Message passing networks

Devavrat Shah
Laboratory for Information and Decision Systems
Department of EECS
Massachusetts Institute of Technology
Message passing

- They are
 - Iterative, distributed algorithms
 - Using minimal computation and little memory

Iterative algorithm: e.g. Newton Raphson

\[
x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
\]
Message passing

- They are
 - Iterative, distributed algorithms
 - Using minimal computation and little memory

- Iterative, distributed algorithm: computing average
 - Problem: network connectivity graph \(G = (V, E) \) of \(n \) nodes
 - nodes have values \(x_1, \ldots, x_n \)
 - wish to compute average \(x_{\text{ave}} = \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \)

```
Avg = 4
```
Message passing

- They are
 - Iterative, distributed algorithms
 - Using minimal computation and little memory
- Iterative, distributed algorithm: computing average
 - Problem: network connectivity graph $G = (V, E)$ of n nodes
 - nodes have values x_1, \ldots, x_n
 - wish to compute average $x_{ave} = \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)$
 - A naive message passing: iterative, ‘pair-wise’ averaging
Message passing

- Message passing for averaging (and variants)
 - Engineered systems
 - consensus among unmanned vehicles, e.g. Tsitsiklis 84
 - load balancing, e.g. Rabani-Sinclair-Wanka 98
 - Information processing and estimation
 - linear estimation (Gossip), e.g. Boyd-Ghosh-Prabk’r-S 04
 - information spreading, e.g. Kempe-Dobra-Gehrke 03
 - Natural systems
 - modeling learning in a society, e.g. Golub-Jackson 09
 - modeling behavior birds, e.g. Vicsek et al 95; Chazelle 09
Message passing

- Message passing paradigm is useful for
 - Engineered systems
 - algorithmic building blocks for scalable architecture
 - Statistical networks, information processing
 - algorithm that can cope with scale of data
 - Natural systems
 - modeling behavior of ‘agents’
Message passing

- Basic challenge
 - What global problems can be solved using message passing?
Message passing

• Basic challenge
 ○ What global problems can be solved using message passing?
 ○ Engineering system, statistical inference
 • to achieve high performance
 ○ Natural system
 • to understand or predict overall behavior
Message passing

• Basic challenge
 ◦ What global problems can be solved using message passing?
 ◦ Engineering system, statistical inference
 • to achieve high performance
 ◦ Natural system
 • to understand or predict overall behavior

• I will address this challenge in the context of
 ◦ Wireless communication network
 • medium access
 ◦ Inference in graphical model
 • belief propagation
Wireless Medium Access

with Jinwoo Shin

Applied Math, MIT
Contestation resolution

- Examples
 - (Old) Ethernet, wireless network, large software systems, parallel computation, distributed database system,...
Contention resolution

• Key challenge: efficient algorithm design under stringent constraint
 ○ Minimal co-operation to reduce ‘protocol overhead’, e.g.
 • nodes know if resource is BUSY or FREE
 • or, their attempt to access was SUCCESS or FAILURE
Medium access

- Let’s play a game
 - Reward $20
Medium access

• Let’s play a game
 ○ Reward $20

• Rules
 ○ Respond, when asked, within 20ms
 ○ No reward if
 • none, or more than one simultaneous responses
 ○ Else, unique responder wins

Fact: reaction time to auditory stimulus is 14
Medium access

Let’s play a game

- Reward $20

Rules

- Respond, when asked, within 20ms
- No reward if
 - None, or more than one simultaneous responses
 - Else, unique responder wins

Fact: reaction time to auditory stimulus is 140-160ms

Model

- Constraints
 - Interfering nodes cannot transmit simultaneously
Model

- Constraints
 - Interfering nodes cannot transmit simultaneously
Model

Constraints

- Interfering nodes cannot transmit simultaneously
- Nodes have only local information
 - Contending simultaneous transmissions
Model

Network Interference Graph

- Medium access
 - When to transmit subject to inference constraints
 - using local information
 - with an aim to maximize utilization of wireless medium
Model

Arrival process with rate λ_i

- Network interference graph $G = (V, E)$ with n queues
 - $E = \{(i, j) : i$ and j can't tx simultaneously$\}$
 - Packets arrive at rate λ_i for queue i
- Medium access: at each time instance
 - Selects non-interfering queues (to tx), i.e. independent set of G
Model

- Network interference graph $G = (V, E)$ with n queues
 - $E = \{(i, j) : i$ and j can't tx simultaneously$\}$
 - Packets arrive at rate λ_i for queue i
- Medium access: at each time instance
 - Selects non-interfering queues (to tx), i.e. independent set of G
Model

- Network interference graph $G = (V, E)$ with n queues
 - $E = \{(i, j) : i$ and j can't tx simultaneously\}$
 - Packets arrive at rate λ_i for queue i
- Medium access: at each time instance
 - Selects non-interfering queues (to tx), i.e. independent set of G
Model

- Network interference graph $G = (V, E)$ with n queues
 - $E = \{(i, j) : i \text{ and } j \text{ can't tx simultaneously}\}$
 - Packets arrive at rate λ_i for queue i
- Medium access: at each time instance
 - Selects non-interfering queues (to tx), i.e. independent set of G
Model

• Let $\mathcal{I}(G)$ be set of independent sets of G

 ○ That is, $\mathcal{I}(G) = \{ \sigma \in \{0, 1\}^n : \sigma_i + \sigma_j \leq 1 \text{ for all } (i, j) \in E \}$

• Effective service rate vector $\mu = [\mu_i]$ is s.t.

 ○ $\mu = \sum_{\sigma \in \mathcal{I}(G)} \alpha_\sigma \sigma$, with $\alpha_\sigma \geq 0$

 • $\sum_\sigma \alpha_\sigma \leq 1$

• Therefore, effective resource or ‘capacity region’

 ○ Convex hull of $\mathcal{I}(G)$, say $\text{conv}(\mathcal{I}(G))$
Performance metric

• Throughput optimal medium access

 ○ Queues remain finite for any $\lambda \in \text{conv}(\mathcal{I}(G))^o$
Performance metric

- **Notations**
 - \(Q(t) = [Q_i(t)] \in \mathbb{R}_+^n \) be the queue-sizes at time \(t \)
 - \(A(s, t) = [A_i(s, t)] \) cumulative arrivals to queue \(i \) in time \([s, t] \)
 - arrival rate vector \(\lambda = [\lambda_i] \)
 - and \(\mathbb{E}[A_i(s, t)] = \lambda_i(t - s) \)
 - \(\sigma(t) = [\sigma_i(t)] \in \mathcal{I}(G) \subset \{0, 1\}^n \) be the schedule at time \(t \)
 - \(\sigma_i(t) = 1 \) means the queue \(i \) is transmitting at time \(t \).

- **Dynamics:** for each \(i \)

\[
Q_i(t) = Q_i(s) + A_i(s, t) - \int_s^t \sigma_i(y) \cdot 1_{Q_i(y) > 0} \, dy
\]
Prior work

- Two classes of medium access algorithms (since early 70s)
 - Practical random access algorithm
 - Performance optimal queue-based algorithm
Random access algorithm

• Each queue \(i \) checks medium ‘regularly’
 ◦ Whether any ‘neighboring’ node is txing or not
 ◦ If medium is free, attempts transmission with prob. \(p_i \)
 • upon being successful, tx for time duration \(W_i \)
 ◦ Else
 • do nothing

• Popular back-off protocols are instance of this, e.g.
 ◦ ALOHA [Abramson-Kuo 73], [Metcalfe-Bogg 76]
Random access algorithm

• Properties
 ◦ Naive message passing and easy to implement
 ◦ But, as is poor in performance or hard to analyze

• Various positive, negative results
 ◦ [Kelly-McPhee 85, 87], [Aldous 87], [Tsitsiklis 87], [Tsybakov-Likhanov 87], [Mosley-Humblet 85], ...

• A notable, positive result by Hastad-Leighton-Rogoff 96
 ◦ Polynomial backoff is throughput optimal
 ◦ But, only for complete interreference graph

• History (till 00) maintained by L. Goldberg
 ◦ http://www.csc.liv.ac.uk/~leslie/contention.html
Maximum weight algorithm

- At each time instance t
 - Choose $\sigma(t) \in \mathcal{I}(G)$ so that
 $$\sigma(t) = \arg\max_{\sigma \in \mathcal{I}(G)} \sum_{i} \sigma_i Q_i(t)$$
Maximum weight algorithm

\[t = 0 \]

\[Q_1 = 30 \quad \sigma_1 = 1 \]

\[Q_2 = 30 \quad \sigma_2 = 1 \]

\[Q_3 = 45 \quad \sigma_3 = 0 \]

\[Q_4 = 10 \quad \sigma_4 = 0 \]

\[Q_5 = 5 \quad \sigma_5 = 0 \]

• At each time instance \(t \)

 ○ Choose \(\sigma(t) \in \mathcal{I}(G) \) so that

 \[\sigma(t) = \arg\max_{\sigma \in \mathcal{I}(G)} \sum_i \sigma_i Q_i(t) \]
Maximum weight algorithm

\[t = 20 \]

\[Q_1 = 25 \quad \sigma_1 = 0 \]

\[Q_2 = 25 \quad \sigma_2 = 0 \]

\[Q_3 = 50 \quad \sigma_3 = 1 \]

\[Q_4 = 12 \quad \sigma_4 = 1 \]

\[Q_5 = 8 \quad \sigma_5 = 0 \]

- At each time instance \(t \)
 - Choose \(\sigma(t) \in \mathcal{I}(G) \) so that
 \[\sigma(t) = \arg \max_{\sigma \in \mathcal{I}(G)} \sum_{i} \sigma_i Q_i(t) \]
Generalized maximum weight algorithm

- At each time instance t
 - Choose $\sigma(t) \in I(G)$ so that
 $$\sigma(t) = \arg \max_{\sigma \in I(G)} \sum_i \sigma_i f(Q_i(t))$$
 - For increasing function f with $f(0) = 0$, $\lim_{x \to \infty} f(x) = \infty$

- Properties
 - Throughput optimal [Tassiulas-Ephremides 92]
 - Appropriate f provides optimal queue-size [S-Wischik 06, 09, 10]
 - But
 - as is, centralized and
 - requires solving computationally hard problem each time
• Our algorithm
 ◦ Adaptive random access based on queue-size
 ◦ ‘Simulates’ maximum weight algorithm

Performance

Ease of Implementation

Status quo

Ideal
Random Access
Max. Weight
Our algorithm

- Adaptive random access based on queue-size
- ‘Simulates’ maximum weight algorithm
Our algorithm

• Each queue i checks medium ‘regularly’
 ◦ Whether any ‘neighboring’ node is txing or not
 ◦ If medium is free, attempts transmission with prob. p_i
 • upon being successful, tx for time duration W_i
 ◦ Else
 • do nothing

• Our choice
 ◦ $p_i = 1$ and $\mathbb{E}[W_i] = f(Q_i)$
 • choice of f determines performance crucially
 • a reasonable choice of f is \log
Our algorithm: continuous time

- Each queue has an independent Exponential clock of rate $1/2$

- When clock of queue i ticks, say at time t
 - If $\sigma_i(t^-) = 1$,
 \[
 \sigma_i(t) = \begin{cases}
 0 & \text{with probability } \frac{1}{f(Q_i([t]))} \\
 1 & \text{otherwise}
 \end{cases}
 \]
 - Else, i check if medium is free at time t^- and if so,
 \[
 \sigma_i(t) = \begin{cases}
 1 & \text{with probability } 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]
Our algorithm: example (cont time)

\[Q_1 = 40 \]
\[\sigma_1 = 1 \]

\[Q_2 = 10 \]
\[\sigma_2 = 0 \]

\[Q_3 = 5 \]
\[\sigma_3 = 0 \]
Our algorithm: example (cont time)

\[Q_1 = 40, \quad \sigma_1 = 1 \]

\[Q_2 = 10, \quad \sigma_2 = 0 \]

\[Q_3 = 5, \quad \sigma_3 = 0 \]
Our algorithm: example (cont time)

\[Q_1 = 40, \quad \sigma_1 = 0 \]

\[Q_2 = 10, \quad \sigma_2 = 0 \]

\[Q_3 = 5, \quad \sigma_3 = 0 \]
Our algorithm: example (cont time)

$Q_1 = 40,$
$\sigma_1 = 1$

$Q_3 = 5$
$\sigma_3 = 0$

$Q_2 = 10$
$\sigma_2 = 0$

w.p. $\frac{1}{f(40)}$

$Q_1 = 40,$
$\sigma_1 = 0$

$Q_3 = 5$
$\sigma_3 = 0$

$Q_2 = 10$
$\sigma_2 = 0$
Our algorithm: example (cont time)

\[Q_1 = 40 \]
\[\sigma_1 = 1 \]
\[Q_2 = 10 \]
\[\sigma_2 = 0 \]
\[Q_3 = 5 \]
\[\sigma_3 = 0 \]

\[Q_1 = 40 \]
\[\sigma_1 = 0 \]
\[Q_2 = 10 \]
\[\sigma_2 = 0 \]
\[Q_3 = 5 \]
\[\sigma_3 = 0 \]

\[w.p. \frac{1}{f(40)} \]
Our algorithm: example (cont time)

\[
Q_1 = 40, \quad \sigma_1 = 1
\]
\[
Q_2 = 10, \quad \sigma_2 = 0
\]
\[
Q_3 = 5, \quad \sigma_3 = 0
\]

w.p. \(\frac{1}{f(40)} \)

\[
Q_1 = 40, \quad \sigma_1 = 0
\]
\[
Q_2 = 10, \quad \sigma_2 = 0
\]
\[
Q_3 = 5, \quad \sigma_3 = 0
\]

w.p. 1
Our algorithm: example (cont time)
Our algorithm: discrete time

- Each queue has an independent Bernoulli clock of rate $1/2$

- If clock of queue i ticks at time t, then
 - If $\sigma_i(t-1) = 1$,
 \[
 \sigma_i(t) = \begin{cases}
 0 & \text{with probability } \frac{1}{f(Q_i(t))} \\
 1 & \text{otherwise}
 \end{cases}
 \]
 - Else, i check if medium free at time $t-1$
 - if so, it attempts to transmit with probability 1
 \[
 \sigma_i(t) = \begin{cases}
 1 & \text{if no collision} \\
 0 & \text{otherwise}
 \end{cases}
 \]
Our algorithm: throughput optimality

- **Theorem.** [S-Shin 09, 10] The algorithm is throughput optimal.
 - For both continuous and discrete time
 - ACM Sigmetrics 09 paper award

- Specifically, we establish that
 - The network Markov process is positive (Harris) recurrent

- Based on insights from
 - Reversible dynamics and product-form distributions
 - Variational characterization
 - Mixing time theory of Markov chains
Summary, thus far

Model

Policy design and Performance analysis

Implementable algorithm

Kelly et al 98
Harrison 00
S-Wischik 08
S-Moallemi 10

Tassiulas-Ephremides 92
Dai 95, Stolyar-Rybko 92
Bramson 98, Williams 98
Kelly-Williams 04
S-Wischik 06, 08, 09
S-Tse-Tsitsiklis 10

McKeown-Ananthram-Walrand 96
Giaccone-Prabhakar-S 03
S-Shin 09, 10
Summary, thus far

- Message passing algorithms are widely applicable
 - e.g., Internet routers, optical core network
 - ‘Mixing time’ of scheduling Markov chain \approx Queue size

Model

Policy design and Performance analysis

Implementable algorithm

- Kelly et al 98
- Harrison 00
- S-Wischik 08
- S-Moallemi 10

- Tassiulas-Ephremides 92
- Dai 95, Stolyar-Rybko 92
- Bramson 98, Williams 98
- Kelly-Williams 04
- S-Wischik 06, 08, 09
- S-Tse-Tsitsiklis 10

- McKeown-Ananthram-Walrand 96
- Giaccone-Prabhakar-S 03
- S-Shin 09, 10
Belief Propagation for Inference in Graphical Model

with Various Collaborators
Graphical model and belief propagation

- Probabilistic graphical models
 - Succinct representation for joint distribution
 - Have been quite useful in variety of applications
 - e.g. coding, language processing, vision, bioinformatics, etc.
 - Two inference problems of interest
 - computing marginal distribution (counting)
 - mode of distribution (optimization)
 - In general, inference is computationally hard
Graphical model and belief propagation

- Probabilistic graphical models
 - Succinct representation for joint distribution
 - Have been quite useful in variety of applications
 - e.g. coding, language processing, vision, bioinformatics, etc.
 - Two inference problems of interest
 - computing marginal distribution (counting)
 - mode of distribution (optimization)
 - In general, inference is computationally hard

- Belief propagation: an umbrella heuristic for both problems
 - Approximate computation by Bethe and Peierls (1934)
 - Decoding algorithm by Gallager (1963)
 - Inference heuristic by Pearl (1980s)
Belief propagation: mode or optimization

- Let’s start with an example
 - Graph $G = (V, E), V = \{1, \ldots, n\}$
 - Edge weights $w_{ij} \geq 0$ for $(i, j) \in E$
 - Goal:
 - find maximum weight matching in G
 - that is,
 $$\text{maximize} \sum_{(i,j) \in E} w_{ij}x_{ij} \quad \text{over} \quad x_{ij} \in \{0, 1\},$$
 $$\text{subject to} \sum_{j \in \mathcal{N}(i)} x_{ij} \leq 1, \quad \forall \ i.$$
 - Equivalently, find an optimal assignment of each node i
 - either to one of its neighbors or none
Maximum weight matching: example
BP is an iterative approximation of dynamic programming

- Obtained from tree structured graph
Recursive evaluation of “messages” on edges:

\[B_1 = w_1 - \max(B_3, B_4, 0). \]
Maximum weight matching: BP iteration

- Iterative “message update” on edges under BP: at iteration $t + 1$,
 \[B_{0}^{t+1} = w_0 - \max_i \left(\max_i B_i^t, 0 \right) . \]

- Well-define for any graph G (even if its not a tree)
Belief propagation

• In summary
 ◦ BP is a ‘tree-based’ approximation of dynamic programming
 ◦ Hence, it is reasonable to expect that
 • BP is good approximation for ‘tree-like’ graphs

• Empirically
 ◦ It seems to do well even on ‘loopy’ structures
 ◦ And this deserves some explanation

• Finally, BP is not a solution to all problems
 ◦ That is, need to understand its limitations
Belief propagation: known properties

- BP is an iterative procedure
 - Does it have a fixed point or fixed points?
 - Are they any good?
 - Does algorithm converge to them?

- In example we considered

\[B_{t+1}^0 = w_0 - \max_i (\max B_t^i, 0). \]

 - Inductively, it follows that

\[-\max_i w_i \leq B_{t+1}^0 \leq \max_i w_i. \]

 - 'Iteration' is a cont. func. from convex set to convex set
 \[\rightarrow \text{fixed point exists by Brouwer's fixed point theorem} \]
Brief history of BP

• Yedidia-Freeman-Weiss ’01 & Weiss-Freeman ’01
 ◦ Fixed points
 • exist, and
 • have certain local optimality properties

• Next, I’ll discuss scenarios when BP works
Max weight matching: bipartite graph

- Bipartite graph $G = (V_1 \times V_2, E)$:
 - $V_1 = \{\alpha_1, \ldots, \alpha_n\}$ and $V_2 = \{\beta_1, \ldots, \beta_n\}$
 - $E = V_1 \times V_2$, w_{ij} be weight of $(\alpha_i, \beta_j) \in E$
 - Goal: compute Max Wt Matching (MWM) in G

- An example with $n = 2$

![Diagram of a bipartite graph with weights and an MWM solution]
BP for MWM: correctness and convergence

• Notation
 ◦ Let \(\epsilon \) be difference between weight of MWM and second MWM
 \[\rightarrow \text{If MWM not unique, then } \epsilon = 0 \]
 ◦ Let \(w^* = \max_{ij} w_{ij} \)

• Theorem. [Bayati-S-Sharma 05] BP estimate converges to the correct MWM in \(\frac{2n w^*}{\epsilon} \) number of iterations.

• Implication: for fixed \(w^* \) and \(\epsilon \)
 ◦ Number of iterations scale as \(O(n) \)
 ◦ Per-node computation in each iteration \(O(n) \)
 ◦ Thus, total computation cost \(O(n^3) \)
BP for MWM: correctness and convergence

• Notation
 ◦ Let ε be difference between weight of MWM and second MWM
 → If MWM not unique, then $\varepsilon = 0$
 ◦ Let $w^* = \max_{ij} w_{ij}$

• **Theorem.** [Bayati-S-Sharma 05] BP estimate converges to the correct MWM in $\frac{2nw^*}{\varepsilon}$ number of iterations.

• Implication: for fixed w^* and ε
 ◦ Number of iterations scale as $O(n)$
 ◦ Per-node computation in each iteration $O(n)$
 ◦ Thus, total computation cost $O(n^3)$

• **Theorem.** [Salez-S 09] Under ‘random’ weights, BP converges in ‘essentially’ $O(1)$ iterations.
Correctness of BP

- An important question
 - Why does BP solve MWM in a loopy graph?

- BP and Auction algorithm (cf. Bertsekas 80)
 - BP is essentially ‘parallel’ version of Auction
 - Messages of BP are like ‘dual’ variables
 - And matching is solvable by linear programing (LP)
 [Birkhoff-Von Neumann 40s]

- In general, this suggests a relation between BP and LP
BP versus LP

- **Theorem.** [Sanghavi-S-Willsky 08, 09] If BP ‘works’ then (edge-based) LP relaxation must find correct solution for
 - matching and independent set
BP versus LP

- **Theorem.** [Sanghavi-S-Willsky 08, 09] If BP ‘works’ then (edge-based) LP relaxation must find correct solution for
 - matching and independent set

![Diagram showing the relationship between BP and LP, with layers indicating different aspects such as matching and network flow, and references to Bayati-S-Sharma 05, Sanghavi-S-Willsky 09, and Gamarnik-S-Wei 10.]
Understanding BP

• Other works in combinatorial, continuous optimization
 ○ Huang-Jebara 08, Sanghavi-Malioutov-Willsky 08
 ○ Bayati-Borgs-Chayes-Zecchina 08, Bayati-Braunstein-Zecchina 08
 ○ Gamarnik-Nowicki-Swirczcs 05, Malioutov-Johnson-Willsky 06
 ○ Moallemi-Van Roy 06, 08, ...

• My other results
 ○ Random combinatorial problems
 • Sanghavi-S 09 – independent set
 • Salez-S 09 – matching
 ○ Compressed sensing
 • Chandar-S-Wornell 10
 • Related work by Donoho-Maleki-Montanari 10
• Message passing algorithms
 ○ Random access for wireless network
 • provably throughput optimal
 • algo. complexity (mixing time) \approx queue-size scaling
 ○ Belief propagation for optimization or mode estimation
 • solves an important class of linear programming problems
 • suggests why it may be working well empirically

• Message passing algorithms will play an important role
 ○ They’ll be useful in designing and modeling networked systems
 • including engineering, statistical and natural systems
 ○ We have started understanding specific instances of them