Instead, we calculate the new inverse from the previous inverse using elementary row
operations.

Suppose, for notational purposes, that the column and row needed to be deleted in
B are the first column and first row and B ∈ R

n×n, so that:

B =
[

v B�
row

Bcol B

]

, B−1 =
[

u U�
row

U col U

]

,

where B and U are n − 1 by n − 1 lower-right submatrices of B and B−1, respec-
tively, Bcol, Brow, U col and U row are (n − 1)-dimensional column vectors, and v and
u are scalars. We know that

B−1B =
[

uv + U�
rowBcol uB�

row + U�
rowB

vU col + UBcol U colB
�
row + UB

]

= I n,

thus,

UB = I n−1 − UcolBrow
�. (4)
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Since U colB
�
row is a rank one matrix, we can execute linear number of elemen-

tary row operations to the matrix I n−1 − U colB
�
row to get I n−1. Let E be the ma-

trix representing those operations. Then EU is the inverse matrix of B if B is
invertible.

In the previous section, we stated that we use M B̄ = −B
−1

N as input to
Lemke’s. We avoid this matrix multiplication via similar elementary row oper-
ations. Suppose MB = −B−1N at termination of Lemke’s at the parent node.
Again, let us assume that the column corresponding to ws in N is the first one.
Then,

MB = −B−1N = −
[

u U�
row

U col U

][
p N�

row

Ncol N

]

=
[

w M�
row

Mcol M

]

,

where N and M are n − 1 by n − 1 lower-right submatrices of N and MB , respec-
tively, and N col, N row, Mcol and M row are (n − 1)-dimensional column vectors, and
p and w are scalars. Again, we know that

−UN = M + U colN
�
row.

Since EU = B
−1

, the new M B̄ matrix will be

M B̄ = E(M + U colN
�
row). (5)

There are several assumptions that need to be checked before executing the
above procedures. Most critically, if B is singular, then E may be undefined. In
such a case, we start Lemke’s method from scratch with the initial basis B =
I n−1. Clearly, this is not the only solution to this problem, but the scenario oc-
curred rarely enough in practice so that this method was adequate for our pur-
poses. Also, we assumed that we deleted the first row and nth column from B ,
B−1, N and MB . The general case can be easily modified to this special case.
Finally, if xs is a nonbasic variable in the previous solution, we can apply the
following methodology for its complementary variable ws which must be a basic
variable.

To update qB , we delete the sth element of c, giving us c. Suppose qB = B−1q at
the termination of Lemke’s method, where q = [ c

b

]
. Again, assuming that s = 1, we

have:

qB =
[

q̃s

q̃B

]

= B−1q =
[

u U�
row

U col U

][
qs

q

]

,

where q̃B and q is the (n−1) lower subvector of qB and q , respectively, and qs = cs .
Similar to M B̄ , we get:

q B̄ = E(q̃B − qsUcol). (6)

LU decomposition of the basis

From (5) and (6), we only need to know one column of B−1 to update M and q . Thus,
instead of explicitly maintaining B−1, we calculate the LU decomposition of the
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basis B at the termination of Lemke’s method and use it only to derive the required
column of B−1.

We use Crout’s algorithm [22] to construct the LU decomposition of B and derive
the sth column of B−1 using back-substitution. If xs is the ith basic variable, then
we get U col by deleting the ith element of the column. Given B , N and U col, we can
update M and q according to (5) and (6), respectively.

2.3 A heuristic

To find a good feasible solution at the root node, we run a heuristic which com-
bines the heuristics proposed by [4] and [12]. Let x∗ be the solution of the con-
tinuous relaxation at the root node. We first run what [12] refers to as the “reop-
timization heuristic” which “reflects common practice”, where the continuous re-
laxation is solved again using only the variables with the K largest absolute values
of x∗. The lower-bound constraint xi ≥ αi is also imposed for these variables. If
this problem is feasible, the solution is a feasible solution to the original CCQO
and let UB0 be its corresponding objective value. To improve on UB0, we then
run the heuristic proposed by [4]. Let G = {i | |x∗

i | is one of the K + W largest
absolute values of x∗}, where W is a user-defined small positive integer such that
|G| = K + W � d (we have set W = 0.1d in our computational experiments). We
then solve the CCQO problem using only the variables in G, setting UB0 as the ini-
tial upper-bound to the optimal value. We also put a limit on the number of nodes
to examine. Thus, we are implementing our branch-and-bound procedure just on the
variables in G.

3 Applications of CCQO

We focus on applying the methodology described in Sect. 2 to the K-subset selection
problem in regression and optimal portfolio selection in Sects. 3.1 and 3.2, respec-
tively.

3.1 Subset selection in regression

In traditional multivariate regression, we are given m data points (xi , yi), x i ∈ R
d ,

yi ∈ R, and we want to find β ∈ R
d such that

∑
i (yi − x�

i β)2 is minimized. This
has a closed-form solution, β = (X�X)−1X�Y , where X ∈ R

m×d with x�
i as its

ith row, and Y ∈ R
m with yi as its ith element. Primarily for robustness purposes,

i.e., to limit the variance of the predicted Y , it is desirable to use a small subset of
the variables (see [1, 18, 23]). For example, suppose we want to choose K variables
(K < d) that minimizes the total sum of squared errors. We formulate this prob-
lem as:

minimize (Y − Xβ)�(Y − Xβ),

subject to | supp(β)| ≤ K,
(7)

which is clearly a CCQO.
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Authors of [2, 9, 10] use pivoting and enumeration to search for subsets with
the best regression “fit” (e.g., minimum total sum of squared errors) for sub-
sets of all sizes. Authors of [19] solve linear mixed-integer optimization problems
that find a subset of K variables (K < d) that has the minimum total absolute
error.

We solve (7) by tailoring our approach to this unconstrained version of a CCQO.
When the cardinality constraint is relaxed, the optimal objective value is Y�Y −
Y�X�(X�X)−1X�Y , thus we do not need to run the Lemke’s method. The main
computational work is in the branch down procedure. Clearly, we can extend our
method to regression problems with linear constraints with respect to the β’s by
applying our general methodology. However to highlight the merits of our tailored
approach versus a general purpose software such as CPLEX, we focus on the uncon-
strained regression in this paper.

When branching down on xs , we delete the sth row and column of X�X, and the
inverse (X�X)−1 is updated as illustrated in Sect. 2.2. To further alleviate computa-
tion, we set v = X�Y ∈ R

d at the root node. Thus, deleting xs corresponds to deleting
the sth element of v. We do not need to multiply X� and Y in subsequent nodes—we
simply need to delete corresponding elements from v. The optimal objective value of
a given node is then:

Y�Y − v�(X�X)−1v,

where X�X and v are the updated X�X and v, respectively. Thus, calculating the
objective value requires only matrix-vector multiplications. There is no need to up-
date the subproblem when branching up, since the optimal solution of the parent
node is optimal for the next node. Section 4.1 illustrates computational results of our
approach.

3.2 Portfolio selection

Let us consider the traditional mean-variance portfolio optimization problem, which
can be modeled as a convex quadratic optimization problem. Large asset manage-
ment companies manage assets against a benchmark that has d securities. So that
they are not seen as indexers, it is desirable that they only use K � d securities
in the portfolio. In addition, several portfolios are marketed as focused funds that
are only allowed by their prospectus to own a small collection of securities. Fi-
nally, asset management companies that manage separate accounts for their clients
that only have say $100,000 can only realistically own a small number of securities,
since otherwise, the transaction costs would significantly affect performance. Such
limited diversification constraints, along with fixed transaction costs and minimum
transaction levels, present discrete constraints and variables to the quadratic problem
(see [3]).

Given the difficulty of solving quadratic integer optimization problems, such
a portfolio problem has commonly been approached in one of two ways. The
first approach is approximating the problem to a simpler form. For example,
[24, 25] approximate the quadratic objective function by a linear and piece-wise
linear function, and [11] further assumes equal weights across assets to formulate
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the problem as a pure 0-1 problem. In [21], portfolio problems with fixed trans-
action costs are solved in polynomial time when the covariance matrix has equal
off-diagonal elements. The second approach uses heuristics to find strong feasible
solutions. For example, [17] proposes a linear mixed-integer optimization based
heuristic, [5] introduces a dynamic programming based heuristic, and [6] pro-
poses genetic algorithm, tabu search and simulated annealing approaches for the
problem.

There have been also significant efforts in finding exact algorithms to solve dis-
crete portfolio optimization problems. For example, [20] extends the work of [4] to
limited diversification portfolios, and [12] solves portfolio problems with minimum
transaction levels, limited diversification and round lot constraints (which requires
investing in discrete units) in a branch-and-bound context. In [15], the authors solve
a portfolio optimization problem that maximizes net returns where the transaction
costs are modeled by a concave function. They successively estimate the concave
function by a piecewise linear function and solve the resulting LP. They have shown
that their solution converges to the optimal solution of the original problem. In [16],
the authors present a divide-and-conquer algorithm that partitions the feasible set of
the solutions to find the exact solution to a problem with fixed transaction costs and
round lots.

In this paper, we focus on the traditional mean-variance portfolio optimization
model with cardinality constraints. The key difference between our approach and
those described above is our use of Lemke’s pivoting algorithm to solve the underly-
ing quadratic program in our branch-and-bound implementation. Let us further sup-
pose that the d stocks can be categorized into S industry sectors. Investors may wish
to limit the total investment change within each of S industry sectors. Let the current
portfolio weights be x0 ∈ R

d . The traditional mean-variance model determines the
new weights for the d stocks, x ∈ R

d , that maximizes the total expected return minus
a penalty times total variance. In practice, there are other direct and indirect transac-
tion costs, such as price impact costs and ticket costs. Impact costs reflect the stock
price impact resulting from purchase or sale orders and the magnitude of this cost
depends on the particular stock and the trade sizes. For example, large purchase or-
ders will increase the price and large sales orders will decrease the price of the stock.
Assuming symmetric impact for purchases and sales, this effect is often modeled by
the following quadratic function

d∑

i=1

ci(xi − x0
i )2,

where ci > 0 is the impact coefficient for Stock i. The second form of transaction
costs is ticket cost, which is a fixed cost associated to trading a positive volume of a
stock. This cost can easily be incorporated into our CCQO framework using binary
variables, but we will not include it in the present work because ticket costs are of-
ten second order compared to impact costs. This portfolio selection problem can be
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represented by the following formulation:

minimize −r�x + 1
2 (x − xB)��(x − xB) +

d∑

i=1

ci(xi − x0
i )2,

subject to

∣
∣
∣
∣

∑

i∈Sl

(xi − xB
i )

∣
∣
∣
∣ ≤ εl, l = 1, . . . , S,

d∑

i=1

xi = 1,

| supp(x)| ≤ K,

xi ≥ αi, i ∈ supp(x),

xi ≥ 0, i = 1, . . . , d,

(8)

where � is the covariance matrix of the rates of return, xB
i is the benchmark weight

for stock i, r is a d-dimensional vector of the expected rates of return, αi is the
minimum transaction level of stock i, ci is the price impact coefficient for Stock i,
and Sl is the set of indices of stocks in Sector l. The first constraint limits the total
change in the portfolio weights in Sector l to be less than some εl . The second set
of constraints ensures that the weights sum up to 1, and the third constraint limits
investing up to K stocks. The fourth set of constraints implies that if we invest in
stock i, then xi must be at least αi . Clearly, Problem (8) is in the form of Problem (1)
and can be solved using our methodology.

We rewrite Problem (8) as

minimize −r̃�x + 1
2x��̃x + C0,

subject to
∑

i∈Sl

xi ≤ εl +
∑

i∈Sl

xB
i , l = 1, . . . , S,

−
∑

i∈Sl

xi ≤ εl −
∑

i∈Sl

xB
i , l = 1, . . . , S,

d∑

i=1

xi = 1,

| supp(x)| ≤ K,

xi ≥ αi, i ∈ supp(x),

xi ≥ 0, i = 1, . . . , d,

(9)

where r̃ = r +�xB + 2Cx0, �̃ = � + 2C where C is the diagonal matrix with ci as
the ith diagonal element, and C0 is a constant equal to (xB)��xB + ∑d

i=1 ci(x
0
i )2.

We solve the relaxation of Problem (9) using Lemke’s method described in
Sect. 2.1, and branch down on a variable as in Sect. 2.2. Section 4.2 illustrates the
computational results of this method.
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4 Computational results

We describe computational experiments on subset selection and portfolio selection
problems in Sects. 4.1 and 4.2, respectively. For each problem, we compare our
tailored approaches to CPLEX’s quadratic mixed integer programming solver [8].
Clearly, CPLEX’s implementation of the pivoting methods and branch-and-bound is
far superior to ours, however, our motive is to measure the advantages of a tailored
implementation over a general mixed-integer solver for these particular CCQO prob-
lems.

4.1 Results for subset selection

We compared our branch-and-bound implementation for solving subset selection
with forward regression and CPLEX’s quadratic mixed-integer programming solver.
Forward regression is a greedy heuristic that, given the variables already chosen,
chooses another variable that reduces the residual error the most, i.e., the first
variable chosen, β(1), corresponds to β(1) = arg minj=1,...,d

∑
i (yi − xi,j βj )

2. The
next variable minimizes

∑
i (ȳi − xi,j βj )

2 for all j ∈ {1, . . . , d} \ (1), where ȳi =
yi − xi,(1)β(1). This step is repeated until K variables are chosen [18].

We used CPLEX’s quadratic mixed-integer optimizer to solve Problem (7) by
introducing binary inclusion variables zi , replacing the cardinality constraint by∑

i zi ≤ K and adding constraints βi ≥ −Mzi and βi ≤ Mzi , where M is some large
positive number. We found that setting M = 100 was sufficiently large to solve our
generated problems effectively. By comparing our method with CPLEX, we hope to
see the computational advantages, if any, of not using binary variables zi and branch-
ing directly on βi ’s. One obvious benefit is the elimination of the need for the so
called “big-M” constraints.

Our branch-and-bound and CPLEX’s branch-and-bound search procedure used
depth-first-search, and branches on the variable with maximum absolute value first. In
our algorithm, we ran the heuristic presented in Sect. 2.3 after solving the continuous
relaxation of the root node and not in any subsequent nodes.

For each d (the number of variables), we randomly generated five instances of X

and β , and set Y = Xβ + ε , where εi ∼ N(0,1) for each i. For each problem size,
we present the average performance of the methods over all five instances in Tables 1
and 2. The performances of the individual instances are presented in Tables 6 and 7 in
the Appendix. In all of the tables, the columns “Forward”, “BnB”, and “CplexMIQP”
correspond to the results of the forward regression, our method, and CPLEX, respec-
tively. We did not record the running time for forward regression since this simple
heuristic was able to solve almost all the instances in a fraction of a second. The col-
umn labeled “time” is the total CPU seconds required to solve the problem up to a
specified time limit (discussed below). This number includes the running time of the
root node heuristic as well. The column labeled “nodes” is the total number of nodes
in the branch-and-bound tree at termination, “best node” is the node corresponding
to the best feasible solution and “RSS” is the best total sum of squared errors found
for subsets of size K . All the numbers, except for the CPU time, were rounded to the
nearest integer.
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Table 1 Results for Subset Selection with 60 CPU seconds. The column “time” is in CPU seconds and
“RSS” is the residual sum of squares

d K Forward BnB CplexMIQP

RSS Time Nodes Best RSS Time Nodes Best RSS

node node

20 10 7,518 0.03 234 116 4,306 0.04 249 140 4,306

20 5 22,358 0.02 174 2 19,343 0.05 266 247 19,343

50 40 37,455 1.89 1,149 0 2,550 15.06 35,805 35,498 2,552

50 20 113,515 60.13 88,729 7,595 65,301 60.33 167,208 0 72,272

100 80 359,586 24.69 2,362 1,275 6,610 60.15 53,609 52,943 674,280

100 50 487,124 60.32 9,103 2,338 116,265 60.11 54,750 0 692,558

100 20 815,097 60.18 34,425 5,077 636,623 60.12 53,547 0 692,558

500 400 11,914,096 108.46 3 0 64,229 60.36 346 118 83,047,520

500 100 22,246,620 61.26 3 0 15,534,560 60.34 302 113 83,122,180

500 20 36,746,520 64.04 1,489 868 35,458,480 60.80 130 0 102,030,200

Table 2 Results for Subset Selection with 3600 CPU seconds. The column “time” is in CPU seconds and
“RSS” is the residual sum of squares

d K BnB CplexMIQP

Time Nodes Best RSS Time Nodes Best RSS

node node

50 20 310.28 485,646 7,595 65,301 323.85 893,967 774,687 65,301

100 80 483.97 82,489 77,020 5,851 3,255.31 2,842,164 2,836,986 110,216

100 50 3,600.00 655,182 11,957 115,926 3,600.00 3,324,088 0 692,558

100 20 3,600.00 2154,433 5,077 636,623 3,600.00 3,192,809 0 692,558

500 400 3,600.00 7,419 501 63,033 3,600.00 62,448 62,411 66,477,040

500 100 3,600.00 51,637 0 15,534,560 3,600.00 105,140 46,161 64,677,580

500 20 3,600.00 118,422 61,716 35,372,860 3,600.00 131,396 23,800 74,620,900

Table 1 shows the results when the time limit for both our method and CPLEX
was set 60 CPU seconds. These results illustrate whether these exact methods can
find a “good” feasible solution relatively quickly. It is apparent from this table that
the exact approaches significantly improve upon the forward regression in terms of
residual sum of squares, even when they do not solve to provable optimality. Both
“BnB” and CPLEX solved the problems with (d,K) = (20,10), (20,5), (50,40) to
provable optimality in several seconds. However, in all cases where CPLEX does not
find the optimal solution within 60 seconds, the RSS of “BnB” is consistently lower
than that of CPLEX. This is most evident in cases where K is large relative to d , i.e.,
for (d,K) = (100,80) and (d,K) = (500,400). CPLEX performs especially poorly
in these cases, having RSS values worse than that of the forward heuristic. In contrast,
“BnB” appears to do especially well, having significantly lower RSS values than
the other two methods. For three out of the five instances with (d,K) = (100,80),
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our method found the provably optimal solution in under one second (see Table 6).
From the “best node” column, it is clear that our heuristic, which applies our branch-
and-bound procedure on a smaller subproblem of the original CCQO, yields good
solutions. The CPLEX routine also runs a general heuristic at the root node, but it
does not appear to be as effective for these problems.

These results show that in a minute or less, our method is able to provide solutions
that are often substantially better than that of the forward heuristic. Thus, if speed is
important, using our method with a short time limit may be a viable alternative to the
forward heuristic.

Table 2 illustrates the results when our method and CPLEX are run for 3600 CPU
seconds. For (d,K) = (50,20), both “BnB” and CPLEX solved to provable optimal-
ity within minutes, where “BnB” had faster running times in three out of the five in-
stances. Our method also solves all five instances of (d,K) = (100,80) in an average
of 8 minutes, however, it is surprising to see that CPLEX could not solve three out of
the five instances within one hour (two of them being instances that “BnB” solved in
under one minute—see Table 7). CPLEX solved the remaining two instances in about
45 minutes each. As in Table 1, CPLEX performs relatively poorly when K is large,
namely for (d,K) = (100,80) and (500,400). It is not clear why these instances are
especially difficult for CPLEX to find a good feasible solution. Again, in every sin-
gle instance where CPLEX did not find the optimal solution, the best solution found
by “BnB” was superior to that of CPLEX. We also see that our heuristic solution is
still very strong. With the longer running time, our method is able to improve on the
heuristic solution, however, it is often very close to the best RSS value found in one
hour.

We selected some problem instances and ran CPLEX for up to 12 hours in hopes
of finding a provably optimal solution. However, CPLEX could not find a better so-
lution than those found by “BnB” in one hour. For example, in one of the instance
of (d,K) = (100,20) (this is problem instance (d,K,v) = (100,20,1) in Table 7
of the Appendix), CPLEX could not find the optimal solution in 12 hours. Its best
RSS value was 758,261 (which was found by its root node heuristic) whereas the
RSS value found by “BnB” in one hour was 690,532. In one of the instance of
(d,K) = (500,400) (this is problem instance (d,K,v) = (500,400,1) in Table 7
of the Appendix), CPLEX’s best RSS value was 56,390,541, whereas the RSS value
found by “BnB” in one hour was 38,781. Thus, it appears that this general solver is
not well suited to solved this particular type of CCQO.

The difference in the two methods is most likely due to the difficulty of solving the
explicit mixed-integer quadratic program formulation of the subset selection problem
with the binary variables and big-M constraints. These big-M constraints can lead to
weak LP relaxations, making it hard to fathom nodes. In addition, our branch-and-
bound based heuristic appears to be very effective in finding strong feasible solutions.
This combination allows us to fathom many more nodes than CPLEX.

Note that the per node computation time for “BnB” decreases as K decreases.
This is highlighted in d = 100 and d = 500, where the average number of nodes
explored increases significantly as K decreases. This is because we delete variables
that are branched down, making the subproblem smaller and smaller as we go down
the branch-and-bound tree until at most d − K variables are deleted. Thus, many of
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the subproblems solved when K = 20 is much smaller than when K = 400, resulting
in the difference in average per node computation time.

The main bottleneck of our method is the number of nodes needed to prove op-
timality. Even when the heuristic finds the optimal solution at the root, the branch-
and-bound tree can grow to a million nodes to prove optimality, even for moderate
sized problems. The main factors preventing significant pruning of the tree are the
free variables and the lack of constraints. A subproblem solution almost always has
all non-zero variables. However, provable optimality may not be of critical impor-
tance to data mining practitioners who may be interested in finding a “good” solution
“quickly”. From these empirical studies, we have seen that our branch-and-bound
procedure finds near-optimal solutions in one minute. Given the noise in the data,
perhaps these solutions are sufficient in practice.

4.2 Results for portfolio selection

We tested our approaches described in Sect. 3.2 against two alternative methods.
One method uses CPLEX’s quadratic barrier method to solve the relaxation prob-
lem of (9), and the second uses CPLEX’s quadratic mixed-integer solver to solve
the explicit mixed-integer formulation. All branch-and-bound procedures, including
CPLEX, were set to depth-first-search, branch up first and branch on variable with
maximum absolute value. Depth-first-search was used primarily due to its ease of
implementation and limited memory usage.

For each d (total number of assets), S (number of sectors), and K (the upper bound
on diversification), we generated five random instance of Problem (8) and averaged
the results. We set x0 = 0 for all of our instances. For �, we generated a matrix A

from a Gaussian distribution, then used d
d−1AT A as our covariance matrix. The val-

ues of r and ci were taken from a Gaussian and uniform distribution, respectively. We
acknowledge that using randomly generated data may give unrealistically optimistic
running times. However, since our interest is to compare the computational perfor-
mance of different solution methods, we hope that this relative difference extends to
real stock data as well. Tables 3 and 4 illustrate the results. In these tables, “UB” is
the best feasible solution found, “best node” is the node where “UB” was found and
“nodes” is the total number of nodes explored. Entries labeled “-” indicate that the
method failed to find a feasible solution within 120 CPU seconds.

“LemkeBnB” refers to our method described in Sect. 2. “BarrierBnB” is the same
as “LemkeBnB”, except we use CPLEX’s barrier method to solve the continuous
quadratic optimization problem. Finally, “CplexMIQP” is the result of using CPLEX
quadratic mixed-integer solver. All three methods were run for a total of 120 CPU
seconds. The column labeled “nodes” is the average of the total number of nodes
each method explored, “best node” is the average of the node where the best feasible
solutions were found, and “UB” is the best feasible objective value found within the
time limit.

Table 3 runs all three methods without running any heuristic methods to find
a good feasible solution, whereas Table 4 runs a heuristic once at the root. For
“LemkeBnB” and “BarrierBnB”, we ran the heuristic for at most 30 CPU seconds
after the root is solved. We were not able to put a time limit on the heuristic for
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Table 3 Results for portfolio selection, without Heuristic, solved until 120 CPU seconds

d K S LemkeBnB BarrierBnB CplexMIQP

Nodes Best node UB Nodes Best node UB Nodes Best node UB

100 50 10 16992.20 16039.60 28.46 4526.80 4472.00 44.51 119697.00 76987.00 19.02

100 10 4 27231.40 8329.40 18.83 5686.00 1678.20 19.57 58530.20 12736.60 18.49

200 100 10 2952.80 2933.80 142.73 751.20 729.40 150.57 30188.60 30062.80 81.86

200 20 4 6913.20 1281.00 38.73 1284.00 656.20 39.77 7236.80 1245.60 38.73

500 200 10 142.40 – – 30.80 – – 4864.00 4812.60 345.46

500 100 10 164.40 137.80 159.68 33.20 – – 782.60 398.00 158.68

500 50 4 64.20 46.40 90.89 35.40 – – 226.40 140.40 90.89

Table 4 Results for portfolio selection, with the root Heuristic, solved until 120 CPU seconds

d K S LemkeBnB BarrierBnB CplexMIQP

Nodes Best node UB Nodes Best node UB Nodes Best node UB

100 50 10 13998.40 0.00 12.93 4029.40 2678.20 36.36 116468.20 70551.00 18.68

100 10 4 23926.40 0.00 14.87 4166.40 0.00 15.66 58410.40 12736.60 18.49

200 100 10 2490.60 0.00 32.90 485.40 0.00 34.51 18533.20 7800.80 52.84

200 20 4 6232.80 58.60 34.87 916.40 58.60 35.58 6937.00 1245.60 38.73

500 200 10 119.40 0.00 83.93 24.60 – – 1098.00 0.00 138.83

500 100 10 134.00 0.00 80.40 27.00 – – 1097.40 0.00 140.29

500 50 4 47.00 0.00 81.53 27.40 – – 146.40 103.20 91.14

CplexMIQP, which ran until CPLEX deemed it had an acceptable upper-bound.
When the size of K was relatively large (K > 0.1d), the CPLEX heuristic ran for
at most 10 CPU seconds, whereas it can last over 100 CPU seconds when d is large
(d > 200) and K is small compared to d (e.g., K ≤ 0.1d).

Both pivoting-based methods, “LemkeBnB” and “CplexMIQP”, are significantly
faster than “BarrierBnB” for every instance. Although the relative difference in the
total number of nodes explored did decrease as the problem size increased, the ad-
vantage of interior point methods in large dimensions over pivoting methods did not
compensate the latter’s advantage in warm starting. For example, for problems that
would take an average of 400 pivots to solve from scratch, any intermediary node
would require only about 5 pivots to resolve the subproblem of that node. Also, the
pivoting methods always give a basic feasible solution to the KKT equations of the
quadratic programming problem. Thus, it is guaranteed to give the solution to the
relaxation with the minimum support, unlike the interior point method. Since many
of the generated instances and most real world problems do not guarantee positive
definiteness (only positive semi-definiteness) in the quadratic matrix, this difference
can be another significant advantage.

It is clear that the node to node computation time of “CplexMIQP” is faster than
“LemkeBnB” for most instances. However, the relative difference significantly de-
creases as K becomes small relative to d . For example, when K ≈ 0.5d , the differ-
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Table 5 Results for portfolio selection, with the root Heuristic, solved for 3600 CPU seconds

d K S LemkeBnB CplexMIQP

Nodes Best node UB Nodes Best node UB

500 200 10 6,100 0 83.93 49,720 0 138.83

500 100 10 5,960 0 80.40 55,183 0 140.29

500 50 4 13,828 0 80.01 15,078 7,995 89.34

ence in number of nodes explored is about a factor of 10, whereas when K ≈ 0.1d , it
reduces to a factor of 2 to 3. For the case when d = 200 and K = 20, the total compu-
tation time of “LemkeBnB” and “CplexMIQP” are about the same. We reach similar
conclusions when we increase the running time. Table 5 shows results for running
our method and CPLEX for 3600 CPU seconds.

Running the heuristic, even for just 30 CPU seconds, brought significant improve-
ment to our models in terms of finding good feasible solutions. Using |G| small
enough so that Lemke’s method can run sufficiently fast allowed us to find a good
feasible solution quickly.

5 Conclusion

From this computational study, we learn that:

1. Our tailored approaches for solving cardinality constrained quadratic optimiza-
tion problems in regression and portfolio optimization show some computational
advantages over a general mixed-integer solver.

2. For subset selection in regression, our method was able to find the subset of vari-
ables with significantly better fit than the forward regression heuristic even with a
60 second time limit. The results also show that our approach has significant com-
putational advantages to CPLEX which needs to solve an explicit mixed-integer
quadratic formulation with big-M constraints.

3. For the portfolio selection problem, the combination of our branch-and-bound
implementation and Lemke’s method has significantly faster running times com-
pared to using the barrier method to solve the continuous quadratic optimization
problem. The key bottleneck for efficient quadratic mixed-integer optimization
has been the inability of interior point methods to start at infeasible points. Al-
though they are undoubtedly more effective in solving high dimensional quadratic
optimization problems than pivoting methods started from scratch, the pivoting
methods can re-solve each subproblem more efficiently at each node of the branch-
and-bound tree.

4. CPLEX’s quadratic mixed-integer solver has a more sophisticated pivoting and
branch-and-bound implementation, yet our tailored approach compensates for
our lack of software engineering prowess. Our root heuristic finds good upper
bounds quickly and our variable deletion and Lemke’s method with non-zero
lower bounds updates each subproblem without increasing the size of the prob-
lem. With further improvements in implementation (e.g., regarding data struc-
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tures, decompositions, and memory handling), we believe our methodology will
have comparable node-to-node running times.

There are several potential improvements to our model. We use depth-first-search in
all of our branch-and-bound procedures due to the ease of implementation. Although
we can find good upper-bounds faster with this approach, we often get stuck in a
subtree. Also, with large number of nodes, we cannot utilize best lower-bounds ef-
fectively, since the root relaxation would be the lower-bound for a large majority of
the nodes we explore. There is also merit in investigating other principal pivoting
techniques other than Lemke’s. The main drawback of Lemke’s method is the lack of
choice in the entering variable. Alternative pivoting methods, though more difficult
to initialize, have the flexibility of choosing amongst several entering variables, akin
to the simplex method. It also does not augment the LCP, thus not introducing an
auxiliary variable and column. These properties may allow us to converge faster to
the solution.

Our goal in this work was to investigate the computational merit of tailored
branch-and-bound implementations that does not require introducing binary variables
for solving subset selection in regression and portfolio selection problem in asset
management. To find good (but not necessarily provably optimal) solutions quickly,
these approaches appear to have advantages over generalized solvers. We hope to
further improve our implementation and explore the practicality of our algorithm to
other examples of CCQOs.



Algorithm for cardinality-constrained quadratic optimization

A
pp

en
di

x
A

:
A

dd
it

io
na

lt
ab

le
s

Ta
bl

e
6

R
es

ul
ts

fo
r

Su
bs

et
Se

le
ct

io
n

w
ith

60
C

PU
se

co
nd

s.
d

is
th

e
nu

m
be

r
of

va
ri

ab
le

s,
K

is
th

e
si

ze
of

th
e

se
le

ct
ed

su
bs

et
,a

nd
R

SS
is

th
e

re
si

du
al

su
m

of
sq

ua
re

s.
Fi

ve
di

ff
er

en
ti

ns
ta

nc
es

fo
r

ea
ch

(d
,
K

)
pa

ir
w

er
e

so
lv

ed
an

d
v

de
no

te
s

th
e

in
st

an
ce

nu
m

be
r

d
K

v
Fo

rw
ar

d
B

nB
C

pl
ex

M
IQ

P

R
SS

C
PU

se
c.

#
no

de
s

B
es

tn
od

e
R

SS
C

PU
se

c.
#

no
de

s
B

es
tn

od
e

R
SS

20
10

1
5,

73
0

0.
08

75
7

48
1

4,
88

2
0.

10
77

6
36

6
4,

88
1

20
10

2
12

,3
91

0.
01

69
0

5,
22

3
0.

03
11

8
91

5,
22

3

20
10

3
5,

57
2

0.
00

27
0

2,
73

3
0.

02
50

49
2,

73
3

20
10

4
6,

54
0

0.
04

28
3

99
4,

01
8

0.
05

26
8

19
6

4,
01

8

20
10

5
7,

35
6

0.
00

33
0

4,
67

3
0.

02
32

0
4,

67
3

20
5

1
14

,4
06

0.
00

57
0

11
,2

75
0.

02
10

1
10

0
11

,2
75

20
5

2
26

,2
21

0.
02

22
7

0
25

,1
62

0.
07

40
8

36
4

25
,1

62

20
5

3
26

,3
33

0.
02

17
7

0
18

,6
58

0.
04

21
9

19
1

18
,6

58

20
5

4
11

,4
40

0.
01

11
5

0
11

,4
40

0.
04

19
6

17
4

11
,4

40

20
5

5
33

,3
92

0.
03

29
5

10
30

,1
81

0.
06

40
6

40
4

30
,1

81

50
40

1
66

,0
70

0.
13

85
0

48
9

14
.8

6
31

,6
31

31
,6

30
48

9

50
40

2
27

,9
70

8.
52

5,
12

5
0

6,
43

3
26

.0
6

71
,5

21
70

,2
66

6,
43

3

50
40

3
13

,6
62

0.
12

83
0

46
5

21
.6

4
45

,1
94

45
,1

93
46

5

50
40

4
11

,8
64

0.
14

93
0

2,
17

5
5.

41
12

,4
97

12
,4

97
2,

17
5

50
40

5
67

,7
12

0.
53

35
7

0
3,

19
0

7.
34

18
,1

80
17

,9
05

3,
19

0



D. Bertsimas, R. Shioda

Ta
bl

e
6

(C
on

ti
nu

ed
)

d
K

v
Fo

rw
ar

d
B

nB
C

pl
ex

M
IQ

P

R
SS

C
PU

se
c.

#
no

de
s

B
es

tn
od

e
R

SS
C

PU
se

c.
#

no
de

s
B

es
tn

od
e

R
SS

50
20

1
94

,6
62

60
.0

0
88

,6
31

0
47

,4
81

60
.0

0
16

6,
66

9
0

55
,0

29

50
20

2
17

3,
33

0
60

.0
0

88
,1

47
0

99
,1

59
60

.0
0

16
8,

32
6

0
10

1,
61

4

50
20

3
10

1,
75

7
60

.0
0

90
,0

17
37

,9
75

66
,0

51
60

.0
0

16
7,

05
1

0
81

,6
22

50
20

4
70

,3
47

60
.0

0
87

,9
41

0
52

,5
89

60
.0

0
16

7,
05

1
0

53
,4

37

50
20

5
12

7,
48

0
60

.0
0

88
,9

07
0

61
,2

23
60

.0
0

16
6,

94
3

0
69

,6
59

10
0

80
1

33
9,

59
2

60
.0

0
4,

03
5

0
16

,1
08

60
.0

0
53

,2
60

52
,6

48
72

2,
84

1

10
0

80
2

41
0,

15
5

0.
82

16
1

0
95

4
60

.0
0

53
,9

85
51

,8
88

62
6,

16
6

10
0

80
3

37
6,

34
3

60
.0

0
7,

28
9

6,
37

7
13

,8
99

60
.0

0
54

,4
79

54
,4

50
66

4,
73

4

10
0

80
4

30
2,

70
6

0.
81

16
1

0
96

5
60

.0
0

53
,4

63
52

,9
27

76
1,

43
9

10
0

80
5

36
9,

13
6

0.
96

16
3

0
1,

12
6

60
.0

0
52

,8
56

52
,8

04
59

6,
22

0

10
0

50
1

61
1,

97
6

60
.0

0
9,

19
3

0
12

9,
70

6
60

.0
0

54
,5

17
0

75
8,

26
1

10
0

50
2

46
1,

08
5

60
.0

0
8,

92
9

8,
74

1
10

4,
64

4
60

.0
0

54
,7

38
0

63
0,

96
6

10
0

50
3

44
3,

94
0

60
.0

0
9,

21
3

0
13

1,
32

7
60

.0
0

55
,0

02
0

67
8,

23
4

10
0

50
4

37
9,

71
1

60
.0

0
9,

16
5

63
11

1,
73

8
60

.0
0

54
,8

26
0

77
6,

80
9

10
0

50
5

53
8,

90
8

60
.0

0
9,

01
3

2,
88

5
10

3,
91

2
60

.0
0

54
,6

68
0

61
8,

52
0

10
0

20
1

91
8,

57
9

60
.0

0
35

,6
19

25
,3

85
69

0,
53

2
60

.0
0

52
,7

73
0

75
8,

26
1

10
0

20
2

80
7,

78
4

60
.0

0
33

,0
31

0
59

1,
70

0
60

.0
0

53
,2

73
0

63
0,

96
6

10
0

20
3

75
8,

71
8

60
.0

0
31

,6
55

0
62

2,
72

8
60

.0
0

54
,0

00
0

67
8,

23
4

10
0

20
4

79
3,

69
2

60
.0

0
33

,8
89

0
71

3,
57

6
60

.0
0

53
,6

94
0

77
6,

80
9

10
0

20
5

79
6,

71
4

60
.0

0
37

,9
31

0
56

4,
57

8
60

.0
0

53
,9

94
0

61
8,

52
0



Algorithm for cardinality-constrained quadratic optimization

Ta
bl

e
6

(C
on

ti
nu

ed
)

d
K

v
Fo

rw
ar

d
B

nB
C

pl
ex

M
IQ

P

R
SS

C
PU

se
c.

#
no

de
s

B
es

tn
od

e
R

SS
C

PU
se

c.
#

no
de

s
B

es
tn

od
e

R
SS

50
0

40
0

1
11

,3
07

,9
00

60
.0

0
3

0
39

,5
66

60
.0

0
32

0
0

64
,0

22
,3

00

50
0

40
0

2
11

,8
11

,7
00

60
.0

0
3

0
12

5,
12

5
60

.0
0

59
1

59
0

12
0,

30
8,

00
0

50
0

40
0

3
15

,7
60

,1
00

60
.0

0
3

0
76

,1
27

60
.0

0
2

0
11

7,
63

9,
00

0

50
0

40
0

4
11

,4
63

,1
00

60
.0

0
3

0
4,

64
5

60
.0

0
36

7
0

58
,8

63
,4

00

50
0

40
0

5
9,

22
7,

68
0

60
.0

0
3

0
75

,6
80

60
.0

0
44

8
0

54
,4

04
,7

00

50
0

10
0

1
21

,8
15

,4
00

60
.0

0
3

0
15

,2
67

,3
00

60
.0

0
12

0
0

64
,0

22
,3

00

50
0

10
0

2
22

,5
78

,2
00

60
.0

0
3

0
14

,3
31

,1
00

60
.0

0
57

5
56

4
12

0,
68

2,
00

0

50
0

10
0

3
25

,5
62

,5
00

60
.0

0
3

0
17

,8
02

,3
00

60
.0

0
0

0
11

7,
63

9,
00

0

50
0

10
0

4
21

,7
51

,2
00

60
.0

0
3

0
15

,5
91

,1
00

60
.0

0
38

3
0

58
,8

63
,4

00

50
0

10
0

5
19

,5
25

,8
00

60
.0

0
3

0
14

,6
81

,0
00

60
.0

0
43

0
0

54
,4

04
,7

00

50
0

20
1

34
,0

13
,8

00
60

.0
0

1,
45

1
79

5
32

,6
87

,9
00

60
.0

0
25

5
0

64
,0

22
,3

00

50
0

20
2

36
,1

03
,3

00
60

.0
0

1,
67

5
45

7
33

,3
50

,0
00

60
.0

0
0

0
13

3,
19

8,
00

0

50
0

20
3

42
,8

41
,9

00
60

.0
0

1,
60

1
1,

01
7

41
,5

50
,0

00
60

.0
0

12
0

11
7,

63
9,

00
0

50
0

20
4

36
,6

22
,5

00
60

.0
0

1,
23

3
81

1
35

,7
80

,1
00

60
.0

0
38

4
0

58
,8

63
,4

00

50
0

20
5

34
,1

51
,1

00
60

.0
0

1,
48

3
1,

25
9

33
,9

24
,4

00
60

.0
0

0
0

13
6,

42
9,

00
0



D. Bertsimas, R. Shioda

Ta
bl

e
7

R
es

ul
ts

fo
r

Su
bs

et
Se

le
ct

io
n

w
ith

36
00

C
PU

se
co

nd
s.

d
is

th
e

nu
m

be
r

of
va

ri
ab

le
s,

K
is

th
e

si
ze

of
th

e
se

le
ct

ed
su

bs
et

,a
nd

R
SS

is
th

e
re

si
du

al
su

m
of

sq
ua

re
s.

Fi
ve

di
ff

er
en

ti
ns

ta
nc

es
fo

r
ea

ch
(d

,
K

)
pa

ir
w

er
e

so
lv

ed
.v

de
no

te
s

th
e

in
st

an
ce

nu
m

be
r

d
K

v
Fo

rw
ar

d
B

nB
C

pl
ex

M
IQ

P

R
SS

C
PU

se
c.

#
no

de
s

B
es

tn
od

e
R

SS
C

PU
se

c.
#

no
de

s
B

es
tn

od
e

R
SS

50
20

1
94

,6
62

90
.4

1
13

5,
73

1
0

47
,4

81
13

9.
54

38
3,

86
3

38
3,

31
0

47
,4

81

50
20

2
17

3,
33

0
81

3.
68

1,
27

7,
92

7
0

99
,1

59
54

8.
20

1,
52

1,
96

8
1,

07
4,

02
5

99
,1

59

50
20

3
10

1,
75

7
34

4.
91

54
9,

87
7

37
,9

75
66

,0
51

67
0.

38
1,

84
3,

03
0

1,
81

3,
13

4
66

,0
51

50
20

4
70

,3
47

21
0.

61
32

6,
43

9
0

52
,5

89
13

2.
79

36
7,

31
5

29
4,

04
9

52
,5

89

50
20

5
12

7,
48

0
91

.7
8

13
8,

25
7

0
61

,2
23

12
8.

34
35

3,
65

8
30

8,
91

8
61

,2
23

10
0

80
1

33
9,

59
2

1,
98

7.
89

31
9,

18
5

29
5,

94
7

15
,4

15
3,

60
0.

00
3,

12
2,

52
7

3,
11

9,
79

3
66

,8
81

10
0

80
2

41
0,

15
5

0.
81

16
1

0
95

4
3,

60
0.

00
3,

15
0,

14
3

3,
15

0,
14

2
10

0,
75

6

10
0

80
3

37
6,

34
3

42
9.

38
92

,7
75

89
,1

53
10

,7
94

2,
98

7.
66

2,
62

2,
67

3
2,

60
5,

40
7

10
,7

94

10
0

80
4

30
2,

70
6

0.
81

16
1

0
96

5
2,

46
7.

48
2,

08
5,

83
6

2,
08

5,
83

6
96

5

10
0

80
5

36
9,

13
6

0.
96

16
3

0
1,

12
6

3,
60

0.
00

3,
22

9,
63

9
3,

22
3,

75
2

37
1,

68
0

10
0

50
1

61
1,

97
6

3,
60

0.
00

65
1,

43
5

0
12

9,
70

6
3,

60
0.

00
3,

28
4,

77
4

0
75

8,
26

1

10
0

50
2

46
1,

08
5

3,
60

0.
00

65
0,

95
5

40
,5

59
10

3,
31

1
3,

60
0.

00
3,

29
4,

91
4

0
63

0,
96

6

10
0

50
3

44
3,

94
0

3,
60

0.
00

65
6,

44
9

0
13

1,
32

7
3,

60
0.

00
3,

39
9,

95
0

0
67

8,
23

4

10
0

50
4

37
9,

71
1

3,
60

0.
00

66
4,

52
3

63
11

1,
73

8
3,

60
0.

00
3,

34
5,

43
3

0
77

6,
80

9

10
0

50
5

53
8,

90
8

3,
60

0.
00

65
2,

54
7

19
,1

61
10

3,
55

0
3,

60
0.

00
3,

29
5,

36
9

0
61

8,
52

0



Algorithm for cardinality-constrained quadratic optimization

Ta
bl

e
7

(C
on

ti
nu

ed
)

d
K

v
Fo

rw
ar

d
B

nB
C

pl
ex

M
IQ

P

R
SS

C
PU

se
c.

#
no

de
s

B
es

tn
od

e
R

SS
C

PU
se

c.
#

no
de

s
B

es
tn

od
e

R
SS

10
0

20
1

91
8,

57
9

3,
60

0.
00

2,
20

6,
24

7
25

,3
85

69
0,

53
2

3,
60

0.
00

3,
16

7,
07

1
0

75
8,

26
1

10
0

20
2

80
7,

78
4

3,
60

0.
00

2,
04

4,
35

3
0

59
1,

70
0

3,
60

0.
00

3,
17

4,
39

7
0

63
0,

96
6

10
0

20
3

75
8,

71
8

3,
60

0.
00

2,
06

9,
31

7
0

62
2,

72
8

3,
60

0.
00

3,
22

2,
56

8
0

67
8,

23
4

10
0

20
4

79
3,

69
2

3,
60

0.
00

2,
15

8,
69

9
0

71
3,

57
6

3,
60

0.
00

3,
20

9,
02

3
0

77
6,

80
9

10
0

20
5

79
6,

71
4

3,
60

0.
00

2,
29

3,
54

7
0

56
4,

57
8

3,
60

0.
00

3,
19

0,
98

4
0

61
8,

52
0

50
0

40
0

1
11

,3
07

,9
00

3,
60

0.
00

26
,6

87
2,

50
7

38
,7

81
3,

60
0.

00
10

2,
68

9
10

2,
68

8
62

,1
04

,0
41

50
0

40
0

2
11

,8
11

,7
00

3,
60

0.
00

1,
67

5
0

12
4,

88
3

3,
60

0.
00

58
,4

55
58

,3
54

77
,8

80
,0

26

50
0

40
0

3
15

,7
60

,1
00

3,
60

0.
00

4,
32

9
0

73
,6

67
3,

60
0.

00
49

,3
78

49
,3

06
79

,1
80

,6
39

50
0

40
0

4
11

,4
63

,1
00

3,
60

0.
00

3
0

4,
64

0
3,

60
0.

00
51

,0
88

51
,0

81
58

,8
45

,1
61

50
0

40
0

5
9,

22
7,

68
0

3,
60

0.
00

4,
40

3
0

73
,1

95
3,

60
0.

00
50

,6
30

50
,6

28
54

,3
75

,3
34

50
0

10
0

1
21

,8
15

,4
00

3,
60

0.
00

50
,1

65
0

15
,2

67
,3

00
3,

60
0.

00
55

,9
81

0
64

,0
22

,3
41

50
0

10
0

2
22

,5
78

,2
00

3,
60

0.
00

51
,5

43
0

14
,3

31
,1

00
3,

60
0.

00
13

2,
03

3
13

1,
00

0
72

,0
52

,2
26

50
0

10
0

3
25

,5
62

,5
00

3,
60

0.
00

49
,7

63
0

17
,8

02
,3

00
3,

60
0.

00
99

,9
00

99
,8

04
74

,0
45

,2
39

50
0

10
0

4
21

,7
51

,2
00

3,
60

0.
00

52
,1

61
0

15
,5

91
,1

00
3,

60
0.

00
12

2,
68

9
0

58
,8

63
,3

61

50
0

10
0

5
19

,5
25

,8
00

3,
60

0.
00

54
,5

51
0

14
,6

81
,0

00
3,

60
0.

00
11

5,
09

9
0

54
,4

04
,7

34

50
0

20
1

34
,0

13
,8

00
3,

60
0.

00
10

5,
51

7
70

,7
17

32
,6

26
,3

00
3,

60
0.

00
11

7,
45

9
0

64
,0

22
,3

41

50
0

20
2

36
,1

03
,3

00
3,

60
0.

00
14

9,
00

9
46

,8
25

33
,1

20
,7

00
3,

60
0.

00
15

1,
84

0
62

,0
00

10
0,

62
8,

62
6

50
0

20
3

42
,8

41
,9

00
3,

60
0.

00
12

2,
81

3
11

2,
44

3
41

,5
34

,3
00

3,
60

0.
00

15
1,

24
2

57
,0

00
95

,1
85

,4
39

50
0

20
4

36
,6

22
,5

00
3,

60
0.

00
10

7,
37

5
81

1
35

,7
80

,1
00

3,
60

0.
00

12
1,

55
9

0
58

,8
63

,3
61

50
0

20
5

34
,1

51
,1

00
3,

60
0.

00
10

7,
39

5
77

,7
83

33
,8

02
,9

00
3,

60
0.

00
11

4,
88

2
0

54
, 4

04
,7

34



D. Bertsimas, R. Shioda

References

1. Arthanari, T.S., Dodge, Y.: Mathematical Programming in Statistics. Wiley, New York (1993)
2. Beale, E.M.L., Kendall, M.G., Mann, D.W.: The discarding of variables in multivariate analysis. Bio-

metrika 54(3/4), 357–366 (1967)
3. Bertsimas, D., Darnell, C., Soucy, R.: Portfolio construction through mixed-integer programming at

Grantham, Mayo, Van Otterloo and Company. Interfaces 29(1), 49–66 (1999)
4. Bienstock, D.: Computational study on families of mixed-integer quadratic programming problems.

Math. Program. 74, 121–140 (1996)
5. Blog, B., van der Hoek, G., Rinnooy Kan, A.H.G., Timmer, G.T.: Optimal selection of small portfolio.

Manag. Sci. 29(7), 792–798 (1983)
6. Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.: Heuristics for cardinality constrained portfolio

optimisation. Comput. Operat. Res. 27, 1271–1302 (2000)
7. Cottle, R.W., Pang, J., Stone, R.E.: The Linear Complementarity Problem. Academic, San Diego

(1992)
8. ILOG CPLEX 8.1 User Manual. ILOG CPLEX Division, Incline Village, NV (2002)
9. Furnival, G.M., Wilson Jr., R.W.: Regression by leaps and bounds. Technometrics 16(4), 499–511

(1974)
10. Hockings, R.R., Leslie, R.N.: Selection of the best subset in regression analysis. Technometrics 9(4),

531–540 (1967)
11. Jacob, N.: A limited diversification portfolio selection model for the small investor. J. Finance 29(3),

847–856 (1974)
12. Jobst, N., Horniman, M., Lucas, C., Mitra, G.: Computational aspects of alternative portfolio selection

models in the presence of discrete asset choice constraints. Quant. Finance 1(5), 489–501 (2001)
13. Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11(7), 681–

689 (1965)
14. Lemke, C.E., Howson, J.T. Jr.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12(2),

413–423 (1964)
15. Konno, H., Wijayanayake, A.: Portfolio optimization problem under concave transaction costs and

minimal transaction unit constraints. Math. Program. 89, 233–250 (2001)
16. Mansini, R., Speranza, M.G.: An exact approach for portfolio selection with transaction costs and

rounds. IIE Trans. 37, 919–929 (2005)
17. Mansini, R., Speranza, M.G.: Heuristic algorithms for portfolio selection problem with minimum

transaction lots. Eur. J. Operat. Res. 114(1), 219–233 (1999)
18. Miller, A.: Subset Selection in Regression. Monographs on Statistics and Applied Probability, vol. 40.

Chapman and Hall, London (1990)
19. Narula, S., Wellington, J.: Selection of variables in linear regression using the minimum sum of

weighted absolute errors criterion. Technometrics 21(3), 299–311 (1979)
20. Owens-Butera, G.: The solution of a class of limited diversification portfolio selection problems.

Ph.D. thesis, Rice University, CRPC-TR97724-S (1997)
21. Patel, N., Subrahmanyam, M.: A simple algorithm for optimal portfolio selection with fixed transac-

tion costs. Manag. Sci. 28(3), 303–314 (1982)
22. Press, W.H., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C, 2nd edn. Cambridge

University Press, Cambridge (1992). http://www.nr.com
23. Ryan, T.P.: Modern Regression Methods. Wiley Series in Probability and Statistics. Wiley, New

York (1997)
24. Sharpe, W.: A linear programming algorithm for mutual fund portfolio selection. Manag. Sci. 13(7),

499–510 (1967)
25. Sharpe, W.: A linear programming approximation for the general portfolio analysis problem. J. Fi-

nanc. Quant. Anal. 6(5), 1263–1275 (1971)


	Algorithm for cardinality-constrained quadratic optimization
	Abstract
	Introduction
	General methodology
	Lemke's method as underlying quadratic optimizer
	Branching down
	LU decomposition of the basis

	A heuristic

	Applications of CCQO
	Subset selection in regression
	Portfolio selection 

	Computational results
	Results for subset selection
	Results for portfolio selection

	Conclusion
	Appendix A: Additional tables
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


