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Abstract. This paper describes the first major attempt to compare seven different inverse
approaches for identifying aquifer transmissivity. The ultimate objective was to determine which
of several geostatistical inverse techniques is better suited for making probabilistic forecasts of the
potential transport of solutes in an aquifer where spatial variability and uncertainty in hydrogeologic
properties are significant. Seven geostatistical methods (fast Fourier transform (FF), fractal
simulation (FS), linearized cokriging (LC), linearized semianalytical (LS), maximum likelihood
(ML), pilot point (PP), and sequential self-calibration (SS)) were compared on four synthetic data
sets. Each data set had specific features meeting (or not) classical assumptions about stationarity,
amenability to a geostatistical description, etc. The comparison of the outcome of the methods is
based on the prediction of travel times and travel paths taken by conservative solutes migrating in
the aquifer for a distance of 5 km. Four of the methods, LS, ML, PP, and SS, were identified as
being approximately equivalent for the specific problems considered. The magnitude of the
variance of the transmissivity fields, which went as high as 10 times the generally accepted range
for linearized approaches, was not a problem for the linearized methods when applied to
stationary fields; that is, their inverse solutions and travel time predictions were as accurate as those of
the nonlinear methods. Nonstationarity of the “true” transmissivity field, or the presence of
“anomalies” such as high-permeability fracture zones was, however, more of a problem for the
linearized methods. The importance of the proper selection of the semivariogram of the log10 (T)
field (or the ability of the method to optimize this variogram iteratively) was found to have a
significant impact on the accuracy and precision of the travel time predictions. Use of additional
transient information from pumping tests did not result in major changes in the outcome. While
the methods differ in their underlying theory, and the codes developed to implement the theories
were limited to varying degrees, the most important factor for achieving a successful solution was
the time and experience devoted by the user of the method.

1. Introduction
1.1. Background

For many practical problems of groundwater hydrology,
such as aquifer development, contaminated aquifer remedia-

tion, or performance assessment of planned waste disposal
projects, it is no longer enough to determine the “best esti-
mate” of the distribution in space of the aquifer parameters. A
measure of the uncertainty associated with this estimation is
also needed. Geostatistical techniques are ideally suited to
filling this role. Basically, geostatistics fits a “structural model”
to the data, reflecting their spatial variability. Then, both “best
estimates” (by kriging) and the variance of the estimation error
can be developed. Geostatistical techniques can also produce
“conditional simulations” that honor the data at measurement
points and, through multiple realizations, display the uncer-
tainty in the spatial distribution of the parameters. These con-
ditional simulations can then be used in a Monte Carlo analysis
(e.g., as input to groundwater flow and transport models) to
display the uncertainty in the final outcome of the study (flow
rates, concentrations, travel times, etc). In some cases the
probability distribution function (pdf) of the final outcome can
be directly predicted analytically from the “structural” charac-
teristics of the data. Nongeostatistical approaches such as
weighted least squares optimization followed by sensitivity
studies to assess parameter uncertainty have also been used.
Examples of such simulations have been given by Delhomme
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[1979], Dagan [1985, 1989], Rubin and Dagan [1987, 1992],
Rubin [1991a, b], Rubin and Journel [1991], Desbarats and Sriv-
astava [1991], Robin et al. [1993], Gutjahr et al. [1994], Harvey
and Gorelick [1995], and Koltermann and Gorelick [1996],
among others.

In groundwater hydrology, data may come from at least four
sources: (1) transmissivity (or permeability) measurements; (2)
hydraulic head measurements; (3) tracer concentrations in
wells from tracer tests; and (4) geologic information on the
nature and characteristics of the formation. The incorporation
of geologic information is generally made by zoning the pa-
rameter field or by including a trend or a piecewise-varying
identification of the structural model. For example, the inclu-
sion of geophysical information has been presented by Rubin et
al. [1992], Copty et al. [1993], and Hyndman et al. [1994]. Be-
cause it is difficult to incorporate these types of information in
an “inverse” approach simultaneously, it has been common
engineering practice to calibrate models by “trial and error,”
sometimes using sensitivity analyses and optimization subrou-
tines to accelerate the fitting [e.g., Dettinger and Wilson, 1981;
Peck et al., 1988]. Such approaches are, however, limited to
producing a “best estimate” and can only assess a residual
uncertainty (i.e., an estimate of the confidence interval of each
parameter after calibration) by a postcalibration sensitivity
study. This approach is insufficient to characterize the uncer-
tainty after calibration. Therefore a large number of geostatis-
tically-based inverse techniques have been developed for han-
dling both head and transmissivity data. In general, these
techniques follow these steps: (1) Calibrate a “structural
model” of the spatial variability using either the transmissivity
data only or the transmissivity and the head data; (2) deter-
mine the cross covariance between the transmissivity and the
head; (3) use an optimization procedure to estimate the trans-
missivity based on autocovariances and cross covariances. Al-
ternatively, the estimation can be replaced by simulations of
alternative realizations of the transmissivity fields.

A good review and comparison of a number of these ap-
proaches has been very recently prepared by McLaughlin and
Townley [1996], who not only described the approaches but
also presented them in a unified framework, with a discussion
of their respective theoretical merits. Prior to that, several
surveys had been presented by Kuiper [1986], Yeh [1986], Car-
rera and Neuman [1986a], Carrera [1988], Ginn and Cushman
[1990], Keidser and Rosbjerg [1991], Ahmed and de Marsily
[1993], and Sun [1994], among others.

Although we believe that this comparison is to date the
largest effort undertaken to evaluate inverse approaches ob-
jectively, it is worth mentioning here the comparison of four
inverse techniques (the pilot point, pure zoning, a combination
of zoning and kriging, and a version of linear cokriging) pub-
lished by Keidser and Rosbjerg [1991] on four different data sets
that included both hydraulic and contaminant data. They com-
pared the precision and robustness of the approaches and
concluded that pure zonation (without any geostatistical as-
sumptions) was superior to the other approaches when data
are scarce or when measurement errors exist. Pilot point per-
formed best for reproducing large-scale heterogeneities, the
combination of zoning and kriging was robust and flexible, and
linear cokriging was found to be very sensitive to the reliability
of the T data. Pure zoning did not perform well in the case of
fairly complex aquifers. Rubin and Dagan [1987] used the data
on the Avra Valley presented by Clifton and Neuman [1982] in
an inverse method different from that of these authors (a

linear semianalytical method for the former, a maximum like-
lihood estimate using zoning for the latter). They concluded
that reasonably similar results had been obtained by the two
approaches. Carrera and Glorioso [1991] also compared linear
and nonlinear approaches and obtained similar conclusions,
except for large variances of ln(T), for large head measure-
ment errors, or in the presence of sink/source terms. Under
any of these conditions they found that nonlinear approaches
performed much better than the linear ones. The reader is also
referred to special issues of Advances in Water Resources (vol-
ume 14, numbers 2 and 5, 1991), in which a large number of
inverse approaches have been presented and analysed. Finally,
it should be noted that this paper represents the completion of
the in-progress comparison study presented by Zimmerman et
al. [1996].

1.2. Motivation for This Study

A comparison of inverse approaches was undertaken by
Sandia National Laboratories (SNL) in conjunction with the
performance assessment (PA) of the Waste Isolation Pilot
Plant (WIPP) site. The WIPP is a U.S. Department of Energy
(DOE) facility currently being evaluated to assess its suitability
for isolating transuranic wastes generated by the defense pro-
grams in the United States. It should be noted that this work
was not performed in accordance with the SNL WIPP quality
assurance (QA) program and that none of these results are to
be referenced for any work performed under the SNL WIPP
QA program.

The proposed repository is located within the bedded salt of
the Salado Formation at a depth of about 650 m. A description
of the WIPP site and of the first application of an inverse
technique to this site is given by Lappin [1988], LaVenue and
Pickens [1992], and LaVenue et al. [1995].

The Culebra Dolomite, a 7-m-thick member of the 120-m-
thick Rustler Formation located at a depth of about 250 m, has
been characterized as the most transmissive, laterally continu-
ous hydrogeologic unit above the repository and is considered
a potentially important transport pathway for off-site radionu-
clide migration within the subsurface. This transport could
occur if, in the future, a well drilled for exploration purposes
created an artificial connection between the waste storage
rooms and the Culebra, allowing radionuclides to leak into the
Culebra. Such a scenario is part of a probabilistic PA that the
U.S. Environmental Protection Agency (EPA) requires DOE
to perform to demonstrate compliance of the repository system
with regulations governing disposal of radioactive wastes [EPA,
1985; Sandia National Laboratories, 1992]. The data base for
modeling the Culebra is available from Cauffman et al. [1990].
Because the EPA regulation is probabilistic, the PA must ad-
equately reflect the variability and uncertainty within all factors
that contribute to the simulation of the repository performance
for isolating wastes.

For performance assessment of a nuclear waste repository a
hydrologist must provide not just a transmissivity field or a
series of transmissivity fields but the probability density func-
tion (pdf) of the outcome of the flow simulation (the travel
time). Thus the inverse problem serves only as the means for
estimating this pdf, conditioned on the available data. The
current probabilistic approach to PA [Sandia National Labo-
ratories, 1991] accommodates parameter correlations, includ-
ing spatial correlations, and conditioning on sample data. For
a contaminant transport problem such as radionuclide migra-
tion in the Culebra at the WIPP, the focus is on adequately
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characterizing the hydraulic properties of the medium and
their uncertainty. However, the real quantity of interest is the
conditional pdf of the PA outcome. Thus solving the inverse
problem is not an objective per se but is just a means to
generate adequate intermediate parameter fields to be used in
the PA simulations.

1.3. Objectives

In this study we compare seven inverse approaches, outline
their differences, and discuss their potential strengths and
weaknesses. The results point to areas of research that may be
useful for improving the inverse techniques. This paper ad-
dresses the following issues by comparing the different inverse
approaches on three different test problems: (1) How different
are the inverse techniques considered in this paper? (2) How
effective are they for solving practical problems? (3) How
dependent are they on the various assumptions that are made
to derive the algorithm, for example, statistical homogeneity,
Gaussian distributions, and small magnitude of the log trans-
missivity (log10(T)) variance? The problem sets are artificial in
order to be able to compare the approaches to one another and
also with a synthetic “truth.” Each test was also designed to be
comparable with that of an actual site and to address the
validity of the underlying assumptions inherent in the different
approaches.

We have chosen to consider the advective groundwater
travel time (GWTT) of a conservative tracer as a surrogate for
the more complex solute transport problem. We will therefore
generate pdf’s of GWTT (as the PA outcome) and evaluate
inverse approaches on their ability to reflect the uncertainty in
aquifer parameters adequately as described by these condi-
tional GWTT pdf’s. Our objective is to reveal how the estimate
of the conditional pdf’s of GWTT can be affected by either the
differences in the principles and coding of the inverse methods
or the manner in which a given method was applied by the
person who ran it.

1.4. Geostatistical Approaches To Be Compared

Seven inverse methods were selected for comparison. The
selected methods were to estimate the transmissivity field from
measurements of transmissivity and head and produce an en-
semble of simulated transmissivity fields conditioned on all the
available data on transmissivity and head. These simulated
transmissivity fields should reflect the uncertainty in the trans-
missivity estimate after calibration and would be the input T
fields in the Monte Carlo simulations of flow through the
system. There should be as many different T fields as Monte
Carlo simulations (about 100), all considered as having an
equal probability of occurrence.

The geostatistical inverse approaches are listed in alphabet-
ical order in Table 1. In Appendix B we give a short summary

of the description of each method, with references to the major
publications where the methods were presented and applied.
For clarity and brevity we will refer to the methods by their
two-letter symbols (see Table 1). These seven methods are by
no means an exhaustive sampling of all the methods that have
been published in the literature. Among the most prominent
“absences” are the approaches proposed by Cooley [1977,
1979, 1982, 1983], Townley and Wilson [1985], and Sun and Yeh
[1992], who unfortunately could not participate.

The seven approaches can be categorized as being either
linearized or nonlinear. While the groundwater flow equation
for confined aquifers is always linear for the head, this same
equation is nonlinear for the relation of T to head. The lin-
earized approaches are generally based upon simplifying as-
sumptions about the flow field (e.g., a uniform hydraulic head
gradient, a small ln(T) variance, etc.), that lead to a linearized
relation between T and head using a perturbation expansion of
the head and transmissivity fields. This equation can then be
solved analytically or numerically. The nonlinear approaches
have no such restrictions placed on them and can, in principle,
handle more complex flow fields or larger ln(T) variances.
Methods FF, LC, and LS fall into the linearized category, while
methods FS, ML, PP, and SS fall into the nonlinear one.

The LS method is able to calculate the GWTT cumulative
distribution functions (CDFs) directly, so this method did not
produce transmissivity fields. T fields could have been pro-
duced by this method, but these fields would then not have
been linked to a particular travel path or travel time and so
were not calculated.

1.5. Overview of the Test Problem Exercise

The test problem exercise was conceived and performed by
group of participants referred to by SNL as the Geostatistical
Expert Group (GXG). A listing of the participants is given in
Appendix A. Four test problems were developed in secrecy
from the participants who would receive the data and run the
inverse models. The test problems were designed to be “WIPP-
like,” meaning that the hydrogeologic characteristics and the
complexity of the problems, as well as the type of data and
their spatial distribution, should be relatively similar to that of
the WIPP site. The synthetic transmissivity fields should also
have properties similar to those observed at WIPP or believed
to exist at the WIPP on the basis of inference from geological
and hydrological data. Four different T fields were generated.
Synthetic hydraulic head data were obtained by solving the
two-dimensional flow equations with prescribed boundary con-
ditions using these synthetic T fields. A limited number of
observations of head and transmissivity obtained from the ex-
haustive (synthetic) data sets would then be provided to the
participants. Additionally, particle-tracking calculations were
performed to compute advective travel times and travel paths

Table 1. The Seven Inverse Methods Compared

Inverse Method Symbol First Author Affiliation

Fast Fourier transform FF A. Gutjahr New Mexico Institute of Mining and Technology
Fractal simulation FS P. Grindrod QuantiSci, United Kingdom
Linearized cokriging LC P. Kitanidis Stanford University
Linearized semianalytical LS Y. Rubin University of California, Berkeley
Maximum likelihood ML J. Carrera Universitat Politècnica de Cataluña, Spain
Pilot point method PP B. S. RamaRao Duke Engineering and Services, Inc.
Sequential self-calibration SS J. Gómez-Hernández Universidad Politècnica de Valencia, Spain
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of a conservative solute for the synthetic data sets. Particles were
released in a number of locations and the “true” groundwater
travel times were calculated but not given to the participants.

For each test problem the participants would analyze the
sampled T and head data (about 40 observations of each) and
use their inverse procedure to generate the ensemble of con-
ditional transmissivity fields and corresponding head fields (in
general between 50 and 100) that were given to the GXG
coordinator. The coordinator would then calculate the travel
times and travel paths for the same release points as those in
the “true” field, using the same particle-tracking code as the
one used for the true field but using the T values, the grid size,
and the boundary conditions specified by the participants as a
result of their efforts. Throughout this paper the term
“GWTT” is defined as the time it takes for a particle to reach
a radial distance of 5 km from the release point. The calculated
GWTTs taken across all realizations produced by a method
were used to construct a GWTT CDF which was compared to
the “true GWTT.” This is referred to as the “fixed well ap-
proach,” described in more detail below. In a second set of
analyses (the “random well approach,” also described in detail
below) the GWTTs from an ensemble of release points con-
tained within a localized area were used to construct the “true
GWTT CDF,” which was then compared with the calculated
GWTT CDFs for the same release points from each of the
methods. In the case of the linearized semianalytical method,
only a particle travel time CDF was requested because this
method does not require generation of a transmissivity field to
estimate this CDF.

In the real world it is clear that parameters other than
transmissivity are variable and uncertain in the system. For
example, porosity, aquifer thickness, dispersivity, sorptive
properties, etc., are all variable, and the GXG made sugges-
tions on how to incorporate these uncertainties into the PA.
However, for the present intercomparison, only the transmis-
sivity is involved, and all other parameters are given uniform
values.

2. Description of the Four Test Problems
The test problems (TPs) were developed as a series of in-

dependent synthetic data sets that were intended to span the
range of possible conceptual models of the Culebra transmis-
sivity distribution at the WIPP site. Estimates of transmissivity
at 41 boreholes at the actual WIPP site have been obtained
through slug tests, local pumping tests, and three regional-
scale pumping tests lasting from 1 to 3 months [Beauheim,
1991]. The T values obtained from these tests span 7 orders of
magnitude. Analyses of these data indicate that it is likely that
the spatial distribution of heterogeneity is not random, but
made of specific zones of high and low values. Transmissivity is
strongly impacted by the presence or absence of open frac-
tures. Large-scale pumping tests indeed suggest that narrow,
relatively conductive fracture zones are possible in some areas.
Whether these fractures form a connected network or are
isolated from each other by low-transmissivity zones is not
clear. In other areas local well tests have indicated the exis-
tence of rather low-permeability zones. There are lithologic
indicators of high or low transmissivities such as the presence
or absence of gypsum filling in fractures, although these indi-
cators are not strict. An attempt has been made in the test
problems to represent the presence or absence of such features.

Although the PA calculations to date have assumed a per-

fectly confined, two-dimensional flow system for the Culebra,
there may be vertical flow into or out of the Culebra. Vertical
leakage is therefore reflected in some of the test cases. There
is also a known salinity gradient in the Culebra which was not
considered in the test problems, as most inverse approaches
assume constant density.

Hydraulic heads obtained prior to the WIPP site character-
ization activities when the system was in a quasi–steady state
condition were available at 32 locations. Transmissivity esti-
mates were available at 41 locations. Thus the test problems
were developed as steady state systems, and the sample data
were limited to, at most, 41 observations of head and trans-
missivity (at the same locations). The spatial distribution of the
boreholes (i.e., density, pattern) in the TPs were kept similar to
that present at the WIPP. Three large-scale pumping tests
were also simulated in TPs 3 and 4. In the real world these data
are all subject to measurement errors. However, none was
considered in these calculations because the objective of the
comparison was not to assess the robustness of an approach to
the magnitude of measurement errors, but for a given set of
data, to determine the residual uncertainty on the transport
properties of the domain as evaluated by each approach. Add-
ing a measurement error would only increase this uncertainty
and decrease the ability to distinguish between the approaches.
Another reason is that the synthetic data were generated on a
very small grid (20–40 m) and the participants were given the
grid values at the sampled locations. Thus the small-scale vari-
ability of the synthetic log (T) fields can be viewed as mea-
surement error, compared to a “measured value” which could
have been provided by averaging over the larger domain such
as that which an actual pumping test would have produced.

Boundary conditions for flow in the vicinity of the WIPP site
are not well constrained. Thus the boundary conditions were
not defined for the participants. Given the 41 head measure-
ments in the domain, they were asked to select the boundary
conditions they felt appropriate.

In test problems 1 and 2, the synthetic T fields were gener-
ated as unconditional random fields using the two-dimensional
random field generator TUBA (Zimmerman and Wilson,
[1990]; see also work by Mantoglou and Wilson [1982] and
Matheron [1973]). In test problems 3 and 4 the initial field was
also generated using TUBA, but additional discrete modifica-
tions were made to each. For all test problems, Dirichlet
boundary conditions (different for each test problem) were
developed for calculating the synthetic heads by generating a
stationary random field and adding that to a trend surface.
These dense synthetic data sets comprised from one to three
million nodes. In all test cases a uniform mesh was used and
the true head-field solution was obtained via a multigrid solver
(finite difference method) provided by Pacific Northwest Lab-
oratory (see acknowledgments). The size of the area over
which the observation data are distributed is 20 km 3 20 km
for TPs 1, 2, and 3 and approximately 30 km 3 30 km for TP
4. This is of similar scale to the area where data are available
at the actual WIPP site.

The exact correlation structure of each synthetic data set was
determined via semivariogram analysis using GSLIB routines
[Deutsch and Journel, 1992]. Over 3600 randomly located sam-
ple points were used in the computation of the exhaustive data
set semivariograms in order to obtain enough pairs for stable
semivariogram estimates from a single realization (the “true”
field). An exponential semivariogram model was then fit to
each empirical semivariogram via nonlinear regression in or-
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der to report a correlation length parameter and a variance.
Exponential semivariogram models have been fit to the WIPP
site log10(T) data and an exponential semivariogram model
was used to generate the log10(T) fields for TPs 1 and 2. The
main features of each test problem, including means, vari-
ances, correlation lengths, etc., are summarized in Tables 2a
and 2b.

2.1. Test Problem 1

TP 1 was the simplest conceptual model. It was developed
using a model of the Culebra transmissivities that was based on
a geostatistical analysis of the real WIPP site data. The log10

(T) field (T in m2/s) was modeled as an isotropic process
having a mean of 25.5, a variance of 1.5, and an exponential
covariance structure with correlation length l 5 3905 m, close
to the values of the real WIPP site. A map of the synthetic log10

(T) field with the location of the observation points is shown in
Figure 1. A large regional field (40 km 3 40 km) was generated
on a 1793 3 1793 size grid (over 3.2 million unknowns) with
each grid block being 22.5 m on a side. However, the obser-
vation data were located in the central 20 km 3 20 km area
which is the portion of the field that is shown in Figure 1. The
mean and variance of the exhaustive log10 (T) data for the
inner region are 25.84 and 1.56, respectively. The sample data
consisted of 41 transmissivity and 32 head measurements taken
from the exhaustive synthetic data set.

Boundary conditions were generated using a combination of
a linear trend surface and spatially correlated noise. The trend
surface, given by Z 5 890 1 0.36X 1 1.28Y , with X and Y
in km, was derived from an analysis of the WIPP site data to
provide a similar head gradient. An anisotropic Gaussian pro-
cess with zero nugget, a sill of 50 m2, and ranges of 5 and 15 km
in the north-south and east-west directions, respectively, was
used to model the hydraulic head variability for generating the
boundary values.

2.2. Test Problem 2

The second test problem data set was generated specifically
to examine how well the linearized techniques could handle
high-variance cases. The model of spatial variability of TP 2 is
identical to TP 1; only the mean and variance of log10 (T) were
changed. In fact, the pattern of spatial variability remains ex-
actly the same except that the field is rotated counterclockwise
by 908. The mean of log10 (T) was increased to 21.26, resulting
in faster travel times, and the log10 (T) variance was increased
to 2.14. The boundary values remained the same, albeit rotated
by 908. The same number and similar configuration of obser-
vation data as for TP 1 were provided to the participants. The
sample log10 (T) data have a mean of 20.52 and a variance of

2.39. The log10 (T) field and observation points are shown in
Figure 2.

2.3. Test Problem 3

The intent of test problem 3 was to incorporate some of the
more complex geohydrologic characteristics of the WIPP site.
Several high-transmissivity fracture zones approximately 1–3
km apart have been inferred from pumping tests in the north-
west and southeast areas of the WIPP site and in other areas of
the site; aquifer tests conducted at several wells have resulted
in very low transmissivity values.

The transmissivity field of represents a possible nonstation-
ary conceptual model of the WIPP site transmissivity distribu-
tion that includes, within a background medium of variable
transmissivity, disconnected high-transmissivity “channels”
that represent fracture zones, local low-transmissivity subre-
gions representing tight zones, and a large low-transmissivity
zone in the southwest corner of the field. Information on “the
type of geology encountered in each borehole” was provided to
the participants (descriptors such as “porous,” “fractured,” and
“tightly cemented” were used to relate to the “background,”
the high-T “channels,” or the low-T subregions, respectively).
Such information would, of course, be available at any real site.

The log10 (T) distribution is shown in Figure 3. The map is

Figure 1. Test problem 1 true log (T) field (20 km 3 20 km).
Squares are assumed waste disposal areas. The flow lines orig-
inating from these squares display the flow direction from the
disposal area to the boundaries. The six gray shades are log10
(T) intervals of 1027–1026, 1026–1025, 1025–1024, 1024–
1023, and .1023 (lightest).

Table 2a. Log10 (T) Field Exhaustive Data Set and
Sample Data Statistics

TP
Covariance

Model

Exhaustive
Data

Sample
Data Observations

m s2 m s2 Head log10 (T)

1 exponential 25.84 1.56 25.30 1.84 32 41
2 exponential 21.26 2.14 20.52 2.39 32 41
3 Telis 25.64 1.38 25.70 1.82 41 41
4 bessel 25.32 1.93 25.32 1.89 41 41

T in m2/s.

Table 2b. Additional Characteristics of Each Test Problem
Data Set

TP
True Field

Correlation Length, m
Recharge
Included?

Transient
Pumping?

Well log
“Geology”?

1 2808 no no no
2 2808 no no no
3 425 yes yes yes
4 2063 yes yes no
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best thought of as several “geologic overlays.” The underlying
“geostatistical background field” (the T field without the low-T
subregions and high-T fractures) was generated as a stationary
field having a log10 (T) mean and variance of 25.5 and 0.8,
respectively, and an anisotropic Telis covariance with correla-
tion lengths of 1.025 km and 0.512 km in the east-west and
north-south directions, respectively. The high-T “channels”
were generated with a log10 (T) mean of 22.5, a variance of
0.1, and an exponential covariance with a correlation length of
6667 m.

This correlation structure applies only along narrow zones
described as “fractures,” as shown in Figure 3. The low-T
zones, shown as dark, nonuniform ovoid regions, had a mean
log10 (T) of 27.5, a variance of 0.5, and an isotropic exponen-
tial covariance model with a correlation length of 3417 m. In
the lower left-hand corner of the field is an area in which there
is a trend of decreasing transmissivity toward the corner of the
field. After overlaying the low-T subregions and linear fea-
tures, a 3 3 3 moving window block filter (averaging on the
log10 (T)) was passed over the field to help smooth the tran-
sition between these zones in order to avoid potential numer-
ical-convergence problems. This did not significantly reduce
the variance of the final log10 (T) field, which had a mean and
variance of 25.64 and 1.38, respectively. The mean and vari-
ance of the sample log10 (T) data are 25.70 and 1.82, respec-
tively (for the 41 sample points).

Vertical recharge was applied uniformly over the northwest-
ern portion of the model domain; the recharge rate was 6.5 3
1029 m3/s. The recharge distributed over this region accounts
for approximately 10% of the regional flow through the system.
Such recharge could be inferred by the participants from the
observed heads in this area, which showed a localized piezo-
metric mound, but no information on recharge was given to the
participants.

Boundary conditions were generated in a similar fashion as
those for TPs 1 and 2, using a combination of linear trend
surface and spatially correlated noise. The trend surface was
based on an analysis of the WIPP site data, but with the x
direction of the trend reversed. The trend model is given by
Z 5 890 1 0.36(41 2 X) 1 1.28Y , where X and Y are
given in km. An anisotropic exponential covariance model
having zero nugget, a sill of 50 m2, and X and Y correlation
lengths of 15 and 5 km, respectively, was used to model the
head spatial variability for generating the boundary values.

In addition to the steady state hydraulic head data and
transmissivity values, transient information was provided to the
participants in the form of three independent aquifer tests.
Pumping from the aquifer was simulated numerically in three
different wells (one at a time) and drawdown data in the
surrounding wells and the pumping rates were given to the
participants. A uniform storativity value of 5 3 1026 was as-
signed to the system (but not made known to the participants).
These tests were loosely modeled after the H-3, H-11, and
WIPP-13 large-scale pumping tests conducted at the WIPP site
[Beauheim, 1991]. Details of the three aquifer tests, including
drawdowns at each observation well and estimates of transmis-
sivity and storativity based on conventional well-test analysis,
were given to the participants.

2.4. Test Problem 4

TP 4 is a complex, nonstationary conceptual model of the
transmissivity distribution reflecting large-scale connectivity of
fracture zones (contrary to) that have been shown to exist in
some areas of the Culebra. The features of the conceptual
model included the following: (1) well-connected high-T chan-
nels, (2) a variation in transmissivity of 5–6 orders of magni-
tude, (3) a small trend in log10 (T) (1–2 orders of magnitude
for T across the entire field), (4) a local recharge area corre-
lated with the high-T zones, and (5) some high-T zones that

Figure 3. Test problem 3 true log (T) field (20 km 3 20 km).
Squares are assumed waste disposal areas. The flow lines orig-
inating from these squares display the flow direction from the
disposal area to the boundaries. The six gray shades are log10
(T) intervals of 1027–1026, 1026–1025, 1025–1024, 1024–
1023, and .1023 (lightest).

Figure 2. Test problem 2 true log (T) field (20 km 3 20 km).
Squares are assumed waste disposal areas. The flow lines orig-
inating from these squares display the flow direction from the
disposal area to the boundaries. The six gray shades are log10
(T) intervals of 1027–1026, 1026–1025, 1025–1024, 1024–
1023, and 1023–1021 (lightest).
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are well-identified while others are missed by the observation
wells.

The field was generated as follows: Initially, an uncondi-
tioned field having an anisotropic Bessel covariance structure
was generated with correlation lengths of 2.05 and 1.025 km in
the east-west and north-south directions, respectively. Through
a series of repeated kriging exercises, a network of connected
high-T channels was developed. Each time the kriging was
performed, a number of “fake conditioning points” was added
to develop the high-T channels iteratively in the kriged “true
field.” The final conditionally simulated field was generated via
the classical method of conditional simulation described by
Journel and Huijbregts [1978], being the sum of the kriged true
field and the perturbations resulting from the difference be-
tween the unconditioned field and the kriged unconditioned
field. The final log10 (T) field had a mean of 25.32 and a
variance of 1.93; the field is shown in Figure 4 along with the
41 observations points. The field was generated on a 1025 3
1025 grid with 40-m grid blocks. The log10 (T) mean and
variance of the 41 sample observations are 25.32 and 1.89,
respectively.

Boundary values were obtained by generating a random
head field using a generalized isotropic covariance C(h) 5 h5

using the TUBA code. The field so generated had a southwest-
to-northeast trend diagonally across the field and through the
high-T channels. This field was scaled to provide a head dif-
ference of 94 m along that diagonal (;58 km).

Areal recharge was applied to the southern portion of the
field where the transmissivity is generally somewhat higher
than average; this also helped to direct the flow through the
high-T channels without causing any mounding. The recharge
(leakage) was applied nonuniformly, being highly correlated
with the transmissivity distribution in this area of the field.
Because it occurs at the margin of the field, no observation
points are located within this region. The recharge amounted
to approximately 6% of the regional flow moving through the
system, but no recharge information was given to the partici-
pants.

As in TP 3, three independent numerical pumping tests were
performed to provide transient information for those tech-
niques that could use it. A detailed description of the three
tests and conventional analyses of the results were given to the
participants.

3. Qualitative Results
In this section we present the results of the groundwater

travel time (GWTT) distributions and the transmissivity maps
produced by the different approaches along with a statistical
analysis of all the evaluation measures.

3.1. Comparison of GWTT CDFs

It is assumed that radionuclides can reach the aquifer when
at some future time an exploratory well is drilled through the
repository. Because this hypothetical future drilling location is
unknown, it is reasonable to treat the unknown location as a
random variable within the repository (also referred to as “the
waste panel area”). The objective in this analysis is to compute
GWTT CDFs for both the true fields and the fields produced
by the inverse methods and to compare them. These CDFs
represent the uncertainty in GWTT resulting from an intrusion
borehole whose location is unknown but which lies somewhere
within the waste panel area. What we want to investigate is if

the CDFs produced by each approach, for each test problem,
are reasonably close to the true CDFs.

Hereinafter, the designations “true field,” “true travel time,”
and “true GWTT CDF” refer to quantities computed using the
exhaustive (synthetic) data set.

To construct the true GWTT CDF, a hypothetical repository
of similar scale to the waste panel area at the real WIPP site
(1.1 km 3 1.1 km) is located within the study area. The repos-
itory is located in the zone where the density of the observation
data is greatest. Particle tracking is performed for each of 100
particles, distributed uniformly over the waste panel area, out
to a radial distance of 5 km. These GWTTs are then used to
construct the “true CDF.”

To construct the GWTT CDFs for each of the approaches,
the procedure was similar, but the uncertainty will of course be
larger, since knowledge of the true transmissivity distribution is
not perfect. The transmissivity fields used to calculate the
travel times are those derived via the inverse procedures.
These CDFs, however, will be conditioned on the available
data. That is, the velocity fields were computed by solving the
forward problem where the boundary conditions, source terms,
and discretization were assigned individually by each partici-
pant (i.e., they were different for each inverse approach). The
GWTT CDFs for each approach were constructed as follows:
For each of the 100 release points within the waste panel area,
a GWTT CDF was constructed from the ensemble of GWTTs
obtained across all realizations. Hence 100 GWTT CDFs are
obtained, each CDF being conditional on a particular release
point location. The mean CDF for the entire waste panel area
was computed as

mean CDF 5 E
waste panel

CDF(x) f~x! dx (1)

Figure 4. Test problem 1 true log (T) field (30 km 3 30 km).
Squares are assumed waste disposal areas. The flow lines orig-
inating from these squares display the flow direction from the
disposal area to the boundaries. The six gray shades are log10
(T) intervals of 1027–1026, 1026–1025, 1025–1024, 1024–
1023, and .1023 (lightest).
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where f(x) is the probability density function for the borehole
location (which was treated as uniform; hence the release
points are equally weighted). Figures 1–4 show the position of
the repository for each TP, with envelopes of all the true-field
particle paths originating from the edges of the waste panel
area. Both the true GWTT CDFs (thick line) for each TP and
the median GWTT CDF for each method (dashed line) are
plotted at the bottom of Figures 5a–8c. The GWTT CDFs for
method LS (which did not need to produce T fields) are shown
in Figure 9. In addition, on these plots a bounding envelope
containing the inner 95% of the CDF curves at each travel time
value was constructed. These GWTT0.025 and GWTT0.975

bounding curves reflect the degree of variability in GWTT
within the repository area from realization to realization.

This type of analysis allows for the fact that conceptually, the
distributions of properties could be identical and yet the un-

derlying T fields different. This is because an identical GWTT
may be obtained for very different random well locations in the
simulated and true fields. The test only compares the distribu-
tions and does not consider if the short or long GWTTs orig-
inate from the same locations.

3.2. Comparison of the Transmissivity Fields and Their
Semivariograms

As an additional means of comparison, some of the T fields
produced by each approach for each TP are shown in Figures
5a–8c. In each figure we have chosen to show both the average
of the simulated log10 (T) fields (50–100 simulations) and one
individual realization, selected at random. Both maps are “em-
bedded” in the true T fields in order to reveal the area the
participants decided to model, the grid orientation, and the
level of discretization they used. Also shown in these figures

Figure 5a. Test problem 1 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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are the envelopes of the travel paths from the edges of the
waste panel area. Six gray shades are used; each represents an
order-of-magnitude change in the value of transmissivity.

The ability of an inverse method to reproduce the correla-
tion structure of the T field in the realizations correctly was
considered an important feature for predicting contaminant
transport and spreading. Therefore semivariogram estimates
of the simulated log10 (T) fields were computed for each
realization of a method, using the GAMV2M routine from the
GSLIB software package [Deutsch and Journel, 1992]. On the
order of 600–1000 randomly placed sampling points were used
in the estimation of each semivariogram. Then the average
semivariogram was computed across the ensemble of realiza-
tions for each TP. For method LS the participant gave directly
the parameters of the exponential variogram he had selected.
For the other approaches, estimates of the parameters of an

exponential semivariogram model fit to each of the average
empirical semivariograms (one for each TP) were made via
nonlinear regression. The same analysis was performed on
each of the true log10 (T) field realizations; approximately
3600 sample values were used for the semivariogram estimates
in each of the true-field exhaustive data sets.

3.3. Qualitative Comparison Observations

First, a visual comparison of the mean CDFs with the true
CDF reveals large differences among the approaches. Second,
no one particular approach is obviously superior to all others,
for all TPs.

A third observation is that the mean CDF of each method
spans a broader range than the true one: The uncertainty
linked to the position of the intrusion borehole is significantly
increased when additional uncertainty is introduced by only

Figure 5b. Test problem 1 mean log10 (T) field (top), randomly selected single realization overlain with
bounding pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true
CDF, dashed line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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incomplete knowledge of the parameters. To give some per-
spective to these conditional CDFs, we have crudely estimated
what would have been the unconditional CDFs, if we had not
used any inverse and had directly sampled uncertain parame-
ters in “traditional” Monte Carlo simulations. For this, we
assume that we know only, for each TP, the pdf of T from the
41-sample T data and the average head gradient from the head
observation data, and we take the same porosity as in all our
calculations (16%). For simplicity, we assume that the uncon-
ditional T field is uniform over the whole domain and that its
value is sampled from a lognormal distribution defined by the
mean and variance of the 41 log10 (T) sample data. These four
unconditional CDFs are shown in Figure 10. It is clear from
this figure that conditioning drastically reduced the uncer-
tainty, which otherwise would have spanned an interval several
orders of magnitude larger than the true one.

Fourth, all approaches do relatively well for TPs 1 and 2;
their mean CDFs are reasonably close to the true ones, the
error is small (less than half an order of magnitude), and the
overall uncertainty range is relatively small. The results for TP
1 are generally conservative, and the uncertainties are gener-
ally higher in TP 2. But for TPs 3 and 4 the results are in
general rather poor. The error can reach several orders of
magnitudes, and in general the methods are systematically
biased. Thus the predicted GWTT is in general longer than the
true one.

We can now examine these results in more detail to reveal
some differences among the approaches. Remember that three
of the approaches are “linearized” (LC, FF, and LS) and there-
fore should be sensitive to the magnitude of the variance of the
log10 (T) fields. The only difference between TPs 1 and 2 is an
increase in the log10 (T) variance (from 1.56 to 2.14, or, for

Figure 5c. Test problem 1 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, and
other curves bound the inner 95% of all conditional CDFs.
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ln(T), from 8.25 to 11.32). It is clear, when comparing Figures
5a–9, that the increase in variance did not affect any of the
methods, neither the linearized nor the nonlinear ones. The
magnitude of the variance of log10 (T) is thus apparently not
a critical issue. Linearization is generally assumed valid for
ln(T) variances on the order of 1; the ln(T) variances in these
test problems are well beyond this range. When we look at TPs
3 and 4, it becomes clear that some of the nonlinear ap-
proaches systematically perform better than the linearized
ones: SS, ML, and PP have mean CDFs substantially closer to
the true CDFs than FF and LC. FS, although nonlinear, does
not do as well.

Let us now turn to the bounding curves of the waste panel
CDFs. These curves reveal how different the CDFs can be, for
a given approach, from simulation to simulation. If the bound-
ing curves are very near the mean CDF, it means that the T

fields are relatively well known from the available data, by
calibration, and that the residual uncertainty is small. This
would be desirable only if the mean CDF was very close to the
true one. Otherwise, the method can be said to be “overcon-
fident.” In PA, overconfidence can be regarded as an unac-
ceptable “sin.” This is because the decision on whether or not
to license a waste repository, that is, to declare it “safe” with
regard to isolating the wastes, would then be based on overly
optimistic predictions of the repository’s performance. If ap-
plication of the inverse methods was to result in overconfi-
dence, then their use in PA should be questioned.

Another test for evaluating PA methodology was conducted
in the United Kingdom [Mackay, 1993] to see how the
“VANDAL” PA approach, developed by Her Majesty’s In-
spectorate of Pollution, would perform in a synthetic case, as
the amount of information made available to the modeler

Figure 6a. Test problem 2 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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would increase through reconnaissance. Although calibration
was done by hand, this exercise clearly showed that the meth-
odology employed in this case resulted in “overconfidence.”

The decision on whether or not to declare the repository
safe may be affected by the degree of overconfidence associ-
ated with an approach. If an approach produces results indi-
cating the site will adequately contain the waste, but the ap-
proach is deemed to result in too much confidence, this could
sway the decision maker to reject the application.

In our case the distances between bounding curves predicted
by the methods are small for TPs 1 and 2 and wider for TPs 3
and 4. This is satisfactory, as it shows that the methods account
for more uncertainty in the more complex TPs. If we look
further, we see that method SS is overconfident for TP 1, but
not so for the other TPs. Method LS produces almost system-
atically the largest range, and LC the smallest. The range for

PP does not vary a great deal between TPs. The range for ML
is, in general, the most appropriate over all the TPs; PP and SS
come next.

We now briefly examine the T fields (Figures 5a–8c). For
TPs 1 and 2, visually, the major high-T zones seem to be
reasonably well captured by PP, SS, and ML, in that order, and
a little less so by the others. For TP 4 it is evident that SS looks
closer to the true field than the others.

It is interesting to know that for TP 3, the participant real-
ized that the log10 (T) sample had a bimodal distribution
(because of the different geology of the “features” in the aqui-
fer) and decided that the multi-Gaussian assumption would
not be appropriate for this distribution. He therefore used the
indicator kriging approach, optional in his code, with two pop-
ulations, to account for this bimodal distribution. One popu-
lation had high-T values; since the transient head data indi-

Figure 6b. Test problem 2 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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cated that this population should be well connected in the
2458 direction, he decided to use an anisotropic indicator
variogram for that population, consistent with this observation.
These high-T “features” in the 2458 direction can easily be
seen in Figure 7c in the given realization, and because of
conditioning, some of these features are included in all real-
izations so that they appear in the mean T field. The fact that
method SS did not rank first in the global ranking for may
reflect that the “features” in the true T field were slightly more
complex than accounted for by the anisotropic variogram.

The other approaches did not really identify the discon-
nected high-T channels. The darker zone at the lower left
corner (low-T zone) was captured by SS, LC, FS, and, although
not exactly in place, by PP. For TP 4 it is interesting to see that

all approaches were more or less able to identify the connected
high-T “channel” present across the domain.

One issue of interest in comparing inverse approaches is
parameterization [e.g., McLaughlin and Townley, 1996]. The
way each method parameterizes its T field is described in
Appendix B. We tried in several ways to relate parameteriza-
tion to the present results but did not find any real clues. One
reason is that most methods parameterized the T field with a
relatively similar number of unknowns (on the order of 50) and
used geostatistics to interpolate the values; they furthermore
constrained the unknowns in predefined ranges so that in the
end, the specifics of the parametrization of each approach did
not seem to make a large difference. We will return to this
issue in the discussion, together with that of uniqueness.

Figure 6c. Test problem 2 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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Examination of the semivariograms (Figures 11–14) shows
large differences among the approaches. Furthermore, it is
clear that these differences are not systematic. To illustrate
what can be learned from these figures, we will look for in-
stance at the results of method SS. In TP 1, SS underestimates
the variability: the sill of the variogram is approximately 2/3
that of the true field. As a result, the CDF of SS for TP 1 is
“overconfident,” as we have seen. In TP 2, SS has the vario-
gram which is the closest to the true-field semivariogram, and,
as a result, SS does very well on the CDF and its bounds. In TP
3, SS does the best job for short distances, even if it overesti-
mates the sill. Since for this problem, the short-scale spatial
variability dominates the T fields (because of the presence of
the channels), SS again does very well. In TP 4, SS (as well as
LC, ML, and PP) is very close to the true-field semivariogram
and also produces accurate flow results. In TP 1, PP used a

generalized covariance model with no sill (see insets of Figures
11–14). After the completion of TP 1 the PP approach was
rerun using an exponential covariance model whose sill
matches the true-field sill.

To summarize the initial findings so far: (1) There are sig-
nificant differences between the methods and the way each
approach is implemented (e.g., grid discretization and orien-
tation). (2) The use of any of the inverse methods to condition
the CDFs of GWTT on transmissivity and head data drastically
reduces the uncertainty in these GWTTs, compared with the
unconditional CDFs. (3) For “simple” (classical geostatistical)
problems, all the approaches do a reasonably good job; the
errors in GWTT are within half an order of magnitude, and in
general, with only few exceptions, the inverse methods do not
build “overconfidence.” (4) For “complex” cases the nonlinear
approaches do better in general. The LS method is an excep-

Figure 7a. Test problem 3 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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tion in this respect, as it does better than the other linearized
ones, for reasons that we will investigate later. There is, how-
ever, a tendency for all approaches to be overconfident and to
overestimate the GWTT, meaning not erring on the side of
greater safety. (5) The magnitude of the variance of ln(T), up
to 11 in our case, does not seem to be a problem, even for the
linearized approaches. However, nonstationarity (and depar-
ture from a true “geostatistical” distribution) is obviously more
difficult to handle for the linearized approaches than for the
nonlinear ones. (6) Unconnected channels are poorly identi-
fied by most inverse methods; an exception is, however, the SS
method using the multiple-population approach. If the pres-
ence and average direction of such channels can be identified
by external data (in this case, the transient head response to
the aquifer tests), then this approach can be geared to generate
such channels in the selected direction(s). An alternative,

which was attempted by the participant of method FF, is to
introduce such features “by hand.” In both cases, if the fea-
tures (or position) of these channels have been correctly iden-
tified, this will of course improve the results. (7) A good se-
lection of the variogram of the true T field seems to improve
the results of the inverse.

This first series of findings was purposely based on qualita-
tive “subjective” judgments without any attempts to quantify
the results. In the next section we build a number of objective
evaluation measures and analyze their results statistically.

4. Quantitative Comparisons
The GXG decided that the comparison of the methods

should be primarily based on quantifiable measures that can be
directly related to the ability of the model to predict transport.

Figure 7b. Test problem 3 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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The advective groundwater travel time of a conservative solute
in the aquifer was selected as the most significant outcome of
a calibrated model on which the evaluation of the methods
should be based. This is a performance measure related to the
ability of a waste disposal site to isolate waste yet is simpler
than prediction of solute concentration. In addition, it was
decided that GWTT alone was insufficient and that the
groundwater flow paths should also be examined. It was rea-
soned that calculations resulting in accurate GWTT but very
inaccurate groundwater flow paths would probably not be de-
fendable, even though there is no regulatory requirement per-
taining specifically to contaminant migration paths. To this
end, particle-tracking calculations were performed; particles
were released at a number of selected locations and the travel
path and groundwater travel time to reach a radial distance of
5 km from the release point were calculated. In addition, the

orientation of the flow path from the release point to the
crossing point at the 5-km radial boundary was determined.
For brevity, the name PATH will be used to refer to the
particle pathline analyses.

Ten quantitative evaluation measures were tested and ap-
plied to the results of the test problems. These measures will be
described under three headings: the fixed well approach, the
random well approach, and the field variables measures.

4.1. The Fixed Well Approach

A selection of 10–30 particle release points was used for
each test problem. The points were randomly located but more
or less uniformly distributed over the total area of the studied
field (as opposed to just within the waste panel area). The flow
lines originating from these points were calculated by particle
tracking (Figure 15). For each release point the distribution of

Figure 7c. Test problem 3 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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GWTTs estimated from the ensemble of simulated fields is
compared with the GWTT value from the true field. The anal-
ysis thus involves comparing a distribution of GWTTs to a
single value (the true-field GWTT), contrary to the random
well approach (described below), where we compare two
GWTT distributions. The path lines predicted by each ap-
proach are also compared with those of the true fields (path
line calculations are denoted “PATH”). Combining all four
test problems, 88 particle paths were analyzed for each ap-
proach for the fixed well release points case. Given that there
are two CDFs for each release point (one for GWTT, one for
PATH) and seven approaches, this results in more than 1200
CDFs. Consequently, only a few samples are shown here (Fig-
ure 16).

The aim of this analysis is also to evaluate the inverse ap-
proaches on their ability to predict advective transport, but this

time the locations of the release points are distributed over the
whole domain. Because the analysis involves several indepen-
dent measures and numerous release points, it will be possible
to conduct statistical tests to assess differences in performance.
Five evaluation measures were defined within the framework
of the fixed well approach, the details of which are given in
Appendix C.

Evaluation measure (EM) 1: The GWTT error (denoted
“Error” in the tables) compares the median of the simulated
GWTTs with the true GWTT.

EM 2: The GWTT “degree of caution” (denoted “Caut”)
measures the propensity of an approach (if any) to underesti-
mate rather than overestimate the GWTT. This is a PA-
specific concept where it is considered better to err on the side
of greater safety and protection of public health which equates
to predicting faster travel times. In the parlance of PA termi-

Figure 8a. Test problem 4 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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nology, such predictions are referred to as “conservative” pre-
dictions.

EM 3a: The GWTT spread (denoted “Sprd”) measures the
width of the GWTT CDF produced by a method, i.e., the
uncertainty that an approach associates with its GWTT pre-
dictions.

EM 3b: The GWTT robustness (denoted “Boot”) measures
the number of times the true GWTT falls within the inner 95%
of the simulated GWTT distribution (the bootstrap test).

The Sprd and Boot measures must be considered simulta-
neously. For instance, an approach which predicts a small Sprd
(a small uncertainty) but which fails the bootstrap test clearly
underestimates the uncertainty. Similarly, an approach result-
ing in a large Sprd and a good Boot measure may be overpre-
dicting the uncertainty. The goal is to have the smallest Sprd
with a good Boot. Together the Sprd and Boot measures re-

flect whether an approach is “self-consistent,” that is, whether
it over or underpredicts the uncertainty. For ranking purposes
a single index grouping the two, called the normalized self-
consistency measure (NSC), was also constructed (see Appen-
dix C).

EM 4: The PATH error quantifies the absolute deviation (in
degrees) between the median path direction angle and the
direction of the true path. The orientation of the path is de-
fined by the angle from the release point to the point where the
path crosses a circle of radius 5 km (centered at the release
point).

EM 5a: The PATH spread measure quantifies the spread in
the distribution of path angles.

EM 5b: The PATH bootstrap (robustness) measure, as for
GWTT, measures the robustness of the path line calculations.

It should be noted that all these measures are computed for

Figure 8b. Test problem 4 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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each release point and are averaged over all release points,
where the averaging is made with nonuniform weights. Addi-
tionally, each release point was given a weight reflecting how
close this point was from the true observation data. It was
reasoned that those points surrounded by measurements
should be better predicted by the methods than those far away
from any measurements so they are assigned relatively higher
weights. The way in which these weights were derived is ex-
plained in Appendix C.

4.2. The Random Well Approach

This approach involves a comparison of the estimated
GWTT CDF with the true GWTT CDF. The CDFs to be
compared are the ones generated from the 100 release points
within the waste panel area shown in Figures 5a–8c. Three

evaluation measures have been defined. Figure 17 and Appen-
dix C clarify how these measures are constructed.

EM 6: The GWTT error which is a measure of the disparity
between the median GWTT CDF and the true CDF.

EM 7a: The GWTT spread measures the area between the
95% bounding envelopes of all waste panel GWTT CDFs.

EM 7b: The GWTT robustness measure quantifies what
proportion of the true CDF is contained within the 95%
bounding envelope.

4.3. The Field Variables

The final three evaluation measures (detailed in Appendix
C) compare the simulated T fields and head fields with the true
fields, and the semivariograms of the log10 (T) fields.

Figure 8c. Test problem 4 mean log10 (T) field, randomly selected single realization overlain with bounding
pathlines for that realization, and the GWTT CDF curves from all realizations. Thick line is true CDF, dashed
line is mean CDF, and other curves bound the inner 95% of all conditional CDFs.
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EM 8: The log10 (T) error measures the difference between
the ensemble of T fields and the true T field.

EM 9: The head error similarly measures the difference
between the ensemble of head fields and the true-field head
solution.

EM 10: The semivariogram error measures the difference
between the average of the semivariograms of each simulated
log10 (T) fields and that of the true one (Table 3).

4.4. Analysis of the Results

The 10 evaluation measures described in the previous sec-
tion were computed for each of the approaches in each test

problem and the “raw” (untransformed) evaluation scores are
listed in Table 4. For several of the measures, the scores vary
only within the range [0, 1]. For the other measures, however,
the scores are only bounded by zero and can range beyond one.
Because these “raw” measures are not all computed in the
same units, they cannot be meaningfully averaged and are not
directly comparable. Transformation of the evaluation mea-
sure scores to consistent units was performed in two ways, by
converting them to standardized variables and via rank trans-
formation. Statistical analyses were performed on both the
standardized and the rank-transformed variables. However,
analyses of the rank-transformed variables were considered
more powerful from a statistical viewpoint, and therefore only
the rank-transformed results are presented here. For method

Figure 10. Unconditional waste panel GWTT CDFs from
the random homogeneous (RH) case. Note that the ranges of
GWTT in these plots span several orders of magnitude more
than those from the inverse methods (Figures 5a–8c).

Figure 9. Waste panel GWTT CDFs for the linearized semi-
analytical (LS) method.
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LS, which has not produced transmissivity and head fields, the
comparison was done excluding the head and log10 (T) field
error measures.

4.4.1. Evaluation measures overview and ranking. The
rank-transformed scores for the 10 evaluation measures for
each test problem and method are listed in Table 5. The av-
erage rank across all measures in a test problem is shown in the
far right column and the average score for each measure across
all four test problems is shown down the columns.

It was of interest to determine if the two sets of GWTT
analyses (the random well and the fixed well approaches)
would lead to different conclusions. To compare these mea-
sures, we averaged the five evaluation measures for the fixed
well and the two evaluation measures for the random well
approaches from Table 5, for each approach over all test
problems.

Table 6 shows that on average, similar rankings are obtained
for both analysis approaches except for LC, which does slightly
better for the random well case. The comparison of distribu-
tions with the single-valued “truth” used in the fixed well ap-
proach, although involving more evaluation measures, is thus a
relatively robust indicator of the performance of an approach
and compares favorably with the better founded comparison of
distributions. This result also shows that the relative perfor-
mance of methods does not change depending on whether the
analysis is conducted in the vicinity of the highest data density

(random well case) or throughout the region with more sparse
data (fixed well case). This may be expected because of the
kriging variance-based weighting used in the fixed well case.

Thus far we have not paid much attention to the correct
orientation of the flow lines predicted by each method. On
average, it appears that method LS performs somewhat better
than any other method to predict the correct path. The spread
of the PATH CDFs for this approach is also, in general, wider
than for the others, as was the case for GWTT. It is also worth
mentioning that LS scores best for Caut, as a result of a
conscious decision of the participant to “fine tune” his ap-
proach to meet this criterion.

The head and log10 (T) errors are highly correlated. The
head and log10 (T) errors listed in Table 4 are plotted in
Figure 18 to show this correlation. The closer the T fields are
to the true T field, the smaller, in general (save for TP 3), are
the head errors. Linear regression performed on the results
from TPs 1, 2, and 4 (dashed line in Figure 18) has a coefficient
of determination of 0.70. In TP 3 the average magnitude of the
head error (for all approaches) is approximately half an order
of magnitude larger than for the other TPs (see Table 4). The
exception is method PP, which does much better on head than
any other approach. Note, however, that its performance in the
log10 (T) error in is not that much better than SS or ML. One
likely reason is that the flexibility of this approach in optimally
choosing the parametrization (optimal selection of the location

Figure 11. Average semivariograms for test problem 1.

Figure 12. Average semivariograms for test problem 2.

Figure 13. Average semivariograms for test problem 3.

Figure 14. Average semivariograms for test problem 4.
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of the PP) makes it possible to fit the head better than other
approaches. This may be especially true for complex flow sys-
tems, but perhaps at the expense of producing a T field which
poorly corresponds to the true T field (see Figures 7a–7c,
where it is clear that the PP T fields have a more continuous
design pattern (zones of high and low Ts) than the ML and SS
methods). This exemplifies the necessity to prescribe, in one
form or another, a “plausibility” criterion on the T field in an
inverse solution. As shown by Carrera and Neuman [1986a, b],
the minimization of the head differences alone is insufficient.

4.4.2. Statistical analysis of the evaluation measures.
The results presented in Table 5 can be used in statistical
analyses to indicate if the performances of the seven methods
(as quantified through the evaluation measures) are signifi-
cantly different. In these analyses it is assumed that each eval-
uation measure (appropriately transformed to ranks or stan-
dardized) is an independent measure of the performance of
the approach. A two-factor analysis of variance (ANOVA) was
used to analyze the performance measure information. This

approach considered the two factors, test problem and
method, and their interaction to be potentially significant
sources of variation in method performance. The validity of
statistical tests obtained through the ANOVA on ranked data
depends on the assumption that the performance values of
each approach are independent measures of the same quantity
which have a constant variance. Thus we are assuming that
each evaluation measure is an independent measure of the
performance of the method where each measure quantifies
performance in a different way. Because the performance val-
ues are clearly not independent and the assumption of constant
variance may be questionable, the results from the ANOVA
tests were used only as an indicator that substantial differences
may exist and to suggest a general ordering of the methods
rather than to declare the results “statistically significant.”

The null hypothesis for the two-way ANOVA is that there is
no difference among the approaches or the test problems or
the combination of the two. The computed p value is the
probability that an F statistic greater than the one observed

Figure 15. Fixed release points and pathlines on the true log (T) fields. Pathlines extend a radial distance
of 5 km.
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would be obtained if the null hypothesis were true. The p value
for the method/test problem interaction was 0.0079, indicating
a strong interaction between the approach and test problem,
that is, that the performance of an approach tends to differ
depending on the test problem. The nature of this interaction
is illustrated in Figure 19, which is a plot of the average eval-
uation scores across the 10 measures in each test problem, for
each approach. From this figure we can see that while the
performance of some of the methods is relatively consistent
across all test problems (such as SS and FF), the performance
of other methods (such as LS and PP) tends to depend on the

particular test problem considered. In fact, the performance of
the LS method, and perhaps also that of the PP method, tends
to improve across test problems. For method LS, the most
likely explanation is that the participant changed the method
of integration and could thus use finer time steps. For method
PP the explanation could be that the participants took more
care in the application of the method (e.g., selection of the
semivariogram), or that the approach is more suited to more
complex test problems, or both.

Apart from the dependence of method performance on the
test problem, Figure 19 also indicates that the performance of

Figure 16. Examples of some GWTT CDFs for the fixed release points case (all plots are release point 16,
TP 3). Vertical line is the true GWTT.
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the SS method is, three times out of four, superior to that of
the other approaches. For certain test problem/method com-
parisons (such as the comparison of SS and FF on TP 4), the
difference in performance is substantial; for other test prob-
lem/method comparisons (such as the SS and PP methods on
TP 3), the difference is extremely small. Given this result and
the test problem method interaction, it does not appear that
there is sufficient evidence to conclude that the performance of
one approach was consistently significantly superior to that of
all other approaches.

These observations were reinforced by conducting a one-way
ANOVA on the average of the rank-transformed evaluation
measures scores taken across all 10 measures for each test
problem. This gives four measures of performance for each
approach, one for each test problem. Because the test prob-
lems were constructed, sampled, and analyzed independently
of each other, the overall average performance measure scores
should also be independent. The one-way ANOVA was used to
test the hypothesis that the average performance of all the

Figure 17. GWTT CDF evaluation measures used in the
random well case. Thin solid lines are the 0.025th and 0.975th
percentile CDFs, thick dashed line is the median CDF, and
thick solid line is the “true” CDF.

Table 3. Parameters of the Exponential Semivariogram Model Fit to the Average
Semivariogram Across All Realizations

Method s2
l,
m R2

Cut,
1000 m RMSE Js2 Jl Jg Rank

Test Problem 1
True 1.66 2808 0.9949 12 0.00 z z z z z z z z z z z z
FF 0.79 4074 0.9976 9 0.72 0.34 0.31 0.32 3
FS 2.41 5503 0.9978 12 0.26 0.31 0.49 0.45 6
LC 0.29 2142 0.9947 15 1.13 0.45 0.19 0.26 1
LS 2.99 6900 z z z z z z z z z 0.44 0.59 0.55 7
ML 1.26 4730 0.9913 15 0.47 0.19 0.41 0.35 5
PP 1.52 3767 0.9998 9 1.52 0.60 0.25 0.34 4
SS 1.28 3995 0.9975 10 0.41 0.19 0.30 0.27 2

Test Problem 2
True 1.66 2808 0.9949 12 0.00 z z z z z z z z z z z z
FF 2.37 12576 0.9989 10 0.49 0.30 0.78 0.66 7
FS 4.59 4395 0.9994 7 1.40 0.64 0.36 0.43 6
LC 0.54 3617 0.9971 12 0.94 0.40 0.22 0.27 3
LS 2.99 4000 z z z z z z z z z 0.44 0.30 0.34 5
ML 2.32 3776 0.9993 15 0.49 0.28 0.26 0.26 2
PP 2.34 2525 0.9993 15 0.66 0.29 0.09 0.14 1
SS 1.92 4687 0.9978 9 0.13 0.14 0.40 0.33 4

Test Problem 3
True 1.35 425 0.9986 12 0.00 z z z z z z z z z z z z
FF 5.09 1134 0.9726 15 3.56 0.73 0.63 0.66 4
FS 4.29 2429 0.9978 15 2.43 0.69 0.83 0.79 7
LC 2.91 3099 0.9983 9 0.93 0.54 0.86 0.78 6
LS 0.75 2700 z z z z z z z z z 0.31 0.84 0.71 5
ML 1.41 1605 0.9992 9 0.25 0.04 0.74 0.56 2
PP 0.74 1562 0.9990 10 0.67 0.31 0.73 0.62 3
SS 1.76 384 0.9981 9 0.43 0.23 0.09 0.12 1

Test Problem 4
True 2.18 2063 0.9927 15 0.00 z z z z z z z z z z z z
FF 6.28 3320 0.9986 9 2.56 0.65 0.38 0.45 7
FS 3.98 2715 0.9968 9 1.15 0.45 0.24 0.29 5
LC 2.12 2128 0.9967 15 0.23 0.03 0.03 0.03 1
LS 2.24 1600 z z z z z z z z z 0.03 0.18 0.14 2
ML 1.97 1046 0.9842 15 0.32 0.09 0.33 0.27 4
PP 2.99 3044 0.9993 9 0.35 0.27 0.32 0.31 6
SS 2.09 1497 0.9979 15 0.18 0.04 0.22 0.18 3

Parameters for LS method provided by participant. RMSE is calculated between the average semiva-
riogram and the true-field semivariogram using equally spaced observation points and equal weights.
“Cut” is the limiting distance used for the curve fitting and the RMSE calculations. Beyond cut (which was
chosen subjectively) the semivariogram estimates become erratic and are likely to be very unreliable. Jl

and Js2 are the evaluation measure scores for the correlation length and sill, respectively. Rank is based
on the overall correlation structure score, Jg 5 (3 z Jl 1 Js2)/4.
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approaches is the same. The F test from the ANOVA indi-
cated significant differences ( p value 5 0.0055); therefore
Fisher’s least significant difference (LSD) pairwise comparison
procedure [Steel and Torrie, 1980] was used to determine which
approaches differed. The results show a great deal of overlap
in the performance of the approaches. This is expected be-
cause of averaging across test problems when significant inter-
action is present. Although no single approach performed sig-
nificantly better than all other methods in all cases, we can
roughly delineate three performance groups. The SS approach
had the best overall performance, although its overall average
performance may not be substantially better than that of a
middle group comprising the ML, LS, and PP methods. The
performance of the SS method may be significantly superior to
all other approaches for a particular test problem, as indicated
in Figures 19 and 20. Method SS performs significantly better
than the third group containing the FS, LC, and FF methods.
While there is a strong similarity between the performance of
the FF and the LC approaches, the results of the ANOVA do
not indicate a clear differentiation in performance between the
linearized and nonlinear methods. This is in part because the
results for the LS method were more similar to the nonlinear
approaches and method LS did not perform as poorly as the
other linearized approaches.

In addition to significance testing via ANOVA procedures,

cluster analyses were performed using the average, across the
four test problems, of each of the evaluation measure scores
(except for the head and log10 (T) error measures because
method LS did not produce head and log (T) fields). Cluster
analysis is a statistical procedure for partitioning multivariate
data into groups based on some measure of similarity. The
correlation between the performance vectors was used as the
measure of similarity, so that two approaches are deemed
similar if the correlation between their performance vectors is
high. Clustering began with each method as a separate cluster
and was allowed to continue until all methods were combined
into one cluster. Amalgamation of the approaches into clusters
was performed using unweighted pair-group averaging [John-
son and Wichern, 1982]. The results are shown in Figure 21,
where the clustering is stopped when there are two clusters
remaining. These results appear to distinguish the behavior of
the linear and nonlinear approaches, as the two remaining
clusters fall into those categories.

5. Discussion of Results
Before drawing conclusions from this comparison, the rea-

sons for some of the results observed should be clarified. In the
following sections we discuss issues that are generic to inverse
modeling, issues related to the assumptions used in the mod-

Table 4. “Raw” Evaluation Measure Scores, Test Problem 1–4

Method Npts

Fixed Release Points Random Well Field Variable

GWTT
Error

GWTT
Cnsv

GWTT
Boot

GWTT
Sprd

PATH
Error

PATH
Boot

PATH
Sprd

GWTT
Error

GWTT
Sprd

GWTT
Boot

Log (T)
Error

Head
Error

Semi-
variogram

Test Problem 1
FF 10 0.24 0.25 0.26 1.19 0.28 0.16 38.8 5.73 0.38 0.97 0.543 2.41 0.32
FS 10 0.20 0.12 0.05 2.11 0.42 0.05 61.0 3.15 0.34 0.73 0.507 3.94 0.45
LC 9 0.23 0.46 0.06 1.20 0.32 0.06 37.7 1.20 0.16 0.82 0.334 2.28 0.26
LS 4 0.17 0.27 0.21 1.69 0.20 0.05 179.0 8.19 1.87 0.29 N/A N/A 0.55
ML 10 0.17 0.25 0.05 1.35 0.23 0.05 48.9 4.49 0.44 0.74 0.739 4.19 0.35
PP 10 0.39 0.45 0.05 3.38 0.50 0.05 65.3 5.94 0.53 0.64 0.853 2.56 0.34
SS 8 0.15 0.40 0.05 0.90 0.17 0.21 29.0 3.93 0.11 0.99 0.483 2.51 0.27

Test Problem 2
FF 20 0.25 0.12 0.19 1.42 0.29 0.16 48.5 6.34 0.61 0.89 0.691 2.59 0.66
FS 22 0.27 0.25 0.05 2.71 0.51 0.05 106.2 3.99 0.71 0.42 1.169 5.99 0.43
LC 22 0.25 0.11 0.19 1.35 0.24 0.43 39.0 3.02 0.19 0.93 0.559 2.43 0.27
LS 11 0.45 0.09 0.14 1.62 0.29 0.05 49.2 6.37 1.41 0.29 N/A N/A 0.34
ML 23 0.15 0.18 0.01 1.81 0.37 0.05 112.6 3.14 0.26 0.59 0.856 3.58 0.26
PP 23 0.16 0.14 0.01 2.15 0.35 0.04 59.3 7.07 0.53 0.57 0.708 3.01 0.14
SS 22 0.13 0.32 0.14 1.03 0.21 0.28 32.2 1.80 0.56 0.00 0.584 2.35 0.33

Test Problem 3
FF 27 0.50 0.57 0.42 2.19 0.80 0.53 44.0 14.03 2.54 0.58 1.202 11.5 0.66
FS 27 0.33 0.63 0.06 3.27 0.86 0.34 106.7 10.66 0.74 1.00 1.366 16.4 0.79
LC 19 0.37 0.45 0.39 2.14 1.36 0.94 44.6 7.01 0.36 1.00 1.321 19.3 0.78
LS 22 0.25 0.47 0.52 1.65 0.45 0.47 43.5 11.39 2.63 0.00 N/A N/A 0.71
ML 27 0.35 0.15 0.14 2.22 0.75 0.30 84.2 6.43 1.11 0.91 0.907 12.8 0.56
PP 27 0.33 0.58 0.42 1.45 0.55 0.22 66.8 6.13 0.38 0.96 0.807 6.7 0.62
SS 21 0.18 0.34 0.00 1.91 0.79 0.45 58.7 7.19 0.75 0.99 0.859 15.7 0.12

Test Problem 4
FF 27 0.39 0.52 0.22 3.15 0.38 0.26 7E76.8 9.04 0.79 1.00 1.731 5.57 0.45
FS 27 0.31 0.48 0.06 3.01 0.37 0.05 110.9 8.84 0.94 1.00 1.768 6.33 0.29
LC 24 0.44 0.45 0.39 2.41 0.83 0.17 131.4 8.37 0.42 1.00 1.344 4.25 0.03
LS 23 0.32 0.29 0.14 2.27 0.24 0.01 138.0 4.72 1.78 0.01 N/A N/A 0.14
ML 26 0.36 0.58 0.39 1.77 0.26 0.07 46.3 2.87 1.09 0.12 1.032 4.20 0.27
PP 27 0.26 0.33 0.03 2.66 0.31 0.05 79.1 6.03 0.50 1.00 1.194 6.09 0.31
SS 22 0.28 0.36 0.28 2.01 0.29 0.00 63.5 2.66 1.20 0.07 0.914 3.19 0.18

All measures were constructed such that the target value is zero. Npts is the number of release points used for the fixed release points GWTT
and PATH analyses.
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eling, issues related to the characteristics of the test problem
data sets, the comparison exercise itself, and issues which are
approach specific.

5.1. Uniqueness and Ill-posedness

The issue of uniqueness of the inverse solution is discussed
by McLaughlin and Townley [1996], who describe conditions
that must be met for an inverse problem to be well posed.
Dietrich and Newsam [1990] show that the problem of estimat-
ing transmissivity from steady state head measurements is ill
posed unless the flow system is forced by a known recharge or
pumpage which is sufficiently large to produce closed head
contours over the region of interest.

Although ill-posedness can be mitigated to some extent
when head measurements are augmented by transmissivity
measurements, as in the WIPP test problems, it is still possible,
that the resulting problems do not have unique solutions. That
is, many different transmissivity fields may yield equally good
fits to the available measurements. Some of these may be
fortuitously closer to the “true” transmissivity field than others,
but all are equally consistent with the data presented in the

TPs. Clearly, this complicates the process of comparing differ-
ent inverse approaches, but this is the reality facing a modeler
at any site.

Although it might have seemed reasonable to base an in-
verse comparison on TPs that were well posed, a conscious
decision was made to model the TPs after the real WIPP
problem, which is probably ill posed in the sense that it does
not have a unique solution. This decision forced each partici-

Table 6. Comparison of Fixed Well Versus Random Well
Evaluation Measure Scores

Inverse Method

FF FS LC LS ML PP SS

Fixed well average 5.3 4.2 5.1 3.6 3.4 3.6 3.0
Random well case

average
5.7 4.6 3.9 3.4 3.4 4.1 2.9

Absolute value of
difference

0.4 0.4 1.2 0.2 0.0 0.5 0.1

Table 5. Rank-Transformed Evaluation Measure Scores

Method TP

Fixed Release Points Random Well Field Variable

Average
Score

GWTT
Error

GWTT
Cnsv

GWTT
NSC

PATH
Error

PATH
NSC

GWTT
Error

GWTT
NSC

Log (T)
Error

Head
Error Variogram

FF 1 6.0 2.5 6.5 4.0 6.0 5.0 6.5 4.0 2.0 3.0 4.55
FF 2 4.5 3.0 7.0 3.5 5.0 5.0 7.0 3.0 3.0 7.0 4.80
FF 3 7.0 5.0 6.0 5.0 6.0 7.0 2.0 4.0 2.0 4.0 4.80
FF 4 6.0 6.0 5.0 6.0 6.5 7.0 6.0 5.0 4.0 7.0 5.85

FF Average 5.88 4.13 6.13 4.63 5.88 6.00 5.38 3.75 2.75 5.25 5.00

FS 1 4.0 1.0 3.0 6.0 2.0 2.0 2.5 3.0 5.0 6.0 3.45
FS 2 6.0 6.0 4.0 7.0 3.0 4.0 3.5 6.0 6.0 6.0 5.15
FS 3 3.5 7.0 2.0 6.0 4.0 5.0 7.0 6.0 5.0 7.0 5.25
FS 4 3.0 5.0 2.5 5.0 4.0 6.0 7.0 6.0 6.0 5.0 4.95

FS Average 4.13 4.75 2.88 6.00 3.25 4.25 5.00 5.25 5.50 6.00 4.70

LC 1 5.0 7.0 5.0 5.0 5.0 1.0 4.5 1.0 1.0 1.0 3.55
LC 2 4.5 2.0 6.0 2.0 1.0 2.0 6.0 1.0 2.0 5.0 3.15
LC 3 6.0 3.0 4.0 7.0 7.0 3.0 6.0 5.0 6.0 5.0 5.20
LC 4 7.0 4.0 7.0 7.0 6.5 5.0 4.0 4.0 3.0 2.0 4.95

LC Average 5.63 4.00 5.50 5.25 4.88 2.75 5.13 2.75 3.00 3.25 4.21

LS 1 2.5 4.0 6.5 2.0 4.0 7.0 1.0 N/A N/A 7.0 4.25
LS 2 7.0 1.0 5.0 3.5 7.0 6.0 2.0 N/A N/A 2.0 4.19
LS 3 2.0 4.0 7.0 1.0 4.0 6.0 1.0 N/A N/A 2.0 3.38
LS 4 4.0 1.0 2.5 1.0 2.0 3.0 1.0 N/A N/A 4.0 2.31

LS Average 3.88 2.50 5.25 1.88 4.25 5.55 1.25 N/A N/A 3.75 3.53

ML 1 2.5 2.5 2.0 3.0 1.0 4.0 4.5 5.0 6.0 5.0 3.55
ML 2 2.0 5.0 1.0 6.0 4.0 3.0 5.0 5.0 5.0 3.0 3.90
ML 3 5.0 1.0 3.0 3.0 2.0 2.0 3.5 3.0 3.0 6.0 3.15
ML 4 5.0 7.0 6.0 2.0 5.0 2.0 3.0 2.0 2.0 1.0 3.50

ML Average 3.63 3.88 3.00 3.50 3.00 2.75 4.00 3.75 4.00 3.75 3.53

PP 1 7.0 6.0 4.0 7.0 3.0 6.0 2.5 6.0 4.0 4.0 4.95
PP 2 3.0 4.0 2.0 5.0 2.0 7.0 3.5 4.0 4.0 1.0 3.55
PP 3 3.5 6.0 5.0 2.0 1.0 1.0 3.5 1.0 1.0 3.0 2.70
PP 4 1.0 2.0 1.0 4.0 3.0 4.0 5.0 3.0 5.0 6.0 3.40

PP Average 3.63 4.50 3.00 4.50 2.25 4.50 3.63 3.50 3.50 3.50 3.65

SS 1 1.0 5.0 1.0 1.0 7.0 3.0 6.5 2.0 3.0 2.0 3.15
SS 2 1.0 7.0 3.0 1.0 6.0 1.0 1.0 2.0 1.0 4.0 2.70
SS 3 1.0 2.0 1.0 4.0 4.0 4.0 5.0 2.0 4.0 1.0 2.80
SS 4 2.0 3.0 4.0 3.0 1.0 1.0 2.0 1.0 1.0 3.0 2.10

SS Average 1.25 4.25 2.50 2.25 4.50 2.25 3.63 1.75 2.25 2.50 2.70

The “raw” Boot and Sprd scores were combined into the “NSC measure” as described in Appendix C. The lower the rank, the better the
performance.
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pant to deal with the issue of ill-posedness in their own way,
generally by constraining the set of possible transmissivity so-
lutions. In this study, the constraints were conveyed primarily
by the transmissivity parametrization, which specifies how
transmissivity values must vary over space [McLaughlin and
Townley, 1996]. Parametrizations were implemented by speci-
fying a particular transmissivity variogram, a particular spatial
block scheme, and/or a particular set of pilot points, depending
on the approach used (see Appendix B). A properly designed
parametrization should transform the original ill-posed prob-
lem into a well-posed problem with a unique solution.

The need to deal with ill-posedness was thus one of the
intrinsic features of the comparison. Since the different inverse
approaches constrained the original problem in different ways,
it could be argued that these approaches ultimately solved
different problems. This even led one participant to claim that
since there was no proven unique “truth” and since any one
solution of the inverse problem obtained by any method could
have equally well been the “truth” (provided its values of
transmissivity and head at the measurement points were suffi-
ciently close to the sample data), then the best simulation
technique should be the one having the widest spectrum en-
compassing all the possible “truths” produced by each ap-
proach. In performance assessment, widening the spread of the
possible outcomes of simulations is termed “risk dilution,” as it
may diminish the probability of the high-consequence region.
This criterion was not employed, and the GXG considered that
there was only one “truth” and that one of the aims of the
comparison was to determine if the approaches could come
close to that one “truth” and no other one.

As an example, the relatively good fit on the head error
obtained by method PP on TP 3, although its T field was not
superior to those from other approaches, can be taken as an
indication of a potential nonuniqueness of the solution of that
problem. This example shows, however, that the type of pa-
rametrization chosen by method PP was not close enough to
the optimum to unravel the type of T distribution of the “true”
T field.

5.2. Choice of the Underlying Covariance Structure

For any geostatistical method a very important step is to
determine the statistical structure of the field and to select the
semivariogram of the random T field that is to be simulated.
The seven approaches can be classified into two groups: those
that use only the T data to select the semivariogram and those
that use both T and head data simultaneously in the initial
statistical inference step to develop the semivariogram of the T
field. Only methods LS and LC strictly fall into the second
category, using the maximum likelihood approach for this in-
ference (see method descriptions in Appendix B). It was ex-
pected that the use of both head and T data would give these
techniques an advantage over the other approaches, since in-
correct assumptions about the semivariogram can have impor-
tant consequences, as will be illustrated below. It is interesting
to see that method LC ranked second for the semivariogram
measure over all TPs, on average, even though the code did not
allow for the selection of any variogram model other than
exponential, which is a code limitation, not a method limita-
tion. Method LS ranked fourth on this measure. However, the
average score may be biased because LS ranked seventh on this
measure for TP 1, perhaps because of insufficient initial atten-
tion of the participant to the importance of this selection. One
advantage of the LS method (not used in the present exercise)

is that it could be extended to use the transient head data to
infer the semivariogram [Dagan and Rubin, 1988].

The average of the semivariogram measures for methods LC
and LS over all TPs is lower (better) than the average of all
other approaches excluding SS (in which the head information
was used to guide the selection of the semivariogram model
“manually”). Thus there is some evidence to support the con-
tention that approaches that use both T and head data will in
general do better than those using just the T data in selecting
the semivariogram model. This is probably particularly true
when there are many more head data than T data.

The importance of the selection of the semivariogram on the
performance of an approach is illustrated by Figure 22, which
shows the dependence of the average performance of each
approach over all four TPs as a function of the average rank of
the semivariogram measure. It is interesting to note that
method SS, which in general ranks first across all measures, also
ranks first in semivariogram selection (see Table 5). Method
SS does not infer the semivariogram from both T and h data;
it uses only T data. However, according to the participant, a
great deal of attention was given to the fitting of the semivar-
iogram model to the sample T data (careful analysis of the
data, declustering, test of multiple population, elimination of
outliers). The excellent exploratory data analysis to select the
semivariogram (which is not method-specific, but participant-
specific) is most likely one of the reasons for the success of the
SS method. In addition, method SS also has the ability to
recalibrate itself during the optimization, that is, to modify the
semivariogram. In case the number of data is larger, the role of
the selection of the semivariogram may not be as critical, because

Figure 18. Correlation of head errors with errors in the log
(T) field.
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the conditioning on these data becomes dominant to structure
the T field. Additional evidence of the importance of the
choice of semivariogram model is provided in a section below.

5.3. The Multi-Gaussian Assumption

One of the methods, SS, has the advantage of being directly
able to use the geostatistical “indicator” approach [Journel and
Huijbregts, 1978] and permit any form of T distribution to be
used, not just the multi-Gaussian one. The small sample size,
however (41 data points), does not make it easy, in general, to
detect the underlying type of transmissivity distribution. Only
for TP 3, as we have seen, was this feature used in the exercise.
In this case the method is able to generate values with a
bimodal distribution and specific spatial correlation patterns
for each population. The difference in results between method

SS and the other methods is, however, small, and the multi-
Gaussian assumption was not too erroneous. In real cases,
however, it may happen that the underlying distribution of T is
not lognormal or displays connectivity patterns at extreme
threshold values inconsistent with a multi-Gaussian distribu-
tion. Therefore the ability of method SS to handle these char-
acteristics would be quite valuable.

This intercomparison exercise therefore might not have
been sufficient to evaluate the usefulness of this capability in
an inverse method adequately. It can be stated, however, that
the errors caused by making an erroneous choice will generally
decrease as the number of conditioning data increases.
Method ML can also use the indicator approach, and method
PP was later adapted to include this capacity as a result of this
comparison exercise.

Figure 19. Comparison of method performance across test problems; the lower the average rank, the better
the performance. Methods are indicated by the two-character abbreviation.
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5.4. The Assumption of Stationarity

TP 1 and TP 2 are, by construction, true stationary fields. TP
3 and TP 4 are not, as there are distinct local features and
trends. Linearized methods assume the existence of a constant
mean and random fluctuation around that mean and uniform
flow on the average. Nonlinear methods do not depend on
such assumptions. Tables 4 and Figure 19 clearly show that this
had a significant effect on some of the linearized methods: LC
in particular, as well as FF, show a systematic decrease of the
performance between TP 1 and TP 2, and TP 3 and TP 4. The
case of LS is quite interesting; the participant was able to
detect from the sample data that the field did not look station-
ary and decided to apply a piecewise-linear approximation. He
divided the domain into several subareas and assumed differ-
ent means for each area. This made the results of LS for TP 3
and TP 4 much better than the results of the other linearized
methods. Again, the skill of the participant to “tailor” the
method to the particular features of the problem can improve
the results significantly. The issue of nonstationarity is thus
thought to be the primary reason why the cluster analysis
(Figure 21) clearly makes a distinction between the linearized
and the nonlinear methods.

5.5. Effect of Introducing Recharge

In and TP 3 and TP 4, recharge was introduced into the
synthetic data sets, comprising 10% and 6%, respectively, of

the total flow through the system. This information was not
communicated to the participants, but it could have been in-
ferred from the sample data for TP 3, which clearly showed a
mound. In TP 4 the existence of recharge was not as evident
from the sample data. Method PP was the only method to
include recharge, which amounted to about 12% of the PP
model system flux in TP 3. This may partially explain the better
performance of method PP in TP 3.

5.6. Effect of Grid Discretization

It is well known that particle tracking is very sensitive to grid
size and to time steps. In order to minimize this effect, the
same particle-tracking code and time-stepping scheme was
used by the coordinator for all the T fields provided by the
participants. But the grid used was the one provided by the
participants. The degree to which the various discretization
schemes affected the GWTT calculations was, unfortunately,
not assessed.

Figure 20. Results from the LSD pairwise comparison. (a)
Means with the same letter are not significantly different; a 5
0.05, critical value of T 5 2.08, least significant difference 5
1.12. (b) Results from the LSD pairwise comparison. “X” in-
dicates the means are not significantly different, and “O” in-
dicates the difference in the means is statistically significant at
the a 5 0.05 level.

Figure 21. Cluster analysis tree diagram. Linkage distance is
1-Pearson correlation coefficient.

Figure 22. The sensitivity of the methods performance to the
estimation of the covariance structure of the log (T) field.
Figure shows how errors are correlated with the quality of the
semivariogram estimates.
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5.7. The Magnitude of the Log10 (T) Variance

In the so-called linearized methods (FF, LC, and LS), the
development of the inverse equations is based on the pertur-
bation method, which assumes that the ln(T) field has a
“small” variance. In the literature [e.g., Dagan, 1989] and de-
pending on the problem at hand, it is generally assumed that
such a linearization is valid for ln(T) variances smaller than 1.
However, in some cases larger variances do not jeopardize
linearized methods, while in other cases, variances larger than
0.1 could not be adequately handled by linearization [e.g., Roth
et al., 1996]. The variances of the true (synthetic) log10 (T)
fields ranged from 1.38 to 2.14 across all four TPs. This cor-
responds to ln(T) variances in the range of 7.30 to 11.32, far in
excess of the variance typically considered valid for the linear-
ized approach. We have shown, however, when qualitatively
comparing the results of TP 1 and TP 2, where the only dif-
ference was the variance of the log10 (T) field, that the linear-
ized methods did not have any difficulty with such large vari-
ances. This is also clear from a comparison of the average rank
scores over all measures for each TP (see Figure 19). Thus, it
seems that given the type of inverse problems dealt with in this
comparison, and given the objectives of the exercise, the mag-
nitude of the variance is not an important issue. This conclu-
sion is most likely linked to the effect of conditioning, as the
small variance assumption was initially formulated for uncon-
ditional cases. This is particularly true in this exercise, where
the average distance between measurement points (in the cen-
tral area) is much shorter than the correlation length of the
log10 (T) fields in all test problems. If this had not been the
case, the effect of conditioning might have been much smaller.
Indeed, Neuman and Orr [1993] compared linear and nonlin-
ear stochastic approximations of effective hydraulic conductiv-
ity in three-dimensional (3-D) infinite domains and concluded
that nonlinearity becomes critical for ln(K) variances in excess
of 2. Similar results were obtained by Paleologos et al. [1996]
for bounded domains and by Hsu et al. [1996] for transport
problems, for variances of ln(K) on the order of 1 to 2.

5.8. Connectivity of the High-T Zones

The major difference between TP 3 and TP 4 is that the
high-T zones are discontinuous for TP 3 and connected for TP
4. The discontinuous high-T zones were very difficult for all
methods in TP 3, and most raw evaluation measures show poor
results, particularly for the head error. The ranking order for
the top four methods in TP 3 (based on average scores across
all evaluation measures) is PP, SS, ML, and LS. One may
interpret this ranking on the basis of the intrinsic features of
the methods. In the PP method the structure of the T field
results from the selection of the “pilot points,” where the
transmissivity value is calibrated by the optimization algorithm
and further used to krige (or simulate) the whole T field. But
contrary to all the other methods, the location of the pilot
points is also one of the unknowns of the problem. An opti-
mum selection of the location of the pilot points is made
iteratively, prior to optimizing the T value (see Appendix B).
By contrast, SS selects a priori the position of the “master
locations,” which are to some extent equivalent to the pilot
points, and ML also selects the zoning of the field a priori. For
TP 3 method SS was able to generate unconnected high-T
channels using the transient head data to determine the major
direction of the channels. Other participants tried to prescribe
channels “by hand,” without a great deal of success. The PP T
fields, while matching the heads better than the other methods

in TP 3, do not match the T field values very well; we have
already pointed out that this may reflect a nonuniqueness
problem. The PP method may, perhaps, more easily detect
local anomalies if they cannot be introduced a priori from
geological or external knowledge.

By contrast, in the case of continuous high-T zones (TP 4),
all methods performed reasonably well. The calculated T fields
more or less correctly show a continuous high-T flow path, in
general correctly located. Continuous high-T zones are thus
more easily detected by inverse methods than discontinuous
ones, at least in steady state and for problems similar to the
ones examined.

5.9. Importance of Transient Data

It is difficult to see any significant differences between the
two methods that could directly use the transient data in the
formulation of the inverse problem (ML and PP) and the other
methods. In TP 4, ML and PP obtain very similar results, but
SS and LS, which do not directly use the transient information,
perform significantly better. Similar results were reported by
Gonzalez et al. [1997], where both stationary and transient data
were shown to improve stability but did not lead to a better
solution. In order to better understand the reason for this
outcome, ML and PP were asked to rerun TPs 3 and 4 using
only the steady state data and discarding the transient infor-
mation. The outcome showed that both methods produced
results very similar to those obtained with the transient infor-
mation, particularly for TP 3. This is in contrast to the real
WIPP site data, where the PP methodology was used in a
preliminary PA [LaVenue et al., 1995] and where the use of the
transient information proved to make a significant change in
the outcome of the inverse calculations. The reason the addi-
tional transient information from the pumping tests did not
result in major changes in the outcome is believed to be due to
the limited areal influence of these tests. However, close ex-
amination and analysis of the TPs in the areas affected by the
pumping was not performed. Thus we see that the evaluation
measures did not provide enough information about the value
of the transient information. We will not therefore be able to
draw any conclusions on the value of transient information
from this exercise.

5.10. Effect of Code Limitations

The methods that were compared were not all at the same
stage of development. In particular, method LC was developed
in 1983 for solving a specific problem and had not been signif-
icantly updated since. The available code could not handle
more than about 1600 grid blocks, which forced the use of a
coarse grid to represent a small domain, giving perhaps too
much importance to the head boundary conditions and limiting
its ability to reflect the desired correlation behavior ade-
quately. The performance of this method in these test prob-
lems is therefore hindered by this constraint, which is specific
to the code, not to the method itself.

5.11. Motivation of the Participants

The participants learned about the effectiveness of their
method during the course of the comparison, as the “true”
field and some preliminary evaluation measures were com-
puted and released to the participants after each TP had been
run, prior to starting the next one. Apart from method LC,
which was run by D. Gallegos and C. Axness and not by the
code developer, all other participants either ran their own
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codes or were directly involved in the supervision of the exer-
cise. Some participants treated the exercise as a competition
and felt peer pressure to become “the winner,” while others
treated the exercise as more of a learning experience.

In some cases the participants made some improvements to
the codes to accommodate difficulties encountered during the
tests. It is clear, for instance, that method PP did very poorly on
TP 1, for at least three reasons that were later understood: the
grid was too coarse; the domain was too small, which gave too
much importance to the boundary conditions; and the selected
variogram was estimated without enough care. The choice of a
linear variogram, without a sill, resulted in a too-large variance
in the simulated fields. A more careful analysis of the sample
data, as was performed by the participant of the SS method,
could have shown that an exponential variogram would have
been a better choice. This was verified by rerunning method PP
for with an exponential variogram without changing the grid,
which produced better evaluation measure scores than the
linear variogram case. A comparison of the waste panel CDFs
produced by method PP using both the linear and the expo-
nential semivariogram models (Figure 23) shows significant
improvement with the exponential model; the envelope of
CDF curves for the exponential case more completely covers
the true CDF, while the CDF for the linear semivariogram case
covers a much broader range and has a very long tail (see also
Figure 11). Therefore the results of the comparison reflect not
only the intrinsic quality of a method but also the skill and
experience of the team that ran it and occasionally improved it;
these two effects cannot be easily distinguished.

5.12. Case of the Linearized Semianalytical Method

Among the seven methods that were compared, six use nu-
merical techniques that discretize the domain and transform
the problem into discrete grid blocks and solve the flow equa-
tion by finite differences or finite element techniques. The
seventh method, LS, is “semianalytical” and solves the GWTT
problem directly but without discretization, without defining
boundaries (therefore without the need to specify boundary
conditions), and without generating block values. The method
directly calculates the movement of particles in the velocity
field, which is conditioned on the T and head data via the
geostatistical model. This method, although linear, produced
very good results and compares favorably with the three non-
linear methods. As noted earlier, the method was used in a
piecewise-linear fashion to account for the nonstationarity of
the TP 3 and TP 4 fields. One of the major advantages of the
LS method is its computational efficiency; it does not need the
large computer resources required by many of the other meth-
ods. It should be noted that the method could be extended to
produce simulated values of transmissivities on a grid, which
could then be used as input for a numerical solver of the flow
and transport equations. This method could also be extended
to produce concentrations directly. It has been extended to 3-D
to include transient data and uniform recharge. During the
course of this comparison, however, resources were not avail-
able to evaluate the adequacy of the discretized transmissivities
that the LS method could produce and to compare them with
the transmissivities produced by the other methods (note that
in Tables 4 and 5, the T and head-field evaluation measures are
not available for method LS).

5.13. The Case of the Fractal Simulation Method

The FS method performed relatively well for, but much less
so for the other cases, which had either a larger ln(T) variance
or nonstationary fields. It seems that this is due to the princi-
ples of the method. First of all, the FS method is not really an
inverse algorithm (see Appendix B). Once a T field has been
simulated (with a fractal underlying semivariogram and condi-
tioning on the T data only), the conditioning to the head data
is not done by altering the simulated T field but by optimizing
the head boundary condition values (which, as specified ear-
lier, are left to each participant to decide). If no constraints are
applied to these head values, the results can be physically
meaningless. If constraints such as continuity or ranges are
added to these head values, the fitting of the head may be poor
(as each T field is fixed). This is especially true for the more
“complex” fields of TP 3 and TP 4, thus leading to a poor
global performance. Therefore this method seems limited to
stationary fields with rather small ln(T) variances. This
method generally produced the largest GWTT spread (see
Table 4), which means that in general, it overestimates the
uncertainty. However, a reasonable fit of the sample T data
could be obtained with a fractal semivariogram, at least for TPs
1, 2, and 4 even if the underlying semivariogram of the syn-
thetic field was not fractal.

Figure 23. Waste panel CDF for method PP in test problem
1: (a) linear semivariogram model and (b) exponential semi-
variogram model.
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5.14. The Case of the Maximum Likelihood Method on TP 4

TP 4 was non–multi-Gaussian but was interpreted as multi-
Gaussian by the participant for the ML method for TP 4. This
is acceptable when the effect that this error has on head data
is small, which is the case with steady state data. However, the
effect of continuous channels is much more severe when tran-
sient head data are used. Transient head data are indeed able
to identify high-T channels better than steady state head data.
Since such channels cannot be generated in a stationary multi-
Gaussian field, the only option left available to method ML
was to increase the T away from the channels. Consequently,
the resulting T fields have a higher mean than the true field.
This is probably the reason for the poor performance of
method ML on TP 4. It also explains why the T fields simulated
with only the steady state head data were better than those
simulated with both the steady state and transient data. This
explanation is also consistent with the relatively better perfor-
mance of method ML on TP 3, where the participant artifi-
cially increased T along “guessed” channels, based on a man-
ual interpretation of the transient data.

5.15. The “Robustness” of a Method With Respect to the
Type of Heterogeneity

It has been shown that some methods perform better for a
given type of heterogeneity, while they would perform less well
for another. In practice, it may be difficult to know in advance
which type of heterogeneity is dominant for a given aquifer. At
the WIPP site, for instance, it is not yet clear if the high-T
zones in the aquifer are discontinuous or connected. It is there-
fore of interest to detect if there are methods that perform well
on the average but may occasionally produce very poor results.
The ANOVA and cluster analyses have shown that four meth-
ods seem to have a similar behavior: LS, ML, PP, and SS. The
three others, FF, FS, and LC, fall into a second, less desirable
category, probably because of their difficulty in dealing with
nonstationary fields. Among the first four methods, PP be-
haved rather poorly for TP 1, but this was thought to be linked
to insufficient discretization and poor selection of the vario-
gram from the sample data. For the more complex TP 3 and
TP 4, which are also the more realistic “WIPP-like” cases, the
average scores (lower being better) are SS 5 2.5, LS 5 2.8,
PP 5 3.1, and ML 5 3.3. Thus method SS appears to be the
most robust, followed by LS, PP, and ML.

6. Conclusions

6.1. Importance of the Topologic Structure of the T Field

The results of the comparison exercise demonstrate the fol-
lowing:

1. In developing the inverse model, the greatest attention
should be given to the selection of the semivariogram to be
used in the inversion, as this appears to be very significant in
achieving success. This selection must be made from the en-
semble of transmissivity data available from the site, with care-
ful declustering and checking of the distribution of the data
and elimination of outliers. Using both the T and the heads in
calculating the semivariogram can improve this selection sig-
nificantly, particularly if the number of the T data is few com-
pared to the number of head data.

2. Identifying the proper parametrization (topologic/
geometric structure of the T field) can be more important than
estimating parameter values. It has been shown that the cali-

bration of the model (head matching) can be very good even
with a T field that is not very representative of reality. Flexi-
bility in this parametrization is thus an important factor for an
inverse model.

3. The issue of the level of discretization did not receive
sufficient attention. Many participants would agree that using
a fine grid can be important but not necessarily the dominant
factor. Method SS, for instance, used a coarse grid and did very
well. On another hand, the choice of the grid is closely linked
to the issue of upscaling, to the size of the domain which a
measured value (e.g., pumping test) represents, and the degree
to which the assumed correlation structure can be represented.
Assigning the “measured” values to a given grid size in their
mesh may have been a source of bias for some participants. But
this could not be determined from the results.

4. Neglecting to consider recharge when it exists in the real
problem does not seem to be of major importance, if this
recharge remains on the order of 10% or less of the total flux
through the aquifer system. But including recharge when it
indeed is present in the real system seems to improve the
calibration of the model, even when the quantity and distribu-
tion is unknown.

6.2. Improvements in the Inverse Methodologies

The results presented herein clearly show that there is much
room for improvement in the inverse methodology. It is dis-
turbing to see that the available methods still do not ade-
quately assess the uncertainty of the prediction. The clear
message of this exercise comes, we believe, from the results of
TP 3. In this case the design committee tried to create an
aquifer that was realistic in its complexity and not constructed
to be “geostatistical,” that is, not a realization of a stationary
random function with a multi-Gaussian log (T) distribution
with a simple semivariogram. In the past, researchers have
perhaps focused too much on validating their inverse methods
on too-simplistic synthetic T fields. What can be recom-
mended, on the basis of the present study, is the following:

1. Gaussian geostatistically based inverse methods have a
tendency to generate parameter fields with circular (or ellip-
soidal) heterogeneities. This is due to a basic principle of
Gaussian geostatistics, which assumes that the correlation of
the parameter values in space is a regular function of the
distance, with or without anisotropy, valid for all classes of
transmissivities. In the case where the heterogeneity of the
aquifer is made of linear features (such as faults, channels,
etc.) of varying orientation imbedded into a different matrix,
the multi-Gaussian geostatistical approach is probably inade-
quate. The indicator approach is then a better choice, as it can
use different variograms for each class of transmissivities. If
some variograms are taken as very anisotropic, then some
channels or fractures can be represented with the orientation
prescribed by the anisotropy of the variogram. This approach
was taken by Tsang [1996], among others. Inverse methods
based on conditional expectations, maximum a posteriori prob-
ability, maximum likelihood, minimum variance, or variants
will not be able to produce natural features leading to discon-
tinuities (such as fractures, paleochannels, dissolution chan-
nels, etc). These have to be incorporated explicitly in the
model. Nonparametric geostatistics are more flexible in this
respect. One alternative could be to generate such structures
randomly, like Boolean objects used in the oil industry, while
introducing fine-scale variability within each object or estimat-
ing the T through inverse procedures for each class of object.
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This is similar to the approach taken by McKenna and Poeter
[1995]. Fields that do not reproduce head data can then be
eliminated. They could also possibly be introduced via some
optimization procedure, provided uncertainty remains in-
cluded.

2. For those cases where a geostatistical description of the
heterogeneity is adequate, it is clear that the ability to use both
the T and head data to identify the underlying log (T) semi-
variogram is very desirable, since it has been shown in this test
that it improves the statistical inference. This is one of the best
features of the LC and LS methods, but it could be added to
others. The maximum likelihood inference part of the LS
method, for instance, could be used as a front end to any other
inverse. As an example of how this recommendation could be
implemented slightly differently in an existing inverse, let us
take the case of the PP method. The initial developer of this
method [de Marsily, 1978; de Marsily et al., 1984] felt it to be a
deficiency of the method that after calibration, the variogram
of the calibrated field, calculated by using the measured T
values and the calibrated T values at the pilot points, could be
different from the initial prescribed one, based only on the
measured T data. The validity of the PP was often questioned
because of this potential “deficiency.” Given the results of this
comparison, it is clear that the evolution of the variogram
before and after calibration in some way reflects the condition-
ing by the head data. One could therefore adopt a strategy
where the PP inverse would be run once, to obtain additional
T values at the pilot points, to better infer the semivariogram,
and then rerun (or iterated) with the new semivariogram. Such
a strategy is already imbedded in method SS.

3. Allowing for simultaneous calibration of the T field and
the boundary conditions (in cases where they are not well
defined), as is done in most methods, is certainly an important
feature. But it is also necessary to impose reasonable (physi-
cally plausible) constraints on these boundary conditions dur-
ing calibration.

4. If linearized methods are to be used, the main issue
seems to be the stationarity of the field rather than the mag-
nitude of the ln(T) variance. It would therefore be desirable to
develop methods that could detect nonstationarities and opti-
mally select zoning with piecewise stationary properties.

5. Using transient head data is in general a significant
improvement of a method. Methods ML, PP, and LS were able
to use transient data. Method SS was extended to it during the
course of this exercise.

6.3. Effort Applied Toward Solution of the Inverse Problem

At this stage of the development of the inverse methodolo-
gies, it is not advisable to use them as robust “black boxes.”
The experience and skill of the modeler and the time and
effort spent on the modeling of the problem have been shown
to be essential components of success. Some participants con-
sciously decided to use their methods with minimal interven-
tion, to see precisely what the outcome would be. Their meth-
ods, in general, performed less well than the methods for which
a substantial effort was applied. In this respect, method LS,
which does not have a large number of options or parameter
values to select, such as discretization, boundary conditions,
time steps, etc., would most likely produce more reproducible
results if used by different modelers.

6.4. Design of Intercomparison Studies

This intercomparison has highlighted some difficulties that
may be of interest for those who want to perform a similar
exercise. Among these are the following:

1. A design subcommittee separate from the participants is
very desirable. If the objective is really to evaluate methodol-
ogies and not at the same time improve them, a series of tests
should be given without the outcome of the first test being
available before the next is run. The design subcommittee
should not limit the synthetic fields to “classical” fields, but
should try to imagine (based on geological knowledge and
experience) what real fields might look like and incorporate
them into the “true field” exhaustive data set.

2. The set of evaluation measures on which the methods
will be compared needs to be specified from the start. This is
not easy. In order to do so, the objectives of the comparison
must be fully developed and stated explicitly from the outset,
and the measures must be designed to achieve those objectives.
In this exercise, the initially agreed upon set of measures
proved to be inadequate and the final set was only decided
when all the tests had been made. We do not believe that this
has created biases in the results presented in this paper, but it
certainly created a lot of discussion and confusion, as the
methods could be adjusted to satisfy (or not) a given criterion.

6.5. Selection of Appropriate Inverse Approaches for PA

Four approaches have been identified as being approxi-
mately equivalent for use in performance assessment at sites
such as WIPP; these methods are LS, ML, PP, and SS. With
such methods, the uncertainty is very clearly reduced by the
conditioning compared with unconditional simulations re-
specting only the pdf of the measured parameter. The outcome
of the simulations (in our case the CDF of the advective travel
time) is reasonably similar among these methods.

It should be noted that these approaches do not give iden-
tical results: the T fields and the predicted uncertainty, as given
by the spread of the CDF, are significantly different among the
methods. These differences stem from the differences between
the techniques (e.g., parametrization, assumptions on station-
arity) and thus reflect a fundamental uncertainty associated
with the inverse problem because of its nonuniqueness. Each
method is “conditioned” by its own assumptions to make the
problem well posed, and the differences between the methods
display the importance of these assumptions. The total uncer-
tainty could therefore be better described by the results of the
ensemble of several methods, as any one single method in
general tends to underestimate the uncertainty.

This study has not addressed the question whether these
differences between methods could lead to different conclu-
sions, in terms of performance assessment, when contaminant
transport is simulated and not just travel time. This would
depend on how close the outcome of the simulations is from
the performance target, but we believe that it would not be
vastly different for the examples reported here.

It should be emphasized that the four approaches which
were found to be approximately equivalent are not just “meth-
ods,” but are at the same time codes and a manifestation of the
manner in which the method was applied, reflecting the time,
effort, and experience of the modeling team that worked on
the problems. Those three factors are unequivocally imbedded
in this comparison.

The other methods involved in this comparison were found
to have either too stringent assumptions (e.g., stationarity),
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coding constraints, or insufficient time and effort devoted by
the modeling team to produce results of the same level as the
previous ones, particularly for the more realistic TPs.

Appendix A: Geostatistical Expert Group
Participants

(1) C. L. Axness, Sandia National Laboratories, Albuquer-
que, New Mexico; (2) R. L. Beauheim (TP design committee
member), Sandia National Laboratories, Albuquerque, New
Mexico; (3) R. L. Bras, Massachusetts Institute of Technology,
Cambridge; (4) J. Carrera, Universitat Politècnica de Catal-
uña, Barcelona, Spain; (5) G. Dagan, Tel Aviv University, Tel
Aviv, Israel; (6) P. B. Davis (TP design committee member),
Sandia Laboratories, Albuquerque, New Mexico; (7) G. de
Marsily (TP design committee member), Université Paris IV,
Paris, France; (8) D. P. Gallegos, Sandia National Laborato-
ries, Albuquerque, New Mexico; (9) A. Galli, Ecole de Mines
de Paris, Fontainebleau, France; (10) J. Gómez-Hernández,
Universidad Politècnica de Valencia, Valencia, Spain; (11)
S. M. Gorelick (TP design committee member), Stanford Uni-
versity, Stanford, California; (12) C. A. Gotway (TP design
committee member), University of Nebraska, Lincoln; (13) P.
Grindrod, QuantiSci Ltd., Henley-on-Thames, England,
United Kingdom; (14) A. L. Gutjahr, New Mexico Institute of
Mining and Technology, Socorro; (15) P. K. Kitanidis, Stan-
ford University, Stanford, California; (16) A. M. Lavenue,
Duke Engineering and Services Inc., Austin, Texas; (17) M. G.
Marietta (TP design committee member), Sandia National
Laboratories, Albuquerque, New Mexico; (18) D. McLaughlin,
Massachusetts Institute of Technology, Cambridge; (19) S. P.
Neuman, University of Arizona, Tucson; (20) B. S. RamaRao,
Duke Engineering and Services, Inc., Austin, Texas; (21) C.
Ravenne, Institut Français du Pétrole, Rueil-Malmaison,
France; (22) Y. Rubin, University of California, Berkeley; and
(23) D. A. Zimmerman (TP design committee member),
GRAM, Inc., Albuquerque, New Mexico.

G. de Marsily was chairman of the GXG. D. Zimmerman
was the GXG coordinator. (He created the test problem data
sets, distributed them to the participants, collected from them
their results after calibration, performed the GWTT calcula-
tions, and conducted the comparative analyses.)

Appendix B: Brief Description of Each Inverse
Method

B1. The Fast Fourier Transform Method (FF)

This technique was developed by A. Gutjahr at New Mexico
Institute of Mining and Technology, Socorro [Gutjahr and Wil-
son, 1989; Robin et al., 1993; Gutjahr et al., 1994]. The method
is implemented in the code CSIMFFT. This code solves 2-D,
steady state groundwater flow problems with a fast Fourier
transform technique for field generation. The log transmissiv-
ity field and the mean-removed head field were considered to
be statistically homogeneous for this exercise. The newest ver-
sion of the code is able to consider a lnT trend. An iterative
cokriging procedure is implemented to condition on transmis-
sivity and head field measurements. The FFT technique is very
efficient and is capable of generating many realizations with
modest computing resources over times on the order of min-
utes. The procedure used in these tests could not handle re-
charge or time-dependent data.

B2. The Linearized Semianalytical Method (LS)

This technique is based on the conceptual and analytical
tools developed by G. Dagan at Tel Aviv University and by Y.
Rubin at Tel Aviv University and at the University of Califor-
nia, Berkeley [Dagan, 1985; Rubin and Dagan, 1987, 1992;
Dagan and Rubin, 1988; Rubin, 1991a, b]. The procedure com-
prised two stages: first, the solution of the inverse problem and,
second, the solution of the transport problem.

The solution of the inverse problem is achieved by adapting
a stationary log transmissivity structure of an analytical form
(e.g., exponential) that is fully characterized by a few unknown
parameters, by using a first-order, linearized, solution for the
head field to obtain analytical expressions for the head-lnT
cross covariance and the head covariance and by identifying
the unknown parameters (mean head gradient, log transmis-
sivity mean, variance, and integral scale) with the aid of mea-
surements. This is done by a maximum-likelihood procedure
applied concomitantly to both transmissivity and head mea-
surements. The head and transmissivity fields can be generated
subsequently at any point by conditioning on measurements
(through cokriging). The method does not imply a lognormal
distribution of transmissivity, though it is supposedly better
suited to such distributions.

The solution of the transport problem is carried out by
particle tracking. At each time step and along the trajectory of
each particle, the velocity is generated directly by conditioning
(cokriging) on head and transmissivity measurements by using
first-order analytical solutions for the velocity log transmissiv-
ity and velocity head cross covariances.

To account for trends in log transmissivity which may by
responsible for nonstationarity and large variances present
when the entire domain is regarded as a single unit, the
method was applied over separate subdomains in the final test
problem. The method does not require numerical solutions of
the flow equations and is free of discretization errors. The
numerical computations pertain to the maximum-likelihood
stage, to conditioning by cokriging, and to particle tracking.
The main limitation is the first-order approximation, implying
that conditioning on measurements extends the range of va-
lidity of the method. The method can be easily applied to 3-D
simulations, and a 3-D code is available.

B3. The Linearized Cokriging Method (LC)

This technique was developed by P. Kitanidis, R. Hoeksema,
E. Vomvoris, and R. Bras and is implemented in the GEO-
INVS code [Kitanidis and Vomvoris, 1983; Hoeksema and
Kitanidis, 1984; Kitanidis and Lane, 1985]. The technique dif-
fers from the other linear techniques because it implements
maximum-likelihood estimation of the structural parameters
associated with the log transmissivity covariance based on both
T and h data. The GEOINVS code implementation of this
methodology is limited by the fact that an N 3 N (where N is
the number of interior nodes in the flow model) matrix is
inverted directly, so that calculation is restricted in the present
version of the code to grids on the order of 40 3 40 for
simulation on present-day workstations. An improved numer-
ical implementation of this code is in development. An advan-
tage of this technique is that it is very simple to implement and
has not suffered from convergence problems.

B4. The Fractal Simulation Method (FS)

The selfaffine fractal technique was developed by P. Grind-
rod and M. D. Impey of Intera Information Technologies (now
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QuantiSci) [Grindrod and Impey, 1991]. This technique de-
pends upon the assumption that the spatial variability of the
log transmissivity may be represented in the form

Gc~h! ; ^ uc~x 1 h! 2 c~x! u2& } h2p

where c is log transmissivity, h is the separation between two
points in the field, p is the Hurst coefficient [Mandelbrot, 1983]
and ^ & denotes the ensemble average over all realizations.
The method proceeds by calculating the experimental semiva-
riogram of the log transmissivity data and then fitting the
fractal scaling law to the data. The parameter a and the Hurst
coefficient p are chosen to best fit the data using maximum
likelihood estimation. A set of fractal fields is then generated
using the fast Fourier transform method with randomly gen-
erated phase and amplitude coefficients. The conditioning of
these fields to the transmissivity data is accomplished through
a linear superposition of the unconditioned fields, where the
difference between the variance of the final field and the ob-
served data is minimized. The full flow equation is then solved
using the T fields generated above. For each realization, the set
of head measurements are in effect “fit” by calibrating the
heads at the boundary and the head data do not affect the
individual T fields.

B5. The Pilot Point Method (PP)

This technique was developed by B. S. RamaRao, A. M.
LaVenue, and G. de Marsily [RamaRao et al., 1995; LaVenue et
al., 1995] and begins by estimating the variogram using the T
data and then generates unconditional simulations of the
transmissivity field with this variogram using the turning bands
method. These transmissivities are then conditioned to honor
measured transmissivities by the addition of a simulated krig-
ing error to the kriged field based on the measured data. An
automated iterative calibration follows in which an objective
function defined by a weighted sum of the squared deviations
between the computed and the observed pressures over points
in the spatial and temporal domains is minimized. Pilot points
are synthetic transmissivity data points and are used as param-
eters of calibration. During calibration, pilot points are added
to the measured transmissivity database to produce a revised
conditional simulation. Coupled adjoint-sensitivity analysis
and kriging are used to locate pilot points optimally, where
their potential for reducing the objective function is the high-
est. Gradient search methods, subject to subsequent con-
straints, are used to derive optimal transmissivities at the pilot
points. The pilot points are added to the transmissivity data
base for purposes of kriging, but the simulated kriging error to
be added for conditional simulation is based on the measured
transmissivities only and, thus, remains the same across all
iterations. At the end of an iteration, a revised transmissivity
field and the corresponding pressure field are obtained. The
test for convergence of iterations is based primarily on a pre-
scribed minimum value for the objective function and a pre-
scribed maximum number of pilot points. Each conditionally
simulated transmissivity field is calibrated separately.

B6. The Maximum-Likelihood Method (ML)

This technique, implemented in the INVERT code, is a very
general nonlinear technique that estimates the aquifer param-
eters (transmissivity, recharge, storage, leakage coefficients,
prescribed boundary heads, or flow rates) using prior estimates
of their values along with transient or steady state head mea-

surements. It was developed by Carrera and Neuman [1986a,
b]. Parameter estimation is performed using the maximum-
likelihood theory, for which several optimization methods are
available. The nonlinear flow equation is solved by the finite
element method using a fully implicit lumped time integration.
The flow domain can be 1-D, 2-D, 2-D radial, or quasi-3-D,
where 1-D linear string elements may be used to represent
vertical flow, fractures, well bore effects, etc. The INVERT
code minimizes an objective function consisting of an error
component associated with the measured head data and a
weighted error component associated with the prior estimates
of other hydrologic parameters. The weighting is a parameter
that is varied manually in simulation. For several values of this
weighting parameter the objective function is minimized. The
INVERT code offers a number of gradient and Gauss-Newton
methods for minimizing the objective function. In conjunction
with this exercise, INVERT was used to estimate aquifer pa-
rameters simultaneously from three transient pumping tests
using prior INVERT block transmissivity estimates computed
from steady state transmissivity and head data. Some of the
advantages of the INVERT implementation of the ML tech-
nique are that it is a fast, powerful, well-documented code that
is being used extensively and is actively undergoing develop-
ment. A more up-to-date description of the code’s geostatisti-
cal formulation is given by Carrera et al. [1993]. When the
exercise was started, the optimization algorithm CPU time was
highly sensitive to the number of blocks (pixels) over which T
is estimated. As a result of this exercise, a new optimization
method, whose CPU cost is virtually independent of the num-
ber of blocks, was developed [Carrera and Medina, 1994]. How-
ever, zones for TPs had already been prepared with cost-
reduction constraints in mind. That is, small zones were used
where data were abundant, and large zones were used else-
where. To simulate small-scale variability at each block, the
following algorithm was used. First, starting from the simula-
tions for each finite element block, assign the simulated values
as measurements to 2 3 2 gauss points of each finite element
grid block. Second, generate a simulation conditioned on these
points on any desired grid (e.g., on a very fine regularly spaced
grid).

B7. The Sequential Self-Calibration (SS)

This method was developed by the Department of Hydraulic
and Environmental Engineering [Sahuquillo et al., 1992; Gó-
mez-Hernández et al., 1997; Capilla et al., 1997]. SS is able to
accommodate both multi-Gaussian and nonmulti-Gaussian
random function models using the indicator kriging approach.
The indicator kriging approach can be seen as a superset of the
multi-Gaussian approach. That is, if the data are suitable to be
modeled by a multi-Gaussian random function, the indicator
approach will produce the same results. However, it can handle
the histogram of the data as is, that is, normal, lognormal, or
otherwise, and it can inject spatial patterns to certain trans-
missivity classes that could not be reproduced with multi-
Gaussian models. The nonmulti-Gaussian model can be used
to introduce multiple populations of transmissivities or frac-
ture-like features in the simulations. The decision to use which
model is taken after careful examination of the data. The
transmissivity data are then kriged, and the kriging standard
deviation is calculated at each grid block location. A grid ori-
ented in the mean flow direction is constructed, and a seed
transmissivity field, according to the random function model
chosen and conditional to the available transmissivity data, is
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generated. The next step is the computation of a transmissivity
perturbation field so that forward simulation of flow in the
seed field plus the perturbation reproduces the head data.

Determination of the seed field is done by optimization. The
perturbation field is parameterized by a few values at selected
master locations. Perturbation of the remaining cells is ob-
tained by kriging interpolation of the master location values.
The set of master locations always includes the transmissivity
measurements (at which the perturbation is constrained by the
transmissivity measurement error) and the transmissivity per-
turbation at the master cells never falls outside the interval of
the kriging estimate plus or minus three kriging standard de-
viations.

Appendix C: Detailed Description of Evaluation
Measures

Three classes of analyses were used to compare and rank the
inverse methods: (1) GWTT analyses, (2) PATH analyses, and
(3) field variable analyses. Within each class there are several
“evaluation measures” that were used to quantify and charac-
terize the performance of the methods. In the end, there were
10 evaluation measures used to characterize the performance
of the methods. The final set of evaluation measures was ar-
rived at through iteration and consensus of the GXG and test
problem participants. The measures of method performance
are not all necessarily independent.

For GWTT and PATH analysis, the measures were designed
to quantify such performance characteristics as (1) the error
between the estimated CDFs and the true value or true CDF,
(2) the magnitude of the spread in the distributions, (3) the
robustness and self-consistency of the method, and (4) for
GWTT only, the bias toward cautious or noncautious estimates
(i.e., underpredicting rather than overpredicting the GWTT).
A method is considered robust if the true GWTT or PATH
falls within the calculated range of the CDF. For example, over
several release points, one would expect that sometimes the
true GWTT is greater than the calculated median, sometimes
less than the median, and that on the average, the true GWTT
falls somewhere within the full range of the calculated
GWTTs. If this is not the case, we can have the following
situations:

1. There can be a systematic bias, for example, the true
GWTT always or nearly always being greater (or less) than the
median GWTT. If a bias exists and the tendency is to overes-
timate the true GWTT, then this should be noted, as the
method will be considered “noncautious.” In a PA context,
producing cautious estimates is more desirable than producing
noncautious ones because the error is on the side of greater
protection of public health. The degree of bias is assessed by
two numbers: the magnitude of the error and a measure of the
degree of caution in the estimates.

2. Independent of any bias, the calculated range of GWTT
can be much too wide or much too narrow. In the former case
the true GWTT generally falls only in a limited portion of the
estimated GWTT CDF. A method which consistently does this
is said to overpredict the uncertainty. In the latter case the true
GWTT does not, in general, fall within the calculated range;
such a method is said to underpredict the uncertainty. If the
method neither overpredicts nor underpredicts the uncer-
tainty, it is considered to be “self-consistent.”

To evaluate how well a method performs, we assess the
magnitude of the error between the estimated CDF and the

true value, quantify the degree of spread in the distribution,
and perform a bootstrap confidence interval test to evaluate
the robustness and self-consistency of the method. In addition,
for GWTT, we compute a measure which quantifies the degree
of conservatism in the estimates. For reasons described later
on, the robustness and spread measures must be evaluated
jointly, and are thus combined into a single measure, which is
referred to as the “normalized self-consistency” measure. We
refer to these calculations as performance measure calcula-
tions which are computed for the GWTT and PATH CDFs at
each release point. Then we compute the evaluation measures
by averaging the performance measures across all release
points in each test problem.

Two approaches were used to evaluate the GWTT perfor-
mance of the methods, the fixed well and the random well
cases described in the text. The first compares the distribution
of simulated GWTT values from each release point to the
single, known value; the second involves a comparison of the
estimated distribution for particles released from within a des-
ignated area to the true distribution of GWTTs for that area.
Hereinafter, the designations “true field,” “true travel time,”
or “true distribution” refer to quantities computed using the
exhaustive (synthetic) data set based on the reference model.
All of the evaluation measures were constructed such that the
target value is zero, that is, the closer the measure value is to
zero, the better the performance. The reason for this was to
provide a consistent target value for each evaluation measure
and to aid in transforming the computed measures into con-
sistent units (e.g., ranks) for use in averaging across the mea-
sures. The measures are described below.

C1. GWTT Analyses: Fixed Well Approach

Because some of the release points were located close to
observation points and others were not, the performance mea-
sures computed at each release point were weighted accord-
ingly (i.e., release points placed in close proximity to observa-
tion points were assigned larger weights). Thus, in the
formulations that follow, the evaluation measures are pre-
sented as a weighted average over the number of release
points, of the performance measures. If a method did not
produce a GWTT for a given release point (e.g., the particle
reached the edge of the model domain at a distance less than
5 km), then this release point was not considered, and the
weights of the remaining release points were adjusted accord-
ingly such that they still summed to one. In other words, no
penalty is applied for skipping a release point. In Table 4 the
number of release points used by each method in each test
problem is given. The rationale and formulations involved in
the weighting of the release points are as follows.

C1.1. Weighting of release points. Each true groundwa-
ter flow path was discretized into as many points as there were
grid cells intercepted by the path in the true-solution model (in
general, on the order of 300 points). At each of these points,
kriging was performed using the locations of all observation
locations in the field, both transmissivity and head data, indis-
tinctly. A linear variogram model, given by g(j) 5 j, was used
for the kriging. The mixture of head and T data in the kriging
was inconsequential as only the kriging variances were kept;
the kriged estimates were discarded. The arithmetic average of
the kriging variances was computed for all the points falling
along the path. The weighting factor assigned to each release
point was then calculated as being proportional to the inverse

ZIMMERMAN ET AL.: COMPARISON OF INVERSE APPROACHES1408



of this average kriging variance, normalized so that the sum of
these weights equals one.

This weighting approach was selected because the kriging
variance is only a function of the location of the data points
and not of the actual measured values. Generally speaking, this
variance increases when the point to be estimated becomes
further away from the observation locations. The weights, be-
ing inversely proportional to the kriging variance, represent a
“measure of the distance” between the particle path and the
observation points. Mixing together the T and head data (i.e.,
using the information regarding their locations) represents the
simplest assumption on the worth of the data, and using a
linear variogram does not give a limited range of influence to
any observation location (a variogram with a sill would have
made all points beyond the range appear to be at the same
distance). The weights were constructed as

Wi 5 s O
j51

m S 1
sK

2D
j

(2)

where sK
2 is the kriging variance in cell j of the true field, m is

the number of cells intercepted by particle path i , and s is a
scale factor chosen such that

O
i51

nrp

Wi 5 1.0 (3)

where nrp is the number of release points.
C1.2. GWTT CDF error measure. The GWTT error

measure quantifies the discrepancy between the median
GWTT and the true GWTT, in log10 space and in absolute
value. For each TP and method, it is given by

GWTT error

5 O
i51

nrp

Wi3
ulog ~median GWTT! i 2 log ~true GWTT! iu

1
MO

j51

M

@log ~GWTT0.975! 2 log ~GWTT0.025!# ij 4 (4)

where nrp is the number of release points, M is the number of
methods being compared, and GWTTx is the xth quantile of
the log (GWTT) CDF. The evaluation measure was con-
structed so that the same error measure value will be computed
regardless of whether the median and true GWTT values are,
respectively, 1000 and 2000, 2000 and 1000, or 10,000 and
20,000. That is, the error measure is independent of where the
true travel time falls on the timescale and of whether or not it
is to the left or the right of the median GWTT. This allows the
evaluation measures to be averaged over the release points (for
each TP, each of which has a different true GWTT) and does
not discriminate between underestimation and overestimation
of the GWTT.

The denominator represents an average of the spread in the
distributions across all methods for each TP. This normaliza-
tion was chosen so that these error-measure values could be
compared across release points and test problems where the
reference GWTT can differ substantially. It also provides a
constant divisor, common to all methods, that facilitates an
objective comparison among them.

C1.3. GWTT CDF spread measure. The GWTT spread
measure is given by

GWTT spread

5 O
i51

nrp

Wi@log (GWTT0.975! i 2 log (GWTT0.025) i (5)

where nrp is the number of release points and Wi are the
release point weights, as before.

C1.4. GWTT CDF robustness measure. As noted previ-
ously, the bootstrap test is a measure of the robustness of the
method and, together with the spread measure, provides an
indication of the self-consistency of the method. The GWTT
bootstrap measure is defined as

GWTT bootstrap 5

U 0.95 2
nci
nrpU

0.95 (6)

where nci is the number of times the true GWTT or PATH fell
within the 0.025 and 0.975 quantiles of the GWTT or PATH
CDFs and nrp is the number of release points (CDFs).

C1.5. GWTT CDF degree of caution measure. The
GWTT degree of caution measure was considered important
from a PA standpoint. It is a binary measure given by

GWTT degree of caution 5 O
i51

nrp

WiNCi (7)

NCi 5 H 1 if Q true , 0.20
0 otherwise

where Qtrue is the quantile of the estimated GWTT CDF
corresponding to the true GWTT. If the CDF for a release
point is noncautious (80% of the CDF exceeds the true
GWTT), score a 1 (undesirable); if it is not noncautious, score
a zero (desirable). The measure was formulated and the de-
scription was phrased in this manner to point out a subtle
distinction: Caution by itself is not particularly desirable, but
being noncautious is definitely undesirable.

If the weighted average of the NC scores is close to 1, it means
the method generally produces noncautious solutions. When as-
sociated with GWTT error, it is a measure of the bias, but cen-
tered on the 0.20 quantile, not on the median. The selection of the
0.20 quantile is arbitrary, but reflects the belief that a method that
overpredicts the GWTT 80% of the time is noncautious.

C1.6. PATH CDF error measure. The PATH error mea-
sure quantifies the absolute deviation between the median path
direction angle and the direction of the true path. The orien-
tation of the path is defined by the angle (a, in degrees, be-
tween 21808 and 11808, 08 being east) from the release point
to the point where the path crosses a circle of radius 5 km
(centered at the release point). As with GWTT, these errors
are normalized by the average spread in the path direction
errors across all methods in order to enable the magnitude of
this measure to be comparable across test problems (the vari-
ance in the spread of the PATH CDFs will vary with the test
problem due to the different types of hydrogeologic features
and different degrees of heterogeneity represented in the dif-
ferent test problems). The PATH error measure is given for
each TP by

PATH error 5 O
i51

nrp

Wi3
median u i

1
M O

j51

M

@u0.975 2 u0.025# ij4 (8)

0 # u # 180
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where u is the magnitude of particle path direction error in
degrees, ux is the xth quantile of the CDF of path direction
errors, and M is the number of methods being compared. u i 5
ua i 2 a tu , where a i is the estimated particle path direction and
a t is the true path direction.

C1.7. PATH CDF spread measure. The path spread mea-
sure was formulated in terms of the actual angular orientation
a rather than the magnitude of the error u, as the latter de-
pends on where the true a falls. Using u for comparing the
spread in the distributions could be misleading. For example,
two distributions, each spanning 908, will have different
u-based spread measures if true direction falls at the median of
one distribution and the 0.01 quantile of the other distribution.
This measure is designed to be independent of the error in the
path direction.

PATH spread 5 O
i51

nrp

Wi@a0.975 2 a0.025# i (9)

2180 # a # 1180

where ax is the xth quantile of the CDF of angular ground-
water flow path directions.

C1.8. PATH CDF robustness measure. The PATH CDF
robustness measure was constructed identically to that for the
GWTT CDFs:

PATH bootstrap 5

U 0.95 2
nci
nrpU

0.95 (10)

where nci refers to the number of times the true path direction
falls within the 0.025 and 0.975 quantiles of the CDF of path
directions.

C1.9. The “normalized self-consistency” measures. After
careful examination of the evaluation measure scores, it was
determined that the spread and bootstrap measures cannot be
judged independently of each other. A distribution with a nar-
row spread, on the outset, appears desirable because it indi-
cates little uncertainty. However, if the true GWTT rarely falls
within the CDF bounds (a failure of the bootstrap test), the
performance is deemed unsatisfactory. Conversely, if a method
consistently satisfies the bootstrap interval bounds, but also
consistently produces CDFs with a very large spread, this too is
undesirable. From a PA viewpoint it is better to have a robust
method where the range of estimates nearly always contains
the true value than to produce narrow distributions which fail
to capture the true value a significant portion of the time. This
way of thinking was encoded by combining the spread and
bootstrap measures into a single “normalized self-consistency”
evaluation measure, denoted NSC, and formulated as

NSC 5
3 z Boot 1 Sprd

4 (11)

In this formula the bootstrap score (Boot) and the spread
measure score (Sprd) are first converted to consistent units via
rank transformation.

If the range of the transformed Boot and Sprd measures was
[0, 1] (the rank-transform range is [1, 7]), then CDFs that were
spikes always landing on the true value would yield NSC 5 0,
broad CDFs never containing the true value would lead to
NSC 5 1, and the overestimation and underestimation of un-
certainty cases would lead to NSC 5 0.25 and NSC 5 0.75

respectively. This measure was constructed for both the
GWTT and PATH analyses. The 3-to-1 weighting of the two
measures was determined by successive trials of different
weights along with comparisons and discussions of the merits
of the CDFs produced in this test problem exercise.

C2. GWTT Analyses: Random Well Approach

For each TP and each method, in addition to computing the
mean GWTT CDFs by averaging over the CDFs derived from
each of the simulated flow fields, a bounding envelope con-
taining the inner 95% of the CDF curves at each travel time
value was constructed. These GWTT0.025 and GWTT0.975

bounding curves reflect the degree of variability in GWTT
within the repository area from realization to realization. To
distinguish these results from the fixed release points CDFs, we
will refer to these CDFs as “the waste panel CDFs.”

Comparison of pathlines was not deemed necessary for the
random well case because, as noted earlier, the regulations do
not mandate treatment of where the contamination occurs,
only how much reaches the accessible environment. Also, the
repository is located in the area of greatest data density so that
there is much less uncertainty associated with capturing the
general flow directions.

The evaluation measures attempt to quantify the deviation
from the true CDF, the spread among the CDF estimates, and
the robustness of the methods, as follows (see Figure 17). For
GWTT error the area between the mean CDF and the true
CDF was compared among the methods. Similarly, for the
GWTT spread measure, the area between the two bounding
envelopes was used to rank the methods. This area represents
the degree of uncertainty in the estimate of the waste panel
CDF. The GWTT robustness measure was computed by de-
termining the proportion of the true CDF that lies within the
bounding envelope of CDF curves and subtracting that from
1.0. As in the fixed-release points case, the spread and boot-
strap measures are, after conversion to rank values, combined
into a single normalized, centralized spread (NSC) measure as
NSC 5 (3 z Boot 1 Sprd)/4.

C3. Field Variable Analyses

Inverse methods produce simulations of the entire transmis-
sivity field conditioned on transmissivity and head data at a few
observation points. T and head are related through the gov-
erning flow equation. The log10 (T) error measure was in-
tended to quantify, in some average sense, how well the real-
izations reproduced the true transmissivity field. Because
solute transport is a function of both log10 (T) variability and
head gradients, a similar global measure of deviation from the
true head field was also used as a performance measure. Be-
cause these measures are of such a global nature (a single
scalar to quantify the degree of correspondence between true
and estimated spatially variable quantities), they serve more as
indicators of method performance than measures which can be
compared to two decimal places. This is one of the reasons all
of the measures were converted to rank values.

C3.1. Head and log10 (T) error measures. The global
measure of error was computed as a weighted average of the
absolute differences between the true field values and the
values from the grid blocks of the participant’s model, aver-
aged across all realizations produced by the method. It is
computed as
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head or log10 ~T! error

5
1

NRzNG O
i51

NR O
j51

NG

Wj~TRUEj 2 MTHDij! (12)

where NR is the number of realizations produced by the
method, NG is the number of grid blocks in the participant’s
grid, Wj is a weight associated with grid block j , TRUEj is the
value of log10 (T) or head from the true solution for the
participant’s grid block j , and MTHDij is the value of log10 (T)
or head from the inverse solution of a method in grid block j of
simulation i . Because the true solution was solved on a much
finer grid than any of the participant’s models, the true value,
TRUEj, corresponding to a grid block of the participant’s
model is given by an area-weighted average of the true-grid
block values contained within the participant’s grid block j ,

TRUEj 5
1

O
k51

NT

Ak

O
k51

NT

Ak z TRUEk (13)

where NT is the number of true-grid blocks having any portion
overlapping with grid block j of the participant’s model and Ak

is the amount of area of true-grid block k which overlaps with
the participant’s grid block j . The weights, Wj in (12), were
developed to account for the proximity of the observation
points to the grid block where the error is being evaluated, in
a similar way to that of the weights for the particle pathlines
from the fixed release points case. The weights, identical for
head and log10 (T), were computed as

Wj 5 Max~sK! 2 sK~ j! (14)

where sK( j) is the kriging standard deviation for cell j , using
a linear semivariogram model and all data, both head and T ,
and Max(sK) is the maximum kriging standard deviation over
all meshes j . There was no constraint that the sum of the
weights be equal to unity.

C3.2. T-field correlation structure measure. Semivario-
gram estimates of the simulated log10 (T) fields were com-
puted for each realization of a method using the GSLIB
GAMV2M routine [Deutsch and Journel, 1992]. On the order
of 600 to 1000 randomly placed sampling points were used in
the estimation of each semivariogram. Then the average semi-
variogram was computed across the ensemble of realizations
for each TP and each method. Finally, estimates of the param-
eters of an exponential semivariogram model fit to each of the
average empirical semivariograms were made via nonlinear
regression. The same analysis was performed on the single true
log10 (T) field realization for each test problem.

The regression estimates of the sill, s2, and the correlation
length parameter l led to two geostatistical performance mea-
sures characterizing the correlation structure of the ensemble
of fields produced by each method. The sill and correlation
length evaluation measures, denoted Js2 and Jl respectively,
were constructed identically as

Js2 5 1 2
sT

2

sT
2 1 us i

2 2 sT
2 u (15)

Jl 5 1 2
lT

lT 1 ul i 2 lTu (16)

where subscript T denotes true field value and subscript i
denotes the value from method i .

Just as the GWTT spread and bootstrap measures cannot be
interpreted independently, neither can these two measures. It
was decided that for PA purposes, it is more important to
capture the correlation scale of the log10 (T) process than to
match the variance in the distribution of true log10 (T) field
values. This is particularly evident in TP 3, where the high-T
channels lead to a very short correlation length. As a result of
this thinking, the Js2 and Jl evaluation measures were com-
bined into a single geostatistical structure evaluation measure,
Jg, defined as

Jg 5
3 z Jl 1 Js2

4 . (17)

The ability of an inverse method to reproduce correctly the
correlation structure of the T-field in the realizations was con-
sidered an important feature for predicting contaminant trans-
port and spreading.
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