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It :is often convenient to use synthetically generated random fields to study the 
hydrologic effects of spatial heterogeneity. Although there are many ways to 
produce such fields, spectral techniques are particularly attractive because they 
are: fast and conceptually straightforward. This paper describes a spectral 
algorithm for generating sets of random fields which are correlated with one 
another. The algorithm is based on a discrete version of the Fourier-Stieltjes 
representation for multidimensional random fields. The Fourier increment used in 
this representation depends on a random phase angle process and a complex-valued 
spectral factor matrix which can be readily derived from a specified set of cross- 
spectral densities (or cross-covariances). The inverse Fourier transform of the 
Fourier increment is a complex random field with real and imaginary parts which 
each have the desired coveriance structure. Our complex-valued spectral formula- 
tion provides an especially convenient way to generate a set of random fields which 
all depend on a single underlying (independent) field, provided that the fields in 
qu’estion can be related by space-invariant linear transformations. We illustrate this 
by generating multi-dimensional mass conservative groundwater velocity fields 
which can be used to simulate solute transport through heterogeneous anisotropic 
porous media. 0 1998 Elsevier Science Ltd. All rights reserved. 

Key words: multivariate random field, random field generation, fast Fourier 
transform, spectral analysis. 

1 INTRODUCTION 

Synthetically generated random fields are often used to 
study the effects of hekrogeneity in situations where 
field investigations may be inconclusive or prohibitively 
expensive. An important example is the simulation of 
contaminant transport through a porous medium with 
spatially variable log hydraulic conductivity. If the log 
conductivity varies in a complex way it may be reason- 
able to treat it as a random field with specified statistical 
properties. Solute concentrations derived from such a 
random field can provide insight about the relationship 
between geological variability and solute dispersion.3J5 
Other examples of interest to hydrologists and soil 
scientists include the generation of correlated spatially 
variable unsaturated soil properties (e.g. the coefficients 
used to describe moisture retention and relative perme- 
ability curves) or corrlelated spatially variable land 
surface variables (e.g. vegetative cover, soil moisture 
and temperature). 

In some applications, it may be useful to generate 
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several different random fields that are correlated with 
one another by virtue of their dependence on some 
common physical property. The contaminant transport 
simulation mentioned above may, for example, rely on a 
synthetic velocity field whose components are related in 
a well-defined way to hydraulic conductivity. If this field 
is to be mass conservative the various components of 
velocity must be correlated so as to ensure that the 
divergence of the velocity vector is zero. This require- 
ment is easier to satisfy if the hydraulic conductivity 
dependence is explicitly incorporated into the velocity 
generation algorithm. 

In this paper we present a convenient method for 
generating correlated random fields which are related 
by a set of specified spectral densities. Our method is 
based on a discrete complex-valued spectral represen- 
tation which is easy to implement with readily available 
fast Fourier transform (FFT) algorithms. There are 
many other techniques for generating random fields, 
some designed only for univariate applications and some 
for more general multivariate applications. These 
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techniques can be broadly divided into covariance-based 
methods and spectrally-based methods. We provide a 
brief review of the available alternatives in the following 
paragraphs. 

Many of the covariance-based random field genera- 
tors in current use obtain spatially correlated random 
fields from linear combinations of a large number of 
uncorrelated random variables (which are easy to 
generate). The various alternatives differ primarily 
with respect to the methods used to derive the required 
linear transformations. Some examples include the 
techniques pro osed by Smith and Freeze,30131 Smith 
and Schwartz, R and Davis,’ Random field generators 
based on the linear transformation concept are typically 
limited to problems where no more than a few hundred 
random field values are required. This makes such 
generators inappropriate for large multi-dimensional 
flow or transport simulations (which can easily require 
millions of correlated random field values). A more 
efficient alternative is to use a sequential conditioning 
approach which derives each new random field value 
from a small number of neighboring values. Examples 
include the generators described by Journel and 
Huijbregts,20 Delhomme,” Hernandez,” Rubin, and 
Cushy et al7 The conditioning weights used in these 
sequential algorithms are computed from the covar- 
iances and cross-covariances of the fields to be 
generated. In some applications, such as our multi- 
variate velocity example, it may be quite difficult to 
derive the required covariances. 

The most popular spectral approaches for generat- 
ing random fields are probably the turning bands 
method’ r,r2,22,23,33,34 and the direct fast Fourier trans- 
form method.5”6’27 The turning bands algorithm gener- 
ates a number of one-dimensional line processes by 
inverse Fourier transforming independent random 
Fourier increments derived from an appropriate one- 
dimensional (radial) spectral density function. A multi- 
dimensional random field is then obtained by projecting 
and superimposing values from the various lines into a 
discrete computational grid. In order to apply the 
turning bands method, the radial spectral density must 
be derived from the spectral density function of the 
multidimensional random field. The success of this 
method depends on the feasibility of adequately 
reproducing multidimensional spectral properties from 
spectral line processes. 

The direct fast Fourier transform (FFT) method 
produces stationary random fields by inverse Fourier 
transforming independent random Fourier increments 
generated on a multi-dimensional wave number 
grid. 5116,17727 The procedure is straightforward in the 
univariate case but somewhat more difficult when 
several mutually-correlated random fields are required. 
This difficulty is related to the fact that the cross-spectral 
densities between correlated random fields are generally 
complex-valued, even when the fields are real. FFT 

methods that can only work with real-valued spectra, 
such as those described by Robin et af.27 and Gutjahr et 
aZ.,17 must partition complex cross-spectra into real and 
imaginary parts. This complicates implementation of the 
multivariate FFT algorithm. 

Here, we propose a new FFT method that is based on 
a more general complex-valued spectral representation 
which readily accommodates complex-valued cross- 
spectra. The complex-valued representation greatly facili- 
tates the generation of multiple correlated random 
fields, especially when the number of fields is large. If 
the individual fields are related to a single underlying 
field by a space-invariant linear transformation, they 
may be derived by operating on a single scalar sequence 
of spectral increments with a set of complex-valued 
spectral domain transfer functions. As a side benefit, the 
complex-valued spectral representation enables us to 
generate two statistically identical but uncorrelated 
random replicates with the same effort as real-valued 
methods use to generate a single replicate. 

In the following sections, we present the theoretical 
basis for our random field generator and briefly discuss 
discrete implementation with a fast Fourier transform 
algorithm. The algorithm we propose is particularly con- 
venient for generating correlated fields which must obey 
physical constraints. We illustrate this with a series of 
examples which yield correlated log hydraulic conductiv- 
ity and velocity fields. These fields reproduce ensemble 
statistics derived from linearized groundwater flow and 
Darcy equations. Moreover, the individual velocity repli- 
cates conserve mass, as predicted by a theoretical analysis. 
We conclude with a brief review of the capabilities and 
limitations of our random field generator. 

2 GENERAL THEORY 

We are interested in developing a numerical method for 
generating M correlated zero-mean stationary random 
fields. These fields are related in the space domain by a 
set of cross-covariance functions and in the spectral 
(wave-number) domain by a corresponding set of cross- 
spectral density functions. The covariance and spectral 
density functions may be specified directly or derived 
indirectly from physical laws. Each of the M random 
fields may be expressed as a Fourier-Stieltjes integral 
over a random Fourier increment dZ,(k) (Refs 21, 26) 

J 
O” Y;(x) = eZk”dZyi(k) i= l,...,M (1) --oo 

The random increment must satisfy the following 
orthogonality conditions (Ref. 26, p. 245) 

E[dZyi(k)] = 0 

E[dZ,Jk) dZ;,(k’)] = 0 k#k’ i,j= l,...,M 

E[dZr,(k) dZ;I(k)] = Sij(k) dk (2) 
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where E[ ??] indicates mathematical expectation, * p-dimensional computational grid. A more detailed 
indicates the complex conjugate operator, z = fl discussion of the wave number integration is provided 
and $(k) is the cross-spectral density between the two later in this paper. It should be noted that the synthetic 
random fields Y,(x) and :5(x). The vector differential dk random fields generated by the discrete representation of 
represents the p dimensional differential wave number (5) are normally distributed, by virtue of the central 
volume element dk, , . . . , dk,,, where p is the dimension limit theorem. Gutjahr et al.” provide a more detailed 
of the spatial vector x. discussion of this point. 

Equation (2) specifies that the two Fourier increments 
dZ,(k) and dZq(k’) are statistically correlated only 
when k = k’. The cross-spectral densities among all M 
fields can be assembled in an M by M spectral density 
matrix which is generally complex-valued, even when 
the Yi(x) are real. When the spectral density matrix is 
Hermitian (i.e. when Sij = Sj*J and positive definite, its 
elements can be factored as follows’* 

&i(k) = Hi/(k)J$(k) i,j= 1 , * * * > A4 (3) 

where repeated indices imply summation from 1 to M. 
This spectral factorization operation can be tedious in 
the general case since it must be carried out iteratively. 

The discrete representation of (5) is valid only if 
AZ,(k) and AZr.(k) can be shown to satisfy the 
orthogonality conditions of (2) in the limit as the 
discretization becomes finer (i.e. as the wave number 
volume elements shrink in size). The first (zero-mean) 
condition can be confirmed by noting that the expec- 
tation of AZ,(k) is an integral over pe,(Br; k), the 
univariate probability density of the 8,(k) process. This 
integral may be written as 

O” E[AZy;(k)] = Hi~(k)IAk1112 e”h, (C k) dC -cc 

If we can generate a complex-valued Fourier incre- 
ment process dZ, (k) having the statistics specified in (2) 
then we can use (1) to generate the random field Yi(X). 
In practice this requires that dZr;(k) be discretized so 
that the integration in (1) can be carried out numeri- 
cally. The discrete approximation to the random Fourier 
increment can be constructed in a number of different 
ways. The version we use is given by the following 
expression 

=o (6) 

dZr,(k) x AZ,(k) = Hil(k) eze~(k)(Ak]“2 

This discrete expansion approaches E[dZ,:(k)] in the 
limit as ]Ak] approaches zero. 

The second and third conditions of (2) can be con- 
firmed by substituting (4) for AZ,(k) and AZ*,(k’) and 
taking the expectation of the product. Since Bl(k) 
and 8,(k’) are independent for 1 # m or k # k’, the 
result is 

i= l,...,n4 (4) 

where Hi,(k) is the complex-valued deterministic matrix 
obtained from the spectral factorization of (3) and the 
phase angle O1(k) is a random process in the discretized 
wave number domain. Phase angle values at different 
wave numbers or with different subscripts are required 
to be statistically independent. Also, each of the M 
phase angle processes is uniformly distributed over the 
range [0,27r] at any given wave number. The wave 
number discretization is performed on a p-dimensional 
rectangular computatio:nal grid. The scalar ]Ak] = 
ny=, Akj is the volume of the grid element associated 
with a particular discrete wave number k. 

for k # k’ 

E[AZyt(k)AZ;j(k’)] =Hil(k)H&(k’)lAkl”2 

x IAk’I’/2E[eZe,(k)-“e,(k’)] 

=Hil(k)Him(k’)lAk11’2 

x lAk’l’/2E[e”e”k’]E[e-“em’LI)] 

=o (7) 

for k = k’ 

When (4) is substituted into (1) we obtain a complex- 
valued spectral representation for Yi(x) which is suitable 
for discrete computation 

E[AZ,(k)AZk(k’)] =Hi~(k)H~~(k)lAk~“2 

x lAkl’/2E[,$w - burn] 

m Yi(X) = ezkex dZr8 (k) 
--oo 

i= l,...,M (5) 

The summation of this expression is understood to be 
over all of the discrete wave numbers included in the 

=S,(k)]Ak] (8) 

where S,,,, is equal to 1 when 1 = m and equal to 0 when 
I # m. The deterministic discrete expression Sii(k)]Ak] 
approaches Sii(k) dk as ]Ak] approaches zero. 

The properties of (2) may be used to show that the 
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cross-covariance Rij(x - x’) = E[ Y;(X) IT] is the 
inverse Fourier transform of the cross-spectral density 
S,(k): 

Rii(X - X’) = E[ Y;(X) q’(X’)] 

e zk’x-‘k’*X’E[dZyi(k) dZ;,(k’)] 

f 
cc = ezk* (X-X’)Sij(k) & 
--m 

Similarly, the cross-spectral density is the Fourier 
transform of the cross-covariance. Note that 
Rij(X - x’) may be complex if Y;(X) and/or Yi(x’) are 
complex. Also, Sij(k) may be complex for i #j even 
when Rij(X - x’) is real. 

In hydrogeologic applications the synthetic random 
fields of most interest are usually real fields which have 
real cross-covariances Rij(X - x’) for i, j = 1,. . . , M. 
The particular spectral representation presented in (5) 
produces complex fields even when the specified cross- 
covariances are real. However, real fields with the 
correct cross-covariance can be readily obtained from 
these complex Yi. To see this, note that Yi(x) can always 
be decomposed into two real random fields as follows 

Y;(X) = Yni(X) + ZYti(X) l= l,...,M (10) 

where the R and I subscripts indicate the real and 
imaginary parts of Y;(X), respectively. We show in 
Appendix A that Y,;(x) nd Ytj(x) satisfy the following 
properties when Rij(X - x’) is real 

E[YRi(x) yIj(x’)l =EIYli(x) yRj(x’)I = O 

i,j= l,..., M 

E[ Yni(X) Yn/(X’)] = E[ Y*;(X) YIj(X’)] = 4 Rij(X - X’) 

i,j= l,...,M (11) 

This result indicates that the real and imaginary parts of 
JzYi(X) are uncorrelated replicates, each with cross- 
covariance Rij(X - x’). So each complex field produced 
by our algorithm yields two real fields with the desired 
cross-covariance. 

The above analysis shows that we can generate 
correlated random fields in four steps. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Specify a set of cross-covariance or cross- 
spectral densities which characterize the statis- 
tical structure of the desired random fields. 
Perform a matrix factorization of the cross- 
spectral matrix, as indicated by eqn (3). 
Generate a set of A4 random Fourier increments 
from eqn (4) using a set of M independent 
random phase angle processes uniformly dis- 
tributed over [0,27r]. The phase angle values at 
different wave numbers should be independent. 
Take the inverse Fourier transforms of the 

random Fourier increments to obtain a set of M 
complex or 2M real random fields. 

In practice, it is most convenient to use a fast Fourier 
transform algorithm to evaluate the inverse transforms. 

3 SIMPLIFICATION FOR RANDOM FIELDS 
RELATED BY LINEAR TRANSFORMATIONS 

The general procedure outlined above can be simplified 
considerably if M - 1 of the random fields (the depen- 
dent variables) can be related to the remaining field (the 
independent variable) by space-invariant linear trans- 
formations Li [ Y, (x)] h aving the following general form 

yi(x) = h( yI Cx)17 i = 2,. . . ,M (12) 

where Y,(x) is the independent variable. An example 
considered in more detail later in this paper is simul- 
taneous generation of correlated log hydraulic conduc- 
tivity, longitudinal velocity and transverse velocity fields 
for investigations of multi-dimensional groundwater 
flow and transport. In this case, the log conductivity is 
the independent variable and the velocity components 
are the dependent variables. The linear transformations 
relating the dependent variables to the independent 
variable may be derived from linearized infinite-domain 
approximations to Darcy’s law and the groundwater 
flow equation. 

Since the linear transformations in (12) are space- 
invariant, this equation may be Fourier transformed to 
give the following spectral relationship between station- 
ary Fourier increments of the dependent and indepen- 
dent variables 

dzri (k) = Ti(k) dzr, (k) i = 2,. . . ,A4 (13) 

where 7’i(k) is a transfer function which can be identified 
directly from the Fourier transformed version of (12). In 
the example considered below the Ti are ratios of simple 
polynomials in k. 

Note that when we substitute the representation of 
(13) into the final expression in (2) we obtain the 
following simplified spectral factorization for S,(k) 

Sij(k) dk = E[dZyi(k) dZ\(k)] 

= Ti(k)lJ’(k)Sll(k)dk 

= Ti(k)Tj(k)H,,(k)H;l(k)dk 

i,j= 1 7 * . . , A4 (14) 

where HI1 (k) is the scalar function obtained from a 
spectral factorization of the scalar independent variable 
spectral density S1, (k) ( see eqn (3)). Since S1 I (k) is real, 
HI1 (k) is just its square root. Equation (14) shows 
that the cross-spectral density matrix may be factored 
into the product of a complex vector T,(k) and its 
transpose when M - 1 of the random fields are linear 
transformations of the remaining field. 
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If we use eqn (4) to gen.erate a discrete approximation 
to dZri(k), we can approximate (13) by 

i=l ,**‘I A4’ (15) 

where it is understood that T, (k) = 1. Note that we now 
require only a single phase angle process B,(k). 

When the discrete Fourier increment expression of 
(15) is substituted into (1) we obtain a simplified spectral 
representation for Y,(X) which is suitable for discrete 
computation (compare with eqn (5)) 

O” Yi(X) = e2k’XdZY,(k) 
--oo 

i= 1 I’.‘, M (16) 

For this special case our random field generator can be 
simplified as follows. 

Step I. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Specify the covariance or spectral density of the 
independent variable Y, (x) as well as the space- 
invariant linear transformations which relate 
this variable to the ii4 - 1 dependent variables. 
Derive M - 1 spectral transfer functions from 
the specified linear transformations. 
Set HI1 (k) equal to the square root of the 
independent variable spectral density S1 1 (k). 
Generate a set of M random Fourier increments 
from (15) using a single random phase angle 
process uniformly distributed over [0,27r]. The 
phase angle values at different wave numbers 
should be independent. 
Take the inverse Fourier transforms of the 
random Fourier increments as before. 

This is the version of the algorithm used in our 
examples. Note that the simplified spectral represen- 
tation of eqn (15) is mathematically equivalent to the 
more general one presented in eqn (5). The advantage of 
using eqn (15) is that we need only to evaluate one 
spectral factor matrix (hr,,) rather than many (all the 
Hi,). This reduces the amount of preparatory work 
needed to apply the FFT algorithm to multivariate 
problems. 

4 DISCRETE IMPLEMENTATION 

The most efficient way to compute the inverse trans- 
forms required in our random field generation proce- 
dure is to evaluate the summations of eqns (5) and (16) 
with a fast Fourier transform algorithm. This algorithm 
discretizes x and k over uniform p dimensional grids. In 
order to simplify notation., we assume here that p = 2 so 
that the computational grid points in the space and wave 

number domains are given by 

X ml - - mdXl, ml = l,...,L, 

x,2 = mzAx2, m2 = l,...,L2 

k,, = nlAkl, nl = l,...,Ll 
(17) 

kn2 = n2Ak2, n2 = 1,..:,L2 

where mj and nj are, respectively, the discrete wave 
number and location indices for coordinate j and 
j = 1,2; Lj is the number of grid points in coordinate j 
for both the space and wave number grids; Akj and Axj 
are the (constant) space and wave number grid spacing 
in coordinate j. The ‘bit-reversal’ version of the fast 
Fourier transform algorithm which we use requires that 
L1 and L2 be integer powers of 2. When this particular 
discretization is applied to the general expression given 
in eqn (5) the result is 

= 2 2 exp[z(nlAk,mlAxl 
n,=ln2=0 

+ wWwW1 

x AZ,[CltnlAk~),~2tn2Ak2)1 

= 2 2 exp[z(n,AklmlAxl 
n, =Onz=O 

+ n2Akzm2Ax2)]. 

X Hi/[C,(n,Akl), C;tn2Ak2)1 
x [Ak,Ak2]“*], i= l,...,M(18) 

where the arguments of AZri, 0, and Hi/ are given by 

<j(njAkj) = 

{ 

(nj - 1)Akj for 1 <nj<:+2 

(nj - 1 - Lj)Akj for 2 + 2 5 nj 5 Lj 

(19) 

Note that this formulation presumes that the cross- 
spectral densities and the associated spectral factors (the 
HiiS) are defined over the discrete wave number range 
from -Lj/2 to +Lj/2. The <j(nj) variables provide a 
conversion between the arguments of these spectral 
quantities and the wave number range 1 to Lj used in the 
summation of eqn (18). Note that the conversion 
superimposes the end points at -Lj/2 and +Lj/2. This 
conversion is part of the ‘bit reversal’ algorithm. In cases 
where the Lj are not integer powers of 2 we can either 
use a different fast Fourier transform algorithm or 
zero padding, as described in Press et a1.25 Note that the 
fields generated by the discrete fast Fourier transform 
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algorithm are periodic with a spatial period equal to Lj 
in direction j. 

The fast Fourier transform approach requires that the 
maximum (or Nyquist) wave number in directionj must 
be ky = LjAkj = 2r/AXj, which implies that 

Akj=& 
J J 

It is important to choose ky large enough to ensure 
that all of the HijS are adequately sampled. Given this 
requirement, there are a number of trade-offs to be 
considered when selecting the space and wave number 
grid spacing. If we wish to obtain fine spatial resolution 
we can decrease Axj. If Lj is increased by a comparable 
amount the size LjAxj of the spatial domain remains the 
same and eqn (20) is satisfied but the computational 
demand of the algorithm increases. If Lj is held fixed 
Akj must be increased. In this case we may not be able 
properly to resolve variations in the shape of the input 
cross-spectral density functions. In practice, Axj and 
Akj need to be selected to provide a reasonable balance 
between spatial resolution, spectral resolution, and com- 
putational effort. 

5 EXAMPLES OF SYNTHETICALLY 
GENERATED CROSS-CORRELATED RANDOM 
FIELDS 

As mentioned in Section 1, numerical studies of flow and 
transport in heterogeneous porous media frequently rely 
on synthetically generated log hydraulic conductivity 
and velocity fields. Physically realistic velocity com- 
ponents are cross-correlated since they all ultimately 
depend on the log conductivity. One obvious way to 
obtain a realistic velocity field is to generate a synthetic 
log conductivity field and then solve the resulting 
groundwater flow equation (for hydraulic head) and 
Darcy equation (for velocity). The primary disadvan- 
tage of this direct approach is the computational effort 
required to obtain an accurate solution when the log 
conductivity field is moderately heterogeneous and 
anisotropic. Iterative flow solvers such as the popular 
preconditioned conjugate gradient method tend to 
converge very slowly for problems with large numbers 
of nodes if the log conductivity variance is of order 1.0 
(Refs 2, 24). 

A less computationally demanding option is to derive 
the cross-spectral densities (or transfer functions) 
between the log conductivity and the p velocity com- 
ponents, using a linearized version of the flow and 
Darcy equations.14 In this case, the algorithm of eqn 
(16) may be used to generate a set of synthetic random 
fields which are correlated in the proper way. The 
primary disadvantage of this approach is its dependence 
on the linearization approximation, which tends to 
break down as the log conductivity variance increases 

much beyond 1 .O (Ref. 1). Since the direct and spectrally- 
based approaches both degrade in performance for large 
log conductivity variances, the choice between them 
should be based on a careful evaluation of accuracy and 
computational requirements. Here we illustrate how the 
spectral alternative can be applied to problems of 
moderate log hydraulic conductivity variance. 

The following approximate relationship between the 
Fourier increments of log conductivity and steady-state 
velocity may be derived from a linear infinite domain 
spatially invariant approximation of Darcy’s law and 
the steady-state groundwater flow equationi3’i4 

d&,, =$(Ji-y)dZf i,j= l,...,p (21) 

where f and vi represent log conductivity and com- 
ponent i of the Darcy velocity, respectively, KG is the 
geometric mean of the log conductivity, Ji is the mean 
head gradient (assumed constant), ki is the wave number 
in direction i, k2 = k - k, and p is the number of spatial 
dimensions. If the mean gradient is aligned with the 
longitudinal (i = 1) direction, J, = J, and the transfer 
functions introduced in eqn (13) are 

T,(k) = Tf(k) = 1 

T2(k) = T,,(k) = s-&k; 
/=2 

T,(k) = Tui_, (k) = -$klki_ 1 i=3,...,p+l 

(22) 
These transfer functions may be substituted, together 
with HII (k), the square root of the log conductivity 
spectral density function, directly into eqn (16). 

In the following paragraphs we examine a set of 
two-dimensional cross-correlated log conductivity and 
velocity fields generated from eqn (16). The synthetic 
generation process begins with the specification of a set 
of cross-covariances or cross-spectral densities. Closed- 
form expressions for two-dimensional cross covariances 
between log conductivity and velocity are available 
when the log hydraulic conductivity is described by 
either an exponential or a Whittle-A covariance.3’28 
Here we use the Whittle-A alternative, which is charac- 
terized by the following log conductivity spectral density 
function” 

S’(k) = HI 1 0+%1(k) = 
202a2k2 f 

+x2 + k2)3 
where a = 7r/4X, X is the spatial correlation scale, and 0; 
is the variance of the log hydraulic conductivity field. 
Figure 1 shows surface plots for the covariances of the 
two velocity components w1 and y and for the cross- 
covariance between ‘ul and y. All three covariances are 
anisotropic. The w1 covariance function has the longest 
correlation length in the xl (longitudinal) direction and 
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Transverse -lo -10 
Longitudinal 

-10 - -10 

Fig. 1. Spatial covariance functions for the longitudinal 
velocity component q (top), the transverse velocity com- 
ponent v2 (middle), and the spatial cross-covariance function 

between v, and q (bottom). 

the shortest correlation length in the x2 (transverse) 
direction. The y covariance function has the longest 
correlation length along the diagonals xl = &x2 with 
shorter correlation lengths in the longitudinal and trans- 
verse directions. The cross-covariance between q and w2 
exhibits maximum positive correlation along the diag- 
onal xl = x2 and maximum negative correlation along 
the diagonal x1 = -x2. Tlhese covariances are displayed 
here for informational purposes. Only the log conduc- 
tivity spectral density and the log conductivity-velocity 
transfer functions are actually used in the random field 
generator. 

0 10 32 48 e4 

Fig. 2. Spatially cross correlated isotropic hydraulic con- 
ductivity field (top), xl-component of velocity field (middle), 
and x2-component of velocity field (bottom), all generated 

with the Whittle spectral density function. 

The contour plots in Fig. 2 show the three compo- length to grid spacing of x/Ax, = 2 and a grid size of 
nents (log conductivity f,, longitudinal velocity q , and 128 x 128. The log conductivity realization appears to 
transverse velocity 212) of a typical multivariate replicate be isotropic, as expected. Longitudinal persistence is 
obtained from the Whittle-A log conductivity spectrum. significantly greater than transverse persistence in the q 
The three fields are generated on a uniform spatial grid realization. In the v2 realization persistence is apparent 
spacing of Ax, = Ax2 = Cl.5 m with a ratio of correlation in the diagonal xl = fx2 directions. These features are 

0 16 32 48 s4 
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????Horisontal 

- Exact 

0 0 Horiaontal 

Cl ??lVertical 

Fig. 3. Comparison of ensemble averages 100 realizations of the normalized empirical covariance functions n2R/KAJ2 to the 
analytical covariance functions, where x,/Ax, = X21Ax2 = 2, L,/X, = L2/X2 = 64, and a size of 128 x 128. The abscissa is the 
dimensionless separation distance and the ordinate is (a) R?, in the x1 and x2 directions, (b) R,, in the direction along xl = x2, (c) 

R,, in the x1 direction, (d) R,, in the direction xl = x2, (e) and (f) R,,, in the directions x1 = fx2. 

consistent with the velocity covariance functions plotted 
in Fig. 1. 

In order to check the statistical validity of the 
synthetic fields generated by our algorithm we need to 
compare ensemble statistics such as the sample cross- 
covariances to their theoretical counterparts. Figure 3 
displays the sample covariances obtained with a Monte 
Carlo analysis based on an ensemble of 100 log con- 
ductivity and velocity realizations. All realizations were 
generated with the parameter set used for Fig. 2. Figure 
3(a) plots one-dimensional u1 sample covariances along 

the x1 and x2 directions with circles and squares, respec- 
tively. These should be compared with the correspond- 
ing theoretical covariances, shown with solid lines. 
Figure 3(b) plots the one-dimensional v1 sample 
covariance along xl = fx2 with circles and squares, 
and the corresponding theoretical covariance with a 
solid line. Figure 3(c) and 3(d) compare the ensemble 
and analytica covarianct functions for u2 along the xl 
and x2 directions and along the diagonal x1 = &x2, 
respectively. Finally, Figs 3(e) and 3(f) compare the 
ensemble and analytical cross-covariance functions 
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between u1 and w2 along the diagonals x1 = fxZ. All of 
these comparisons indiciate that the sample statistics 
converge to their theoretical counterparts for an 
ensemble of 100 replicates. Statistical sampling theory 
suggests that the difference between sample and 
theoretical covariance values should slowly decrease-as 
the number of replicates increases, particularly at large 
lags. This is consistent with the behavior we obtained 
when we gradually increased the number of replicates in 
the problem of Fig. 3 up to 100. Note that the increase 
of x/Ax, ratio should increase the grid resolution in 
derived random fields, however this also increases the 
computational costs required to obtain results similar to 
those shown in this figure. 

A synthetically generated groundwater velocity field 
should conserve mass if it is physically meaningful, even 
if it is a random replicate. In particular, the divergence 
of the velocity vector, which is itself a random field, 
should be zero everywhere. This implies that the mean 
and variance of the divergence must both be equal to 
zero. Graham and McLaughlin” show that this require- 
ment is met for a velocity field with the covariances 
plotted in Fig. 2. Although velocity fields generated 
from discrete approximations will never have diver- 
gences identically equal to zero we should expect com- 
puted point divergences to be small compared with 
tillAx,, the ratio of the lmean velocity to the local grid 
spacing. Ruan2* investigated this point in a Monte Carlo 
analysis of the velocity ensemble. This analysis shows 
that the mean and variance of the velocity divergence 
converge to zero at the discrete grid spacings Ax, and 
Ax2 approach zero. 

Spectrally-based random field generators can readily 
be modified to produce stationary fields with different 
statistical structures. As an illustration we show in Fig. 
4 a set of cross correlated hydraulic conductivity 
and velocity fields obtained from the following two- 
dimensional Gaussian log conductivity spectrumI 

&r(k) = HI I OW;104 

= &0--X,X2exp[-(k:X: + k99/2] (24) 

The left half of Fig. 4 shows a set of log conductivity and 
velocity fields for the isotropic case, with X1 = X2. The 
right half shows a set of log conductivity and velocity 
fields for an anisotropic case with the X1 = 4X2. In both 
cases the grid spacing is Ax, = Ax2 = 0.5 m, the ratio of 
x2 correlation length to _y2 grid spacing is X2/Ax2 = 2, 
and the grid size is 128 x 128. A comparison between 
Fig. 2 and the left half of Fig. 4 shows that the isotropic 
Gaussian log conductivity field is smoother and has 
more regular features than an isotropic Whittle-A field 
with a comparable corr’elation length. The elongated 
features in the xl directia’n of thef and u1 fields plotted 
in the right half of Fig. 4 clearly reveal the effects of 
anisotropy in the log conductivity spectrum. Anisotropy 

also changes the angle of the dominant diagonal axis in 
the v2 field. 

Cross-correlated three-dimensional fields can be read- 
ily generated with our algorithm, although the compu- 
tational effort required (which grows as log2(N)) can be 
significant if the spatial grid becomes very large. Figure 
5 illustrates a typical three-dimensional application. In 
this case we have generated four cross-correlated fields: 
the log hydraulic conductivity and three components of 
velocity. The log conductivity field has a Gaussian 
spectral density function36 with an anisotropy ratio of 
Xt = X2 = 4X3, a grid spacing of Ax, = Ax2 = Ax3 = 
0.5 m, a normalized correlation length of Xl/Ax, = 8, 
and a grid size of 128 x 128 x 64. Figure 5 indicates that 
the three-dimensional velocity fields share some quali- 
tative features with the two-dimensional velocity fields 
plotted in Fig. 4. In particular, there is longitudinal 
persistence in u1 as well as diagonal persistence along 
the xl = fx2 plane in y and along the xl = &x3 plane 
in w3. Similar features have also been reported by Cushy 
et al.’ 

The cross-spectral densities used in the above 
examples are derived from linear, spatially-invariant 
approximations to the groundwater flow equation and 
Darcy’s law. While these approximations enable us to 
obtain stationary spectral representations for the indi- 
vidual components of velocity they also introduce some 
restrictions. In particular, the synthetically-generated 
stationary velocities will be valid only when log conduc- 
tivity variability is relatively small (i.e. ar < 1 .O) and the 
mean hydraulic gradient is nearly constant over several 
log conductivity correlation scales. Bellin et aZ.3 have 
compared synthetic velocities obtained from a random 
field generator based on linearization and stationarity 
approximations with random velocities derived from an 
exact numerical solution to the flow equation. They note 
that the two methods produce the same spatial prob- 
ability distribution only when a; 5 0.2 for log hydraulic 
conductivity fields. When a- is high, the approximate 
solution yields normally distributed ZQ while the exact 
solution yields a log normal probability density (this 
issue is also discussed by Zhang and Neuman).38 In such 
cases, the negative values of the approximate normal wI 
are systematically smaller than that of the exact 
lognormal vI. It is possible that a better velocity 
approximation could be obtained (at some computa- 
tional expense) if the spectral generator were based on 
higher-order poly-spectral density functions.26 These 
could be derived from higher-order perturbation 
approximations to the flow equation and Darcy’s law. 

Although the spectrally-based synthetic velocities 
described in this example are admittedly approxi- 
mations, they provide mass conservative flow fields 
which are very convenient for investigations of solute 
transport through heterogeneous media. These fields are 
much easier to generate at high resolution than exact 
solutions to the stochastic flow equation, especially in 
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Fig. 4. (a) (Left column) Spatially cross-correlated isotropic hydraulic conductivity (top), x,-component of velocity (middle), and 
qcomponent of velocity (bottom). (b) (Right column) Spatially cross correlated anisotropic hydraulic conductivity (top), 
.x1 -component of velocity (middle), and x2-component of velocity (bottom), all generated with a Gaussian spectral density function. 

three-dimensions. The choice between the approximate 
spectral approach and the exact direct solution approach 
for obtaining synthetic velocities is ultimately applica- 
tion-dependent. 

6 CONCLUSIONS 

In this paper, we propose a new spectral approach for 
generating cross-correlated random fields. This approach 
is sufficiently general to be able to produce large numbers 
of complex stationary random fields which are related 

by any consistent set of rational cross-spectral densities. 
Our random field generator is based on a discrete 
complex-valued approximation to the classic Fourier- 
Stieltjes representation of a random field. The Fourier 
increment used in this representation depends on a 
random phase angle process and a matrix of spectral 
factors which can be readily derived from a specified set 
of cross-spectral densities (or cross-covariances). The 
random field values at any given location are obtained 
from an inverse fast Fourier transform of the discrete 
Fourier increment. When the specified cross-covariances 
(the Rip) are real, the real and imaginary parts of the 
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Fig. 5. Three dimensional spatially cross-correlated anisotropic hydraulic conductivity (top left), xl-component of velocity (top 
right), x2 component of velocity (bottom left), x3 component of velocity, all generated with a Gaussian spectral density function. 

complex field generated by our algorithm are indepen- 
dent (real) replicates with cross-covariances equal to 
JZRij (for i, j= l,..., M). 

Our algorithm simplifies considerably if M - 1 of the 
M fields to be generated can be related to the remaining 
field by a space-invariant linear transformation. In this 
case, the spectral factors can be constructed directly 
from the linear transformation and the spectral density 
of the independent field. Also, only one (rather than M) 
random phase angle process is required. A useful 
application of the simplified algorithm is the generation 
of a vector of two or three groundwater velocity com- 
ponents which depend on a scalar log hydraulic 
conductivity field. The spectral factors for this problem 
are derived from linearized approximations to the 
groundwater flow equation and Darcy’s law. The 
example we present in Section 5 confirms that our 
algorithm generates mass conservative velocity fields 
which reproduce specified ensemble covariances. 

The primary advantages of a complex-valued spectrally- 
based approach to muhivariate random field generation 
are its simplicity and convenience. The basic concepts 

can be explained in a few equations (e.g. eqn (1) through 
(5) of this paper) and the algorithm can be readily 
programmed. The procedure can be formulated entirely 
in terms of cross-spectral densities, which generally have 
much simpler forms than the corresponding cross- 
covariances. It is also easy to accommodate a wide 
variety of different spectral densities since the required 
spectral factorization is either trivial (for the case 
where several dependent random fields are related to a 
common independent field) or can be performed 
numerically. Since the approach is based on a complex- 
valued representation, no special manipulations are 
required to convert the complex spectra in order to be 
consistent with the real spectral representation. 

The groundwater velocity example presented here is 
just one of many hydrologically-relevant applications 
of our algorithm. Other examples include the generation 
of correlated spatially heterogeneous unsaturated soil 
properties (such as the parameters used to describe 
relative permeability and moisture-retention curves) and 
the generation of correlated spatially heterogeneous 
land surface variables such as vegetative cover, soil 
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moisture and temperature. In each case, a description of 
the relevant physical processes can be used to derive the 
cross-spectral densities required by the generator. This 
capability makes it possible to carry out synthetic 
experiments that properly account for the physical 
processes which influence heterogeneity. 
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APPENDIX 

Cross-covariances of the real and imaginary parts of 
synthetically generated complex random fields 

In eqn (5) we propose the following discrete represen- 
tation for the complex random field Y;(x) 

m Y,(X) = 
J 

e2k’XdZy,(k) 
-cc 

M c e”kn’XHir(k,J ez8~(kn)]Ak,]‘/2 i = 1,. . . ,A4 
n 

(AlI 

where the summation is understood to be over all of the 
discrete wave numbers included in the p-dimensional 
computational grid. In th.is Appendix we investigate the 
statistical properties of the real and imaginary parts of 
the fields Y,(X) and Yj(X’) when their cross-covariance 
Rij(X - X') is real. 

The cross-spectral spectral density matrix Sij(k) used 
to derive the Hij(k) weights in (Al) is generally complex 
when i # j. If we indicate the real and imaginary parts of 
Hjj(k) with R and I subscripts the cross-spectral density 
can be written as 

Sij(k) = Hi,H*j, 

= [HRi/ + zHIi/I LHRj/ - zHIj/I 
= cij(k) - rgij(k) (A2) 

where cij(k) (the cospectrum) and gij(k) (the quadrature 
spectrum) are given by 

cij(k) = HRi/(k)HRjl(k) + Hti/(k)Hijl(k) 

gij(k) = HRi/(k)Hij/(k:l - Hiu(k)HRj/(k) 

Equation (9) indicates that the cross-covariance 
Rij(X - x') is the inverse Fourier transform of Sij(k). 
It follows that the real part of this cross-covariance is 

‘rn 
Re [Rij(X - x')] = Re 

IS --oo 
e’k”“-““Sij(k) dk] 

= y_{cOs[k * (X - x’)]cij(k) 

+ s’in[k . (X - x')] gij(k)} dk (A3) 

while the imaginary part is 

O” Im [Rij(X - X')] = Im 
--oo 

ea’(r-Y’),Sij(k) dk] 

= y_(sin[k- (X - X’)]cij(k) 

- COs[k * (X - x')] gjj(k)} dk (A4) 

When Rij(X - x') is real we obtain 

.I ym{COs[k *(X - X’)]cij(k) 

+ sin[k *(X - x')] gij(k)} dk = Rij(X - X') (A5) 

and 

J 
M {sin[k .(x - X’)]Cij(k) 
--03 

- COs[k .(X - X')] gij(k)} dk = 0 (A@ 

With these relationships established we can investigate 
the properties of the real and imaginary parts of Y,(x). 

The complex random field Yj(X) can be divided into 
real and imaginary parts as follows 

Yi(X) = YRi(X) + zYii(X) (A7) 

If we expand (Al) we can write the discrete approxima- 
tiOIlS t0 YRi(x) and Yii(X) aS 

yRi(x) = C{cOS[k, *x + ~~(km)IHRi~(km) 
m 
- sink *x + er(k,)IHIi,(k,)}lAk,l”2 

(‘48) 
Yti(X) = x{sin[k, *X + ~~(krn)IHRi/(L) 

m 
+ CoS[k, *X’+ 0~(k,)]H’i~(k,)}lAk,11’2 

(A9) 

The spatial cross-covariance between YRi(X) and 
YRj(x') may be obtained directly from (A8) 

E[YRi(X) yRj(x’)] (A 10) 

= E 1 C C{cos[kn ‘X + ~t(kn)IHRit(kn) 
LIZ 4 

- sin[k., - x + Bl(k,)]H’ir(k,)}lAk,1”2, 

x {cos[kb .x’ + &,&)]HRjm(k~) 

- sin[kb.x’ + B,,,(k~)]Hijm(k~)}]Ak~]1’2 1 (All) 
Since the phase angles are uncorrelated for k # k’ and 
I # m the double summation over n and q reduces to a 
single summation over n. After expanding the product in 
(Al l), applying standard trigonometric identities, and 
noting that the phase angle is uniformly distributed over 
[0,27r] the cross-covariance can be written as follows if 
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Rij is real 

E[YRi(X) yRj(x’)l 

= i C{cos[k, * (X - x’)] [HRi[ 
n 

ffIjf(kn) . 
+ HIil(kn)fftj/(kn)I 
+ sin[k, . (X - ~‘)][Hp,i& ). 
- HIir(k,)HRjr(k,)I}IAk,I 

= iC{cos[kn . (X - X’)]cij(k, 7) 
n 

Next, we note that the real part of Yi(X) is uncorre- 
lated with the imaginary part of q(x’) (and vice versa) 
when R, is real. To see this, first consider the cross- 
COVarianCe between YRi(X) and Y,j(X’) 

E]YRi(X) rIj(X’)] (A16) 

= E 
[ 

C C{cos]k” ‘X + e/(k,)]HRil(k,) 
n 4 

- sin[k, ax + Br(k,)]H’u(k,)}lAk,1”2. 

X {sin[kb *X’ + e,(kb)]HRjm(kb) 

+ COs[kb ‘X’ + B,(kb)]H’jm(kb)}lAkbl”2 1 (A17) + sin[k, * (X - x’)I gij(kn))IAknI 
X iRij(X - X’) 6412) 

The final approximate equality follows from (A5). As 
Ak approaches zero the cross-covariance between the 
real fields YRi(X) and YRj(x’) approaches one-half of 
Rij(X - x’), the specified real covariance between the 
complex fields Yi(X) and Yj(X’). 

A similar derivation may be used to obtain the 
cross-covariance between Yti(X) and Ytj(X’) when Rij is 
real 

EIYIi(x) yIj(x’)l (A13) 

+ COS[k, *X + e,(kn)]HIi~(kn)}lAknI”2’ 
X {sin[kb.X’ -I ~~(k&)]Hnj~(kb) 

+ COs[kb . X’ + 0m(kb)]Htjm(kb)}(Akb]“2 1 (A14) 

After applying the statistical properties of the phase 
angles and appropriate trigonometric identities, and 
noting that the phase angle is uniformly distributed over 
[0,2~] this cross-covariance can be written as 

E]Yti(X) Y,j(x’)I 

= i C{COs[kn * (X - X’)I [HRil(kn)HRj,(kn) 
n 

+ ffIi/(kn)ffIj/(kn)l 

+ sin[k, * (x - X’)I[HRil(kn)HIjr(kn) 
- HI,(k”)HRjr(k,)I}IAk”I 

= iC{COs[k, * (X - X’)]Cij(kn) 
n 

+ sin[k, * (X - ~‘)l~~j(kn)~l&l 
M iRij(X - X’) 6415) 

This demonstrates that the cross-covariance between the 
real fields Yti(X) and Ytj(X’) also approaches one-half of 
Rij(x - X’). 

This becomes 

E]YRi(X) rIj(X’)I 

= iC{cos[kn * (X - X’)I[HRi~(kn)HIjr(kn) 
n 

+ ffIi/(kn)ffRj~(kn)I 
+ sink * (X - x’)] [HRi/(kn)HRj/(kn) 
+ ~Ii/(k”)~~j~(k,)I}lAk,I 

= iC{COsjk. * (X - X’)] gij(k,) 
” 

- sin[k, * (X - X’)]Cij(kn)}]Akn] 

M 0 (AW 

The final approximate equality follows from (A6). 
Next, consider the cross-covariance between Yti(X) 

and YRj(x’) for real R, 

EIYIi(x) yRj(x’)] 6419) 

* x + ‘%(k,)h(k,) 
Ln 4 

+ cos[k, - x + Bl(k,)]H’i,(k,)}lAk,l”2. 

X {cos[kb - x’ + @,(kb)]HRj,,,(kb) 

- sin[kb -x’ + B,(kb)]H’jm(kb)}lAk~~‘~2] (A20) 

This becomes 

E[YI;(X) yRj(x’)l 

= ~Clcos[k, * (x - x’)I[H*il(k”)HRj,(k,) 
” 

- HRi/(kn)HIj~(kn)I 

+ sin[k, * (X - “‘)I [ffRi/(kn)HRj/(kn) 

+ HI;r(k,)Htjl(k,)I}lAk,I 
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= ;x{- co+,, - (x -- x’)] gij(k,J 
n 

+ sin[k, . (x - x’)]cii(k,J}lAk,l 

X0 (A21) 

This is the last of the four possible cross-covariances 
between the real and imaginary parts of Yj(x) and 
5(x’). 


