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Abstract

Given a European derivative security with an arbitrary payo� function and a corresponding
set of underlying securities on which the derivative security is based, we solve the optimal-
replication problem: �nd a self-�nancing dynamic portfolio strategy|involving only the
underlying securities|that most closely approximates the payo� function at maturity. By
applying stochastic dynamic programming to the minimization of a mean-squared-error loss
function under Markov state-dynamics, we derive recursive expressions for the optimal-
replication strategy that are readily implemented in practice. The approximation error or
\�" of the optimal-replication strategy is also given recursively and may be used to quantify
the \degree" of market incompleteness. To investigate the practical signi�cance of these
�-arbitrage strategies, we consider several numerical examples including path-dependent op-
tions and options on assets with stochastic volatility and jumps.
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1 Introduction

One of the most important breakthroughs in modern �nancial economics is Merton's (1973)

insight that under certain conditions the frequent trading of a small number of long-lived

securities can create new investment opportunities that would otherwise be unavailable to

investors. These conditions|now known collectively as dynamic spanning or dynamically

complete markets|and the corresponding asset-pricing models on which they are based have

generated a rich literature and an even richer industry in which complex �nancial securities

are synthetically replicated by sophisticated trading strategies involving considerably simpler

instruments (see Cox and Ross, 1976, Du�e and Huang, 1985, Harrison and Kreps, 1979, and

Huang, 1985a and 1985b for further details of dynamic spanning). This approach is the basis

of the celebrated Black and Scholes (1973) and Merton (1973) option-pricing formula, the

arbitrage-free method of pricing and, more importantly, hedging other derivative securities,

and the martingale characterization of prices and dynamic equilibria.

The essence of dynamic spanning is the ability to replicate exactly the payo� of a complex

security by a dynamic portfolio strategy of simpler securities which is self-�nancing, i.e., no

cash in
ows or out
ows except at the start and at the end. If such a dynamic-hedging

strategy exists, then the initial cost of the portfolio must equal the price of the complex

security, otherwise an arbitrage opportunity exists. For example, under the assumptions of

Black and Scholes (1973) and Merton (1973), the payo� of a European call-option on a non-

dividend-paying stock can be replicated exactly by a dynamic-hedging strategy involving

only stocks and riskless borrowing and lending.

But the conditions that guarantee dynamic spanning are nontrivial restrictions on market

structure and price dynamics (see, for example, Du�e and Huang, 1985), hence there are

situations in which exact replication is impossible, e.g., suppose that stock price volatility �

in the Black and Scholes (1973) framework is stochastic. These instances of market incom-

pleteness are often attributable to institutional rigidities and market frictions|transactions

costs, periodic market closures, and discreteness in trading opportunities and prices|and

while the pricing of complex securities can still be accomplished in some cases via equilibrium

arguments (see, for example, Breeden, 1979, Du�e, 1987, Du�e and Shafer, 1985 and 1986,

F�ollmer and Sonderman, 1986, and He and Pearson, 1991), this still leaves the question of
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optimal replication unanswered. Perfect replication is impossible in dynamically incomplete

markets, but how close can one come, and what does the optimal-replication strategy look

like?

In this paper we answer these questions by applying optimal control techniques to the

optimal-replication problem: given an arbitrary payo� function and a set of fundamental

securities, �nd a self-�nancing dynamic portfolio strategy involving only the fundamental

securities that most closely approximates the payo� in a mean-squared sense. The initial cost

of such an optimal strategy can be viewed as the \production cost" of the option, i.e., it is the

cost of the best dynamic approximation to the payo� function given the set of fundamental

securities traded. Such an interpretation is more than a �gment of economic imagination|

the ability to synthesize options via dynamic trading strategies is largely responsible for the

growth of the multi-trillion-dollar over-the-counter derivatives market. Moreover, in contrast

to exchange-traded options such as equity puts and calls, over-the-counter derivatives are

considerably more illiquid. If investment houses were unable to synthesize them via dynamic

trading strategies, they would have to take the other size of every option position that their

clients' wish to take (net of o�setting positions among the clients themselves). Such risk

exposure would dramatically curtail the scope of the derivatives business, limiting both the

size and type of contracts available to end users.

Of course, the nature of the optimal-replication strategy depends on how we measure

the closeness of the payo� and its approximation. For tractability and other reasons (see

Section 2.5), we choose a mean-squared-error loss function and we denote by � the root-

mean-squared-error of an optimal-replication strategy. In a dynamically complete market,

the approximation error � is identically zero, but when the market is incomplete, we propose

� as a measure of the \degree" of incompleteness. Although from a theoretical point of

view dynamic spanning either holds or does not hold, a gradient for market completeness

seems more natural from an empirical and a practical point of view. We provide examples of

stochastic processes that imply dynamically incomplete markets, e.g., stochastic volatility,

and yet still admit �-arbitrage strategies for replicating options to within �, where � can be

evaluated numerically.

In this respect, our contributions complement the results of Schweizer (1992, 1995) in

which the optimal-replication problem is also solved for a mean-squared-error loss func-
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tion. Schweizer considers more general stochastic processes than we do|we focus only on

vector-Markov price processes|and uses variational principles to characterize the optimal-

replication strategy. Although our approach can be viewed as a special case of his, the

Markov assumption allows us to obtain considerably sharper results and yields an easily im-

plementable numerical procedure (via dynamic programming) for determining the optimal-

replication strategy and the replication error � in practice.

Our results also complement the burgeoning literature on option pricing with transac-

tions costs, e.g., Leland (1985), Hodges and Neuberger (1989), Bensaid, et al. (1992), Boyle

and Vorst (1992), Davis, Panas, and Zariphopoulou (1993), Edirisinghe, Naik, and Up-

pal (1993), Henrotte (1993), Avellaned and Paras (1994), Neuberger (1994), Whalley and

Wilmott (1994), Grannan and Swindle (1996), and Toft (1996) (see, also, the related papers

by Hutchinson, Lo, and Poggio, 1994, Brandt, 1998, and Bertsimas, Kogan, and Lo, 2000).

In these studies, the existence of transactions costs induces discrete trading intervals, and

the optimal replication is solved for some special cases, e.g., call and put options on stocks

with geometric Brownian motion or constant-elasticity-of-variance price dynamics. In this

paper, we solve the more general problem of optimally replicating an arbitrary derivative

security where the underlying asset is driven by a vector Markov process.

To demonstrate the practical relevance of our optimal-replication strategy, even in the

simplest case of the Black and Scholes (1973) model where an explicit optimal-replication

strategy is available, Table 1 presents a comparison of our optimal-replication strategy with

the standard Black-Scholes \delta-hedging" strategy for replicating an at-the-money put

option on 1,000 shares of a $40-stock over 25 trading periods for two simulated sample

paths of a geometric Brownian motion with drift � = 0:07 and di�usion coe�cient � = 0:13

(rounded to the nearest $0.125).

V
�

t denotes the period-t value of the optimal replicating portfolio, ��t denotes the number

of shares of stock held in that portfolio, and V
BS
t and �

BS
t are de�ned similarly for the

Black-Scholes strategy.

Despite the fact that both sample paths are simulated geometric Brownian motions with

identical parameters, the optimal-replication strategy has a higher replication error than the

Black-Scholes strategy for path A and a lower replication error than Black-Scholes for path
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B. Speci�cally, for path A:

V
�

25 � 1000�Max[0; $40�P25] = $199:1

V
BS
25 � 1000�Max[0; $40�P25] = $172:3

and for path B:

V
�

25 � 1000�Max[0; $40�P25] = �$40:3

V
BS
25 � 1000�Max[0; $40�P25] = �$299:2 :

That the optimal-replication strategy underperforms the Black-Scholes strategy for path A is

not surprising since the optimal-replication strategy is optimal only in a mean-squared sense

(see Section 2.1), not path by path (these two sample paths were chosen to be illustrative,

not conclusive). In a more extensive simulation study in which 250,000 sample paths were

generated, the average replication error of the Black-Scholes strategy is $248.0 and the

average error of the optimal-replication strategy is $241.2. That the Black-Scholes strategy

underperforms the optimal-replication strategy for path B is also not surprising since the

former is designed to replicate the option with continuous trading whereas the optimal-

replication strategy is designed to replicate the option with 25 trading periods.

For sample path A, the di�erences between the optimal-replication strategy and the

Black-Scholes are not great|V
�

t and �
�

t are fairly close to their Black-Scholes counterparts.

However, for sample path B, where there are two large price movements, the di�erences

between the two replication strategies and the replication errors are substantial. Even in

such an idealized setting, the optimal-replication strategy can still play an important role in

the dynamic hedging of risks.

In Section 2 we introduce the optimal-replication problem and propose a solution based

on stochastic dynamic programming. The scope of the �-arbitrage approach is illustrated in

Sections 3 and 4 analytically and numerically for several examples including path-dependent

options and options on assets with mixed jump-di�usion and stochastic-volatility price dy-

namics. The sensitivity of the replication error to price dynamics is studied in Section 5,

and we conclude in Section 6.
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Table 1: Comparison of optimal-replication strategy and Black-Scholes delta-hedging strat-

egy for replicating an at-the-money put option on 1,000 shares of a $40-stock over 25 trading

periods for two simulated sample paths of a geometric Brownian motion with parameters

� = 0:07 and � = 0:13.

Period
Sample Path A Sample Path B

t
Pt V �t ��t V BS

t �BSt Pt V �t ��t V BS
t �BSt

0 40:000 1461:0 �474:8 1466:4 �481:7 40:000 1461:0 �474:8 1466:4 �481:7

1 40:750 1104:9 �394:2 1105:1 �400:8 39:875 1520:4 �491:8 1526:6 �495:9

2 42:125 562:9 �252:1 554:0 �264:0 40:250 1336:0 �452:4 1340:6 �454:3

3 41:375 751:9 �318:6 752:0 �331:8 36:500 3032:3 �762:4 3044:3 �845:8

4 42:000 552:8 �256:1 544:7 �267:2 36:875 2746:4 �744:1 2727:1 �822:1

5 43:125 264:7 �157:8 244:0 �169:5 36:500 3025:4 �777:9 3035:4 �858:3

6 43:250 245:0 �145:6 222:8 �155:1 37:000 2636:5 �750:1 2606:3 �824:5

7 42:250 390:6 �216:7 377:9 �229:5 39:875 479:9 �407:8 235:8 �500:5

8 43:000 228:2 �149:7 205:8 �160:6 39:875 479:9 �412:1 235:8 �501:4

9 41:750 415:2 �250:3 406:6 �267:9 40:125 376:9 �384:8 110:4 �468:4

10 42:000 352:7 �221:1 339:6 �235:5 39:500 617:3 �466:9 403:2 �556:1

11 42:625 214:5 �157:2 192:4 �168:9 41:250 �199:7 �227:2 �570:0 �315:0

12 41:750 352:1 �233:8 340:2 �248:5 40:625 �57:7 �300:8 �373:1 �394:7

13 41:500 410:5 �258:4 402:3 �271:0 39:875 167:9 �403:7 �77:0 �506:9

14 42:625 119:8 �128:5 97:5 �141:7 39:375 369:8 �482:4 176:4 �590:1

15 42:875 87:7 �100:5 62:1 �110:7 39:625 249:2 �452:1 28:9 �552:9

16 42:875 87:7 �91:5 62:1 �99:2 39:750 192:7 �439:2 �40:2 �534:3

17 43:125 64:8 �65:5 37:3 �70:4 39:250 412:3 �533:4 226:9 �632:3

18 43:000 73:0 �62:3 46:1 �65:4 39:500 278:9 �500:5 68:8 �592:6

19 43:000 73:0 �50:8 46:1 �51:7 39:750 153:8 �461:4 �79:3 �546:5

20 41:875 130:2 �121:8 104:3 �128:2 39:750 153:8 �472:5 �79:3 �552:5

21 41:125 221:5 �209:8 200:4 �219:8 39:875 94:8 �452:8 �148:4 �526:6

22 41:375 169:1 �137:5 145:5 �140:7 39:625 208:0 �538:7 �16:7 �610:2

23 40:625 272:2 �263:5 251:0 �271:2 39:875 73:3 �476:8 �169:3 �542:8

24 40:000 436:9 �475:7 420:5 �496:3 40:000 13:7 �432:2 �237:1 �496:3

25 40:500 199:1 0:0 172:3 0:0 40:125 �40:3 0:0 �299:2 0:0
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2 �-Arbitrage Strategies

In this section, we formulate and propose a solution approach for the problem of replicating a

derivative security in incomplete markets. In Section 2.1 we introduce the optimal-replication

problem and the principle of �-arbitrage, and provide examples in Section 2.2 of the types of

incompleteness that our framework can accommodate. In Sections 2.3 and 2.4 we propose

stochastic dynamic programming algorithms in discrete and continuous time, respectively,

that solve the optimal-replication problem.

2.1 The Optimal Replication Problem

Consider an asset with price Pt at time t where 0 � t � T and let F (PT ;ZT ) denote the

payo� of some European derivative security at maturity date T which is a function of PT and

other variables ZT (see below). For expositional convenience, we shall refer to the asset as a

stock and the derivative security as an option on that stock, but our results are considerably

more general.

As suggested by Merton's (1973) derivation of the Black-Scholes formula, the optimal-

replication problem is to �nd a dynamic portfolio strategy|purchases and sales of stock and

riskless borrowing and lending|on [0; T ] that is self-�nancing and comes as close as possible

to the payo� F (PT ;ZT ) at T . To formulate the optimal-replication problem more precisely,

we begin with the following assumptions:

(A1) Markets are frictionless, i.e., there are no taxes, transactions costs, shortsales re-

strictions, and borrowing restrictions.

(A2) The riskless borrowing and lending rate is 0.

(A3) There exists a �nite-dimensional vector Zt of state variables whose components are

not perfectly correlated with the prices of any traded securities, and [ Pt Zt ]
0 is a vector

Markov process

(A4) Trading takes place at known �xed times t 2 T . If T =
n
t0; t1; : : : ; tN

o
, trading is

said to be discrete. If T = [0; T ], trading is said to be continuous.
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Note that Assumption (A2) entails no loss of generality since we can always renormalize

all prices by the price of a zero-coupon bond with maturity at time T (see, for example,

Harrison and Kreps, 1979).

At time 0 consider forming a portfolio of stocks and riskless bonds at a cost V0 and as

time progresses, let �t, Bt, and Vt denote the number of shares of the stock held, the dollar

value of bonds held, and the market value of the portfolio at time t, respectively, t 2 T ,

hence:

Vt = �tPt + Bt : (2.1)

In addition, we impose the condition that after time 0, the portfolio is self-�nancing, i.e., all

long positions in one asset are completely �nanced by short positions in the other asset so

that the portfolio experiences no cash in
ows or out
ows:

Pti+1(�ti+1 � �ti) + Bti+1 � Bti = 0 ; 0 < ti < ti+1 � T : (2.2)

This implies that:

Vti+1 � Vti = �ti(Pti+1 � Pti) (2.3)

and, in continuous time,

dVt = �tdPt : (2.4)

We seek a self-�nancing portfolio strategy f�tg, t 2 T , such that the terminal value VT

of the portfolio is as close as possible to the option's payo� F (PT ;ZT ). Of course, there

are many ways of measuring \closeness", each giving rise to a di�erent optimal-replication

problem. For reasons that will become clear shortly (see Section 2.5, we choose a mean-

squared-error loss function. Other recent examples of the use of mean-squared-error loss

functions in related dynamic-trading problems include Du�e and Jackson (1990), Du�e

and Richardson (1991), Sch�al (1994), and Schweizer (1992, 1995). For such a loss function,
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our version of the optimal-replication problem becomes:

min
f�tg

E

"
VT � F (PT ;ZT )

#2
(2.5)

subject to self-�nancing condition (2.3) or (2.4), the dynamics of [ Pt Zt ]
0, and the initial

wealth V0, where the expectation E is conditional on information at time 0.

Note that we have placed no constraints on f�tg, hence it is conceivable that for certain

replication strategies, VT is negative with positive probability. Imposing constraints on

f�tg to ensure the non-negativity of VT would render the optimal-replication problem (2.5)

intractable. However, negative values for VT is not nearly as problematic in the context of the

optimal-replication problem as it is for the optimal consumption and portfolio problem of,

for example, Merton (1971). In particular, VT does not correspond to an individual's wealth,

but is the terminal value of a portfolio designed to replicate a particular payo� function. See

Dybvig and Huang (1988) and Merton (1992, Chapter 6) for further discussion.

A natural measure of the success of the optimal-replication strategy is the square root of

the mean-squared replication error (2.5) evaluated at the optimal f�tg, hence we de�ne

�(V0) �
s
min
f�tg

E
n
[VT � F (PT ;ZT )]

2
o
: (2.6)

We shall show below that �(V0) can be minimized with respect to the initial wealth V0 to

yield the least-cost optimal-replication strategy and a corresponding measure of the minimum

replication error ��:

�
� � min

fV0g
�(V0) : (2.7)

In the case of Black and Scholes (1973) and Merton (1973), there exists optimal-replication

strategies for which �
� = 0, hence we say that perfect arbitrage pricing holds.

But there are situations|dynamically incomplete markets, for example|where perfect

arbitrage pricing does not hold. In particular, assumption (A3), the presence of state vari-

ables Zt that are not perfectly correlated with the prices of any traded securities, is the source

of market incompleteness in our framework. While this captures only one potential source of
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incompleteness|and does so only in a \reduced-form" sense|nevertheless, it is a particu-

larly relevant source of incompleteness in �nancial markets. Of course, we recognize that the

precise nature of incompleteness, e.g., institutional rigidities, transactions costs, technologi-

cal constraints, will a�ect the pricing and hedging of derivative securities in complex ways.

For example, \structural" models in which institutional sources of market incompleteness

are captured, e.g., transactions costs, shortsales constraints, and undiversi�able labor in-

come, have been developed by Aiyagari (1994), Aiyagari and Gertler (1991), He and Modest

(1995), Heaton and Lucas (1992, 1996), Lucas (1994), Scheinkman and Weiss (1986), Telmer

(1993), and Weil (1992). And Magill and Quinzii (1996) present a comprehensive analysis

of market incompleteness in a very general setting.

Nevertheless, how well one security can be replicated by sophisticated trading in other

securities does provide one measure of the degree of market incompleteness even if it does

not completely characterize it. In much the same way that the Black and Scholes (1973) and

Merton (1973) models focus on the relative pricing of options|relative to the exogenously

speci�ed price dynamics for the underlying asset|we hope to capture the degree of relative

incompleteness, relative to an exogenously speci�ed set of Markov state variables that are

not completely hedgeable.

In some of these cases, we shall show in Sections 2.3 and 2.4 that �-arbitrage pricing is

possible, i.e., it is possible to derive a mean-square-optimal replication strategy that is able

to approximate the terminal payo� F (PT ;ZT ) of an option to within �
�. But before turning

to the solution of the optimal-replication problem, we provide several illustrative examples

that delineate the scope of our framework.

2.2 Examples

Despite the restrictions imposed by assumptions (A1){(A4), our framework can accommo-

date many kinds of market incompleteness and various types of derivative securities as the

following examples illustrate:

(a) Stochastic Volatility. Consider a stock price process that follows a di�usion process

with stochastic volatility, e.g., Hull and White (1987) and Wiggins (1987). The stock

price and stock-price volatility are assumed to be governed by the following pair of
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stochastic di�erential equations:

dPt = �Pt dt + �tPt dWPt

d�t = g(�t) dt + ��t dW�t

where WPt and W�t are Brownian motions with mutual variation dWPt dW�t = � dt.

This stochastic volatility model is included in our framework by de�ning Zt = �t. Then,

clearly the vector process [ Pt Zt ]
0 is Markov.

(b) Options on the Maximum. In this and the next two examples we assume that

T =
n
t0; t1; : : : ; tN

o
and that the stock price Pt process is Markov for expositional

simplicity. The payo� of the option on the maximum stock price is given by

F

 
max

i=0;:::;N
Pti

!
: (2.8)

De�ne the state variable

Zti � max
k=0;:::;i

Ptk :

The process [ Pti Zti ]
0 is Markov since the distribution of Pti+1 depends only on Pti

and

Zti+1 = max [Zti ; Pti+1 ] ; Z0 = P0 :

The payo� of the option can be expressed in terms of the terminal value of the state

variables (PT ; ZT ) as F (ZT ).

(c) Asian Options. The payo� of \Asian" or \average-rate" options is given by

F

 
1

N + 1

NX
i=0

Pti

!
:
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Let Zti be the following state variable

Zti �
1

i + 1

iX
k=0

Ptk

and observe that the process [ Pti Zti ]
0 is Markov since the distribution of Pti+1 depends

only on Pti and

Zti+1 =
Zti(i+ 1) + Pti+1

(i+ 2)
; Z0 = P0 :

As before, the payo� of the option can be written as F (ZT ).

(d) Knock-Out Options. Given a knock-out price �P , the payo� of a knock-out option is

�Th(PT ), where h(�) is a function of the terminal stock price and

�T =

8><>:
1 if max

i=0;:::;N
Pti � �P

0 if max
i=0;:::;N

Pti >
�P .

De�ne the state variable Zt:

Z0 =

�
1 if P0 � �P

0 if P0 > �P

Zti+1 =

�
1 if Pti+1 � �P and Zti = 1,

0 otherwise
:

It is easy to see that resulting process [ Pti Zti ]
0 is Markov, ZT = �T : The payo� of

the option is given by F (PT ; ZT ) = ZTh(PT ).

2.3 �-Arbitrage in Discrete Time

In this section, we propose a solution for the optimal-replication problem (2.5) in discrete

time via stochastic dynamic programming. To simplify notation, we adopt the following

convention for discrete-time quantities: time subscripts ti are replaced by i, e.g., the stock

price Pti will be denoted as Pi and so on. Under this convention, we can de�ne the usual
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cost-to-go or value function Ji as:

Ji(Vi; Pi;Zi) � min
�(k;Vk;Pk;Zk);

i�k�N�1

E
h
[VN � F (PN ;ZN)]

2 jVi; Pi;Zi

i
(2.9)

where Vi, Pi, and Zi comprise the state variables, �i is the control variable, and the self-

�nancing condition (2.3) and the Markov property (A3) comprise the law of motion for the

state variables. By applying Bellman's principle of optimality recursively (see, for example,

Bertsekas, 1995):

JN (VN ; PN ;ZN ) = [VN � F (PN ;ZN )]
2

(2.10)

Ji(Vi; Pi;Zi) = min
�(i;Vi;Pi;Zi)

E

�
Ji+1(Vi+1; Pi+1;Zi+1)jVi; Pi;Zi

�
i = 0; : : : ; N�1 (2.11)

the optimal-replication strategy ��(i; Vi; Pi;Zi) can be characterized and computed (Schweizer,

1995, provides su�cient conditions for the existence of the optimal hedging strategy). In

particular, we have the following result (see the Appendix for proofs):

Theorem 1 Under Assumptions (A1){(A4) and (2.3), the solution of the optimal-replication

problem (2.5) for T = ft0; t1; : : : ; tNg is characterized by the following:

(a) The value function Ji(Vi; Pi;Zi) is quadratic in Vi, i.e., there are functions ai(Pi;Zi),

bi(Pi;Zi), and ci(Pi;Zi) such that

Ji(Vi; Pi;Zi) = ai(Pi;Zi) �
h
Vi � bi(Pi;Zi)

i2
+ ci(Pi;Zi) ; i = 0; : : : ; N : (2.12)

(b) The optimal control ��(i; Vi; Pi;Zi) is linear in Vi, i.e.,

�
�(i; Vi; Pi;Zi) = pi(Pi;Zi) � Viqi(Pi;Zi)

= (pi � qibi) � qi(Vi � bi) (2.13)

12



(c) The functions ai(�), bi(�), ci(�), pi(�), and qi(�), are de�ned recursively as

aN(PN ;ZN ) = 1 (2.14)

bN(PN ;ZN ) = F (PN ;ZN ) (2.15)

ci(PN ;ZN ) = 0 (2.16)

and for i = N�1; : : : ; 0

pi(Pi;Zi) =
E[ai+1(Pi+1;Zi+1) � bi+1(Pi+1;Zi+1) � (Pi+1 � Pi)jPi;Zi]

E[ai+1(Pi+1;Zi+1) � (Pi+1 � Pi)2jPi;Zi]
(2.17)

qi(Pi;Zi) =
E[ai+1(Pi+1;Zi+1) � (Pi+1 � Pi)jPi;Zi]

E[ai+1(Pi+1;Zi+1) � (Pi+1 � Pi)2jPi;Zi]
(2.18)

ai(Pi;Zi) = E[ai+1(Pi+1;Zi+1) � (1� qi(Pi;Zi)(Pi+1 � Pi))
2jPi;Zi] (2.19)

bi(Pi;Zi) =
1

ai(Pi;Zi)
E[ai+1(Pi+1;Zi+1) �

�
bi+1(Pi+1;Zi+1) �

pi(Pi;Zi)(Pi+1 � Pi)
�
�
�
1� qi(Pi;Zi)(Pi+1 � Pi)

�
jPi;Zi] (2.20)

ci(Pi;Zi) = E[ci+1(Pi+1;Zi+1)jPi;Zi] + E[ai+1(Pi+1;Zi+1) �
�
bi+1(Pi+1;Zi+1) �

pi(Pi;Zi)(Pi+1 � Pi)
�2
jPi;Zi] � ai(Pi;Zi) � bi(Pi;Zi)

2 (2.21)

(d) Under the optimal-replication strategy �
�, the minimum replication error as a function

of the initial wealth V0 is

J0(V0; P0;Z0) = a0(P0;Z0) � [V0 � b0(P0;Z0)]
2 + c0(P0;Z0) : (2.22)

hence the initial wealth that minimizes the replication error is V �

0 = b0(P0;Z0), the least-

cost optimal-replication strategy is the f��(i; Vi; Pi;Zi)g that corresponds to this initial

wealth, and the minimum replication error over all V0 is:

�
� =

q
c0(P0;Z0) (2.23)

where the inequalities ai(Pi;Zi) > 0 and ci(Pi;Zi) � 0 follow by induction.
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Theorem 1 shows that the optimal-replication strategy �
� has a particularly simple

structure (2.13) which can be related to the well-known \delta-hedging" strategy of the

continuous-time Black-Scholes/Merton option-pricing model. In particular, if prices Pt fol-

low a geometric Brownian motion, it can be shown that the �rst term of the right side of

(2.13) corresponds to the derivative security's \delta" (the partial derivative of the security's

price with respect to Pt), and the second term vanishes in the continuous-time limit (see

Section 3.2 for further discussion). This underscores the fact that standard delta-hedging

strategies, which are derived from continuous-time models, need not be optimal when applied

in discrete time, and the extent to which the continuous-time and discrete-time replication

strategies di�er is captured by the second term of (2.13).

The fact that both the optimal control (2.13) and the value function (2.12) are de�ned

recursively is especially convenient for computational purposes. Finally, because the value

function is quadratic in Vi, it possesses a global minimum as a function of the initial wealth

V0, and this global minimum and the initial wealth that attains it can be computed easily.

2.4 �-Arbitrage in Continuous Time

For the continuous-time case T = [0; T ], let [ Pt Zt ]
0 follow a vector Markov di�usion

process

dPt = �0(t; Pt;Zt)Pt dt + �0(t; Pt;Zt)Pt dW0t (2.24)

dZjt = �j(t; Pt;Zt)Zjt dt + �j(t; Pt;Zt)ZjtdWjt ; j = 1; : : : ; J (2.25)

where Wjt, j = 0; : : : ; J are Wiener processes with mutual variation

dWjt dWkt = �jk(t; Pt;Zt) dt :

The continuous-time counterpart of the Bellman recursion is the Hamilton-Jacobi-Bellman

equation (see, for example, Fleming and Rishel, 1975), and this yields the following:

Theorem 2 Under Assumptions (A1){(A4) and (2.4), the solution of the optimal-replication

problem (2.5) for T = [0; T ] is characterized by the following:
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(a) The value function J(t; Vt; Pt;Zt) is quadratic in Vt, i.e., there are functions a(t; Pt;Zt),

b(t; Pt;Zt), and c(t; Pt;Zt) such that

J(t; Vt; Pt;Zt) = a(t; Pt;Zt) � [Vt � b(t; Pt;Zt)]
2 + c(t; Pt;Zt) ; 0 � t � T : (2.26)

(b) For t 2 [0; T ] the functions a(t; Pt;Zt), b(t; Pt;Zt), and c(t; Pt;Zt) satisfy the following

system of partial di�erential equations (we omit the arguments of a(�), b(�), and c(�) in

(2.27){(2.29) to economize on notation):

@a

@t
+

JX
j=0

�jZj

@a

@Zj

+
1

2

JX
i;j=0

�i�jZiZj�ij
@
2
a

@Zi@Zj

=

�
�0

�0

�2
a + 2

JX
j=0

�j

�0
�0�0jZj

@a

@Zj

+

1

a

JX
i;j=0

�i�jZiZj�0i�0j
@a

@Zi

@a

@Zj

(2.27)

@b

@t
+

JX
j=0

�jZj

@b

@Zj

+
1

2

JX
i;j=0

�i�jZiZj�ij
@
2
b

@Zi@Zj

=

JX
j=0

@b

@Zj

Zj

 
�j

�0
�0�0j �

1

2

JX
i=0

�i�jZi

a
(�0i�0j � �ij)

@a

@Zi

!
(2.28)

@c

@t
+

JX
j=0

�jZj

@c

@Zj

+
1

2

JX
i;j=0

�i�jZiZj�ij
@
2
c

@Zi@Zj

=

a

JX
i;j=0

�i�jZiZj

@b

@Zi

@b

@Zj

(�0i�0j � �ij) : (2.29)

with boundary conditions:

a(T; PT ;ZT ) = 1 ; b(T; PT ;ZT ) = F (PT ;ZT ) ; c(T; PT ;ZT ) = 0 (2.30)

where Zi denotes the i-th component of Zt and Z0 � Pt.

(c) The optimal control ��(t; Vt; Pt;Zt) is linear in Vt and is given by:

�
�(t; Vt; Pt;Zt) =

JX
j=0

�0j
�jZj

�0Z0

@b

@Zj

� (Vt�b)

0@ JX
j=0

�0j
�jZj

a�0Z0

@a

@Zj

+
�0

�20Z0

1A : (2.31)
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(d) Under the optimal-replication strategy �
�, the minimum replication error as a function

of the initial wealth V0 is

J(0; V0; P0;Z0) = a(0; P0;Z0)[V0 � b(0; P0;Z0)]
2 + c(0; P0;Z0) (2.32)

hence the initial wealth that minimizes the replication error is V
�

0 = b(0; P0;Z0), the

least-cost optimal-replication strategy is the f��(t; Vt; Pt;Zt)g that corresponds to this

initial wealth, and the minimum replication error over all V0 is (it can be shown that

a(t; Pt;Zt) > 0 and c(t; Pt;Zt) � 0):

�
� =

q
c(0; P0;Z0) : (2.33)

2.5 Interpreting �
� and V

�
0

Theorems 1 and 2 show that the optimal-replication problem (2.5) can be solved for a mean-

squared-error measure of replication error under Markov state dynamics. In particular, the

optimal-replication strategy �
�(�) is a dynamic trading strategy that yields the minimum

mean-squared replication error �(V0) for an initial wealth V0. The fact that �(V0) depends

on V0 should come as no surprise, and the fact that �(V0) is quadratic in V0 undescores the

possibility that delta-hedging strategies can be under- or over-capitalized, i.e., there exists a

unique V �

0 that minimizes the mean-squared replication error. One attractive feature of our

approach is the ability to quantify the impact of capitalization V0 on the replication error

�(V0).

V
�

0 Is Not a Price

In this sense, V �

0 may be viewed as the minimum production-cost of replicating the payo�

F (PT ;ZT ) as closely as possible, to within �
�. However, because we have assumed that

markets are dynamically incomplete|otherwise �� is 0 and perfect replication is possible|

V
�

0 cannot be interpreted as the price of a derivative security with payo� F (PT ;ZT ) unless

additional economic structure is imposed. In particular, in dynamically incomplete mar-

kets derivatives cannot be priced by arbitrage considerations alone|we must resort to an

equilibrium model in which the prices of all traded assets are determined by supply and
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demand.

To see why V
�

0 cannot be interpreted as a price, observe that two investors with di�erent

risk preferences may value F (PT ;ZT ) quite di�erently, and will therefore place di�erent

valuations on the replication error ��. While both investors may agree that V �

0 is the minimum

cost for the optimal-replication strategy �
�(�), they may di�er in their willingness to pay

such a cost for achieving the replication error ��. For example, Du�e and Jackson (1990)

and Du�e and Richardson (1991) develop replication strategies under speci�c preference

assumptions. Moreover, some investors' preferences may not be consistent with a symmetric

loss function, e.g., they may value negative replication errors quite di�erently than positive

replication errors.

More to the point, an asset's price is the outcome of a market equilibrium in which

investors' preferences, budget dynamics, and information structure interact through the im-

position of market-clearing conditions, i.e., supply equals demand. In contrast, V �

0 is the

solution to a simple dynamic optimization problem that does not typically incorporate any

notion of economic equilibrium.

Why Mean-Squared Error?

In fact, there are many possible loss functions, each giving rise to a di�erent set of optimal-

replication strategies, hence a natural question to ask in interpreting Theorems 1 and 2 is

why use mean-squared error?

An obvious motivation is, of course, tractability. We showed in Sections 2.3 and 2.4 that

the optimal-replication problem can be solved via stochastic dynamic programming for a

mean-squared-error loss function and Markov state dynamics, and that the solution can be

implemented as an exact and e�cient recursive algorithm. In Sections 3 and 4, we apply

this algorithm to a variety of derivative securities in incomplete markets and demonstrate

its practical relevance analytically and numerically.

Another motivation is that a symmetric loss function is the most natural choice when we

have no prior information about whether the derivative to be replicated is being purchased

or sold. Indeed, when a derivatives broker is asked by a client to provide a price quote, the

client typically does not reveal whether he is a buyer or seller until after receiving both bid
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and o�er prices. In such cases, asymmetric loss functions are inappropriate since positive

replication errors for a long position become negative replication errors for the short position.

Of course, in more structured applications such as Du�e and Jackson (1990) in which

investors' preferences, budget dynamics, and information sets are speci�ed, it is not ap-

parent that mean-squared-error optimal-replication strategies are optimal from a particular

investor's point of view. However, even in these cases, a slight modi�cation of the mean-

squared-error loss function yields optimal-replication strategies that have natural economic

interpretations. In particular, by de�ning mean-squared error with respect to an equivalent

martingale measure, the minimum production cost V �

0 associated with this loss function can

be interpreted as an equilibrium market price which, by de�nition, incorporates all aspects

of the economic environment in which the derivative security is traded.

The di�culty with such an interpretation is the multiplicity of equivalent martingale

measures in incomplete markets|it is only when markets are dynamically complete that

the equivalent martingale measure is unique (see Harrison and Kreps, 1979). It may be

possible to compute upper and lower bounds for �� over the entire set of equivalent martingale

measures, but without additional structure these bounds are likely to be extremely wide and

of little practical relevance.

Nevertheless, �� is a useful metric for the degree of market incompleteness, providing

an objective measure of the di�culty in replicating a derivative security. For example, we

shall see in Section 5 that although stochastic volatility and mixed jump-di�usion processes

both imply market incompleteness, our �-arbitrage strategy shows that for certain parameter

values, the former is a more di�cult type of incompleteness to hedge than the latter.

3 Illustrative Examples

To illustrate the scope of the �-arbitrage approach to the optimal-replication problem, we

apply the results of Section 2 to four speci�c cases for the return-generating process: state-

independent returns (Section 3.1), geometric Brownian motion (Section 3.2), a jump-di�usion

model (Section 3.3), and a stochastic volatility model (3.4).
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3.1 State-Independent Returns

Suppose that stock returns are state-independent so that

Pi = Pi�1(1 + �i�1) (3.1)

where �i�1 is independent of the current stock price and all other state variables. This,

together with the Markov assumption (A3), implies that returns are statistically indepen-

dent (but not necessarily identically distributed) through time. Also, let the payo� of the

derivative security F (PT ) depend only on the price of the risky asset at time T .

In this case, there is no need for additional state variables Zi and the expressions in

Theorem 1 simplify to:

aN = 1 ; bN (PN) = F (PN) ; cN(PN) = 0 (3.2)

and for i = N�1; : : : ; 0,

ai = ai+1
�
2
i

�2i + �2i

(3.3)

bi(Pi) = E [bi+1(Pi(1 + �i))jPi] �
�i

�
2
i

Cov [�i; bi+1(Pi(1 + �i))jPi] (3.4)

ci(Pi) = E [ci+1(Pi(1 + �i))jPi] +
ai+1

�2i

(
�
2
iVar [bi+1(Pi(1 + �i))jPi] �

Cov [�i; bi+1(Pi(1 + �i))jPi]
2

)
(3.5)

pi(Pi) =
E
h
�ibi+1(Pi(1 + �i))jPi

i
(�2i + �2i )Pi

(3.6)

qi(Pi) =
�i

(�2i + �
2
i )Pi

(3.7)

where �i = E[�i] and �
2
i = Var[�i].
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3.2 Geometric Brownian Motion

Let the stock price process follow the geometric Brownian motion of Black and Scholes (1973)

and Merton (1973). We show that the �-arbitrage approach yields the Black-Scholes/Merton

results in the limit of continuous time, but in discrete time there are important di�erences be-

tween the optimal-replication strategy of Theorem 1 and the standard Black-Scholes/Merton

delta-hedging strategy.

For notational convenience, let all discrete time intervals [ti; ti+1) be of equal length

ti+1 � ti = �t. The assumption of geometric Brownian motion then implies:

Pi+1 = Pi � (1 + �i) (3.8)

log(1 + �i) = (��
�
2

2
)�t + �

p
�tzi (3.9)

zi � N (0; 1) : (3.10)

Recall that for �t� 1 (a large number of time increments in [0; T ]), the following approxi-

mation holds (see, for example, Merton ,1992, Chapter 3):

�i � N (��t; �2�t) + O(�t3=2)

This, and Taylor's theorem, imply the following approximations for the recursive relations

(3.3){(3.5) of Section 3.1:

Var
h
bi+1(Pi(1 + �i))jPi

i
= b

0

i+1(Pi)�
2
P
2
i �t + O(�t2)

Cov
h
�i; bi+1(Pi(1 + �i))jPi

i
= b

0

i+1(Pi)�
2
Pi�t + O(�t2)

E
h
bi+1(Pi(1 + �i))jPi

i
= bi+1(Pi) + b

0

i+1(Pi�1)�Pi�t + b
00

i+1(Pi)
�
2

2
P
2
i �t + O(�t2)

E
h
ci+1(Pi(1 + �i))jPi

i
= ci(Pi) + c

0

i+1(Pi�1)�Pi�t + c
00

i+1(Pi)
�
2

2
P
2
i �t + O(�t2) :

We can then rewrite (3.4){(3.5) as

bi(Pi) = bi+1(Pi) + b
00

i+1(Pi)
�
2

2
P
2
i �t + O(�t2)
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ci(Pi) = ci+1(Pi) + c
0

i+1(Pi�1)�Pi�t + c
00

i+1(Pi)
�
2

2
P
2
i �t + O(�t2)

and conclude that the system (3.4){(3.5) approximates the following system of PDE's

@b(t; P )

@t
= �

�
2
P
2

2

@
2
b(t; P )

@P 2
(3.11)

@c(t; P )

@t
= � �P

@c(t; P )

@P
�

�
2
P
2

2

@
2
c(t; P )

@P 2
(3.12)

up to O(�t) terms. But (3.11) is the Black and Scholes (1973) PDE, hence we see that

in the limit of continuous trading, i.e., as N ! 1 and �t ! 0 for a �xed T � N�t, the

discrete-time optimal-replication strategy of Theorem 1 characterizes the Black and Scholes

(1973) and Merton (1973) models.

Moreover, the expression for c(t; P ), (3.12), is homogeneous, hence c(t; P ) � 0 due to the

boundary condition c(T; �) = 0. This is consistent with the fact that in the Black-Scholes

case it is possible to replicate the option exactly, so that the replication error vanishes in the

continuous-time limit.

In particular, it can be shown that the components of the discrete-time optimal-replication

strategy (2.13) converge to the following continuous-time counterparts:

pi � qibi !
@b

@P
; qi !

�

�2P

hence the continuous-time limit of the optimal-replication strategy �
�(�) is given by:

�
�(t; Vt; Pt) =

@b(t; Pt)

@Pt

�
�

�2Pt

[Vt � b(t; Pt)] : (3.13)

Now at time t = 0, and for the minimum production-cost initial wealth V
�

0 , this expression

reduces to

�
�(0; V �

0 ; P0) =
@b(0; P0)

@P0

since V �

0 = b(0; P0).

Given the optimal-replication strategy (3.13), the value of the replicating portfolio Vt
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satis�es the stochastic di�erential equation

dVt = �
� (t; Vt; Pt) dPt (3.14)

=

 
@b (t; Pt)

@Pt

�
�

�2
Pt [Vt � b (t; Pt)]

!
dPt: (3.15)

Thus, the di�erence between Vt and b (t; Pt) is characterized by

d (Vt � b (t; Pt)) =

 
@b (t; Pt)

@Pt

�
�

�2
Pt [Vt � b (t; Pt)]

!
dPt: � (3.16)  

@b (t; Pt)

@t
+
1

2

@
2
b (t; Pt)

@P
2
t

�
2
P
2
t

!
dt+

@b (t; Pt)

@Pt

dPt

!
(3.17)

= �
�

�2
Pt [Vt � b (t; Pt)] dPt: (3.18)

subject to the initial condition

V0 � b (0; P0) = 0;

where we have used the fact that b (t; Pt) satis�es (3.11). The solution of this stochastic

di�erential equation is unique (see, for example, Karatzas and Shreve (1988, Theorem 2.5))

and Vt�b (t; Pt) � 0 satis�es the equation. We conclude that the value of the replicating

portfolio is always equal to b(t; Pt) for every realization of the stock price process, i.e.,

Vt = b(t; Pt)

for all t 2 [0; T ], which implies that

�
�(t; Vt; Pt) =

@b(t; Pt)

@Pt

: (3.19)

As expected, for every realization of the stock price process the optimal-replication strategy

coincides with the delta-hedging strategy given by the Black-Scholes hedge ratio. However,

note that the functional form of (3.13) is di�erent from the Black-Scholes hedging formula|

the optimal-replication strategy depends explicitly on the value of the replicating portfolio

Vt.
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3.3 Jump-Di�usion Models

In this section, we apply results of Section 2 to the replication and pricing of options on a

stock with mixed jump-di�usion price dynamics. As before, we assume that all time intervals

ti+1� ti = �t are regularly spaced. Following Merton (1976), we assume the following model

for the stock price process:

Pi+1 = Pi(1 + �i) (3.20)

log(1 + �i) = (�� �k �
�
2

2
)�t + �

p
�tzi +

niX
j=0

logYj (3.21)

zi � N (0; 1) (3.22)

k = E[Yj � 1] (3.23)

Prob(ni = m) = e
���t (��t)

m

m!
(3.24)

where the jump magnitudes fYjg are independently and identically distributed random vari-

ables and jump arrivals follow a Poisson process with constant arrival rate �.

We consider two types of jumps: jumps of deterministic magnitude, and jumps with

lognormally distributed jump magnitudes. In the �rst case:

Yj = 1 + � : (3.25)

If we set � = 0 in (3.20), this model corresponds to the continuous-time jump process

considered by Cox and Ross (1976). In the second case:

logYi � N (0; �2) : (3.26)

There are two methods of calculating the optimal-replication strategy for the mixed jump-

di�usion model. One method is to begin with the solutions of the dynamic programming

problem given in Sections 2.3 and 2.4, derive a limiting system of partial di�erential equations

as in Section 3.2, and solve this system numerically, using one of the standard �nite di�erence

schemes.

The second method is to implement the solution of the dynamic programming problem
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directly, without the intermediate step of reducing it to a system of PDE's.

The advantage of the second method is that it treats a variety of problems in a uniform

fashion, the only problem-dependent part of the approach being the speci�cation of the

stochastic process. On the other hand, the �rst approach yields a representation of the solu-

tion as a system of PDE's, which can often provide some information about the qualitative

properties of the solution even before a numerical solution is obtained.

With these considerations in mind, we shall derive a limiting system of PDE's for the

deterministic-jump-magnitude speci�cation (3.25) and use it to �nd conditions on the pa-

rameters of the stochastic process which allow exact replication of the option's payo�, or,

equivalently, arbitrage pricing. For the lognormal-jump-magnitude speci�cation (3.26), we

shall obtain numerical solutions directly from the dynamic programming algorithm of The-

orem 1.

The Continuous-Time Limit

To derive the continuous-time limit of (3.3){(3.5) we follow the same procedure as in Section

3.2 which yields the following system of PDE's:

@b(t; P )

@t
= � �

h
b(t; P (1 + �))� b(t; P )

i
+ ��P

@b(t; P )

@P
�

�
2
P
2

2

@
2
b(t; P )

@P 2
�

���

��2 + �2

"
�P

@b(t; P )

@P
�
h
b(t; P (1 + �))� b(t; P )

i#
(3.27)

@c(t; P )

@t
= � �

h
c(t; P (1 + �))� c(t; P )

i
� (�� ��)P

@c(t; P )

@P
�

�
2
P
2

2

@
2
c(t; P )

@P 2
�

a(t)
��

2

��2 + �2

"
�P

@b(t; P )

@P
�
h
b(t; P (1 + �))� b(t; P )

i#2
(3.28)

da(t)

dt
=

�
2

��2 + �2
a(t) (3.29)

with boundary conditions:

a(T ) = 1 (3.30)

c(T; P ) = 0 (3.31)
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b(T; P ) = F (P ) : (3.32)

We can use the boundary conditions to solve (3.29):

a(t) = exp
h �

2

��2 + �2
(t� T )

i
: (3.33)

The optimal-replication strategy is given by:

�
�(t; Vt; Pt) =

@b(t; Pt)

@Pt

�
�

(��2 + �2)Pt

[Vt � b(t; Pt)] �
��

2

��2 + �2

@b(t; Pt)

@Pt

+

��

(��2 + �2)Pt

[b(t; Pt(1 + �))� b(t; Pt)] : (3.34)

For exact replication to be possible, c(t; P ) � 0 must be a solution of (3.28). This implies

that (3.28) is homogeneous, i.e.,

��
2

��2 + �2

(
�P

@b(t; P )

@P
�
h
b(t; P (1 + �))� b(t; P )

i)2

= 0 (3.35)

for all b(t; P ) satisfying (3.27), which is equivalent to

���
2 = 0 : (3.36)

Condition (3.36) is satis�ed if at least one of the following is true:

� Jumps occur with zero probability.

� Jumps have zero magnitude.

� The di�usion coe�cient is equal to zero, i.e., stock price follows a pure jump process.

But these are precisely the conditions for the arbitrage-pricing of options on mixed jump-

di�usion assets, e.g., Merton (1976).

Perturbation Analysis with Small Jump Amplitudes

Consider the behavior of b(t; P ) and c(t; P ) when the jump magnitude is small, i.e., � � 1.

In this case the market is \almost complete" and solution of the option replication problem
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is obtained as a perturbation of the complete-markets solution of Black and Scholes (1973)

and Merton (1973). In particular, we treat the amplitude of stock price jumps as a small

parameter and look for a solution of (3.27){(3.32) of the following form:

b(t; P ) = b0(t; P ) + �b1(t; P ) + �
2
b2(t; P ) + � � � (3.37)

c(t; P ) = c0(t; P ) + �c1(t; P ) + �
2
c2(t; P ) + �

3
c3(t; P ) + �

4
c4(t; P ) + � � � : (3.38)

After substituting this expansion into (3.28){(3.32), it is apparent that the functions b0(t; P ),

b2(t; P ), and c4(t; P ) must satisfy the following system of partial di�erential equations:

@b0(t; P )

@t
= �

�
2
P
2

2

@
2
b0(t; P )

@P 2
(3.39)

@b2(t; P )

@t
= �

�P
2

2

@
2
b0(t; P )

@P 2
(3.40)

@c4(t; P )

@t
= � �P

@c4(t; P )

@P
�

�
2
P
2

2

@
2
c4(t; P )

@P 2
� a(t)

�P
4

4

 
@
2
b0(t; P )

@P 2

!2
(3.41)

with boundary conditions:

b0(T; P ) = F (P ) (3.42)

b2(T; P ) = 0 (3.43)

c4(T; P ) = 0 (3.44)

and

b1 = c1 = c2 = c3 = 0 :

System (3.39){(3.44) can be solved to yield:

b(t; P ) = b0(t; P ) +
��

2

�2
[b0(t; P )� F (P )] + O(�3) (3.45)

where b0(t; P ) is the option price in the absence of a jump component, i.e., the Black-Scholes

formula in the case of put and call options. Observe that for an option with a convex payo�
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function b0(t; P ) � F (P ), which implies that b(t; P ) � b0(t; P ), i.e., the addition of a small

jump component to geometric Brownian motion increases the price of the option. This

qualitative behavior of the option price is consistent with the results in Merton (1976) which

were obtained with equilibrium arguments.

The optimal-replication strategy (3.34) is given by:

�
�(t; Vt; Pt) =

@b0(t; Pt)

@Pt

+
�

�2Pt

[b0(t; Pt)� Vt] +

��
2

�2

"
@b0(t; Pt)

@Pt

�
@F (Pt)

@Pt

+ Vt � F (Pt)

#
+ O(�3) : (3.46)

and the corresponding replication error is:

c(t; P ) = �
4
c4(t; P ) + O(�6) = O(�4) (3.47)

where c4(t; P ) solves (3.41) and (3.44).

Equations (3.45) and (3.46) provide closed-form expressions for the replication cost and

the optimal-replication strategy when the amplitude of jumps is small, i.e., when markets

are almost complete, and (3.47) describes the dependence of the replication error on the

jump magnitude.

3.4 Stochastic Volatility

Let stock prices follow a di�usion process with stochastic volatility as in Hull and White

(1987) and Wiggins (1987):

dPt = �Ptdt + �tPtdWPt (3.48)

d�t = g(�t)dt + ��tdW�t (3.49)

where WPt and W�t are Brownian motions with mutual variation dWPtdW�t = �dt.

The Continuous-Time Solution

Although applying the results of Section 2 to (3.48){(3.49) is conceptually straightforward,

the algebraic manipulations are quite involved in this case. A simpler alternative to deriving
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a system of PDE's as the continuous-time limit of the solution in Theorem 1 is to formulate

the problem in continuous time at the outset and solve it using continuous-time stochastic

control methods. This approach simpli�es the calculations considerably.

Speci�cally, the pair of stochastic processes (Pt; �t) satis�es assumptions of Section 2.4,

therefore results of this section can be used to derive the optimal-replication strategy, the

minimum production-cost of optimal replication, and the replication error. In particular,

the application of the results of Section 2.4 to (3.48){(3.49) yields the following system of

PDE's:

@a(t; �)

@t
=

�
2

�2
a(t; �) � (g(�) + 2���)

@a(t; �)
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+

1

a(t; �)

 
���
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2
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2
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2@

2
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@�2
(3.50)
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@c(t; P; �)
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(3.52)

with boundary conditions:

a(T; �) = 1 ; b(T; P; �) = F (P; �) ; c(T; P; �T ) = 0 :

The optimal-replication strategy is given by:

�
�(t; Vt; Pt; �t) =

@b(t; Pt; �t)

@Pt

+
��

Pt

@b(t; Pt; �t)

@�t
�

Vt � b(t; Pt; �t)

a(t; �t)
�

��

Pt

@a(t; �t)

@�t
�

�

�2t Pt

h
Vt � b(t; Pt; �t)

i
: (3.53)
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Exact replication is possible when the following equation is satis�ed:

�
2(�2 � 1) = 0 :

and this corresponds to the following special cases:

� Volatility is a deterministic function of time.

� The Brownian motions driving stock prices and volatility are perfectly correlated.

Both of these conditions yield well-known special cases where arbitrage-pricing is possible

(see, for example, Geske, 1979, and Rubinstein 1983). If we set � = g(�) = 0, (3.51) reduces

to the Black and Scholes (1973) PDE.

4 Numerical Analysis

The essence of the �-arbitrage approach to the optimal-replication problem is the recogni-

tion that although perfect replication may not be possible in some situations, the optimal-

replication strategy of Theorem 1 may come very close. How close is, of course, an empirical

matter hence in this section we present several numerical examples that complement the

theoretical analysis of Section 3.

In Section, 4.1 we describe our numerical procedure and apply it to the case of geometric

Brownian motion in Section 4.2, a mixed jump-di�usion model with a lognormal jump mag-

nitude in Section 4.3, a stochastic volatility model in Section 4.4, and to a path-dependent

option to \sell at the high" in Section 4.5.

4.1 The Numerical Procedure

To implement the solution (2.17){(2.21) of the optimal-replication problem numerically, we

begin by representing the functions ai(P;Z), bi(P;Z), and ci(P;Z) by their values over a

spatial grid f(P j
;Zk) : j = 1; : : : ; J; k = 1; : : : ; Kg. For any given (P;Z), values ai(P;Z),

bi(P;Z), and ci(P;Z) are obtained from ai(P
j
;Zk), bi(P

j
;Zk), and ci(P

j
;Zk) using a piece-

wise quadratic interpolation. This procedure provides an accurate representation of ai(P;Z),

bi(P;Z), and ci(P;Z) with a reasonably small number of sample points. The values ai(P
j
;Zk),

bi(P
j
;Zk), and ci(P

j
;Zk) are updated according to the recursive procedure (2.17){(2.19).
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We evaluate the expectations in (2.17){(2.19) by replacing them with the corresponding

integrals. For all the models considered in this paper, these integrals involve Gaussian

kernels. We use Gauss-Hermite quadrature formulas (see, for example, Stroud, 1971) to

obtain e�cient numerical approximations of these integrals.

In all cases except for the path-dependent options, we perform numerical computations

for a European put option with a unit strike price (K = 1), i.e., F (PT ) = max[0; K�PT ],

and a six-month maturity. It is apparent from (2.17){(2.21) that for a call option with the

same strike price K, the replication error ci(�) is the same as that of a put option, and the

replication cost bi(�) satis�es the put-call parity relation. We assume 25 trading periods,

de�ned by t0 = 0; ti+1 � ti = �t = 1=50.
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Figure 1: The di�erence between the replication cost and the intrinsic value of a six-month

maturity European put option, plotted as a function of the initial stock price. The stock

price follows a geometric Brownian motion with parameter values � = 0:07 and � = 0:13

corresponding to the solid line. In Panel (a), � is varied and � is �xed; in Panel (b), �

is varied and � is �xed. In both cases, the variation in each parameter is obtained by

multiplying its original value by 1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line) and

0:5 (pluses).

4.2 Geometric Brownian Motion

Let stock prices follow a geometric Brownian motion, which implies that returns are lognor-

mally distributed as in (3.8){(3.10). We set � = 0:07 and � = 0:13, and to cover a range of
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empirically plausible parameter values, we vary each parameter by increasing and decreasing

them by 25% and 50% while holding the values of other parameter �xed. Figure 1 displays

the minimum replication cost V �

0 minus the intrinsic value F (P0), for the above range of

parameter values, as a function of the stock price at time 0.

Figure 1 shows that V �

0 is not sensitive to changes in � and increases with �. This is not

surprising given that V �

0 approximates the Black-Scholes option pricing formula.
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Figure 2: The replication error of a six-month maturity European put option, plotted as a

function of the initial stock price. The stock price follows a geometric Brownian motion with

parameter values � = 0:07 and � = 0:13 corresponding to the solid line. In Panel (a), � is

varied and � is �xed; in Panel (b), � is varied and � is �xed. In both cases, the variation

in each parameter is obtained by multiplying its original value by 1:25 (dashed-dotted line),

1:5 (dots), 0:75 (dashed line) and 0:5 (pluses).

Figure 2 shows the dependence of the replication error �� on the initial stock price. Again

we observe low sensitivity to the drift � but, as in Figure 1, the replication error tends to

increase with the volatility. Also, the replication error is highest when the stock price is close

to the strike price.

Another important characteristic of the replication process is the ratio of the replication

error to the replication cost ��=V �

0 , which we call the relative replication error. This ratio is

more informative than the replication error itself since it describes the replication error per

dollar spent, as opposed to the error of replicating a single option contract.

The dependence of the relative replication error on the initial stock price is displayed in

31



Figure 3. This �gure shows that the relative replication error is an increasing function of the

initial stock price, i.e., it is higher for out-of-the-money options. Also, the relative replication

error decreases with volatility for out-of-the-money options. This is not surprising given

that it was de�ned as a ratio of the replication error to the hedging cost, both of which are

increasing functions of volatility. According to this de�nition, the dependence of the relative

replication error on volatility is determined by the tradeo� between increasing replication

error and increasing replication cost.
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Figure 3: The relative replication error of a six-month maturity European put option (relative

to the replication cost), plotted as a function of the initial stock price. The stock price follows

a geometric Brownian motion with parameter values � = 0:07 and � = 0:13 corresponding

to the solid line. In Panel (a), � is varied and � is �xed; in Panel (b), � is varied and � is

�xed. In both cases, the variation in each parameter is obtained by multiplying its original

value by 1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line) and 0:5 (pluses).
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Figure 4: The di�erence between the replication cost and the intrinsic value of a six-month

maturity European put option, plotted as a function of the initial stock price. The stock

price follows the mixed jump-di�usion process given in (3.20){(3.23), (3.26), (4.1), and (4.2)

with parameter values � = 0:07, � = 0:106, � = 25, and � = 0:015 corresponding to the solid

line. In Panels (a){(d), �, �, �, and � are each varied, respectively, while the other parameter

values are held �xed. The variation in each parameter is obtained by multiplying its original

value by 1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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4.3 Jump-Di�usion Models

In our numerical implementation of the jump-di�usion model (3.20){(3.24) and (3.26), we

restrict the number of jumps over a single time interval to be no more than three, which

amounts to modifying the distribution of ni in (3.21), originally given by (3.24). This

\truncation problem" is a necessary evil in the estimation of jump-di�usion models (see Ball

and Torous (1985) for further discussion). Speci�cally, we replace (3.24) with

Prob[ni = m] = e
���t (��t)

m

m!
; m = 1; 2; 3 (4.1)

Prob[ni = 0] = 1 �
3X

m=1

Prob[ni = m] : (4.2)

Besides this adjustment in the distribution of returns, our numerical procedure is exactly

the same as in Section 3.2. We start with the following parameter values:

� = 0:07 ; � = 0:106 ; � = 25 ; � = 0:015 :

Then we study sensitivity of the solution to the parameter values by increasing and decreasing

them by 25% and 50% while holding the other parameter values �xed. Our numerical results

are summarized in Figures 4, 5, and 6.

Figure 4 shows that the replication cost V �

0 is not sensitive to the drift rate � and is

increasing in volatility �, the jump intensity �, and the standard deviation � of the jump

magnitude. It is most sensitive to �. Figure 5 shows that the replication error �� is not

sensitive to � and increases with all other parameters, with the highest sensitivity to �.

Finally, Figure 6 shows that the relative replication error ��=V �

0 is sensitive only to � and it

decreases as a function of � for out-of-the-money options.

4.4 Stochastic Volatility

We begin by assuming a particular functional form for g(�) in (3.49):

g(�) = ���(� � �) :
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Figure 5: The replication error of a six-month maturity European put option, plotted as a

function of the initial stock price. The stock price follows the mixed jump-di�usion process

given in (3.20){(3.23), (3.26), (4.1), and (4.2) with parameter values � = 0:07, � = 0:106,

� = 25, and � = 0:015 corresponding to the solid line. In Panels (a){(d), �, �, �, and � are

each varied, respectively, while the other parameter values are held �xed. The variation in

each parameter is obtained by multiplying its original value by 1:25 (dashed-dotted line),

1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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Figure 6: The relative replication error of a six-month maturity European put option (relative

to the replication cost), plotted as a function of the initial stock price. The stock price follows

the mixed jump-di�usion process (3.20){(3.23), (3.26), (4.1), and (4.2) with parameter values

� = 0:07, � = 0:106, � = 25, and � = 0:015 corresponding to the solid line. In Panels (a){

(d), �, �, �, and � are each varied, respectively, while the other parameter values are held

�xed. The variation in each parameter is obtained by multiplying its original value by 1:25

(dashed-dotted line), 1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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We also assume that the Brownian motions driving the stock price and volatility are un-

correlated. Since the closed-form expressions for the transition probability density of the

di�usion process with stochastic volatility are not available, we base our computations on

the discrete-time approximations of this process. This is done mostly for convenience, since

we can approximate the transition probability density using Monte Carlo simulations. While

the discrete-time approximations lead to signi�cantly more e�cient numerical algorithms,

they are also consistent with many estimation procedures that replace continuous-time pro-

cesses with their discrete-time approximations (see, for example, Ball and Torous, 1985, and

Wiggins, 1987).
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Figure 7: The di�erence between the replication cost and the intrinsic value of a six-month

maturity European put option, plotted as a function of the initial stock price. The stock

price follows the stochastic volatility model (4.3){(4.4) with parameter values � = 0:07,

� = 0:153, � = 2, � = 0:4, and �0 = 0:13 corresponding to the solid line. In Panels (a){

(d), �, �, �, and �0 are each varied, respectively, while the other parameter values are held

�xed. The variation in each parameter is obtained by multiplying its original value by 1:25

(dashed-dotted line), 1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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The dynamics of stock prices and volatility are described by

Pi+1 = Pi exp
�
(�� �

2
i =2)�t+ �i

p
�tzPi

�
(4.3)

�i+1 = �i exp
�
(��(�i � �)� �

2
=2)�t+ �

p
�tz�i

�
(4.4)

where zPi; z�i � N (0; 1) and E[zPiz�i] = 0. The parameters of the model are chosen to be

� = 0:07 ; � = 0:153 ; � = 2 ; � = 0:4 : (4.5)

We also assume that at time t = 0 volatility �0 is equal to 0:13. As before, we study

sensitivity of the solution to parameter values. Our �ndings are summarized in Figures 7, 8,

and 9.

We do not display the dependence on � in these �gures since the sensitivity to this

parameter is so low. Figure 7 shows that the replication cost is sensitive only to the initial

value of volatility �0 and, as expected, the replication cost increases with �0. Figure 8

shows that the replication error is sensitive to � and �0 and is increasing in both of these

parameters. According to Figure 9, the relative replication error is increasing in �. It also

increases in �0 for in-the-money options and decreases for out-of-the-money options.

In addition to its empirical relevance, the stochastic volatility model (3.48){(3.49) also

provides a clear illustration of the use of �� as a quantitative measure of dynamic market-

incompleteness. Table 2 reports the results of Monte Carlo experiments in which the optimal-

replication strategy is implemented for six sets of parameter values for the stochastic volatility

model, including the set that yields geometric Brownian motion.

For each set of parameter values, 1,000 independent sample paths of the stock price are

simulated, each sample path containing 25 observations, and for each path the optimal-

replication strategy is implemented. The averages (over the 1,000 sample paths) of the

minimum production cost V
�

0 , the realized replication error �̂
�, the initial optimal stock

holdings ��0, and the average optimal stock holdings ��� (over the 25 periods), is reported in

each row. For comparison, the theoretical replication error �� is also reported.

Since stochastic volatility implies dynamically incomplete markets whereas geometric

Brownian motion implies the opposite, these six sets of simulations comprise a sequence of
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Figure 8: The replication error of a six-month maturity European put option, plotted as a

function of the initial stock price. The stock price follows the stochastic volatility model

(4.3){(4.4) with parameter values � = 0:07, � = 0:153, � = 2, � = 0:4, and �0 = 0:13

corresponding to the solid line. In Panels (a){(d), �, �, �, and �0 are each varied, respectively,

while the other parameter values are held �xed. The variation in each parameter is obtained

by multiplying its original value by 1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line),

and 0:5 (pluses).
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Figure 9: The relative replication error of a six-month maturity European put option (relative

to the replication cost), plotted as a function of the initial stock price. The stock price follows

the stochastic volatility model (4.3){(4.4) with parameter values � = 0:07, � = 0:153, � = 2,

� = 0:4, and �0 = 0:13 corresponding to the solid line. In Panels (a){(d), �, �, �, and �0

are each varied, respectively, while the other parameter values are held �xed. The variation

in each parameter is obtained by multiplying its original value by 1:25 (dashed-dotted line),

1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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Table 2: Monte Carlo simulation of the optimal-replication strategy �
� for replicating a six-

month at-the-money European put-option, for six sets of parameter values of the stochastic

volatility model (4.3){(4.4), including the set of parameter values that yields a geometric

Brownian motion (last row). For each set of parameter values, 1,000 independent sample

paths were simulated, each path containing 25 periods, and P0 = 1.

Model Performance of Optimal Replication Strategy

�0 � � � V �0 �� b�� ��0 ��

0:13 0:153 2:00 0:400 0:0374 0:0084 0:0086 �0:474 �0:44

0:13 0:137 1:50 0:200 0:0367 0:0067 0:0068 �0:475 �0:43

0:13 0:133 1:00 0:100 0:0366 0:0062 0:0063 �0:475 �0:42

0:13 0:131 0:50 0:050 0:0366 0:0060 0:0059 �0:475 �0:41

0:13 0:130 0:25 0:025 0:0365 0:0060 0:0060 �0:475 �0:43

0:13 0:130 0:00 0:000 0:0365 0:0060 0:0062 �0:475 �0:42

models that illustrate the fact that market completeness need not be a binary characteristic.

In particular, Table 2 shows that as the parameter values move closer to geometric Brownian

motion, the average replication error �
� decreases from 0:0086 to 0:0060. Moreover, the

decrease between the �rst and second rows is considerably larger than the decrease between

the second and third rows|the second and third rows imply price processes that are closer to

each other in their degree of market completeness than that of the �rst row. Such speci�c rank

orderings and sharp numerical comparisons are simply unavailable from standard dynamic

equilibrium models that have been used to model market incompleteness.

Of course, �� is only one of many possible measures of market incompleteness|a canonical

measure seems unlikely to emerge from the current literature|nevertheless it is an extremely

useful measure given the practical implications that it contains for dynamically hedging risks.

4.5 Path-Dependent Options

We consider the option to \sell at the high" as described by Goldman et al. (1979), under

the assumption that the stock price follows the mixed jump-di�usion process (3.20){(3.23),

(3.26), (4.1), (4.2). We de�ne the state variable Z:

Z0 = m � P0
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Figure 10: The replication cost of a six-month maturity European option to \sell at the

high", plotted as a function of the initial stock price. The stock price follows the mixed

jump-di�usion process (3.20){(3.23), (3.26), (4.1), and (4.2) with parameter values m = 1,

� = 0:07, � = 0:106, � = 25, and � = 0:015 corresponding to the solid line. In Panels

(a){(d), �, �, �, and � are each varied, respectively, while the other parameter values are

held �xed. The variation in each parameter is obtained by multiplying its original value by

1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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Zi+1 = max [Zi; Pi+1] :

According to this de�nition, Zi is the running maximum of the stock price process at time

ti. The initial value of Zi is m, i.e., we assume that at time 0 the running maximum is equal

to m.

The payo� of the option is given by

F (PT ; ZT ) = ZT � PT :

In our numerical analysis we set m = 1 as a convenient normalization. Note that this

convention is just a change of scale and does not lead to any loss of generality.

The parameters for the stock price process are taken to be the same as in Section (3.3).

The sensitivity of the replication cost and replication error on the initial stock price and

parameters of the stock price process are reported in Figures 10, 11, and 12.

The qualitative behavior of the replication cost as a function of the initial stock price

is similar to that of the option price as described in Goldman et al. (1979). The di�erence

between our model and theirs is that they assume the stock price follows a geometric Brow-

nian motion and that continuous-time trading is allowed. Also the running maximum of the

stock price process is calculated continuously, not over a discrete set of time moments, as

in our case. Figure 10 shows that the replication cost V0 is not sensitive to the drift rate �

and is increasing in volatility �, the jump intensity jumps �, and the standard deviation �

of the jump magnitude. It is most sensitive to �. These observations are consistent with the

behavior of the replication error of the European put option in Section (3.3). According to

Figure 11, the replication error �� is not sensitive to � and is increasing in all other param-

eters with the highest sensitivity to � and �. Figure 6 shows that the relative replication

error ��=V0 is sensitive to � and �. It is an increasing function of �, while the sign of the

change of ��=V0 with � depends on the initial stock price P0.

5 Measuring the Degree of Market Incompleteness

In this section, we propose to measure the degree of market incompleteness by exploring the

sensitivity of the replication error and the replication cost of a particular option contract to
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Figure 11: The replication error of a six-month maturity European option to \sell at the

high", plotted as a function of the initial stock price. The stock price follows the mixed

jump-di�usion process (3.20){(3.23), (3.26), (4.1), and (4.2) with parameter values m = 1,

� = 0:07, � = 0:106, � = 25, and � = 0:015 corresponding to the solid line. In Panels

(a){(d), �, �, �, and � are each varied, respectively, while the other parameter values are

held �xed. The variation in each parameter is obtained by multiplying its original value by

1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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Figure 12: The relative replication error of a six-month maturity European option to \sell at

the high" (relative to the replication cost), plotted as a function of the initial stock price. The

stock price follows the mixed jump-di�usion process (3.20){(3.23), (3.26), (4.1), and (4.2)

with parameter values m = 1, � = 0:07, � = 0:106, � = 25, and � = 0:015 corresponding to

the solid line. In Panels (a){(d), �, �, �, and � are each varied, respectively, while the other

parameter values are held �xed. The variation in each parameter is obtained by multiplying

its original value by 1:25 (dashed-dotted line), 1:5 (dots), 0:75 (dashed line), and 0:5 (pluses).
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the speci�cation of the stock-price dynamics. Speci�cally, we compare the following models:

geometric Brownian motion, a mixed jump-di�usion process, and a di�usion process with

stochastic volatility. The parameters of these models are calibrated to give rise to identical

values of the expected instantaneous rate of return and volatility, hence we can view these

three models as competing speci�cations of the same data-generating process.
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Figure 13: The di�erence between the replication cost and the intrinsic value of a six-month

maturity European put option, plotted as a function of the initial stock price. Several

processes for the stock price are plotted: geometric Brownian motion (3.8){(3.10) (solid

line); the mixed jump-di�usion model (3.20){(3.23), (3.26), (4.1), and (4.2) (dashed line);

and the stochastic volatility model (4.3){(4.4) (dashed-dotted line). The parameter values

are given by (5.1), (5.2), and (5.3).

5.1 Calibrating the Stochastic Processes

We consider a European put option with a unit strike price (K = 1) and a six-month

maturity, i.e., F (PT ) = max[0; K �PT ]. There are 25 trading periods, de�ned by ti+1� ti =

�t = 1=50. Since the closed-form expressions for the transition probability density of the

mixed jump-di�usion process and the process with stochastic volatility are not available, we

base our computations on the discrete-time approximations of these processes. The model

speci�cations and corresponding parameter values are:
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1. Geometric Brownian Motion. Returns on the stock are lognormal, given by (3.8){

(3.10). We use the following parameter values:

� = 0:07 ; � = 0:13 : (5.1)

2. Mixed Jump-Di�usion. The distribution of returns on the stock is given by (3.20){

(3.23), (3.26), (4.1), and (4.2). We use the following parameter values:

� = 0:07 ; � = 0:106 ; � = 25 ; � = 0:015 : (5.2)

3. Di�usion with Stochastic Volatility. Stock-price and volatility dynamics are given

by (4.3){(4.4). We assume that at time t = 0, volatility �0 is equal to 0:13, and the

other parameter values are:

� = 0:07 ; � = 0:153 ; � = 2 ; � = 0:4 : (5.3)

5.2 Numerical Results

Figures 13{15 and Table 3 summarize our numerical results. Figure 13 presents the replica-

tion cost V �

0 minus the intrinsic value F (P0) for the three models as a function of the stock

price at time t = 0. The hedging costs for the �rst two models are practically identical,

while the stochastic volatility model can give rise to a signi�cantly higher hedging costs for

a deep-out-of-money option. Figure 14 and Table 3 shows the dependence of the replication

error �� on the initial stock price.

All three models exhibit qualitatively similar behavior: the replication error is highest

close to the strike price. For our choice of parameter values the replication error is highest

for the stochastic volatility model and lowest for geometric Brownian motion. However, this

need not hold in general. As we demonstrate in Section 3.3, the replication error of the

mixed jump-di�usion process depends critically on � and � in (3.24, 3.26), thus, by varying

these parameters, one can reverse the order of the curves in Figure 14 without changing the

annualized volatility of the mixed jump-di�usion process.
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Table 3: Comparison of replication costs and errors of the optimal-replication strategy for

replicating a six-month European put option under competing speci�cations of price dynam-

ics: geometric Brownian motion (3.8){(3.10); the mixed jump-di�usion model (3.20){(3.23),

(3.26), (4.1), and (4.2); and the stochastic volatility model (4.3){(4.4). The parameter values

are given by (5.1), (5.2), and (5.3).

Price Dynamics
Initial Stock Price P0

0.90 0.95 1.00 1.05 1.10

Replication Cost Minus Intrinsic Value (V �0 � F (P0))

Geometric Brownian Motion 0:0054 0:0161 0:0365 0:0176 0:0074

Jump/Di�usion 0:0053 0:0159 0:0364 0:0175 0:0074

Stochastic Volatility 0:0060 0:0168 0:0374 0:0185 0:0082

Replication Error (��)

Geometric Brownian Motion 0:0046 0:0058 0:0060 0:0052 0:0038

Jump/Di�usion 0:0051 0:0066 0:0068 0:0059 0:0043

Stochastic Volatility 0:0061 0:0079 0:0084 0:0074 0:0056

Relative Replication Error (��=V �0 )

Geometric Brownian Motion 0:043 0:088 0:164 0:292 0:509

Jump/Di�usion 0:049 0:100 0:187 0:335 0:585

Stochastic Volatility 0:058 0:119 0:226 0:400 0:679
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Figure 14: The replication error of a six-month maturity European put option, plotted

as a function of the initial stock price. Several processes for the stock price are plotted:

geometric Brownian motion (3.8){(3.10) (solid line); the mixed jump-di�usion model (3.20){

(3.23), (3.26), (4.1), and (4.2) (dashed line); and the stochastic volatility model (4.3){(4.4)

(dashed-dotted line). The parameter values are given by (5.1), (5.2), and (5.3).

The dependence of the relative replication error on the initial stock price is captured

in Figure 15. As in Figure 13, the relative replication errors for the �rst two models are

practically identical, while the stochastic volatility model can exhibit considerably higher

errors. Also, while the relative replication error can be signi�cant, particularly for an out-

of-money option, the variation across the models is not as signi�cant as one would expect.

When continuous-time trading is allowed, the replication error for the geometric Brownian

motion model is zero, while the other two models give rise to strictly positive replication

errors. This is an implication of the fact that the �rst model describes a dynamically complete

market, while the other two correspond to markets which are dynamically incomplete (due

to the absence of a su�cient number of traded instruments).

Nevertheless, as Figure 15 illustrates, the transition from continuous- to discrete-time

trading can smear the di�erences between these models, leading to relative replication errors

of comparable magnitude. This shows that the inability to trade continuously is just as

important a source of market incompleteness as the absence of traded instruments.

49



0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stock Price

R
ep

lic
at

io
n 

E
rr

or
 / 

R
ep

lic
at

io
n 

C
os

t

Figure 15: The relative replication error of a six-month maturity European put option

(relative to the replication cost), plotted as a function of the initial stock price. Several

processes for the stock price are plotted: geometric Brownian motion (3.8){(3.10) (solid

line); the mixed jump-di�usion model (3.20){(3.23), (3.26), (4.1), and (4.2) (dashed line);

and the stochastic volatility model (4.3){(4.4) (dashed-dotted line). The parameter values

are given by (5.1), (5.2), and (5.3).
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6 Conclusion

We have proposed a method for replicating derivative securities in dynamically incomplete

markets. Using stochastic dynamic programming, we construct a self-�nancing dynamic

portfolio strategy that best approximates an arbitrary payo� function in a mean-squared

sense. When markets are dynamically complete, as in the Black and Scholes (1973) and

Merton (1973) models, our optimal-replication strategy coincides with the delta-hedging

strategies of such arbitrage-based models. Moreover, we provide an explicit algorithm for

computing such strategies, which can be a formidable challenge despite market completeness,

e.g., path-dependent derivatives such as \look-back" options.

When markets are not dynamically complete, as in the case of options on assets with

stochastic volatility or with jump components, our approach yields the minimum produc-

tion cost of a self-�nancing portfolio strategy with a terminal value that comes as close as

possible|in mean-squared error|to the option's payo�. This is the essence of the �-arbitrage

approach to synthetically replicating a derivative security.

We also argue that the replication error of the optimal-replication strategy can be used

as a quantitative measure for the degree of market incompleteness. Despite the di�culties

in making welfare comparisons between markets with di�erent types of incompleteness (see,

for example, Du�e, 1987, Du�e and Shafer, 1985, 1986, and Hart, 1974), the minimum

replication error of an �-arbitrage strategy does provide one practical metric by which market

completeness can be judged. After all, if it is possible to replicate the payo� of a derivative

security to within some small error �, the market for that security may be considered complete

for all practical purposes even if � is not zero.

Of course, this is only one of many possible measures of market completeness and we make

no claims of generality here. Instead, we hope to have shown that Merton's (1973) seminal

idea of dynamic replication has far broader implications than the dynamically-complete-

markets setting in which it was originally developed. We plan to explore other implications

in future research.
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A Appendix

The proofs of Theorems 2 and 1 are conceptually straightforward but notationally quite

cumbersome. Therefore, we present only a brief sketch of the proofs below|interested

readers can contact the authors for the more detailed mathematical appendix.

A.1 Proof of Theorem 1

The proof of Theorem 1 follows from dynamic programming. For i = N , (2.14){(2.16)

are clearly true, given (2.10). We now show that (2.17){(2.21) describe the solution of the

optimization problem in (2.9). First, as we observed in Section 2.3, the functions ai(�; �) are

positive. Together with (2.3) this implies that

E

"
Ji+1

 
Vi + �i(Pi+1 � Pi); Pi+1;Zi+1

! ����� Vi; Pi;Zi

#

is a convex function of �i. Therefore, we can use the �rst-order condition to solve the

optimization problem in (2.11):

d

d�i
E

"
Ji+1

 
Vi + �i(Pi+1 � Pi); Pi+1;Zi+1

! ����� Vi; Pi;Zi

#
= 0; (A.1)

where Ji+1(�; �; �) is given by (2.12). Equation (A.1) is a linear equation in �i and it is

straightforward to check that its solution, ��(i; Vi; Pi;Zi), is given by (2.13), (2.17), and

(2.18). We now substitute (2.13) into (2.3) and use (2.11) to calculate

Ji(Vi; Pi;Zi) =

E

"
Ji+1

 
Vi + �

�(i; Vi; Pi;Zi) � (Pi+1 � Pi); Pi+1;Zi+1

! ����� Vi; Pi;Zi

#
: (A.2)

Equations (2.19){(2.21) are obtained by rearranging terms in (A.2).

A.2 Proof of Theorem 2

The more tedious algebraic manipulations of this proof were carried out using the symbolic

algebra program Maple. Therefore, we shall outline the main ideas of the proof without

52



reporting all of the details.

The cost-to-go function J(t; Vt; Pt;Zt) satis�es the dynamic programming equation
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with boundary condition:

J(T; VT ; PT ;ZT ) = [VT � F (PT ;ZT )]
2 (A.4)

where some of the functional dependencies were omitted to simplify the notation.

We must now check that the function J(t; Vt; Pt;Zt), given by (2.26), (2.27){(2.30), and

the optimal control (2.31), satis�es (A.3){(A.4). Boundary conditions (2.30) immediately

imply (A.4). Next we substitute (2.26) into (A.3). It is easy to check, using equation

(2.27), that function a(�) is positive. Therefore, the �rst-order condition is su�cient for the

minimum in (A.3). This condition is a linear equation in �t which is solved by (2.31). It is

now straightforward to verify that, whenever functions a(�); b(�); c(�) satisfy (2.27){(2.29),

(A.3) is satis�ed as well.
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