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Stochastic Analysis of Nonstationary Subsurface Solute Transport

1. Unconditional Moments
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This paper applies stochastic methods to the analysis and prediction of solute transport in hetero-
geneous saturated porous media. Partial differential equations for three unconditional ensemble mo-
ments (the concentration mean, concentration covariance, and velocity concentration cross covariance)
are derived by applying perturbation techniques to the governing transport equation for a conservative
solute. Concentration uncertainty is assumed to be the result of unmodeled small-scale fluctuations in a
steady state velocity field. The moment expressions, which describe how each moment evolves over time
and space, resemble the classic deterministic advection-dispersion equation and can be solved using
similar methods. A solution procedure based on a Galerkin finite element algorithm is illustrated with a
hypothetical two-dimensional example. For this example the required steady state velocity statistics are
obtained from an infinite domain spectral solution of the stochastic groundwater flow equation. The
perturbation solution is shown to reproduce the statistics obtained from a Monte Carlo simulation quite
well for a natural log conductivity standard deviation of 0.5 and moderately well for a natural log
conductivity standard deviation of 1.0. The computational effort required for a perturbation solution is
significantly less than that required for a Monte Carlo solution of acceptable accuracy. Sensitivity
analyses conducted with the perturbation approach provide qualitative confirmation of a number of
results obtained by other investigators for more restrictive special cases.

INTRODUCTION

It is now widely recognized that the dispersion of solutes
moving in the subsurface environment is due, in large part, to
natural heterogeneity. Important sources of heterogeneity in-
clude spatial variations in soil properties such as hydraulic
conductivity and spatial and temporal variations in hydro-
logic inputs such as recharge. Small-scale velocity fluctuations
induced by these heterogeneities enhance spreading and con-
tribute to the irregularity and “randomness” which is fre-
quently observed in field scale tracer plumes. The connection
between velocity variability and solute transport has been in-
vestigated both theoretically (see, for example, the review
papers by Gelhar [1986, 1987], and Dagan [1987]) and in
natural gradient tracer tests [Freyberg, 1986; Sudicky, 1986;
Garabedian, 1987]. Much of this work has focused on evalu-
ations of spatially invariant macrodispersivity coefficients,
largely because of the close connection between mac-
rodispersion and dilution. Less attention has been devoted to
the impact of natural heterogeneity and related data limi-
tations on the uncertainty of concentration predictions.

It is often convenient to treat heterogeneous soil and hydro-
logic variables as if they were samples drawn at random from
a population (or ensemble) of physically plausible functions.
This approach, which is now commonly used in groundwater
hydrology, allows both spatial variability and prediction un-
certainty to be analyzed with the tools of probability theory.
Probabilistic methods are most useful if the ensemble descrip-
tion incorporates everything known about solute transport at
a particular site. This can be accomplished in two ways. First,
the ensemble statistics (e.g., the ensemble mean and covari-
ance) can be derived from physically based models which rely
on concepts such as mass conservation. Second, these statistics
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can be conditioned on actual measurements of solute con-
centration and other related hydrologic variables. The two
approaches are complementary and should be combined
whenever possible. The ultimate objective is to make the en-
semble definition specific, so that it admits only those repli-
cates which are realistic and consistent with observations.

Since a properly constructed ensemble description provides
a concise summary of available information about a particular
site, it may be used to make predictions about the transport of
subsurface solutes. Bayesian estimation theory establishes a
systematic framework for deriving predictions with desirable
properties [Schweppe, 1973]. This theory may be used, for
example, to show that the ensemble mean is the minimum
variance unbiased estimate of the actual solute concentration
for any concentration probability distribution with finite mo-
ments [Jazwinski, 1978]. The ensemble variance is a useful
measure of the uncertainty associated with this estimate, par-
ticularly if the concentration is normally distributed. In this
paper, we are interested primarily in the derivation of un-
conditional ensemble moments; that is, moments which do
not depend on concentration observations. Such moments
may be used to predict the impact of contamination incidents
which have not yet actually occurred. If, at some point, con-
centration measurements become available, the unconditional
moments may be conditioned (or updated) so that the predic-
tions can take advantage of this additional information
[McLaughlin and Graham, 1986; Graham, 1988].

A number of investigators have attempted to derive the
unconditional statistics of hydrologic variables directly from
the local equations which describe subsurface flow and solute
transport. This approach is particularly useful if the hetero-
geneous inputs to these equations are stationary (or, more
strictly, ergodic) over the region of interest, so that their en-
semble moments can be estimated from sample spatial statis-
tics. The most common example of this concept is the deri-
vation of the ensemble statistics of a possibly nonstationary
hydraulic head field from the estimated ensemble statistics of a
stationary hydraulic conductivity field. Some representative
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examples include studies by Freeze [1975], Sagar [1978],
Smith and Freeze [1979a, b], Bakr et al. [1978], Gutjahr and
Gelhar [1981], Dettinger and Wilson [1981], Dagan [1982a, b],
Townley and Wilson [1985], and McLaughlin and Wood
[1988a, b]. The application of derived head statistics to Bayes-
ian estimation is discussed by Dagan [1982b], Hoeksema and
Kitanidis [ 19857, and Gutjahr and Wilson [1985].

The basic concepts used in the above studies of ground-
water flow extend naturally to solute transport. In this case,
the ensemble concentration moments may be derived from
velocity statistics which may, in turn, be derived from the
ensemble moments of the hydraulic conductivity field. Much
of the research in stochastic solute transport has emphasized
evaluations of concentration statistics and related mac-
rodispersivity coefficients for the special case of one-
dimensional flow through perfectly layered random media
[Gelhar et al., 1979; Matheron and de Marsily, 1980; Gelhar et
al., 1981; Black and Freyberg, 1987]. Our interest here is in
more general multidimensional problems similar to the one
investigated by Smith and Schwartz [1980, 1981]. They used
Monte Carlo techniques to investigate solute transport in a
finite two-dimensional domain with a spatially correlated hy-
draulic conductivity field. The synthetically generated con-
centration distributions obtained in this study were very sensi-
tive to the structure of the underlying hydraulic conductivity
fields. Moreover, a constant Fickian macrodispersivity coef-
ficient could not be identified for any individual realization or
for the ensemble as a whole. '

Gelhar and Axness [1983] used spectral perturbation tech-
niques to evaluate spatially invariant steady state ensemble
macrodispersivity coefficients in an infinite three-dimensional
domain. These anisotropic coefficients, which are derived from
ensemble macrodispersive fluxes, depend on the local dispersi-
vities, the mean flow direction, and the statistics of the log
hydraulic conductivity field. The Gelhar and Axness approach
is based on an assumption that the concentration field is lo-
cally stationary in the sense that the mean concentration
gradient is approximately constant over many concentration
correlation scales. Sudicky [1986] found that ensemble mac-
rodispersivities evaluated from expressions in Gelhar and
Axness are similar to those obtained from a spatial moment
analysis of concentration data collected at the Borden site.

Dagan [1982b, 1984, 1986, 1987] used Lagrangian pertur-
bation techniques to analyze stochastic solute transport in
two- and three-dimensional domains. He derived closed-form
expressions for the time-dependent ensemble displacement sta-
tistics of a solute particle moving in a random steady state
velocity field with a uniform mean hydraulic gradient. Spa-
tially invariant ensemble macrodispersivity coefficients in-
ferred from Dagan’s displacement covariance compare favor-
ably with those obtained from an analysis of the spatial mo-
ments of the tracer plume at the Borden site [Sudicky, 1986].
The leading terms of Dagan’s asymptotic longitudinal mac-
rodispersivity expression match the result derived by Gelhar
and Axness [1983].

Dagan’s approach also provides expressions for the en-
semble moments of a random concentration field. The en-
semble concentration mean is the solution to an advection-
dispersion equation which uses macrodispersivity coefficients
obtained from the time-dependent displacement covariance
expressions given by Dagan [1984]. Although Dagan derived
an exact equation for the ensemble concentration variance, he
presents no solution to this equation for the general case. His
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qualitative analysis indicates that the time-varying con-
centration variance should depend on the statistics of the hy-
draulic conductivity field, the pore scale dispersivity, and the
volumes over which the source and observed concentrations
are averaged [Dagan, 1984].

Vomvoris [1986] and Vomvoris and Gelhar [1986] used infi-
nite domain spectral techniques to derive closed form ex-
pressions for the ensemble covariance of a locally stationary
three-dimensional steady state concentration field. Their
analysis indicates that the concentration variance depends on
the statistics of the hydraulic conductivity field, the mean con-
centration gradient, and the local dispersivity. It also shows
that the concentration covariance is highly anisotropic with
very large spatial persistence in the direction of mean flow.
Although Vomvoris’ closed-form expressions provide useful
insight into the mechanisms which influence concentration un-
certainty, they depend on stationarity assumptions which can
be restrictive in some applications. For example, the spatial
correlations inferred from these expressions are valid only
when applied to points which are closely spaced in compari-
son to the scale of a solute plume. This requirement may not
be met in estimation applications where solute observation
points are scattered over an extended region.

Neuman et al. [1987] used a semigroup approach to derive
spatially invariant ensemble macrodispersivity coefficients
from a general description of a three-dimensional subsurface
velocity field. In the spe'cial case of a steady state, uniform
density flow field, these coefficients are the same as the mac-
rodispersivities obtained from the leading terms of Dagan’s
[1984] asymptotic expressions and from the Gelhar and
Axness [1983] analysis. The approach adopted by Neuman et
al. [1987] assumes that the ensemble concentration mean
tends toward Fickian behavior at some scale but does not
provide any indication of the times or travel distances at
which this assumption is valid.

This paper describes a new approach to the derivation of
solute concentration statistics which differs in a number of
ways from the studies cited above. Our emphasis is on’spa-
tially variable ensemble moments rather than on spatially in-
variant spatial moments and effective parameters, primarily
because we are ultimately interested in Bayesian estimation
and monitoring design. We use first-order Eulerian methods
to derive a set of coupled partial differential equations for the
transient nonstationary first and second unconditional mo-
ments of concentration. The basic approach is similar to the
perturbation technique used in the groundwater flow investi-
gations described by Sagar [1978], Dettinger and Wilson
[1981], Townley and Wilson [1985], and McLaughlin and
Wood [1988a, b]. In the transport application we assume that
the underlying source of concentration uncertainty is small-
scale variability in a steady state velocity field. This variability
may, in turn, be related to heterogeneities in soil properties
and hydrologic inputs.

Our concentration moment equations constitute a gener-
alized transport model which explicitly accounts for the effects
of hydrogeologic variability on both large-scale dispersion and
prediction uncertainty. The macrodispersive flux used in the
mean equation is obtained from a set of closure equations in a
manner similar to that described by Cushman [1983], Gutjahr
et al. [1985], and Tompson and Gray [1986a, b]. This flux
does not generally have a Fickian form and may vary over
both time and space. The concentration covariance equation,
which provides the information needed to quantify the uncer-
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tainty of the mean prediction, is also dependent on the mac-
rodispersive flux. All of these equations can be solved numeri-
cally over a finite domain, both near and far from sources, for
a variety of boundary conditions and random velocity charac-
teristics. Our approach provides results similar to those ob-
tained from a Monte Carlo analysis, but with less compu-
tational effort. Moreover, the moment equations can reveal
qualitative information about the evolution of uncertainty
even before detailed numerical solutions are computed.

The perturbation procedure used to derive the con-
centration moment equations is described in the next section.
This is followed by a brief discussion of a finite element algo-
rithm which may be used to obtain approximate numerical
solutions for two-dimensional problems. We then present re-
sults from a relatively simple example which reveals a number
of interesting points about near-source ensemble con-
centration statistics.

DERIVATION OF THE MOMENT EQUATIONS

The governing equation for the transport of a conservative
solute in a random saturated porous medium with constant
porosity is [ Bear, 1979]

E_,_i(vic)_ilip 6c:|=0 xeD (1a)

ot ox, ox | Vox,
c=c, xedD (16)
c=c, xeD t=t, (Ic)

where the concentration c(x, t) is assumed to be a non-
stationary random function of the location vector x (with co-
ordinates x;) and time t. Equation (1) is defined over a finite
two or three-dimensional domain D with boundary éD. If D is
two-dimensional the vector indices are equal to 1 or 2, the
velocity and concentration are assumed to be vertically homo-
geneous and the flow depth is assumed constant; if D is three-
dimensional the vector indices are equal to 1, 2, or 3. Summa-
tion over repeated indices is implied. The pore velocity v(x) is
assumed to be a nonstationary time-invariant random func-
tion which is defined over an infinite spatial domain. The
initial and boundary conditions cy(x) and c¢,(x, ) appearing in
(1b) and (1c) could be random functions but are assumed, for
simplicity, to be known constants. Our use of Dirichlet con-
ditions presumes that the boundary is located beyond the
range of the solute plume in a region where concentrations are
fixed either at zero or at some low background level.

The local (pore scale) dispersion tensor D;; is assumed to be
a deterministic variable which is related to the mean velocity
as follows: )

i} 55,
Dy; = az98;; + (2, — ay) ?’ )

where «; and «; are the transverse and longitudinal local
dispersivities (assumed constant over the domain D); 7 is the
magnitude of the mean velocity vector; and molecular diffu-
sion is neglected [Bear, 1979; Gelhar and Axness, 1983]. Note
that overbars are used to represent mean values (mathematical
expectations) and that location and time arguments (x and 1)
are omitted unless required for clarification. The use of con-
stant «; and a; in (2) reflects the implicit assumption that
spatial variations in the processes responsible for local disper-
sion are small compared to spatial variations in the local ve-
locity field. This is a common assumption [Gelhar and Axness,

1983; Dagan, 1987] which is supported by an analysis present-
ed by Vomvoris [1986].

If the random velocity and concentration variables appear-
ing in (1) are each expanded into the sum of a spatially vari-
able mean and a small perturbation around this mean, the
following expression results:
oc+dc) 0
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where the quantities prefixed by & are zero-mean pertur-
bations. The ensemble mean concentration equation is ob-
tained by expanding all products in (3) and then taking the
expectation of the resulting expression:
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Here J,(x, t) is the cross covariance between velocity and
concentration perturbations at location x:

Jpdx, ) =P, (x, x, t) )

vic

and P, (X, x, t) is the general cross covariance between veloci-
ty and concentration perturbations at two independent lo-

cations x’ and x, respectively:
P, (X', x, t) = dv{x")dc(x, t) (6)

The vector J, is an ensemble macrodispersive flux which ac-
counts for spreading caused by velocity fluctuations too small
to be included in the mean advective term but too large to be
included in the pore scale dispersion term.

We assume here that the time-invariant mean 7(x) and co-
variance P,,(x', x) of the random velocity field are known.
The velocity covariance definition is similar to (6):

P (%', x) = dv{x")dv (x) (7)

If the fluid density is assumed to be constant, the mass conser-
vation principle implies that the divergence of the random
velocity must be zero at any x:

Ov(x)/0x; =0 8)

If we take the expectation of this equation, it becomes appar-
ent that the divergences of the velocity mean and perturbation
must also be zero at any x:

B5,(x)dx; = Bov(x)/ox, = 0 ©

These conditions must be satisfied by the specified velocity
statistics. In particular, the second equality in (9) implies that
the velocity covariance must satisfy the following conditions:

OP, (x',x) 0P

ox; 0x;

(<, %) PP x)

ox/ ox,
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where, as before, the location vectors x and x’ are assumed to
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be independent. The velocity statistics used in this paper are
derived from a perturbation analysis of the steady state sto-
chastic groundwater flow equation [Gelhar, 1986; McLaughlin
and Wood, 1986b]. These statistics satisfy the mass conser-
vation requirements stated in (9) and (10).

The mean solute transport equation has the same form as
the traditional advection-dispersion equation with one ad-
ditional term, the divergence of the macrodispersive flux Jp,.
Equation (5) indicates that J,, can be obtained from the more
general cross covariance P,.(x', x, 1), which is also needed to
find the concentration covariance (see equation (14) below). A
first-order approximation for P, can be derived by subtract-
ing (4) from (3) and multiplying each term of the resulting
equation by the velocity perturbation dv/(x’). Since this pertur-
bation depends on the coordinate x' (which is assumed to be
independent of x) it can be brought inside derivatives which
are taken with respect to the spatial variable x. If differences
between products of small perturbations and their means are
neglected to obtain closure, the resulting (approximate) cross
covariance equation is

8 3 )
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Here it is understood that each part of (11) applies for i = 1 to
M, where M is the spatial dimension of the domain D. Note
that the auxiliary conditions in this equation are both homo-
geneous because the coeflicients ¢, and ¢, are assumed to be
known perfectly.

Each component of the linearized cross-covariance ex-
pression has the form of a traditional M-dimensional trans-
port equation with a forcing term which is the divergence of
the vector ¢(x, )P, (x, x) (with i fixed). This vector, which
introduces velocity uncertainty into the concentration
moment equations, plays a role similar to the macrodispersive
flux in the mean equation. It is important to note that (11) is
an approximation which is strictly valid only in the limit as
the higher-order moments of the velocity and concentration
perturbations become arbitrarily small. The adequacy of the
small perturbation approximation is explored for a particular
example later in this paper. An extensive discussion of this
topic is also provided in the work by Ababou [1988].

A first-order equation for the concentration covariance may
be derived in much the same way as (11). This covariance is
defined as follows:

P (X', x, t) = bc(x’, t)dc(x, t) (12)
If (12) is differentiated with respect to time and the expectation
and differentiation operators are interchanged, the result is

A
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— P (X, x, 1)

ct

=de(x, :)[% Scfx, t):l + [g Se(x, t)]éc(x, H (13

The two temporal derivatives appearing in right-hand side of
this expression are obtained by subtracting (4) from (3), with
the spatial arguments set equal to x and x’, respectively. As
before, perturbations which depend on the x’ argument can be
taken inside x derivatives and perturbations which depend on
x can be taken inside x’ derivatives. If differences between
products of small perturbations and their means are neglected
to obtain closure, the resulting (approximate) concentration
covariance equation is
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As before, this first-order approximation is strictly valid only
in the limit as the higher-order velocity and concentration
moments become arbitrarily small. The concentration covari-
ance expression has the form of a 2M-dimensional transport
equation with a forcing term which is the divergence of the
2M-dimensional vector obtained by combining the M-
dimensional vectors &x, t)P,, (X', x, t) and &X', )P, (x, X', t).
Here again, there is a close structural analogy with the orig-
inal mean equation.

Equations (4), (11), and (14) form a system of 2 + M cou-
pled partial differential equations which describe the propaga-
tion of the mean concentration, the velocity-concentration
cross covariance, and the concentration covariance through a
random velocity field with known mean #(x) and covariance
P, (x, x). These equations can be solved in a variety of ways,
using transform methods, Green’s function techniques, or nu-
merical solution algorithms [McLaughlin and Wood, 1988b].
The first two approaches require simplifying assumptions
which may not be appropriate in certain applications. The
numerical approach is considerably more general but is com-
putationally demanding, especially for large three-dimensional
domains which extend over many velocity correlation scales.
A numerical solution is used here, primarily because we wish
to examine nonstationary near-source effects which are diffi-
cult to address with the other methods.

NUMERICAL SOLUTION OF THE MOMENT EQUATIONS

A number of different numerical algorithms could be used
to solve the advective-dispersive moment equations derived in
the previous section. The results presented in our example
problem were computed with a modified Galerkin finite ele-
ment algorithm. The coupled system of partial differential
equations obtained from the moment analysis may be sim-
plified if the macrodispersive term appearing in each equation
is evaluated explicitly, using moments computed on the last
time step. Since the resuiting decoupled equations all have the
same basic form, they can all be solved with the same two-
dimensional finite element transport algorithm.
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The mean concentration equation depends on only one spa-
tial vector x and can be discretized in the same way as a
deterministic transport equation. The variables in the mac-
rodispersive flux and concentration covariance equations
must, however, be treated differently since they depend on two
spatial vectors x and x". The covariance functions appearing in
these equations may be approximated by a quadratic form
containing two interpolation functions, one for each spatial
vector [Courant and Hilbert, 1953]. These covariance approxi-
mations have the general form

N

P, x, 0= ¥ ¥ [PL)u®nX)x)

m=1n=1

15

where ¢,(x) is the interpolation function associated with node
m, evaluated at location x, N is the number of non-Dirichlet
nodes in the domain, and [P, ]}, is the generic covariance
between the discretized variables u,, (evaluated at node m) and
v, (evaluated at node n).

If appropriate versions of (15) are substituted into each of
the moment equations, the Galerkin finite element dis-
cretization procedure can be carried out in the usual way
[McLaughlin and Wood, 1988b; Graham, 1988]. First, a
weighted residual error is constructed by multiplying each dis-
cretized equation by the weighting function ¢,(x), where
m=1,---, N [Pinder and Gray, 1977]. This weighted residual
is then integrated over the x coordinate, with the x’ coordinate
treated as a parameter. Next, the resulting equation in x’ is
multiplied by the weighting function ¢,(x’), where n=1, ---,
N, to give a second weighted residual error. This residual is, in
turn, integrated over x'. This two-step procedure yields N sys-
tems of ordinary differential equations (n =1, ---, N), each
containing N equations (m =1, ---, N) in N unknowns (the
elements of [P, ],..), for each of the original covariance equa-
tions. The resulting discretized moment equations can be de-
composed into a mathematically equivalent “square root”
form which reduces computer storage and run times consider-
ably [see McLaughlin and Wood, 1988a, Appendix B; Graham,
1988]. The desired covariance matrices [P, ], and [P ],
are constructed directly from the solutions to the decomposed
covariance equations.

EXAMPLE PROBLEM

This section describes a simple two-dimensional example
which illustrates the solution of the concentration moment
equations for an evolving plume. In this example, a conserva-
tive solute is assumed to be released from a localized continu-
ous line source into a confined aquifer (see Figure 1). The
source location and the initial release time are both assumed
to be known and the initial concentration is assumed to be
zero everywhere except at the source, which is treated as a
boundary. The source concentration is assumed to be fixed at
the known solubility of the solute. The remaining boundaries
are assumed to be located far enough from the solute source
so that homogeneous Dirichlet boundary conditions apply on
all sides of the domain. The velocity field is assumed to be at
steady state with a spatially uniform mean which is aligned
with the x, direction.

In order to apply the concentration moment equations
derived earlier to this problem we must specify the mean and
covariance of the steady state velocity field. Since we assume
that velocity fluctuations are caused by small-scale variations
in the log hydraulic conductivity, it is reasonable to obtain the
velocity statistics from a stochastic analysis of the ground-
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Fig. 1. Computational domain for the example problem.

water flow equation. Here we assume that the velocity and log
hydraulic conductivity fields are both stationary over the
domain of interest and derive the velocity mean and covari-
ance using the steady state infinite domain spectral approach
described by Gelhar [1986]. This approach is attractive be-
cause it provides closed-form expressions for both moments.
The mean velocity vector for two-dimensional flow is [Gelhar,
1986]

5= KoJifn (16)

where J; dh/dx; is the mean head gradient vector, n is the
porosity, and K, is the geometric mean of the hydraulic con-
ductivity K(x), defined as

K¢ = exp [In [K(x)]] amn

The velocity spectral density function for two-dimensional
flow is [Gelhar and Axness, 1983]

Kk,
Svivj(kl’ kz) = Em51|:(sim - Tz_] [511

where k is the magnitude of the spectral wave number vector
k,, the function &,, is one if j is equal to ! and zero otherwise,
and all repeated indices are understood to be summed from 1
to 2. The function S, (k,, k,) is the log hydraulic conductivity
spectral density. The derivation of (18) is based on linearized
perturbation expansions of both the groundwater flow equa-
tion and Darcy’s law and, like any stochastic perturbation
analysis, is strictly valid only when the higher-order moments
of perturbed variables are sufficiently small. A detailed simula-
tion study presented by Ababou [1988] suggests that the
Gelhar and Axness [1983] results are reasonably accurate for
the range of log hydraulic conductivity standard deviations
(0.5-1.0) used in our example. Also, it should be noted that the
velocity perturbation expressions used in the Gelhar and

kik
—T’z—‘]s,,(k,, k)  (18)
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TABLE 1. Inputs for the Sample Problem
Case
Parameter I(Nominal) 2 3 4 5 6
3 0.1 m/day
o 0.5 10
A 2.0m 1.0 4.0
a; 0.25 m 0.125  0.500
ar 0.10 m 0.050 0.200
Domain size 44 by 25 m
Simulation period 225 days

Axness analysis satisfy the mass conservation conditions
stated in (9) and (10).

The desired two-dimensional velocity covariance function is
obtained by taking the inverse Fourier transform of (18). For
this example, the log hydraulic conductivity spectrum is as-
sumed to be the two-dimensional isotropic hydraulic conduc-
tivity function used by Mizell [1982]:

2
i
ZUIZ(a) k?

2N
k? —
o+ (3]

where o f2 and £ are the variance and integral scale of the log
hydraulic conductivity field, respectively. The elements of the

Sff(kp kz) = (19)

resulting velocity covariance matrix are derived in the appen- -

dix. The expressions provided in the appendix indicate that
the velocity covariance functions are anisotropic even though
the log hydraulic conductivity statistics used to generate them
are isotropic. This is because the mean head gradient es-
tablishes a preferential direction that influences the way
random velocity perturbations at different points are corre-
lated. This anisotropy of the velocity covariance propagates
through the concentration moment equations into the con-
centration covariance, which is also anisotropic.

Table 1 summarizes the values used for the example prob-
lem input parameters and identifies a nominal case as well as
several additional cases used to investigate sensitivity. In each
sensitivity case one or two inputs are changed while the others
are held fixed at their nominal values. The values of the
changed inputs are noted in the appropriate columns. The
mean velocity and the nominal statistics of the log hydraulic
conductivity field are roughly based on values determined by
Sudicky [1986] for the experimental tracer test site in Borden,
Ontario. The nominal pore scale dispersivities are in the upper
range of those determined by Klotz et al. [1980].

Figure 2 shows the nominal (case 1 in Table 1) con-
centration moments obtained by solving the perturbation
moment equations with the Galerkin finite element algorithm.
The plots on the left show all four moments 75 days after the
start of solute release while those on the right show the same
moments after 150 days. It is apparent that the area of maxi-
mum concentration prediction uncertainty and maximum
longitudinal macroscopic flux propagates downstream with
the leading edge of the mean concentration plume. The area of
maximum transverse macroscopic flux tends to remain close
to the source, where the transverse mean concentration gradi-
ents are the greatest. The concentration uncertainty is highest
in areas where the mean concentration gradients are large and
the peak value decreases with time as the plume disperses
throughout the simulation domain.

It is instructive to compare the moments obtained from our
perturbation approach with sample estimates derived from a
Monte Carlo simulation. The Monte Carlo sample moments
presented here were computed from a set of 500 statistically
independent numerically generated replicates. This sample size
was based on a standard error analysis which specified that
the 95% confidence intervals for any sample statistic should
not be larger than 10% of the estimated value along the por-
tion of the plume axis estending downstream of the source. It
should be noted that classical standard error estimates, which
rely on normality assumptions [Kendall and Stuart, 1977],
provide only rough approximations in this application, since
the concentration probability density function can be skewed,
especially near the boundaries of the simulation domain.
These standard error estimates also neglect the important ef-
fects of numerical errors introduced in the Monte Carlo trans-
port simulations.

Each Monte Carlo replicate consists of a two-dimensional
time-dependent concentration field obtained from a conven-
tional finite element solution of (1), the local transport equa-
tion. Velocity fields for our example were obtained from a
multivariate multidimensional turning bands algorithm simi-
lar to those described in the work by Shinozuka and Jan
[1972] and Mantoglou [1987]. This algorithm generates corre-
lated (and mass conservative) v, and v, velocity components
which reproduce the ensemble statistics given in (16) and (A4).

The finite element grid used in the Monte Carlo simulations
must be able to resolve abrupt fluctuations in the random
velocity and concentration fields. By contrast, the grid used to
solve the perturbation moment equations only needs to re-
solve relatively smooth changes in the velocity and con-
centration moment functions. Also, the Monte Carlo solution
algorithm must be able to solve a local transport equation
which does not have macrodispersive terms and which in-
cludes, for this example, advection in two directions rather
than one. The uniform node spacing used in the Monte Carlo
grid (0.5 m) is based on a criterion of approximately 4 nodes/
correlation length suggested by Ababou [1988] and on Peclet
number constraints. The variable node spacing used in the
perturbation solution can be significantly larger, particularly
in areas far from the source (see Figure 1). As a result, the
perturbation technique requires only one fifth the number of
nodes (782 versus 4361) and only one quarter the computation
time of the Monte Carlo simulation for the same time step. A
time step of 5 days was used for the sample problem.

Figure 3 compares the nominal perturbation and Monte
Carlo moments at 225 days. The perturbation method gives a
slightly higher concentration standard deviation along the
centerline of the mean plume. Although the problem formu-
lation forces the true ensemble moments to be symmetric
about the axis of the mean plume, the Monte Carlo sample
statistics exhibit minor asymmetries. These asymmetries,
which are due to sampling errors inherent in the method, give
some indication of the confidence that can be placed in the
Monte Carlo results.,

Figure 4 compares the perturbation and Monte Carlo mo-
ments at 225 days for a log hydraulic conductivity standard
deviation of 1.0 (case 2 in Table 1). In this case the discrepancy
observed along the centerline of the standard deviation plume
is larger, with the perturbation method giving a more pro-
nounced peak and a somewhat higher maximum value. Both
solution methods indicate that the mean plume is more dis-
persed than for the nominal case, due to increases in the mac-
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Fig. 2. Concentration moments for nominal case at 75 and 150 days (perturbation method).

rodispersive flux terms caused by increased variability of the
random velocity field. As expected, the concentration standard
deviations are higher for this case than for the nominal case
and the uncertainty is spread over a larger portion of the
domain.

It should be noted that differences between the two sets of
moment results compared in Figures 3 and 4 reflect errors
contributed by each solution method [Graham and McLaugh-
lin, 1988]. As input variability increases, the Monte Carlo

method becomes less accurate because of the effects of statis-
tical sampling and numerical error. The Monte Carlo simula-
tions are particularly vulnerable to numerical dispersion, since
they must contend with highly variable velocity fields and
small dispersivities. The perturbation method also becomes
less accurate as input variability increases, since the small per-
turbation assumption begins to break down. The relative con-
tributions of these various error sources are difficult to quan-
tify and it is not clear, at this point, which method is most
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Fig. 3. Comparison of perturbation and Monte Carlo concentration moments at 225 days (s, = 0.5).

accurate. Nevertheless, it is encouraging to see that the two
solution approaches predict most of the same structural fea-
tures and are qualitatively similar in many respects.

Figures 5 and 6 summarize selected sensitivity analyses of
the perturbatibn moment solutions. In each case the nominal
(case 1) result is indicated with a solid line and the results for
other sets of input parameters are displayed with dashed lines.
The transverse and longitudinal cross sections plotted in
Figure 5 show the effect of local dispersivity on the ensemble

mean and standard deviation (the locations of these cross sec-
tions are indicated in Figure 1). The longitudinal and trans-
verse local dispersivities are both scaled up and down, relative
to the nominal values, by a factor of two (cases 3 and 4 in
Table 1).

Changes in local dispersivity have a similar effect on the
ensemble mean and standard deviation. In both cases, lower
values produce steeper, less dispersed moment distributions.
The maximum concentration standard deviation (or uncer-
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Fig. 4. Comparison of perturbation and Monte Carlo concentration moments at 225 days (¢ = 10).

tainty) increases when the local dispersivity is decreased. This
result is due to the fact that large local dispersivity values tend
to smooth out random plume irregularities, whereas small
local dispersivities tend to preserve steep concentration gradi-
ents. Note, however, that the areal coverage of the uncertainty
distribution decreases with decreasing local dispersivity, reflec-
ting decreased spreading of the random solute plume.

Figure 6 shows the effect of the log hydraulic conductivity
correlation scale on the ensemble mean and standard devi-

ation along the cross sections considered above. The corre-
lation scale is varied by a factor of two above and below the
nominal value (cases 5 and 6 in Table 1). Higher values pro-
duce a more dispersed mean plume as well as higher con-
centration standard deviations throughout the domain. A
larger correlation scale indicates that hydraulic conductivity
anomolies (deviations from the mean value) are likely to per-
sist over greater distances and therefore are likely to have a
greater effect on the shape of the resulting concentration
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Fig. 5. Sensitivity of concentration mean and standard deviation at 225 days to changes in local dispersivity.

plume. This effect increases variability between plumes across
the ensemble, leading both to a more dispersed mean plume
and to greater concentration uncertainty.

The correlations between concentrations at different points
in a plume indicate how far the information from discrete field
observations can be extrapolated over space. For this reason,
correlation (or covariance) functions play an important role in
spatial estimation and monitoring design (see, for example,
Journel and Huijbreghts [1978] and Delhomme [1979]). Each
of the two contour plots in Figure 7 show the normalized
covariance (or correlation) between the concentration at a
particular location and every other point in the simulation
domain. The locations of the two reference points (located at
coordinates (26, 12) and (26, 15)) are indicated on Figure 2
with filled circles. The directional dependence (anisotropy) of
the concentration correlation is apparent in each of the plots.
The nonstationarity of the correlation function is less obvious
but may be inferred by comparing the two figures. A careful
inspection reveals that the correlation between points with the
same separation (magnitude and direction) can be different in
different parts of the simulation domain. Some of this non-
stationarity may be due to boundary effects, which are more

noticeable in the normalized correlation functions than in the
nonnormalized covariances.

Figure 7 indicates that random deviations from the en-
semble mean are correlated for longer distances along the
streamlines of the mean velocity field than across. Con-
centration perturbations are positively correlated between
points on the same side of the mean plume and slightly nega-
tively correlated between points on opposite sides. That is,
point measurements convey considerable information about
concentrations downstream of the measurement point but
relatively little about concentrations in the transverse direc-
tion.

These results, which are application dependent, have clear
implications for field sampling. In particular, they support the
rather intuitive strategy of sampling along a series of transects
running perpendicular to the longitudinal axis of a solute
plume. Samples on each transect should be closely spaced
relative to the distance between transects and the spacing in
each direction should be on the order of one concentration
correlation scale. Since the correlation scale and the direction
of the plume axis may vary over space (and possibly time) in a
real field application, the sampling network should be devel-
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oped sequentially, with sampling resources allocated over an
extended period. This allows monitoring decisions to take ad-
vantage of the information gained from measurements col-
lected in earlier rounds of sampling. The conditional moments
obtained from a perturbation analysis similar to the one de-
scribed here may be used to compare the performance of alter-
native sampling networks and to guide the design of a sequen-
tial sampling strategy [ McLaughlin and Graham, 1986].

DiscussioN

The stochastic mass transport model described in this paper
provides a convenient method for predicting the movement of
a solute plume in heterogenecous aquifers where hy-
drogeological properties are unknown or highly uncertain.
The model computes the unconditional ensemble mean, mac-
rodispersive flux, and covariance of the concentration at any
time or location. Each of these moments provides useful infor-
mation about plume behavior. When measurements of con-
centration and related variables are unavailable, the un-
conditional mean is the best (minimum variance unbiased)
estimate of the true concentration in any given replicate. The
ensemble macrodispersive flux determines how the mean

plume spreads over time and space. Since this flux is derived it
does not need to be specified a priori or obtained through a
calibration exercise. Macrodispersion is not assumed to be
Fickian, although the magnitude of the macrodispersive flux
does depend in a complex way on the mean concentration
gradient. The unconditional ensemble variance (or the coef-
ficient of variation) may be used to determine the likely range
of variability of the true concentration about the ensemble
mean. Finally, the ensemble covariance may be used to guide
sampling design decisions and to derive conditional con-
centration estimates [ Graham, 1988].

The numerically based approach we use to compute en-
semble moments is computationally intensive but considerably
more general than analytical approaches which do not apply
in near-source regions and cannot deal with forcing functions
or boundaries. It is also less computationally demanding than
Monte Carlo simulation, at least for problems of the size
examined in this paper. Although the straightforward numeri-
cal solution algorithm used in this paper is feasible for two-
dimensional problems, its computational demands make it im-
practical for three-dimensional problems of realistic size. In
such cases, the moment equations will probably need to be
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Fig. 7. Nominal concentration correlations at 225 days, relative to locations (26, 12) and (26, 15).

solved with more sophisticated numerical algorithms which
use decomposition techniques and/or take advantage of paral-
lel processing.

Our approach, like many others, relies on small pertur-
bation assumptions which may not be valid in geological for-
mations with log hydraulic conductivity variances much larger
than one. The limitations of the small perturbation assump-
tion may be circumvented, at least to some extent, in situ-
ations where a larger-scale velocity trend (i.e. a nonstationary
ensemble mean) can be identified [McLaughlin and Wood,
1988a]. In such cases, the variance about the ensemble mean
is reduced and the small perturbation assumption becomes
more acceptable.

The concentration moments obtained for the sample prob-
lem show the same general behavior as similar results devel-
oped by others. In particular, the ensemble longitudinal and
transverse macrodispersive fluxes increase with increasing hy-
draulic conductivity variance and correlation scale, thus caus-
ing increased spreading of the mean plume. Similar behavior is
reported for the steady state asymptotic macrodispersivity
tensor derived by Gelhar and Axness [1983] and the transient
macrodispersivity tensor derived by Dagan [1987]. Also, the

ensemble concentration variance increases with increasing log
hydraulic conductivity variance and correlation scale over the
entire domain. These general trends are consistent with results
reported by Dagan [1984] and Vomvoris [1986]. Finally,
random concentration fluctuations appear to be correlated for
longer distances along the mean flow direction than across, as
found by Dagan [1984], Vomvoris [1986], and Vomvoris and
Gelhar [1986].

As mentioned above, the ensemble macrodispersive flux
derived in our analysis is a vector which need not behave in a
Fickian manner. When applied to the ensemble mean, the
Fickian assumption states that the macrodispersive flux vector
is related to the mean concentration gradient (at all times and
locations) as follows:

Jpy = —BA{0E/0x,) (20)

where A;; is a time and space-invariant macrodispersivity
tensor. The validity of this assumption may be checked by
evaluating  spatially integrated time-dependent mac-
rodispersion coefficients derived from the spatial moments of
the concentration distribution [Aris, 1956; Graham, 1988]. If
these coefficients approach a constant value, the mac-



227

GRAHAM AND MCLAUGHLIN: STOCHASTIC SUBSURFACE SOLUTE TRANSPORT

600
SO0 — = = == o oo
400
7
3
g
*wd
E]
3 T ~ NUMERICAL SOLUTION
P 7~ GELHAR & AXNESS
200 e > DAGAN
100 |
0 T T
100 300
TIME (DAYS)
200
rd o
y;
/
;
/
/
/
7 !
E ;
;
§ i
S i
100 + /
- i
e !
i
g /
i
i
i LEGEND
.~ NUMERICAL SOLUTION
H ~“ GELHAR & AXNESS
H ~“ DAGAN
i
i
:
N
i
[ T . r . T . . - .
100 200 300
TIME (DAYS)

Fig. 8. Evolution of macrodispersivity coefficients derived from a spatial moment analysis of the ensemble mean con-
centration (g, = 0.5).

based on an «; /A value of 0.125. The differences between the

rodispersion process can be treated as asymptotically Fickian
numerical and Dagan macrodispersivity curves plotted in

at an appropriately large scale.
Figure 8 shows the evolution of the longitudinal (4,,) and Figure 8 are probably due, at least in part, to the relatively
large a, /A ratio used in our example.
Figure 8 suggests that the ensemble mean plume ap-
proaches Fickian behavior (i.e., the macrodispersivities ap-
proach constant values) as time progresses. It should be re-
local dispersivity removed. Also plotted are the mac- called, however, that the ensemble macrodispersive flux ac-
rodispersivity coefficients obtained from the theories of Gelhar ~ counts for differences among the trajectories of random con-
and Axness [1983] and Dagan [1984]. The longitudinal mac- centration replicates over the ensemble, rather than the
rodispersivity obtained from our moment equations increases macroscopic spreading of a single plume [Sposito et al., 1986].
momotonically with time and approaches the Gelhar and The first effect (ensemble uncertainty) influences our ability to
Axness limit more quickly than the curve obtained from predict where a plume is likely to move, while the second
effect (spatial dispersion) influences the degree of dilution ex-
perienced in any given contamination incident. Figures 9 and
10 illustrate the difference between these effects for two typical
Monte Carlo replicates. The two concentration distributions

transverse (4,,) macrodispersivities obtained from a spatial
moment analysis of our nominal ensemble mean con-
centration plume, with the temporal and spatial characteristics
of the continuous source taken into account and the effects of

Dagan’s analysis. Our transverse macrodispersivity shows be-
havior similar to Dagan’s, rising past the Gelhar and Axness

limit to peak at about 80 days (equivalent to a mean displace-
ment of 44). It should be noted that the Gelhar and Axness
plotted in Figure 9 are taken from the case 1 (nominal, o, =

macrodispersivity derivation assumes a,/A « 1, while the
Dagan derivation assumes o,/i=0a,;/A=0. The mac- 0.5) ensemble while those plotted in Figure 10 are taken from
the case 2 (o, = 1.0) ensemble. The 0.1 ensemble mean con-

rodispersivities obtained for our nominal case are, by contrast.
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tour from the perturbation solution is superimposed on each
of the replicate contour plots. Macrodispersivities computed
from a spatial moment analysis of each replicate are plotted,
together with our ensemble mean macrodispersivities, next to
the concentration distributions. Note that the ensemble mean
A, value is affected by the boundary of the computational
grid at times greater than 170 days in the o, = 1.0 case.

Figures 9 and 10 indicate that individual solute plumes be-
longing to the same ensemble can differ significantly, depend-
ing on the replicate selected. In particular, macrodispersivities
computed from spatial moment analyses of individual repli-
cates either do not approach asymptotic values or approach
asymptotic values which differ from the ensemble mac-
rodispersivities. The negative dispersivities obtained for some
of the random replicates provide additional evidence that the
uniform velocity Fickian assumption does not hold at the time
and space scales considered here. These results suggest that
dilution computations or remediation strategies based on un-
conditional ensemble mean statistics may not be appropriate
for particular site-specific applications, especially in near-
source regions.

It is useful to recall that the ensemble description should
(ideally) incorporate everything known about solute transport
at a particular site. If relatively little site-specific information is
available, the ensemble description will be naive and general.
It is not likely that the statistics of such an ensemble will
provide a good description of an individual plume, especially
if the velocity field is very heterogeneous. If, on the other
hand, field measurements are abundant, the ensemble descrip-
tion can provide a more specific and informed picture of local
conditions. This may be accomplished by conditioning the
ensemble or, more strictly, the ensemble statistics, on available
measurements of concentration, head, log hydraulic conduc-
tivity, and other relevant variables [Delhomme, 1979; Dagan,
1984]. Conditional velocity and concentration statistics may
be derived, subject to certain assumptions, directly from un-
conditional means and covariances [Schweppe, 1973;
McLaughlin and Graham, 1986; Graham, 1988]. These con-
ditional statistics depend, as might be expected, on the values
and locations of the conditioning measurements. We plan to
discuss the implications of conditioning in more detail in
future papers.

APPENDIX A: DERIVATION OF THE VELOCITY COVARIANCE

The stationary covariance of a random velocity field can be
derived by taking the inverse Fourier transform of the velocity
power spectral density function. The general expression for the
two-dimensional velocity covariance between two points in
space is

P G0 E2)
=f j exp [itk,¢, +k28o)1S,,, ks, ko) diy dk, (A1)

where ¢, is the separation vector extending from the first point
to the second, k, is the spectral wave number vector, i is the
imaginary constant \/ —1, and §,,, is the velocity spectral
density. Equation (14) relates the velocity spectral density to
the spectral density of the log hydraulic conductivity function.
If the isotropic log hydraulic conductivity spectrum of (19) is
substituted into (18) and the resulting velocity spectral density
is substituted into (A1), the velocity covariance expression be-
comes

o ror 7IL720'f2 kZ
Puw (1o él)‘L L(, 842 [k2 + (n/44)2]?

k.k, kk )
. [5“_ Uzlz][aﬂ — Iljcl;] exp [i(k &, +ky&,)] dk, dk, (A2)

All variables appearing here are defined in the text accom-
panying (16) through (19). Note that the unsubscripted vari-
ables J and k are understood to be the magnitudes of the
vectors J; and k. Also, the &, axis is assumed to be aligned
with the local mean flow direction so that the ¢, component
of the hydraulic gradient vector J, is zero.

Equation (A2) may be evaluated analytically, using contour
integration in the complex plane [Erdelyi, 1954; Abramowitz
and Stegun, 1970]. The resulting components of the symmetric
2 by two-dimensional velocity covariance matrix are

Pylu,(én &)= ”_2'7/2/4[/1(ép ¢, A)+ By, &5 DK (ad)

+ C&y, &2 DK (@8)]  (A3a)
Poallis &) = 020 24D, &5y A) + E(Cy, &g DK ofad)

+ F(&y, &5 VK (ad)]  (A3D)
Pyol&is &) = 0707 /A[G(,, &5 D) + HEy, &5 DK ofad)

+ ISy, 62 VK, (@8] (A3c)

where K, is the modified Bessel function of order n, & = m/(44),
and the unsubscripted variable ¢ is understood to be the mag-
nitude of the vector &, The algebraic functions A(,, &,, )
through I(¢,, &,, /) are defined as follows:

Ay, &5 4) = ;76 [g - 48;12 + 485814] (A4)
By, &y A= — 6428, 20® —28, %02 -2 %4 a® + 48 %2
I =
Ot & =125 _ 12 %;_%Jr 112;;2
_ 190(2;;4_% %;_2_%?_4 "
o b= -G+ HE] W
B¢, &5 ) =6—2a7 %_48 51_252_2 ;gz_ \ f;ﬁjff
(A8)
F(Ey, &y ) = 20¢ — 124 é‘:f’z + %— 192 5—5;5—22
L SR
G &0 ) = ;1; [— 24;52 + &i‘:ﬁ} (A10)
H(E,, &y ) = 2028,&, — 22 516_3252 _ 4 5_25_2 — 48 616—352
19;22%52 - Q%IZCZ (A11)
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(A12)
The zero-lag velocity variances and cross covariance can be
evaluated either by taking the limits of (A3a) through (A3c) as

¢ approaches zero or by evaluating (A2) directly with £ equal
to zero. The resulting expressions are

P,.0, 0 = 35’2 (Al3a)
P,,.(0,0) = {5%,* (A13b)
P,.0,0=0 (A13c)

NoTATION

A;; macrodispersivity tensor.
solute concentration at location x and time ¢.
¢, initial solute concentration (solubility).

D spatial domain of interest.

D;; pore scale dispersion tensor.
¢éD boundary of D.
i imaginary constant ./ —1.
J; hydraulic head gradient vector.
Jp; macrodispersive flux vector.

k; Fourier wave number vector.

K; hydraulic conductivity geometric mean.
n porosity.

N number of non-Dirichlet nodes in the com-
putational grid used to discretize the
distributed moment equations.
cross covariance between the generic variables
u(x, t) and o(x’, t).
spatially discretized approximation to the
cross-covariance function P,,.
power spectral density between the generic
time-invariant variables u(x) and v(x").

t time.
to, initial time.

P, (x, X', 1)

[P..1;

S..(k)

4, u; mean of the scalar or vector function u.
v{x) velocity vector at location x.
x;, x; spatial location vectors.
2, 2y longitudinal and transverse pore scale
dispersivities.
0;; function equal to 1 if i = j and equal to 0
otherwise.
d(x) Dirac delta function.

ou perturbation of the function u about its mean.
finite element interpolation functions associated
with node i of a computational grid.

4 log hydraulic conductivity correlation scale.
6,2 log hydraulic conductivity variance.

¢; separation vector between two locations.
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