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Abstract: This paper posits that developers cannot sustain extensive 
customisation of software without clear software product line architecture, 
modular subsystem platforms, and disciplined interfaces among these 
platforms. To explore this proposition, we initially define the basic principles 
of desirable software architecture and then apply these definitions to the 
development of software and the business strategy for creating software 
product lines. We then illustrate how these concepts not only explain the 
success of leading software companies but also have motivated fundamental 
architectural redesigns of their product architectures. 
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1 Introduction 

Software is a profound example of mass customisation wherein users (or programmers 
supporting users) tailor standard products for specific functions and to meet specific 
needs. In fact, software represents an extreme example of mass customisation in 
commercial products. However, the ‘catch’, is that software also requires a high degree of 
internal architecture discipline in order for that customisation not to result in 
unmanageable chaos. 

How many readers have not built equations in Microsoft Excel or their own graphic 
templates in Microsoft Visio? The small business owner sets up his or her own business 
categories and reports in Intuit’s Quicken or Quickbooks, and larger corporations expend 
substantial resources to customise software from SAP, Oracle, and others. Organisations 
are constantly building application-specific data structures within general-purpose 
database management systems, whether to track customers and manage better workflows. 
Even consumer-focused software, such as email or instant messaging, is increasingly 
customisable by individual users for visual appearance, greetings, and actions. 

As these examples show, software is clearly among the most pervasive forms of mass 
customisation reaching into our lives. Such customisation is different by degree than the 
more standardised forms of variety found in automobiles, consumer electronics, or 
interior furnishings (Simpson et al., 2003). 

In fact, it is reasonable to conclude that the market success of a software firm depends 
on its ability to support customisation of its products. The reasoning behind a strategy of 
personalisation to individual and corporate needs for software products can be stated as: 

• Software (large, complex systems in particular) is expensive to build even when its 
architecture is well done. 

• No single set of software options is going to satisfy all a company’s 
potential customers. 

• Making multiple separate large software systems to satisfy an ever larger and more 
diverse customer base becomes increasingly, if not prohibitively, expensive. 

• Software designed for mass customisation (and this is why good architecture is so 
important because it enables mass customisation) offers a much more cost 
effective alternative.  

Readily customisable software can serve many specific market applications much more 
cost effectively. It can remain viable over a longer period by the flexibility provided to 
uses to modify certain aspects of the software to match their own evolving needs. 
Customisable software also provides the software development organisation with a 
powerful form of risk management: it can carefully observe how users develop new 
solutions based on its software, and wait patiently for the best of these additions to appear 
as worthy improvements for its next major version. All of these are important elements of 
competitive advantage in hypercompetitive software markets (Von Hippel, 1988). 
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At the same time, mass customisation can be a double-edged sword. Like any other 
technical project, implementing high levels of flexibility for users to modify their 
software can be done well or poorly (Pine, 1992). The irony is that the user expectation 
for customisation of standard software can quickly lead the software development entity 
down the path of internal chaos within its own products. Customisation will create high 
levels of complexity and cost, unless the firm has taken the time to create and 
periodically renew a well-defined, layered architecture for its software products  
(Mann, 2002). 

Customisation to a standard piece of software must be performed within the context 
of an underlying infrastructure. That infrastructure, we believe, must be highly structured, 
its components tightly defined, and the interaction between these components equally 
well-structured and tightly defined. Otherwise, user customisation of large and complex 
software applications carries an inherent risk: modification of the software might destroy 
it. To minimise the risk of that corruption, the ‘where and how’ of user modifications to 
software for their own purposes must be done at levels within the software that do not 
reach down into and destroy the integrity of the base system. 

This is our premise: delivering the customisation in software so greatly desired by 
users, across all applications and industries, cannot be sustained over the long term 
without clear software product line architecture, modular subsystem platforms, and 
disciplined interfaces between these platforms. To understand mass customisation for 
software, we must first delve deeply into the meaning and use of architecture within 
software. To do this, we will proceed in four steps of logic: 

1 Define the basic principles of desirable software architecture. 

2 Leverage that definition for software architecture in general to software product lines 
specifically, including the meaning and application of platforms within product 
line architecture. 

3 Leverage both these general and specific articulations of concepts and principles to a 
business strategy for a software company, where over time a firm leverages its 
architecture and platforms to new market applications, each one of which requires 
not only new standard modules, but also personalisation and customisation by users 
within each new segment. 

4 Illustrate how these concepts for software architecture, platforms, and strategy 
have helped a category-leading software developer – known throughout industry 
for its mathematical modelling and simulation software – to fundamentally 
restructure its software to accommodate both strategic growth and more effective 
mass customisation. 

2 Basic architectural principles for software: layers with focused 
functionality and robust subsystem interfaces 

Software is an engineered construct, much like an automobile or a building. As such, a 
software programme consists of many parts or components. Like an automobile or a 
building, software can be said to have an architecture: one or more organising principles 
that control how each component relates to and communicates with each other 
component (Jazayeri et al., 2000). Architecture structures an unorganised space to serve 
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one or more functions, just as an engine provides power, walls provide privacy and 
shelter, or doorways orchestrate the flow of motion. The structure provided by an 
architecture for a product line is inherently hierarchical. Power-trains comprise engines, 
transmissions, and exhaust systems; buildings consist of floors and floors are divided 
into rooms.  

Similarly, a software application consists of layers of hierarchy, with each layer 
containing one or more components. The boundaries, or interfaces, between layers and 
components, like the walls and doorways in a building, control the motion of information 
through the application. Of course, there are almost an infinite number and variety of 
software products, but at the highest level of definition, there are software development 
tools, software applications developed with these tools, and the systems software, often 
called operating systems, upon which both tools and applications run. Each one of these 
software products – operating systems, software development tools, and software 
applications – has its own layers of technology. Interfaces connect the modules within 
each layer, and one layer to the layers above and below. A software product – be it an 
operating system, tool, or application – in which these layers and component boundaries 
are well-defined is said to be modular (Dilip et al., 1995; Sharman and Ali, 2004). 

Using these definitions, we can outline the principles of good software design. A 
well-designed software product must: 

• Possess clear and explicit organising principles, expressed as the software product’s 
architecture. Since architecture is typically developed not just for one product, but 
also for a stream of related products, the architecture is best referred to as a product 
line architecture (Meyer and Lehnerd, 2004). To support customisation, this 
architecture must describe the mechanisms by which the software, and even the 
architecture itself, are allowed to evolve. 

• Be hierarchically organised into layers. While it is perhaps easiest to think of these 
layers as layers of specific technology, we find it best to view them in terms of 
function (such as a real-time data acquisition layer, a database layer, logic or 
algorithm layer, or the graphical user interface). The reason is that multiple 
technologies may exist within or they can be used to implement the functionality of a 
particular layer. For example, FibreChannel, InfiniBand, and iSCSI are all 
communications technologies used for network connection modules in modern 
storage array systems. 

• That each layer consists of a modular set of components, each with its own single 
function or purpose, and each offering a single robust interface for other modules to 
access that functionality. The FibreChannel, InfiniBand, and iSCSI communication 
protocols mentioned above are implemented as separate components within the 
communications subsystem of the storage device. Alternatively, consider a basic 
report-writing layer, which consists of modules for querying information from a 
database, for accessing a report template, for pumping the information through that 
template, and then formatting it for the user’s particular printing device. 
Interestingly, the output of one module in this layer of functionality becomes the 
input for another module, and so on. This connection works best if there is only one 
clear way to pass data into any given module. 
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Developers can adjust software to changing user and computing environment 
requirements when the underlying architecture adheres to these guidelines. Since the 
function and interface of each component is well understood, one component can be 
replaced without affecting the functionality of other components; and as the architecture 
explicitly provides for extension and self-evolution, developers can easily add new 
functionality (Clements and Northrop, 1996; Bass et al., 1998). 

Good architecture in software provides modularity across and among all the various 
components within the software. That means that the components can be combined 
readily in different ways to meet different purposes without adding substantial additional 
code to make these components work together. With this foundation of flexible 
components, developers can then add additional modules that provide the functionality 
needed for a specific application. Good architecture makes software reuse possible. 
Further, if the foundation of core subsystems is particularly well designed, software 
developers outside the company – be it other software companies or programmers in 
end-user companies – can also quickly write their own application modules that plug 
immediately into that foundation and use its functionality. This is how the most 
successful software companies have developed extensive collections of specific software 
applications made by third parties. 

‘Network externalities’ can play an important role in how users perceive a software 
product or system (Park, 2001). The most common form of network externalities – on the 
positive side – is when the value of a product for an individual user rises in proportion to 
the number of other people who use it. The telephone is a classic example. One telephone 
has little utility, but a worldwide network of telephone users makes each individual 
telephone a very powerful tool. On the negative side, of course are viruses such as Trojan 
horses that invade a user’s computer to infect others, and from these others, yet others.  

“Good architecture as we have described it, leverages the potential of any 
given piece of software to have a synergistic effect with other software. Poor 
architecture builds walls between different pieces of software, making 
integration difficult and costly.” 

Just as a car manufacturer offers a line of passenger cars or SUVs, a software company 
can also offer a family of software products, be they applications, tools, or systems 
software. The goal is to have these individual products share a set of common subsystems 
whose function and interfaces to other subsystems are defined by the architecture of the 
product line. This no different than Honda leveraging the same two litre, VTEC engine 
across many of its passenger cars and sport utility vehicles. Software product families, 
when well designed, can have dozens of such engines. 

This leads to the two basic principles in designing product line architecture for 
software: subsystem focus and the use of single-function interfaces.  

2.1 Subsystem focus 

Subsystem focus requires that each subsystem have a single, concentrated purpose. A 
focused subsystem is very different and much more useful over the long term than a 
nonfocused subsystem, because focus helps manage complexity. Without subsystem 
focus, changes in one part of the system tend to ripple through and impede functionality 
in other parts of the system. The goal of modular architecture is that changes at one level 
of the application do not destroy the integrity of modules at other levels. 
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A classic and still present example is application software that contains both 
logic – such as for business accounting or statistical processing – and data. On one hand, 
a developer might correctly choose to have a series of modules each containing a 
different set of accounting or statistical logic, which then communicate to another module 
focused on organising, storing, and accessing the needed data for the calculations. This 
reflects good architecture. Less desirable is a design where different buckets of logic are 
combined into one module, and even worse, where data management functions are also 
co-mingled with the logic in that module. This can be viewed as a smokestack 
architecture where each application is monolithic and shares little, if any, code with other 
applications in the product line. 

Figure 1 Rights and wrongs in software architecture 

A smokestack type architecture, lacking clearly focused subsystems, makes the 
implementation of new technologies (such as a new data management method) labour 
intensive and error prone. It requires changes to many modules, and the developer must 
work doubly hard to insure that these changes do not impede the functionality of other 
code containing algorithms and logic. This can produce tremendous problems 
downstream for applications integration and maintenance. It is easy to fall into this trap if 
a developer tackles one new application at a time, fails to consider architecture at any 
point along the way, never stepping back to redesign the foundations across the product 
line to create common subsystems. 

2.2 Subsystem interface design 

The second basic principle for achieving good architecture in software deals with 
interface design (Sundgren 1995; Meyer and Seliger, 1998). Each major subsystem 
within the product line architecture should have a single interface programme for data 
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coming into the subsystem, and for data exiting the subsystem, as shown in Figure 2. 
Both occur when the subsystem is ‘called’ or referenced by other programmes to utilise 
the subsystem’s functionality. This has been called the module interconnection 
architecture (Soni et al., 1995). 

Figure 2 Rights and wrongs in software interface architecture 

This is in striking contrast to the way most systems tend to evolve over time, where 
developers build many input and output interfaces into each major subsystem. When the 
functionality of the subsystem itself changes, developers must then work through all the 
various interfaces to make sure that those improvements are used by other parts of the 
system. Figure 2 shows this evolving chaos at the bottom of the figure (Steward, 1981; 
Meyer, 1992). 

The idea of using structured interfaces to link multiple subsystems is so fundamental 
to good architecture that it deserves a simple, yet powerful example for the reader. 
Historically, the idea took form in software during the 1970s. As IBM’s mainframe 
software paradigm of hard-to-integrate, proprietary, batch computing spread through 
industry, an alternative model of easy-to-integrate, nonproprietary, interactive computing 
was taking hold in universities and research organisations. These users needed to develop 
a wide range of applications that could run on almost any computer at very little cost, and 
be readily integrated with other applications. Today, this is called ‘open systems’ 
computing. 

Unix (including variants as Sun’s Solaris and now open source Linux) met the needs 
of these users with a layered, modular architecture. Unix-based programmes can share 
data seamlessly both on single computers and across networks of computers. To allow 
this to happen, Unix utilises a specific modular architecture that works at two primary 
levels, data and programming. This is carried forward in Linux. 
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At the data level, standardised ASCII text is the universal representation for shared 
data among all programmes. A programme can expect to receive a stream of ASCII 
characters as input, and in turn, is itself expected to produce a stream of ASCII characters 
as output – at least until a final report is transformed into a binary format by a filter on its 
way to a printer. The data standard is flat ASCII files – simple streams of characters. The 
files do not have structure like the fixed-length records of the traditional transactions 
processing world. Instead, the ASCII files use a simple carriage return or new line 
character to mark the end of the record, and some other character, such as a tab or 
comma, to separate individual fields in the record. Data has a variable length and no 
space on a disk needs to be reserved ahead of time. All Unix/Linux programmes can 
expect to find this data structure, free of specific field length or record size predefinitions. 

The second level of the universal interface is at the programming level. The output of 
any one programme can be ‘piped’ to any other, and the output of that second programme 
then piped to yet a third, and so on, until the user achieves his or her final objective. This 
approach finds its best expression in the higher-level command interpreters or ‘shells’ 
offered with Unix/Linux over the years. These command interpreters not only allow users 
to type commands to look at, change, or print files, but they also comprise full 
programming languages (Manis and Meyer, 1986). 

Using these conventions for data and communication between processes, Unix/Linux 
facilitates the most personalised form of mass customisation at incremental cost. For 
example, if one were to type the date command in the Unix or Linux shell, the result 
would be: 

$ date 

Wednesday August 12 20:18:32 EDT 2004 

Or, the result could be send to both a printer and a file with the ‘tee’ module, and 
using pipes: 

$  date | tee mydatefile | lp  

This command chains together three modules, date, tee and lp, to display the date on 
screen, write it into a data file and print it. The modules connect together very easily 
because they all use a common data representation (ASCII text), as well as common input 
and output channels (called standard input and standard output). Date writes ASCII text 
to standard output, tee reads it from standard input and copies it to standard output and lp 
reads it from standard input. The pipe command, |, creates interprocess connections 
among the three modules. This simple idea is infinitely scalable – filter chains like 
this can be of any length, and perform any type of computation – and adapts very 
well to a networked environment where server names could be used as prefixes for any 
file or device. 

The power of the universal interface standard – at both the data and programming 
levels – becomes ever more apparent when the user works on increasingly difficult tasks. 
As a second example, consider two large customer data files, the first sitting on one 
computer with several months’ worth of customer transactions, and the second, on 
another computer containing customer contact information. The Purchases database sits 
on one computer in the building; and the Customers database resides on another.  
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Purchases Table: Last Name, First Name, Middle Initial, Purchase Amount 

Customer Table: Last Name, First Name, Middle Initial, Address, E-mail Address 

A common request might be to produce a collections report. The logic of completing this 
task is straightforward. We sort these two files on customer name so that they can be 
combined without special indexing, and then sum up the amount owed by customer, and 
then sort it by purchase amount in descending order. Then we might want to save the 
result to a file so that we can send out letters to people, and e-mail the result to the 
manager of our collections department. 

Implementing the simple logic of the solution in poorly architected software 
environments is unfortunately not so simple. We would hire a programmer who would 
first create several new interim databases and reserve space for them on the computer 
disk. Then, our programmer would write a page or two of C code to access data from the 
customer and purchases databases on the two different computers, store the data in the 
intermediate files, combine these files to produce the report, and then write systems level 
code to send reports through email to the collections department. Creating the linkages 
among databases across different machines and to an email system tends to be difficult in 
proprietary (e.g., non-open systems) software environments. Overall, this might be a solid 
week or two of programming effort. 

In Unix/Linux, the programmer can take a different track, seeking to leverage the 
simple, robust architecture of that environment with a few connected commands. After 
sorting the two files on customer names, he or she might type: 

$  join /computer1/customers /computer1/purchases | 

sort –r –4 | tee resultfile | mail accountsreceivable@ourcompany1 

These commands could either be typed, or saved in a little command file that could be 
executed at a prescheduled time, or at the user’s convenience. 

Examples such as this show that developers can expand the functionality of software 
based on modular architecture, focused subsystems, and standard interfaces at very little 
cost in programming effort or machine resources.  

3 Leveraging basic software principles to create software product lines 

With these principles of software architecture in hand – a layered architecture comprising 
subsystems with focused functionality and disciplined, robust interfaces among them – a 
development organisation can then define an operational platform strategy for its 
software products.  

Software, just like any other product category, is rife with terms that have different 
meanings for different people. The layering concept leads to the idea that subsystems in 
software products are programmed modules that have a clearly defined set of 
functionality, i.e., a user interface, a certain set of logic, a data management function, 
printing, or communications (Sharman and Ali, 2004). It is also evident that software 
interfaces are the predefined connections between subsystems and other subsystems. In 
addition to subsystems and interfaces, other terms suffer from inconsistent use and often 
cause trouble between software development teams and management.  
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Common definitions for basic conceptual elements help empower a development 
group to achieve better designs. We define the essential strategic terms for software 
products as: 

Product line architecture 

The Software Engineering Institute at Carnegie Mellon has defined software architecture 
as specifying the structural properties of a system in terms of components, 
interrelationships, and principles and guidelines about their use and evolution over time 
(Clements and Northrop, 1996). Missing in this definition is the purpose of the 
architecture, which is to serve as a foundation for building a product line. For physical 
products, product line architecture is the combination of subsystems, the interfaces 
between these subsystems, and the interfaces to external systems that collectively 
serve as the foundation for a stream of specific products (Meyer and Lehnerd, 1997). 
This is essentially a Deming or systems definition of architecture for product families 
(Deming, 1982). 

Modular product line architecture defines the number and specific focus of core 
subsystems and interfaces, as well as the design criteria that will achieve robustness, 
scalability, and elegance in these subsystems and interfaces at both the data and 
programming level. 

Architecture must also make a product line readily adaptable to new market 
applications by virtue of developing a new module or component and attaching it to 
others through predefined interfaces. Software system architectures that fail to 
incorporate extensibility doom the systems that are so designed to a short, chaotic and 
complex life. In contrast, modular software product line architecture allows a system to 
evolve in an organised and efficient manner over time by making changes in any one 
subsystem transparent to other subsystems that already exist within the overall 
architecture. Alternatively, if interfaces must be changed or be improved, or entirely new 
subsystems added, that work is isolated to a layer above the underlying core foundation 
subsystems within the architecture. Either way, making module improvements 
transparent to all other subsystems or isolating the impact they have to specific layers 
within the code reduce overall programming effort, while still providing users with all the 
new functionality offered by the improvements. 

This is richly illustrated by the ‘pipe and filter’ architecture of the UNIX shell, where 
one can add a new programme to a command line without violating the functionality of 
commands that come before it. Alternatively, in Excel, one can continuously add 
‘macros’ that perform certain special tasks but do not interfere in any way with the 
underlying input and output of the underlying spreadsheet. In Windows, there is the ‘plug 
and play’ PCI bus interface, which allows users to dynamically attach devices to 
computers and have them work automatically. These are simple yet powerful examples of 
the importance of clean interface architecture. 

Software platforms 

Platforms are the actual subsystems and interfaces between the subsystems that are used 
by multiple applications. The subsystems and interfaces, if used just once or in just one 
product, are not platforms. The term platform demands reuse across several or more 
products. When a subsystem is shared or reused across several or more software 
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products, either within or across product lines, we consider it a product platform. 
Similarly, if several or more products use an interface among subsystems, it, too, is a 
product platform. In software, the platforms are modules of code that enable the 
development of end-user products, the integration of these products and other external 
products in the field, and the orderly evolution of those products over time to meet new 
customer needs. 

The combination of product line architecture, focused subsystems, and robust 
interfaces between subsystems comprises what we like to consider the essence of a 
software company’s bread-and-butter technology strategy. 

Software applications 

These are the end-user products. Each product is a member of a software product line and 
each product uses the architecture as its structure of that software product line. Each 
software product uses the key subsystems and interfaces common to other members of 
the product line. Developers then create value-added modules to work in conjunction 
with these platforms to create new solutions. Or, as is often the case with software, 
end-users will customise certain modules on their own to achieve desired results. 

Combining modular product line architecture with subsystem platforms and 
disciplined interfaces enables a company to create more readily a series of related 
software applications, each focused on a different use or purpose, potentially for different 
types of users. This is the first step on the path of mass customisation. The second step is 
the changes that users make to these software applications themselves to customise the 
software for their own respective purposes. Adhering to the layering principle, the goal is 
to allow the user to customise the software without corrupting the underlying foundation 
technologies – e.g., the core subsystems and interfaces – that exist within the software 
application supplied to the user. Once again, the ‘macro’ developed by users of Excel is a 
perfect example. The statistical utilities that Microsoft has itself added to Excel comprise 
another clear example. 

4 Creating a business strategy based on layered, modular architecture 

Figure 3 presents a strategic management framework that integrates software product line 
architecture, software platforms, and software applications (Meyer and Seliger, 1998). 
The bottom half of the figure comprises the software platforms, e.g., the key subsystems 
and interfaces that serve as the foundation for the product line. The product line 
architecture is the aggregate structure containing the specific number, purpose, and 
connections between these subsystem and interface platforms. For the purposes 
of discussion, we have shown a set of typical major subsystems often found in 
well-executed commercial software products: 

• A major subsystem for developing user interfaces within applications, both for 
controlling programme executive, entering data, or requesting output. Within this 
subsystem are specific subsystems for calling graphical objects, designing menus, 
handling errors on the part of the user or the system itself, and accessing ‘help.’  

• A major subsystem for requesting data and organising it for reports or as data needed 
by other systems. This has traditionally been called report generation.  
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• A major subsystem containing for processing the logic in the system, be it algorithms 
for engineering-related calculations or financial calculations. These also often 
comprise libraries of specific sets of logic or functionality. 

• A database management subsystem, containing methods for structuring, accessing, 
and combining data. 

Figure 3 Modular platform-based architecture and derivative software products 

The core subsystems within the architecture can be powerful product platforms, the 
crown jewels of the software company. Sitting in a logical manner above these core 
subsystems in Figure 3 is a development environment specifically created by the firm to 
allow its own engineers, 3rd parties, and customers, to development software applications 
accessing and otherwise using the common subsystems and interfaces. This subsystem is 
known commonly as a Programming Application Interface, or API, and it is the basis for 
developing custom or specialised programmes based on standard software cores. Since 
the API is for other programmers, we refer to this set of interfaces as a Developer’s API. 

Interfaces deserve special attention in the case of software product lines. In fact, 
interfaces can be more important than any particular subsystem because they can allow 
the latter to be swapped in and out, or replaced with a newer version, at the need or 
convenience of the developer or the user: 
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• The interface between the end-user and the software applications. The benefits of a 
disciplined, often graphical interface here are well known and obvious. While 
approaches for good user interface design continue to evolve, simplifying complexity 
remains paramount. It is also interesting to see meta-interfaces emerge across 
different types of software applications, such as single sign-on interfaces in 
healthcare for patient safety and physician security. 

• The interface between one software application and another software application, be 
it controlled by the user (as in a cut and paste between a word processor and a 
spreadsheet) or a real-time inter-process communication between two systems on the 
plant floor. Microsoft’s Office is good example of the power of application 
integration at the user level – Excel spreadsheets are embedded easily into Word 
documents, to cite just one instance of this integration. 

• The interface provided for developers of applications into the company’s core 
subsystems. This is the Developer’s API in Figure 1. SQL (structured query 
language) was a marvelous invention that allowed any programmer to define and 
access data from just about any relationship database management system. IBM, 
Microsoft, Oracle, BEA and IONA are competing heavily for next generation 
solutions in this area with their ‘application services’ middleware offerings.  

• The interface between one core subsystem and other core subsystems. This is where 
code tends to get very messy and problematic for most software developers.  

• Last, the interface between core subsystem and devices or networks. Traditionally, 
operating systems have provided these capabilities. In certain fields of embedded and 
other specialised computing, the software developer must build these interfaces 
itself. A storage management company for example, provides APIs to reach out 
across different types of networks and machines to gather storage information. 
Alternatively, a process control toolkit vendor provides interfaces to connect to and 
read data from different types of instruments and equipment on the plant floor. 

One can categorise software interfaces as: a) those functions used by developers outside 
the company and b) those functions reserved only for internal use. Though the same 
architectural principles apply to the design of both types of interfaces, it is worth noting 
that interfaces exposed for external use are going to be much more difficult to change 
than interfaces used only within the company. The problem of backwards compatibility 
(how well does the current version of a product handle user customisations made to a 
previous version) is so difficult to solve that many software firms simply do not evolve 
their publicly exposed interfaces. Instead, many products support multiple versions of an 
interface. This provides perfect backwards compatibility, but is a maintenance and 
support nightmare, and greatly increases the complexity of the product. This is a 
persistent, widespread and intractable problem. Microsoft Windows is the classic 
example. Despite all the changes made in the last two decades, both to underlying 
hardware and the system-level APIs, Windows programmes written in 1984 will still run 
on today’s Windows XP.  

Also shown in Figure 3 is an Applications Integration Subsystem. This subsystem 
allows developers to integrate seamlessly a firm’s applications with applications made by 
completely different software development entities. In a hospital, this might be a clinical 
information system whose control and logic integrate easily with the hospital’s 
administrative and billing system, both made by completely different software vendors. 
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The top half of Figure 3 then comprises the software applications. Some of these 
applications are common to all of the target market applications chosen by the firm, and 
others are specific to each target use. This strategic framework helps explain the dynamic 
growth strategies seen in certain software companies where new software applications 
systematically leverage a company’s foundation technologies, its major product line 
architectures, and its common subsystems and interfaces. 

Further, if the marketing side of the enterprise has a well-managed business 
development function, a number of these domain-specific plug-in software applications 
can be developed by independent concerns other than the firm itself. These third party 
developers may then use the firm as a channel or license the firm’s platform foundations 
and market their own software applications directly. 

Figure 3 implies a variety of end user solutions for software products that can be for 
greater than that for convertional physical products. Kelly (1994) aptly described this 
industrial pattern as a ‘swarm,’ the evolution of an open universe of solutions around a 
robust software architecture – developed by one, modified by many, and used by many, 
many more. The trade-off is that the originated software company cannot possibly control 
all the developments and marketing activities of its independent partners, and neither 
should it try. The value derived from the product is a direct result of the connections 
formed among members of the community (Ongardanunkul, 2001). A user who develops 
his or her own plug-in modules for a major software product – be it Linux, Excel, or 
Oracle – can happily make those modules available to the larger community. This type of 
thriving software ecology can make the standard software product much more desirable 
to customers and therefore much more valuable to the company that produces it. It is the 
essence of mass customisation. 

5 Application of these principles to achieve sustained growth: the 
MathWorks 

As we have indicated throughout, clean, robust interfaces allow a software product line to 
evolve gracefully, where better subsystems replace older ones, and where the software 
itself can be customised for a broad range of market applications. While these principles 
seem so basic, even the best of software developers tend to let interfaces to slip and slide, 
to multiply in number, and to conflict through overlapping scope or direct interference. 
This we shall see in the case of the MathWorks, a highly successful software company 
based in Natick, MA. The MathWorks has recently completed an enormous effort to 
create a more layered, modular architecture for its products to accommodate new market 
applications for its software. 

The MathWorks’ products are customisations of vertical market specific toolkits, 
where the toolkits themselves are developed on common language platforms. This creates 
a very basic yet fundamental hierarchy of technology layers: languages beget toolkits, 
that beget highly specific, personalised applications. These applications take the form of 
complex data analyses, visualisations, and system design tools for the engineering and 
scientific communities. 

Figure 4 shows the examples of the types of applications and solutions that this 
company has created over time. The modelling of controls and digital signal processing 
systems are two key market applications for the company. There are many other 
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mathematical applications. Figure 4 also shows a neural network model for continuous 
learning and adjustment of a manufacturing process. The figure also shows some basic 
statistical functions. Over the past several years, The MathWorks has leveraged this 
technology into non-engineering markets, including the design of financial services 
products (modelling derivative instruments) and the modelling of systems biology. 

Figure 4 Matrix mathematics and statistical algorithms for different applications 

The company was founded in 1984 based on the premise that desktop computers would 
provide a viable platform for numerical computation. This vision was on target. Today, 
desktop computers are the primary platforms for mathematical modelling in corporations 
and professional organisations. In addition, the founders’ warm spot for university 
learning made good business sense. Many engineers first learn how to use The 
MathWorks software as engineering students under highly favourable academic licensing 
arrangements and then wish to continue to use the software as professionals. This seeding 
of new users has been a powerful market development strategy. 

More than a million customers worldwide now use the company’s flagship MATLAB 
and Simulink products. Realistically, each one of the million customers has customised 
the software for his or her specific purposes. For example, each DNA sequencing 
algorithm created by bio-scientists is by definition different unless two scientists are 
working on exactly the same piece of DNA. Each financial derivative model is different, 
given the security or commodity and the macro and micro economic factors incorporated 
by the finance specialist into his or her model. Similarly, the automotive engineer will 
create a variety of simulation models for the performance of the different anti-lock 
braking systems that he or she has designed or procured for the various vehicles and 
models under development. In sum, The MathWorks’ universe of applications is one of 
highly varied and deep complexity. 
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Figure 5 provides an overview of the The MathWorks’ software product offerings. 
The company’s products can be broadly divided into two categories: the language of 
technical computing and control design automation. A core product serves each one of 
these categories: MATLAB and Simulink. On top of these a series of application specific 
plug-ins, some made by The MathWorks itself, and others, by third parties. 

Figure 5 The MathWorks product strategy 

5.1 The language of technical computing 

MATLAB is The MathWorks’ flagship software product and is a language for 
mathematical modelling. To the user, it appears as an interactive environment that 
supports a scripting or programming language that is highly adept at creating, 
manipulating, and performing complex calculations on matrices of numbers. These 
scripts are contained in MATLAB M-files that are run typically just within the MATLAB 
environment. As another alternative, developers can combine these M-files with C/C++ 
programmes, processed by the MATLAB Compiler, and executed outside of MATLAB 
in binary form. About 20% of The MathWorks’ customers use the MATLAB Compiler to 
share MATLAB-based applications with people who do not own MATLAB. 

With MATLAB, the user can analyse vast arrays of data and produce graphics and 
charts, using the latest techniques for data visualisation. MATLAB’s core functionality is 
extended via toolboxes, each consisting of a set of domain-specific functions, objects, and 
graphical user interfaces. For example, the Image Processing Toolbox adds image 
analysis (edge detection) and image processing (image registration) functionality to core 
MATLAB. 
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5.2 Control design 

MathWorks’ second core product, Simulink, provides a graphical environment for the 
design and simulation of nonlinear dynamic systems. Simulink focuses on the control 
design automation market. Users construct their systems by building block diagrams, 
using the blocks provided with Simulink or those they have developed themselves. 
Extensions to Simulink’s functionality are called blocksets, and like MATLAB’s 
toolboxes, they enable users to solve more easily problems in a specific domain. The 
Neural Network graphic model shown in Figure 4 is an example of one of these 
blocksets. Or, the modules in the Communications Blockset can be assembled by the user 
to simulate the operation of a modem. Alternatively, there are blocksets for automotive 
applications. The anti-lock brake system is a good example, where the engineer wishes to 
simulate how the brakes react to different levels of weight and speed. 

5.3 Mass customisation 

The MathWorks product line demonstrates how modular architecture enables mass 
customisation and drives commercial success. The core of the company's strategy is the 
MATLAB language. It provides both a foundation for mass customisation and a unifying 
framework that knits the MathWorks Toolboxes and Blocksets together with MATLAB 
and Simulink into a coherent whole. The MathWorks exploits modularity at two levels. 
First, at the language level, the division of sets of MATLAB functions into toolboxes 
allows customers to choose to pay for just those features their applications require. 
Second, at the language processing level, the modularity of the MATLAB Component 
Runtime enables the use of the MATLAB language in applications other than MATLAB 
itself, e.g., programmers can integrate compiled binary MATLAB modules into other 
applications. MathWorks customers can invoke MATLAB functions as standalone 
programmes, from C or C++ development environments or from any application that 
supports Microsoft COM Objects or Microsoft Excel add-ins. The overall effect of this 
architecture enables MATLAB users to customise their MATLAB experience by adding 
a custom set of features to the MATLAB environment. This also applies to company’s 
control design product, Simulink. 

The flexibility in both feature set and operating environment has allowed The 
MathWorks to capitalise quickly on new markets. The range of problems that can be 
expressed in matrix or array form is vast and MATLAB’s ability to provide solutions has 
been honed by years of mathematical research and algorithm design. To serve a new 
market, developers at The MathWorks customise MATLAB for that market by creating a 
new toolbox. With the wide range of capabilities in the base MATLAB product, the 
development of a new toolbox has proven far more rapid than writing an equivalent 
product from ground zero. Further, since the MATLAB language operates in multiple 
computing environments, including Windows and Linux, customers do not have to 
abandon their legacy systems to take advantage of MATLAB-based solutions.  

One clear example of the flexibility to customise solutions for new market 
applications is the company’s more recent expansion into the financial services market. 
The MathWorks’ initial offering, the Financial Toolbox has grown to six toolboxes over 
just several years, and the revenue derived from these new solutions increased from tens 
of thousands to millions of dollars. Growth of this magnitude would have been 
impossible without the support of a truly modular architecture. 
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6 The MathWorks’ architecture challenge and its solution 

What would not be obvious to the casual outside observer is that by the turn of the 
millennium, MATLAB and Simulink had been heavily intertwined or co-mingled. The 
reason for this was that MATLAB was developed first (the first version shipped in 1984). 
When Simulink was developed in the early 1990s, it was based on the substantial amount 
of code and libraries that already existed in MATLAB. To achieve the types of 
functionality required for control design in highly complex automotive and aerospace 
applications, the company found itself having to add increasing amounts of code to 
MATLAB just to get the needed functionality in Simulink. 

This intermingling of interfaces and the lack of clear layering caused problems for 
other development groups within the company. For example, the Compiler group was 
placed in a very difficult spot. Its role was to allow any user to create compiled versions 
of M-file programmes that could run in a standalone manner. Because MATLAB’s 
architecture was not highly modular, the Compiler had to maintain a separate runtime 
library that mimicked the functionality in MATLAB. This made it nearly impossible for 
the Compiler team to keep up with all the changes made to MATLAB language by its 
own development team.  

Other signs of unnecessary complexity existed in areas as basic as printing for 
MATLAB to print graphs, it had to load the Simulink libraries simply because the 
printing routines relied on certain key functions in those libraries. This established a 
circular dependency: Simulink required the MATLAB language, but at the same time, 
MATLAB required Simulink for certain key functions (such as printing). A change in 
Simulink could therefore break MATLAB. Circular dependencies such as this can be 
critical failure points in software. 

In sum, The MathWorks could not enjoy the benefits normally associated with a 
layered architecture, where improvements in lower level modules help all higher-level 
modules, and bugs in those high-level modules that do not seep down into the lower level 
modules. Simulink and MATLAB were entangled, and Compiler users often had to wait 
several release periods to get access to the MATLAB interpreted M-file language 
improvements for their own respective run-time programmes.  

In 2001, management decided to redesign the MATLAB-Simulink combination to 
create a new set of core software that would serve as a platform of shared components for 
MATLAB, Simulink, and the MATLAB Compiler. This new platform of shared 
components is called the MATLAB Component Runtime or MCR. This set of shared 
subsystems would form the core runtime environment for MATLAB, Simulink and the 
MATLAB Compiler. As one might expect, management formed and co-located a 
dedicated team that drew upon talents from the MATLAB and Simulink groups within 
the company. 

Figure 6 shows the before and after architecture at its highest logical level. In this 
new architecture, The MathWorks’ developers created a new layer of functionality to 
serve MATLAB, Simulink, and the Compiler. These shared platform components include 
what one might expect as common modules: memory management, function execution, 
language processing, and the creation of graphic objects. 
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Figure 6 The further layering of the MathWorks architecture to increase modularity and 
flexibility for release R14 (2004) 

There are numerous direct benefits to both users, and developers within The MathWorks 
itself. New functionality built into Simulink no longer weighs down MATLAB-only 
users, and visa versa. The Simulink team can add its own new code without worrying 
about ripple affects throughout MATLAB, (such as the printing function mentioned 
earlier). Further, improvements made to the language processor at the core platform level 
automatically flow through to the Compiler without additional programming. The 
Compiler development team no longer has to maintain its own standalone runtime 
library, vastly reducing the effort required to support all the features of the MATLAB 
language. Perhaps most importantly, the core MCR team (working on the bottom box in 
the new architecture shown in Figure 6) can be assured that the new functionality that it 
adds in areas such as language improvements, performance, and graphics processing will 
automatically flow through to MATLAB, Simulink, the Compiler, toolboxes, blocksets, 
and all the applications developed by users with them. The MCR has became a new and 
truly powerful product platform. 

With this layered architecture as a foundation, the MathWorks and its customers have 
moved rapidly into new mathematical design and simulation applications. For example, 
end-users can more readily customise MATLAB and Simulink to suit their application 
requirements. Both programmes allow users to change the appearance and behaviour of 
the user interface and to add or modify core functionality. In MATLAB, for example, the 
user interface metaphor is the desktop – a working surface that holds all the tools needed 
for the day’s tasks. MATLAB’s default desktop configuration contains several of the 
most frequently used tasks, each contained in its own window. While users start with a  
pre-configured desktop, they soon proceed to create and save their own custom 
configurations. Users can further customise the desktop by specifying the fonts and 
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colours used to display text, adding new items to the main menu bar or shortcuts to the 
‘Start’ menu. 

Beyond these surface level customisations lies the customisation of core 
functionality: many of the mathematical functions in MATLAB are shipped with 
complete M-file source code, allowing users to copy or modify this code to create their 
own MATLAB-based solutions. MATLAB’s open architecture also makes it easy for 
users to develop toolboxes of their own, as many have done. A MathWorks’ customer 
often deploys these toolboxes internally in his or her department. However, a number of 
customers have added value to these toolboxes and now sell them as independent 
products. The MathWorks provides reference channel for numerous independent software 
companies that make plug-ins for MATLAB and Simulink, each with its own very 
specific mathematical functionality for specific applications. 

In sum, the development of the MCR has facilitated greater end-user customisation 
by allowing users to deliver domain-specific MATLAB-based solutions to their 
customers. MATLAB users can select a set of MATLAB functions, knit them together 
with a customised GUI and use the MATLAB Compiler to deploy the final application. 
The deployed application contains only those functions required by the task and a more 
focused GUI than the general-purpose MATLAB desktop. All this customisation would 
not be possible without the newly architectured MATLAB, Simulink, and Compiler, as 
well as the MCR layer developed underneath and shared by them. 

In other words, The MathWorks architecture-layering activities have made mass 
customisation with its software even more feasible, and less painful, than ever before. 

7 Concluding remarks 

Even with such examples, our observation is that many practitioners, engineers as well as 
business managers, do not really understand how good architecture in software drives 
business growth for systems-developing companies. Poor architecture leads to problems 
for developers and users alike. In software, this means ineffective project planning and 
execution, as well as a myriad of bugs for new software brought to market. Developers 
suffer; users suffer more. 

This observation is not ours alone. One firm that studied US commercial software 
projects in 2002 found such poor planning that companies cancelled about a quarter of 
their projects outright with no final product, costing the developing companies $67 
billion (Mann, 2002). Overruns on other projects cost another $21 billion. Poor planning 
and cost overruns are clear indicators of the absence of robust architecture and product 
line strategy. The same study found that 80% of the budgets for software projects were 
often devoted to repairing bugs prior to commercial release. Bug-fixing after commercial 
release was an additional and substantial cost. 

These are sobering data. The hypercompetitiveness of the software industry forces 
many software firms to rush new features out to their users. Firms spend insufficient time 
developing and enhancing the underlying architectural foundations required to support 
error-free, secure programmes. As software firms grow, and add more programmers to 
development teams, development projects often become encumbered in poor 
communications, leaving even less time for thoughtful consideration of layered, modular 
architecture (Brooks, 1995). 
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Perhaps there is no better example of complexity and renewal in software, and none 
with greater ramifications, than Microsoft itself. It can be argued that Microsoft’s lack of 
a layered, modular architecture opened a window of market opportunity for Linux. 
Microsoft’s architectural deficiencies have made the addition of new functionality not 
only expensive but also error-prone. As Microsoft has added considerable functionality 
with each new version of its Windows operating system, that functionality has carried 
with it a substantial number of new bugs with each new release. The very day that 
Microsoft released XP, the company posted 18 megabytes of bug fixes, security patches, 
and other updates for XP on its website (Mann, 2002). Another industry observer 
reported that that Windows NT 4.0 had 10,000 known bugs upon commercial release; 
Windows 2000, which followed NT, 63,000 bugs upon commercial release; and 
Windows XP, released in 2001, over 100,000 bugs (Rodrigues, 2001). Bill Gates testified 
during the Microsoft antitrust trial that Windows would not function if customers 
removed individual modules such as the Internet Explorer browser or the Exchange e-
mail programme (Mann, 2002,p.36), a clear sign of entanglement between modules. 

Like The MathWorks, Microsoft decided to confront its problems by creating a new 
architecture, which it calls .Net. In Microsoft’s new architecture, one finds a modular, 
layered programming environment with highly structured interfaces that serves as an 
applications programming interface pervasive across Microsoft’s database and 
programming tools and libraries. It has more platform capabilities: .Net provides a 
common foundation for memory management, function execution, language processing, 
and a common execution environment for all of Microsoft’s programming languages 
(such as Visual Basic or C#). It also features a highly specific and visible layer for 
security. In short, .Net represents a strategic investment in modular, layered architecture 
by enhance the productivity of its developers and users the world’s largest software 
company. 

The good news is that an increasing number of major software companies are now 
applying the principles described in this article in ways similar to The MathWorks and 
Microsoft. They realise that effective standard product development and follow-on user 
customisation of these standard products relies on layered, modular architecture. The 
business benefits of undertaking architectural renewal of software include: 

• The flexibility for users to customise various parts of the software for their own 
specific purposes, thereby making the original software both more useful and 
longer-lived. 

• Faster time to market for new versions of the software. With well-structured 
interfaces, the product is less complex and integration, which is the hardest area in 
software engineering, becomes manageable. 

• Greater reuse of code for different versions or market applications of the software. 

• Improved risk management. If one major subsystem or component of the software 
has problems, the focus of the corrections or bug-fixing can be localised more 
readily to that subsystem. Further, developers can rewrite the module without 
affecting the other pieces, vastly simplifying not only the programming but also the 
testing effort. 

• The potential for rapid third party plug-in development, with the potential for new 
market applications outside the original software company’s business plan. 
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It is these business benefits that the software developer must understand and articulate 
before embarking on the type of architectural renewal described in these pages, renewal 
that is the foundation for effective mass customisation. 
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Note 

1 The join command combines two databases on common fields. The fourth column of the result 
contains the numerical amount of the purchases. The sort command sorts on this column, in 
reverse order. The tee command splits the output to a file, and into the mail programme. 
Everything is linked through pipes, and all command produce ASCII delimited output and 
expect that as input. 


