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Abstract Modern probability theory, whose foundation is based on the axioms set
forth by Kolmogorov, is currently the major tool for performance analysis in stochastic
systems. While it offers insights in understanding such systems, probability theory,
in contrast to optimization, has not been developed with computational tractability
as an objective when the dimension increases. Correspondingly, some of its major
areas of application remain unsolved when the underlying systems become multidi-
mensional: Queueing networks, auction design in multi-item, multi-bidder auctions,
network information theory, pricing multi-dimensional options, among others. We pro-
pose a new approach to analyze stochastic systems based on robust optimization. The
key idea is to replace the Kolmogorov axioms and the concept of random variables as
primitives of probability theory, with uncertainty sets that are derived from some of the
asymptotic implications of probability theory like the central limit theorem. In addi-
tion, we observe that several desired system properties such as incentive compatibility
and individual rationality in auction design are naturally expressed in the language of
robust optimization. In this way, the performance analysis questions become highly
structured optimization problems (linear, semidefinite, mixed integer) for which there
exist efficient, practical algorithms that are capable of solving problems in high dimen-
sions. We demonstrate that the proposed approach achieves computationally tractable
methods for (a) analyzing queueing networks, (b) designing multi-item, multi-bidder
auctions with budget constraints, and (c) pricing multi-dimensional options.
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1 Introduction

Probability theory has a long and distinguished history that dates back to the beginning
of the seventeenth century. Games involving randomness led to an exchange of letters
between Pascal and Fermat in which the fundamental principles of probability theory
were formulated for the first time. The Dutch scientist Huygens, learned of this corre-
spondence and in 1657 published the first book on probability entitled De Ratiociniis
in Ludo Aleae. In 1812 Laplace introduced a host of new ideas and mathematical
techniques in his book Theorie Analytique des Probabilities. Laplace applied proba-
bilistic ideas to many scientific and practical problems. The theory of errors, actuarial
mathematics, and statistical mechanics are examples of some of the important appli-
cations of probability theory developed in the nineteenth century. Many researchers
have contributed to the theory since Laplace’s time; among the most important are
Chebyshev, Markov, von Mises, and Kolmogorov.

One of the difficulties in developing a mathematical theory of probability has been
the need to arrive at a definition of probability that is precise enough for use in mathe-
matics, yet comprehensive enough to be applicable to a wide range of phenomena. The
search for a widely acceptable definition took nearly three centuries. The matter was
finally resolved in the 1933 monograph of Kolmogorov who outlined an axiomatic
approach that forms the basis for the modern theory. With the publication in 1933
of Kolmogorov’s book Grundbegriffe der Wahrscheinlichkeitsrechnung, Kolmogorov
laid the foundations of an abstract theory, designed to be used as a mathematical model
for certain classes of observable events. The fundamental concept of the theory is the
concept of a probability space (Ω, A, P), where Ω is a space of points ω which are
denoted as elementary events, while A is a σ -algebra of sets in Ω , and P is a proba-
bility measure defined for all A-measurable events, i.e., for all sets S belonging to A.
Kolmogorov’s three axioms form the basis of this theory

1. P(S) ≥ 0, ∀S ∈ A.
2. P(Ω) = 1.
3. If Si ∈ A, i ≥ 1, are pairwise disjoint, then P(∪∞

i=1Si ) =∑∞
i=1P(Si ).

Another important primitive of probability theory is the notion of a random variable
as a quantity that takes values with certain probabilities. A key objective of probability
theory is to estimate the probability distributions of a random variable Y , which is a
function of n primitive random variables X1, . . . , Xn , that is Y = f (X1, . . . , Xn),
given information on the joint probability distribution of the primitive random vari-
ables X1, . . . , Xn . For example, suppose that we are given n independent, random
variables Xi uniformly distributed in [0, 1], and we are interested in evaluating the
distribution the random variable Y = ∑n

i=1 Xi . Specifically, we are interested in
the quantity P(Y ≤ t), 0 ≤ t ≤ n. Even for a modest value of n = 10, this is a
complex calculation involving convolutions. Perhaps the simplest way to calculate
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the Laplace transform of Y , which is the product (because of independence) of the
Laplace transforms of the Xi ’s and then numerically invert the transform. Note that
in order to estimate a probability of a relative simple event, we need to invoke rather
heavy machinery from complex analysis and inverse of transforms.

The situation we described is not an isolated instance. Consider a single class queue-
ing network (see Sect. 3), that has been used in the latter part of the twentieth century
to model computer and communication networks. Suppose we are interested in the
expected value of the number of jobs waiting in one of the queues in the network. If
the distribution of interarrival and service times is not exponential, we do not know
how to calculate this expectation exactly, and two avenues available to make progress
are simulation and approximation. Simulation can take a considerable amount of time
in order for the results to be statistically significant, and in addition, if the simulation
model is complex as it is often the case, then it is difficult to isolate and understand
the key insights in the model.

On the other hand, approximation methods can potentially lead to results that are
not very close to the true answers. Given these considerations, it is fair to say that
after more than 50 years of research we really do not have a satisfactory answer to
the problem of performance analysis of queueing networks. J.F.C. Kingman, one of
the pioneers of queueing theory in the twentieth century in his opening lecture at
the conference entitled “100 Years of Queueing–The Erlang Centennial” [45], writes,
“If a queue has an arrival process which cannot be well modeled by a Poisson process
or one of its near relatives, it is likely to be difficult to fit any simple model, still
less to analyze it effectively. So why do we insist on regarding the arrival times as
random variables, quantities about which we can make sensible probabilistic state-
ments? Would it not be better to accept that the arrivals form an irregular sequence,
and carry out our calculations without positing a joint probability distribution over
which that sequence can be averaged?”.

The situation in queueing networks we discussed above is present in other exam-
ples. Shannon [64] characterized the capacity region and designed optimal coding
and decoding methods in single-sender, single-receiver channels, but the extension to
multi-sender, multi receiver channels with interference is by and large open. Myerson
[57], in his Nobel Prize winning work, solved the problem of optimal market design
in single item auctions, but the extension to multi-item case with bidders that have
budget constraints has remained open. Black and Scholes [21], in their Nobel Prize
winning work, solved the problem of pricing an option in an underlying security, but
the extension to multiple securities with market frictions has not been resolved. In
all of these and other problems, we see that we can solve the underlying problem in
low dimensional problems, but we have been unable to solve the underlying problems
when the dimension increases.

In our opinion, the reason for this is related to the history of probability theory
as a scientific field. The multi-century effort that led to the development of modern
probability theory aimed to lay the conceptual and foundational basis of the field. The
primitives of probability theory, the Kolmogorov axioms and the notion of a random
variable, while powerful for modeling purposes, have not been developed with com-
putational tractability as an objective when the dimension increases. In contrast, con-
sider the development of optimization as a scientific field in the second part of the
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twentieth century. From its early years (Dantzig [31]), modern optimization has had
as an objective to solve multi-dimensional problems efficiently from a practical point
of view. The notion of efficiency used, however, is not the same as theoretical effi-
ciency (polynomial time solvability) developed in the 1970s ([27,43]). The Simplex
method, for instance, has proven over many decades to be practically efficient, but
not theoretically efficient. It is exactly this notion of practical efficiency we use in
this work: it is the ability to solve problems of realistic size relative to the application
we address. For example, queueing networks with hundreds of nodes, auctions with
hundreds of items and bidders with budget constraints, network information theory
with hundreds of thousands of codewords, and option pricing problems with hundreds
of securities.

Given the success of optimization to solve multi-dimensional problems, it is natural,
in our opinion, to formulate probability problems as optimization problems. For this
purpose, we utilize robust optimization, arguably one of the fastest growing areas of
optimization in the last decade, to accomplish this. In this effort, we are guided by the
words of Dantzig [33], who in the opening sentence of his book Linear Programming
and Extensions writes “The final test of any theory is its capacity to solve the problems
which originated it.” In this respect, we report in this paper our progress to date in the
three areas that originated the need to develop the proposed theory:

(a) Analyzing queueing networks in Sect. 3.
(b) Designing multi-item, multi-bidder auctions with budget constraints in Sect. 4.
(c) Pricing multi-dimensional options in Sect. 5.

The research program surveyed here aims to develop a tractable theory for analyz-
ing stochastic systems in high dimensions via robust optimization. In addition to the
applications covered here, we have applied this approach to:

(a) Network Information theory (see [2]), where we present a robust optimization
based framework to formulate and solve the central problem of characterizing the
capacity region and constructing matching optimal codes for multi-user channels
with interference. In particular, we solve the open problems of characterizing the
capacity regions of the multi-user Gaussian interference channel, the multicast
and the multi-access Gaussian channels and construct matching optimal codes
by solving semidefinite optimization problems with rank one constraints.

(b) Transient Analysis of queueing networks (see [7]), where we concentrate on the
transient analysis of single class queues, and feed-forward networks, and derive
closed form expressions for the transient behavior of such systems.

(c) Analysis of Multi-class queueing networks (see [5]), under various scheduling
policies (FCFS and priority based).

Given the broad spectrum of applications we cover, our aim is to introduce the key
concepts and algorithms, and provide the main theoretical and empirical evidence that
illustrates the strength of the method. We do not provide all the mathematical proofs
but give reference to our specific papers that give more details. In the next section, we
outline the building blocks of the proposed approach.
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2 The building blocks of our approach

One of the major successes of probability theory is the development of limit laws. As
an illustration consider the central limit theorem that asserts that if Xi , i = 1, . . . , n
are independent, identically distributed random variables with mean μ and standard
deviation σ , then as n → ∞, the random variable Sn = ∑n

i=1 Xi is asymptotically
distributed as a standard normal, that is

lim
n→∞P

(
Sn − nμ

σ
√

n
≤ t

)

= P (Z ≤ t) ,

where Z ∼ N (0, 1). The importance of the limit laws in the theory of probability can
be emphasized by quoting Kolmogorov [39]: “All epistemological value of the theory
of probability is based on this: that large scale random phenomena in their collective
action create strict, non random regularity.”

The key building block in our approach is that rather than assuming as primitives
the axioms of probability theory (Kolmogorov axioms and the notion of a random var-
iable), we assume as primitives the conclusions of probability theory, namely its limit
laws. Let us give a motivating example. From the central limit theorem (Sn−nμ)/σ

√
n

is asymptotically standard normal. We know that a standard normal Z satisfies

P(|Z | ≤ 2) ≈ 0.95, P(|Z | ≤ 3) ≈ 0.99.

We therefore assume that the quantities Xi take values such that

∣
∣
∣
∣
∣

n∑

i=1

Xi − nμ

∣
∣
∣
∣
∣
≤ Γ σ

√
n,

where Γ is a small numerical constant 2 or 3 that is selected adaptively to make a
good fit empirically. In other words, we do not describe the uncertain quantities Xi as
random variables, rather they take values in an uncertainty set

U =
{

(X1, . . . , Xn)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

Xi − nμ

∣
∣
∣
∣
∣
≤ Γ σ

√
n

}

. (1)

In specific situations we can augment the uncertainty set U by using additional asymp-
totic laws as we illustrate in Sect. 2.2.

2.1 The connection with optimization

Suppose we are interested in estimating/analyzing E[ f (X1, . . . , Xn)], where
(X1, . . . , Xn) are random variables. Using asymptotic laws of probability, we
construct an uncertainty set U . We have already seen an example in Eq. (1). Then, we
estimate E[ f (X1, . . . , Xn)] by solving the constrained optimization problems
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max f (x1, x2, . . . , xn) min f (x1, x2, . . . , xn)

s.t. (x1, x2, . . . , xn) ∈ U , s.t. (x1, x2, . . . , xn) ∈ U ,

In other words, we transform the performance analysis question to a constrained opti-
mization problem, arguably a problem we can solve efficiently in high dimensions, and
we use the asymptotic laws of probability theory, arguably the most insightful aspect
of probability theory, to construct the constrained set in the optimization problem.

Suppose that we are interested in a design problem involving design parameters
θ = (θ1, . . . , θn) and uncertain parameters x = (x1, . . . , xn) ∈ U and we are inter-
ested in solving the problem

max
θ

E[ f (x, θ)]. (2)

Problems like (2) have been studied in the literature of Stochastic Programming that
started with the work of Dantzig [32] and continues to be strong to this date. For a
more comprehensive review of Stochastic Programming, we refer to [20].

In the Robust Optimization (RO) paradigm, we model the uncertainty of the param-
eters x by the uncertainty set U where the parameters x take values and solve the
optimization problem

max
θ

min
x∈U

f (x, θ). (3)

RO is one of the fastest growing areas of optimization in the last decade. It addresses
the problem of optimization under uncertainty, in which the uncertainty model is not
stochastic, but rather deterministic and set-based. RO models are typically tractable
computationally. For example, [9,11,12,36], and [37], proposed linear optimization
models with ellipsoidal uncertainty sets, whose robust counterparts correspond to
conic quadratic optimization problems. [10,18,19] proposed RO models with polyhe-
dral uncertainty sets that can model linear/integer variables, and whose robust coun-
terparts correspond to linear/integer optimization models. For a more thorough review
we refer the reader to [8], and [15].

Within the interface of Robust Optimization and Stochastic Programming, [8,58]
(pp 27–60), [13], and [73] propose alternative tractable approaches to model chance
constrained problems.

2.2 Constructing uncertainty sets

In this section, we outline the principles for constructing uncertainty sets we use in
this paper.

Using historical data and the central limit theorem Suppose that we have esti-
mated the mean μ and the standard deviation σ of i.i.d. random variables (X1, . . . , Xn).
We expect that the central limit theorem holds, and we model uncertainty by the uncer-
tainty set given in Eq. (1).
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Modeling correlation information Suppose that the random variables X =
(X1, . . . , Xn) are correlated. Specifically, there are m < n i.i.d. random variables
Y = (Y1, . . . , Ym) with mean μY and standard deviation σY such that X = AY + ε,
where A is an n × m matrix and ε = (ε1, . . . , εn) of i.i.d. random variables that have
mean zero and standard deviation σε . Then the uncertainty set is given by

UCorr =
{

X

∣
∣
∣
∣
∣

X = AY + ε,

∣
∣
∣
∣
∣

m∑

i=1

Yi − mμY

∣
∣
∣
∣
∣
≤ Γ σY

√
m,

∣
∣
∣
∣
∣

n∑

i=1

εi

∣
∣
∣
∣
∣
≤ Γ σε

√
n

}

.

(4)

Stable laws The central limit theorem belongs to a broad class of weak convergence
theorems. These theorems express the fact that a sum of many independent random
variables tend to be distributed according to one of a small set of stable distributions.
When the variance of the variables is finite, the stable distribution is the normal dis-
tribution. In particular, these stable laws allow us to construct uncertainty sets for
heavy-tailed distributions.

Theorem 1 (Nolan [60]) Let Y1, Y2, . . . be a sequence of i.i.d. random variables,
with mean μ and undefined variance. If Yi ∼ Y , where Y is a stable distribution with
parameter α ∈ (1, 2] then

∑n
i=1 Yi − nμ

n1/α
∼ Y.

Motivated by this result, we construct an uncertainty set UHT representing the random
variables {Yi } as follows

UHT =
{

(Y1, Y2, . . . , Yn)

∣
∣
∣
∣−Γ HT ≤

∑n
i=1 Yi − nμ

n1/α
≤ Γ HT

}

, (5)

where Γ HT can be chosen based on the distributional properties of the random variable
Y . Note that UHT is again a polyhedron.

Incorporating distributional information using typical sets In this section, we
illustrate how to construct uncertainty sets that utilize knowledge of the specific prob-
ability distribution. We use the idea of a typical set UTypical, introduced by Shannon
[64] in the context of his seminal work in information theory.

(a) P

[
Z̃ ∈ UTypical

]
→ 1, as n → ∞.

(b) The conditional pdf h(Z̃) = f (Z̃|Z̃ ∈ UTypical) satisfies:

∣
∣
∣
∣
1

n
log h(Z̃) + H f

∣
∣
∣
∣ ≤ εn,

for some H f (the entropy of the distribution) and εn → 0, as n → ∞.
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Property (a) means that the typical set has probability nearly 1, while Property (b)
means that all elements of the typical set are nearly equiprobable, see [28]. We next
show that (Proposition 1), for a probability density f (·), the typical set is given by

U f
ε =

{

Z

∣
∣
∣
∣−Γ f

ε ≤
∑n

i=1log f (Zi ) + nH f

σ f
√

n
≤ Γ f

ε

}

, (6)

where

H f = −
∞∫

−∞
f (x) log f (x) dx, σ 2

f =
∞∫

−∞
f (x)

(
log f (x) + H f

)2 dx,

and Γ
f

ε is chosen such that

P

[∣
∣
∣
∣

n∑

i=1

log f (Zi ) + nH f

∣
∣
∣
∣ ≤ Γ f

ε · σ f
√

n

]

= 1 − ε. (7)

Proposition 1 For a distribution f (·), U f
ε defined in Eq. (6) satisfies

(a) P

[
Z̃ /∈ U f

ε

]
≤ ε.

(b) The conditional pdf h(Z̃) = f
(

Z̃
∣
∣
∣Z̃ ∈ U f

ε

)
satisfies:

∣
∣
∣
∣
1

n
log h(Z̃) + H f

∣
∣
∣
∣ ≤ φ(ε),

with φ(ε) → 0, as n → ∞.

Proof (a) We have P

[
Z̃ /∈ U f

ε

]
= 1 − P

[
Z̃ ∈ U f

ε

]
and by (7), we have

P

[
Z̃ ∈ U f

ε

]
= P

[∣
∣
∣
∣

n∑

i=1

log f (Zi ) + nH f

∣
∣
∣
∣ ≤ Γ f

ε · σ f
√

n

]

= 1 − ε.

Therefore, P

[
Z̃ /∈ U f

ε

]
≤ ε.

(b) Let Z̃ ∈ U f
ε . Then,

h(Z̃) = f (Z1) f (Z2) . . . f (Zn) .
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Therefore, since Z̃ ∈ U f
ε , we have

∣
∣
∣
∣
1

n
log h(Z̃) + H f

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

log f (Z j ) + H f

∣
∣
∣
∣
∣
∣
≤ Γ

f
ε · σ f√

n
→ 0, as n → ∞.

�
In order to obtain stronger intuition on the nature of the uncertainty sets, we specialize
Proposition 1 for the cases of normal, exponential, uniform and binary distributions.

Corollary 1 [Typical Sets for Normal, Exponential, Uniform and Binary Distribu-
tions]

(a) The typical set for normally distributed i.i.d. random variables Z̃i ∼ N (0, σ ) is
given by

UG
ε =

{
Z
∣
∣
∣ − Γ G

ε ≤ ‖Z‖2 − nσ 2 ≤ Γ G
ε

}
, (8)

(b) The typical set for correlated normally distributed random variables Z̃ ∼
N (0, 
) is given by

UCG
ε =

{
Z
∣
∣
∣ − Γ CG

ε ≤ ‖
−1Z‖2 − n ≤ Γ CG
ε

}
, (9)

(c) The typical set for exponentially distributed random variables Z̃i ∼ Exp(λ) is
given by

UE
ε =

⎧
⎨

⎩
Z

∣
∣
∣
∣
∣
∣

n

λ
−

√
n

λ
· Γ E

ε ≤
n∑

j=1

Z j ≤ n

λ
+

√
n

λ
· Γ E

ε , Z ≥ 0

⎫
⎬

⎭
, (10)

(d) The typical set for uniformly distributed random variables Z̃i ∼ U [a, b] is given
by

UU
ε =

⎧
⎪⎨

⎪⎩
Z

∣
∣
∣
∣
∣
∣
∣

n
a + b

2
− Γ U

ε

√
n ≤

n∑

j=1

Z j ≤ n
a + b

2
+ Γ U

ε

√
n,

a ≤ Z j ≤ b, j = 1, . . . , n,

⎫
⎪⎬

⎪⎭
, (11)

(e) The typical set for binary random variables Z̃i ∼ Bin(p) is given by

U B
ε =

⎧
⎪⎨

⎪⎩
Z

∣
∣
∣
∣
∣
∣
∣

np − Γ B
ε

√
n ≤

n∑

j=1

Z j ≤ np + Γ B
ε

√
n,

Z j ∈ {0, 1} , j = 1, . . . , n,

⎫
⎪⎬

⎪⎭
, (12)
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where Γ G
ε , Γ CG

ε , Γ E
ε , Γ U

ε , Γ B
ε are chosen such that

P
[UG

ε

] = P
[UCG

ε

] = P

[
U E

ε

]
= P

[
UU

ε

]
= P

[
U B

ε

]
= 1 − ε. (13)

3 Performance analysis of queueing networks

The origin of queueing theory dates back to the beginning of the twentieth century,
when Erlang [38] published his fundamental paper on congestion in telephone traffic.
In addition to formulating and solving several practical problems arising in telephony,
Erlang laid the foundations for queueing theory in terms of the nature of assump-
tions and techniques of analysis that are being used to this day. In the second part of
the twentieth century, a very substantial literature of queueing theory was developed
modeling queueing primitives as renewal processes.

From the time of Erlang, the Poisson process has played a very significant role in
modeling the arrival process of a queue. When combined with exponentially distrib-
uted service times, the resulting M/M/m queue with m servers is tractable to analyze
in steady-sate. While exponentiality leads to a tractable theory, assuming general dis-
tributions, on the other hand, yields considerable difficulty with respect to performing
a near-exact analysis of the system. The G I/G I/m queue with independent and gen-
erally distributed arrivals and services is by and large intractable. Currently, there does
not exist a method that is capable of producing accurate numerical answers, let alone
closed form expressions, for arbitrary distributions.

The situation becomes even more challenging if one considers analyzing the per-
formance of queueing networks. A key result that allows generalizations to networks
of queues is Burke’s theorem (Burke [24]) which states that the departure process
from an M/M/m queue is Poisson. This property allows one to analyze queueing
networks and leads to product form solutions as in Jackson [41]. However, when
the queueing system is not M/M/m, the departure process is no longer a renewal
process, i.e., the interdeparture times are dependent. With the departure process lack-
ing the renewal property, the state-of-the-art theory provides no means to determine
performance measures exactly, even for a simple network with queues in tandem.
The two avenues in such cases are simulation and approximation. Simulation can
take a considerable amount of time in order for the results to be statistically sig-
nificant. In addition, simulation models are often complex, which makes it diffi-
cult to isolate and understand key qualitative insights. On the other hand, approx-
imation methods can potentially lead to results that are not very close to the true
answers.

Given these challenges, it is fair to say that the key problem of performance analy-
sis of queueing networks has remained open under the probabilistic framework. Our
objective in this section, is to analyze queueing networks by replacing the primitives of
stochastic processes with uncertainty sets. In this section, we summarize the results of
Bandi et al. [6] for single class queueing networks. Extensions to multiclass queueing
networks are contained in [5].
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3.1 An alternate model of a queue

We introduce the notion of a robust queue where we model the arrival and service
processes by uncertainty sets instead of assigning probability distributions. We denote
the interarrival time between the (i −1)st and ith customers by Ti and the service time
of customer i by Xi . We propose the following uncertainty sets on the interarrival and
service processes.

Assumption 1 We make the following assumptions

(a) The interarrival times belong to the uncertainty set

Ua =
⎧
⎨

⎩
(T1, T2, . . . , Tn)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∑n

i=k+1 Ti − (n−k)
λ

∣
∣
∣

(n − k)1/αa
≤ Γa, ∀k ≤ k0

⎫
⎬

⎭
,

where 1/λ is the expected interarrival time, Γa is a parameter that captures var-
iability information and 1 < αa ≤ 2 models possibly heavy-tailed probability
distributions.

(b) The service times for an m-server belong to the uncertainty set

U s
m =

⎧
⎨

⎩
(Xi ·m+r )

v
i=1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∑v

i=k+1 Xim+r − (v−k)
μ

∣
∣
∣

(v − k)1/αs
≤ Γs, ∀k ≤ k0

⎫
⎬

⎭
,

where 0 ≤ r < m, 1/μ is the expected service time, Γs is a parameter that
captures variability information and 1 < αs ≤ 2 models possibly heavy-tailed
probability distributions.
For the case of a single server queue, that is, when m = 1, the uncertainty set is
given by

U s =
⎧
⎨

⎩
(X1, X2, . . . , Xn)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∑n

i=k+1 Xi − (n−k)
μ

∣
∣
∣

(n − k)1/αs
≤ Γs, ∀k ≤ k0

⎫
⎬

⎭
.

The value of k0 is chosen so that the central limit theorem is valid for the variables
X1, X2, . . . , Xk0 . A typical value would be k0 = n − 30. We note that the case of
independent and identically distributed interarrival and service times corresponds to
α = 2.

3.2 Waiting time in a robust queue

Consider a single server queue in which the interarrival and service times belong to
the sets Ua and U s , respectively. In this section, we assume that αa = αs = α. Let
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Wi , i ≥ 1 be the waiting time of the ith customer in such a queue. The waiting times
are linked by the recursion (Lindley [52])

Wi = max (Wi−1 + Xi−1 − Ti , 0) = max
1≤k≤i

⎛

⎝
i−1∑

j=k

X j −
i∑

j=k+1

Tj , 0

⎞

⎠. (14)

In our framework, the worst case waiting time Wn of the nth customer can be obtained
by solving the optimization problem

max
T∈Ua ,X∈U s

max
1≤k≤n

⎛

⎝
n−1∑

i=k

Xi −
n∑

j=k+1

Tj , 0

⎞

⎠.

This problem allows a closed form solution.

Theorem 2 Under Assumption 1, the worst case waiting time Wn

(a) in a single server queue with traffic intensity ρ = λ/μ < 1, is given by:

Wn ≤ α − 1

αα/(α−1)
· λ1/(α−1) (ΓT + ΓX )α/(α−1)

(1 − ρ)1/(α−1)
. (15)

(b) in a multi-server queue with m servers and traffic intensity ρ = λ/mμ < 1, is
given by:

Wn ≤ α − 1

αα/(α−1)
· λ1/(α−1)

(
ΓT + ΓX/m1/α

)α/(α−1)

(1 − ρ)1/(α−1)
. (16)

Proof (a) The waiting time of the nth customer can be expressed recursively in terms
of the interarrival and service times and using Eq. (14), can be written as

W n = max
X∈U s ,T∈Ua

max
1≤ j≤n

⎛

⎝
n−1∑

= j

X −
n∑

= j+1

T, 0

⎞

⎠

= max
1≤ j≤n

max
X∈U s ,T∈Ua

⎛

⎝
n−1∑

= j

X −
n∑

= j+1

T, 0

⎞

⎠ . (17)

From Assumption 1, for any j ≤ k0, we know that the sums of the service times
and interarrival times are bounded by

n−1∑

= j

X ≤ n − j

μ
+ Γs(n − j)1/α,

n∑

= j+1

T ≥ n − j

λ
− Γa(n − j)1/α. (18)
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Combining Eqs. (17) and (18), we obtain an one-dimensional concave maximization
problem (since 1 < α ≤ 2)

max
1≤ j≤n

{

(Γa + Γs) (n − j)1/α − 1 − ρ

λ
(n − j)

}

. (19)

Making the transformation x = n − j , Eq. (19) becomes

max
1≤x≤n

β · x1/α − γ · x = α − 1

αα/(α−1)

βα/(α−1)

γ 1/(α−1)
, (20)

with β = Γa + Γs and γ = (1 − ρ)/λ > 0, given ρ < 1. Note that Eq. (20) is
maximized at

n − j∗ = x∗ =
(

β

αγ

)α/(α−1)

=
(

λ(Γa + Γs)

α(1 − ρ)

)α/(α−1)

. (21)

As ρ → 1, we have

j∗ = n − x∗ = n −
(

λ(Γa + Γs)

α(1 − ρ)

)α/(α−1)

≤ n − 30 = k0,

which implies that Eq. (18) is valid for j∗. Substituting β and γ by their respective
expressions in Eq. (20) yields Eq. (15) after some straightforward algebraic manipu-
lations.

(b) The proof is very similar, and we omit it.

�

Implications and insights

(a) Qualitative insights: The robust queue behaves qualitatively the same as the
traditional queue. For instance, the classical i.i.d. arrival and service processes
with finite variance can be modeled by setting α = 2. For the single server queue,
Eq. (16) becomes

W n ≤ λ

4
· (Γa + Γs)

2

(1 − ρ)
, (22)

and for the multi-server queue

W n ≤ λ

4
·
(
Γa + Γs/m1/2

)2

1 − ρ
. (23)
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In traditional queueing theory, Kingman [44] provides insightful bounds on the
expected waiting time in steady state for the G I/G I/1 queue

E[Wn] ≤ λ

2
· σ 2

a + σ 2
s

1 − ρ
, (24)

and for the G I/G I/m queue

E[Wn] ≤ λ

2
· σ 2

a + σ 2
s /m + (1/m − 1/m2)/μ2

1 − ρ
. (25)

Contrasting Kingman’s bounds (24) and (25) with the bounds (22) and (23), we
observe that they have the same functional dependence on λ/(1 − ρ) and on the
variability parameters Γ 2

a , Γ 2
s /m, (correspondingly σ 2

a , σ 2
s /m). In this sense,

both approaches lead to the same qualitative insights.
(b) Heavy-tailed behavior: During the past decade, studies have shown the heavy-

tailed behavior of internet traffic ([30,42,49,51,71]). The absence of closed form
expressions for queueing systems with heavy tail behavior has made it difficult
to make progress in the area of communication networks scheduling. Using our
approach, we are able to provide closed form expressions for the waiting times
[Eqs. (15) and (16)], which to the best of our knowledge, are not available under
stochastic heavy-tailed assumptions on arrivals and services.

3.3 Analysis of single class queueing networks

In this section, we analyze single class queueing networks in our framework. Con-
sider a network of J queues serving a single class of customers. Each customer enters
the network through some queue j , and either leaves the network or departs towards
another queue right after completion of his service. In order the analyze the waiting
time in a particular queue j in the network, we need to characterize the overall arrival
process to queue j and then apply Theorem 2. The arrival process in queue j is the
superposition of different processes, each of which is either a process from the outside
world, or a departure process from another queue, or a thinning of a departure process
from another queue, or a thinning of an external arrival process. Correspondingly, in
order to analyze the network, we need to characterize the effect that the following
operations have on the arrival process:

(a) Passing through a queue: Under this operation, we characterize the departure
process {Di }i≥1 when an arrival process {Ti }i≥1 ∈ Ua passes through a queue.
We show that the interdeparture times belong to an uncertainty set that has the
same form as the uncertainty set for the interarrival times. This is the generaliza-
tion of Burke’s theorem (Burke [24]) for an M/M/m queue. This is a significant
advantage of our approach compared to modeling queues with arrival processes
from a renewal process. While, the departure process satisfies the same properties
as the arrival process under our framework, in traditional queueing networks the
departure process fails to be a renewal process.
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(b) Superposition of arrival processes: Under this operation, m arrival processes
{T j

i }i≥1 ∈ Ua
j , j = 1, . . . , m combine to form a single arrival process. Proposi-

tion 2 characterizes the uncertainty set of the combined arrival process.
(c) Thinning of a process with probability p: Under this operation, an arrival from

a given arrival process is classified as type I with probability p and type II with
probability 1 − p. In Proposition 3, we characterize the uncertainty set of the
resulting thinned type I process.

Passing through a queue The next theorem is the analog of Burke’s theorem in our
framework.

Theorem 3 If {Ti }i≥1 ∈ Ua, {Xi }i≥1 ∈ U s , αa = αs = α and ρ < 1, then the
interdeparture times {Di }i≥1 belong to the uncertainty set

Ud =
{

(D1, . . . , Dn)

∣
∣
∣
∣
∣

∣
∣
∑n

i=k+1 Di − n−k
λ

∣
∣

(n − k)1/α
≤ Γa + cn−k, ∀k ≤ k0

}

, (26)

where

ck = 1

k1/α

(
α − 1

αα/(α−1)
· λ1/(α−1) · (Γa + Γs)

α/(α−1)

(1 − ρ)1/(α−1)
+ 1

λ

)

= O
(

1

k1/α

)

.

Proof The nth interdeparture time is expressed as Dn = Tn+Wn−Wn−1+Xn−Xn−1,
thus

n∑

i=k+1

Di =
n∑

i=k+1

Ti + Wn − Wk + Xn − Xk (27)

≤
n∑

i=k+1

Ti + Wn + Xn . (28)

Combining Eqs. (14) and (28), we obtain

n∑

i=k+1

Di ≤
n∑

i=k+1

Ti + max
1≤ j≤n

⎛

⎝
n∑

= j

X −
n∑

= j+1

T

⎞

⎠ .

We seek to maximize the right-hand side over sets U s and Ua

n∑

i=k+1

Di ≤ max
X∈U s ,T∈Ua

⎧
⎨

⎩

n∑

i=k+1

Ti + max
1≤ j≤n

⎛

⎝
n∑

= j

X −
n∑

= j+1

T

⎞

⎠

⎫
⎬

⎭
,

= n − k

λ
+ Γa (n − k)1/α + max

X∈U s ,T∈Ua

⎧
⎨

⎩
max

1≤ j≤n

⎛

⎝
n∑

= j

Xl −
n∑

= j+1

Tl

⎞

⎠

⎫
⎬

⎭
.
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A similar procedure is done as in Eq. (17) by switching the maximization operators
and bounding the sums of service times and interarrival times by Assumption 1, the
maximum term simplifies to the one dimensional concave maximization problem

max
1≤ j≤n

{

Γa (n − j)1/α + Γs(n − j + 1)1/α − (n − j)
1 − ρ

λ
+ 1

μ

}

, for j ≤ k0

(29)

which is of the form

max
1≤x≤n

β · x1/α + δ (x + 1)1/α − γ · x ≤ max
1≤x≤n

(β + δ)(x + 1)1/α − γ (x + 1) + γ

= α − 1

αα/(α−1)

(β + δ)α/(α−1)

γ 1/(α−1)
+ 1 − ρ

λ
, (30)

where β = Γa , δ = Γs , γ = (1 − ρ)/λ > 0, given ρ < 1. Note that Eq. (30) is
maximized at

x∗ + 1 =
(

β + δ

αγ

)α/(α−1)

=
(

λ(Γa + Γs)

α(1 − ρ)

)α/(α−1)

. (31)

Therefore, we obtain the upper bound

∑n
i=k+1 Di − n−k

λ

(n − k)1/α
≤ Γa + cn−k .

The lower bound is obtained similarly. �

Superposition of multiple processes The next proposition (for a proof see [6])
characterizes the resulting uncertainty set when two processes combine.

Proposition 2 The superposition of arrival processes characterized by the uncertainty
sets

Ua
j =

{

(T1, . . . , Tn)

∣
∣
∣
∣
∣

∣
∣
∣
∑n

i=k+1Ti − n−k
λ j

∣
∣
∣

(n − k)1/α
≤ Γa, j , ∀k ≤ k0

}

, 1 ≤ j ≤ J, (32)

results in a merged arrival process characterized by the uncertainty set

Ua
sup =

⎧
⎨

⎩
(T1, . . . , Tn)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∑n

i=k+1Ti − n − k

λsup

∣
∣
∣
∣

(n − k)1/α
≤ Γa,sup, ∀k ≤ k0

⎫
⎬

⎭
,
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where

λsup =
J∑

j=1

λ j , Γa,sup =
(∑J

j=1

(
λ jΓa, j

)α/(α−1)
)(α−1)/α

∑J
j=1 λ j

· (33)

Thinning of a process We consider the case in which an arrival process is thinned,
that is a fraction (1 − p) of arrivals of the original process are discarded. For a proof
see [6].

Proposition 3 When an arrival process characterized by the uncertainty set

Ua =
⎧
⎨

⎩
(T1, . . . , Tn)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∑n

i=k+1Ti − n − k

λ

∣
∣
∣
∣

(n − k)1/α
≤ Γa, ∀k ≤ k0

⎫
⎬

⎭
,

is thinned with probability p, the resulting arrival process is described by the uncer-
tainty set

Ua
spli t =

⎧
⎨

⎩
(T spli t

1 , . . . , T spli t
n )

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∑n

i=k+1T spli t
i − n − k

λspli t

∣
∣
∣
∣

(n − k)1/α
≤ Γa,spli t , ∀k ≤ k0

⎫
⎬

⎭
,

where λspli t = λ · p and Γa,spli t = Γa ·
(

1

p

)1/α

.

The analysis of single class queueing networks We consider a single class queue-
ing network of single servers with the following data:

(a) External arrival processes with parameters
(
λ j , Γa, j , αa, j

)
that arrive to each

node j = 1, . . . , J .
(b) Service processes with parameters

(
μ j , Γs, j , αs, j

)
, and the number of servers

m j , j = 1, . . . , J .
(c) Routing matrix P = [Pi j ], i, j = 1, . . . , J with the interpretation that after com-

pleting service in queue i , a customer is routed to queue j with probability Pi j

and leaves the network with probability 1 −∑ j Pi j .

The following theorem combines Theorem 3, and Propositions 2 and 3.

Theorem 4 The behavior of a single class queueing network is equivalent to that of
a collection of independent queues, with the arrival process to node j characterized
by the uncertainty set

Ua
j =

⎧
⎪⎨

⎪⎩
(T j

1 , . . . , T j
n )

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑n
i=k+1T j

i − n − k

λ j

∣
∣
∣
∣
∣

(n − k)1/α
≤ Γ a, j , ∀k ≤ k0

⎫
⎪⎬

⎪⎭
, j = 1 . . . , J,
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where
{
λ1, λ2, . . . , λJ

}
and

{
Γ a,1, Γ a,2, . . . , Γ a, j

}
satisfy the set of equations for

all j = 1, . . . , J

λ j = λ j +
J∑

i=1

(
λi Pi j

)
, (34)

Γ a, j =
[(

λ j · Γa, j
)α/(α−1) +∑J

i=1

(
λi · Γ a,i

)α/(α−1) · Pi j

](α−1)/α

λ j
. (35)

By applying Theorem 2 using the parameters we compute in Theorem 4, we can now
compute performance measures in a single class queueing network.

Queues with asymmetric heavy-tailed arrivals and services All the results pre-
sented in this section assumed that the arrival and the service process have the same tail
coefficients. In [6], we present results for the case of asymmetric heavy-tailed arrival
and service processes, that is, when αa �= αs . We present analogs of Theorems 3, 2,
and Propositions 2 and 3 that allow us to analyze queueing networks composed of
queues with arbitrary values for αa’s and αs’s.

3.4 Computational results

In this section, we present computational results to demonstrate the effectiveness of
our approach in analyzing queueing networks. We shall refer to our approach as the
Robust Queueing Network Analyzer (RQNA). We compare the results obtained by
RQNA with the results obtained from simulation and the Queueing Network Analyzer
(QNA) proposed by Whitt [70], and investigate the relative performance of RQNA
with respect to system’s network size, degree of feedback, maximum traffic intensity,
and diversity of external arrival distributions.

In view of comparing our approach to simulation and QNA, we consider instances
of stochastic queueing networks with the following primitive data:

(a) The distributions of the external arrival processes with parameters (λ j , σa, j , αa, j )
with coefficients of variation c2

a, j = λ2
jσ

2
a, j , j = 1, . . . , J .

(b) The distributions of the service processes with parameters
(
μ j , σs, j , αs, j

)
with

coefficients of variation c2
s, j = μ2

jσ
2
s, j and the number of servers m j , j =

1, . . . , J .
(c) The routing matrix P = [Pi j ], i, j = 1, . . . , J with the interpretation that after

completing service in queue i , a customer is routed to queue j with probability
Pi j and leaves the network with probability 1 −∑ j Pi j .

To apply RQNA on stochastic queueing networks, we first need to translate the sto-
chastic primitive data given above into robust primitive data, namely uncertainty sets
with appropriate variability parameters (Γa, j , Γs, j ) for each j = 1, . . . , J . To achieve
this goal, we next describe how we use simulation on a single isolated queue to con-
struct parameters (Γa, Γs) given arrival and service distributions. This enables us to
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transform the stochastic data into uncertainty sets over external arrival and service
processes.

Derived variability parameters Along the lines of QNA, we use simulation to
construct appropriate functions for the variability parameters. To do so, we consider
a single queue with m servers characterized by (ρ, σa, σs, αa, αs) and model its vari-
ability parameters (Γa, Γs) as follows

Γa = σa and Γs = f (ρ, σa, σs, αa, αs). (36)

Motivated by Kingman’s bound [see Eq. (25)], we consider the following functional
form for f (·)

f (ρ, σs, σa, αa, αs) =
(
θ0 + θ1 · σ 2

s /m + θ2 · σ 2
a ρ2m

)(α−1)/α − σam(α−1)/α,

where α = min{αa, αs}.
We run simulation over multiple instances of a single queue while varying parame-

ters (ρ, σa, σs, αa, αs) for different arrival and service distributions. We employ linear
regression to generate appropriate values for θ0, θ1 and θ2 such that the values obtained
for W n by Theorem 2 are adapted according to the expected values of the waiting time
obtained from simulation.

The RQNA Algorithm Having derived the required primitive data for our robust
approach, we next describe the RQNA algorithm we employ to compute performance
measures of a given network of queues.

Algorithm 1 Robust Queueing Network Analyzer (RQNA)
Input: Parameters

{(
λ j , σa, j , αa, j

)
,
(
μ j , σs, j , αs, j

)
, P = [Pi j ]

}
, 1 ≤ i, j ≤ J.

Output: Waiting times W n at each node j, 1 ≤ j ≤ J .
Algorithm:

1. For each external arrival process i in the network, set Γa,i = σa,i .
2. For each queue j in the network with parameters (μ j , σs, j , αs, j ), compute

(a) the effective parameters
(
λ j , Γ a, j , αa, j

)
according to Theorem 4 and set

ρ j = λ j/μ j ,
(b) the variability parameter Γs, j = f

(
ρ j , Γ a, j , σs, j , αa, j , αs, j

)
, and

(c) the waiting time W n at node j using Theorem 2.

Note that, in Step 2(b), we treat each queue j in the network separately as a single
isolated queue with an effective arrival process described by the variability parameter
Γ a, j . Note that we use Γ a, j as an input to f (·) in place of the standard deviation.
This is motivated from our use of Γa = σa for the single queue case [see Eq. (36)].

123



C. Bandi, D. Bertsimas

Fig. 1 The Kuehn’s network (see Kuehn [48])

Table 1 Single-server network: sojourn time percent errors relative to simulation

Case Pareto distribution Normal distribution

(c2
a , c2

s ) QNA RQNA QNA RQNA

(0.25, 0) 22.78 3.291 15.28 1.389

(0.25, 1) 18.48 −3.478 12.08 3.869

(0.25, 4) 20.13 −3.052 11.57 −3.882

(1,0) 19.01 1.056 12.68 −3.797

(1,1) 14.06 1.799 5.84 −2.555

(1,4) 10.15 2.893 −10.45 −0.681

(4,0) 21.82 −1.934 10.95 1.290

(4,1) 23.71 −2.139 14.18 −3.508

(4,4) 17.51 −2.974 11.55 1.671

Performance of RQNA in comparison to QNA and simulation We consider the
network shown in Fig. 1 and perform computations assuming queues have either single
or multiple servers, with normal or Pareto distributed service times.

Table 1 reports the percentage errors between the expected sojourn times calcu-
lated by simulation and those obtained by each of QNA and RQNA, assuming all nine
queues in the network have a single server. Note that the sojourn time is defined as the
time elapsed between the arrival of a customer to the network until his departure from
the network. Table 2 summarizes the percentage errors for RQNA relative to simu-
lation for queues with 3, 6, and 10 servers. We observe that RQNA produces results
that are often significantly closer to simulated values compared to QNA. RQNA is
fairly insensitive to the heavy-tailed nature of the service distributions. In fact, the
sojourn time percentage errors for both the Pareto and normally distributed services
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Table 2 Multi-server network: sojourn time percent errors

Case 3 Servers 6 Servers 10 Servers

(c2
a, j , c2

s, j ) Normal Pareto Normal Pareto Normal Pareto

(0.25, 0) 2.095 −2.732 2.628 −3.475 2.844 −3.655

(0.25, 1) 3.255 −0.803 4.034 −1.065 4.419 −0.992

(0.25, 4) −2.067 1.416 −2.557 1.793 −2.760 1.911

(1, 0) −2.254 −3.663 −2.886 −4.609 −2.877 −4.731

(1, 1) −3.183 1.725 −4.133 2.232 −3.975 2.230

(1, 4) 3.859 1.529 4.978 1.936 5.118 1.998

(4, 0) −3.852 4.628 −5.823 5.358 −5.429 5.309

(4, 1) −3.272 −4.283 −4.372 −4.83 −4.228 −5.667

(4, 4) −3.282 −4.123 −5.823 −5.823 −5.834 −6.129

Table 3 Single-server networks: RQNA percent error as a function of network size and degree of feedback

% Feedback loops/no. of nodes N = 10 N = 15 N = 20 N = 25 N = 30

Feed-forward networks 0 % 2.86 2.94 3.03 2.92 3.21

20 % 3.12 3.25 3.29 3.71 3.64

35 % 3.74 3.81 4.02 4.07 4.14

50 % 4.42 4.63 4.84 5.23 5.65

70 % 4.85 5.16 5.34 5.68 5.86

Table 4 Multi-server networks: RQNA percent error as a function of network size and degree of feedback

% Feedback loops/no. of nodes N = 10 N = 15 N = 20 N = 25 N = 30

Feed-forward networks 0 % 3.594 3.546 3.756 3.432 3.846

20 % 3.696 4.014 4.02 4.392 4.452

35 % 4.32 4.776 4.956 5.034 4.878

50 % 4.95 4.806 5.358 5.67 6.192

70 % 5.016 5.556 5.934 5.958 6.03

are within the same order. Furthermore, RQNA’s performance is generally stable with
respect to the number of servers at each queue, yielding errors within the same range
for instances with 3 to 10 servers per queue.

Performance of RQNA as a function of network parameters We investigate the
performance of RQNA (for the service dependent adaptation regime) as a function of
the system’s parameters (network size, degree of feedback, maximum traffic intensity
among all queues and number of distinct distributions for the external arrival pro-
cesses) in families of randomly generated queueing networks. Tables 3 and 4 report
the sojourn time percentage errors of RQNA relative to simulation as a function of the
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Table 5 Single-server
networks: RQNA percent error
as a function of traffic intensity
and variety of external arrival
distributions

No. of different ρ = 0.95 ρ = 0.9 ρ = 0.8 ρ = 0.65 ρ = 0.5
distributions

1 3.34 3.26 3.17 3.02 2.72

2 6.38 5.85 5.47 4.87 3.24

3 7.43 7.09 6.04 5.88 4.53

4 7.56 6.98 6.81 6.29 5.18

Table 6 Multi-server networks:
RQNA percent error as a
function of traffic intensity and
variety of external arrival
distributions

No. of different ρ = 0.95 ρ = 0.9 ρ = 0.8 ρ = 0.65 ρ = 0.5
distributions

1 4.05 4.092 3.618 3.678 3.228

2 5.082 7.104 6.42 6.108 3.714

3 5.916 6.318 6.9 7.344 5.676

4 7.672 8.644 7.284 6.852 5.37

size of the network and the degree of feedback for queues with single and multiple
servers, respectively. In the case of multi-server queueing networks, we randomly
assign 3, 6 or 10 servers to each of the queues in the network independently of each
other.

Tables 5 and 6 present the sojourn time percentage errors for RQNA relative to
simulation as a function of the maximum traffic intensity among all queues in the
network and the number of distinct distributions for the external arrival processes.
Table 5 presents the results for networks with only single server queues, while Table 6
presents the results for networks in which each queue was randomly assigned 3, 6
or 10 servers. Specifically, we design four sets of experiments in which we use one
type (normal), two types (Pareto and normal), three types (Pareto, normal and Erlang)
and four types (Pareto, normal, Erlang and exponential) of arrival distributions. We
observe that

(a) The percentage errors are slightly higher for multi-server networks compared to
single-server networks.

(b) The performance of RQNA is generally stable with an increased degree of feed-
back with errors below 6.2 %.

(c) RQNA is fairly insensitive to network size with a very slight increase in percent
errors between 10-node and 30-node networks.

(d) RQNA presents slightly improved results for lower traffic intensity levels. It is
nevertheless fairly stable with respect to higher traffic intensity levels.

(e) The percentage errors generally increase with diversity of external arrival distri-
butions, but still are below 8.5 % relative to simulation.

3.5 Extensions

In this section, we have introduced our approach in the context of queueing networks
with a single class of customers. For more details, please refer to [6]. We have also
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extended our approach to analyze more involved queueing systems, mainly in two
directions: performance analysis of multi-class queueing networks in [5] and perfor-
mance analysis of queueing systems in the transient domain in [7]. In [5], we consider
networks under FCFS and priority policies. Our conclusions for the multi-class setting
parallel that of single class queueing networks. In [7], we concentrate on the transient
analysis of single class queues, and feed-forward networks, and derive closed form
expressions for the transient behavior of such systems.

4 Optimal mechanism design for multi-item auctions

The optimal design of auctions is a central problem in Economics which arises when
an auctioneer is interested in selling multiple items to multiple buyers with private
valuations for the items. The auctioneer is faced with the task of designing the rules
of the auction so as to maximize revenue, while also incentivizing the buyers to reveal
their true valuations when they participate in the auction. Building on the work of
Vickrey [68], Myerson [57] considers the optimal auction design problem for the sale
of a single item to buyers with unlimited budgets. He considers this problem in a
probabilistic setting, that is, he assumes that the buyers’ valuations are drawn from
independent, but not necessarily identical, probability distributions. These distribu-
tions are assumed to be common knowledge, so that all buyers and the auctioneer
know the distribution from which each buyer’s valuation is drawn. He obtains a char-
acterization of the optimal solution as a second price auction with buyer dependent
reservation prices, which for the special case of identical buyers, reduces to that of a
second price auction with a single reservation price.

In the past decade, auction theory has also attracted the attention of researchers
in Theoretical Computer Science. In what follows, we present a brief review of the
relevant literature around the predominant modeling paradigms mentioned earlier. For
a more comprehensive review, we refer the readers to [46,47,69] for the Economics
and [59] for the Computer Science perspective, respectively.

The probabilistic approach

This approach has been widely studied (see [26,50,54,61,67,72]). The key primitive
assumptions are:

(a) Buyers’ valuations are sampled from a joint probability distribution;
(b) The auctioneer has exact knowledge of this joint distribution;
(c) The auctioneer is risk neutral and seeks to obtain a mechanism in order to maxi-

mize the expected revenue.

In this setting, we divide the literature based on the problem that was solved.

Public budget constraints (Problem P1): The analysis of budget constrained auc-
tions was first done by [50], where they assume that all buyers have the same common
knowledge budget constraint and derive the subsidy-free (i.e., payments are non-neg-
ative) optimal auction. Under the same assumption of equal budgets, Maskin [55]
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obtained the optimal auction that maximizes social surplus. Malakhov and Vohra [53]
relaxed the assumption of symmetrical budgets and obtained the revenue maximizing
auction for the case of two buyers, only one of whom is budget constrained. Chawla
et al. [25] obtained the first approximation algorithm for the general problem where
they show that a sequential all-pay mechanism is a 4-approximation to the revenue of
the optimal truthful mechanism with a discrete valuation space for each bidder. They
also show that a sequential posted price mechanism is an O(1)-approximation to the
revenue of the optimal truthful mechanism, when the valuation space of each bidder
is a product distribution that satisfies the standard hazard rate condition. Dobzinski
et al. [35] shows that an adaptive version of the “clinching auction” ([1]) is Pareto-
optimal and incentive compatible. Moreover, they show that it is the unique auction
with these properties, when there are exactly two bidders. The more general problem,
however, remains open in the setting of public budget constraints under probabilistic
assumptions.

Private budget constraints (Problem P2): Dobzinski et al. [35] show that there is
no incentive compatible, individual rational and Pareto-optimal deterministic auction,
for any finite number m > 1 of units of a single indivisible good and any n > 2 play-
ers, when the budgets are private. In the same setting, [22] showed that it is impossible
to design a non-trivial truthful auction which allocates all units. Instead they provide
the design of an asymptotically revenue-maximizing truthful mechanism which may
allocate only some of the units. Furthermore, Pai and Vohra [61] shows several inter-
esting qualitative properties of such auctions by discretizing the valuation space and
formulating a linear optimization problem, whose dimension is exponential in the
number of buyers. Based on these results, there is a need to consider other notions of
optimality in order to obtain computationally tractable auction mechanisms.

Correlated valuations (Problem P3): For the case of correlated buyers which was
left open by Myerson [57], some of the early work was done by Cremer [29] who
solved it in a weak sense, that is, using auctions that are individually rational only in
expectation. However, the computational complexity of designing the optimal ex-post
individually rational auction for correlated valuations has been open until recently,
when [62] obtained a polynomial time algorithm for the two buyer case and estab-
lished an inapproximability result for three or more buyers.

The adversarial approach

The objective in the adversarial approach is to identify a single mechanism that always
has good performance, e.g., under any distributional assumption. There have been
broadly three approaches that have been used so far:

(a) The resource augmentation approach, also known as, the bicriteria approach
which was introduced in [23], is based on the observation that in some cases
increasing competition, e.g., by recruiting more agents, and running the sec-
ond price auction mechanism increases revenue when compared to running the
(optimal) Myerson mechanism in the original setting.
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(b) The main idea in the average-case approach is to show that, for a large class
of distributions and settings, there is a single mechanism that approximates the
revenue of the Bayesian optimal mechanism. For example, when the probability
distribution is known, the second price auction mechanism with a particular way
(the so-called monopoly reservation price) of calculating the reservation prices
is approximately optimal by a constant factor (of 2). Dhangwatnotai et al. [34]
relaxes the need to know the probability distribution of the valuation and uses a
sampling-based approach to calculate the reservation price. For the case of cor-
related buyers, [63] proposed a mechanism for the correlated case that achieves
half of the optimum revenue.

(c) The worst-case approach, where the idea is to define an appropriate performance
benchmark and attempt to obtain mechanisms that approximate this benchmark
on any worst-case valuation vector. Goldberg [40], in a negative result, showed
that when the adversary knows all of the buyers’ valuations exactly, then no
incentive compatible auction can obtain more than a vanishingly small fraction
of its revenue in the worst case. Under this approach, it is desirable to identify
the right kind of performance benchmarks, but this problem is still open.

All the aforementioned results have been for the cases of buyers without budget con-
straints and, except for the result in [63], they all assume independent valuations. Thus,
Problems (P1)–(P3) are open under the adversarial approach.

In what follows, we revisit the auction design problem for multi-item auctions
with budget constrained buyers by using a robust optimization approach to model (a)
concepts such as incentive compatibility and individual rationality that are naturally
expressed in the language of robust optimization and (b) the auctioneer’s beliefs on
the buyers’ valuations of the items. In this setting, we provide a characterization of
the optimal solution as an auction with reservation prices, thus extending the work
of Myerson [57] from single item without budget constraints, to multiple items with
budgets, potentially correlated valuations and uncertain budgets. We report compu-
tational evidence that suggests the proposed approach (a) is numerically tractable
for large scale auction design problems, (b) leads to improved revenue compared
to the classical probabilistic approach when the true distributions are different from
the assumed ones, and (c) leads to higher revenue when correlations in the buyers’
valuations are explicitly modeled.

4.1 The robust optimization approach

In this section, we summarize the major results of Bandi and Bertsimas [3].

Models of valuations

We consider a setting where n buyers, indexed by i ∈ N , are interested in a set of
m items, indexed by j ∈ M, made available by an auctioneer. Each buyer i ∈ N
has a valuation vi j associated with each of the items j ∈ M, which is not known
to the auctioneer. Additionally the buyers are also budget constrained with budgets
{B1, B2, . . . , Bn}. Before proceeding further, we introduce the following notation.
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For each item j ∈ M, let v j = (
v1 j , v2 j , . . . , vnj

) ∈ R
n be the vector of valuations

for the jth item by the n bidders. We let v = (v1, v2, . . . , vm) denote the concatenation
of the vectors v j , j ∈ M. With a slight abuse of notation, let vi = (vi1, vi2, . . . , vim)

be the vector of valuations for the ith bidder for all items. In the same vein, we let
v−i, j = (

v1 j , . . . , vi−1, j , vi+1, j , . . . , vnj
) ∈ R

n−1 be the vector of valuations of all
bidders except i , for item j, ∀ j ∈ M. And let v−i = (v−i,1, . . . , v−i,m

) ∈ R
(n−1)×m

be the concatenation of the vectors
(
v−i, j

)
j∈M. Finally, we write v ∈ U to denote

v j ∈ U j , j ∈ M.
For each item j ∈ M, we model the auctioneer’s beliefs on valuations for this item

using an uncertainty set U j ∈ R
n, from which the n dimensional valuation vector v j is

derived. We can construct such an uncertainty set in multiple ways, depending on the
type of information that we have access to. Specifically, we use the following uncer-
tainty sets, if valuations are (a) i.i.d Eq. (1), (b) correlated Eq. (4), and (c) normally
distributed Eq. (8). See Sect. 2 for more discussion.

Optimization formulation

We next introduce the concept of worst case optimality and show how the resulting
auction design problem can be formulated as a robust linear optimization problem. In
this case, the objective is to maximize the worst case revenue over all valuation vectors
v lying in an uncertainty set U . We introduce the decision variables xv and pv that
represent the allocation and the payment rules, respectively, for all valuation vectors
v ∈ U . That is, if the realized valuation vector is v, then we allocate a fraction xv

i j of
item j to buyer i , and charge a total of pv

i to the ith buyer. Note that we do not account
for payments of buyer i relative to item j , but only account for the total payment of
buyer i .

The allocation and payment rules should be chosen to satisfy the following prop-
erties:

(a) Individual Rationality (IR) : This property ensures that the buyers do not derive
negative utility by participating in the auction when they bid truthfully.

(b) Budget Feasibility (BF) : This property ensures that each buyer is charged within
his budget constraints.

(c) Incentive Compatibility (IC) : This property ensures that the total utility of the
ith buyer under truthful bidding, which is given by

U (vi , v−i ) =
∑

j∈M
vi j x (vi ,v−i )

i j − p(vi ,v−i )

i ≥
∑

j∈M
vi j x (ui ,v−i )

i j − p(ui ,v−i )

i ,

is greater than the total utility that Buyer i derives by bidding any other other bid
vector ui .

The optimal auction design problem with these properties, leads to the following linear
optimization model:

Z∗ = max W (37)
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s.t. W −
∑

i∈N
pv

i ≤ 0, ∀v ∈ U , (38)

∑

i∈N
xv

i j ≤ 1, ∀ j ∈ M, ∀v ∈ U , (39)

∑

j∈M
vi j · x (ui ,v−i )

i j − p(ui ,v−i )

i −
∑

j∈M
vi j · x (vi ,v−i )

i j (40)

+p(vi ,v−i )

i ≤ 0, ∀(vi , v−i ) ∈ U , ∀(ui , v−i ) ∈ U , ∀i ∈ N ,

pv
i ≤ Bi , ∀i ∈ N , ∀v ∈ U , (41)

pv
i ≤

∑

j∈M
vi j · xv

i j , ∀i ∈ N , ∀v ∈ U , (42)

xv ≥ 0.

The objective value (37) and the constraint (38) represent the fact that we are inter-
ested in maximizing the worst case revenue. Constraint (39) expresses the fact that
at most one unit of item j can be assigned to all bidders. Constraints (40), (41), (42)
implement the IC, BF and IR properties, respectively. We next present the dual problem
of (37)–(42), by using the dual variables ωv, ξ j,v, βi,v−i ,vi ,ui , ηi,v, θi,v that correspond
to the constraints (38)–(42), respectively.

min
∑

v∈U

⎛

⎝
m∑

j=1

ξ j,v +
n∑

i=1

ηi,v Bi

⎞

⎠ (43)

s.t. ξ j,(vi ,v−i ) +
∑

ui

ui j · βi,v−i ,ui ,vi − vi j ·
∑

ui

βi,v−i ,vi ,ui

− vi j · θi,(vi ,v−i ) ≥ 0, ∀(vi , v−i ) ∈ U ,

∑

ui

βi,v−i ,vi ,ui −
∑

ui

βi,v−i ,ui ,vi − ω(vi ,v−i ) + ηi,(vi ,v−i )

+ θi,(vi ,v−i ) = 0, ∀(vi , v−i ) ∈ U ,

∑

v∈U
ωv = 1,

ωv ≥ 0, ξv ≥ 0, βi,v−i ,vi ,ui ≥ 0, ηv ≥ 0, θv ≥ 0.

4.2 A robust optimal mechanism

In this section, we present a mechanism, that we call ROM (Robust Optimal Mech-
anism), that constitutes an optimal solution to the optimization problem (37). ROM
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consists of Algorithms 2 and 3, respectively. In Algorithm 2, which occurs prior to
the realization of a specific bid vector v, we compute the quantity R∗, which stands
for the worst case revenue obtained when one uses ROM. In Algorithm 3, when the

bid vector v is realized, we calculate the allocation vector
{

av
i j

}

i∈N , j∈M and the

payments
{

pv
i

}
i∈N .

Algorithm 2 Calculation of the worst case revenue.
Input: Uncertainty set U , and budgets B1, . . . , Bn.
Output: Worst case revenue R∗.
Algorithm:

1. Compute the worst case valuation vector z = {zi j
}

i∈N , j∈M given by

z = arg min
v∈U

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
xi j ,ri

∑

i∈N
ri

s.t.
∑

j∈M
xi j · vi j ≤ Bi , ∀i ∈ N ,

ri ≤
∑

j∈M
xi j · vi j , ∀i ∈ N ,

∑

i∈N
xi j ≤ 1, ∀ j ∈ M,

x ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

· (44)

2. Compute

({
ξ∗

j

}

j∈M ,
{
η∗

i

}
i∈N ,

{
θ∗

i

}
i∈N

)

given by

(ξ , η, θ) = arg

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{ξ j ,ηi ,θi}
∑

j∈M
ξ j +

∑

i∈N
ηi Bi

s.t. ξ j + zi j · ηi ≥ zi j · θi , ∀i ∈ N , ∀ j ∈ M,

θi = 1, ∀i ∈ N ,

ξ , η, θ ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (45)

3. Compute the worst case revenue given by

R∗ =
∑

j∈M
ξ∗

j +
∑

i∈N
η∗

i Bi . (46)
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Algorithm 3 Calculation of allocations and payments.
Input: Bid vector v = {vi j

}
i∈N , j∈M, worst case revenue R∗.

Output Allocation vector
{

av
i j

}

i∈N , j∈M and the payments
{

pv
i

}
i∈N .

Algorithm:
1. If v /∈ U , then do not allocate any item and charge zero, otherwise proceed to Step

2.

2. Calculate the quantities

({
yv

i j

}

i∈N , j∈M ,
{
rv

i

}
i∈N

)

and

({
yv−k

i j,k

}

i∈N , j∈M ,
{

rv−k
i,k

}

N

)

k∈N
given by

({
yv

i j

}

i∈N , j∈M ,
{
rv

i

}
i∈N

)

= arg max
(y,r)∈Pv

∑

i∈N

⎛

⎝
∑

j∈M
yi j · vi j − ri

⎞

⎠ ,

({
yv−k

i j,k

}

i∈N , j∈M ,
{

rv−k
i,k

}

i∈N

)

= arg max
(y,r)∈Pv

∑

i∈N \{k}

⎛

⎝
∑

j∈M
yi j · vi j − ri

⎞

⎠ ,

where

Pv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

({
xi j
}

i∈N , j∈M , {ri }i∈N
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

j∈M
xi jvi j ≤ Bi , ∀i ∈ N ,

ri ≤
∑

j∈M
xi jvi j , ∀i ∈ N ,

∑

i∈N
xi j ≤ 1, ∀ j ∈ M,

∑

i∈N
ri ≥ R∗,

x ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

·

3. Compute the allocation vector
{
av

k

}
k∈N and the payments

{
pv

k

}
k∈N as follows

av
k = yv

k ,

pv
k = rv

k +
∑

i∈N \{k}

⎛

⎝
∑

j∈M
yv−k

i j · vi j − rv−k
i,k

⎞

⎠−
∑

i∈N \{k}

⎛

⎝
∑

j∈M
yv

i j · vi j − rv
i

⎞

⎠ .

We next present the main theorem that ROM gives worst case revenue of at least Z∗,
the worst case optimal revenue computed by the optimization problem (37).

Theorem 5 ROM (a) is budget feasible, (b) is individually rational and (c) achieves
a worst case revenue of at least Z∗.
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4.3 Solving ROM

The computationally intensive step in ROM involves solving the bilinear optimization
problems (44). Bilinear problems are NP-Hard ([65]) for general uncertainty sets U .
However, if the uncertainty set U has a polynomial number of extreme points, then we
can obtain a polynomial time algorithm that solves (44). This follows from Proposition
4, which states that there exists an extreme point solution to these problems. Thus,
we can solve the problems (44) in polynomial time, by simply enumerating all the
extreme points.

Proposition 4 There exists an optimal solution to Problems (44) that is an extreme
point of U .

We next describe an algorithm to solve the bilinear optimization problem (44). This
algorithm, motivated from the Generalized Benders Decomposition algorithm pre-
sented in [14], is presented in Algorithm 4.

Algorithm 4 Generalized Benders decomposition algorithm for Problem (44).
Input: Problem (44), accuracy parameter ε.
Output: Approximate optimal solution z.
Algorithm:

1. Set parameters U B = ∞, L B = 0, k = 0.
2. Compute v0

1 = min
v∈U

v1 and for each i = 2, . . . , |N |

v0
i = min(

v0
1 ,...,v0

i−1,vi ,...,vn
)∈U

vi .

3. While U B − L B ≥ ε,
(a) Solve the inner linear maximization problem in (44) using v = vk . Set xk to be an

optimal solution to this problem and update the value of U B to the value of of xk .
(b) Solve the outer linear minimization problem in (44) using x = xk . Set vk+1 to be an

optimal solution to this problem, and update the value of L B to the value of vk+1.
(c) Increment k.
(d) Add the constraint

∑

i∈N
pi ≤ U B

to the inner maximization problem.
(e) Add the constraint

∑

i∈N

∑

j∈M
xi j vi j ≥ L B

to the outer minimization problem.
4. Output vk .

123



Tractable stochastic analysis in high dimensions

4.4 Auctions without budget constraints

In this section, we consider a special case of the auction design problem in which
the buyers do not have any budget constraints. In the absence of budget constraints,
the auction design problem for multiple items reduces to the auction design problem
for a single item. Consequently we consider the auction design problem for a single
item without budget constraints. Myerson [57] solved this problem in a probabilistic
setting for buyers with uncorrelated valuations and showed the optimal mechanism
takes the form of a second price auction with a reservation price. We recover My-
erson’s result in a more general setting that allows correlated buyers and obtain an
optimal mechanism that also takes the form of a second price auction with a reserva-
tion price.

The robust optimal mechanism for single item auctions without budget constraints

By specializing ROM to the case Bi = ∞, ∀i ∈ N and |M| = 1, we derive the
optimal mechanism for single item auctions without budget constraints, that we will
refer to as ROM-Si. ROM-Si consists of Algorithms 5 and 6, respectively.

Algorithm 5 Calculation of the reservation price.

Input: Uncertainty set U .

Output: Reservation price r∗.
Algorithm:

1. Compute the worst case valuation vector z = {zi }i∈N given by

z = arg min
v∈U

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{xi }i∈N

∑

i∈N
xi · vi

s.t.
∑

i∈N
xi ≤ 1,

xi ≥ 0, ∀i ∈ N .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

2. Compute reservation price r∗ given by

r∗ = arg

⎧
⎨

⎩

min
r

r

s.t. r ≥ zi , ∀i ∈ N .

⎫
⎬

⎭
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Algorithm 6 Calculation of allocations and payments.
Input: Bid vector v = {vi }i∈N ,r∗.
Output: Allocation vector

{
av

k

}
k∈N and the payments

{
pv

k

}
k∈N .

Algorithm:

1. Calculate the quantities

(
{

yv
i , rv

i

}
i∈N ,

{
yv−k

i,k , rv−k
i,k

}

i∈N \{k}

)

given by

{
yv

i , rv
i

}
i∈N = arg max

(y,r)∈P
∑

i∈N
yi · vi − ri ,

{
yv−k

i,k , rv−k
i,k

}

i∈N \{k} = arg max
(y,r)∈P

∑

i∈N \{k}
yi · vi − ri ,

where

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{xi , ri }i∈N

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

i∈N
xi ≤ 1,

∑

i∈N
ri ≥ R∗,

xi ≥ 0, ∀i ∈ N ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

·

2. Compute the allocation vector
{
av

k

}
k∈N and the payments

{
pv

k

}
k∈N as follows

av
k = yv

k ,

pv
k = rv

k +
∑

i∈N \{k}

(
yv−k

i,k vi − rv−k
i,k

)
−

∑

i∈N \{k}

(
yv

i vi − rv
i

)
.

Comparison with the Myerson auction

ROM-Si and the Myerson auction have the same structure, that of a second price
auction with a reservation price. However, the mechanisms differ in the way they cal-
culate the reservation prices. In the case of the Myerson auction the reservation price
is calculated by solving a non-linear equation

1 − F(r)

f (r)
= r, (47)

where F(·) is the cdf and f (·) is the pdf of the probability distribution that the auc-
tioneer assumes the valuations are sampled from. On the other hand, in ROM-Si, the
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reservation price is calculated using the linear optimization problem

min
r,v

r

s.t. r ≥ vi , ∀i ∈ N ,

(v1, v2, . . . , vn) ∈ U .

(48)

In this section, we compare ROM-Si and the Myerson auction with respect to the
following aspects:

(a) Computational complexity The computationally intensive step in both ROM-Si
and the Myerson auction is the calculation of the reservation price. Once the reserva-
tion price is calculated, both these mechanisms solve linear optimization problems to
carry out the auction. While the Myerson auction solves the non-linear equation (47),
ROM-Si solves the optimization problem (48) to calculate the reservation price. As
long as the uncertainty set U is polyhedral (for example given as in Eqs. (4),(10)), this
optimization problem is efficiently solvable. In particular, when U is a polyhedron,
the optimization problem reduces to a linear optimization problem.

(b) Robustness to mis-specification The values of the reservation prices obtained
by ROM-Si and by the Myerson auction differ in general. For example, when we use
the uncertainty set UCLT with parameters μ and σ , ROM-Si gives us a single value for
the reserve price of

μ − Γ σ√
n

≈ μ (for large n).

On the other hand, the Myerson auction gives different values of reservation prices
for different distributions. For uniform and exponential distributions, the reservation
prices obtained by the auctions match, while for other distributions, the reservation
prices are different. This dependence of reservation prices on the distribution may lead
to lack of robustness on the part of the Myerson auction, when the assumed distribution
differs from the realized distribution.

In order to study this, we design the following experiments. We first assume that
valuations are normally distributed with parameters μ = 1, and σ = 0.5, 1, 2 and
carry out ROM-Si and the Myerson auctions with these parameters. Then, we inves-
tigate how these auctions compare with each other, when the realized distributions
are different from the assumed distributions. This is done by computing the quantity
Relative Revenue defined as

Relative Revenue = ROM-Single Revenue − Myerson Revenue

Myerson Revenue
, (49)

which when positive, indicates that the proposed auction results in a greater revenue
than the Myerson auction.

In Table 7, we compare the expected revenues (obtained by simulation) of the
ROM-Si and of the Myerson auction, when the realized distribution is Gamma, Beta,
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Table 7 Myerson versus
ROM-Si: the relative revenue,
defined in (49) for different
distributions with the same mean
and standard deviation

Distribution (μ, σ )

(1, 0.5) (1, 1) (1, 2)

Gamma 0.529 0.696 1.038

Beta 0.387 0.507 0.799

Triangle 0.271 0.376 0.526

Uniform 0.498 0.697 0.959
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Fig. 2 Robustness of ROM-Si

Uniform and Triangle with the same mean and standard deviation. We find that the pro-
posed approach has very significant benefits with revenue improvements in the range
of [27 %, 103 %]. To amplify this further, we perform another experiment where we
vary the distributions at a slower pace. In particular, we consider a series of distribu-
tions F that are increasingly different from N (1, 0.5) with respect to the value of total
variation distance. The total variation distance between probability measures F1 and
F2 is defined as the largest possible difference between the probabilities that F1 and
F2 can assign to the same event, that is,

‖F1 − F2‖T V = sup
A∈Ω

|F1 (A) − F2 (A)| .

We plot the Relative Revenue against the values of total variation distances in Fig. 2.
We observe that ROM-Si performs better than the Myerson auction when the total
variation distance becomes larger than 0.22.

In Table 8, we compare the expected revenues of the ROM-Si and of the Myerson
auction when the distribution is still normal with the same mean but with different
standard deviations. We find that the proposed approach still has potentially significant
benefits in the range of [2.8 %, 54 %]. In Table 9, we investigate the situation when
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Table 8 Myerson versus
ROM-Si: the relative revenue
under the same mean but
different standard deviations

Standard deviation (μ, σ )

(1, 0.5) (1, 1) (1, 2)

σ/4 0.108 0.134 0.196

σ/2 0.0357 0.042 0.068

3σ/2 0.0282 0.039 0.062

2σ 0.141 0.187 0.261

5σ 0.247 0.334 0.542

Table 9 Myerson versus
ROM-Si: the relative revenue
under the same standard
deviation but different means

Mean (μ, σ )

(1, 0.5) (1, 1) (1, 2)

μ/4 0.178 0.22 0.335

μ/4 0.053 0.064 0.09

2μ −0.176 −0.242 −0.392

3μ −0.312 −0.416 −0.58
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Fig. 3 Effect of correlations in valuations on the auction revenue

the realized distribution is again normal with the same standard deviation but with
different means. We find that the results in this case are mixed. When the realized
mean is smaller (larger) than the assumed mean, the proposed approach outperforms
(underperforms) when compared with the Myerson auction. In summary, we feel that
ROM-Si has stronger robustness properties when the distribution or the standard devi-
ation is misspecified.

(c) Effect of correlations on the revenue In this experiment, we demonstrate how
incorporating correlation information can lead to revenue gains. We compare the rev-
enue of the Myerson auction, which ignores any correlation information, with the
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revenue obtained by using ROM with the uncertainty set UCorr [see Eq. (4)]. We com-
pute the Relative Revenue as defined in (49) and plot it against the value of correlation
in Fig. 3. We observe that there are significant benefits in incorporating correlation
information, which ROM allows us to do.

5 Pricing multi-dimensional options

The problem of pricing and hedging derivative securities has been one of the most well
studied problems in Financial Economics. The most important breakthrough, to this
date, has been the celebrated Black and Scholes [21], and Merton [56] option-pricing
formula, which is based on the principle of dynamic replication that allows one to
look for a portfolio of simpler securities which is self-financing and whose value at
the end of the time horizon matches the payoff of the option. Such a portfolio of sim-
pler securities is known as a replicating portfolio, and the value of this portfolio at the
beginning is the no-arbitrage price of the option. For example, under the assumption
of geometric Brownian motion for price dynamics, Black and Scholes [21] shows that
a European call-option on a stock can be replicated exactly by a dynamic-hedging
strategy involving only stocks and risk-free borrowing and lending. This replication
allowed them to give the first closed-form expression for the price of a European
Option.

The Black–Scholes formula, in spite of its popularity, has some well-known defi-
ciencies. Empirically, the model prices appear to differ from market prices in certain
systematic ways. These discrepancies are usually ascribed to the strong assumption
that the underlying security follows a stationary geometric Brownian motion. Apart
from the problems with the price-dynamics, there are other factors that arise mostly
due to transaction costs and liquidity issues, that make it intractable for one to look
for an exact replicating portfolio. This suggests that we consider the natural trade-off
between exactness and tractability and to look for nearly exact replications, which
can be found in a tractable manner. Motivated by the inability to exactly replicate
different types of options (American style options, among others), [17] have proposed
the idea of ε-arbitrage pricing using dynamic programming under which we seek a
self-financing dynamic portfolio strategy that most closely approximates the payoff
of an option.

In this section, we summarize the major results of Bandi et al. [4] and propose to
model the underlying price dynamics with uncertainty sets, and then apply robust opti-
mization as opposed to dynamic programming to solve the ε-arbitrage problem. We use
the 1-norm to measure the error in replication which when combined with polyhedral
uncertainty sets results in linear optimization problems. This approach also allows us
to easily model transaction costs, very general pricing dynamics, accommodate high
dimensional problems that today can only be handled by simulation methods.

5.1 The option pricing problem

An option is a contract defined on a set of predetermined underlying securities, and
is associated with a payoff function. The payoff function determines the value of the
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option after the realization of random returns of the underlying securities. The option
pricing problem refers to the problem of calculating the “value” of an option before
the realization of the random returns. The payoff function, denoted here by

P
({

S̃1
τ , S̃2

τ , . . . , S̃M
τ

}
, {K1, K2, . . . , Kr }

)
,

depends on

(a)
{

S̃1
τ , S̃2

τ , . . . , S̃M
τ

}
: vector of prices of the set of M underlying securities at time

τ .
(b) τ : time at which the option is exercised.
(c) {K1, K2, . . . , Kr } : a set of other parameters (e.g. strike price, dividend etc.).

For example, a European Call option’s payoff is defined to be (S̃T −K )+ = max{S̃T −
K , 0}, where S̃T denotes the price of the underlying security at the time of expiry T ,
and K denotes the strike price.

To determine the value of the option before the realization of the random returns, we
seek to obtain a “replicating portfolio” to capture the payoff dynamics of the option.
We construct this portfolio out of the set of stocks and a risk free asset.

5.2 The underlying primitive for price dynamics

We consider a discrete model of price movements where the price of the stock changes
at discrete points of time. Let r̃ S

t be the return at t ; i.e., the return from period [t, t +1).
Applying the central limit theorem to the random variables

{
r̃ S

1 , r̃ S
2 , . . . , r̃ S

τ

}
, we con-

clude that

∑τ
i=1 log

(
1 + r̃ S

i

)− τ · μlog

σlog · √
τ

obeys a standard normal distribution as τ → ∞, where μlog, σlog are mean and stan-
dard deviation of log

(
1 + r̃ S

i

)
, respectively. We assume as a primitive that the stock

returns obey

∣
∣
∣
∣
∣

log R̃S
τ − τ · μlog

σlog · √
τ

∣
∣
∣
∣
∣
≤ Γτ ∀τ ≥ τ0, (50)

where R̃S
τ = ∏τ

i=1(1 + r̃ S
i ), is the cumulative return up to time τ , and τ0 is chosen

such that Eq. (50) holds with high probability. A typical value of τ0 = 30 is chosen.
The parameter Γτ can be seen to represent the risk averseness in this context. Note
that Eq. (50) is equivalent to

eτμlog−Γτ
√

τσlog ≤ R̃S
τ ≤ eτμlog+Γτ

√
τσlog , ∀τ, (51)

123



C. Bandi, D. Bertsimas

which defines a box uncertainty set for the cumulative returns. In addition, we assume
some bounds on the single period return r̃ S

τ and since
(
1 + r̃ S

τ

) = R̃S
τ /R̃S

τ−1, we have:

μr − Γτσr ≤ R̃S
τ

R̃S
τ−1

≤ μr + Γτσr , ∀τ. (52)

In summary, we assume that the cumulative stock returns belong to the following
uncertainty set (a polytope) defined by Eqs. (51)–(52)

U S =

⎧
⎪⎨

⎪⎩
R̃S

t

∣
∣
∣
∣
∣
∣
∣

RS
t ≤ R̃S

t ≤ RS
t , ∀t = 1, . . . , T

r S
t · R̃S

t−1 ≤ R̃S
t ≤ r S

t · R̃S
t−1, ∀t = 1, . . . , T

⎫
⎪⎬

⎪⎭
, (53)

where

RS
t = et ·μlog−Γ ·√t ·σlog , RS

t =et ·μlog+Γ ·√t ·σlog, r S
t =μr − Γt · σr , r S

t =μr + Γt · σr ,

RS
t,τ = (t − τ) · μr −Γt · σr · √

t − τ , and RS
t,τ =(t − τ) · μr +Γt · σr · √

t − τ .

The values of μ, σ, μlog, σlog can be obtained from empirical data on single period
returns.

Note that the uncertainty sets are defined using the cumulative returns R̃S
t instead

of single period return r̃ S
t . This is mainly to avoid being overly conservative in each

period, instead the uncertainty set U S allows the price to change by a potentially large
amount in a single period but forces the change to average out in a longer period of
time. As observed in [4], this choice of modeling the cumulative returns leads to linear
optimization formulations for the option pricing problem for many kinds of options.

5.3 Option pricing problem as an optimization problem

The idea of our approach is to find a replicating portfolio that consists of the underlying
stock S and a risk-free asset B so that the value of this portfolio at the time of exercise
matches the payoff of the option as closely as possible. We refer to the difference as
the replication error and can be seen as a form of arbitrage. It is given by:

|P (ST , K ) − WT | ,

where WT is the value of the portfolio at the time of exercise T . In a robust optimization
setting, our goal is to find a portfolio that minimizes the worst case replication error
(denoted by ε), between the portfolio wealth and the option payoff, over all possible
returns that lie in a predetermined uncertainty set U S defined in Section 6.2. The opti-
mal portfolio thus obtained, will have payoff that is within ±ε from the actual option
payoff for all possible realizations of the returns lying in U S . The price of the option
would thus be the initial value of this replicating portfolio. Note that, as T → ∞,
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assuming complete markets, we are guaranteed to have a replication error of 0. For
finite T , we obtain non-zero replication errors but are often close to zero, see [16] for
a thorough discussion.

The associated optimization problem can be represented as follows

min{
x S

t ,x B
t ,yt

} max{
R̃S

t ∈U S
} |P (ST , K ) − WT |

s.t. WT = x S
T + x B

T ,

x S
t = (1 + r̃ S

t−1

) (
x S

t−1 + yt−1
)
, ∀t = 1, . . . , T,

x B
t = (1 + r B

t−1

) (
x B

t−1 − yt−1
)
, ∀t = 1, . . . , T,

(54)

where x S
t is the amount invested in the underlying security, x B

t is the amount invested
in the risk-less asset, and yt is the amount traded from the underlying security to the
risk-less asset during the period [t, t + 1). In the optimization problem (54), we seek
to minimize the worst case replication error. After finding the portfolio, the price of
the option would then be given by x S

0 + x B
0 , which is the value of the portfolio at time

t = 0.

5.4 Pricing a European option: an illustration

In this section, we present our approach in the context of a European call option.
A European call option gives the option holder the right to buy the stock at a predeter-
mined price K , at T . Hence, the payoff function for a European Call is P

(
S̃T , K

) =
(
S̃T − K

)+
.

Using the same set of decision variables and data as in (54) and with payoff function
P
(
S̃T , K

) = (S̃T − K
)+

, the resulting optimization problem becomes

min{
x S

t ,x B
t ,yt

} max{
R̃S

t ∈U S
}

∣
∣
∣
(
S̃T − K

)+ − WT

∣
∣
∣

s.t. WT = x S
T + x B

T ,

x S
t = (1 + r̃ S

t−1

) (
x S

t−1 + yt−1
)
, ∀t = 1, . . . , T,

x B
t = (1 + r B

t−1

) (
x B

t−1 − yt−1
)
, ∀t = 1, . . . , T .

Let αS
t , αB

t , βt be given by

αS
t = x S

t

R̃S
t
, αB

t = x B
t

RB
t

, βt = yt

R̃S
t
, where R̃S

t =
t−1∏

i=0

(
1 + r̃ S

i

)
, RB

t =
t−1∏

i=0

(
1 + r B

i

)
.
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Using these variables, we obtain the following equivalent formulation:

min{
αS

t ,αB
t ,βt

} max{
R̃S

t ∈U S
}

∣
∣
∣
(
S0 R̃S

T − K
)+ − (R̃S

T αS
T + RB

T αB
T

)∣∣
∣

s.t. αS
t = αS

t−1 + βt−1, ∀t = 1, . . . , T,

αB
t = αB

t−1 − βt−1
R̃S

t−1

RB
t−1

, ∀t = 1, . . . , T .

(55)

Note that the variables αS
t , βt depend on the uncertain parameters R̃S

t , and αB
t depends

on RB
t . However, we are only interested in αS

0 , β0, αB
0 as far as the strategy we will

implement. Since αS
0 = x S

0 , β0 = y0, αB
0 = x B

0 , after solving problem (55), we only
implement αS

0 , β0, αB
0 which are well defined. Moreover, the price of the option given

by x S
0 + x B

0 = αS
0 + αB

0 is also well defined.
Substituting all intermediate αB

t , αS
t , we obtain

min{
αS

t ,αB
t ,βt

} max{
R̃S

t ∈U S
}

∣
∣
∣
∣
∣

(
S0 R̃S

T − K
)+ −

(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T

− αB
0 RB

T +
T −1∑

t=0

βt
RB

T

RB
t

R̃S
t

∣
∣
∣
∣
∣
. (56)

We next describe the steps involved in obtaining a linear formulation that is equiv-
alent to (56). Let

δ = max{
R̃S

t ∈U S
}

∣
∣
∣
∣
∣

(
S0 R̃S

T − K
)+ −

(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T − αB

0 RB
T +

T −1∑

t=0

βt
RB

T

RB
t

R̃S
t

∣
∣
∣
∣
∣
,

and note that δ is the optimal solution of the problem

min κ

s.t. κ ≥ (S0 R̃S
T − K

)+ −
(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T − αB

0 RB
T

+
T∑

t=1

βt−1
RB

T

RB
t

R̃S
t , ∀R̃S

t ∈ U
1,

κ ≥ − (S0 R̃S
T − K

)+ +
(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T + αB

0 RB
T

−
T∑

t=1

βt−1
RB

T

RB
t

R̃S
t , ∀R̃S

t ∈ U
1,
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Moreover, observing that

(
S0 R̃S

T − K
)+ =

⎧
⎨

⎩

0, ∀R̃S
T ≤ K

S0
,

S0 R̃S
T − K , ∀R̃S

T ≥ K
S0

,

we partition the uncertainty set U according to whether R̃S
T ≥ K

S0
. Let

U S
a = U S ∩

{

R̃S
T ≥ K

S0

}

,

U S
b = U S ∩

{

R̃S
T ≤ K

S0

}

·

Using this partition, we next obtain another equivalent formulation of (56):

min{
αS

0 ,αB
0 ,βt

} ε

s.t.

ε ≥
(

S0 R̃S
T − K

)
−
(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T

−αB
0 RB

T +
T∑

t=1

βt−1
RB

T

RB
t

R̃S
t , ∀R̃S

t ∈ U
1
a,

ε ≥ −
(

S0 R̃S
T − K

)
+
(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T

+αB
0 RB

T −
T∑

t=1

βt−1
RB

T

RB
t

R̃S
t , ∀R̃S

t ∈ U
1
a,

ε ≥ −
(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T − αB

0 RB
T +

T∑

t=1

βt−1
RB

T

RB
t

R̃S
t , ∀R̃S

t ∈ U
1
b,

ε ≥
(

αS
0 +

T∑

t=1

βt−1

)

R̃S
T + αB

0 RB
T −

T∑

t=1

βt−1
RB

T

RB
t

R̃S
t , ∀R̃S

t ∈ U
1
b·

Since the uncertainty set U S is a polyhedron, the above formulation leads to an equiv-
alent linear optimization problem. In particular, Bandi et al. [4] shows that the size of
the linear optimization problem scales linearly with T .
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5.5 Modeling flexibility

In this section, we discuss the other main advantage of this framework (other than com-
putational tractability)—modeling flexibility. Apart from the ability to model trans-
action costs and liquidity effects, which comes from our use of linear optimization
as the main tool, we also show how our framework allows us to capture the implied
volatility smile, defined below, in an intuitive way. This is achieved by adjusting the
parameter Γ in order to account for the risk attitude of the investor.

Risk aversion as an explanation for the implied volatility smile As the Black–
Scholes model became popular, many people started using the model to calculate the
volatilities in the market from the market prices observed. This quantity known as
the implied volatility of an option is simply that volatility that makes the model price
exactly equal to the observed market price. Each option has a unique implied volatility,
and traders started to quote options in terms of implied volatilities. The main reason
is that as the underlying asset price changes through the day, the implied volatility
does not have to be adjusted as much as the option prices, which change all the time.
The implied volatilities started to appear as fundamental quantities associated with an
option.

When the implied volatilities are plotted across strike prices for options with the
same time to expiration and on the same underlying stock, it was observed that these
plots exhibit smiles or smirks. According to the Black–Scholes formula, the plot should
be a flat line because only one volatility parameter governs the underlying stochastic
process on which all options are priced. The same holds for European-style options on
the U.S. S&P 500 Index, which were flat from the start of their exchange-based trad-
ing in April 1986 until the U.S. stock market crash of October 1987. After the crash,
however, volatility smiles became skewed; that is, volatility smiles became downward
sloping as the strike price increased. Other markets also often exhibit volatility smiles.

Many explanations have been offered to explain the downward sloping and the
U-shaped volatility smiles. As noted by Taylor [66], there is no economic intuition
behind many of these explanations. In particular, Taylor critiques the stochastic vola-
tility models and suggests that it does not capture the true dynamics of the smile. We
believe that risk attitude of an investor may be a possible explanation for the existence
of the smiles. This is supported from the widely noted empirical observation that the
phenomenon of volatility smile started appearing after the crash of 1987.

One of the key features of our pricing methodology is the ability to capture the risk
attitude of an option writer, when pricing an option. This is achieved with the help
of the parameter Γ which characterizes the uncertainty set that is used for pricing.
A lower value for Γ implies that the user is willing to take higher risk by ignoring
the variability of stock prices. On the other hand, a higher value of Γ indicates that
the user seeks a price that will allow him to replicate the payoff of the option for a
larger range of stock prices. Therefore, Γ becomes a natural way to express one’s risk
aversion.

In tune with the concept of implied volatility, we define the quantity Implied Coef-
ficient of Risk Aversion

(
Γimplied

)
, as the value of the parameter Γ, which leads

to a model price that matches the market price. We observe, from our experiments,
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Fig. 4 Quadratic nature of coefficients of risk aversion—European simple call and European Index call

that Γimplied behaves a lot like the implied volatility. When plotted against the strike
prices, it displays a U-shaped behavior and downward sloping. This observation can
be explained by simply recalling the meaning of the parameter Γ which stands for the
risk aversion of the option writer.

In particular, we observe, from our experiments, that Γimplied varies in a near-qua-
dratic manner with K . When we model this quadratic dependence, we observed that
the vertex of the parabola lies very close to the spot price S0. This suggests that as K
moves away from S0, Γimplied increases indicating the increase of risk aversion of the
option writer as K moves away from S0.

In the experiments, we show empirically that a quadratic variation of Γimplied
with K/S0 would be adequate to characterize the risk aversion of an investor towards
different strike prices. We use the following function to describe the relationship:

Γ (K ) = θ0 + θ1
K − S0

S0
+ θ2

(
K − S0

S0

)2

, θ2 ≥ 0. (57)

The quantity (K − S0) /S0 captures the distance between the strike and the spot price
and is also called as moneyness in the literature. We use a quadratic regression model
to compute the coefficients {θ0, θ1, θ2} so that the prices obtained using these Γ ’s
match the market prices of our training set of strikes. We then use the resulting qua-
dratic model Γ (K ) to calculate Γ and input it to yield the price for options with other
strike prices (Fig. 4).

Modeling transaction costs and other market constraints Our framework also
has the ability to model transaction costs and other market constraints. When we
account for the transaction costs, the optimal replication problem (54) changes to

min{
x S

t ,x B
t ,yt

} max{
R̃S

t ∈U S
}

∣
∣P (ST , K ) − (x S

T + x B
T

)∣
∣

s.t. x S
t = (1 + r̃ S

t−1

) (
x S

t−1 − ut−1 + vt−1
)
, ∀t = 1, . . . , T,

x B
t = (1 + r B

t−1

) (
x B

t−1 + (1 − csell) ut−1 − (1 + cbuy
)
vt−1

)
,∀t,
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where ut is the amount removed from the stock and vt is the amount added to the stock
during the time period [t, t + 1). The parameters csell , cbuy represent the transaction
costs. Introduce variables defined by

αS
t = x S

t

RS
t
, αB

t = x B
t

RB
t

, β1
t = ut

RS
t
, and β2

t = vt

RS
t
,

to obtain the following equivalent formulation

min{
αS

t ,αB
t ,βt

} max{
R̃S

t ∈U S
}

∣
∣P (ST , K ) − (R̃S

T αS
T + RB

T αB
T

)∣
∣

s.t. αS
t = αS

t−1 + β1
t−1 − β2

t−1, ∀t = 1, . . . , T

αB
t = αB

t−1 + ((1 − csell) β1
t−1 − (1 + cbuy

)
β2

t−1

) R̃S
t−1

RB
t−1

, ∀t.

Observing that

αS
T = αS

0 +
T∑

t=1

(
β1

t−1 − β2
t−1

)
,

αB
T = αB

0 +
T∑

t=1

{
(
(1 − csell) β1

t−1 − (1 + cbuy
)
β2

t−1

) R̃S
t−1

RB
t−1

}

,

we obtain equivalent formulations which can then be formulated as linear optimiza-
tion problems. Other market constraints such as limits on shorting and limits on the
leverage ratio can also be modeled by linear constraints.

5.6 Computational results

In this section, we give examples on the accuracy of the method relative to prices that
are observed in the market.

Comparison with market prices for American put options In the first experi-
ment, we aim to price Microsoft (MSFT) 25 week American put options, with spot
price S0 = $24.8 and strike prices in the range $7.5–$50. In the training stage, we
compute Γimplied (K ) for each of the options with strikes in the training set. Then we
fit a quadratic function to these values, thus obtaining the coefficients of the quadratic
function in (57). We report out of sample results in Table 10.

Comparison with market prices for European Index options In this experiment,
we consider the 1/100 Dow Jones Industrial Average Index Options (DJIA). The under-
lying value of these options is based on the level of the Dow Jones Industrial Average,
a price-weight stock market index calculated from the stock prices of thirty of the larg-
est public companies in the US. We consider 8 week options with spot S0 = $90.8,
for strike prices in the range $74–$105. We report out of sample results in Table 11.
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Table 10 Price and replication error for American put options

No. T K/S Γimplied Mkt price Model price Error ε

Out of sample
1 25 0.605 2.62 0.17 0.201 0.031 0.3982

2 25 0.806 1.83 0.695 0.589 −0.106 0.9996

3 25 0.968 1.6 1.895 1.764 −0.132 1.9487

4 25 1.008 1.59 2.365 2.266 −0.099 2.2109

5 25 1.21 1.9 5.85 5.939 0.089 3.5781

6 25 1.411 2.87 10.5 10.703 0.203 5.9713

7 25 1.512 3.63 12.975 13.2 0.225 6.832

8 25 1.815 7.7 20.45 20.303 −0.147 12.5842

Table 11 Price and replication error for European Index call options

No. T K/S Γimplied Mkt price Model price Error ε

Out of sample
1 8 0.944 1.01 6 5.918 −0.082 2.002

2 8 0.999 0.92 2.69 2.647 −0.043 2.5717

3 8 1.021 0.91 1.75 1.762 0.012 2.6012

4 8 1.032 0.92 1.38 1.402 0.022 2.5615

5 8 1.098 1.07 0.225 0.254 0.029 1.9665

6 8 1.109 1.13 0.16 0.17 0.01 1.881

In these and other experiments, we have found that the errors between the model
and the market prices for the single asset European options, and European style Index
options are smaller than the errors obtained in other types of options. In general, when
the option type is simpler (e.g. European or Asian) the replication error is small. The
largest replication error occurs in the American put option where the price we pro-
duce tries to protect the holder against the worst choice for exercising the option, thus
adding an additional layer of conservativeness.

6 Concluding remarks

We revisited some of the major successes of stochastic analysis in the twentieth cen-
tury. In all these examples, together with considerable success, came challenges when
researchers and practitioners desired to generalize the problems studied to multiple
dimensions. It is our contention that stochastic analysis, based on the primitives of
the Kolmogorov axioms and the concept of random variables was not intended to
provide a tool for efficient computation. Rather it was intended to put the theory on a
firm ground and give insights on the modeling of stochastic phenomena. In retrospect,
given the historical developments and intentions of the originators, the computational
challenges that stochastic analysis has faced, when attempting to solve problems in
multiple dimensions, should have been anticipated.
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Possibly because the development of modern optimization happened at about the
same time as the development of the digital computer, optimization had from its very
beginning efficient computation as its intention. Correspondingly, optimization has
succeeded remarkably to solve problems in high dimensions. Given its success, it
seems natural to us to apply optimization to solve problems of stochastic analysis in
multiple dimensions. We also remark that in real world problems, what is available
is data. Modeling stochastic phenomena with probability theory is a choice, that is
probability distributions are not inherent to the problem. Given the computational dif-
ficulties in high dimensions, we feel we should consider alternative, computationally
tractable approaches in high dimensions. We have proposed such an approach in this
paper.

In all three examples we addressed in this paper, as well as others reported else-
where ([2,5,7]), we have implemented the proposed approach and have included in the
paper tables and figures with computational evidence in concrete examples in order
to show that the approach of stochastic analysis based on optimization is capable of
solving problems numerically in ways that, in our opinion, go beyond the current
state of the art of stochastic analysis. The types of optimization problems that were
required to be solved ranged from linear, discrete, and bilinear optimization problems.
We anticipate that this research program, in addition to advancing stochastic analysis,
will also advance optimization as it will reveal new optimization problems that need
to be addressed.

Acknowledgments We thank the three reviewers of the paper for several insightful comments.
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