OPERATIONS RESEARCH INFORMS
Vol. 00, No. 0, Xxxxx 0000, pp. 000-000

DOI 10.1287 /xxxx.0000.0000
1SSN 0030-364X | EISSN 1526-5463 | 00 | 0000 | 0001

(© 0000 INFORMS

Robust Optimization for Unconstrained
Simulation-based Problems

Dimitris Bertsimas

Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, E40-147, Cambridge,
Massachusetts 02139, dbertsim@mit.edu

Omid Nohadani

Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, E40-111, Cambridge,
Massachusetts 02139, nohadani@mit.edu

Kwong Meng Teo
Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
kwongmeng@alum.mit.edu

In engineering design, an optimized solution often turns out to be suboptimal, when errors are encoun-
tered. While the theory of robust convex optimization has taken significant strides over the past decade, all
approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is
nonconvex. In this work, we present a robust optimization method, which is suited for unconstrained prob-
lems with a nonconvex cost function as well as for problems based on simulations such as large PDE solvers,
response surface, and kriging metamodels. Moreover, this technique can be employed for most real-world
problems, because it operates directly on the response surface and does not assume any specific structure
of the problem. We present this algorithm along with the application to an actual engineering problem in
electromagnetic multiple-scattering of aperiodically arranged dielectrics, relevant to nano-photonic design.
The corresponding objective function is highly nonconvex and resides in a 100-dimensional design space.
Starting from an “optimized” design, we report a robust solution with a significantly lower worst case cost,
while maintaining optimality. We further generalize this algorithm to address a nonconvex optimization
problem under both implementation errors and parameter uncertainties.

Subject classifications: Robust optimization; Nonconvex Optimization; Robustness; Implementation errors;
Data uncertainty

Area of review: Robust Optimization

History: June 2007

1. Introduction

Uncertainty is typically present in real-world applications. Information used to model a problem
is often noisy, incomplete or even erroneous. In science and engineering, measurement errors are
inevitable. In business applications, the cost and selling price as well as the demand of a product
are, at best, expert opinions. Moreover, even if uncertainties in the model data can be ignored,
solutions cannot be implemented to infinite precision, as assumed in continuous optimization.
Therefore, an “optimal” solution can easily be sub-optimal or, even worse, infeasible. Traditionally,
sensitivity analysis was performed to study the impact of perturbations on specific designs. While
these approaches can be used to compare different designs, they do not intrinsically find one that
is less sensitive, that is, they do not improve the robustness directly.

Stochastic optimization (see Birge and Louveaux||[1997| |Prekopa and Ruszczynski 2002) is the
traditional approach to address optimization under uncertainty. The approach takes a probabilistic
approach. The probability distribution of the uncertainties is estimated and incorporated into the
model using

1. Chance constraints (i.e. a constraint which is violated less than p% of the time) (see |Charnes
and Cooper|(1959)),
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2. Risk measures (i.e. standard deviations, value-at-risk and conditional value-at-risk)
(see Markowitz| (1952, Park et al. 2006, Ramakrishnan and Rao| (1991} Ruszczynski and Shapiro
2004, |Uryasev and Rockafellar|2001), or

3. A large number of scenarios emulating the distribution (see Mulvey and Ruszczynski 1995,

Rockafellar and Wets |1991)).
However, the actual distribution of the uncertainties is seldom available. Take the demand of
a product over the coming week. Any specified probability distribution is, at best, an expert’s
opinion. Furthermore, even if the distribution is known, solving the resulting problem remains a
challenge (see Dyer and Stougie|2006)). For instance, a chance constraint is usually “computationally
intractable” (see [Nemirovski [2003]).

Alternatively, in structural optimization, a robust design is achieved through a multi-criteria
optimization problem where a minimization of both the expected value and the standard deviation
of the objective function is sought using a gradient-based method (see Doltsinis and Kang|[2004).
Other approaches incorporate uncertainties and perturbations through tolerance bands and mar-
gins in the respective multi-objective function while taking constraints into account by adding a
penalty term to the original constraints (see Lee and Park [2001)).

Robust optimization is another approach towards optimization under uncertainty. Adopting a
min-max approach, a robust optimal design is one with the best worst-case performance. Despite
significant developments in the theory of robust optimization, particularly over the past decade,
a gap remains between the robust techniques developed to date, and problems in the real-world.
Most current robust methods are restricted to convex problems such as linear, convex quadratic,
conic-quadratic, linear discrete problems (see Ben-Tal and Nemirovski| 1998, 2003, Bertsimas and
Sim|2003, 2006) and convex constrained continuous minimax problems (see Zakovi¢ and Pantelides
2000). More recently, a linearization of the uncertainty set allowed to reduce the dependance of
the constraints on the uncertain parameters and provided robust solutions to nonlinear problems.
(see M. Diehl and Kostina| 2006)). Furthermore, Zhang successfully formulated a general robust
optimization approach for nonlinear problems with parameter uncertainties involving both equality
and inequality constraints (see |Zhang 2007). This approach provides first-order robustness at the
nominal value.

However, an increasing number of design problems in the real-world, besides being nonconvex,
involve the use of computer-based simulations. In simulation-based applications, the relationship
between the design and the outcome is not defined as functions used in mathematical programming
models. Instead, that relationship is embedded within complex numerical models such as partial
differential equation (PDE) solvers (see |Ciarlet| 2002, |Cook et al. [2007)), response surface, radial
basis functions (see Jin et al.|2001) and kriging metamodels (see Simpson et al.[2001]). Consequently,
robust techniques found in the literature cannot be applied to these important practical problems.

In this paper, we propose an approach to robust optimization that is applicable to problems
whose objective functions are non-convex and given by a numerical simulation driven model. Our
proposed method requires only a subroutine which provides the value as well as the gradient of the
objective function. Because of this generality, the proposed method is applicable to a wide range
of practical problems. To show the practicability of our robust optimization technique, we applied
it to an actual nonconvex application in nanophotonic design.

Moreover, the proposed robust local search is analogous to local search techniques, such as
gradient descent, which entails finding descent directions and iteratively taking steps along these
directions to optimize the nominal cost. The proposed robust local search iteratively takes appro-
priate steps along descent directions for the robust problem, in order to find robust designs. This
analogy continues to hold through the iterations; the robust local search is designed to terminate
at a robust local minimum, a point where no improving direction exists. We introduce descent
directions and the local minimum of the robust problem; the analogies of these concepts in the opti-
mization theory are important, well studied, and form the building blocks of powerful optimization
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techniques, such as steepest descent and subgradient techniques. Our proposed framework has the
same potential, but for the richer robust problem.

In general, there are two common forms of perturbations: (i) implementation errors, which are
caused in an imperfect realization of the desired decision variables, and (ii) parameter uncertainties,
which are due to modeling errors during the problem definition, such as noise. Note that our
discussion on parameter errors also extends to other sources of errors, such as deviations between a
computer simulation and the underlying model (e.g., numerical noise) or the difference between the
computer model and the meta-model, as discussed by |Stinstra and den Hertog||2007. Even though
perturbations (i) and (ii) have been addressed as sources of uncertainty, the case where both are
simultaneously present, has not received appropriate attention. For the ease of exposition, we first
introduce a robust optimization method for generic nonconvex problems, in order to minimize the
worst case cost under implementation errors. We further generalize the method to the case where
both implementation errors and parameter uncertainties are present.

In a previous work, we introduced a more specialized robust local search algorithm in order to
address the specific problem of optimizing the design of nanophotonic structures (see Bertsimas
et al.|2007). While having its original motivation in (Bertsimas et al.|[2007)), the method we present
here is quite different. We determine the descent direction for the robust problem based on a
directional derivative framework, whereas previously we relied solely on a geometric approach.
With this new framework, the method can serve as a building-block for other gradient-based
optimization routines, allowing a larger range of applicability. Moreover, we provide a thorough
mathematical analysis along with proofs of convergence, geometric intuition and, as mentioned
above, an extension to problems with parameter uncertainties.

Structure of the paper: In Section [2| we define the robust optimization problem with imple-
mentation errors and present relevant theoretical results for this problem. Here, we introduce the
conditions for descent directions for the robust problem in analogy to the nominal case. In Sec-
tion [3] we present the local search algorithm. We continue by demonstrating the performance of the
algorithm with two application examples. In Section [4], we discuss the application of the algorithm
to a problem with a polynomial objective function in order to illustrate the algorithm at work
and to provide geometric intuition. In Section [5] we describe an actual electromagnetic scattering
design problem with a 100-dimensional design space. This example serves as a showcase of an
actual real-world problem with a large decision space. It demonstrates that the proposed robust
optimization method improves the robustness significantly, while maintaining optimality of the
nominal solution. In Section [6] we generalize the algorithm to the case where both implementation
errors and parameter uncertainties are present, discuss the necessary modifications to the problem
definition as well as to the algorithm, and present an example. Finally, Section [7| contains our
conclusions.

2. The Robust Optimization Problem Under Implementation Errors

First, we define the robust optimization problem with implementation errors. This leads to the
notion of the descent direction for the robust problem, which is a vector that points away from all
the worst implementation errors. A robust local minimum is a solution at which no such direction
exists.

2.1. Problem Definition

The cost function, possibly nonconvex, is denoted by f(x), where x € R™ is the design vector.
f(x) denotes the nominal cost, because it does not consider possible implementation errors in x.
Consequently, the nominal optimization problem is

min f(x). (1)
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When implementing x, additive implementation errors Ax € R™ may be introduced due to an
imperfect realization process, resulting in an eventual implementation of x + Ax. Ax is assumed
to reside within an uncertainty set

U= {AxeR"||Ax|, <T}. (2)

Here, I' > 0 is a scalar describing the size of perturbation against which the design needs to be
protected. While our approach applies to other norms ||Ax||, <T in (p being a positive integer,
including p = 00), we present the case of p = 2.

We seek a robust design x by minimizing the worst case cost

g(x) := max f(x+ Ax) (3)

AxelU

instead of the nominal cost f(x). The worst case cost g(x) is the maximum possible cost of imple-
menting x due to an error Ax € Y. Thus, the robust optimization problem is given through

mxin g(x) = mxin max f(x+ Ax). (4)

2.2. A Geometric Perspective of the Robust Problem

When implementing a certain design x = X, the possible realization due to implementation errors
Ax €U lies in the set

N = {x|lx=%[ <T}. (5)

We call N the neighborhood of x; such a neighborhood is illustrated in Figure [Il A design x is a

neighbor of x if it is in N. Therefore, the worst case cost of X, g(X), is the maximum cost attained

within NV. Let Ax* be one of the worst implementation error at x, Ax* = arg max f(x+Ax). Then,
x€E

g(x) is given by f(x+ Ax*). Since we seek to navigate away from all the worst implementation
errors, we define the set of worst implementation errors at x

Us(x) := {AX* \Ax*zarggzg({ f(f(—l—Ax)}. (6)
AX]

*
AX}

Figure 1 A two dimensional illustration of the neighborhood A" = {x | ||x — %||]2 <T'}. The shaded circle contains
all possible realizations when implementing X, when we have errors Ax € Y. The bold arrow d shows a
possible descent direction pointing away from all the worst implementation errors Ax;, represented by
thin arrows. All the descent directions lie within the cone, which is of a darker shade and demarcated
by broken lines.
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2.3. Descent Directions and Robust Local Minima

2.3.1. Descent Directions When solving the robust problem, it is useful to take descent
directions which reduce the worst case cost by excluding worst errors. It is defined as:

DEFINITION 1.
d is a descent direction for the robust optimization problem at x, if the directional derivative
in direction d satisfies the following condition:

g'(x;d) < 0. (7)

The directional derivative at x in the direction d is defined as:

Ve qy i 9(x+1d) —g(x)
g'(x;d) = lim , - (8)
Note, that in Problem , a directional derivative exists for all x and for all d (see Appendix |Al).

A descent direction d is a direction which will reduce the worst case cost if it is used to update
the design x. We seek an efficient way to find such a direction. The following theorem shows that a
descent direction is equivalent to a vector pointing away from all the worst implementation errors
inU:

THEOREM 1.

Suppose that f(x) is continuously differentiable, U = {Ax | ||Ax||s < T} where T' >0, g(x) :=

max f(x+Ax) and U*(x) := ¢ Ax* | Ax* = arg max flx+ AX)}. Then, d € R" is a descent direc-
XE

AxeU
tion for the worst case cost function g(x) at x =% if and only if

d'Ax* <0,
vxf(x)’x:ﬁJrAX* 7é 0,

for all Ax* e U*(%).

Note, that the condition Vi f(x)|x=x+ax* # 0, or X + Ax* not being an unconstrained local
maximum of f(x) implies that ||Ax*||; =T'. Figure|l|illustrates a possible scenario under Theorem
All the descent directions d lie in the strict interior of a cone, the normal of the cone spanned
by all the vectors Ax* € U*(x). Consequently, all descent directions point away from all the worst
implementation errors. From X, the worst case cost can be strictly decreased if we take a sufficiently
small step along any directions within this cone, leading to solutions that are more robust. All the
worst designs, X + Ax*, would also lie outside the neighborhood of the new design.

The detailed proof of Theorem [I|is presented in Appendix [Bl The main ideas behind the proof
are

(i) the directional derivative of the worst case cost function, ¢’(x;d), equals the maximum value
of d'V, f(x + Ax*), for all Ax* (see Corollary [[a)), and

(ii) the gradient at x + Ax* is parallel to Ax*, due to the Karush-Kuhn-Tucker conditions (see
Proposition .

Therefore, in order for ¢'(x;d) < 0, we require d’Ax* <0 and V, f(x+ Ax*) # 0, for all Ax*. The
intuition behind Theorem [I]is: we have to move sufficiently far away from all the designs x + Ax*
for there to be a chance to decrease the worst case cost.
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2.3.2. Robust Local Minima Definition (I for a descent direction leads naturally to the
following concept of a robust local minimum:

DEFINITION 2.
X* is a robust local minimum if there exists no descent direction for the robust problem at x = x*.

Similarly, Theorem [l easily leads to the following characterization of a robust local minimum:

PrOPOSITION 1 (Robust Local Minimum).
Suppose that f(x) is continuously differentiable. Then, xX* is a robust local minimum if and only if
either one of the following two conditions are satisfied:

i. there does not exist a d € R™ such that for all Ax* € U*(x*),

d'Ax* <0,
ii. there exists a Ax* € U*(x*) such that Vi f(x+ Ax*)=0.

Given Proposition I}, we illustrate common types of robust local minima, where either one of the
two conditions are satisfied.

Convex case. If f is convex, g is convex, as shown in the Corollary (b) in the Appendix. Hence,
there are no local maxima in the interior of the feasible set of f, i.e., condition (ii) is never satisfied.
Condition (i) is satisfied, when Ax} are surrounding the design, as illustrated in Fig.[2|(a). Since g
is convex, a robust local minimum of g is a robust global minimum of g.

General case. Three common types of robust local minimum can be present when f is nonconvex,
as shown in Figure 2| Condition (i) in Proposition (1, that there are no direction pointing away
from all the worst implementation errors Ax}, is satisfied by both the robust local minimum in
Fig. 2(a) and Fig. [2(b). Condition (ii), that one of the worst implementation errors Ax; lie in the
strict interior of the neighborhood, is satisfied by Fig. b) and Fig. c).

b
a) Ax: ) Axt c)

*
AXz AX;

AX}
Figure 2 A two-dimensional illustration of common types of robust local minima. In (a) and (b), there are no
direction pointing away from all the worst implementation errors Ax;, which are denoted by arrows. In
(b) and (c), one of the worst implementation errors Ax; lie in the strict interior of the neighborhood.
Note, for convex problems, the robust local (global) minimum is of the type shown in (a).

Compared to the others, the “robust local minimum” of the type in Fig. c) may not be as
good a robust design, and can actually be a bad robust solution. For instance, we can find many
such “robust local minima” near the global maximum of the nominal cost function f(x), i.e. when
x* 4+ Ax* is the global maximum of the nominal problem. Therefore, we seek a robust local minimum
satisfying Condition (i), that there does not exist a direction pointing away from all the worst
implementation errors.

The following algorithm seeks such a desired robust local minimum. We further show the con-
vergence result in the case where f is convex.
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Figure 3 A two-dimensional illustration of the optimal solution of SOCP, Prob. @, in the neighborhood of %x.
The solid arrow indicates the optimal direction d* which makes the largest possible angle 0,4, with all
the vectors Ax™, Ax™ being the worst case implementation errors at x. The angle Omax = cos™ ! B* and
is at least 90° due to the constraint 3 < —e, € being a small positive scalar.

2.4. A Local Search Algorithm for the Robust Optimization Problem

Given the set of worst implementation errors at x, U*(X), a descent direction can be found effi-
ciently by solving the following second-order cone program (SOCP):
g 9
st [|d|l2 <1 (9)
d'Ax* < VAx* e U*(x)
B < —e,

where € is a small positive scalar. When Problem @ has a feasible solution, its optimal solution, d*,
forms the maximum possible angle 6., with all Ax*. An example is illustrated in Fig.[3] This angle
is always greater than 90° due to the constraint § < —e < 0. 6 <0 is not used in place of g < —e,
because we want to exclude the trivial solution (d*,3*) = (0,0). When e is sufficiently small, and
Problem @ is infeasible, X is a good estimate of a robust local minimum satisfying Condition (i)
in Proposition [1} Note, that the constraint ||d*||, =1 is automatically satisfied if the problem is
feasible. Such an SOCP can be solved efficiently using both commercial and noncommercial solvers.

Consequently, if we have an oracle returning U*(x) for all x, we can iteratively find descent
directions and use them to update the current iterates, resulting in the following local search
algorithm. The term x* is the term being evaluated in iteration k.

ALGORITHM 1.
Step 0. Initialization: Let x* be the initial decision vector arbitrarily chosen. Set k:=1.
Step 1. Neighborhood Exploration :
Find U*(x*), set of worst implementation errors at the current iterate x*.
Step 2. Robust Local Move :
(i) Solve the SOCP (Problem [9)), terminating if the problem is infeasible.
(ii) Set x**!:=x* +¢*d*, where d* is the optimal solution to the SOCP:.
(iii) Set k:=k+ 1. Go to Step 1.

If f(x) is continuously differentiable and convex, Algorithm [I| converges to the robust global
minimum when appropriate step size t* are chosen. This is reflected by the following theorem:
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THEOREM 2. Suppose that f(x) is continuously differentiable and convex with a bounded set of
minimum_points. Then, Algorithm (1| converges to the global optimum of the robust optimization
oo

problem (4|), when t* >0, t* —0 as k — oo and Ztk = 00.
k=1
This Theorem follows from the fact that at every iteration, —d* is a subgradient of the worst
cost function g(x) at the iterate x*. Therefore, Algorithm [1/is a subgradient projection algorithm,
and under the stated step size rule, convergence to the global minimum is assured. A detailed proof
to Theorem [2]is presented in Appendix [C|

2.5. Practical Implementation

Finding the set of worst implementation errors U*(x) equates to finding all the global maxima of
the inner maximization problem
Anax f(x+ Ax). (10)

Even though there is no closed-form solution in general, it is possible to find Ax* in instances where
the problem has a small dimension and f(x) satisfies a Lipschtiz condition (see Horst and Pardalos
1995). Furthermore, when f(x) is a polynomial function, numerical experiments suggest that Ax*
can be found for many problems in the literature on global optimization (Henrion and Lasserre
2003)). If Ax* can be found efficiently, the descent directions can be determined. Consequently, the
robust optimization problem can be solved readily using Algorithm [T}

In most real-world instances, however, we cannot expect to find Ax*. Therefore, an alternative
approach is required. Fortunately, the following proposition shows that we do not need to know
Ax* exactly in order to find a descent direction.

PROPOSITION 2.
Suppose that f(x) is continuously differentiable and ||Ax*||s =T, for all Ax* e U*(x). Let M :=

{Axy,...,Ax,,} be a collection of Ax; €U, where there exists scalars a; >0, i=1,...,m such that
Ax* = Z o; AX; (11)
i|Ax; EM

for all Ax* € U*(x). Then, d is a descent direction for the worst case cost function g(x =x%x), if
d'Ax; < 0, VAx; € M. (12)
PrOOF. Given conditions and ,
d'Ax* = Z o, d’'Ax; < 0,

i|Ax; EM

we have Ax*'d <0, for all Ax* in set U*(X). Since the “sufficient” conditions in Theorem [1] are
satisfied, the result follows. [

Proposition [2 shows that descent directions can be found without knowing the worst implemen-
tation errors Ax* exactly. Note that Condition (11)) can only be checked numerically, since we do
not assume any structure of the cost function f(x). As illustrated in Fig. 4| finding a set M such
that all the worst errors Ax* are confined to the sector demarcated by Ax; € M would suffice. The
set M does not have to be unique and if it satisfies Condition , the cone of descent directions
pointing away from Ax; € M is a subset of the cone of directions pointing away from Ax*.

Because Ax* usually reside among designs with nominal costs higher than the rest of the neigh-
borhood, the following algorithm embodies a heuristic strategy to finding a more robust neighbor:
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Figure 4 The solid bold arrow indicates a direction d pointing away from all the implementation errors Ax; € M,
for M defined in Proposition |2} d is a descent direction if all the worst errors Axj lie within the cone
spanned by Ax;. All the descent directions pointing away from Ax; lie within the cone with the darkest
shade, which is a subset of the cone illustrated in Fig.

ALGORITHM 2.

Step 0. Initialization: Let x* be an arbitrarily chosen initial decision vector. Set k :=1.

Step 1. Neighborhood Exploration :
Find M¥*, a set containing implementation errors Ax; indicating where the highest cost
is likely to occur within the neighborhood of x*.

Step 2. Robust Local Move :
(i) Solve a SOCP (similar to Problem [0} but with the set &*(x*) replaced by set MF),
terminating if the problem is infeasible.
(ii) Set x**!:=x" +t*d*, where d* is the optimal solution to the SOCP.
(iii) Set k:=k+ 1. Go to Step 1.

This algorithm is the robust local search, to be elaborated upon in the next section.

3. Local Search Algorithm when Implementation Errors are Present

The robust local search method is an iterative algorithm with two parts in every iteration. In the
first part, we explore the neighborhood of the current iterate both to estimate its worst case cost
and to collect neighbors with high cost. Next, this knowledge of the neighborhood is used to make
a robust local move, a step in the descent direction of the robust problem. These two parts are
repeated iteratively until termination conditions are met, which is when a suitable descent direction
cannot be found anymore. We now discuss these two parts in more detail.

3.1. Neighborhood Exploration

In this subsection, we describe a generic neighborhood exploration algorithm employing n + 1
gradient ascents from different starting points within the neighborhood. When exploring the neigh-
borhood of X, we are essentially trying to solve the inner maximization problem .

We first apply a gradient ascent with a diminishing step size. The initial step size used is %,
decreasing with a factor of 0.99 after every step. The gradient ascent is terminated after either the
neighborhood is breached or a time-limit is exceeding. Then, we use the last point that is inside
the neighborhood as an initial solution to solve the following sequence of unconstrained problems

using gradient ascents:

max f(x+ Ax) + €, In{I"' — || Ax||2}. (13)
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Note that if we use U = {Ax € R™ | ||Ax]|, <T'}, then we should use ||Ax||, in Eq. (13)). The positive
scalar €, is chosen so that the additional term e, In{I' — ||Ax||2} projects the gradient step back
into the strict interior of the neighborhood, so as to ensure that the ascent stays strictly within it.
A good estimate of a local maximum is found quickly this way.

Such an approach is modified from a barrier method on the inner maximization problem .
Under the standard barrier method, one would solve a sequence of Problem using gradient
ascents, where ¢, are small positive diminishing scalars, €, — 0 as r — oo. However, empirical
experiments indicate that using the standard method, the solution time required to find a local
maximum is unpredictable and can be very long. Since (i) we want the time spent solving the
neighborhood exploration subproblem to be predictable, and (ii) we do not have to find the local
maximum exactly, as indicated by Proposition [2 the standard barrier method was not used.

The local maximum obtained using a single gradient ascent can be an inferior estimate of the
global maximum when the cost function is nonconcave. Therefore, in every neighborhood explo-
ration, we solve the inner maximization problem using multiple gradient ascents, each with a
different starting point. A generic neighborhood exploration algorithm is: for a n-dimensional prob-
lem, use n + 1 gradient ascents starting from Ax =0 and Ax = sign(afgf*))gei fori=1,...,n,
where e; is the unit vector along the i-th coordinate. '

During the neighborhood exploration in iteration k, the results of all function evaluations
(x, f(x)) made during the multiple gradient ascents are recorded in a history set H*, together with
all past histories. This history set is then used to estimate the worst case cost of x*, §(x").

3.2. Robust Local Move

In the second part of the robust local search algorithm, we update the current iterate with a local
design that is more robust, based on our knowledge of the neighborhood N*. The new iterate is
found by finding a direction and a distance to take, so that all the neighbors with high cost will
be excluded from the new neighborhood. In the following, we discuss in detail how the direction
and the distance can be found efficiently.

3.2.1. Finding the Direction To find the direction at x* which improves g(x"), we include
all known neighbors with high cost from H* in the set

MF = { x| xeH  xe N*, f(x) > g(x*) —o"}. (14)

The cost factor o governs the size of the set and may be changed within an iteration to ensure a

feasible move. In the first iteration, o is first set to 0.2 x (g(x') — f(x')). In subsequent iterations,

o is set using the final value of o*~!.

The problem of finding a good direction d, which points away from bad neighbors as collected
in M¥*, can be formulated as a SOCP

nip &
st ||d]ls <1

@ (Z) <6 vxeME 15)

llc; =12

IBS—G,

where ¢ is a small positive scalar. The discussion for the earlier SOCP @D applies to this SOCP as
well.
We want to relate Problem with the result in Proposition [2. Note, that x; — x* = Ax, €U

Kk
and ||x; —x"|| is a positive scalar, assuming x; # x*. Therefore, the constraint d’ (I\T‘—ikll) <pB<0

maps to the condition d’Ax; < 0in Proposition while the set M* maps to the set M. Comparison
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[[x; — x*+1|;

xk 1 = xk 4 pd*

Figure 5 a) A _two-dimensional illustration of the optimal solution of the SOCP, Prob. . Compare with
Fig. b) Ilustration showing how the distance ||x; — x**!||2 can be found by cosine rule using p, d*
and [|x; — xk||2 when xFt1 = x* + pd*. cosd = p(x; — xk)'d*.

between Fig. [3|and Fig. (a) shows that we can find a descent direction pointing away from all the
implementation errors with high costs. Therefore, if we have a sufficiently detailed knowledge of
the neighborhood, i.e., the condition is numerically satisfied, d* is a descent direction for the
robust problem.

When Problem is infeasible, x* is surrounded by “bad” neighbors. However, since we may
have been too loose in classifying the bad neighbors, we reduce o, reassemble M¥*, and solve the
updated SOCP. When reducing ¢*, we divide it by a factor of 1.05. The terminating condition is
attained, when the SOCP is infeasible and o* is below a threshold. If x* is surrounded by “bad”
neighbors and o* is small, we presume that we have attained a robust local minimum, of the type
as illustrated in Fig. [2(a). and Fig. 2b).

3.2.2. Finding the Distance After finding the direction d*, we want to choose the smallest
stepsize p* such that every element in the set of bad neighbors M* would lie at least on the
boundary of the neighborhood of the new iterate, x**1 = x* + p*d*. To make sure that we make
meaningful progress at every iteration, we set a minimum stepsize of % in the first iteration, and
decreases it successively by a factor of 0.99.

Figure [5(b) illustrates how ||x; — x**!||5 can be evaluated when x***

=x" + pd* since
i — x5 = p? + [lxi —xF[J3 — 2p(x; —x*)'d".

Consequently,

*

p* = argmin p
P

, 16
sit.p>d* (x; — xP) +/(d¥ (x; —xF))2 — [|]x; — xF[3+ T2, Vx, € M- 16)

Note, that this problem can be solved with |M*| function evaluations without resorting to a formal
optimization procedure.

3.2.3. Checking the Direction Knowing that we aim to take the update direction d* and
a stepsize p*, we update the set of bad neighbors with the set

Mipaatea = { x | x€HF [Ix —xls T +p", f(x) 2 §(x") — 0"} (17)

This set will include all the known neighbors lying slightly beyond the neighborhood, and with a
cost higher than g(x*) —o*.
We check whether the desired direction d* is still a descent direction pointing away from all

the members in set MF* If it is, we accept the update step (d*,p*) and proceed with the

updated*
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next iteration. If d* is not a descent direction for the new set, we repeat the robust local move by
solving the SOCP but with M% ... in place of M*. Again, the value o* might be decreased
in order to find a feasible direction. Consequently, within an iteration, the robust local move might
be attempted several times. From computational experience, this additional check becomes more
important as we get closer to a robust local minimum, since the design is more and more surrounded
by bad neighbors.

4. Application Example | - Robust Polynomial Optimization Problem
4.1. Problem Description

For the first problem, we chose a polynomial problem. Having only two dimensions, we can illustrate
the cost surface over the domain of interest to develop intuition into the algorithm. Consider the
nonconvex polynomial function

Toory(m,y) = 22° —12.22° +21.22" + 6.20 — 6.42° — 4.72° + y° — 11y° +43.3y" — 10y — 74.8y°
+56.9y% — 4.1y — 0.1y%2% + 0.4y%x + 0.42%y.

Given implementation errors A = (Ax, Ay) where ||Al|, <0.5, the robust optimization problem is

min Gpoly(T,Y) = min e footy (T + Az, y + Ay). (18)

Note that even though this problem has only two dimensions, it is already a difficult problem.
Recently, relaxation methods have been applied successfully to solve polynomial optimization prob-
lems (Henrion and Lasserre||2003)). Applying the same technique to Problem , however, leads
to polynomial semidefinite programs (SDP), where the entries of the semidefinite constraint are
made up of multivariate polynomials. Solving a problem approximately involves converting it into
a substantially larger SDP, the size of which increases very rapidly with the size of the original
problem, the maximum degree of the polynomials involved, and the number of variables. This
prevents polynomial SDPs from being used widely in practice (see Kojima/ 2003)). Therefore, we
applied the local search algorithm on Problem .

4.2. Computation Results

Figure @(a) shows a contour plot of the nominal cost of f,.,(z,y). It has multiple local minima and
a global minimum at (z*,y*) = (2.8,4.0), where f(z*,y*) = —20.8. The global minimum is found
using the Gloptipoly software as discussed in Reference (Henrion and Lasserre/[2003) and verified
using multiple gradient descents. The worst case cost function g, (z,y), estimated by evaluating
discrete neighbors using data in Fig. [6[(a), is shown in Fig. [6[b). Fig. [6(b) suggests that g, (2, y)
has multiple local minima.

We applied the robust local search algorithm in this problem using 2 initial designs (z,y), A and
B; terminating when the SOCP (see Prob. (15)) remains infeasible when o* is decreased below the
threshold of 0.001. Referring to Fig.[7] Point A is a local minimum of the nominal problem, while B
is arbitrarily chosen. Fig.[7j(a) and Fig.[7|c) show that the algorithm converges to the same robust
local minimum from both starting points. However, depending on the problem, this observation
cannot be generalized. Figure [7(b) shows that the worst case cost of A is much higher than its
nominal cost, and clearly a local minimum to the nominal problem need not be a robust local
minimum. The algorithm decreases the worst case cost significantly while increasing the nominal
cost slightly. A much lower number of iterations is required when starting from point A when
compared to starting from point B. As seen in Fig. (d)7 both the nominal and the worst case
costs decrease as the iteration count increases when starting from point B. While the decrease in
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Figure 6  Contour plot of nominal cost function fpo,(z,y) and the estimated worst case cost function gpoiy (z,y)
in Application Example I.

worst case costs is not monotonic for both instances, the overall decrease in the worst case cost is
significant.

Figure [§] shows the distribution of the bad neighbors upon termination. At termination, these
neighbors lie on the boundary of the uncertainty set. Note, that there is no good direction to move
the robust design away from these bad neighbors, so as to lower the disc any further. The bad
neighbors form the support of the discs. Compare these figures with Fig. [2(a) where Condition (i)
of Proposition [1| was met, indicating the arrival at a robust local minimum. The surface plot of the
nominal cost function in Fig. [8 further confirms that the terminating solutions are close to a true
robust local minimum.

5. Application Example Il - Electromagnetic Scattering Design Problem

The search for attractive and novel materials in controlling and manipulating electromagnetic field
propagation has identified a plethora of unique characteristics in photonic crystals (PCs). Their
novel functionalities are based on diffraction phenomena, which require periodic structures. Upon
breaking the spatial symmetry, new degrees of freedom are revealed which allow for additional func-
tionality and, possibly, for higher levels of control. More recently, unbiased optimization schemes
were performed on the spatial distribution (aperiodic) of a large number of identical dielectric
cylinders (see Gheorma et al]2004, Seliger et al.[2006) While these works demonstrate the advan-
tage of optimization, the robustness of the solutions still remains an open issue. In this section, we
apply the robust optimization method to electromagnetic scattering problems with large degrees
of freedom, and report on novel results when this technique is applied to optimization of aperiodic
dielectric structures.

5.1. Problem Description

The incoming electromagnetic field couples in its lowest mode to the perfectly conducting metallic
wave-guide. Figure @(a) sketches the horizontal set-up. In the vertical direction, the domain is
bounded by two perfectly conducting plates, which are separated by less than 1/2 the wave length,
in order to warrant a two-dimensional wave propagation. Identical dielectric cylinders are placed in
the domain between the plates. The sides of the domain are open in the forward direction. In order
to account for a finite total energy and to warrant a realistic decay of the field at infinity, the open
sides are modeled by perfectly matching layers. (see Kingsland et al., 2006, Berenger||1996) The
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Figure 7 Performance of the robust local search algorithm in Application Example I from 2 different starting

points A and B. The circle marker and the diamond marker denote the starting point and the final solu-
tion, respectively. (a) The contour plot showing the estimated surface of the worst case cost, gpoiy (2, ).
The descent path taken to converge at the robust solution is shown; point A is a local minimum of the
nominal function. (b) From starting point A, the algorithm reduces the worst case cost significantly
while increasing the nominal cost slightly. (¢) From an arbitrarily chosen starting point B, the algorithm
converged at the same robust solution as starting point A. (d) Starting from point B, both the worst
case cost and the nominal cost are decreased significantly under the algorithm.

objective of the optimization is to determine the position of the cylinders such that the forward
electromagnetic power matches the shape of a desired power distribution, as shown in Fig. @(b)
As in the experimental measurements, the frequency is fixed to f =37.5 GHz. (see Seliger et al.
2006|) Furthermore, the dielectric scatterers are nonmagnetic and lossless. Therefore, stationary
solutions of the Maxwell equations are given through the two-dimensional Helmholtz equations,
taking the boundary conditions into account. This means, that only the z-component of the electric
field E, can propagate in the domain. The magnitude of E, in the domain is given through the
partial differential equation (PDE)

(az(f‘;ylaz) + ay ('ur_xlay))Ez - ngOEOETzEz =0, (19}
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(a) Termination (from Point A) (b) Termination (from Point B)
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Figure 8 Surface plot shows the cost surface of the nominal function fpoy(x,y). The same robust local minimum,
denoted by the cross, is found from both starting points A and B. Point A is a local minimum of the
nominal function, while point B is arbitrarily chosen. The worst neighbors are indicated by black dots.
At termination, these neighbors lie on the boundary of the uncertainty set, which is denoted by the
transparent discs. At the robust local minimum, with the worst neighbors forming the “supports”, both
discs cannot be lowered any further. Compare these figures with Fig. a) where the condition of a

robust local minimum is met
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Figure 9 (a) schematic setup: the RF-source couples to the wave guide. Blue circles sketch the positions of

scattering cylinders for a desired top-hat power profile. The unshaded grid depicts the domain. (b)
Comparison between experimental data (circles) (see |Seliger et a1.||2006P and modeled predictions.

with u,. the relative and pg the vacuum permeability. €, denotes the relative and ¢, the vacuum
permittivity. Equation is numerically determined using an evenly meshed square-grid (z;,v;).
The resulting finite-difference PDE approximates the field F.; ; everywhere inside the domain
including the dielectric scatterers. The imposed boundary conditions (Dirichlet conditions for the
metallic horn and perfectly matching layers) are satisfied. This linear equation system is solved by
ordering the values of E, ; ; of the PDE into a column vector. Hence, the finite-difference PDE can

be rewritten as
L-E.=b, (20)

where L denotes the finite-difference matrix, which is complex-valued and sparse. E, describes the
complex-valued electric field, that is to be computed and b contains the boundary conditions. With
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this, the magnitude of the field at any point of the domain can be determined by solving the linear
system of Eq. (20).

The power at any point on the target surface (z(6),y(#)) for an incident angle 6 is computed
through interpolation using the nearest four mesh points and their standard Gaussian weights
W () with respect to (z(6),y(0)) as

Smoa(®) = ). diag(E,) B (21)

In the numerical implementation, we exploited the sparsity of L, which improved the efficiency
of the algorithm significantly. In fact, the solution of a realistic forward problem (~ 70,000 x 70,000
matrix), including 50 dielectric scatterers requires about 0.7 second on a commercially available
Intel Xeon 3.4 GHz. Since the size of L determines the size of the problem, the computational
efficiency of our implementation is independent of the number of scattering cylinders.

To verify this finite-difference technique for the power along the target surface (radius = 60
mm from the domain center), we compared our simulations with experimental measurements
from [Seliger et al.[2006 for the same optimal arrangement of 50 dielectric scatterers (e, = 2.05
and 3.175£0.025 diameter). Figure @(b) illustrates the good agreement between experimental and
model data on a linear scale for an objective top-hat function.

In the optimization problem, the design vector x € R'%° describes the positions of the 50 cylinders.
For a given x in the domain, the power profile s,,,q over discretized angles on the target surface,
0, is computed. We can thus evaluate the objective function

m

Fort (%) =Y [$moa(6) = 5065001 (22)

k=1

Note, that f(x) is not a direct function of x and not convex in x. Furthermore, using adjoint
technique, our implementation provides the cost function gradient Vi fgy(x) at no additional
computational expense. We refer interested readers to Reference (Bertsimas, Nohadani, and Teo
2007) for a more thorough discussion of the physical problem.

Because of the underlying Helmholtz equation, the model scales with frequency and can be
extended to nanophotonic designs. While degradation due to implementation errors is already
significant in laboratory experiments today, it will be amplified under nanoscale implementations.
Therefore, there is a need to find designs that are robust against implementation errors. Thus, the
robust optimization problem is defined as

VR 9m () = S R, Jeu ot ).

In this setting, Ax represents displacement errors of the scattering cylinders.

5.2. Computation Results

We first construct the uncertainty set U to include most of the errors expected. In laboratory
experiments, the implementation errors Ax are observed to have a standard deviation of 40um (Levi
2006)). Therefore, to define an uncertainty set incorporating 99% of the perturbations, i.e., P(Ax €
U=99%), we define

U = {Ax| | Ax], < T =550um}, (23)

where Ax; is assumed to be independently and normally distributed with mean 0 and standard
deviation 40pum.

The standard procedure used to address Problem is to find an optimal design minimizing
Eqn. . Subsequently, the sensitivity of the optimal design to implementation errors will be
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Figure 10 Performance of the robust local search algorithm in Application Example II. The initial cylinder
configuration, x1, and final configuration, xgs5, are shown outside the line plot. While the differences
between the two configurations seem negligible, the worst case cost of x5 is 8% lower than that of x;.
The nominal costs of the two configurations are practically the same.

assessed through random simulations. However, because the problem is highly nonconvex and
of high dimension, there is, to the best of our knowledge, no approach to find a design that is
less sensitive to implementation errors without using safety margins. Nevertheless, a design that
minimizes fgp(x) locally is readily found by applying a gradient-related descent algorithm. We
applied the robust local search technique using such a local minimum as the starting point.

Figure [10| shows that the robust local algorithm finds a final design x% with a worst case cost
that is 8% lower than that of x'. Throughout the iterations, the nominal cost remains practically
the same. The worst case cost of x% was estimated with 110000 neighbors in its neighborhood.
Note, however, that these 110000 neighbors were not evaluated a single neighborhood exploration.
Instead, more than 95% of them were performed in the iterations leading up to the iteration 65.
The estimated worst case cost at each iteration also shows a downward trend: as the iteration
count increases, the knowledge about problem grows and more robust designs are discovered.

Since we can only estimate the worst case cost, there is always a chance for late discoveries of
worst implementation errors. Therefore, the decrease of the estimated worst case cost may not
be monotonic. Finally, note that the initial design x' may already has inherent robustness to
implementation errors because it is a local minimum, i.e. with all factors being equal, a design with
a low nominal cost will have a low worst case cost.

We also observed that the neighborhood exploration strategy is more efficient in assessing the
worst case cost when compared to random sampling as is the standard today in perturbation
analysis. For example, when estimating gps(x'), the best estimate attained by random sampling
after 30000 function evaluations using the numerical solver is 96% of the estimate obtained by our
algorithm using only 3000 function evaluations. This is not surprising since finding the optimal
solution to the inner optimization problem by random searches is usually inferior to applying
gradient-related algorithms using multiple starting points.

6. Generalized Method for Problems with Both Implementation Errors and
Parameter Uncertainties

In addition to implementation errors, uncertainties can reside in problem coefficients. These coef-
ficients often cannot be defined exactly, because of either insufficient knowledge or the presence of



Bertsimas, Nohadani, and Teo: Robust Optimization for Unconstrained Simulation-based Problems
18 Operations Research 00(0), pp. 000-000, © 0000 INFORMS

noise. In this section, we generalize the robust local search algorithm to include considerations for
such parameter uncertainties.

6.1. Problem Definition

Let f(x,p) be the nominal cost of design vector x, where p is an estimation of the true problem
coefficient p. For example, for the case f(x,p) =4z + 22 + 22215, x = (5}) and p = (i) Since p is
an estimation, the true coefficient p can instead be p+ Ap, Ap being the parameter uncertainties.
Often, the nominal optimization problem

min f(x,p), (24)

is solved, ignoring the presence of uncertainties.
We consider Problem , where both Ap € R™ and implementation errors Ax € R™ are present,
while further assuming Az = (3%) lies within the uncertainty set

U={AzecR™™ | |Azll, < T}, (25)

As in Eqn. , I' > 0 is a scalar describing the size of perturbations. We seek a robust design x by
minimizing the worst case cost given a perturbation in U,

g(x) := max f(x+ Ax,p+ Ap). (26)

Azel

The generalized robust optimization problem is consequently

min g(x) = min max f(x+ Ax,p+ Ap). (27)

X

6.2. Basic ldea Behind Generalization

To generalize the robust local search to consider parameter uncertainties, note that Problem
is equivalent to the problem
min max f(z+ Az)

_ (28)
st. p=p,

where z = (3). This formulation is similar to Problem , the robust problem with implementation
errors only, but with some decision variables fixed; the feasible region is the intersection of the
hyperplanes p; =p;, it =1,...,m.

The geometric perspective is updated to capture these equality constraints and presented in
Fig. Thus, the necessary modifications to the local search algorithm are:

i. Neighborhood Exploration : Given a design X, or equivalently z = (%), the neighborhood is

N o={z[|z—2ll,<T} = {® 55/, <T}- (29)

ii. Robust Local Move : Ensure that every iterate satisfies p = p.

6.3. Generalized Local Search Algorithm

For ease of exposition, we shall only highlight the key differences to the local search algorithm
previously discussed in Section
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p

Figure 11 A two-dimensional illustration of Prob. , and equivalently Prob. . Both implementation errors
and uncertain parameters are present. Given a design X, the possible realizations lie in the neighbor-
hood N, as defined in Eqn. . N lies in the space z = (x,p). The shaded cone contains vectors
pointing away from the bad neighbors, z; = (x;, p;), while the vertical dotted denotes the intersection
of hyperplanes p=p. For d* = (d;, d;‘,) to be a feasible descent direction, it must lie in the intersection
between the both the cone and the hyperplanes, i.e. dj, = 0.

6.3.1. Neighborhood Exploration The implementation is similar to that in Section
However, n +m + 1 gradient ascents are used instead, since the neighborhood N now lies in the
space z = (p) (see Fig. , and the inner maximization problem is now

max f(z+Az) = max f(x+Ax,p+Ap). (30)
The n + m + 1 sequences start from Az =0, Az = szgn(af(x x)) e for i=1,...,n and Az =
szgn(m)3el fori=n+1,...,n+m.

6.3.2. Robust Local Move At every iterate, the condition p = p is satisfied by ensuring
that the descent direction d* = ( ) fulfills the condition dj =0 (see Fig. . Referring to the
robust local move discussed in Section [3:2] we solve the modlﬁed SOCP:

mlﬁn I6]
ot ld]l» <1
/ x-ka X'ka X
@ (523) <8 ()], v eae &)
d,=0
/BS —E€,
which reduces to
min 3
dg,B
sit. ||dg|l2 <1 (32)
/ x; —xF X
w2 3:3), v e e
< —e

6.4. Application Example Il - Revisiting Application Example |

6.4.1. Problem Description To illustrate the performance of the generalized robust local
search algorithm, we revisit Application Example I from Section ] where polynomial objective
function is

Foory(m,y) = 22° —12.22° +21.22" + 6.22 — 6.42° — 4.72° + 3% — 11y° + 43.3y* — 10y — 74.8y>
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+56.9y% — 4.1y — 0.13°2% 4+ 0.4y%x + 0.42%y
= Z CrsT Y.
r>0, s>0
r+s<6
In addition to implementation errors as previously described, there is uncertainty in each of the 16
coefficients of the objective function. Consequently, the objective function with uncertain param-
eters is

fpoly(:r,y) = Z ¢rs(14+0.05Ap,5)x"y*,

r>0, s>0
r+s<6

where Ap is the vector of uncertain parameters; the robust optimization problem is

min gy, (2,y) = min_ max  foo,(z + Az, y + Ay),
2.y . [A],20.5

where A = (%5).

P
6.4.2. Computation Results Observations on the nominal cost surface has been discussed
in Application Example I. Given both implementation errors and parameter uncertainties, the
estimated cost surface of gyo, (2, y) is shown in Fig.[12](a). This estimation is done computationally
through simulations using 1000 joint perturbations in all the uncertainties. Fig. (a) suggests that
Gpoty (%, y) has local minima, or possibly a unique local minimum, in the vicinity of (x,y) = (0,0.5).

(a) Descent Path (b) Cost vs. Iteration
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Figure 12 Performance of the generalized robust local search algorithm in Application Example III. (a) Path
taken on the estimated worst case cost surface gpoiy(x,y). Algorithm converges to region with low
worst case cost. (b) The worst cost is decreased significantly; while the nominal cost increased slightly.
Inset shows the nominal cost surface fpoiy(z,y), indicating that the robust search moves from the
global minimum of the nominal function to the vicinity of another local minimum.

We applied the generalized robust local search algorithm on this problem starting from the global
minimum of the nominal cost function (z,y) = (2.8,4.0). Figure [12b) shows the performance of
the algorithm. Although the initial design has a nominal cost of —20.8, it has a large worst case
cost of 450. The algorithm finds a robust design with a significantly lower worst case cost. Initially,
the worst case cost decreases monotonically with increasing iteration count, but fluctuates when
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Figure 13 Performance under different number of gradient ascents during the neighborhood exploration. In all
instances, the worst case cost is lowered significantly. While the decrease is fastest when only 3 4 1
gradient ascents are used, the terminating conditions were not attained. The instance with 10 + 1
gradient ascents took the shortest time to attain convergence.

close to convergence. On the other hand, the nominal cost increases initially, and decreases later
with increasing iteration count.

Figure (a) shows that the robust search finds the region where the robust local minimum is
expected to reside. The inset in Fig. (b) shows the path of the robust search “escaping” the
global minimum. Because the local search operates on the worst cost surface in Fig. (a) and not
the nominal cost surface in the inset of Figure (b), such an “escape” is possible.

Efficiency of the Neighborhood Exploration: In the local search algorithm, n+ 1 gradient ascents
are carried out when the perturbations has n dimensions (see Section . Clearly, if the cost
function is less nonlinear over the neighborhood, less gradient ascents will suffice in finding the
bad neighbors; the converse is true as well. Therefore, for a particular problem, one can investigate
empirically the tradeoff between the depth of neighborhood search (i.e., number of gradient ascents)
and the overall run-time required for robust optimization.

For this example, we investigate this tradeoff with (i) the standard n + 1 gradient ascents, (ii)
1041, and (iii) 3+ 1 gradient ascents, in every iteration. Note, that dimension of the perturbation, n
is 18: 2 for implementation errors and 16 for parameter uncertainties. Case (i) has been discussed in
Section and serve as the benchmark. In case (ii), 1 ascent starts from z*, while the remaining 10
start from z* + sign (M> Le;, where i denotes coordinates with the 10 largest partial derivatives

azz‘ §
k
‘%’ This strategy is similarly applied in case (iii).

As shown in Fig. the worst case cost is lowered in all three cases. Because of the smaller
number of gradient ascents per iteration, the decrease in worst case cost is the fastest in case
(iii). However, the algorithm fails to converge long after terminating conditions have been attained
in the other two cases. In this example, case (ii) took the shortest time, taking 550 seconds to
converge compared to 600 seconds in case (i). The results indicate that depending on the problem,
the efficiency of the algorithm might be improved by using a smaller number of gradient ascents,
but if too few gradient ascents are used, the terminating conditions might not be attained.
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7. Conclusions

We have presented a new robust optimization technique that can be applied to nonconvex problems
when both implementation errors and parameter uncertainties are present. Because the technique
assumes only the capability of function and gradient evaluations, few assumptions are required on
the problem structure. Consequently, the presented robust local search technique is generic and
suitable for most real-world problems, including computer-based simulations, response surface and
kriging metamodels that are often used in the industry today.

This robust local search algorithm operates by acquiring knowledge of the cost surface f(x,p) in
a domain close to a given design X thoroughly but efficiently. With this information, the algorithm
recommends an updated design with a lower estimated worst case cost by excluding neighbors
with high cost from the neighborhood of the updated design. Applied iteratively, the algorithm
discovers more robust designs until termination criteria is reached and a robust local minimum is
confirmed. The numerically determined termination criteria of the algorithm acts as an optimality
condition for robust optimization problems.

The effectiveness of the method was demonstrated through the application to (i) a nonconvex
polynomial problem, and (ii) an actual electromagnetic scattering design problem with a noncon-
vex objective function and a 100 dimensional design space. In the polynomial problem, robust local
minima are found from a number of different initial solutions. For the engineering problem, we
started from a local minimum to the nominal problem, the problem formulated without consid-
erations for uncertainties. From this local minimum, the robust local search found a robust local
minimum with the same nominal cost, but with a worst case cost that is 8% lower.

Appendix A: Continuous Minimax Problem

A continuous minimaz problem is the problem

min r;lgg( o(x,y) = min P(x) (33)
where ¢ is a real-valued function, x is the decision vector, y denotes the uncertain variables and C is
a closed compact set. 9 is the max-function. Refer to [Rustem and Howe]2002| for more discussions
about the continuous minimax problem. For convex and constrained continuous minimax problems,
it was shown that the initial problem can be transformed into an equivalent equality problem
that can be solved using the interior point technique to compute saddle points (see Zakovié¢ and
Pantelides |2000). However, this work is restricted to convex problems only.

The robust optimization problem is a special instance of the continuous minimax problem, as
can be seen through making the substitutions: y = Ax, C =U, ¢(x,y) = f(x+y) = f(x+ Ax) and
1 =g. Thus, Prob. shares properties of the minimax problem; the following theorem captured
the relevant properties:

THEOREM 3 (Danskin’s Min-Max Theorem).
Let C CR™ be a compact set, ¢ :R™ x C— R be continuously differentiable in x, and ¢ : R" — R be
the maz-function 1 (x) := max d(x,y).

ye

(a) Then, ¥ (x) is directionally differentiable with directional derivatives

Vxd) = max d'V.¢(x,y),

yeC*(z

where C*(x) is the set of mazximizing points

Cr(x) = {y* | o(x,y7) zrgggcb(xay)}-
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(b) If p(x,y) is convex in x, ¢(-,y) is differentiable for all'y € C and Vyx¢(x,-) is continuous on
C for each x, then (x) is convex in x and Vx,

Np(x) = conv{Vxo(x,y) |y €C"(x)} (34)
where OY(x) is the subdifferential of the convex function (x) at x
Ip(x) = {z|P(X) = Y (x) +2'(x — x), v}
and conv denotes the convex hull.

For a proof of Theorem 3] see (Danskin![1966, [Danskin|/1967)).

Appendix B: Proof of Theorem [I]
Before proving Theorem [T} observe the following results:

PROPOSITION 3.
Suppose that f(x) is continuously differentiable in x, U = {Ax | ||Ax|2s <T'} where I' > 0 and

U*(x) = {AX* | Ax* = arg Imax flx+ AX)}. Then, for any X and Ax* € U*(x =X),

vxf(x)‘x:)E-Q—Ax* = kEAX”

where k> 0.
In words, the gradient at x =% + Ax* is parallel to the vector Ax*.

PRrROOF. Since Ax* is a maximizer of the problem max f(x+ Ax) and a regular point, because of
xe

the Karush-Kuhn-Tucker necessary conditions, there exists a scalar g > 0 such that
Vo f (%) [xmgraxs + 1V ax(AX'AX —T)|axzaxs = 0.
This is equivalent to the condition
Vi f(X)|xegtax = 20AX".

The result follows by choosing k=2u. O

In this context, a feasible vector is said to be a regular point if all the active inequality constraints
are linearly independent, or if all the inequality constraints are inactive. Since there is only one
constraint in the problem max f(x+ Ax) which is either active or not, Ax* is always a regular

xE

point. Furthermore, note that where ||Ax*||s <T', X+ Ax* is an unconstrained local maximum of
f and it follows that Vy f(X)|x=x+ax* =0 and k = 0. Using Proposition [3| the following corollary
can be extended from Theorem [3}

COROLLARY 1.
Suppose that f(x) is continuously differentiable, U = {Ax | ||Ax||; < T} where T' > 0, g(x) :=

g}l{%)&f(X—l—AX) and U*(x) := ¢ Ax* | Ax = arg max f(x+Ax) p.

(a) Then, g(x) is directionally differentiable and its directional derivatives g'(x;d) are given by

g (x;d) = max f'(x+Ax;d).

AxEU* ()
(b) If f(x) is convex in x, then g(x) is conver in x and VX,

Jg(x) = conv {Ax | Ax e U*(x)}.
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PROOF. Referring to the notation in Theorem (3| if we let y = Ax, C =U, C* =U*, ¢(x,y) =
f(x,Ax) = f(x+ Ax), then ¢ (x) = g(x). Because all the conditions in Theorem (3| are satisfied, it
follows that

(a) g(x) is directionally differentiable with

g (x;d) = max d'V,f(x+ Ax)

AxEU* (x)

= max f'(x+Ax;d).

AxeU*(x)

(b) g(x) is convex in x and Vx,

09(x) = conv{V, f(x,Ax) | Ax e U*(x)}
= conv{Ax | Ax eU*(z)}.

The last equality is due to Proposition U
We shall now prove Theorem
THEOREM [I]
Suppose that f(x) is continuously differentiable, U = {Ax | ||Ax|s <T'} where I' > 0, g(x) :=
max f(x+Ax) and U*(x) ;= Ax* | Ax* = arg max f(x+ Ax) p. Then, d € R™ is a descent direc-

tion for the worst case cost function g(x) at x =% if and only if for all Ax* € U*(X)
dAx* <0

and Vi f(X)|x=z+ax+ # 0.

PROOF. From Corollary [1] for a given x
'(%;d) = (% + Ax;d
g'(x;d) Axgégg(ﬁ)f (x+ Ax;d)

J— I 5 *
= Axgré%((&) d'V, f (%) |x=sxtax

= max kd Ax".

Ax*EU* (%)

The last equality follows from Proposition [3} k>0 but may be different for each Ax*. Therefore,
for d to be a descent direction,

max kd'Ax* < 0. (35)

Ax*eU* (%)
Eqn. 35| is satisfied if and only if for all Ax* € U*(x),
d'Ax* <0,
Vi f (X)|x=s+ax # 0, for k#0.
]

Appendix C: Proof of Theorem 2]

PROPOSITION 4. Let G := {Axy,...,Ax,} and let (d*,8*) be the optimal solution to a feasible
Socp .
min 2
st ||dfl2 <1,
d'Ax; <, VAx; €4,
B < —e

where € is a small positive scalar. Then, —d* lies in conv G.
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PrROOF. We show that if —d* & conv G, d* is not the optimal solution to the SOCP because a
better solution can be found. Note, that for (d*,5*) to be an optimal solution, ||d*|; =1, 5* <0
and d* Ax; < 0, VAx; €G.

Assume, for contradiction, that —d* & conv G. By the separating hyperplane theorem, there
exists a ¢ such that ¢/Ax; > 0, VAx; € G and ¢/(—d*) < 0. Without any loss of generality, let
lc|l =1, and let ¢’d* = p. Note, that 0 < p < 1, strictly less than 1 because |c| = |d*| =1 and
c # d*. The two vectors cannot be the same since ¢’ Ax; > 0 while d* Ax; < 0.

Given such a vector ¢, we can find a solution better than d* for the SOCP, which is a contra-

diction. Consider the vector q = m. |lallz =1, and for every Ax; € G, we have

/

Ad* Ax;—c’ Ax;
[Ad*—ell2
_Ad* Ax;—c Ax;

- )\+1l—2)\u
)\B*—C Axi : « . *
S eEE v since d* Ax; <
AB*
AF1—2Xp

qAx; =

IAIA

since ¢’Ax; > 0.

1 : 1
= <A if0o<pu<s
< 1 by choosing A such that { 0T H=3
i ) 3 <A< g if g <p<l i}
q'Ax; < f*. Let = maxq'Ax;, so 3 < (3*. We have arrived at a contradiction since (q,(3) is a

feasible solution in the SOCP and it is strictly better than (d*,3*) since 3 < 3*. O

We can ensure . Therefore,

A
M1—2xp

Given Proposition [4] we prove the convergence result:

THEOREM
Suppose that f(x) is continuously differentiable and convezr with a bounded set of minimum points.

Then, when the stepsize t* are chosen such that t* >0, t* — 0 as k — oo and Z t" =00, Algorithm

converges to the global optimum of the robust optimization problem .

Proor. We show that applying the algorithm on the robust optimization problem is equivalent
to applying a subgradient optimization algorithm on a convex problem.

From Corollary [I(b), Prob. is a convex problem with subgradients if f(x) is convex. Next,
—d* is a subgradient at every iteration because:

e —d* lies in the convex hull spanned by the vectors Ax* € U*(x*) (see Prop. ), and

e this convex hull is the subdifferential of g(x) at x* (see Corollary [[(b)).
Since a subgradient step is taken at every iteration, the algorithm is equivalent to the following
subgradient optimization algorithm:

Step 0. Initialization: Let x* be an arbitrary decision vector, set k = 1.

Step 1. Find subgradient s* of x*. Terminate if no such subgradient exist.

Step 2. Set xF*1:=xF — tFgh,

Step 3. Set k:=k+ 1. Go to Step 1.
From Theorem 31 in (see Shor|1998]), this subgradient algorithm converges to the global minimum

of the convex problem under the stepsize rules: t* >0, t* — 0 as k — 0 and Ztk = 00. The proof

k=1
is now complete. [J
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