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Abstract—Unit commitment, one of the most critical tasks in
electric power system operations, faces new challenges as the
supply and demand uncertainty increases dramatically due to
the integration of variable generation resources such as wind
power and price responsive demand. To meet these challenges, we
propose a two-stage adaptive robust unit commitment model for
the security constrained unit commitment problem in the presence
of nodal net injection uncertainty. Compared to the conventional
stochastic programming approach, the proposed model is more
practical in that it only requires a deterministic uncertainty
set, rather than a hard-to-obtain probability distribution on the
uncertain data. The unit commitment solutions of the proposed
model are robust against all possible realizations of the modeled
uncertainty. We develop a practical solution methodology based
on a combination of Benders decomposition type algorithm and
the outer approximation technique. We present an extensive nu-
merical study on the real-world large scale power system operated
by the ISO New England. Computational results demonstrate
the economic and operational advantages of our model over the
traditional reserve adjustment approach.

Index Terms—Bilevel mixed-integer optimization, power system
control and reliability, robust and adaptive optimization, security
constrained unit commitment.

I. INTRODUCTION

U NIT commitment (UC) is one of the most critical deci-
sion processes performed by system operators in deregu-

lated electricity markets as well as in vertically integrated util-
ities. The objective of the UC problem is to find a unit com-
mitment schedule that minimizes the commitment and dispatch
costs of meeting the forecast system load, taking into account
various physical, inter-temporal constraints for generating re-
sources, transmission, and system reliability requirements.
During the normal real-time operation, system operator dis-

patches the committed generation resources to satisfy the actual
demand and reliability requirements. In the event that the actual
system condition significantly deviates from the expected con-
dition, system operator needs to take corrective actions such as
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committing expensive fast-start generators, voltage reduction,
or load shedding in emergency situation to maintain system se-
curity. The main causes of the unexpected events come from
the uncertainties associated with the load forecast error, changes
of system interchange schedules, generator’s failure to follow
dispatch signals, and unexpected transmission and generation
outages.
In recent years, higher penetration of variable generation re-

sources (such as wind power, solar power, and distributed gen-
erators) and more price-responsive demand participation have
posed new challenges to the unit commitment process, espe-
cially in the independent system operator (ISO) managed elec-
tricity markets. It becomes important for the ISOs to have an
effective methodology that produces robust unit commitment
decisions and ensures the system reliability in the presence of
increasing real-time uncertainty.
Previous studies of uncertainty management in the UC

problem can be divided into two groups. The first group
commits and dispatches generating resources to meet a deter-
ministic forecast load, and handles uncertainty by imposing
conservative reserve requirements. The second group relies
on stochastic optimization techniques. The first group, the
so-called reserve adjustment method, is widely used in today’s
power industry. Much of research along this vein, including
[1]–[4], has focused on analyzing the levels of reserve require-
ments based on deterministic criteria, such as loss of the largest
generator or system import change. Such an approach is easy to
implement in practice. However, committing extra generation
resources as reserves could be an economically inefficient way
to handle uncertainty, especially when the reserve requirement
is determined largely by some ad-hoc rules, rather than by a
systematic analysis. Also, since the UC decision only considers
the expected operating condition, even with enough reserve
available, the power system may still suffer capacity inade-
quacy when the real-time condition, such as load, deviates
significantly from the expected value. This is confirmed by
the ISO’s operational experience as well as by the numerical
simulation shown later.
The stochastic optimization approach explicitly incorporates

a probability distribution of the uncertainty, and often relies on
pre-sampling discrete scenarios of the uncertainty realizations
[5]–[9]. This approach has some practical limitations in the ap-
plication to large scale power systems. First, it may be diffi-
cult to identify an accurate probability distribution of the un-
certainty. Second, stochastic UC solutions only provide proba-
bilistic guarantees to the system reliability. To obtain a reason-
ably high guarantee requires a large number of scenario sam-
ples, which results in a problem that is computationally inten-
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sive. To improve the robustness of stochastic UC solutions, Ruiz
et al. [10] proposed a hybrid approach combining the reserve re-
quirement and stochastic optimization methods. A recent work
[11] proposed a framework that combines uncertainty quantifi-
cation with stochastic optimization. This framework could also
be integrated into the robust optimization formulation proposed
below.
Robust optimization has recently gained substantial pop-

ularity as a modeling framework for optimization under
parameter uncertainty, led by the work in [12]–[18]. The ap-
proach is attractive in several aspects. First, it only requires
moderate information about the underlying uncertainty, such as
the mean and the range of the uncertain data; and the framework
is flexible enough that the modeler can always incorporate more
probabilistic information such as correlation to the uncertainty
model, when such information is available. For instance, the
method of uncertainty quantification (UQ) proposed in [11] can
be integrated into the robust optimization UC model, where the
UQ module updates the uncertainty model as more information
is obtained in time. Second, the robust model constructs an
optimal solution that immunizes against all realizations of
the uncertain data within a deterministic uncertainty set. This
robustness is a desirable feature, especially when the penalty
associated with infeasible solutions is very high, as the case
in the power system operations. Hence, the concept of robust
optimization is consistent with the risk-averse fashion in which
the power systems are operated. Robust optimization has been
broadly applied in engineering and management sciences,
such as structural design, integrated circuit design, statistics,
inventory management, to name a few. See [19] and references
therein.
In this paper, we propose a two-stage adaptive robust opti-

mization model for the security constrained unit commitment
(SCUC) problem, where the first-stage UC decision and the
second-stage dispatch decision are robust against all uncertain
nodal net injection realizations. Furthermore, the second-stage
dispatch solution has full adaptability to the uncertainty. The
critical constraints such as network constraints, ramp rate con-
straints and transmission security constraints are incorporated
into the proposed model as well. It is key to design a proper
uncertainty set to control the conservatism of the robust solu-
tion. We use a special technique proposed in [17] and [18] for
this purpose. We develop a practical solution method, and ex-
tensively test the method on a real-world power system. Papers
[20] and [21] proposed similar robust optimization UC models.
However, their proposals ignored reserve constraints and did
not study critical issues such as the impact of robust solutions
on system efficiency, operational stability, and robustness of the
UC solutions. Our research was conducted independently of the
work in [20] and [21]. The main contributions of our paper are
summarized below.
1) We formulate a two-stage adaptive robust optimization
model for the SCUC problem. Given a pre-specified nodal
net injection uncertainty set, the two-stage adaptive robust
UC model obtains an “immunized against uncertainty”
first-stage commitment decision and a second-stage
adaptive dispatch actions by minimizing the sum of the
unit commitment cost and the dispatch cost under the

worst-case realization of uncertain nodal net injection.
The nodal net injection uncertainty set models variable
resources such as non-dispatchable wind generation,
real-time demand variation, and interchange uncertainty.
The parameters in the uncertainty set provide control over
the conservatism of the robust solution.

2) We develop a practical solution methodology to solve the
adaptive robust model. In particular, we design a two-level
decomposition approach. A Benders decomposition type
algorithm is employed to decompose the overall problem
into a master problem involving the first-stage commit-
ment decisions at the outer level and a bilinear subproblem
associated with the second-stage dispatch actions at the
inner level, which is solved by an outer approximation ap-
proach [22], [23]. The proposed solution method applies to
general polyhedral uncertainty sets. Computational study
shows the efficiency of the method.

3) We conduct extensive numerical experiments on the real-
world large scale power system operated by the ISO New
England. We study the performance of the adaptive robust
model and provide detailed comparison with the current
practice, the reserve adjustment approach. Specifically, we
analyze the merit of the adaptive robust model from three
aspects: economic efficiency, contribution to real-time op-
eration reliability, and robustness to probability distribu-
tions of the uncertainty.

The paper is organized as follows. Section II describes the de-
terministic SCUC formulation. Section III introduces the two-
stage adaptive robust SCUC formulation. Section IV discusses
the solution methodology. Section V presents computational re-
sults, including a discussion on the proper way to choose the
level of conservatism in the robust model. Section VI concludes
with discussions.

II. DETERMINISTIC SCUC PROBLEM

The deterministic SCUC problem is extensively studied in
the power system literature (e.g., [24], [25]). Please see the Ap-
pendix for a detailed model. Here we present a compact matrix
formulation:

(1)

(2)

(3)

(4)

The binary variable is a vector of commitment related deci-
sions including the on/off and start-up/shut-down status of each
generation unit for each time interval of the commitment pe-
riod, usually 24 h in an ISO setting. The continuous variable
is a vector of dispatch related decision including the generation
output, load consumption levels, resource reserve levels, and
power flows in the transmission network for each time interval.
By convention, generation, reserve, and flow take positive sign,
whereas load takes negative sign.
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The objective function is to minimize the sum of commitment
cost (including start-up, no-load, and shut-down costs)
and dispatch cost over the planning horizon. Constraint
(1), involving only commitment variables, contains minimum
up and down, and start-up/shut-down constraints. Constraint
(2) includes dispatch related constraints such as energy balance
(equality can always be written as two opposite inequalities),
reserve requirement, reserve capacity, transmission limit, and
ramping constraints. Constraint (3) couples the commitment
and dispatch decisions, including minimum and maximum
generation capacity constraints. Constraint (4) emphasizes the
fact that the uncertain nodal net injections are fixed at expected
values in the deterministic model ( selects the components
from that correspond to uncertain resources).

III. TWO-STAGE ADAPTIVE ROBUST SCUC FORMULATION

In this section, we first discuss the uncertainty set, which is
a key building block of the robust model. Then, we introduce
the two-stage adaptive robust SCUC formulation and provide a
detailed explanation.
The first step to build a robust model is to construct an un-

certainty set. Unlike the stochastic optimization approach, the
uncertainty model in a robust optimization formulation is not
a probability distribution, but rather a deterministic set. In this
paper, the uncertain parameter is the nodal net injection. We
consider the following uncertainty set of nodal net injection at
each time period in the planning horizon :

(5)

where is the set of nodes that have uncertain injections,
is the number of such nodes, is the vector
of uncertain net injections at time , is the nominal value of
the net injection of node at time , is the deviation from
the nominal net injection value of node at time , the interval

is the range of the uncertain , and the in-
equality in (5) controls the total deviation of all injections from
their nominal values at time . The parameter is the “budget
of uncertainty”, taking values between 0 and .When ,
the uncertainty set is a singleton, corresponding to
the nominal deterministic case. As increases, the size of the
uncertainty set enlarges. This means that larger total devia-
tion from the expected net injection is considered, so that the
resulting robust UC solutions are more conservative and the
system is protected against a higher degree of uncertainty.When

, equals to the entire hypercube defined by the in-
tervals for each for .
Now we formulate the two-stage adaptive robust SCUC

model as follows:

(6)

where and . The objective
function has two parts, reflecting the two-stage nature of the
decision. The first part is the commitment cost. The second part
is the worst case second-stage dispatch cost.
From this formulation, we can see that the commitment deci-

sion takes into account all possible future net injection repre-
sented in the uncertainty set. Such a UC solution remains fea-
sible, thus robust, for any realization of the uncertain net in-
jection. In comparison, the traditional UC solution only guar-
antees feasibility for a single nominal net injection, whereas
the stochastic optimization UC solution only considers a finite
set of preselected scenarios of the uncertain net injection. Fur-
thermore, in our formulation the optimal second-stage decision

is a function of the uncertain net injection , therefore,fully
adaptive to any realization of the uncertainty. Notice that is
also a function of the first-stage decision . However, we write
it as to emphasize the adaptability of the second-stage de-
cision to the uncertainty . The functional form of is de-
termined implicitly by the optimization problem, as opposed to
being presumed as in the case of affinely adaptive policies (see
[26] and discussion in the conclusion part of this paper). The full
adaptability properly models the economic dispatch procedure
in the real-time operation.
The above formulation can be recast in the following

equivalent form, which is suitable for developing numerical
algorithms:

(7)

where is the
set of feasible dispatch solutions for a fixed commitment deci-
sion and nodal net injection realization . Notice that the worst
case dispatch cost has a max-min form, where
determines the economic dispatch cost for a fixed commitment
and net injection , which is then maximized over the un-

certainty set . A slack variable is included in the energy bal-
ance constraints in the inner max-min problem to ensure its
feasibility.
It is useful to write out the dual of the dispatch problem

. Denote its cost by :

(8)

where , , and are the multipliers of the constraints (2)–(4),
respectively.
Now, the second-stage problem is

equivalent to a bilinear optimization problem given as follows:

(9)

where the constraints involving variable de-
fine a polyhedral set, denoted as . Due to the bilinear struc-
ture of the objective function, the optimal solution of problem
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(9) is an extreme point of the polyhedron
, and similarly the optimal solution is an extreme point
of . Therefore, if we denote all the extreme points of as

, and all the extreme points of as ,
can be written equivalently as

(10)

which shows that is the maximum of a finitely many affine
functions in , hence is a convex piecewise linear func-
tion in . However, in general we have no knowledge of the
extreme points of and , and computing is non-trivial.
To see this, notice that the objective function of (9) contains
a non-concave bilinear term , and bilinear programs are in
general NP-hard to solve. Another way to see this is from the
formulation (7), where can be written equivalently as

Notice that the objective value of the inner problem
is a convex function in . Therefore, eval-

uating needs to maximize a convex function, which
is generally NP-hard. Throughout the paper, we assume

for all feasible . This can be ensured by adding
penalty terms in the dispatch constraints. We omit the penalty
terms here for a clear presentation.

IV. SOLUTION METHOD TO SOLVE
THE ADAPTIVE ROBUST MODEL

As analyzed in the previous section, the adaptive robust for-
mulation (7) is a two-stage problem. The first-stage is to find
an optimal commitment decision . The second-stage is to find
the worst-case dispatch cost under a fixed commitment solution.
Naturally, we will have a two-level algorithm. The outer level
employs a Benders decomposition (BD) type cutting plane al-
gorithm to obtain using the information (i.e., cuts) generated
from the inner level, which approximately solves the bilinear
optimization problem (9).

A. Outer Level: Benders Decomposition Algorithm

The Benders decomposition algorithm is described below.
Initialization: Let be a feasible first-stage solution.
Solve defined by (9) to get an initial solu-
tion . Set the outer level lower bound

, upper bound and the number
of iteration . Choose an outer level convergence
tolerance level .
Iteration :
Step 1) Solve BD master problem.

The master problem of BD is the following mixed
integer program (MIP):

(11)

Let be the optimum. Set
.

Step 2) Solve BD subproblem .
We will discuss the methodology to
solve in the next subsection. Let

be the optimal solu-
tion. Set .

Step 3) Check the outer level convergence.
If , stop and return . Other-
wise, let , and go to step 1.

To speed up the convergence of the above BD algorithm, we
find it helpful to add dispatch constraints to the BD
master problem (11) at certain iteration when or
has improved slowly.

B. Inner Level: Solve

An outer approximation (OA) algorithm [22], [23] is used to
solve the bilinear program (9), where the bilinear term in the
objective is linearized around intermediate solution points and
linear approximations are added to the OA formulation. Since
the problem (9) is nonconcave, only a local optimum is guar-
anteed by the OA algorithm. To verify the quality of the solu-
tion, we test on different initial conditions and observe fast con-
vergence and consistent results. The OA algorithm is described
below.

Initialization: Fix the unit commitment decision passed
from the th iteration of the outer level BD algorithm.
Find an initial net injection . Set the inner level
lower bound , upper bound and
number of iteration . Choose an inner level conver-
gence tolerance level .
Iteration :
Step 1) Solve OA subproblem .

Solve , the dual dispatch problem de-
fined by (8). Let be the optimal solu-
tion. Set . Define , the
linearization of the bilinear term at ,
as follows:

Step 2) Check the inner level convergence. If
, then stop and output the current solu-

tion. Otherwise, set , go to Step 3 of the
OA algorithm.

Step 3) Solve OA master problem.
Solve the linearized version of , defined in
the following:

Since the uncertainty set is assumed to be
polyhedral, is a linear program. De-
note as the op-
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Fig. 1. Flow chart of the proposed two-level algorithm. SFT stands for simul-
taneous feasibility test, where security constraints, such as constraints,
are tested at current solutions and violated constraints are added sequentially.

timal solution. Set the inner level upper bound as
.

We want to remark that the above inner level algorithm works
for general polyhedral uncertainty set , not restricted to the
budgeted uncertainty set of (5). The next theorem shows that
the Benders cuts generated by the inner level are valid cuts.
Theorem 1: The dual solutions, , of the th

inner level problem generate valid inequalities for the second-
stage value function , i.e.,

Proof: The dual solutions generated by
the OA subproblem are extreme points of the dual
polytope , because is a linear optimization problem
over . Therefore, using (10), we have

which shows that the Benders cuts added to the BD master
problem are valid cuts, i.e., the epigraph of is above the
Benders cuts.
The overall algorithmic framework is summarized in Fig. 1.

In our implementation, we include all contingency transmission
constraints in the BD subproblem.

V. COMPUTATIONAL EXPERIMENTS

In this section, we present a computational study to evaluate
the performance of the adaptive robust (AdaptRob) approach
and the reserve adjustment (ResAdj) approach. We test on the
power system operated by the ISO New England Inc. (ISO-NE).
We have the following data and uncertainty model.
The system and market data: The system has 312 generating

units, 174 loads, and 2816 nodes. We select 4 representative
transmission constraints that interconnect four major load zones
in the ISO-NE’s system (we also demonstrate the performance
of our algorithms with 1876 transmission constraints). The
market data is taken from a normal winter day of the ISO-NE’s
day-ahead energy market. In particular, we have 24-h data
of generators’ offer curves, reserve offers, expected nodal
load, system reserve requirement (10-min spinning reserve,
10-min non-spinning reserve, and 30-min reserve), and various
network parameters. The average total generation capacity per

hour is 31 929 MW and the average forecast load per hour is
16 232 MW.
The uncertainty model: We use the budgeted uncertainty set

defined in (5), in which is the nominal load given in the data.
We set the range of load variation to be for each
load at time . The budget of uncertainty takes values in
the entire range of 0 to . We will discuss the proper way to
choose within this range that results in the best performance
of the robust solution in the following subsection.
For the ResAdj approach, we solve the deterministic UC

problems presented in Section II at the expected load level
with adjusted reserve requirement. In particular, we model the
reserve adjustment as follows:

where is the system reserve requirement of type at time ,
composed of the basic reserve level and an adjustment part
proportional to the total variation of load. Here, the uncertainty
budget also controls the level of conservatism of the ResAdj
solution.
The computational experiments proceed as follows.
1) Obtain UC solutions: Solve the ResAdj and AdaptRob UC
models, respectively, for different uncertainty budgets:

.
2) Dispatch simulation: For each UC solution, solve the dis-
patch problem repeatedly for two sets of 1000 randomly
generated loads.

One set of randomly sampled load follows a uniform distri-
bution in the interval for each load at time
. The other set follows a normal distribution with mean and
standard deviation , which results in an 85 percentile
of load falling between and the load is trun-
cated for nonnegative values. Notice that samples from both sets
may fall outside of the budgeted uncertainty set, especially when
the budget is close to 0. In this way, we can test the perfor-
mance of the robust formulation when the uncertainty model is
inaccurate.
To mimic the high cost of dispatching fast-start units or load

shedding in the real-time operation, we introduce a slack vari-
able to energy balance, reserve requirement, and transmission
constraints in the dispatch simulation. If the real-time dispatch
incurs any energy deficiency, reserve shortage, or transmission
violation, at least one component of will be positive. The dis-
patch cost is the sum of production cost and penalty cost, i.e.,

, where is set to $5000/MWh for each component.
The proposed two-level algorithm for the two-stage adap-

tive robust model is implemented in GAMS. The mixed integer
program and linear program in the algorithm are solved with
CPLEX 12.1.0 on a PC laptop with an Intel Core(TM) 2Duo
2.50-GHz CPU and 3 GB of memory. We set the convergence
tolerance for the outer level BD algorithm to be , and
the convergence tolerance for the inner level algorithm to be

. The MIP gap for the BD master problem is set to
. The average computation time to solve the robust UC

problem is 6.14 h. The average computation time for the re-
serve adjustment approach is 1.65 h. The computational results
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presented in the following subsections use the above tolerance
levels and MIP gap. If we relax the BD convergence tolerance
to and set the MIP gap of the BD master problem to

be , the average computation time to solve the robust UC
problem significantly decreases to 1.46 h with an average of
0.17% increase in terms of the worst-case total cost.
We compare the performance of the adaptive robust approach

and the reserve adjustment approach in three aspects: 1) The av-
erage dispatch and total costs, 2) the volatility of these costs, and
3) the sensitivity of the these costs to different probability dis-
tributions of the uncertain load. The average cost indicates the
economic efficiency of the UC decision; the volatility of these
costs indicates the reliability of the real-time dispatch operation
under the UC decision; the third aspect indicates how robust
the UC decision is against load probability distributions. The
performances of both approaches with respect to these three as-
pects are also compared under different levels of uncertain load
variation.
The main conclusion is that a) by properly adjusting the

budget level of the uncertainty set, the adaptive robust solution
has lower average dispatch and total costs, indicating better
economic efficiency of the robust approach; b) the adaptive
robust solution significantly reduces the volatility of the total
costs, as well as the penalty cost in the dispatch operation;
c) the adaptive robust solution is significantly more robust to
different probability distributions of load; d) the advantages of
the adaptive robust solution are amplified when the level of
load variation is higher.
We want to remark that point a) is quite contrary to the gen-

eral impression that robust optimization is always conservative.
In fact, by choosing a proper uncertainty level using probability
laws, the robust solution achieves better economic efficiency
than the conventional approach. We will present detailed dis-
cussion below. The computational results for normally and uni-
formly distributed loads are similar in illustrating a) and b). To
be compact, we only present the results for normally distributed
loads. For c), we compare the results of the two distributions.
For d), we increase the level of load variation, and discuss the
corresponding computational results in three performance as-
pects of cost efficiency, operational reliability and robustness to
the underlying distribution.

A. Cost Efficiency and the Choice of the Budget Level

Table I reports the average dispatch costs and total costs of
AdptRob and ResAdj solutions for normally distributed load
when the uncertainty budget varies from 0 to . We can
see that the AdptRob has lower average dispatch costs for all
values of . The average total costs of the two approaches are
more comparable.
To quantify the comparison, we define thecost saving as

. For the
normally distributed load, the AdptRob approach always has
lower average dispatch cost than the ResAdj approach, and
can save up to 2.7% or $472 k (at ), which is a
significant saving for a daily operation. The total cost saving of
the AdptRob approach ranges from (at )
to 1.19% (at ). Since the AdptRob approach
protects the system against the worst-case load realization, in

TABLE I
AVERAGE DISPATCH COSTS AND TOTAL COSTS OF THE

ADPTROB AND RESADJ FOR NORMALLY DISTRIBUTED LOAD
FOR AND

TABLE II
AVERAGE DISPATCH COSTS AND TOTAL COSTS OF THE

ADPTROB AND RESADJ FOR NORMALLY DISTRIBUTED LOAD
AND

general it commits more generating resources than the reserve
adjustment approach, which considers uncertainty by adjusting
the system reserve levels and does not identify the specific
worst-case scenario.
For both average dispatch and total costs, we observe that the

robust solution performs best when the budget level is rela-
tively small, e.g., around . This phenomenon can actually
be explained by the probability law, namely the central limit
theorem. When a large number of random loads, indepen-
dent as we assume, are aggregated, the volatility of the total load
scales according to . Therefore, a proper level of uncer-
tainty budget in the uncertainty set (5) should be chosen as

. Table II shows the results for in to ,
equivalently equals to , for
in our system. We can see that, in this range of the uncertainty
budget, the AdptRob has an even higher saving: the average dis-
patch cost saving from 1.86% or 321.2 k (at ) to
6.96% or 1.27 Million (at ), and the average total
cost saving from 0.34% or 64.1 k (at ) to 5.48% or
1.08 Million (at ). This demonstrates that we can
choose a proper uncertainty level by using the probability law
as a guideline as opposed to always hedging against the most
extreme scenarios. The robust UC solution with a proper un-
certainty level obtains favorable economic performance and re-
duces the overall conservativeness of the robust model.

B. Reliability of Dispatch Operation

The adaptive robust approach also greatly reduces the
volatility of the real-time dispatch costs. Table III shows the
standard deviation (std) of the dispatch costs of the two ap-
proaches, and their ratios for normally
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TABLE III
STANDARD DEVIATION OF THE DISPATCH COSTS OF THE TWO APPROACHES

AND THEIR RATIO FOR NORMALLY DISTRIBUTED LOAD

TABLE IV
PENALTY COSTS OF ADPTROB AND RESADJ APPROACHES

FOR NORMALLY DISTRIBUTED LOAD

distributed load. We can see that the std for the reserve adjust-
ment approach is almost an order of magnitude higher than
that for the adaptive robust approach (8.15–14.48 times). The
significant reduction in the std of the dispatch cost is closely
related to the significant reduction in the penalty cost. Table IV
shows the penalty costs of the two approaches. Recall that the
dispatch cost is the sum of the production cost and penalty
cost. The penalty cost occurs whenever there is a violation in
the energy balance, reserve requirement, or transmission con-
straints. The system operator has to take expensive emergency
actions such as dispatching fast-start units or load-shedding
to maintain system reliability. All these add volatility to the
dispatch costs. Tables I–III also provide a tool for benefit-risk
analysis. In particular, for different levels of uncertainty budget,
Tables I and II characterize the economic efficiency obtained
by the robust solutions, whereas Table III shows the risk of the
robust solutions in terms of the standard deviations of the cost.
We can observe that lower uncertainty budget leads to better
economic benefit, but worse risk performance. Using these
tables, a proper tradeoff can be made by decision makers.
Aswe observe, all three types of constraint violations (energy,

reserve, and transmission)may occur for ResAdj solutions, indi-
cating the potential ineffectiveness of a deterministic approach
that only considers nominal load and system level reserves. In
contrast, the AdptRob approach commits resources by taking
consideration of all possible load realizations in the uncertainty
model. Furthermore, the robust solutions remain feasible even
when the load realization is outside of the uncertainty set (as the
case for normally distributed load).
In conclusion, the low volatility of the dispatch cost and the

zero penalty cost of the adaptive robust approach demonstrates

Fig. 2. Average dispatch costs of the AdptRob approach for normally and uni-
formly distributed load.

Fig. 3. Average dispatch costs of the ResAdj approach for normally and uni-
formly distributed load.

its operational effectiveness in reducing costly emergency ac-
tions and improving system reliability.

C. Robustness Against Load Distributions

In practice, it is not easy to accurately identify the probability
distribution of the load uncertainty for each node, especially in
a large-scale power system. Thus, it is important for a UC solu-
tion to have stable economic and operational performance over
different distributions of the uncertain load. The simulation re-
sults show that the adaptive robust approach exhibits this de-
sirable property. In comparison, the performance of the reserve
adjustment approach is significantly affected by the underlying
probability distribution.
As shown in Fig. 2, the average dispatch costs of the AdptRob

approach are almost the same for loads with normal and uniform
distributions. The absolute difference between the two curves
is between $6.32 k and $15.80 k for the entire range of

. The relative difference is between 0.037%
to 0.092% [defined as (normal cost-uniform cost)/normal cost].
The ResAdj approach has a rather different picture, as shown

in Fig. 3. The average dispatch costs are significantly affected
by the load probability distribution. The absolute difference of
the two curves varies between $174.42 k and $382.26 k. The
relative difference is between 1.0% to 2.2% . In both measures,
the difference is more than 20 times larger than that of the Adp-
tRob approach.
We also study the effect of the load distribution on the stan-

dard deviation of dispatch costs. Table V shows the std of dis-
patch costs for loads with uniform distribution and the relative
difference between the uniform distribution and the normal dis-
tribution (defined as (normal std—uniform std)/normal std, cf.
Table III for normal std). As shown in the table, the relative
change of the std is around 18.8% for the AdptRob approach,
and is around 59.6% for the ResAdj approach, which is more
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TABLE V
STANDARD DEVIATION OF DISPATCH COSTS FOR UNIFORMLY
DISTRIBUTED LOAD AND THE RELATIVE DIFFERENCE
WITH THOSE OF THE NORMALLY DISTRIBUTED LOAD

TABLE VI
AVERAGE DISPATCH COSTS AND TOTAL COSTS OF THE

ADPTROB AND RESADJ FOR NORMALLY DISTRIBUTED LOAD
FOR AND

than three times higher. It is also interesting to note that the
AdptRob approach significantly reduces the relative change of
the std comparing to the deterministic approach from
64.70% to around 18.8%. On the other hand, the ResAdj ap-
proach is much less effective in this respect (from 64.70% to
around 59.6%).

D. Cases for Higher Level of Load Variation

We also test the performance of the robust adaptive UCmodel
at a higher level of load variation, namely . The com-
parison with the corresponding results of the reserve adjustment
approach reveals further advantages of the robust approach in
cost saving and volatility reduction, as well as the limitation
of the reserve approach in dealing with high level of demand
variation.
Table VI shows the average dispatch and total costs of the

two approaches. Firstly, we can see that the AdptRob model has
relatively stable dispatch and total costs across the entire range
of budget levels (around $17–19 million for dispatch cost and
$19–23 million for total costs), while the ResAdj model incurs
significantly higher costs at budget levels (dis-
patch and total costs rise up to $57 million and $61 million,
respectively). These extremely high costs are mainly due to the
fact that there are not enough reserves in the system to be pro-
cured to meet the higher reserve requirement associated with
the higher budget levels during the unit commitment procedure.
In turn, significant balance and transmission violations occur in

TABLE VII
STANDARD DEVIATION OF THE DISPATCH COSTS OF THE TWO APPROACHES
AND THEIR RATIO FOR NORMALLY DISTRIBUTED LOAD AND

TABLE VIII
PENALTY COSTS OF ADPTROB AND RESADJ APPROACHES
FOR NORMALLY DISTRIBUTED LOAD AND

the simulation under such ResAdj UC solutions. This indicates
a limit on the demand uncertainty levels that a system operator
can safely deal with by relying on the ResAdj approach. Sec-
ondly, in the range where the ResAdj approach has reasonable
costs, Table VI shows that the AdptRob model has a dispatch
cost saving of 12.3% or $2.44 million (at ) and total
cost saving of 9.8% or $2.10 million, which is a much higher
saving than the previous results (6.96% or $1.27 million for dis-
patch costs and 5.48% or $1.08 million for total costs at a lower
level of demand deviation, see Section V-A).
Table VII shows the std of dispatch costs of the two ap-

proaches. Again, we can see that the ResAdj approach has ex-
tremely high std on dispatch costs at high reserve adjustment
levels due to high levels of violations. Even in
the range of , the ResAdj approach have
from 7.35 times to 18.20 times higher std on dispatch costs
than the AdptRob approach. Comparing to the previous results
of times higher std (see Table III), this demon-
strates that the AdptRob approach has an even more significant
reduction in cost volatility at higher level of demand variation.
Table VIII lists the penalty costs of the two approaches, where
the penalty costs of the AdptRob approach are on average less
than 0.06% of the dispatch costs, while the numbers are more
than two orders of magnitude higher for the ResAdj approach
(from 5.14% to 13.98% for , and as high as 61.74%
for ).
We also study the robustness of the AdptRob approach at

the higher level of demand variation. To be compact, we omit
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the plots and tables, but summarize the key statistics. In partic-
ular, the AdptRob approach exhibits similar robustness to un-
derlying distributions: the absolute difference of dispatch costs
under normal and uniform distributions is between $23.70 k and
$98.92 k for the entire range of , or
between 0.14% and 0.55% in terms of relative difference. The
ResAdj approach is much more sensitive to the distribution: the
absolute difference is between $456.91 k and $8,435.23 k, and
the relative difference is between 2.48% and 23.08%. Similarly,
the std of dispatch costs of the AdptRob approach is more ro-
bust: the absolute difference under two distributions is between
$60.34 k and $65.01 k, or relative difference between 43.5%
and 47.7% for the AdptRob approach, and the absolute differ-
ence is between $385.5 k and $4,913.2 k, or relative difference
between 21.78% and 47.53% for the ResAdj approach.

VI. CONCLUSION AND DISCUSSION

The adaptive robust model and its solution technique pre-
sented in this paper provide a novel and practical approach to
handle uncertainties in the unit commitment process. Such a
framework naturally fits into the daily reliability unit commit-
ment process in an ISO environment. We develop a practical
solution method with the real-world large scale power system
operation in mind. We conduct extensive tests on the large scale
system operated by the ISO New England, and compare our
model with the current reserve adjustment approach. We find
that by properly setting the level of conservatism in the uncer-
tainty model, the adaptive robust model exhibits sizable sav-
ings on both average dispatch and total costs, and significantly
reduces the volatility of the dispatch cost, thus, improves the
real-time reliability of the power system operation. The robust
model also shows resilient performance under different proba-
bility distributions of load. The advantages of the adaptive ro-
bust model are further illustrated by numerical tests on the same
large scale system with higher level of net injection uncertainty
(20% deviation range from the nominal net injection levels).
Some discussions are in order. The proposed robust UC

model is designed for the reliability unit commitment (RUC)
phase in the daily market operation. The RUC phase is car-
ried out by the ISO after the clearance of the day-ahead
energy market. The purpose is to evaluate the reliability of the
day-ahead market solution against forecast load and contingen-
cies, and to commit additional resources if necessary. RUC is
an indispensable step for ensuring reliability and security of
the power system. Electricity prices should still be set in the
day-ahead market, which functions as a purely financial market.
The proposed robust model includes basic reserve require-

ment in order to cover generator contingencies, since generator
contingency is not considered in the uncertainty model. The
computational results show that the robust approach is econom-
ically efficient in reducing additional reserve requirement, when
the net nodal injection is uncertain.
The stochastic factors that influence the unit commitment

problem are associated with both supply (e.g., wind power, etc.)
and demand (e.g., demand forecast errors and price responsive
demand). To address these various uncertainty elements, the
proposed two-stage adaptive robust framework models the un-
certainty at the individual nodal level. Therefore, the impact of

resource level uncertainty on the transmission system can be
evaluated. Moreover, the proposed model can be readily ex-
tended to include uncertainties related to inter-tie exchanges,
system-wide and zonal level load, and interface limit de-rating.
In our model, we assume that the commitment cost func-

tion and the dispatch cost function are both linear, which is a
common assumption in the UC literature. In more realistic set-
tings, the production cost can be modeled as a quadratic func-
tion, the start-up cost can be described by an exponential func-
tion, both of which can be approximated by piecewise linear
functions and readily incorporated in our model. A nonconvex
cost function can also be approximated by a nonconvex piece-
wise linear function with binary variable techniques as shown
in [27]. The outer-approximation algorithm needs to be modi-
fied in this case and the performance of such reformulation is
subject to detailed experimentation.
The framework of the proposed solution methodology,

especially the outer approximation technique to solve the
second-stage problem, is not restricted to the budgeted uncer-
tainty set and can be applied to general polyhedral uncertainty
sets. The methodology can also be generalized to handle non-
linear convex constraints, such as ellipsoidal uncertainty sets,
which have been used to model correlations between uncertain
variables; see [19]. We can also use a set of underlying common
factors to model the correlation between uncertain variables.
This approach has the advantage of allowing polyhedral un-
certainty sets, which reduces computational complexity to
solve the large-scale mixed integer robust unit commitment
problem. We also remark that the second-stage problem can
be alternatively formulated as a mixed-integer optimization
problem, using the common technique of linearization of the
bilinear term. However, in our experiments, we observe slow
convergence of this formulation for large scale problems.
In the current practice, the SFT runs iteratively with the unit

commitment procedure by gradually adding violated transmis-
sion security constraints to the economic dispatch problem.
Alternatively, as we implemented in our numerical test, we
can impose a set of critical transmission security constraints
in the second-stage problem without running the SFT. These
critical transmission security constraints are more likely to be
violated than other constraints based on expert knowledge and
historical data, and they are usually a small subset of the total
transmission constraints. Therefore, this alternative approach
can reduce the computation time for solving the second-stage
problem. To demonstrate the performance of the proposed
algorithm in handling more transmission lines, we conducted
further experiments where 1876 transmission constraints are
modeled under the normal and contingency conditions. For all
levels of uncertainty budget, the algorithm is able to solve the
problem to the same level of accuracy as set for the previous
experiments. The average computation time is 8.21 h on the
PC laptop for the high accuracy setting (see specification in
Section V).
Many interesting directions are open for future research. For

example, it would be interesting to study re-commitment that is
adaptive to load forecast. We can easily adjust the parameters
such as in the uncertainty set and re-run our model for fu-
ture re-commitment when a better estimation of uncertainty is
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available. This could be very useful when the system has high
percentage of price responsive demand and variable supply. We
already show that the robust solution significantly reduces the
volatility of the dispatch cost. It would be interesting to study the
extent that the volatility in the energy price is reduced. It would
also be very interesting to model explicit correlation between
different uncertain loads, such as spatial correlation between ad-
jacent wind farms, or temporal correlation between consump-
tion levels. Such correlation can be captured by modeling co-
variancematrices in the uncertainty set. Developing other robust
models with different decision rules (such as affinely adjustable
dispatch decision [26]) is another on-going project. Another in-
teresting research direction is to consider unexpected generator
outages in the robust model. The second stage dispatch solution
is adaptive to not only the demand uncertainty, but also gener-
ator outage uncertainty. How to build the associated uncertainty
set and how to deal with the more complicated robust coun-
terpart are important questions in this direction. Furthermore,
studying the impact on reserve requirement also has practical
significance.

APPENDIX

For the unit commitment decision making, the system oper-
ator usually has access to a wide range of detailed data listed
below, including economic data of generator’s production costs
or supply curve in a market setting, physical characteristics of
each generator, expected load forecast, system reserve require-
ment, network parameters and transmission line ratings.
• : The number of generators, loads,
nodes, transmission lines, and time periods (in hours).

• : The corresponding sets of
generators, loads, nodes, transmission lines, time periods
(in hours), and available transmission lines when line is
tripped.

• : Start-up, shut-down, and no-load costs of gen-
erator at time .

• : Variable cost of generator at time as a function
of production levels.

• : Maximum and minimum production levels of
generator (usually called Ecomax and Ecomin, respec-
tively).

• : Ramp-up and ramp-down rates of generator
at time .

• : Minimum-up and minimum-down
times of generator .

• : Flow limit on transmission line in base case.
• : Flow limit on transmission line in contingency
(i.e., line is dropped).

• : Network incidence matrices for generators and
load.

• : Network shift factor vector for line for the base case.
• : Network shift factor vector for line in contingency .
• : Expected demand at node , time .
• : The set of system reserve requirements

.
• : The set of reserve products

.

• : The set of reserve products needed to sat-
isfy reserve requirement :

, ,
.

• : Reserve capacity of generator , requirement ,
time .

• : System reserve requirement of , time .
The system operator in the current practice commits extra gener-
ation resource to provide reserves in the day-ahead scheduling.
The reserve capacity will be available to the system operator in
the real-time operation to prepare for unexpected loss of gener-
ators or other system disruptions. According to how fast the re-
serve capacity can respond to the emergency, there are three im-
portant types of reserves: ten-minute spinning reserve (TMSR),
ten-minute nonspinning reserve (TMNSR), and thirty-minute
operating reserve (TMOR). Other types of reserves exist, such
as regulation service (automatic generation control) which re-
sponds to frequency changes in the system second by second,
and supplement reserve.
The decision variables of the unit commitment problem are

as follows.
• : If generator is on at time , ; otherwise

.
• : If generator is turned on at time , ;
otherwise .

• : If generator is turned down at time , ;
otherwise .

• : Production of generator at time .
• : Reserve of generator , type , time .
A standard deterministic UCmodel is formulated below [24],

[25]:

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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Equations (13) and (14) are logic constraints between on and
off status and the turn-on and turn-off actions. In particular, a
generator is turned on at time if and only if

. Similarly, a generator is turned off at time if
and only if . Equations (15) and (16) are
constraints of minimum up and minimum down times for each
generator, i.e., if a generator is turned on at time , then it must
remain on at least for the next periods, and similar
for the shutdown constraint. There are multiple ways to model
these constraints. The specific form that we use here follow the
formulation proposed in [28].
Equation (17) is the energy balance equation that matches the

system level supply and load at each time period. Equation (18)
is the ramp rate constraint, i.e., the speed at which a generator
can increase or decrease its production level is bounded in a
range. Notice that the ramping constraint is a complicating con-
straint that couples many consecutive time periods. Also notice
that the ramp constraints should consider the case that a gener-
ator’s output level should not be limited by the ramp rate, when
it is started at the beginning of a period. Such complicating situ-
ations are considered in our code implementation. But (18) cap-
tures the essence of ramp constraints and thus is presented here
for simplicity purpose.
Equation (19) is the transmission flow constraint for the base

case, where all transmission lines are functioning. Equation
(20) is the transmission line constraint for the th contingency
where transmission line is tripped. In this situation, the net-
work topology is changed, so are the shift factor and flow
limits .
Equation (21) is the constraint that the sum of the production

output and the reserve should be within the upper and lower
bounds for each generator. Equation (22) is the coupled con-
straint indicating that only committed generators can be dis-
patched. Equation (23) describes the requirement on how much
reserve the system should have for reserve category at
time . Equation (24) says generator can provide at most
for reserve requirement at time .
The variable production cost, or the supply curve in a market

setting, is an increasing convex piece-wise linear func-
tion of the production output .
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