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Abstract. This paper presents a numerical method for simulating flow fields in a stochastic porous
medium that satisfies locally the Darcy equation, and has each of its hydraulic parameters represented
as one realization of a three-dimensional random field. These are generated by using the Turning
Bands method. Our ultimate objective is to obtain statistically meaningful solutions in order to check
and extend a series of approximate analytical results previously obtained by a spectral perturbation
method (L. W. Gelhar and co-workers). We investigate the computational aspects of the problem in
relation with stochastic concepts. The difficulty of the numerical problem arises from the random
nature of the hydraulic conductivities, which implies that a very large discretized algebraic system
must be solved. Indeed, a preliminary evaluation with the aid of scale analysis suggests that, in order
to solve meaningful flow problems, the total number of nodes must be of the order of 10°. This is due
to the requirement that Ax; <€ A; < L;, where Ax; is the mesh size, A; is a typical correlation scale of the
inputs, and L; is the size of the flow domain (i =1, 2, 3). The optimum strategy for the solution of
such a problem is discussed in relation with supercomputer capabilities. Briefly, the proposed
discretization method is the seven-point finite differences scheme, and the proposed solution method
is iterative, based on prior approximate factorization of the large coefficient matrix. Preliminary
results obtained with grids on the order of one hundred thousand nodes are discussed for the case of
steady saturated flow with highly variable, random conductivities.

Key words. Flow in random media, effective conductivity, finite differences, iterative methods,
large-scale simulations, groundwater flow, stochastic hydrology, random functions.

1. Introduction

. In this paper, we concern ourselves with the large-scale characterization of flow
within naturally heterogeneous formations, including for instance the deter-
mination of the ‘effective’ hydraulic conductivity. The main application we have
in view is the prediction of contaminant migration over large time and length
scales in the vadose zone and saturated groundwaters. The solution of the
saturated flow problem would constitute a first step in this direction. The
naturally ‘heterogeneous’ porous medium is viewed here as a statistically homo-
geneous realization of a three-dimensional random field. Thus, the detailed
spatial fluctuations of the local hydraulic properties (such as the log-conductivity)

* Now at Department of Civil Engineering and Operations Research, Princeton University, U.S.A.
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are conveniently reduced to a few statistical parameters, e.g. mean, variance, and
correlation lengths. Building on this, a spectral perturbation theory has been
previously developed by L. W. Gelhar and co-workers, to explicitly obtain the
second-order properties of the three-dimensional flow field as well as the
‘effective’ conductivity (Bakr et al., 1978; Gelhar, 1984). In this theory, however,
the mean flow solution must be known beforehand and the perturbations of the
flow variables (heads, velocities) are assumed to be statistically homogeneous at
all scales, or at least at some scale of interest. Furthermore, these solutions are
valid only for a relatively small input variability (presumably for oj, x <1). It is
not yet known how good these solutions are for larger standard deviations of the
In K random field.

The basic idea underlying the present work is that it is possible to obtain a
statistically meaningful realization of the flow field by numerically solving the full
three-dimensional flow equation, over a sufficiently large domain, for a single
realization of hydraulic properties. In contrast with the infinite-domain spectral
perturbation method, there is no inherent assumption concerning the statistical
properties of the solution, and a finite rather than infinite length scale is implied
via the size of the computational flow domain. Finally, no restriction is imposed
on the magnitude of conductivity variability, apart from possible numerical
constraints. We argue here that it is possible in practice to obtain reliable
numerical solutions for large variabilities, say i, x =1 —2 or even more, as may
be observed in some highly heterogeneous formations.

The crucial issue in the proposed approach is ‘numerical feasibility’. Indeed,
the domain must be discretized into a very large number of cells or nodes, of the
order of one million, in order to obtain statistically significant results (large
sampling domain, fine resolution). This may be feasible with current supercom-
puter capabilities provided that the solution method is carefully designed. Ano-
ther important issue is the generation of accurate realizations of the random field
of conductivity with prescribed statistics. A three-dimensional Turning Bands
method was implemented for this purpose (Matheron, 1973; Mantoglou and
Wilson, 1982; Tompson et al. 1987). The resulting realizations were used as
input for the flow simulator.

The remainder of this paper focuses of the development and test of an
appropriate numerical solution method for the ‘random’ flow problem defined
above. In the next section, we emphasize some numerical requirements on the
basis of scale analysis. The performance of the solution method (a preconditioned
iterative solver based on finite differences) is then evaluated, along with its
computational requirements. Eventually, the results obtained for typical saturated
flow problems are analyzed and interpreted from a statistical viewpoint. The last
section summarizes the results obtained so far, and includes a brief discussion of
possible extensions of this approach to more complex flow systems (statistically
anisotropic media, and unsaturated flow).
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2. Scale Analysis and Numerical Requirements

In order to clarify the proposed ‘single realization’ approach, we define a set of
length scales as follows. First, the size of the flow domain (scale of interest) is
assumed to be much smaller than the regional scale, or scale of inhomogeneity £.
Consider, for instance, the variations of the log-conductivity within a region of
size 10-50 km, extending from a coastal plain (sands and gravels) near the sea, to
a sandstone formation towards the interior. Along a transect originating at the
sea shore, the log-conductivity may vary as depicted in Figure 1. The In K
process fluctuates about a nonlinear trend Kg(x); the local variance of these
fluctuations decreases in the sandstone formation. One may define accordingly
various scales of inhomogeneity such as

dln K5\ !

= ( gx G) (effect of linear trend),
doin k\ 7! ..

F= (T) (effect of standard deviation trend),
1 d’In Kg

-y
L= ( ) (effect of curvature, e.g. after linear detrending).

2 dx?
Typically, the size of the flow domain could be of the order L =~ 1-10 km (smaller
than £). The In K process may then be assumed statistically homogeneous at
the scale of the flow domain, possibly after linear detrending, as suggested in
Figure 1.
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Fig. 1. Identification of scales: regional scale (%), scale of the flow domain (L} and correlation scale

(A).
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Second, we assume that the data collected at scale L will reveal the existence
of a scale of fluctuation (or correlation length A) that should be much smaller
than L in order to be statistically meaningful. Thus, A will typically be of order
10-100 m in the horizontal, and usually much less in the vertical, if the formation
is stratified. This interpretation implies that the scale of fluctuation may depend
on the scale of interest (L), which in turn was assumed to be smaller than some
regional scale of inhomogeneity. In brief, we require

A<L< 2. (1)

Let us now examine how the size of the numerical problem can be related to
length scales such as A. In order to obtain a statistically meaningful realization of
the hydraulic head field, the domain size should be taken much larger than the
head fluctuation scale Ay, say: L =5y . But from spectral perturbation results
(Bakr et al., 1978), we expect Ay to be S to 10 times larger than Ay, x. Therefore,
we need at least

L

)\ln K

=25. (2)

On the other hand, the mesh size (Ax) of the discretized space must be small
enough so that the statistical properties of inputs (In K) and outputs (heads,
velocities) are preserved. This leads to the resolution requirement Ax/A, k<1,
which is similar to the sampling theorem in signal theory: a temporal signal of
period T should be sampled at time intervals At < T/2 in order to avoid aliasing
(in our case, the fluctuation scale A plays the role of T/2). The mesh size
constraint can also be interpreted as a requirement for minimizing the spatial
filtering due to the discretization of the original flow equation. Heuristically, the
discretization over a mesh of size Ax can be viewed as a spatial filter of
bandwidth Ax. For a given ratio Ax/A, the filtered input and output may be
interpreted as local averages, with reduced variance and larger correlation scale
compared to point processes. For a one-dimensional exponential covariance
function, the statistics (o, A) will be distorted by no more than 10% upon local
averaging over Ax = A/4. This suggests that a reasonable resolution requirement
could be

Ax 1
o x < 5 (3)

Now, Equations (2) and (3) imply that

Al'—‘zloo, i=1,2,3. @)

Xi

Finally, due to the three-dimensionality of the problem, the total number of grid
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points N in the discretized flow domain should satisfy

= Ly’ 6
N= (K;) = 10°. (5)

The large grid size implied by (5) is due to three concurrent requirements:
large sampling domain, fine resolution, and three-dimensionality. The latter
feature is essential for a realistic reppresentation of the physical phenomenon.
Indeed, results obtained with the spectral perturbation method proved to be very
sensitive to the dimensionality of the problem. For instance, the head variance is
reduced by one order of magnitude in three dimensions compared to one
dimension (Bakr et al., 1978).

In summary, to obtain a meaningful solution of the random flow problem by
direct numerical simulation may require a grid size in the order of 1000000
nodes. How such large problems can be efficiently solved is now being in-
vestigated.

3. Governing Equation and Solution Methods

The saturated/unsaturated flow equation in a spatially variable medium is given
most generally by

~ S(h, x)%}tha—‘i-ilK(h, (i)

Xi

i

0, (6)

where S represents a ‘storage capacity’ (specific storativity or specific moisture
capacity), K represents the saturated or unsaturated hydraulic conductivity, h is
the water pressure head and g the component of a unit vector representing the
acceleration of gravity (by convention g, =g =0 and g;=+1 if x; is vertical
upwards).

In the following, we will consider the simpler problem of steady saturated flow,
governed by

el K05

0, (M

where H = h+ g - x; is the hydraulic head. After discretization, one is left with a
system of N linear algebraic equations, in the order of 1 000 000 nodes according
to Equation (5).

The large size of the system to be solved has led us to search the literature for
very efficient numerical solution methods which have been successfully used in
subsurface hydrology and other fields (e.g. hydrodynamics and aerodynamics).
The spatial discretization scheme we selected after an extensive review and some
numerical tests is the seven point centered finite difference scheme. This results

+ in the algebraic system:

AH=B, (8)
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Fig. 2. 7-point centered finite difference scheme and 7-diagonal coefficient matrix.
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where each node is connected to six neighbors via one equation, as depicted in
Figure 2. As a consequence, the system’s matrix A is sparse, seven-diagonal,
symmetric, positive-definite, and possesses the so-called ‘M-matrix’ property
(weak diagonal dominance, with all off-diagonal coefficients negative and all
diagonal coefficients nonnegative).

The algebraic properties of the finite difference system (8) make it especially
well conditioned for the application of ‘approximate factorization’ methods - or
preconditioned iterative methods — such as SIP (Stone, 1968; Weinstein et al.,
1969) and ICCG (Meijerink and Van der Vorst, 1977; Kershaw, 1978).*
Numerical experiments published in the literature for small problems (N = 1000)
indicated that SIP and ICCG were more efficient than classical iterative solvers
such as ADI and LSOR * (Cooley, 1974; Trescott and Larson, 1977; Kershaw,
1978). Other applications to subsurface flow can be found in Cooley (1974) and
McDonald and Harbaugh (1984) for the SIP solver, and Kuiper (1981), Gam-
bolati and Perdon (1984) for the ICCG solver. Related solutions techniques were
successfully used in aerodynamics engineering to solve large Navier-Stokes
problems with several hundred thousand nodes (Rogallo, 1977; Wray, 1979). For
practical reasons, we have chosen to implement the SIP solver, although ICCG
may also be considered at later stages of this research.

The properties of SIP were studied by Stone (1968) for the two-dimensional
case, and was later extended to three-dimensions by Weinstein et al. (1969). The
method was applied to three-dimensional groundwater flow problems by Trescott
(1975) and McDonald and Harbaugh (1984). The principle of SIP is based on the
following formulation of the original finite difference system (8):

LUH=B+(LU- AH, 9
where L and U are lower and upper triangular matrices having the same
zero-structure as matrix A. The product LU is an approximation of matrix A,
corresponding to a 13 point asymmetric finite difference operator. The system (9)
may now be solved by using the Picard-like iteration scheme

LUH™'-H™) =B- AH™. (10)
The computational work involved in finding matrices L, U and in solving
directly the above system is proportional to N (around 75 N additions, multi-
plications, and equivalent divisions) for each iteration. For details on the al-
gorithms, see Weinstein et al. (1969) or McDonald and Harbaugh (1984). Our
particular implementation of SIP is documented in Ababou et al. (1988).

4. Performance of the SIP Solver

The iterative inversion of the finite difference system (Equation (10)) remains a
difficult problem due to the large size of the system (N ~ 10° equations) and the

* SIP: strongly implicit procedure; ICCG: incomplete Choleski-conjugate gradients; ADI: alter-
nate directions implicit; LSOR: line successive over-relaxation.
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noisy coefficients. A convenient measure of ‘numerical difficulty’ is provided by
the condition number, ratio of largest to smallest eigenvalue of the coefficient
matrix A. For a cubic grid of size N = n?, the condition number is known to
behave like n? (that is, N*3) in the case o = 0. This is a classical result of matrix
theory. However, no similar result is available for the random case o #0. We
conjecture that essentially the same behavior holds true if the mesh size satisfies
Ax/A <o, Thus, for large domain size (L/A), the condition number of matrix A
is presumably proportional to N*? times an increasing function of o.

For preconditioned iterative solvers such as SIP, the number of iterations
required to reach a given accuracy is known to be proportional to the square root
of condition number of the iteration matrix (e.g. LU in Equation (10)). Presum-
ably, the condition of LU is, at worst, on the same order as the condition of the
original matrix A. Thus, taking the square root of N*3 leads to order N'
iterations. This conjecture was recently verified empirically for a wide range of
cases (Ababou et al., 1988). Since the computational work per iteration is
proportional to N, the total work for a given value of o should be N*?
(compared to N'”* for a standard band Gauss elimination solver).

Table I shows the performance of the SIP solver for steady saturated flow
problems on grids of size 100 000 nodes (actual performance) and one million
nodes (predicted performance). The estimated speed-up factor between various
machines is displayed at the top of Table I. Most of the numerical experiments
involved cubic grids of size N=125000 nodes. Accurate solutions were
achieved on a Microvax in 7 CPU hours or less, with oy, x ranging from 1 to 2.3.
For larger grids (one million nodes), we expect a CPU time of about 1 h on a
vector supercomputer.

The accuracy of the solver was monitored by plotting the logarithm of the
residual error norm ||H™*'— H™|| versus the number of iterations (m). The
quadratic norm (root mean square) was further normalized with respect to the
head standard deviation (oy) which was estimated a-priori from spectral pertur-
bation results.

Table I. CPU time speed-up ratios for various machines compared to Microvax-1 (top), and SIP
performance on Microvax and Cray machines (bottom).

IBM PC Microvax1 Vax 11-782 IBM 370 Cray 1S Cray 1S
IBM 3033 scalar vector
1/5 1 3 10 100 500
Size Storage CPU/ITER Number of CPU time CPU time
(million words) (microvax) iterations (microvax) (Cray vector)
N=10° 1.5 4.3 min 100 =7h =1 min

N=10°¢ 15.0 43.0 min 250 =1 week =05h
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Figure 3 shows the decrease of the log-error versus number of iterations for
two test problems with different values of the standard deviation of In K (o= 1
and o = 2.3). It is clear that convergence is achieved faster for the smaller value
of . An extremely accurate solution (e =107° to 107%) is obtained after about
150 iterations for o =1, and 350 iterations for o =2.3. However, the residual
error |[H™"' — H™|| may underestimate the true error ||[H™' — H™|.

In order to improve our estimate of the true error, we use the algebraic
properties of the solver’s iteration matrix. Defining r as the exponential rate of
convergence (mean absolute slope of the curves in Figure 3), the true error can
be approximated asymptotically as follows (see Remson et al., 1971; Hageman
and Young, 1981; Ababou et al., 1988):

JH™1 — B = [H™1 = /(1 - exp(-n). v

From Equation (11) and Figure 3, it appears that the true error must lie below
107 relative to the head standard deviation. The fact that a constant con-
vergence rate was achieved guarantees the reliability of this estimation. We
conclude that numerical ‘noise’ was negligible compared to the inherent fluctua-
tions of the true solution. This is indeed a very desirable feature given the
random nature of the flow field.

am

_Lfm

"uunm“

loz (&)
~@X -2Ax 20

Y

-7.00 -5, 500

Fig. 3. SIP convergence rate for two test problems: e represents the standardized quadratic norm of
residual errors, and m the number of iterations.
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5. Analysis of Computed Flow Fields

The two test problems at hand concerned the case of steady saturated flow in a
cubic domain, with statistically isotropic conductivities (o =1 and o =2.3). The
boundary conditions were fixed heads on two opposite faces, and zero flux on all
other boundaries. This, in effect, resulted in imposing a large-scale hydraulic
gradient along the mean flow direction (J; = 0.004). The domain size, mesh size
and conductivity correlation scale were in the following ratios: L; =25, Ay; = 0.5,
A; = 1. The finite difference grid size was 125 000 nodes in three dimensions.

The random conductivity field was a single replica of a three-dimensional,
statistically isotropic Gauss-Markov process, obtained by the Turning Bands
generator (Matheron, 1973; Mantoglou and Wilson, 1982; Tompson et al.,
1987). About 100 line processes were used, with a random distribution of lines in
space, according to a uniform spherical distribution. The resulting In K field is
Gaussian, with an isotropic exponential covariance function in three-dimensional
space. The same replica was used for the two test problems, with oy, x =1 and
2.3, respectively.

Figure 4 shows low and high conductivity excursion regions (respectively,

X)

Fig. 4. Excursion regions of the random conductivity field in a two-dimensional slice (o =2.3,
A =1). Black and white patches regions where K<0.1 Kg, and K = 10K, respectively.
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black and white) in a two-dimensional slice. For o = 2.3, about 40% of the space
is occupied by such regions, with the conductivity 10 times below or above the
geometric mean. Some of the patches appear to be significantly larger than the
correlation length (A = 1). As expected, they seem isotropically oriented in space.

Figure 5 displays the contour lines of the computed hydraulic heads in a
horizontal slice crossing the center of the cube. The mean hydraulic gradient is
parallel to the slice (left to right). Low conductivity contours are also depicted in
the background. The head gradient becomes steeper near local minima of
conductivity, as could be expected from the Darcy equation. In this example, the
conductivity was highly variable (o = 2.3).

Figure 6 compares the head contours for =1 and o=2.3 in the same
horizontal slice as Figure 5. The head contours along vertical slices would look
essentially the same, due to the statistical isotropy of input conductivities.
Overall, the head fields shown in Figures 5 and 6 appear remarkably smooth,
despite the noisy input conductivities. This feature is indeed predicted by the
spectral perturbation theory.

Mean Flow Direction

v

Fig. 5. Hydraulic head contours in a slice parallel to flow for the case o =2.3; low conductivity
contours are shown in the background.
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More precisely, Bakr et al. (1978) showed that the head correlation length is
about 5A along the mean flow, and 10A across flow. Our preliminary calculations
using spatial averaging techniques, based on the assumption of stationarity of the
detrended head random field, showed that there was at least qualitative
agreement for the case o = 1. The result was less conclusive in the case o =2.3,
probably due to the limited size of the numerical flow domain. In both cases,
however, the numerical estimate of head standard deviation (o) matched to
within 10% the spectral formula given by Bakr et al. (1978)

_ 1 : *Amk - J 12
OH NG Onk*  Ank " J, (12)
as shown in Figure 7.

These results suggest that the predictions of the spectral perturbation theory
are quite robust as far as the hydraulic head statistics are concerned. In addition,
some preliminary results from spatial moments analyses of numerical velocity
fields also seen to be in agreement with theoretical results for moderate vari-
ability. The theoretical standard deviations of groundwater velocity and the
effective conductivity are given by

3 ! i
Uql:ﬁ- Kal, qu,aquﬁ‘ KaJ, Ke=KG'exp(%)' (13)

In particular, the ratio o4/0, may be thought of as indicating the relative
amount of lateral versus longitudinal macroscale dispersion. According to Equa-
tion (13), this ratio is constant and equal to 1/v/8 = 0.35. In the case o = 1, about
the same value (0.34) was obtained from the numerical velocity fields in the case

3
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Fig. 7. Comparison of standard deviations of hydraulic head from spectral theory (straight line) and
numerical simulations (square dots), versus standard deviation of log-conductivity.
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o = 1. Also, the normalized effective conductivity K, /K obtained numerically
was 1.3, compared to 1.2 from spectral theory.

Finally, the correlation scales of the numerical velocity components (g;)
appeared to be on the order of A (no greater than 2A in any direction). This shows
that the velocity vector is a ‘noisier’ random field than the hydraulic head. The
velocity spectra obtained from the spectral perturbation theory (Gelhar and
Axness, 1983) confirm this view. However, more numerical experiments are
needed for a comprehensive characterization of the random velocity field,
especially in the case of highly variable media, requiring larger domain size and
finer grid resolution.

6. Summary and Discussion

The numerical/single realization approach presented in this paper was aimed at
obtaining accurate solutions to the flow equations in highly heterogeneous,
random porous media. It is worth nothing that the method does not rely on
perturbation approximations, in contrast to presently available analytical results.
Indeed, the accuracy of perturbation-based stochastic solutions (Gelhar, 1984;
Dagan, 1982) was essentially unknown up to date. On the other hand, other
numerical approaches such as Monte Carlo simulation do not specifically take
advantage of the statistical information available in one large, single replica. It
seems that the present method has the greatest potential for the analysis of
large-scale flow behavior whenever some kind of statistical homogeneity can be
invoked.

One remarkable feature of the present solution method is the ability to
evaluate the solution error along with the solution itself. For the test problems at
hand, including a case of highly variable conductivity, the solution error of the
iterative finite difference solver was shown to be less than 10™* compared to the
standard deviation of the true solution.

On the other hand, it is recognized that the statistical moments of the solution
estimated by spatial averaging procedures must be affected by sampling errors.
These could, in fact, be routinely evaluated. Our results indicate that the
estimation error for oy was probably negligible for the given domain size
(L=25A).

Another important issue to be considered is the choice of grid resolution. The
mesh size should be small enough in order to resolve typical fluctuation scales
(A). In addition, the relative variations of the random conductivity between
neighboring grid points should be kept small in some statistical sense. As a rule of
thumb based on scaling and statistical arguments, both requirements are
embodied in the inequality, Ax/A <(1+ ¢)~'. It seems that this :ype of require-
ment has not been emphasized in previous works dealing with numerical ap-
proaches such as Monte Carlo simulations.

Encouraging results were obtained, in spite of the limited grid size used in this
work (125 000 nodes with a domain size L =25A and a grid resolution Ax/A =
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0.5). For steady saturated flow with moderate variability, statistical properties
such as the head standard deviation, the effective conductivity and the ratio of
lateral versus longitudinal velocity standard deviations, all fell within 10% of the
predictions of the spectral perturbation theory. Even for a larger variability such
as oy k = 2.3, the theoretical and numerical head variances were in agreement.
More work in needed in order to characterize the correlation structure of flow
fields (heads and velocities) from numerical single realization simulations.

The spatial structure of the velocity field is particularly important for ap-
plications to contaminant transport and large-scale dispersion in the subsurface.
However, a comprehensive characterization in terms of variance, correlation
structure and probability distribution of the velocity vector is still lacking, except
for results obtained by perturbation methods. These implicitly assume that the
velocity has a small variance. As o increases, this assumption probably breaks
down, and the distribution of the longitudinal velocity may become positively
skewed.

It may be possibie to fully characterize the statistical properties of the velocity
field in highly variable media if larger numerical grids are used. The numerical
experiments in this work required only a few CPU hours on a Microvax machine
for grid sizes on the order of 100 000 nodes. We expect that more conclusive
results could be obtained on a supercomputer such as a Cray 2, in CPU times on
the order of one hour, and with a grid size of one to several million nodes. The
standard deviation of the log-conductivity (In K) could be taken as high as 2.3, a
fairly large value according to reported field observations (Gelhar, 1986).

Finally, more complex flow systems ought to be investigated for practical
applications to field problems. The single realization approach can be applied to
‘the case of naturally layered aquifers by using statistically anisotropic random
functions for the conductivities. Some preliminary results seem to indicate that
strongly anisotropic aquifers with moderate thickness behave essentially like
slices of two-dimensional flow systems (provided the mean hydraulic gradient is
aligned with the statistical bedding). The case of unsaturated flow is also of great
interest for waste disposal problems. The vertical mesh size in that case should be
taken smaller than both A and o', where a is the slope of the conductivity-
pressure relation In K(k), and A the vertical correlation scale. For most soils, it
seems, a grid size on the order of 1 000 000 nodes could be sufficient to resolve
flow domains of size 10 m in the vertical, and even larger in the horizontal. A
nonlinear iterative solver could be used in order to solve stochastic unsaturated
flow problems in the framework of the single-realization approach. New results
and updates on all the topics mentioned above can be found in the recently
published report by Ababou et al. (1988).
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material in this paper is essentially that presented in a talk at the International
Symposium on the Stochastic Approach to Subsurface Flow which was held in
Montvillargenne, France in June 1985 and as such represents an interim report
describing ongoing work. More comprehensive simulations have now been
completed and the results are described in Ababou et al. (1988).
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