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Abstract

We derive dynamic optimal trading strategies that minimize the expected cost of trading
blocks of securities over a �xed time horizon. Given �xed blocks �si of shares of stock i to be

traded within a �nite number of periods T , i = 1; : : : ; n, and given price-impact functions
that yield the execution price of an individual trade as a function of the shares of stock i

traded and current market conditions, we obtain the optimal sequence of trades as a function
of market conditions|closed-form expressions in some cases|that minimizes the expected

cost of executing �si within T periods. We also propose an approximation algorithm for
incorporating constraints, a particularly important extension in practice. To illustrate the
practical relevance of our methods, we apply them to a hypothetical portfolio of 25 stocks by
estimating their price-impact functions using historical trade data from 1996 and deriving

the optimal execution strategies for the portfolio, and by performing several Monte Carlo
simulation experiments.
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1 Introduction

The rapid growth in equity investing, driven by the increasing popularity of mutual funds

and de�ned-contribution retirement plans, has led to a rising concentration of assets among

institutional money managers. A typical portfolio manager now oversees a large portfolio

of several hundred securities, with individual positions that might comprise a signi�cant

fraction of the average daily volume of the security. Both active managers and passive

indexers must frequently rebalance their portfolios, either to include new stock picks, sell

stocks that are out of favor, or to improve the tracking of a given index or benchmark.

This generates sizeable orders across many stocks that must be executed within a relatively

short time horizon, and that must be executed together so as to maintain the risk/reward

characteristics of the portfolio. The transactions costs associated with trading such \lists"

of securities|often called execution costs|can be substantial.

Execution costs are comprised of several components: explicit costs such as commissions

and bid/ask spreads, and costs that are harder to quantify such as the opportunity cost of

waiting and the price impact from trading. Opportunity costs arise because market prices

are moving constantly and can move favorably or unfavorably without warning, generating

unexpected pro�ts or lost opportunities while a portfolio manager hesitates. Price impact

is the typically unfavorable e�ect on prices that the very act of trading creates, not unlike

the turbulence that is generated by a ship's own wake. The seller of a security will, by the

very act of selling, push down the security's price, yielding lower proceeds from the sale, and

similarly for the buyer. Moreover, the larger the order, the more heavily is the price a�ected

by the trade. For portfolios that turn over frequently or with large positions to trade, these

costs can add a signi�cant drag on the fund's overall performance (see,for example, Loeb

(1983)).

Recent studies by Chan and Lakonishok (1995) and Keim and Madhavan (1995a{c) show

that institutional investors often break up their larger trades into smaller \packages" that

they execute over the course of several days. There is a compelling economic rationale

for \package" trading. Trading is fundamentally a dynamic, path-dependent, stochastic

problem insofar as it takes time to trade and the very act of trading a�ects price and price

dynamics which, in turn, a�ect execution costs. Controlling execution costs of large blocks
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of stock must be accomplished by trading over a number of time periods, a fact recognized

by Bertsimas and Lo (1998) who used stochastic dynamic programming techniques to derive

optimal or best-execution strategies.

In this paper, we extend the single-asset framework outlined by Bertsimas and Lo (1998)

to construct best-execution strategies for portfolio problems. Speci�cally, we solve the fol-

lowing problem: Given �xed blocks of shares in n stocks, s = [ s1 s2 � � � sn ]0,1 to be

purchased within a �xed �nite number of periods T , and given a set of price dynamics that

capture price impact, i.e., the execution price of an individual trade as a function of the

shares traded and other \state" variables, �nd the optimal sequence of trades (as a function

of the state variables) that minimizes the expected execution costs.2 Since it is well-known

that the short-term demand curves for even the most actively traded equities are not per-

fectly elastic (see, for example, Shleifer (1986)), a market order at date 0 for the entire block

s is clearly not an optimal trading strategy.

Denote by st = fs1t; s2t; : : : ; sntg the number of shares of each stock acquired in period t

at prices pt = fp1t; p2t; : : : ; pntg, where t = 1; : : : ; T . Then the investor's objective may be

expressed as:

Min
fstg

E1

� TX
t=1

p
0
tst

�
(1.1)

subject to:

pt = f(pt�1;xt; st; �t) (1.2a)

xt = g(xt�1;�t) (1.2b)
TX
t=1

st = s (1.2c)

where xt is a vector of state variables, �t is vector white noise, and f(�) and g(�) are the state

equations or laws of motion that incorporates both price dynamics of pt, the price impact of

1We follow the common convention that all vectors are column vectors unless they are explicitly trans-

posed, and boldface Roman and Greek letters denote vectors and matrices.
2For simplicity and without loss in generality, we consider the case of purchasing s only. Selling s and a

combination of buying certain stocks and selling others can easily be accommodated with the appropriate

sign conventions (positive numbers for purchases, negative for sales).
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trading st, and the dynamics of the state variables. We may also wish to impose additional

constraints, e.g., a no-sales constraint, st � 0,3 or other conditions that are placed upon

the portfolio manager by institutional restrictions, tax considerations, or other aspects of his

investment process.

The portfolio case contains several interesting features not captured by the single-stock

analysis of Bertsimas and Lo (1998) and others. Perhaps the most important feature is

the ability to capture cross-stock relations such as the cross-autocorrelations reported in Lo

and MacKinlay (1990). Price movements in one stock can induce similar movements in the

price of another, either because of common factors driving both, or because of linked trading

strategies, e.g., pairs trading, index arbitrage, risk arbitrage, etc. In such cases, the price

impact of trading a portfolio may be larger than the sum of the price impact of trading the

individual stocks separately. Alternatively, if some stocks are negatively correlated (perhaps

because of portfolio substitution e�ects), or if the portfolio to be executed includes both

purchases and sales, then the portfolio execution cost may be lower than the sum of the

individual stocks' execution costs due to a kind of diversi�cation e�ect in which the trades of

one stock lower the price impact of trades in another. Whether execution costs are magni�ed

or molli�ed in the portfolio case is, of course, an empirical issue that turns on the law of

motion for the vector of prices and state variables. In either case, it is clear that the portfolio

setting is considerably more complex than the single-stock case.

In Section 2 specify the state equations and explore in greater detail one particular speci-

�cation that captures cross-stock interactions for a portfolio of stocks, allows for predictabil-

ity in asset returns, and incorporates a \temporary" price-impact e�ect. The best-execution

strategy is derived in closed form in Section 3 using stochastic dynamic programming, and

in Section 4 we propose an approximation algorithm that provides a near-optimal execution

strategy for the case with additional constraints. In Section 5 we evaluate the practical rele-

vance of our approach by applying it to a portfolio of 25 stocks using historical transactions

date from 1996 and estimating the execution costs for such a portfolio under several di�erent

3If a portfolio manager is attempting to acquire a block of securities, it is di�cult to justify selling the

same securities during the acquisition period (unless, of course, the manager has extremely accurate negative

information regarding the security's price, which is somewhat inconsistent with the original premise that he

is a buyer). Indeed, in many cases, it is illegal because it is viewed as a violation of the �duciary trust that

portfolio managers have to act in the best interests of their investors.
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trading scenarios. We conclude in Section 6.

2 The State Equations

In this section we present a speci�cation for the state equations (1.2){(1.2) that incorporates

a multivariate price-impact function with cross-stock interactions (Section 2.1), and discuss

other possible speci�cations afterwards (Section 2.2).

2.1 Linear Percentage Price-Impact

Let the execution price pt be the sum of two components:

pt = ~pt + �t (2.1)

where ~pt may be viewed as a \no-impact" price|the price that would prevail in the absence

of any market impact|and the impact �t. A plausible and observable proxy for the no-

impact price is the midpoint of the bid/o�er spread, although it can be arbitrary as long as

it is una�ected by the trade size st. For convenience, and to ensure non-negative prices, we

model ~pt as vector-geometric-Brownian-motion:

~pt = exp(Zt)~pt�1 (2.2)

where Zt is a diagonal matrix whose diagonal is a normal random vector zt with mean �z

and covariance matrix �z. The exp(�) operator denotes the matrix exponential which, in

this case, reduces to the element-wise exponential of the diagonal entries in Zt.

For the price-impact term, �t, we set:

�t = ~P t(A ~P tst +Bxt) (2.3)

where ~P t = diag[~pt] and diag(�) is the diagonalization operator which maps its vector argu-

ment into a diagonal matrix with the vector as its diagonal. This speci�cation captures the

impact of trading st shares on the transaction prices pt, and implies that as a percentage of
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the no-impact price, ~pt, the price impact is a linear function of the dollar-value of the trade

and other state variables xt. The form of the price impact (2.3) di�ers from the single-stock

case in that the percentage price-impact function for each stock i is a linear function, A ~P tst,

of the dollar-values of the trades of all n stocks, not just of stock i. In the special case where

A is diagonal, the portfolio problem reduces to n independent single-stock problems solved

by Bertsimas and Lo (1998).

This speci�cation of the dynamics of pt has a number of advantages over other speci�ca-

tions (see Section 2.2). First, ~pt is guaranteed to be non-negative, and pt is also guaranteed

to be non-negative under mild restrictions on �t. Second, by separating the transaction

price pt into a no-impact component ~pt and the impact component �t, the price impact of

a trade is temporary, a�ecting the current transaction price but having no a�ect on future

prices. Third, the percentage price impact increases linearly with the trade size, which is

empirically plausible (see, for example, Loeb (1983, Table II), Birinyi (1995), or Leinweber

(1993, 1994)). Fourth, (2.1) implies a natural decomposition of execution costs, decoupling

market-microstructure e�ects from price dynamics, which is closely related to P�erold's (1988)

notion of implementation shortfall.4 And �nally, we shall see in Section 3 that (2.1) admits

a closed-form solution in which the best-execution strategy is a simple linear function of the

state variables and the optimal-value function is quadratic.

The presence of the vector xt in (2.3) captures the potential in
uence of changing market

conditions or private information about the securities on the price impact �t. For example,

xt might be the return on the S&P 500 index, a common component in the price of most

equities. We model xt as a vector with r elements, allowing for multiple sources of informa-

tion to in
uence execution prices (or several lags of a single state variable). To complete our

speci�cation of the state equation, we must specify the dynamics of xt, and for simplicity

we let:

xt = Cxt�1 + �t (2.4)

4Because (2.1) implies that price impact is a temporary phenomenon, a�ecting only the current trade

price p
t
and not the no-impact price level ~p

t
, the objective function (1.1) separates into two terms. The �rst

term is the no-impact cost of execution and the second term is the total impact cost. This decomposition

is precisely the one proposed by P�erold (1988) in his de�nition of implementation shortfall, but now applied

to executing s. In particular, the \paper" return or execution cost is given by the �rst term, the actual cost

is given by the sum of the two terms, hence the second term is the implementation shortfall in executing s.
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where �t is vector white noise with mean 0 and covariance matrix ��. The fact that xt is a

vector autoregressive process with one lag (an \AR(1)") allows us to capture varying degrees

of predictability in information or market conditions. The matrices A and B measure the

sensitivity of price impact to trade size and market conditions. Matrix A must be positive

de�nite, B is arbitrary, and must C have eigenvalues less than unity in modulus (to ensure

stationary of xt).

2.2 Other Speci�cations

The speci�cation for the state equation proposed in Section 2.1 is only one of many pos-

sible speci�cations. For example, Bertsimas and Lo (1998) propose a natural multivariate

extension of their \linear price impact" speci�cation in which the state equation is given by:

pt = pt�1 + Ast + Bxt + �t (2.5)

where A is a positive de�nite (n � n)-matrix, B is an arbitrary (n�m)-matrix, xt is an

m-vector of information variables, and �t is n-vector white noise with mean 0 and covariance

matrix ��. As before, we assume that xt follows a stationary AR(1) process, hence:

xt = Cxt�1 + �t (2.6)

where C is an (m�m)-matrix with eigenvalues all less than unity in modulus, and �t is

m-vector white noise with mean 0, covariance matrix ��, and which is independent of �t.

This speci�cation di�ers signi�cantly from the linear-percentage price impact of Section

2.1 in a number of respects. Perhaps the most important di�erence is the fact that (2.5)

implies that the price impact has a \permanent" e�ect on prices, due to the random-walk

nature of the price dynamics. Also, the price impact is linear in price, implying that a

10,000-share trade will have the same dollar impact on $1-stock as it will on a $100-stock.

Finally, unless some rather unnatural restrictions are placed on �t in (2.5), there is a positive

probability that pt can take on negative values, clearly an unrealistic prospect.

Of course, Bertsimas and Lo (1998) consider (2.5) primarily for analytic tractability, not

because of supporting empirical evidence. Nevertheless, it is instructive to compare this
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speci�cation with the linear-percentage speci�cation of Section 2.1 to develop some intuition

for the more practical issues in specifying the state equation. In practice, the state equation

must be estimated empirically. For example, several empirical studies seem to point to both

permanent and temporary price-impact in US equity data, e.g., Kraus and Stoll (1972),

Holthausen, Leftwich, and Mayers (1987, 1990), Barclay and Litzenberger (1988), Barclay

and Warner (1993), and Chan and Lakonishok (1993, 1995). However, given the ever-

changing nature of �nancial markets, it is crucial to re-estimate the state equation for each

application using the most recent datasets available.

3 The Dynamic Programming Solution

We use a stochastic dynamic programming algorithm to solve the optimal execution problem

(1.1). Denote by wt the vector of shares remaining to be bought (or sold) at time t:

wt = wt�1 � st�1 ; w1 = s ; wT+1 = 0 : (3.7)

The condition wT+1 = 0 ensures that all s shares are executed by time T . The complete

statement of the problem is then:

Min
fstg

E1

� TX
t=1

p
0
tst

�

subject to:

pt = f(pt�1;xt; st; �t)

xt = g(xt�1;�t)

wt = wt�1 � st�1

w1 = s

wT+1 = 0
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3.1 Linear-Percentage Price-Impact

As with all dynamic programming solutions, we begin at the end. Denote by VT the optimal

value function at the end of our trading horizon, period T . By de�nition:

VT (~pT ;xT ;wT ) = Min
fsT g

ET

�
p
0
TsT

�
= ET

�
p
0
TwT

�
(3.8)

=

�
~P T (en +A ~P TwT +BxT )

�0
wT : (3.9)

Since this is the last period and wT+1 must be set to zero, there is no choice but to execute

the remaining order wT , hence the optimal trade size s�T = wT . Observe that ~P T = ~P
0

T ,

hence (3.9) can be re-expressed as:

VT (~pT ;xT ;wT ) = e
0
n
~P TwT +w

0
T
~P TA

0 ~P TwT + x0
TB

0 ~P TwT (3.10)

which shows that the optimal value function is linear in xT and linear-quadratic in wT . By

continuing recursively in this fashion and applying Bellman's principle of optimality (see

Bertsekas (1995) for example), we �nd that the optimal value function Vt�k is given by:

VT�k = Min
fsT�kg

ET�k

�
p
0
T�ksT�k + VT�k+1(~pT�k+1;xT�k+1;wT�k+1)

�
(3.11)

= e
0
nDn;ken + e

0
rDr;ker + e

0
nEkxT�k + x

0
T�kF ken +

x
0
T�kGkxT�k + x

0
T�kHk ~wT�k +

~w0
T�kJT�1xT�k + e

0
nKk ~wT�k + ~w0

T�kLken +

~w0
T�kNk ~wT�k (3.12)

where explicit expressions for Dn;k, Dr;k, Ek, F k, Gk, Hk, Jk, Kk, Lk, and Nk are given

in the Appendix. This yields the best-execution strategy:

~s�T�k = �x;kxT�k + �w;k ~wT�k + �1;ken (3.13)

where �x;k, �w;k, and �1;k, are also given in the Appendix. The recursion (3.12) and best-

execution strategy (3.13) completely characterizes the solution to our original problem, and
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also yields the expected cost of best execution, VT�k, as a by-product.

3.2 Linear Price-Impact

Under the law of motion (2.5){(2.6), Bertsimas and Lo (1998) show that the portfolio problem

(1.1) can be solved via Bellman's equation, which yields the following best-execution strategy

and optimal-value function:

s
�
T�k = (I �

1

2
A

�1
k�1A

0)wT�k +
1

2
A

�1
k�1B

0
k�1CxT�k (3.14)

VT�k(pT�k�1;xT�k;wT�k) = p
0
T�k�1wT�k + w

0
T�kAkwT�k +

x
0
T�kBkwT�k + x

0
T�kCkxT�k + dk (3.15)

for k = 0; : : : ; T�1, where:

Ak = A�
1

4
AA

�1
k�1A

0
; A0 = A

Bk = 1

2
C

0
Bk�1(A

0
k�1)

�1
A

0 +B0
; B0 = B

0

Ck = C
0
Ck�1C �

1

4
C

0
Bk�1(A

0
k�1)

�1
Bk�1C ; C0 = 0

dk = dk�1 + E[�0T�kCk�1�T�k] ; d0 = 0 :

(3.16)

The best-execution strategy (3.14) is qualitatively similar to the optimal single-stock

strategy that Bertsimas and Lo (1998) derive, but there is one key di�erence: in the portfolio

case, unless the matrix A is diagonal, the best-execution strategy for one stock will depend

on the parameters and state variables of all the other stocks. To see this, observe that the

matrix coe�cient (I� 1

2
A

�1
k�1A

0) multiplying wT�k in (3.14) will generally not be a diagonal

matrix unless A is itself diagonal. Of course, if A is diagonal this means that trading in

one stock has no price impact on any other stocks (see (2.5)), hence the portfolio problem

essentially reduces to n independent single-stock problems.

For this reason, whether or not the portfolio best execution cost is greater or less than

the sum of the individual stocks' best execution costs depends wholly on the values in A

and is an empirical issue which we shall consider in detail in Section 5.
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4 Imposing Constraints

For most practical applications, there will be constraints on the kind of execution strategies

that institutional investors can follow. For example, if a block of shares is to be purchased

within T periods, it is very di�cult to justify selling the stock during these T periods

even if such sales are warranted by the best-execution strategy.5 Therefore, in practice

buy-programs (sell-programs) will almost always be accompanied by non-negativity (non-

positivity) constraints. Such constraints are often binding for best-execution strategies,

particularly when the information variable has a large e�ect on price impact. In Section 4.1

we illustrate the di�culties of imposing constraints, and propose an approximate solution

method in Section 4.2.

4.1 Why Constraints Are Problematic

Although there are well-known techniques for solving constrained-optimization problems in

a static setting, corresponding techniques for dynamic optimization problems have not yet

been developed. To see why this is such a di�cult task, consider the simplest case of imposing

non-negativity restrictions st � 0 in the linear percentage price-impact model of section 2.1

with only one asset (scalar equations). Without any constraints, the optimal-value function

VT�k is quadratic in the state variable wT�k, hence the Bellman equation can be easily

solved in closed form. But if non-negativity constraints st � 0 are imposed, VT�k becomes a

piecewise-quadratic function, with 3k pieces.

To see how this arises, observe that for k = 0 the optimal control is s�T = wT and VT is a

quadratic function of wT . In the next stage, k = 1, we calculate the optimal control s�T�1 by

minimizing a quadratic function of sT�1 subject to the constraints 0 � sT�1 � wT�1. The

5Other common constraints include sector-balance constraints, turnover constraints, tax-motivated con-

straints, and, in the portfolio case, dollar-balance constraints. This last type of constraint|the dollar-value

of the portfolio at the end of trading lies within some �xed interval|is one of the most di�cult to impose

because the constraint is a function of the entire vector of prices which is stochastic. See Bertsimas and Lo

(1998) for a probabilistic method of imposing such constraints.
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solution is given by:

s
�
T�1 =

8>>>>><
>>>>>:

0 if su;T�1 < 0

su;T�1 if 0 < su;T�1 < wT�1

wT�1 if su;T�1 > wT�1

(4.1)

where:

su;T�1 =
1

~pT�1
[�w;1~pT�1wT�1 +�x;1xT�1 +�1;1] : (4.2)

This partitions the range of wT�1 into three intervals; over each interval there is a di�erent

optimal control s�T�1, and within each interval VT�1 is a continuous quadratic function of

wT�1. At the next stage, k = 2, each of these three intervals is partitioned into another

three intervals, each with a di�erent optimal control s�T�2, and so on, the number of intervals

growing exponentially with k. Therefore, even in this simple case, calculating s�T�k and VT�k

exactly is only feasible for a very small number of periods T (for example, when T = 20

there are 320 = 3;486;784;401 intervals at the last stage of the dynamic program!).

Faced with these di�culties we propose in the next section an approximation method to

address the optimal control problem with constraints.

4.2 A Static Approximation Method

The dynamic optimization algorithm we presented in Section 3 for the case without non-

negativity constraints gives the best-execution strategy ~s�T�k (see (3.13)) as a function of the

state vector (xT�k; ~wT�k; ~pT�k) at time T�k. At time t = 1 the expected execution cost

E[J ] is given by:

E[J ] = E

� TX
k=1

p
0
ksk

�

= E

� TX
k=1

[ ~P ken + ~P k(A ~P ksk +Bxk)]
0
sk

�

= E

�
e
0
n
~P 1s1 + s

0
1
~P 1A

0 ~P 1s1 + x
0
1B

0 ~P 1s1 + e
0
n
~Z2

~P 1s2 +

s
0
2
~P 1

~Z2A
0 ~Z2

~P 1s2 + (Cx1 + �2)
0
B

0 ~Z2
~P 1s2 +

11



e
0
n
~Z2

~Z3
~P 1s3 + s

0
3
~P 1

~Z3
~Z2A

0 ~Z2
~Z3

~P 1s3 +

[C(Cx1 + �2) + �3]
0
B

0 ~Z2
~Z3

~P 1s3 +

� � �+

e
0
n
~Z2

~Z3 � � �
~ZT

~P 1sT +

s
0
T
~P 1

~ZT
~ZT�1 � � �

~Z2A
0 ~Z2

~Z3 � � �
~ZT

~P 1sT +

[CT
x1 +C

T�1
�2 + : : :+C�T + �T ]

0
�

B
0 ~Z2

~Z3 � � �
~ZT

~P 1sT

�
(4.3)

where ~P k = diag[pk] and
~Zk = exp(Zk). Taking the expectation of the cost function yields:

E[J ] = e
0
n
~P 1s1 + s

0
1A

0 ~P 1s1 + x
0
1B

0 ~P 1s1 +

e
0
nQ

~P 1s2 + s
0
2(A

0
�R) ~P 1s2 + x

0
1C

0
B

0
Q ~P 1s2 +

e
0
nQ

2 ~P 1s3 + s
0
3(A

0
�R�R) ~P 1s3 + x

0
1(C

2)0B0
Q

2 ~P 1s3 +

: : :+

e
0
nQ

T ~P 1sT + s
0
T (A

0
�R�R� � � � �R�R) ~P 1sT +

x
0
1(C

T )0B 0
Q

T ~P 1sT (4.4)

where Q is a (n� n) diagonal matrix with entries

qi = exp(�z;i +
1

2
�z;ii) ; (4.5)

R is an (n� n) symmetric matrix with elements:

rij = exp[�z;i + �z;j +
1

2
(�z;ii + �z;jj + 2�z;ij)] ; (4.6)

and the matrix dot operator `�' denotes an element-wise matrix multiplication, i.e., A�B �

[ aijbij ].

The expression (4.4) depends on the entire sequence of controls, fs1; s2; : : : ; sTg and the

observed states at time t = 1, ~p1 and x1. In general, each control variable st depends on

the state at time t. Under the static approximation approach, we will restrict the class of
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controls to those that st depend only on the state at time t=1, i.e., they only depend on

prices ~p1 and information vector x1. Under this approximation the problem reduces to the

following quadratic optimization problem:

Minimize e
0
n
~P 1s1 + s

0
1A

0 ~P 1s1 + x
0
1B

0 ~P 1s1 + e
0
nQ

~P 1s2 +

s
0
2(A

0
�R) ~P 1s2 + x

0
1C

0
B

0
Q ~P 1s2 + e

0
nQ

2 ~P 1s3 +

s
0
3(A

0
�R�R) ~P 1s3 + x

0
1(C

2)0B0
Q

2 ~P 1s3 + � � � +

e
0
nQ

T ~P 1sT + s
0
T (A

0
�R�R� � � � �R�R) ~P 1sT +

x
0
1(C

T )0B0
Q

T ~P 1sT (4.7)

subject to s =
TX
t=1

st

0 � st ; t = 1; : : : ; T

We solve (4.7) at time t=1 and �nd the \optimal" controls s11; : : : ; s
1
T , where the superscript

indicates that this is the period-1 solution of (4.7). However, we only implement the control

s
1
1. After the state vector in period t = 2 is observed, we re-solve (4.7) for time t$ = $2,

�nd a new set of controls s22; : : : ; s
2
T , but only implement the control s22. We continue in this

fashion, at each step solving a convex quadratic optimization problem which can be handled

e�ciently using commercially available packages, e.g., CPLEX or MINOS.

Although the static approximation method may not yield adequate approximations in

all cases, in many of the examples we have explored, the technique performs admirably (see,

for example, the empirical analysis of Section 5). Of course, it is di�cult to derive accurate

bounds on the approximation error in the most interesting cases because these are the cases

for which the optimal solutions are unknown. We hope to explore the theoretical properties

of the static approximation method in future research.

5 An Empirical Example

In this section we implement the best-execution strategies developed in Section 3 and 4 for

a hypothetical portfolio of 25 stocks using real historical data. Speci�cally, we estimate
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the parameters of the linear-percentage model of Section 2.1 for each of the 25 stocks,

construct several portfolio rebalancing scenarios, and compare the best-execution strategy

with a \naive" strategy of trading equal-size lots in each time period.

5.1 The Data

Our empirical analysis draws on three sources of data. Our primary data source is a pro-

prietary record of trades performed over the NYSE DOT system by the trading desk at

Investment Technologies Group (ITG) on every trading day between January 2, 1996 and

December 31, 1996. Each trade is cataloged with the following information: order submis-

sion date and time, order execution date and time, whether it is a buy or sell order, size

in shares, execution price, and order type (e.g. market order, limit order). The 25 stocks

chosen for this study were those that had the greatest number of market orders over the

year-long interval (see Table 1).

Because of our selection rule, our sample consists of companies with large market cap-

italizations, which ensures that we will have enough data to �t the model and arrive at

reasonably accurate estimates of the parameters. But such a sample will tend to exhibit a

lower-than-average price impact because stocks that trade very frequently are, by de�nition,

very liquid and have much smaller price impact. Such a bias in our sampling procedure by

no means invalidates the relevance of our example. In fact, if we can demonstrate that our

best-execution strategy is bene�cial for highly liquid stocks, then the value of our approach

is likely to be even greater for less liquid stocks where price impact is signi�cantly higher.

The ITG database provides valuable trade information but we must augment our analysis

with the NYSE TAQ data in order extract quotes prevailing at the time of ITG trades. The

TAQ database is a complete history of all trades and quotes on the NYSE, AMEX and

NASDAQ exchanges.

Finally, we will also use S&P 500 tick data provided by Tick Data Inc. to get intraday

levels for the S&P 500 index during 1996.

5.2 The Estimation Procedure

Our estimation procedure is composed of three separate steps. First we estimate the param-

eters, �z and �z of the no-impact price dynamics (2.2) for each stock. Given the geometric
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Brownian motion speci�cation, we know that the continuously compounded returns zit are

IID normal random variates:

zt;i = log(
~pt;i

~pt�1;i
) � N (�i; �

2

i ) (5.1)

for each stock i, where i = 1; : : : ; 25. The no-impact price is taken to be the midpoint of the

prevailing bid and o�er prices at time t (hence the need for quotes):

~pit =
~pbit + ~pait

2
(5.2)

where ~pbit and ~pait are the bid and ask prices for stock i at time t. For each of our 25 stocks

we collect TAQ quotes at every half hour over the course of the trading year of 1996 and

calculate the midpoint to construct the no-impact prices, ~pt, thus the time index, t, ranges

over half hours, t = 1; 2; � � � ; Nh where Nh is the total number of half hours in the 1996

trading year (approximately 250 days times 13 periods per day).

We then form log-returns according to (5.1) and discard any overnight returns to eliminate

non-synchronous trading e�ects. This gives us a sample of 2,069 observations of zt during the

1996 calendar year from which we can estimate �z and �z in the standard way. Summary

results are given in Table 2 (we report estimates only for the �rst �ve stocks of Table 1 to

conserve space). The drift and volatility are expressed in percent per year, and are scaled up

from the half-hourly units by assuming each of the 250 trading days per year consists of 13

half-hour trading intervals. The drift and volatility estimates are consistent with intuition

and agree reasonably well with other data sources such as BARRA.

Our second task is to estimate the parameters of the market information process in (2.4).

The variable xt captures the potential impact of changing market conditions or private

information about the security. For example, a short-term excess returns model might be

constructed for this purpose. In our example, we let xt denote the half-hourly return on

the S&P 500 index, a common factor that in
uences the prices of most securities. For this

speci�cation. the AR(1) coe�cients, C, and the covariance matrix of the noise, ��, reduce

to scalar quantities, C and ��. Using S&P 500 tick data from January 2 to December 31,

1996, we construct half-hourly returns of the index which we denote by xt, where t ranges
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over half hours, t = 1; 2; � � � ; Nh ranges over half-hour intervals and Nh is the total number

of half hours in the trading year. We rescale the returns by subtracting out the mean and

dividing by standard deviation. This leaves us with a zero mean, unit-standard-deviation

process:

~xt =
xt � �x

�x
(5.3)

and assuming jCj < 1 we can rewrite (2.4) as:

~xt = C~xt�1 + �t : (5.4)

The maximum likelihood estimator of the AR(1) coe�cient C is:

Ĉ =

1

T1

T1X
t=2

~xt~xt�1

1

T2

T2X
t=1

~x2t

(5.5)

To avoid non-synchronous trading e�ects we discard all products ~xt~xt�1 that straddle an

overnight period in the numerator of (5.5). Similarly, we exclude overnight return terms

from the denominator of (5.5). The constants, T1 and T2, are the number of terms that are

included in calculating the numerator and denominator and are 1,902 and 2,078, respectively.

Our estimate of Ĉ is 0.0354.6

Given Ĉ, an estimator for the standard deviation of �t follows immediately:

�̂� =

q
1� Ĉ2 : (5.6)

Our estimate is 0.999. The two parameters, Ĉ and �̂� fully characterize the AR(1) process

that describes the S&P 500 returns.

Our �nal task is to estimate the parameters, A and B of the price-impact equation (2.2).

6Not surprisingly, the level of serial correlation in the S&P 500 index is quite low. If not, pro�table

trading strategies would be possible that would quickly drive the predictability of index returns back to a

level where the predictability was small.
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We can recast the vector equation as 25 separate linear regressions by rearranging terms:

pit � ~pit

~pit
= ~pitsta

0
i + xtb

0

i (5.7)

where ai and bi are the ith rows of A and B, respectively. This expression shows that the

percentage price impact to the ith security is a linear function of the dollar volume we intend

to trade in the ith security, the dollar volumes that we and others are currently trading in

the other 24 stocks, and the S&P 500 return over the preceding half-hour.

That there should be a price impact on pit from trading in stock i is obvious. But less

obvious is the role that trading in other stocks might play in determining the price impact

on pit. There are several economic sources for such cross e�ects. One stock may be a close

substitute for another, hence a high price impact for one would imply the same for the

other. Another motivation is that in a market with sharply rising (or falling) prices and

high volume, the overall market impact may be expected to increase as liquidity providers

demand higher premiums above posted quotes for large market orders.

To estimate A and B, we use a combination of ITG proprietary data, TAQ data and

SPX tick data. For each executed market order in a given stock, i, the ITG database gives

complete information about the market order except for the prevailing quote. We search the

TAQ database to �nd the quote. As before, we form the no-impact price, ~pit, as the average

of the bid and o�er (see (5.2)) and then construct the dependent variables:

pit � ~pit

~pit
(5.8)

for each trade. The ITG database provides one independent variable, namely the dollar

volume of stock i: ~pitsit. The sign convention for shares is positive for buys and negative for

sells.

A di�culty arises in constructing other dollar-volume-related independent variables (i.e.,

~pjtsjt for i 6= j). The ITG data is too sparse to �nd nearby trades in time, hence we must

turn to the TAQ data to resolve this observability problem. One possible solution is to use

the nearest TAQ trade that occurs prior to an ITG market order. Unfortunately, the time

alignment of the TAQ and ITG datasets can be imprecise due to recording lags by either

17



party. To reduce the impact of this type of error, we de�ne a proxy for the closest trade

by forming a 30-second window before each market order and computing an average dollar-

volume within it. Although this averaging procedure tends to smooth the data and reduces

its information content, nevertheless it ensures that temporal sequencing is not violated.

Speci�cally, we �nd all Nk trades in stock j that occur within that window. Each trade is

executed at price pik where k = 1; � � �Nk. Trades that are executed above or at the midpoint

of their quotes are classi�ed as buys and the rest as sells. An average dollar volume within

the window for stock j is then computed as:

~pjtsjt =
1

Nk

NkX
k=1

~pjksjk : (5.9)

Finally, for the S&P 500 return, xt, we split the trading day into 13 half-hour intervals

and compute the return in the half-hour prior to the trade.

We now have a complete set of data with which to estimate the parameters of the price-

impact portion of our model. The regressions were performed in SAS and contained no

intercept term because price impact should be zero if no stocks are being traded. Table 3

gives a summary of the �rst �ve of the 25 regressions performed on the data. For each

regression, the parameter estimates for the 26 regressors|the lagged returns for the 25

stocks and the S&P 500 lagged return|and their t-statistics are reported, along with the

R
2 and the sample size at the bottom of each column.7

To develop some intuition for the coe�cients, consider the estimated price impact for

American Home Products (AHP) in Â due to trading in AHP, which is 4:97�10�10 according

to Table 3. If we were to trade a 100,000-share block of AHP at its beginning-of-year price

of $64.0625 with no impact, our total cost would be 100;000� $64:0625 = $6;406;250. But

according to Table 3, the full-impact cost would be

100;000� (~pt + �t) = 100;000� ($64:0625 + �t)

�t = ~pt(4:97� 10�10 � ~pt � 100;000) = 0:203969

7Diagnostics were performed on the residuals to test for the presence of heteroskedasticity and autocor-

relation. The Durbin-Watson test indicated low levels of positive serial correlation, with statistics ranging

from 1.12 to 1.69 for the 25 regressions. The test of �rst and second moment speci�cation indicated a very

weak presence of heteroskedasticity as the p-values were, in general, very low.
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100;000� (~pt + �t) = $6;426;647

which implies a price impact of approximately 20 cents per share (ignoring the other factors

in the regression). This is an unacceptably large impact and no professional trader would

submit such a large order except in the most desperate of circumstances.

Further inspection of the regression diagnostics shows that the R
2 ranges from 0.052

to 0.440 for the 25 regressions, indicating that the regressions have varying degrees of ex-

planatory power. However, 30% (193 of 625) of all the t-statistics are signi�cant at the 5%

level, implying the importance of factors other than own-stock trading in determining price

impact. Also 18 of the 25 own-stock price-impact terms, i.e., âi;i (the i-th diagonal entry of

Â), are statistically signi�cant. We expect these these terms to be the most dominant ones

in determining price impact and our regression con�rm this conjecture.

Although some of the regressions have low explanatory power, recall that we have pro-

posed a rather naive speci�cation for these regressions, omitting many other variables that

proprietary traders and other professional portfolio managers have at their disposal. But

even with our naive speci�cation, we still achieve R2's as high as 0.440 (for Merck, not shown

in Table 3) which is quite substantial considering the high-frequency nature of the data we

are analyzing.

5.3 No-Arbitrage Constraints

There is one additional aspect of the estimation procedure that must be considered which is

whether or not the parameter estimates yield a well-posed optimization problem (1.1){(1.2).

In particular, for certain parameter values the optimization problem is not convex, hence

the objective function can be made arbitrarily negative. The economic interpretation for

such circumstances is an arbitrage opportunity (also known as a \free lunch"), a situation

in which riskless pro�ts can be manufactured out of thin air. Ordinarily, this would be a

welcome state of a�airs for investment professionals, but in this case the arbitrage is more

likely a spurious side-e�ect of sampling variation in our parameter estimates.

Therefore, a no-arbitrage restriction should be imposed on the estimation procedure to

avoid these false arbitrage opportunities. For the linear-percentage price-impact model, this

is accomplished by constraining both Â and Â
0

�R̂ to be positive de�nite matrices which,
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in turn, involves estimating a constrained linear regression model. The results of such a

procedure are reported in Table 4. The two most signi�cant di�erences between Tables 3

and 4 are the lower R2's and the higher signi�cance of the own-stock coe�cients in Table

4. The former is not surprising, since any constraint is bound to decrease the explanatory

power of the regression, though it is worth noting that for AN and DD, the decline is rather

small. The higher signi�cance of own-stock coe�cients follows from the de�nition of positive

de�niteness, i.e., x0
Ax > 0 for all vectors x. The diagonal elements of A are coe�cients

of squared terms of the x values in the matrix product x0
Ax. Therefore, by making the

squared terms su�ciently large relative to the cross terms, we arrive at a positive de�nite

matrix.

Table 5 shows the ratio of the total sum of squared errors of the constrained regression to

the unconstrained regression for all 25 stocks. The increase in squared errors is approximately

5% overall, a rather modest increase that provides some support for imposing the restriction.

More importantly, if the no-arbitrage condition were not imposed, the dynamic optimization

algorithms described in Sections 3 and 4 may yield nonsensical results.

5.4 Monte Carlo Analysis

Having calibrated the state equation in Section 5.2 for the linear percentage case of Section

2.1, we now investigate the performance of the best-execution strategy via Monte Carlo sim-

ulation experiments. Speci�cally, we consider minimizing the execution costs of purchasing �s

shares of each of the 25 stocks in Table 1 over T periods, under the price dynamics (2.1){(2.4)

where A, and B are the estimates Â and B̂ from the constrained regression (see Section 5.3)

and C, �z, �� are estimated as in in Section 5.2. We assume that the baseline covariance

matrix of the no-impact price is given by �z, and that the initial no-impact prices are the

prices given in Table 1 (these are closing prices selected from a random trading day in 1996).

To gauge the sensitivity of execution costs to the parameters of the model, we vary the

time horizon, T , the number of shares traded, �s (assumed to be the same for each stock) and

the no-impact price volatility. The price volatility is modi�ed by scaling the variances by

a constant while keeping the correlation structure �xed. The results for 10,000 replications

are given in Table 4 which reports the expected execution cost in cents/share and standard

error of the estimate for the best-execution strategy, the strategy under no-sales constraints
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computed via the static approximation approach (see Section 4.2), and the naive strategy

denoted by s�, s�c and �s=T , respectively.

Some general patterns emerge from the simulations. First, as T increases, execution costs

fall. Because are more time periods over which the trading can be spread, and because we

have the 
exibility to be more patient and wait for particularly opportune times to trade,

expected costs decline. Second, as �s decreases, execution costs also decrease. In fact, with

small enough trade sizes the expected price impact is negative! This is due to the fact that

price impact consists of two terms, the impact of shares traded, st, which is quadratic in

the share size, and the impact of information, which is linear in the information variable, xt.

When we trade small enough quantities, the quadratic term is negligible and the information

term dominates. Our strategy makes optimal use of information so as to trade when it is

least expensive, and for su�ciently signi�cant pieces of information, trading can be quite

pro�table (not a new insight to proprietary traders). Finally, increasing volatility seems to

increase execution costs slightly.

In all but two cases, the optimal strategy outperforms the naive on average. In the two

anomalous cases, the con�dence interval of the di�erence between the two strategies is so

wide that this outcome could easily have occurred purely by chance. If we were to increase

the number of replications to 100,000, these two anomalies would no doubt disappear.

Another anomalous result is the fact that for some simulations, the execution cost for

the constrained strategy is less than that of the unconstrained counterpart. While the point

estimates are indeed reversed in these cases, the sampling variation is so great (consider

their standard errors) that it is di�cult to make accurate inferences about their relative

magnitudes. For the cases we consider, the sales constraint seems to have relatively little

impact on the performance of the best-execution strategy, except in those cases where exe-

cution costs are negative. To achieve negative execution costs, the sales constraint must be

violated, hence imposing them increases the costs dramatically.
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6 Conclusion

The dramatic growth in assets managed by institutions, as well as the recent advent of

internet trading and electronic brokerage for retail investors, has led to a surge in the size

and volume of trading. At the same time, competition in the asset management industry has

increased to the point where mere basis points can separate the top funds from those in the

next tier. In this environment, portfolio managers have begun to explore active management

of trading costs as a means of boosting returns. Controlling execution cost can be viewed as

a stochastic dynamic optimization problem because trading takes time, stock prices exhibit

random 
uctuations, and execution prices depend on trade size, order 
ow, and market

conditions.

In this paper, we apply stochastic dynamic programming to derive trading strategies that

minimize the expected cost of executing a portfolio of securities over a �xed period of time.

The portfolio problem raises a number of new challenges not found in the single-stock case,

and we have developed a speci�cation for this case that is both empirically plausible and

computationally tractable to implement. The closed-form solution provides insight into the

nature of trading portfolios, and may prove to be a useful benchmark for pricing principal-

bid and negotiated-block transactions, since broker/dealers providing these services will seek

to minimize their inventory risk by trading out of these positions as rapidly as possible.

To quantify the potential cost savings from using our best-execution strategies, we have

�t the parameters of the linear percentage price-impact model using historical data on 25

large-cap NYSE stocks. Our Monte Carlo simulations, which are based on these estimated

parameters, indicate substantial reductions in the expected execution costs for our hypo-

thetical portfolio, though these costs must be estimated on a case-by-case basis using the

most current data and after re-calibrating the parameters of the state equations.

The remaining challenge is to integrate these best-execution strategies directly into the

investment process, which requires solving the portfolio optimization problem subject to

transactions costs. This is a formidable challenge that is both theoretically and computa-

tionally intensive, and we plan to turn to these problems in future research.
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A Appendix

Recall that the optimal value function in the last period can be expressed as:

VT (~pT ;xT ;wT ) = e
0
n
~P TwT + w

0
T
~P TA

0 ~P TwT + x
0
TB

0 ~P TwT :

Bellman's equation for the optimal value function in the next-to-last period is given by:

VT�1 = Min
fsT�1g

ET�1

�
p
0
T�1sT�1 + VT (~pT ;xT ;wT )

�
(A.1)

= Min
fsT�1g

ET�1

�
[ ~P T�1(en +A ~P T�1sT�1 +BxT�1) ]

0
sT�1 +

e
0
n
~ZT�1

~P T�1(wT�1 � sT�1) +

(wT�1 � sT�1)
0 ~ZT�1

~P T�1A
0 ~ZT�1

~P T�1(wT�1 � sT�1) +

(CxT�1 + �T )
0
B

0 ~ZT�1
~P T�1(wT�1 � sT�1)

�
(A.2)

where we de�ne ~ZT�1 � exp(ZT�1) and observe that diag[exp(ZT�1) ~P T�1] = ~ZT�1
~P T�1.

Dropping the T�1 subscript on all time-dependent quantities and factoring (A.2) then yields:

VT�1 = Min
fsg

E

�
s
0[ ~P (A0 +A0 ~Z) ~P ]s +

[e0(I � ~Z) ~P �w
0 ~PA0 ~Z ~P + x0(B0

�C
0
B

0 ~Z) ~P � �
0
B

0 ~Z ~P ]s �

s
0 ~PA0 ~Z ~Pw +w0 ~PA0 ~Z ~Pw + x

0
C

0
B

0 ~Z ~Pw +

�
0
B

0 ~Z ~Pw + e
0
n
~Z ~Pw

�
(A.3)

where I is the (n � n) identity matrix. Taking the expectation of this expression, reintro-

ducing time subscripts, and observing that it is a convex quadratic function of the vector s,

we obtain by simple di�erentiation that the optimal solution expressed in terms of dollars-

to-trade, ~s � ~Ps, is given by:

~s�T�1 = �x;1xT�1 + �w;1 ~wT�1 + �1;1en (A.4)
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where

�x;1 � [(A0 +A0
�R) + (A0 +A0

�R)0]�1(QBC �B) (A.5a)

�w;1 � [(A0 +A0
�R) + (A0 +A0

�R)0]�1(A0
�R+A�R

0) (A.5b)

�1;1 � [(A0 +A0
�R) + (A0 +A0

�R)0]�1(Q� I) ; (A.5c)

Q is an (n� n) diagonal matrix with entries:

qi = exp(�z;i +
1

2
�z;ii) ; (A.6)

R is an (n� n) symmetric matrix with elements:

rij = exp[�z;i + �z;j +
1

2
(�z;ii + �z;jj + 2�z;ij)] ; (A.7)

and the matrix dot operator, `�', denotes an element-wise matrix multiplication, i.e., A�B =

[ aijbij ]. The optimal value function VT�1 can now be rewritten as:

VT�1(~pT�1;xT�1; ~wT�1) = e
0
nDn;1en + e

0
nE1xT�1 + x

0
T�1F 1en +

x
0
T�1G1xT�1 + x

0
T�1H1 ~wT�1 + ~w0

T�1J1xT�1 +

e
0
nK1 ~wT�1 + ~w0

T�1L1en +

~w0
T�1N 1 ~wT�1 (A.8)

where:

Dn;1 � [�0
1;1(A

0 +A0
�R) + (I �Q)]�1;1 (A.9a)

E1 � [�0
1;1(A

0 +A0
�R) + (I �Q)]�x;1 (A.9b)

F 1 � [�0
x;1(A

0 +A0
�R) + (B0

�C
0
B

0
Q)]�1;1 (A.9c)

G1 � [�0
x;1(A

0 +A0
�R) + (B0

�C
0
B

0
Q)]�x;1 (A.9d)

H1 � [�0
x;1(A

0 +A0
�R) + (B0

�C
0
B

0
Q)]�w;1 �

�
0
x;1A

0
�R +C 0

B
0
Q (A.9e)
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J1 � [�0
w;1(A

0 +A0
�R)�A0

�R]�x;1 (A.9f)

K1 � [�0
1;1(A

0 +A0
�R) + (I �Q)]�w;1 � �

0
1;1A

0
�R+Q (A.9g)

L1 � [�0
w;1(A

0 +A0
�R)�A0

�R]�1;1 (A.9h)

N 1 � [�0
w;1(A

0 +A0
�R)�A0

�R]�w;1 � �
0
w;1A

0
�R+A0

�R : (A.9i)

Similarly, the Bellman equation at time t�k is given by:

VT�k = Min
fsT�kg

ET�k

�
p
0
T�ksT�k + VT�k+1(~pT�k+1;xT�k+1;wT�k+1)

�
(A.10)

which yields the best-execution strategy:

~s�T�k = �x;kxT�k + �w;k ~wT�k + �1;ken (A.11)

where

�x;k � [(A0 +Nk�1�R) + (A0 +Nk�1�R)0]�1 �

[Q(H 0
k�1 + Jk�1)C �B] (A.12a)

�w;k � [(A0 +Nk�1�R) + (A0 +Nk�1�R)0]�1 �

[(Nk�1�R+N 0
k�1�R

0) (A.12b)

�1;k � [(A0 +Nk�1�R) + (A0 +Nk�1�R)0]�1 �

[Q(K 0
k�1 +Lk�1)� I] (A.12c)

and the expected best-execution cost with k periods until the end of the horizon is given by:

VT�k(~pT�k;xT�k;wT�k) = e
0
nDn;ken + e

0
rDr;ker + e

0
nEkxT�k +

x
0
T�kF ken + x

0
T�kGkxT�k + x

0
T�kHk ~wT�k +

~w0
T�kJT�1xT�k + e

0
nKk ~wT�k + ~w0

T�kLken +

~w0
T�kNk ~wT�k (A.13)
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where

Dn;k � [�0
1;k(A

0 +Nk�1�R) + (I �Kk�1Q)]�1;k �

�
0
1;kQLk�1 +Dn;k�1 (A.14a)

Dr;k � ���Gk�1 (A.14b)

Ek � [�0
1;k(A

0 +Nk�1�R) + (I �Kk�1Q)]�x;k �

�
0
1;kQJk�1C +Ek�1C (A.14c)

F k � [�0
x;k(A

0 +Nk�1�R) + (B0
�C

0
Hk�1Q)]�1;k �

�
0
x;kQLk�1 +C

0
F k�1 (A.14d)

Gk � [�0
x;k(A

0 +Nk�1�R) + (B0
�C

0
Hk�1Q)]�x;k �

�
0
x;kQJk�1C +C 0

Gk�1C (A.14e)

Hk � [�0
x;k(A

0 +Nk�1�R) + (B0
�C

0
Hk�1Q)]�w;k �

�
0
x;kNk�1�R +C 0

Hk�1Q (A.14f)

Jk � [�0
w;k(A

0 +Nk�1�R)�Nk�1�R]�x;k +

(I ��0
w;k)QJk�1C (A.14g)

Kk � [�0
1;k(A

0 +Nk�1�R) + (I �Kk�1Q)]�w;k �

�
0
1;kNk�1�R+Kk�1Q (A.14h)

Lk � [�0
w;k(A

0 +Nk�1�R)�Nk�1�R]�1;k +

(I ��0
w;k)QLk�1 (A.14i)

Nk � [�0
w;k(A

0 +Nk�1�R)�Nk�1�R]�w;k +

(I ��0
w;k)Nk�1�R : (A.14j)

This set of recursions completely characterizes the best execution strategy fs
�
tg and the

expected best-execution cost is given by:

V1(~p1;x1;w1) = e
0
nDn;T�1en + e

0
rDr;T�1er + e

0
nET�1x1 + x

0
1F T�1en +

x
0
1GT�1x1 + x

0
1HT�1 ~w1 + ~w0

1JT�1x1

e
0
nKT�1 ~w1 + ~w0

1LT�1en + ~w0
1NT�1 ~w1 (A.15)
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= Min
fstg

E1

� TX
t=1

p
0
tst

�
: (A.16)
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Table 1

Ticker symbols, CUSIPs, company names, and closing prices on a randomly selected day in 1996 for

25 stocks that comprise the sample portfolio for the empirical implementation of the best-execution

strategy.

Ticker CUSIP Company Name Closing Price

AHP 02660910 AMER HOME PRODS 64:0625

AN 03190510 AMOCO 70:5000

BLS 07986010 BELLSOUTH 37:2500

CHV 16675110 CHEVRON 62:6250

DD 26353410 DUPONT 88:9375

DIS 25468710 WALT DISNEY 63:4375

DOW 26054310 DOW CHEMICAL 80:6875

F 34537010 FORD MOTOR 31:3125

FNM 31358610 FANNIE MAE 35:0625

GE 36960410 GENERAL ELECTRIC 90:9375

GM 37044210 GM 48:1250

HWP 42823610 HEWLETT PACKARD 48:8125

IBM 45920010 IBM 25:8750

JNJ 47816010 JOHNSON & JOHNSON 51:4375

KO 19121610 COCA COLA 50:8125

MCD 58013510 MCDONALDS 47:7500

MO 71815410 PHILIP MORRIS 90:1875

MOB 60705910 MOBIL 15:9375

MRK 58933110 MERCK & CO 70:1250

PEP 71344810 PEPSICO 28:3750

PG 74271810 PROCTER & GAMBLE 97:4375

S 81238710 SEARS ROEBUCK 44:8750

T 00195710 AT&T 51:9375

WMT 93114210 WAL MART STORES 26:3125

XON 30229010 EXXON 83:5625



Table 2

Parameter estimates and correlations for the no-impact price process ~p
t
for �ve stocks using 2,069

half-hourly observations from January 2, 1996 to December 31, 1996. The �rst and second rows

give the annual drift and volatility parameters (percent/year) scaled up from half-hourly estimates

by assuming 250 trading days with 13 half-hour periods per day. The last �ve rows report the

correlation coe�cients for the half-hourly returns of the �ve stocks.

AHP AN BLS CHV DD

�̂ 0:200 �0:103 �0:387 �0:167 0:283

�̂ 0:268 0:196 0:283 0:222 0:225

AHP 1:000 0:196 0:284 0:226 0:345

AN 0:196 1:000 0:173 0:408 0:283

BLS 0:284 0:173 1:000 0:259 0:328

CHV 0:226 0:408 0:259 1:000 0:314

DD 0:345 0:283 0:328 0:314 1:000



Table 3

Coe�cients of the unconstrained price-impact regressions for �ve stocks, based on market orders

from January 2, 1996 to December 31, 1996. All coe�cients have been multiplied by 1010 except

for the SPX coe�cients, which have been multiplied by 105. Sample size T and R
2 coe�cients are

contained in the last two rows, and t-statistics are reported in parentheses below the coe�cients.

Variable AHP AN BLS CHV DD

SPX 3:74 2:29 0:27 11:73 2:38
(0:92) (0:43) (0:04) (1:94) (0:56)

AHP 4:97 �2:04 �1:89 0:80 �1:78
(3:36) (�2:11) (�1:12) (0:69) (�1:65)

AN �1:49 5:86 �2:27 1:38 �1:89
(�1:62) (5:96) (�1:49) (1:14) (�1:81)

BLS 4:46 0:31 0:85 4:37 �1:84
(2:05) (0:18) (0:29) (2:20) (�1:07)

CHV 2:02 �0:25 4:90 8:72 3:24
(1:38) (�0:32) (2:54) (2:84) (3:30)

DD �1:08 �0:70 5:31 1:29 7:21
(�0:81) (�0:62) (3:17) (0:89) (5:53)

DIS 2:35 3:04 0:01 �1:54 1:17
(2:26) (3:23) (0:03) (�1:28) (1:35)

DOW �1:12 0:12 �3:53 �2:43 �2:52
(�1:12) (0:27) (�2:04) (�1:89) (�3:44)

F 1:75 0:19 0:01 �1:01 2:19
(0:70) (0:15) (0:02) (�0:47) (1:16)

FNM �5:10 �4:87 4:59 2:33 2:81
(�1:44) (�2:63) (1:19) (0:95) (1:23)

GE 0:14 0:78 0:11 0:96 �0:29
(0:12) (1:30) (0:12) (1:13) (�0:67)

GM �3:74 �0:67 �0:30 �0:16 �3:30
(�2:32) (�0:99) (�0:50) (�0:21) (�4:80)

HWP �1:20 1:45 �5:55 3:78 3:26
(�0:74) (1:28) (�2:32) (2:95) (4:30)

IBM �0:64 0:51 �0:01 �0:17 �0:50
(�0:68) (0:80) (�0:05) (�0:16) (�1:80)

Variable AHP AN BLS CHV DD

JNJ 0:81 1:60 3:88 1:37 1:65
(0:40) (2:20) (2:15) (1:43) (1:26)

KO 0:58 �0:20 2:43 �0:36 �0:30
(0:53) (�0:28) (1:46) (�0:52) (�0:56)

MCD 2:56 �5:83 5:80 �3:34 �4:00
(1:20) (�3:75) (1:56) (�2:96) (�2:82)

MO 0:17 �1:78 0:69 3:06 �0:01
(0:28) (�1:53) (0:77) (1:93) (�0:05)

MOB 0:70 1:36 �2:02 �0:48 �0:32
(0:69) (1:32) (�1:16) (�0:56) (�0:40)

MRK �1:20 0:65 0:31 �3:23 1:03
(�2:33) (0:70) (0:24) (�2:06) (1:37)

PEP �0:55 5:71 2:01 �0:37 1:12
(�0:32) (5:82) (0:83) (�0:17) (1:62)

PG �0:28 �2:15 0:91 2:92 2:85
(�0:24) (�1:99) (0:50) (2:19) (2:47)

S �0:01 �2:69 �9:44 0:21 1:43
(�0:04) (�1:95) (�2:80) (0:08) (0:96)

T 1:78 0:47 �0:49 �1:49 0:45
(2:63) (0:05) (�0:32) (�2:82) (0:82)

WMT 1:58 �0:41 3:89 �8:31 3:69
(0:89) (�0:24) (1:17) (�2:35) (1:83)

XON 1:66 �1:02 �0:35 0:20 1:04
(2:56) (�1:98) (�0:28) (0:38) (2:02)

T 726 887 768 791 759
R
2 0.11 0.23 0.08 0.09 0.21



Table 4

Coe�cients of the constrained price-impact regressions for �ve stocks, based on market orders from

January 2, 1996 to December 31, 1996. All coe�cients have been multiplied by 1010 except for

the SPX coe�cients, which have been multiplied by 105. Sample size T and R
2 coe�cients are

contained in the last two rows, and t-statistics are reported in parentheses below the coe�cients.

Variable AHP AN BLS CHV DD

SPX 3:74 2:28 0:26 11:70 2:38
(0:90) (0:41) (0:04) (1:89) (0:54)

AHP 12:40 �1:69 �1:99 1:04 �1:07
(8:17) (�1:70) (�1:15) (0:88) (�0:96)

AN �1:32 10:10 �1:96 1:09 �1:63
(�1:40) (9:98) (�1:25) (0:88) (�1:53)

BLS 3:49 0:83 14:40 2:26 �2:45
(1:56) (0:48) (4:82) (1:11) (�1:39)

CHV 2:09 �0:17 2:34 21:20 2:84
(1:39) (�0:22) (1:19) (6:72) (2:83)

DD �0:93 0:66 6:18 1:55 11:70
(�0:68) (0:57) (3:60) (1:05) (8:72)

DIS 1:98 2:73 �0:30 �2:59 0:92
(1:85) (2:84) (�0:09) (�2:09) (1:04)

DOW �0:79 0:18 �3:88 �0:23 �1:59
(�0:77) (0:40) (�2:19) (�0:18) (�2:13)

F �0:23 0:66 3:29 �0:65 4:24
(�0:09) (0:50) (0:82) (�0:29) (2:19)

FNM 0:01 �0:92 �0:43 3:27 0:39
(0:00) (�0:48) (�0:11) (1:31) (0:17)

GE 0:77 �0:45 0:53 0:03 �0:41
(0:66) (�0:73) (0:59) (0:04) (�0:92)

GM �2:83 �0:86 0:23 0:28 �2:99
(�1:72) (�1:23) (0:37) (0:37) (�4:25)

HWP �1:66 0:53 �2:73 0:73 2:35
(�1:00) (0:46) (�1:11) (0:55) (3:03)

IBM �0:09 1:00 �0:77 �1:33 �0:24
(�0:09) (1:53) (�0:47) (�1:28) (�0:84)

Variable AHP AN BLS CHV DD

JNJ �1:39 1:26 0:13 2:07 2:40
(�0:67) (1:70) (0:07) (2:11) (1:78)

KO 1:11 0:61 0:69 �0:42 1:44
(0:99) (0:83) (0:40) (�0:60) (2:58)

MCD 3:38 �3:73 �0:24 �2:48 �1:08
(1:55) (�2:34) (�0:06) (�2:15) (�0:74)

MO �0:63 �0:84 1:87 �1:75 0:25
(�1:02) (�0:71) (2:05) (�1:08) (0:22)

MOB 0:36 �0:12 �0:98 �0:92 0:41
(0:34) (�0:11) (�0:55) (�1:03) (0:48)

MRK �0:75 0:55 �0:29 �0:18 1:30
(�1:41) (0:58) (�0:22) (�0:11) (1:67)

PEP �0:85 1:75 0:53 �1:93 �0:28
(�0:48) (1:74) (0:21) (�0:90) (�0:39)

PG �1:48 �1:94 0:89 3:51 2:70
(�1:25) (�1:75) (0:47) (2:56) (2:29)

S 0:01 �1:76 �6:90 1:13 �0:30
(0:00) (�1:25) (�2:00) (0:43) (�0:20)

T 1:84 0:70 �1:18 �0:20 0:59
(2:67) (0:77) (�0:74) (�0:36) (1:04)

WMT 3:70 2:01 2:36 �3:65 0:96
(2:02) (1:15) (0:69) (�1:01) (0:46)

XON 1:45 �0:14 0:77 �0:16 0:09
(2:18) (�0:26) (0:61) (�0:29) (0:17)

T 726 887 768 791 759
R
2 0.06 0.19 0.03 0.04 0.17



Table 5

Ratios of the sum of squared residuals of the unconstrained and constrained price-impact regressions

for 25 stocks based on market orders from January 2, 1996 to December 31, 1996.

Ticker Ratio Ticker Ratio Ticker Ratio Ticker Ratio Ticker Ratio

AHP 1:0501 DIS 1:0501 GM 1:0501 MCD 1:0501 PG 1:0500

AN 1:0498 DOW 1:0507 HWP 1:0416 MO 1:0499 S 1:0500

BLS 1:0500 F 1:0500 IBM 1:0508 MOB 1:0479 T 1:0281

CHV 1:0501 FNM 1:0497 JNJ 1:0501 MRK 1:0496 WMT 1:0500

DD 1:0501 GE 1:0500 KO 1:0494 PEP 1:0500 XON 1:0516


