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This paper discusses the distributional Little’s law and examines its applications in a variety of queueing systems. The distribu-
tional law relates the steady-state distributions of the number in the system (or in the queue) and the time spent in the system (or
in the queue) in a queueing system under FIFO. We provide a new proof of the distributional law and in the process we generalize
a well known theorem of Burke on the equality of pre-arrival and postdeparture probabilities. More importantly, we demonstrate that
the distributional law has important algorithmic and structural applications and can be used to derive various performance
characteristics of several queueing systems which admit distributional laws. As a result, we believe that the distributional law is
a powertful tool for the derivation of performance measures in queueing systems and can lead to a certain unification of queueing

theory.

One important trend in the queueing theory literature
has been the development of laws that connect fun-
damental quantities of queueing systems. Probably
the most well known result in this direction is that the
steady-state number of customers in the system (or
queue), denoted by L, and the waiting time W of a cus-
tomer in the system (or queue) obey Little’s law (1961):
E[L] = AE[W], where A is the arrival rate. Generaliza-
tions of Little’s law include E[H] = AE[G] due to
Stidham (1970) and Brumelle (1971) and the rate
conservation laws of Miyazawa (1979, 1985). E[H] =
AE[G] and the rate conservation laws have been shown
to be essentially equivalent (see, for example, Sigman
1991). For a thorough survey of Little’s law and its ex-
tensions the reader is referred to the paper by Whitt
(1991).

Although the previous laws are important structural
results, they do not address how the distributions of L
and W are related, or how one can find E[L], E[W] or,
even more ambitiously, the distributions of L and W. As
a result, to find the distributions of L and W in specific
queueing systems, researchers exploit the particular
structure of the system.

It is well known that although E[W] is invariant under
a wide variety of service disciplines, the distribution of
W is not. Therefore, to find a useful relation between the
distributions of L and W, one has to specify the service
discipline. Haji and Newell (1971) address the issue of
relating the distributions of L and W, when the discipline
of the queueing system is first in, first out (FIFO), and
prove a general distributional law (see Theorem 1.
Miyazawa (1979) and Franken et al. (1982, pp. 110-111)
discuss these distributional laws further and offer addi-
tional insights. Keilson and Servi (1988) discuss these
laws for the special case of a Poisson arrival process.
Whitt (1991, subsection 8.4) contains a nice discussion of
the distributional law.
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Our goal in this paper is to understand the distribu-
tional laws further and demonstrate that although the
distributional laws are more restrictive than Little’s law,
they can be used to derive performance measures for
queueing systems that admit distributional laws. In this
way, the derivation of performance measures in queueing
systems that admit distributional laws can be done in a
unified way. In particular, the contribution of the present
paper can be summarized as follows:

1. We offer two proofs of the relation of the distributions
of L and W in queueing systems, in which the arrival
process is a general stationary process and the queue-
ing discipline is FIFO. The first proof, which is a sim-
ple probabilistic proof from first principles, is similar
to the one in Haji and Newell. Our second proof
(Theorem 4), which is new, offers insight on the rela-
tions of pre-arrival, postdeparture, general time prob-
abilities and the waiting time. Moreover, it is the
natural matrix generalization of the proof technique of
Keilson and Servi (1988).

2. Theorem 3 generalizes previous results of Burke
(1956) (see also Franken et al., p. 112,
Papaconstantinou and Bertsimas 1990, and Hebuterne
1988) on the relation of pretransition and postdepar-
ture probabilities for stochastic processes with ran-
domly distributed jumps. Although this generalization
is of independent interest, it was the key for our sec-
ond proof of the distributional law.

3. Most importantly, we attempt to demonstrate that the
distributional law has important algorithmic and struc-
tural applications and can be used to derive various
performance characteristics of several queueing sys-
tems which admit distributional laws. This is particu-
larly important, because it shows that the
distributional law is a powerful and unifying tool for
the analysis of a wide variety of queueing systems.
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For the most part, our results were known in the lit-
erature. What is new is the unifying way of deriving
them and providing new insights about them based on
distributional laws.

a. We derive (Theorem 5) asymptotic closed-form rela-
tions in heavy traffic between E[L?] and E[W?] under
FIFO, and between E[L*] (L* is the number of cus-
tomers in the queue left behind from a departing
customer) and E[L] under FIFO for systems that
obey distributional laws. In the context of the GI/G/s
queue, these results are special cases of more general
results of Whitt (1971) based on heavy-traffic limit
theorems.

b. We derive the well known asymptotic expressions
(see, for example, Heyman and Sobel 1982, p. 483) in
heavy traffic for E[W] in a GI/G/1 queue (Theorem 6)
and a GI/D/s queue (Theorem 7) in terms of first and
second moments of the interarrival and service time
distributions using just the distributional laws.

c. We offer a new simple proof of the decomposition
result (Doshi 1985) for the expected waiting time in
vacation queues (Theorem 8) based on the distribu-
tional laws.

d. We show (Theorem 9) that in systems obeying distri-
butional laws the queue length distribution is a mix-
ture of geometric terms, provided that the waiting
time distribution is a mixture of exponential terms.
Our results are consistent with previous results of de
Smit (1983) and Bertsimas (1990).

e. One major consequence of the distributional law is
that one can find the queue length distribution from
the waiting time distribution. Theorem 10 addresses the
inverse problem. Using complex analysis techniques
we show how to obtain the waiting time distribution
from the queue length distribution.

f. In subsection 3.6 we derive closed-form formulas for
the transforms of the queue length distributions in
GI/R/1, RI/G/1, GI/D/s, GI/D/» queues (R is the
class of distributions with rational Laplace trans-
forms). The waiting time distribution for such systems
can be found using Hilbert factorization techniques
(see, for example, Bertsimas et al. 1991). The distribu-
tional law enables one to find the transforms of the
queue length distributions in such systems. For
the GI/R/1 queue our expressions agree with the ex-
pressions of de Smit. We finally remark that just the
knowledge of the distributional law is enough to fully
characterize the waiting time distribution under FIFO
for systems that have distributional laws for both the
number in the queue and the number in the system.

The paper is structured as follows. Section 1 presents
the first simple probabilistic proof of the distributional
law and describes several queueing systems for which
distributional laws hold. Section 2 presents our second
proof for the case in which the interarrival distribution is
mixed generalized Erlang. This section also includes a
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theorem on the relation of pretransition and postdepar-
ture probabilities for stochastic processes with randomly
distributed jumps. Section 3 contains algorithmic and
structural consequences of the distributional law for a
variety of queueing systems that admit distributional
laws.

1. THE DISTRIBUTIONAL LAW

Consider a general queueing system, whose arrival pro-
cess is stationary. We assume that customers arrive at
and depart from the system one at a time. Let N,(¢) be
the number of customers up to time ¢ for the ordinary
process, where the time of the first interarrival time has
the same distribution as the stationary interarrival time.
Let N%(¢) be the number of customers up to time ¢ for
the equilibrium process, where the time of the first inter-
arrival time is distributed as the forward recurrence time
of the arrival process.
The distributional law can be stated as follows.

Theorem 1. (Haji and Newell) Let a given class C of
customers have the following properties:

1. All arriving customers enter the system (or the queue)
one at a time, remain in the system (or the queue)
until served (there is no blocking, balking or reneging)
and leave one at a time.

2. The customers leave the system (or the queue) in the
order of arrival (FIFO).

3. New arriving class C customers do not affect the time
in the system (or the queue) for previous class C
customers.

Then, given that they exist in steady state, the stationary
waiting time W of the class C customers in the system
(or the queue) and the stationary number L of the class
C customers in the system (or queue) are related in dis-
tribution by:

L N (W). (1)

Proof. From some arbitrarily chosen time 7, which is
chosen independently of the arrival process, we number
the customers within the class C backward in time. In
particular, the customer numbered 1 is the one who ar-
rived most recently. The customer with the highest ordi-
nal number n is the one getting served, or is at the head
of the queue. According to this numbering, let 7, be the
arrival time of the nth class C customer in the system
(or queue) and W, be the waiting time in the system (or
queue), i.e., 7,, W, are ordered in the reverse time direc-
tion. Assuming that the system has reached steady state,
the distribution of W, is the same as the stationary wait-
ing time W.

Let TT = 7 — 1, i.e., T} is distributed as the forward
recurrence time of the arrival renewal process. For n =
2,letT, = 7,_4 — 7,.

The key observation for the proof is as follows. When
an observer coming to the system at a random moment 7
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sees at least n customers from class C, the nth most
recently arrived customer among the class C is still wait-
ing at that moment 7 of the observation (see also Figure
1), i.e., forn 2 1, L 2 n if and only if W, > r — 7,.
Note that we have used Assumptions 1 and 2. Therefore

Pr{L z2n]=Pi{W, >7—1,].

Now, because of Assumptions 2 and 3, W,and 7 — 7, =
T3 + X", T, are independent. Indeed, every person
arriving after time 7, joins the queue after the nth cus-
tomer and, therefore, each of these arrivals does not af-
fect the waiting time W, of that nth customer under
Assumptions 2 and 3. Since the distribution of W, is the
same as the stationary waiting time W, we obtain

©

Pr{L Zn]=J' Pr
0

T + 2 T, < t] dFw (t), 2)
i=2

which proves the theorem.

The distributional form of Little’s law (1) has the fol-
lowing intuitive interpretation. In steady state, the num-
ber of class C customers in the system (queue) has the
same distribution as the number of class C arrivals, arriv-
ing according to the equilibrium process, during the time
spent in the system (queue).

Assumption 1 in the previous theorem does not allow
for blocking, balking, or reneging. Assumption 2 does
not allow overtaking, while Assumption 3 is typically not
satisfied if there are dependencies among the interarrival
times. Haji and Newell also include the case of batch
arrivals, which we excluded in the previous theorem.
The reason is that for Assumption 3 to be satisfied we
need to assume that the distribution of the batch size is
geometric, which is somewhat restrictive.

To develop a useful calculus so that we can exploit the
distributional law, we will assume in the remainder of
the paper that the arrival process is renewal. Let a(s)
be the Laplace transform of the interarrival distribution,
with arrival rate A = —1/a@(0). Let N,(¢) be the number
of renewals up to time ¢ for the ordinary renewal process
and N*(¢) be the number of renewals up to time ¢ for the
equilibrium renewal process. We will also use the notion
of a complex integral §r f(s) ds, for some complex func-
tion f(s), in which we integrate the function f(s) over a
closed, simply connected curve I'. In evaluating this type
of integral, it is important that we specify whether the

Wn
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Figure 1. An illustration of Little’s law.

curve I contains the singularities of f(s) (see, for exam-
ple, Henrici 1988, p. 243).

We now turn our attention to the relations among the
generating function of L and the Laplace transform of W
when the input process is a renewal process.

Theorem 2. If arrivals of class C form a renewal process
whose interarrival time has a transform of(s) and under
the assumptions of Theorem 1, the cdf Fy{t) of W and the
generating function G, (z) of L satisfy the relation:

©

GL(z) = J K(z, t) dFy (0), 3)
Q

where the kernel is the generating function of the equilib-
rium renewal process, i.e.,

K(z,t)= D, z" PI[N%(t) = n). (4)
n=0

The Laplace transform of the renewal generating func-

tion K(z, t) is given by

o

K*(z, s) = '[ e S'K(z, t) dt (5)
0
_1_, (=90 -al)
s s¥1 - za(s))

If the Laplace transform pdf ¢us) of the waiting time
exists and is well defined, then

6L =5t im K*(z, $)éw(~s) ds, ©)

where in the contour integral we are integrating over a
closed, simply connected curve I'(z) (depending on z)
containing all singularities of K*(z, s), but not ¢u{—s).

Proof. From (1) we obtain

o«

Pr{L =n} = J PI[N%(¢) = n] dFw (1).
0
Multiplying both sides by z* and adding over n leads to

]

GL(z) = i‘, z* Pi[L =n]= J K(z, t) dFw (), (7)
n=0 0

where
K(z, t) = , z" PI[N%(¢) = n].
n=0

It is well known (see Cox 1962, p. 37) that the Laplace
transform of K(z, t) is

0

J e 'K(z, t) dt =%— A (1-2)1 ~ a(s))
0

s 1 - za(s))

Finally, we use the inverse Laplace transform formula
for the kernel (see Kleinrock 1975, pp. 336, 352-353),

Copvan o 2o01 Al Rights Reserved



K(z, t) = ﬁ; § eS'K*(z, 5) ds,

where the contour contains all singularities of K*(z, s)
for a fixed z. We then have

-]

GL(z) = 21? f § eK*(z, 5) ds dFy (¢).
0

Given that ¢y{s) = 3 e ** dFy (¢) exists and is well
defined, we interchange the integrals and obtain that

1

GL(Z) = 21i

§ K*(z, s)pw(—s) ds.

Remark

The goal of this remark is to find the relation of pre-
arrival, postdeparture probabilities and waiting time. The
derivation here uses the argument of Keilson and Servi.
Let L=, L™ be the number in the system (or the queue)
just before an arrival or just after a departure, respec-
tively, for a system that satisfies the assumptions of
Theorem 2. The number of customers left behind in the
system (or in the queue) by a departing customer a, is
exactly the number of customers that arrived during the
time customer a spent in the system (or in the queue),
because the queue discipline is FIFO. As a result,
L* £ N,(w) and since the number of customers changes
by one L* £ L~. As a result,

GrL+(2) = J K,(z, t) dFy (1), (8)
0

where the kernel is the generating function of the ordi-
nary renewal process, i.e.,

K,(z, t)= 20 z" Pr{N,(t) = n]. (9)

It is well known (see Cox 1962) that the Laplace trans-

form of the renewal generating function K,(z, ¢) is given

by

Ki(z,s)= f e S'K, (z, t) dt =
0

1 - a(s)

s(1 —za(s))” (10)

If, in addition, the arrival process is Poisson and under
Assumption 3 of Theorem 1, then

L4 _d d
L™ =L" =L =N,W),

(note that in the case of Poisson arrivals N(¢) = N,(t)).
In this case it is easy to prove that

K(z, t) = K,(z, t) = e *177%,

Substituting into (3) we obtain Keilson and Servi’s (1988)
result:

GrL(z) = dw(Ar — Az).
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Systems for Which the Distributional Law Holds

We emphasize that the distributional law holds for a va-
riety of settings; these include the time and the number in
the queue of a heterogeneous service priority GI/G/s
system for each priority class (within each class the dis-
cipline is FIFO). It holds even if successive service times
are dependent. It does not hold, however, for the time
and the number in the system, because Assumption 2 is
violated (overtaking can occur). It also holds for both the
number in the system and the number in the queue of a
GI/G/1 system and a GI/D/s system with priority
classes. Moreover, it holds for the total sojourn time and
the total number of a certain class in a queueing network
without overtaking (such as tandem queues). Other appli-
cations include GI/D/», GI/G/1 with vacations and ex-
haustive service.

2. RELATION OF PRETRANSITION AND
POSTDEPARTURE PROBABILITIES AND ITS
APPLICATION TO THE DISTRIBUTIONAL LAW

This section gives a different proof of the distributional
law for a renewal, mixed, generalized Erlang arrival pro-
cess by generalizing previous results of Burke;
Papaconstantinou and Bertsimas; and Hebuterne on the
relation of pretransition and postdeparture probabilities
for stochastic processes with randomly distributed
jumps. The advantage of this proof technique is that it
leads to a closed-form expression for the kernel K(z, #)
in (4). This proof technique is a natural extension of
Keilson and Servi’s (1988) proof technique to arrival pro-
cesses with rational Laplace transforms.

Our strategy for proving the distributional law is as
follows.

1. We introduce the class of mixed generalized Erlang
distributions.

2. We observe that when the interarrival time belongs to
the class of mixed generalized Erlang distributions, the
arrival process is a special case of a phase renewal
process. Using the uniformization technique, a phase
renewal process is interpreted as an embedded
Markov chain at Poisson transition epochs.

3. In Theorem 3 we derive the relation of pretransition
and postdeparture probabilities for stochastic pro-
cesses with randomly distributed jumps. Since, by
PASTA, an observer at a Poisson transition epoch
sees time averages, we are thus able to relate the
postdeparture and the general time probabilities.

4. We relate the postdeparture probabilities to the wait-
ing time distribution.

5. We combine the last two relations and thus prove the
distributional law.

2.1. The Coxian Distribution

This section will consider systems with mixed general-
ized Erlang (MGE) arrival processes (see Cox 1995)
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which can approximate any renewal arrival process arbi-
trarily closely. The stage representation of the MGE dis-
tribution is presented in Figure 2, i.e., we conceive the
arrival process as an arrival timing channel (ATC) con-
sisting of M consecutive exponential stages with rates
AL, As, oo, Ay and with probabilities py, py, +-+ , Py
(pay = 1) of entering the system after the completion of
the 1st, 2nd, ..., Mth stage.

Let a,(t) be the pdf of the remaining interarrival time
if the customer in the ATC is in stage k = 1, ..., M.
Therefore, a(t) = a,(¢) is the pdf of the interarrival time.
For notational convenience we will drop the subscript for

= 1. Also, 1/A denotes the mean interarrival time. Let
«,(s) be the Laplace transform of a,(r). Let a(¢) be the
probability to move from stage i < j of the ATC to stage
j during the interval [0, 7) without having any new
arrival.

We will also use the notation:

a () = (aj@t), ..., at(n)’,

(=0, ..., alt), ..., afl(n))".

Here @,(s) denotes the Laplace transforms of d,(¢).
=0, ..., 1, .., 0, T=(,...,1,..., 1)

By introducing the following upper semidiagonal ma-
trix A, and the dyadic matrix A:

Ay
(A, —(L—pr 0 0
0 Ay —(1 = p2)As :
: . )\M_.l —(1 = py—1)Au-1
| O 0 Aum
[ =P1A1 0 - 0
Al = E : HE A
|—pPmAy O -+ O

We can compactly express the transforms defined above
as:

Qi(s) =€rls + Ag) 7,
M

ay(s) = —Cils + Ag) 'AIE = 2 prA,af(s)
r=k

M H,’;kl (1 —piA,
= 2 pr)‘r
r=k Hzr=1< (S + /\r)
—trace((Is + Ag) "'44),

als)

thus the interarrival pdf becomes

a(t) = —trace(e 4A ).

Ay - — = N,

Py P,

Figure 2. The Coxian class of distributions.

2.2, Uniformization of the Input Process

We will consider queueing systems with an input process
that forms a renewal process with the interarrival time
distribution being mixed generalized Erlang, which is a
phase renewal process. We first observe that

(Is+ Ag +zA,) ' = (Is + Ag) !
01(5)57'1(8)

S S
1 —za,(s)

ay(s)ai(s)
because for every pair of matrices C of full rank and D of
rank 1,

¢ 'pc!

(C+D)'=Cc!- —.
1 + trace(C ~'D)

By expressing this in real time we obtain

oo al(y - al®
e 0tzA1)t — : - :
0 e af(n)
w a ()
+ >z i Jxaf"P)
n=l apy(?)
* (ai(t) -+ afl(1)). (11

By interpreting this expression directly, it is clear that
this is the phase renewal (generating) function of the ar-
rival process.

We apply the uniformization technique (see, for exam-
ple, Ross 1985, p. 261) to the phase renewal function:

e Ao YA — Wl vt(I-1/v Ao—z/vAl),

where we choose v = max;_; .. ap A; < .
Let P, =1 — 1/v Ay and P, = —1/v A,. Then
> (ve)"
e_m“”A‘)': 2 e " . [P() + ZP]]".
n=0 n.

The interpretation of this formula is that a transition oc-
curs in a Poisson manner at rate v with ATC phase tran-
sition probability P, and the effective arrival probability
P,. Note that a transition is either an arrival or a shift to
the next exponential stage. We will use this interpreta-
tion in the next two subsections.

2.3. The Relation Between the Pretransition and
Postdeparture Probabilities

Our goal in this subsection is to find a relation between
the probabilities at pretransition Poisson epochs of the
arrival process and postdeparture probabilities. In
Theorem 3 we generalize the previous results of Burke;
Papaconstantinou and Bertsimas; and Hebuterne on the
relation of pretransition and postdeparture probabilities
for stochastic processes with randomly distributed
jumps.

In the previous subsection we introduced the matrices:
P, =1 — l/v Ay with elements Py, {i,j =1, ..., M},
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and P, = —1/v A, with elements P, , {i,j = 1, ...,
M}. We now introduce the notation we will use:

L* = The number of customers in the system (or
queue) immediately after a departure epoch.

L~ = The number of customers in the system (or
queue) just before a transition epoch of the
arrival process. A transition includes both
arrivals in the system and shifts to the next
exponential stage of the ATC. We emphasize
that L~ in this and the following subsection is
not the number of customers before an
arrival epoch. The motivation for considering
L~ is that, because of the uniformization, the
epochs of transition of the arrival process (n,
i) are Poisson distributed with rate » and thus
we can apply PASTA.

R™ = The ATC stage immediately after a departure
epoch.

R~ = The ATC stage just before a transition epoch
of the arrival process.

Pt ={PffL* = n N R* = {J}=¥ and P; =
{Pr[L~ = n N R~ = i}iz}.

Pr(@2) = 350 2"P; and P~(2) = Z5o0 2P
We observe the system in the interval (0, T) and define

u(n, i) = The number of upward jumps of the number
of customers n during the period (0, T) such
that L~ = nand R~ = i.
u°n, i) = The number of shifts from the ATC stage i to
i + 1 during the period (0, T) such that
L™ =nandR™ =i.
d(n, i) = The number of downward jumps of the
number of customers n during the period (0,
T) such that LY = n and R* = i.
U = The total number of transitions (upward
jumps and shifts) of the arrival process during
the period (0, 7).
D = The total number of departures (downward
jumps) during the period (0, T).

We now prove the theorem on the relation of the pre-
transition and postdeparture probabilities.

Theorem 3. Let P~ (z), P*(z) be the generating func-
tions for the pretransition and the postdeparture proba-
bilities as defined above. Then

P (z)=A(1 -2)PH(z)(Ay +2z4,)7 L. (12)

Under Assumption 3 of Theorem 1, the generating func-
tion of the number of customers in the system L is

GL(z) =P (2)1. (13)

Proof. We follow a method used by Papaconstantinou
and Bertsimas and Hebuterne to establish the relation
between pre-arrival and postdeparture probabilities in
stochastic processes with random upward and downward
jumps. We first write the flow balance equations; the
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left-hand sides correspond to flow out and the right sides
correspond to flow in.

din — 1, i) + u’n, i) + u(n, iy =d(n, i) + u’(n, i - 1)

{i>1,n>0}

dn -1, 1)+ u%n, 1) + un, 1) =d@n, 1)+ DM un -1,
{n > 0}
u%0, i) + u(0, i) = d(0, i) + u%0, i — 1)
{i > 1}

u%0, 1) + u(0, 1) = d(0, 1). (14)

We divide all equations by U and we then take the limit
as T — «. Note that

D

=

U

w |

é—d(n, H->PrL*=nnNR*=i]

L ud(n, ) > PrL™ = VR = iJPyuu

% un, i) »>Pr[L " =nNR™ =i}P1,
% @, i) + u(n, i) = PL~ =n AR~ =i](1 - Po,,).
Then (14) becomes in matrix form
Pil-P)-PiP =2Br-2Fr, n>0)

Pyl - Py) == P{.

> w >

Computing the generating functions ﬁ'(z), f’*(z), we
obtain

(-2
v

P(2) - Py —zP,] =2 B+(2),

which leads to
P (z) = A(1 —2)P*(z) (A +24,) L.

The epochs of transition of the arrival process (n, i)
are Poisson distributed with rate v. Therefore, by
PASTA (see Wolff 1982) and using Assumption 3 of
Theorem 1, the number of customers in the system L is
equal in distribution to the pretransition number in the
system L™, and hence

G.(z) =P (2)1.

2.4. The Relation of the Waiting Time and the
Postdeparture Probabliities

Let ¢y (5) be the transform pdf of the waiting time of a
class C customer and Fy(t) be the cdf of the waiting
time. In this subsection we relate the waiting time and
the postdeparture probabilities.

Proposition 1. Under assumptions 1 and 2 of Theorem 1
and for mixed, generalized Erlang interarrival times, the
postdeparture probability generating function ?*(z) is
represented as
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Pt(z) =€ 1Dy(4, + zA44),

where for any matrix D we symbolically define:

o

®u (D) if e~Pt dF, (1).
0

Proof. Because of Assumptions 1 and 2 in Theorem 1,
the number of customers left behind by a customer de-
parting from the system (or queue) is precisely the same
as the number of customers that arrived during this cus-
tomer’s waiting time in the system (or queue). Therefore,

]

PiL*=nNR*=i]= f a"™(t) * al(t) dFy ().
0

Taking generating functions and using (11) we find
P*(z) = E[@1e - UorsdnW],
and thus the result holds. O

2.5. A Matrix View of the Distributional Law

We now have all the necessary ingredients to give the
second proof of the distributional law.

Theorem 4. Under the assumptions of Theorem 1 and
for mixed, generalized Erlang interarrival times charac-
terized by the matrices A,, A,, the generating function
G, (z) and the cdf Ft) are related by:

GL(z) = f K(z, t) dFy (1),
0

where
K(z, 1) = A(1 - 2)¢1e "ot 4 + 24,) 71T,
which leads to
GL(z)=A(1 ~2)é1Py(Ag +24,)
(Ao +24,) 7T (15)
Proof. Combining (13) and (12) we obtain
Gp(z) = A(1 - 2)P*(z)(A, + 24,) " 1T.
Then by Proposition 1,
GpL(z) = A(1 —2)E1Py(Ag + 24, ) (A +24,) 1.

Therefore,

Gr(z)= J A(l — z)ée ~Ho+zdr)
0
‘(Mg +24,) T dFy @),
i.e.,

K(z, t) = A1 — z)8 e " “otzAi( 4, + 24 ,)717.
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Remarks

1. Note that (15) is a matrix generalization of Keilson
and Servi’s (1988) result that in the case of Poisson
arrivals

GL(z) = dw(r — Az).

2. The transform of K(z, ¢) is given by

K*(z, s) = A1 —2)é(Is + Ay +zA,) !
“(Ag +24,)7'T

_Ad-2) .
—'—_el{(AO +ZA1) —(IS+A()

+2zA4,) 1.
But
€\Us + Ay +24,)"1

=é”1{(1s +Ag)! —1—_%

(Is +A0)—1}T

(s +Ay)"'4,

= {1 S pe a(s)}a(ls +A49)7'T

1 1-as)
1 —za(s) s
1= al(s)

T s(1 - za(s))’

and similarly by taking s — 0,
1

il +24) T =y e
Therefore
, _A(l_'z) 1 _ l—a(s)

K*(z, s) = — {)‘(1 -z) s(1 —za(S))}

_1_, =2 -ak)

s 521 - za(s))

thus giving an alternative proof of (5).

3. Theorem 4 is a special case of Theorem 1 for the case
of a mixed generalized Erlang arrival process. The
advantage of the proof technique that led to Theorem
4 is that it also provides a closed-form expression for
the kernel K(z, ¢). This has some interesting applica-
tions, as we show in the next section.

3. APPLICATIONS OF THE DISTRIBUTIONAL LAW

In this section we investigate some important structural
and algorithmic consequences of the distributional law.

3.1. Relations Among the Second Moments

A useful application of the distributional law is a relation
of the first two moments of the queue length and the
waiting time. Formulas that relate higher moments of




queue length and the waiting time were obtained in
Brumelle (1972) (see also Miyazawa 1979). Our formula
(18) is different, but equivalent with the one in Brumelle,
while our asymptotic formulas (19) and (20) are, to the
best of our knowledge, new. Although they are asymp-
totically correct only in heavy traffic, they have the im-
portant advantage of relating the second moment of the
queue length distribution with just the first and second
moments of the waiting time. Consider a queueing sys-
tem which satisfies a distributional law. Let A be the
arrival rate and let u be the total service rate (for exam-
ple, in the case of the GI/G/s queue with heterogeneous
servers with rates g, ..., g, g = X5, ;). Letp =
A/ be the traffic intensity of the system. For the system
to be stable we require that p < 1.

Theorem 5. Under the assumptions of Theorem 1 with
renewal arrivals, Little’s law for the first and second
moments is

E[L] = AE[W]. (17)

)

where E[N,(t)] is the renewal function whose Laplace
transform is given by

w

E[L?] = A(E[W] +2E E[N,(1)] dTJ), (18)

©

i ©
SE[N, ()] dt = ———1
J, e ewaona- 2

Asymptotically, as p > 1
E[L?*] = A2E[W?] + Ac2E[W]

3 3 2 2
_ A E3[A 1 (c2 -; 1) +o(1), (19)
ci-1
E[L*]= AE[W]+ =2 +o(1), (20)

2

where c? is the square coefficient of variation of the in-
terarrival distribution and E[A?) is the third moment of
the interarrival time.

Proof. We first expand K(z, ¢) as a Taylor series in
terms of log(z):

t
K(z, t)=1+ At log (z)+)¢(t+2 j

E[N,(r)] dT)
0

2
L (10g (2.

To see this, we substitute z = e“ in (5) first, expand the
expression in terms of u, and then perform the inverse
Laplace transform term by term. Now if we compare it
with

o (1 r
Gu(z) = 3 prrn 2
r=0 r!

we obtain (17) and (18).
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Let A be the interarrival time. As p > 1, W — o« and,
thus, the asymptotically important contribution in (18) is
from the terms E[N,(¢)] for large ¢. As a result, we need
to investigate the asymptotic behavior of E[N,(f)] as
t — =, or, equivalently, we need to investigate the
asymptotic behavior of the Laplace transform of
E[N,(t)] as s — 0. To achieve this we expand the
Laplace transform of E[N,(¢)] in powers of s and obtain

als) A cZ—l_AZE[A3]
sA-al) sz 25 6
APE[A%]?
S+ o(1).

Inverting term by term, we obtain that

2—1 [A3E[A%)* A2E[4°3
E[Na(t)]=)\t+ca2 + 5 I 6[ ]

+0(8(2)),

where §(¢) is Dirac’s function. Substituting into (18) and
performing the integration term by term we obtain (19).
Starting with (8) and (10) and using the same technique as
before we obtain (20).

a(t)

We believe that the asymptotic behavior of the re-
newal function as £ — «, which is the key idea in the
previous theorem, is a powerful tool leading to insightful
results. Indeed, it plays an important role in approxima-
tions in queues (see Whitt 1982 and Fendick and Whitt
1989).

To better understand the previous theorem let us con-
sider some examples.

1. For the Poisson case (c2 = 1) the asymptotic expres-
sions (19) and (20) are exact. Moreover, in this case
the distributional law leads to an easy expression be-
tween the factorial moments. Since

E[zL] = E[e ~M1-9W]
successive differentiation leads to:
E[L(L-1)...(L—r+1)]=A"E[W"],
r=1,2,....

These expressions were derived in Brumelle (1972)
and discussed in Franken (1976) and Miyazawa
(1985).

2. In general, E[L?] and E[L*] depend on the entire
distribution of W and not only on the first two
moments. In heavy traffic, however, only the first mo-
ments are asymptotically important. To see this bet-
ter, let us consider a queueing system with Erlang E,
interarrival times, i.e., a(s) = (2A/s + 2A)% Then

a(s) 412

s(1 - a(s)) s¥s + 4r)°
which leads to

E[N,(6)] = At — Va4 Yy ¢ %21,

Copyright © 2001 All Rights Reserved
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Therefore,
E[L?) = A2E[W?] + & E[W] + 6 — ¥ E[e "],

which is exactly expression (19), in which the o(1)
term is — Vs E[e”**"], which obviously depends on
the entire distribution of W. In heavy traffic, how-
ever, W — « and, thus, the o(1) term goes to zero
exponentially fast.

Another interesting observation is that E[L *] depends in
general on the queueing discipline. In heavy traffic, how-
ever, we found that (20) leads to

ci-1

2

E[L*]=E[L]+ + o(1).

Since E[L] is independent of the queue discipline, we
conclude that in heavy traffic E[L*] is independent of
the queue discipline.

The above expressions not only offer structural insight
linking together fundamental properties in queues, but
they lead, as we see next, to closed-form asymptotic
formulas for the expected waiting time for systems that
have a distributional law for both the number in the sys-
tem and in the queue.

3.2. Closed-Form Approximations for Systems With
No Overtaking

Consider a queueing system in which the distributional
law holds for both the number in the system and the
number in the queue. Examples in this category include
the GI/G/1, GI/D/s queues with priorities (in each prior-
ity the service discipline is FIFO), as well as the G1/G/1
with vacations under FIFO. We will show in this subsec-
tion that the formulas we gave in the previous subsection
lead to a closed-form formula for the expected waiting
time.

The G/G/1 Queue

Let L, QO be the number in the system and queue, re-
spectively, and S and W be the time spent in the system
and queue. Let 1/A, E[X], c2, ¢ be the means and the
square coefficients of variation for the interarrival and
service time distributions. Let E[4°] be the third mo-
ment of the interarrival distribution. We will develop for-
mula (21) for the expected waiting time as a function of
these parameters using just the distributional laws. Then
(21) is similar but not identical to the diffusion approxi-
mation for the expected waiting time in a GI/G/1 queue
(see, for example, Heyman and Sobel, p. 483), and is
well known to be tight. We derive it just from the distri-
butional laws.

Theorem 6. For a GI/G/1 queue under FIFO, the ex-
pected waiting time in the queue is asymptotically (p —
1) given by

p2c?+p?+pcl—p+o(l)
2A(1 - p) )
Proof. For the GI/G/1 queue the distributional law holds

for both the number in the system and the number in the
queue. Applying (17) and (19) we obtain

ElWsnenl=

(21)

E[L]= AE[S], 22)
E[Q] = AE[W], 23)
Euq:A%Uﬁ+A&Hﬂ'£Z?ﬂ

+ (i'z—;—l)—i + o(1), (24)
ﬂQﬂ=ﬂqu+Mﬁmﬂ_kﬁ?ﬁ

+ (—cfz—;—l)—z + o(1). (25)

But S = W + X, where X is the service time and W, X
are independent. Thus

E[S] = E[W] + E[X]. (26)
E[S?] = E[W?] + E[X?] + 2E[W]E[X]. 27)

Finally, it is straightforward to verify that the transforms
of G,(z) = E[Z"], and G(z) = E[27], are related as:

GL(2) = (1 - 2)(1 - p) +2Gq(2),
which leads by successive differentiation to
E[L]=E[Q] + p, (28)
E[L?]=2E[Q] + E[Q°] + p. (29)
Substituting (26), (27), and (29) to (24) we obtain
E[Q?] + 2E[Q] + p = AXE[W?] + E[X"]
+ 2E[W]E[X]) + Aca(E[W] + E[X])

AE[A3%] (c2+1)?
- 3 + > + o(1).
Substituting (23) and (25) to the above equation and solv-
ing for E[W] we obtain
A2E[X? + pc2—p + o(1)
2a(1-p) ’

which leads to (21), since A2E[X?] = p*(c + 1).

E[W] =

Remarks

1. Although relations (22), (23), and (28) are known to
hold under a variety of service disciplines they are not
sufficient to derive E[W]. We used them in the more
restrictive context of FIFO to illustrate that the distri-
butional laws are sufficient to derive E[W].

2. Note that the formula is exact for ¢z = 1 (the
Pollaczek-Kintchine formula). In addition, the for-
mula addresses the dependence of the expected wait-
ing time on just the first two moments of the

Copyright © 2001 All Rights Reserved



interarrival and service time distributions. The o(1)
terms, which we have neglected, include the depen-
dence of the expected waiting time on higher-order
moments.

The GI/D/s Queue

The GI/D/s queue satisfies distributional laws for both the
number in the system and the number in the queue. Using
the well known result that the waiting time in the queue
in the GI/D/s queue is the same as in the GI®/D/1
queue, where GI¥ is the s convolution of the interarrival
distribution we obtain the following theorem.

Theorem 7. For the GI/D/s queue the expected waiting

time is asymptotically given

pci+s(p?—p)+o(l)
2A(1 - p) ’

ElWsnpis] = (30)

where p = AE[X]/s.

3.3. Stochastic Decomposition in Vacation Queues

In this subsection we consider a GI/G/1 queue with va-
cations as follows: When the system becomes empty, the
server becomes inactive (“‘on vacation’”) for a duration
V, independently of the arrival process, having Laplace
transform v(s). At the end of the vacation period, an-
other vacation period begins if the system is empty. Oth-
erwise, the system is again served exhaustively. We offer
a new, simple proof of the well known decomposition
result (Doshi) for the expected waiting time in vacation
queues based on the distributional law.

Theorem 8. (Doshi) For the GI1/G/1 with vacations V
under FIFO, the expected waiting time is the sum of the
expected waiting time of a GI/G/1 and the forward re-
currence time of the vacation V.

Proof. LetL,, Q,, W,, and S, be the number of custom-
ers in the system, the number of customers in the queue,
and the time spent in the queue and in the system with
vacations, respectively. Let B be the number of custom-
ers in queue given that the server is on vacation. Let V*
be the forward recurrence time of the vacation period.

Applying the distributional law to this system we will
get (22)-(27), but for L, Qy,, W,, and S,. By condition-
ing on whether the server is on vacation we obtain

G, (2) =2Gg (2) + (1 - p)(1 - 2)Gp(2).
Differentiating twice we obtain

E[L,]=E[Q,]+p, (31)
E[L?]=2E[Q,]+ E[Q] + p - 2(1 - p)E[B].  (32)

Moreover, applying the Little’s law for the random vari-
ables B and I'* we obtain

E[B] = AE[V*]. (33)
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Solving the system of equations (22)-(27) and (31)-(33)
we obtain
plci+p?+pci-p+o(1)
201 -p) ’

E[W,]=E[V*] +

i.e., from (21)
E[W.,]1=E[V*]+ E[Wgycn ]

We close this subsection by emphasizing that the same
method leads to similar expressions for every system
that has a distributional law for both the number in the
system and the number in the queue. For example, a
GI1/G/1 queue with priorities can also be analyzed using
the same techniques.

3.4. Structural Implications

In this subsection we present another interesting conse-
quence of the distributional law, which offers structural
insight into the class of distributions that can arise in
queueing systems.

Theorem 9. Under the assumptions of Theorem 1, if the
waiting time distribution Fy,(t) is a mixture of exponen-
tial distributions, i.e.,

Fp(t)=1-3 A,e > (34)

(x, can be a complex number), the queue length distri-
bution is a mixture of geometric terms. Namely

(1 - wu)2

PffL=n]l=1 Y A4, ——— w0, (35)
u XuWy

1-2z)1-w,
Gi)=1-1 3 a, L2 (36)
u x, (1 —2zw,)
1-w,
G+ = A, ——, 7
L+(2) ; 1~ 2we) (37)
w, = a(xy).

Proof. From (3) we obtain

Gy (z) =I0 K(z, t){gAuxue"‘“’] dt

o

= Z A, j x, e *'K(z, t) dt
u 0
= Z Auqu*(27 Xy).

Using (5) and then McLaurin expanding G, (z) in terms
of z, we obtain (35). In a similar way we obtain (37).

The previous theorem is applicable in a variety of
queueing systems. In Bertsimas and Nakazato (1990) we
show that a general GI/G/s system with heterogeneous
servers satisfies the exponentiality assumption of the
Theorem 9. Moreover, if the service time distributions
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have rational Laplace transform, then the number of ex-
ponential terms in (34) is finite.

As an illustration of the usefulness of Theorem 9, we
apply it to find a closed-form expression for the queue
length distribution of the GI/R/1 queue. Let B(s) =
Bn(s)/ Bp(s) be the Laplace transform of the service time
distribution, where B,(s), Bn(s) are polynomials of de-
gree m and less than m, respectively. Let a(s) be the
Laplace transform of the interarrival distribution. Using
the Hilbert factorization method, one can derive the
transform of the waiting time distribution for the GI/R/1
queue (see, for example, Bertsimas et al.) as:

dwlis) =

where x,, r = 1, ..., m are the m roots of the equation

a(z)B(-2) =1,

Expanding ¢,(s) in partial fractions and inverting we
find that

Re(z) > 0.

Fo()=1- i Bp(—x;) X,

r=1 BD(O) wmr Xi — X,

e —Xrt

Applying Theorem 9 we find that the queue length distri-
bution is given by

PI‘{Q =n}= A % BD(_xr) H X w;"

r=1 Bp(0) i=rXi—Xx, X;W,

where w, = a(x,).

3.5. The Inverse Problem

Equation 3 gives the generating function of the number in
the system (or in the queue) as an integral transformation
of the distribution of the time in the system (or in the
queue). Therefore, once the waiting time is known it is
easy to find the queue length distribution through (3). It
is interesting, however, to find an inverse of this linear
transformation and express W in terms of L. Our goal is
to find a kernel K(z, t) so that

Fy(t) = 5%;1 é; K(z, 1)G(z) dz,

where the contour contains all the singularities of G,(z)
but none of K(z, ).

Theorem 10. Under the assumptions of Theorem 1,
when the waiting time distribution Fy(t) is a mixture of
exponential distributions,

-1 §F
Fw(t) Yoy § K(z, )G (2) dz,

where

()

Ken=3a—2y

(e~ Wx 1),

Proof. Assuming that the waiting time distribution is a
mixture of exponential distributions, we obtain from (36)

(1-2)(1 - a(x,))

X, (1 - za(x,))

GL(z)=1-1 2 A,

1_
1 EAu( a(x,))
u xua(xu)
(1~ a(x,))?
A DA e — za)

Since both the left- and the right-hand sides must have
the same singularity structure, G, (z) must be singular at
z = 1/a(x,). Therefore, from the last term of the right-
hand side, we obtain

A - a(x,)?

Residual GL(2) = 5
x,a(xy,)

z=1/a(xy) ue

Let z,, be a singular point of G, (z), i.e., x, = a 1(1/zg)
(assuming that there exists a unique x,, such that Rx, >
0 for each given singular point |z,| > 1). From (34), we

have
1
(%)
29
Fp(t)=-2 —
20 )\(1 —20)2
. {Resziglual G (2)}.

(1 —e° _l(llzo)t)

Expressing the last expression in terms of a Cauchy inte-
gral (see Henrici, p. 243), we obtain

-

A1 - 2)2

FM&=¥L§

2

S (1 - e~ WG, (2) dz.

()

K(z, t)=—m(l—

Therefore,

e % 'l(llz)t)_

3.6. Algorithmic Applications

In this section we use the distributional law to derive the
distribution for the number in the system.

The RIG/1 and G//R/1 Queues

In (38) we derived the queue length distribution of the
GI/R/1 queue using the Laplace transform of the waiting
time. We will now use the distributional law to find the
queue length distribution of the RI/G/1 queue.

Let a(s) = an(s)/ap(s) be the Laplace transform of
the interarrival distribution, where ap(s), an(s) are
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polynomials of degree m and less than m, respectively.
Let B(s) be the Laplace transform of the service time
distribution. Using the Hilbert factorization method, one
can derive the waiting time distribution for the RI/G/1
queue {see Bertsimas et al.) as:

au(O) (l-p)s
p(—s8) A(l — a(—s)B(s

-
w(s) = 5 I]"xrs

where x,, r = 1, ..., kK — 1 are the k — 1 roots of the
equation

a(z)B(-z) = Re(z) < 0.

Note that for k = 1 the product IT*Z] x, + s/x, is defined
to be 1. In addition, for & = 1 the formula reduces to the
well known Pollaczek-Kintchine formula for the M/G/1
queue. Applying the distributional law (15) and diagonal-
izing the matrix ®,(A4, + zA,) we can find the queue
length distribution as:

Go(z) = A(1 = 2)&,8(2)

0]5(1) M Sm](Z)T,
0 6.2

(39)

where §(z) is a matrix with columns the eigenvectors
of Ag + zA, and 6,(2), i = 1, , k are the eigenvalues
of Ay + zA,, which are calculated from the equation:
za(6,(z))=1.

The GID/'s Queue

As we observed in subsection 3.2, the waiting time in
the queue for the GI/D/s is exactly the same as in a
G“/D/1 queue, where G is the s convolution of
the interarrival distribution, Therefore, we can solve the
RI/D/s queue using the results of the previous paragraph
for the RI/D/1, because the class R is closed under
convolutions.

The GID/» Queue

In this case, L is the number in the system and W is the
time spent in the system. Because of the deterministic
service with mean 1/u, it is clearly a system with no
overtaking. Moreover, because of the presence of infinite
number of servers there is no waiting and thus f,,(f) =
6(t — 1/u). From the distributional law therefore

(o)

If, in addition, the arrival time is Poisson, i.e., K(z, 1) =
e M7 then we obtain the well known result that the
number in the system has a Poisson distribution with
parameter A/u.

Gr(2)

Systems With No Overtaking

In subsection 3.2 we used the distributional laws to find
closed-form approximations for the expected waiting
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time in systems for which the distributional law holds for
both the number in the system and the number in the
queue. We want to argue that for such systems the distri-
butional law completely characterizes all the distribu-
tions of interest, i.e., just the knowledge of the
distributional law has all the probabilistic information
needed to solve for these distributions. Although the ac-
tual solution might need arguments from complex analy-
sis, the distributional laws fully characterize such
systems. This important idea was observed by Keilson
and Servi (1990) for systems with Poisson arrival pro-
cess. We generalize it here for systems with arbitrary
i.i.d. interarrival time distributions.

Let L, Q be the number in the system and queue,
respectively, and S and W is the time spent in the system
and queue. From Theorem 1

GL(z>—~1~3§K*<z s)bs(—s) ds, (40)

GQ(Z)=#4) K*(z, s)pw(—s) ds. (41)

But if B(s) is the transform of the service time distribu-
tion then

ds(s) = dw(s)B(s). (42)

Finally, depending on the system being solved G,(z),
Go(z) are related. For example, for the GI/G/1 queue,

Gr(z)=(1-p)1 —2) +2Gy(2). (43)

Solving the system of equations (40), (41), (42), and
(43) we can find an integral equation for the transform of
the waiting time pdf

271.1‘/_:1 § K*(z, s)pw(~s)B(-s)~z)ds

=(1~-p)1-2). (44)

For the special case of the M/G/1 queue it is easy to
derive the Pollaczek—-Khintchine formula. To solve (44)
we need to use the calculus of residuals and regularity
arguments from complex analysis. What is important is
that just the knowledge of the distributional Little’s law
for systems with no overtaking in both the number in the
queue and in the system is sufficient to fully characterize
the queueing system.
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