

 14 Int. J. Mass Customisation, Vol. 1, No. 1, 2005

 Copyright © 2005 Inderscience Enterprises Ltd.

Modular, layered architecture: the necessary
foundation for effective mass customisation
in software

Marc H. Meyer*
Northeastern University
212 Hayden Hall, 360 Huntington Avenue
Boston, MA 02115, USA
E-mail: MA.MEYER@neu.edu
*Corresponding author

Peter H. Webb
The MathWorks, Inc.
3 Apple Hill Drive, Natick, MA 01760-098, USA
E-mail: pwebb@mathworks.com

Abstract: This paper posits that developers cannot sustain extensive
customisation of software without clear software product line architecture,
modular subsystem platforms, and disciplined interfaces among these
platforms. To explore this proposition, we initially define the basic principles
of desirable software architecture and then apply these definitions to the
development of software and the business strategy for creating software
product lines. We then illustrate how these concepts not only explain the
success of leading software companies but also have motivated fundamental
architectural redesigns of their product architectures.

Keywords: modular architecture; software platforms; software development.

Reference to this paper should be made as follows: Meyer, M.H. and
Webb, P.H. (2005) ‘Modular, layered architecture: the necessary foundation for
effective mass customisation in software’, Int. J. Mass Customisation, Vol. 1,
No. 1, pp.14–36.

Biographical notes: Marc H. Meyer is Director of the High Technology MBA
Programs at Northeastern University in Boston, MA and Professor of
Management at Northeastern University in Boston, MA. He was the 2002
recipient of the Holland Award from the Industrial Research Institute. Author
of The Power of Product Platforms (The Free Press, 1997), Dr. Meyer is
writing a new book on leveraging technologies to new market applications
(with the Oxford University Press). He holds an AB from Harvard, and an MSc
and PhD from MIT. In addition to his scholarly pursuits, Dr. Meyer is a
co-founder of several software companies and continues to work with large
corporations on developing next generation systems and software.

Peter H. Webb is Principal Technical Specialist at The MathWorks (Natick,
MA) where he focuses on software architecture, virtual execution
environments, and the use of cryptography in language processing systems. He
is currently researching frameworks for multi-source tool integration in
software development environments and the impact of service oriented

 Modular, layered architecture 15

architectures on rapid prototyping systems. He holds a BS in Computer Science
and English from Tufts University, a MSc in Computer Science from the
University of Illinois, and an MBA from Northeastern University.

1 Introduction

Software is a profound example of mass customisation wherein users (or programmers
supporting users) tailor standard products for specific functions and to meet specific
needs. In fact, software represents an extreme example of mass customisation in
commercial products. However, the ‘catch’, is that software also requires a high degree of
internal architecture discipline in order for that customisation not to result in
unmanageable chaos.

How many readers have not built equations in Microsoft Excel or their own graphic
templates in Microsoft Visio? The small business owner sets up his or her own business
categories and reports in Intuit’s Quicken or Quickbooks, and larger corporations expend
substantial resources to customise software from SAP, Oracle, and others. Organisations
are constantly building application-specific data structures within general-purpose
database management systems, whether to track customers and manage better workflows.
Even consumer-focused software, such as email or instant messaging, is increasingly
customisable by individual users for visual appearance, greetings, and actions.

As these examples show, software is clearly among the most pervasive forms of mass
customisation reaching into our lives. Such customisation is different by degree than the
more standardised forms of variety found in automobiles, consumer electronics, or
interior furnishings (Simpson et al., 2003).

In fact, it is reasonable to conclude that the market success of a software firm depends
on its ability to support customisation of its products. The reasoning behind a strategy of
personalisation to individual and corporate needs for software products can be stated as:

• Software (large, complex systems in particular) is expensive to build even when its
architecture is well done.

• No single set of software options is going to satisfy all a company’s
potential customers.

• Making multiple separate large software systems to satisfy an ever larger and more
diverse customer base becomes increasingly, if not prohibitively, expensive.

• Software designed for mass customisation (and this is why good architecture is so
important because it enables mass customisation) offers a much more cost
effective alternative.

Readily customisable software can serve many specific market applications much more
cost effectively. It can remain viable over a longer period by the flexibility provided to
uses to modify certain aspects of the software to match their own evolving needs.
Customisable software also provides the software development organisation with a
powerful form of risk management: it can carefully observe how users develop new
solutions based on its software, and wait patiently for the best of these additions to appear
as worthy improvements for its next major version. All of these are important elements of
competitive advantage in hypercompetitive software markets (Von Hippel, 1988).

 16 M.H. Meyer and P.H. Webb

At the same time, mass customisation can be a double-edged sword. Like any other
technical project, implementing high levels of flexibility for users to modify their
software can be done well or poorly (Pine, 1992). The irony is that the user expectation
for customisation of standard software can quickly lead the software development entity
down the path of internal chaos within its own products. Customisation will create high
levels of complexity and cost, unless the firm has taken the time to create and
periodically renew a well-defined, layered architecture for its software products
(Mann, 2002).

Customisation to a standard piece of software must be performed within the context
of an underlying infrastructure. That infrastructure, we believe, must be highly structured,
its components tightly defined, and the interaction between these components equally
well-structured and tightly defined. Otherwise, user customisation of large and complex
software applications carries an inherent risk: modification of the software might destroy
it. To minimise the risk of that corruption, the ‘where and how’ of user modifications to
software for their own purposes must be done at levels within the software that do not
reach down into and destroy the integrity of the base system.

This is our premise: delivering the customisation in software so greatly desired by
users, across all applications and industries, cannot be sustained over the long term
without clear software product line architecture, modular subsystem platforms, and
disciplined interfaces between these platforms. To understand mass customisation for
software, we must first delve deeply into the meaning and use of architecture within
software. To do this, we will proceed in four steps of logic:

1 Define the basic principles of desirable software architecture.

2 Leverage that definition for software architecture in general to software product lines
specifically, including the meaning and application of platforms within product
line architecture.

3 Leverage both these general and specific articulations of concepts and principles to a
business strategy for a software company, where over time a firm leverages its
architecture and platforms to new market applications, each one of which requires
not only new standard modules, but also personalisation and customisation by users
within each new segment.

4 Illustrate how these concepts for software architecture, platforms, and strategy
have helped a category-leading software developer – known throughout industry
for its mathematical modelling and simulation software – to fundamentally
restructure its software to accommodate both strategic growth and more effective
mass customisation.

2 Basic architectural principles for software: layers with focused
functionality and robust subsystem interfaces

Software is an engineered construct, much like an automobile or a building. As such, a
software programme consists of many parts or components. Like an automobile or a
building, software can be said to have an architecture: one or more organising principles
that control how each component relates to and communicates with each other
component (Jazayeri et al., 2000). Architecture structures an unorganised space to serve

 Modular, layered architecture 17

one or more functions, just as an engine provides power, walls provide privacy and
shelter, or doorways orchestrate the flow of motion. The structure provided by an
architecture for a product line is inherently hierarchical. Power-trains comprise engines,
transmissions, and exhaust systems; buildings consist of floors and floors are divided
into rooms.

Similarly, a software application consists of layers of hierarchy, with each layer
containing one or more components. The boundaries, or interfaces, between layers and
components, like the walls and doorways in a building, control the motion of information
through the application. Of course, there are almost an infinite number and variety of
software products, but at the highest level of definition, there are software development
tools, software applications developed with these tools, and the systems software, often
called operating systems, upon which both tools and applications run. Each one of these
software products – operating systems, software development tools, and software
applications – has its own layers of technology. Interfaces connect the modules within
each layer, and one layer to the layers above and below. A software product – be it an
operating system, tool, or application – in which these layers and component boundaries
are well-defined is said to be modular (Dilip et al., 1995; Sharman and Ali, 2004).

Using these definitions, we can outline the principles of good software design. A
well-designed software product must:

• Possess clear and explicit organising principles, expressed as the software product’s
architecture. Since architecture is typically developed not just for one product, but
also for a stream of related products, the architecture is best referred to as a product
line architecture (Meyer and Lehnerd, 2004). To support customisation, this
architecture must describe the mechanisms by which the software, and even the
architecture itself, are allowed to evolve.

• Be hierarchically organised into layers. While it is perhaps easiest to think of these
layers as layers of specific technology, we find it best to view them in terms of
function (such as a real-time data acquisition layer, a database layer, logic or
algorithm layer, or the graphical user interface). The reason is that multiple
technologies may exist within or they can be used to implement the functionality of a
particular layer. For example, FibreChannel, InfiniBand, and iSCSI are all
communications technologies used for network connection modules in modern
storage array systems.

• That each layer consists of a modular set of components, each with its own single
function or purpose, and each offering a single robust interface for other modules to
access that functionality. The FibreChannel, InfiniBand, and iSCSI communication
protocols mentioned above are implemented as separate components within the
communications subsystem of the storage device. Alternatively, consider a basic
report-writing layer, which consists of modules for querying information from a
database, for accessing a report template, for pumping the information through that
template, and then formatting it for the user’s particular printing device.
Interestingly, the output of one module in this layer of functionality becomes the
input for another module, and so on. This connection works best if there is only one
clear way to pass data into any given module.

 18 M.H. Meyer and P.H. Webb

Developers can adjust software to changing user and computing environment
requirements when the underlying architecture adheres to these guidelines. Since the
function and interface of each component is well understood, one component can be
replaced without affecting the functionality of other components; and as the architecture
explicitly provides for extension and self-evolution, developers can easily add new
functionality (Clements and Northrop, 1996; Bass et al., 1998).

Good architecture in software provides modularity across and among all the various
components within the software. That means that the components can be combined
readily in different ways to meet different purposes without adding substantial additional
code to make these components work together. With this foundation of flexible
components, developers can then add additional modules that provide the functionality
needed for a specific application. Good architecture makes software reuse possible.
Further, if the foundation of core subsystems is particularly well designed, software
developers outside the company – be it other software companies or programmers in
end-user companies – can also quickly write their own application modules that plug
immediately into that foundation and use its functionality. This is how the most
successful software companies have developed extensive collections of specific software
applications made by third parties.

‘Network externalities’ can play an important role in how users perceive a software
product or system (Park, 2001). The most common form of network externalities – on the
positive side – is when the value of a product for an individual user rises in proportion to
the number of other people who use it. The telephone is a classic example. One telephone
has little utility, but a worldwide network of telephone users makes each individual
telephone a very powerful tool. On the negative side, of course are viruses such as Trojan
horses that invade a user’s computer to infect others, and from these others, yet others.

“Good architecture as we have described it, leverages the potential of any
given piece of software to have a synergistic effect with other software. Poor
architecture builds walls between different pieces of software, making
integration difficult and costly.”

Just as a car manufacturer offers a line of passenger cars or SUVs, a software company
can also offer a family of software products, be they applications, tools, or systems
software. The goal is to have these individual products share a set of common subsystems
whose function and interfaces to other subsystems are defined by the architecture of the
product line. This no different than Honda leveraging the same two litre, VTEC engine
across many of its passenger cars and sport utility vehicles. Software product families,
when well designed, can have dozens of such engines.

This leads to the two basic principles in designing product line architecture for
software: subsystem focus and the use of single-function interfaces.

2.1 Subsystem focus

Subsystem focus requires that each subsystem have a single, concentrated purpose. A
focused subsystem is very different and much more useful over the long term than a
nonfocused subsystem, because focus helps manage complexity. Without subsystem
focus, changes in one part of the system tend to ripple through and impede functionality
in other parts of the system. The goal of modular architecture is that changes at one level
of the application do not destroy the integrity of modules at other levels.

 Modular, layered architecture 19

A classic and still present example is application software that contains both
logic – such as for business accounting or statistical processing – and data. On one hand,
a developer might correctly choose to have a series of modules each containing a
different set of accounting or statistical logic, which then communicate to another module
focused on organising, storing, and accessing the needed data for the calculations. This
reflects good architecture. Less desirable is a design where different buckets of logic are
combined into one module, and even worse, where data management functions are also
co-mingled with the logic in that module. This can be viewed as a smokestack
architecture where each application is monolithic and shares little, if any, code with other
applications in the product line.

Figure 1 Rights and wrongs in software architecture

A smokestack type architecture, lacking clearly focused subsystems, makes the
implementation of new technologies (such as a new data management method) labour
intensive and error prone. It requires changes to many modules, and the developer must
work doubly hard to insure that these changes do not impede the functionality of other
code containing algorithms and logic. This can produce tremendous problems
downstream for applications integration and maintenance. It is easy to fall into this trap if
a developer tackles one new application at a time, fails to consider architecture at any
point along the way, never stepping back to redesign the foundations across the product
line to create common subsystems.

2.2 Subsystem interface design

The second basic principle for achieving good architecture in software deals with
interface design (Sundgren 1995; Meyer and Seliger, 1998). Each major subsystem
within the product line architecture should have a single interface programme for data

Layered, modular subsystems

Logic
module

1

Logic
module

2

Logic
module

3

Data management module

Good architecture

Logic 1, 2 Logic 3

Poor architecture

Data
management

1

Data
management

2

Monolithic software

 20 M.H. Meyer and P.H. Webb

coming into the subsystem, and for data exiting the subsystem, as shown in Figure 2.
Both occur when the subsystem is ‘called’ or referenced by other programmes to utilise
the subsystem’s functionality. This has been called the module interconnection
architecture (Soni et al., 1995).

Figure 2 Rights and wrongs in software interface architecture

This is in striking contrast to the way most systems tend to evolve over time, where
developers build many input and output interfaces into each major subsystem. When the
functionality of the subsystem itself changes, developers must then work through all the
various interfaces to make sure that those improvements are used by other parts of the
system. Figure 2 shows this evolving chaos at the bottom of the figure (Steward, 1981;
Meyer, 1992).

The idea of using structured interfaces to link multiple subsystems is so fundamental
to good architecture that it deserves a simple, yet powerful example for the reader.
Historically, the idea took form in software during the 1970s. As IBM’s mainframe
software paradigm of hard-to-integrate, proprietary, batch computing spread through
industry, an alternative model of easy-to-integrate, nonproprietary, interactive computing
was taking hold in universities and research organisations. These users needed to develop
a wide range of applications that could run on almost any computer at very little cost, and
be readily integrated with other applications. Today, this is called ‘open systems’
computing.

Unix (including variants as Sun’s Solaris and now open source Linux) met the needs
of these users with a layered, modular architecture. Unix-based programmes can share
data seamlessly both on single computers and across networks of computers. To allow
this to happen, Unix utilises a specific modular architecture that works at two primary
levels, data and programming. This is carried forward in Linux.

Unique
interfaces

Good interface architecture

Poor interface architecture

All other modules
Subsystem
module 1All other modules

Standardised input
interface

Subsystem
module 1

Module 1

Module 2

Module 3

Module 1

Module 2

Module 3

Standardised output
interface

Unique
interfaces

 Modular, layered architecture 21

At the data level, standardised ASCII text is the universal representation for shared
data among all programmes. A programme can expect to receive a stream of ASCII
characters as input, and in turn, is itself expected to produce a stream of ASCII characters
as output – at least until a final report is transformed into a binary format by a filter on its
way to a printer. The data standard is flat ASCII files – simple streams of characters. The
files do not have structure like the fixed-length records of the traditional transactions
processing world. Instead, the ASCII files use a simple carriage return or new line
character to mark the end of the record, and some other character, such as a tab or
comma, to separate individual fields in the record. Data has a variable length and no
space on a disk needs to be reserved ahead of time. All Unix/Linux programmes can
expect to find this data structure, free of specific field length or record size predefinitions.

The second level of the universal interface is at the programming level. The output of
any one programme can be ‘piped’ to any other, and the output of that second programme
then piped to yet a third, and so on, until the user achieves his or her final objective. This
approach finds its best expression in the higher-level command interpreters or ‘shells’
offered with Unix/Linux over the years. These command interpreters not only allow users
to type commands to look at, change, or print files, but they also comprise full
programming languages (Manis and Meyer, 1986).

Using these conventions for data and communication between processes, Unix/Linux
facilitates the most personalised form of mass customisation at incremental cost. For
example, if one were to type the date command in the Unix or Linux shell, the result
would be:

$ date

Wednesday August 12 20:18:32 EDT 2004

Or, the result could be send to both a printer and a file with the ‘tee’ module, and
using pipes:

$ date | tee mydatefile | lp

This command chains together three modules, date, tee and lp, to display the date on
screen, write it into a data file and print it. The modules connect together very easily
because they all use a common data representation (ASCII text), as well as common input
and output channels (called standard input and standard output). Date writes ASCII text
to standard output, tee reads it from standard input and copies it to standard output and lp
reads it from standard input. The pipe command, |, creates interprocess connections
among the three modules. This simple idea is infinitely scalable – filter chains like
this can be of any length, and perform any type of computation – and adapts very
well to a networked environment where server names could be used as prefixes for any
file or device.

The power of the universal interface standard – at both the data and programming
levels – becomes ever more apparent when the user works on increasingly difficult tasks.
As a second example, consider two large customer data files, the first sitting on one
computer with several months’ worth of customer transactions, and the second, on
another computer containing customer contact information. The Purchases database sits
on one computer in the building; and the Customers database resides on another.

 22 M.H. Meyer and P.H. Webb

Purchases Table: Last Name, First Name, Middle Initial, Purchase Amount

Customer Table: Last Name, First Name, Middle Initial, Address, E-mail Address

A common request might be to produce a collections report. The logic of completing this
task is straightforward. We sort these two files on customer name so that they can be
combined without special indexing, and then sum up the amount owed by customer, and
then sort it by purchase amount in descending order. Then we might want to save the
result to a file so that we can send out letters to people, and e-mail the result to the
manager of our collections department.

Implementing the simple logic of the solution in poorly architected software
environments is unfortunately not so simple. We would hire a programmer who would
first create several new interim databases and reserve space for them on the computer
disk. Then, our programmer would write a page or two of C code to access data from the
customer and purchases databases on the two different computers, store the data in the
intermediate files, combine these files to produce the report, and then write systems level
code to send reports through email to the collections department. Creating the linkages
among databases across different machines and to an email system tends to be difficult in
proprietary (e.g., non-open systems) software environments. Overall, this might be a solid
week or two of programming effort.

In Unix/Linux, the programmer can take a different track, seeking to leverage the
simple, robust architecture of that environment with a few connected commands. After
sorting the two files on customer names, he or she might type:

$ join /computer1/customers /computer1/purchases |

sort –r –4 | tee resultfile | mail accountsreceivable@ourcompany1

These commands could either be typed, or saved in a little command file that could be
executed at a prescheduled time, or at the user’s convenience.

Examples such as this show that developers can expand the functionality of software
based on modular architecture, focused subsystems, and standard interfaces at very little
cost in programming effort or machine resources.

3 Leveraging basic software principles to create software product lines

With these principles of software architecture in hand – a layered architecture comprising
subsystems with focused functionality and disciplined, robust interfaces among them – a
development organisation can then define an operational platform strategy for its
software products.

Software, just like any other product category, is rife with terms that have different
meanings for different people. The layering concept leads to the idea that subsystems in
software products are programmed modules that have a clearly defined set of
functionality, i.e., a user interface, a certain set of logic, a data management function,
printing, or communications (Sharman and Ali, 2004). It is also evident that software
interfaces are the predefined connections between subsystems and other subsystems. In
addition to subsystems and interfaces, other terms suffer from inconsistent use and often
cause trouble between software development teams and management.

 Modular, layered architecture 23

Common definitions for basic conceptual elements help empower a development
group to achieve better designs. We define the essential strategic terms for software
products as:

Product line architecture

The Software Engineering Institute at Carnegie Mellon has defined software architecture
as specifying the structural properties of a system in terms of components,
interrelationships, and principles and guidelines about their use and evolution over time
(Clements and Northrop, 1996). Missing in this definition is the purpose of the
architecture, which is to serve as a foundation for building a product line. For physical
products, product line architecture is the combination of subsystems, the interfaces
between these subsystems, and the interfaces to external systems that collectively
serve as the foundation for a stream of specific products (Meyer and Lehnerd, 1997).
This is essentially a Deming or systems definition of architecture for product families
(Deming, 1982).

Modular product line architecture defines the number and specific focus of core
subsystems and interfaces, as well as the design criteria that will achieve robustness,
scalability, and elegance in these subsystems and interfaces at both the data and
programming level.

Architecture must also make a product line readily adaptable to new market
applications by virtue of developing a new module or component and attaching it to
others through predefined interfaces. Software system architectures that fail to
incorporate extensibility doom the systems that are so designed to a short, chaotic and
complex life. In contrast, modular software product line architecture allows a system to
evolve in an organised and efficient manner over time by making changes in any one
subsystem transparent to other subsystems that already exist within the overall
architecture. Alternatively, if interfaces must be changed or be improved, or entirely new
subsystems added, that work is isolated to a layer above the underlying core foundation
subsystems within the architecture. Either way, making module improvements
transparent to all other subsystems or isolating the impact they have to specific layers
within the code reduce overall programming effort, while still providing users with all the
new functionality offered by the improvements.

This is richly illustrated by the ‘pipe and filter’ architecture of the UNIX shell, where
one can add a new programme to a command line without violating the functionality of
commands that come before it. Alternatively, in Excel, one can continuously add
‘macros’ that perform certain special tasks but do not interfere in any way with the
underlying input and output of the underlying spreadsheet. In Windows, there is the ‘plug
and play’ PCI bus interface, which allows users to dynamically attach devices to
computers and have them work automatically. These are simple yet powerful examples of
the importance of clean interface architecture.

Software platforms

Platforms are the actual subsystems and interfaces between the subsystems that are used
by multiple applications. The subsystems and interfaces, if used just once or in just one
product, are not platforms. The term platform demands reuse across several or more
products. When a subsystem is shared or reused across several or more software

 24 M.H. Meyer and P.H. Webb

products, either within or across product lines, we consider it a product platform.
Similarly, if several or more products use an interface among subsystems, it, too, is a
product platform. In software, the platforms are modules of code that enable the
development of end-user products, the integration of these products and other external
products in the field, and the orderly evolution of those products over time to meet new
customer needs.

The combination of product line architecture, focused subsystems, and robust
interfaces between subsystems comprises what we like to consider the essence of a
software company’s bread-and-butter technology strategy.

Software applications

These are the end-user products. Each product is a member of a software product line and
each product uses the architecture as its structure of that software product line. Each
software product uses the key subsystems and interfaces common to other members of
the product line. Developers then create value-added modules to work in conjunction
with these platforms to create new solutions. Or, as is often the case with software,
end-users will customise certain modules on their own to achieve desired results.

Combining modular product line architecture with subsystem platforms and
disciplined interfaces enables a company to create more readily a series of related
software applications, each focused on a different use or purpose, potentially for different
types of users. This is the first step on the path of mass customisation. The second step is
the changes that users make to these software applications themselves to customise the
software for their own respective purposes. Adhering to the layering principle, the goal is
to allow the user to customise the software without corrupting the underlying foundation
technologies – e.g., the core subsystems and interfaces – that exist within the software
application supplied to the user. Once again, the ‘macro’ developed by users of Excel is a
perfect example. The statistical utilities that Microsoft has itself added to Excel comprise
another clear example.

4 Creating a business strategy based on layered, modular architecture

Figure 3 presents a strategic management framework that integrates software product line
architecture, software platforms, and software applications (Meyer and Seliger, 1998).
The bottom half of the figure comprises the software platforms, e.g., the key subsystems
and interfaces that serve as the foundation for the product line. The product line
architecture is the aggregate structure containing the specific number, purpose, and
connections between these subsystem and interface platforms. For the purposes
of discussion, we have shown a set of typical major subsystems often found in
well-executed commercial software products:

• A major subsystem for developing user interfaces within applications, both for
controlling programme executive, entering data, or requesting output. Within this
subsystem are specific subsystems for calling graphical objects, designing menus,
handling errors on the part of the user or the system itself, and accessing ‘help.’

• A major subsystem for requesting data and organising it for reports or as data needed
by other systems. This has traditionally been called report generation.

 Modular, layered architecture 25

• A major subsystem containing for processing the logic in the system, be it algorithms
for engineering-related calculations or financial calculations. These also often
comprise libraries of specific sets of logic or functionality.

• A database management subsystem, containing methods for structuring, accessing,
and combining data.

Figure 3 Modular platform-based architecture and derivative software products

The core subsystems within the architecture can be powerful product platforms, the
crown jewels of the software company. Sitting in a logical manner above these core
subsystems in Figure 3 is a development environment specifically created by the firm to
allow its own engineers, 3rd parties, and customers, to development software applications
accessing and otherwise using the common subsystems and interfaces. This subsystem is
known commonly as a Programming Application Interface, or API, and it is the basis for
developing custom or specialised programmes based on standard software cores. Since
the API is for other programmers, we refer to this set of interfaces as a Developer’s API.

Interfaces deserve special attention in the case of software product lines. In fact,
interfaces can be more important than any particular subsystem because they can allow
the latter to be swapped in and out, or replaced with a newer version, at the need or
convenience of the developer or the user:

Software applications Application 1 Application 2 Application 3

Plug-in modulesApplication- specific uses

Common uses
Common application programs

User interface

Output and communication network programming interfaces

Developer's API

Plug-in modulesPlug-in modules

Report /graph generation

Data management

Logic/algorithms

Procedure "calls" to
core subsystems

Core subsystems

Device API

Pl
at

fo
rm

 te
ch

no
lo

gi
es

Integation"middleware"
for external applications

 26 M.H. Meyer and P.H. Webb

• The interface between the end-user and the software applications. The benefits of a
disciplined, often graphical interface here are well known and obvious. While
approaches for good user interface design continue to evolve, simplifying complexity
remains paramount. It is also interesting to see meta-interfaces emerge across
different types of software applications, such as single sign-on interfaces in
healthcare for patient safety and physician security.

• The interface between one software application and another software application, be
it controlled by the user (as in a cut and paste between a word processor and a
spreadsheet) or a real-time inter-process communication between two systems on the
plant floor. Microsoft’s Office is good example of the power of application
integration at the user level – Excel spreadsheets are embedded easily into Word
documents, to cite just one instance of this integration.

• The interface provided for developers of applications into the company’s core
subsystems. This is the Developer’s API in Figure 1. SQL (structured query
language) was a marvelous invention that allowed any programmer to define and
access data from just about any relationship database management system. IBM,
Microsoft, Oracle, BEA and IONA are competing heavily for next generation
solutions in this area with their ‘application services’ middleware offerings.

• The interface between one core subsystem and other core subsystems. This is where
code tends to get very messy and problematic for most software developers.

• Last, the interface between core subsystem and devices or networks. Traditionally,
operating systems have provided these capabilities. In certain fields of embedded and
other specialised computing, the software developer must build these interfaces
itself. A storage management company for example, provides APIs to reach out
across different types of networks and machines to gather storage information.
Alternatively, a process control toolkit vendor provides interfaces to connect to and
read data from different types of instruments and equipment on the plant floor.

One can categorise software interfaces as: a) those functions used by developers outside
the company and b) those functions reserved only for internal use. Though the same
architectural principles apply to the design of both types of interfaces, it is worth noting
that interfaces exposed for external use are going to be much more difficult to change
than interfaces used only within the company. The problem of backwards compatibility
(how well does the current version of a product handle user customisations made to a
previous version) is so difficult to solve that many software firms simply do not evolve
their publicly exposed interfaces. Instead, many products support multiple versions of an
interface. This provides perfect backwards compatibility, but is a maintenance and
support nightmare, and greatly increases the complexity of the product. This is a
persistent, widespread and intractable problem. Microsoft Windows is the classic
example. Despite all the changes made in the last two decades, both to underlying
hardware and the system-level APIs, Windows programmes written in 1984 will still run
on today’s Windows XP.

Also shown in Figure 3 is an Applications Integration Subsystem. This subsystem
allows developers to integrate seamlessly a firm’s applications with applications made by
completely different software development entities. In a hospital, this might be a clinical
information system whose control and logic integrate easily with the hospital’s
administrative and billing system, both made by completely different software vendors.

 Modular, layered architecture 27

The top half of Figure 3 then comprises the software applications. Some of these
applications are common to all of the target market applications chosen by the firm, and
others are specific to each target use. This strategic framework helps explain the dynamic
growth strategies seen in certain software companies where new software applications
systematically leverage a company’s foundation technologies, its major product line
architectures, and its common subsystems and interfaces.

Further, if the marketing side of the enterprise has a well-managed business
development function, a number of these domain-specific plug-in software applications
can be developed by independent concerns other than the firm itself. These third party
developers may then use the firm as a channel or license the firm’s platform foundations
and market their own software applications directly.

Figure 3 implies a variety of end user solutions for software products that can be for
greater than that for convertional physical products. Kelly (1994) aptly described this
industrial pattern as a ‘swarm,’ the evolution of an open universe of solutions around a
robust software architecture – developed by one, modified by many, and used by many,
many more. The trade-off is that the originated software company cannot possibly control
all the developments and marketing activities of its independent partners, and neither
should it try. The value derived from the product is a direct result of the connections
formed among members of the community (Ongardanunkul, 2001). A user who develops
his or her own plug-in modules for a major software product – be it Linux, Excel, or
Oracle – can happily make those modules available to the larger community. This type of
thriving software ecology can make the standard software product much more desirable
to customers and therefore much more valuable to the company that produces it. It is the
essence of mass customisation.

5 Application of these principles to achieve sustained growth: the
MathWorks

As we have indicated throughout, clean, robust interfaces allow a software product line to
evolve gracefully, where better subsystems replace older ones, and where the software
itself can be customised for a broad range of market applications. While these principles
seem so basic, even the best of software developers tend to let interfaces to slip and slide,
to multiply in number, and to conflict through overlapping scope or direct interference.
This we shall see in the case of the MathWorks, a highly successful software company
based in Natick, MA. The MathWorks has recently completed an enormous effort to
create a more layered, modular architecture for its products to accommodate new market
applications for its software.

The MathWorks’ products are customisations of vertical market specific toolkits,
where the toolkits themselves are developed on common language platforms. This creates
a very basic yet fundamental hierarchy of technology layers: languages beget toolkits,
that beget highly specific, personalised applications. These applications take the form of
complex data analyses, visualisations, and system design tools for the engineering and
scientific communities.

Figure 4 shows the examples of the types of applications and solutions that this
company has created over time. The modelling of controls and digital signal processing
systems are two key market applications for the company. There are many other

 28 M.H. Meyer and P.H. Webb

mathematical applications. Figure 4 also shows a neural network model for continuous
learning and adjustment of a manufacturing process. The figure also shows some basic
statistical functions. Over the past several years, The MathWorks has leveraged this
technology into non-engineering markets, including the design of financial services
products (modelling derivative instruments) and the modelling of systems biology.

Figure 4 Matrix mathematics and statistical algorithms for different applications

The company was founded in 1984 based on the premise that desktop computers would
provide a viable platform for numerical computation. This vision was on target. Today,
desktop computers are the primary platforms for mathematical modelling in corporations
and professional organisations. In addition, the founders’ warm spot for university
learning made good business sense. Many engineers first learn how to use The
MathWorks software as engineering students under highly favourable academic licensing
arrangements and then wish to continue to use the software as professionals. This seeding
of new users has been a powerful market development strategy.

More than a million customers worldwide now use the company’s flagship MATLAB
and Simulink products. Realistically, each one of the million customers has customised
the software for his or her specific purposes. For example, each DNA sequencing
algorithm created by bio-scientists is by definition different unless two scientists are
working on exactly the same piece of DNA. Each financial derivative model is different,
given the security or commodity and the macro and micro economic factors incorporated
by the finance specialist into his or her model. Similarly, the automotive engineer will
create a variety of simulation models for the performance of the different anti-lock
braking systems that he or she has designed or procured for the various vehicles and
models under development. In sum, The MathWorks’ universe of applications is one of
highly varied and deep complexity.

Control system

Spline

Neural networkSignal processing

Statistics

 Modular, layered architecture 29

Figure 5 provides an overview of the The MathWorks’ software product offerings.
The company’s products can be broadly divided into two categories: the language of
technical computing and control design automation. A core product serves each one of
these categories: MATLAB and Simulink. On top of these a series of application specific
plug-ins, some made by The MathWorks itself, and others, by third parties.

Figure 5 The MathWorks product strategy

5.1 The language of technical computing

MATLAB is The MathWorks’ flagship software product and is a language for
mathematical modelling. To the user, it appears as an interactive environment that
supports a scripting or programming language that is highly adept at creating,
manipulating, and performing complex calculations on matrices of numbers. These
scripts are contained in MATLAB M-files that are run typically just within the MATLAB
environment. As another alternative, developers can combine these M-files with C/C++
programmes, processed by the MATLAB Compiler, and executed outside of MATLAB
in binary form. About 20% of The MathWorks’ customers use the MATLAB Compiler to
share MATLAB-based applications with people who do not own MATLAB.

With MATLAB, the user can analyse vast arrays of data and produce graphics and
charts, using the latest techniques for data visualisation. MATLAB’s core functionality is
extended via toolboxes, each consisting of a set of domain-specific functions, objects, and
graphical user interfaces. For example, the Image Processing Toolbox adds image
analysis (edge detection) and image processing (image registration) functionality to core
MATLAB.

Direct DSP

FUSE toolbox

GPS receiver toolbox

UTRA FDD blockset

Real time workshop

Digital sig proc
blockset

Stateflow blockset

Stateflow coder

Code composer studio

dSpace prototyper

Spacecracft control
toolbox

Real time workshop

Control systems
toolbox

Stateflow coder

Keithley data
acquisition boards

Pro/MECHANICA

TekVISA

Acoustic ideas
toolboxes

Wavelet and statistics
toolbox

Sig proc instrument
control toolbox

Data acquisition
toolbox

Quantitative energy
models

RisKontroller

STABLE toolbox

Financial derivatives
toolbox

Time series toolbox

Optimisation toolbox

Altia design

Chemometrics toolbox

GeneX

TrueAllele (TM)

Systems biology
toolbox

The
MathWorks

3rd
Party

Application
specific plug-ins

MATLAB
(matrix math)

Simulink
(simulations)

Digital signal
processing Control design Test and measurement Financial product

design Biotechnology

MATLAB and Simulink serve as

A common application
Programming API's
Subsystem platforms

All in one

Compiler
(run-time systems)

 30 M.H. Meyer and P.H. Webb

5.2 Control design

MathWorks’ second core product, Simulink, provides a graphical environment for the
design and simulation of nonlinear dynamic systems. Simulink focuses on the control
design automation market. Users construct their systems by building block diagrams,
using the blocks provided with Simulink or those they have developed themselves.
Extensions to Simulink’s functionality are called blocksets, and like MATLAB’s
toolboxes, they enable users to solve more easily problems in a specific domain. The
Neural Network graphic model shown in Figure 4 is an example of one of these
blocksets. Or, the modules in the Communications Blockset can be assembled by the user
to simulate the operation of a modem. Alternatively, there are blocksets for automotive
applications. The anti-lock brake system is a good example, where the engineer wishes to
simulate how the brakes react to different levels of weight and speed.

5.3 Mass customisation

The MathWorks product line demonstrates how modular architecture enables mass
customisation and drives commercial success. The core of the company's strategy is the
MATLAB language. It provides both a foundation for mass customisation and a unifying
framework that knits the MathWorks Toolboxes and Blocksets together with MATLAB
and Simulink into a coherent whole. The MathWorks exploits modularity at two levels.
First, at the language level, the division of sets of MATLAB functions into toolboxes
allows customers to choose to pay for just those features their applications require.
Second, at the language processing level, the modularity of the MATLAB Component
Runtime enables the use of the MATLAB language in applications other than MATLAB
itself, e.g., programmers can integrate compiled binary MATLAB modules into other
applications. MathWorks customers can invoke MATLAB functions as standalone
programmes, from C or C++ development environments or from any application that
supports Microsoft COM Objects or Microsoft Excel add-ins. The overall effect of this
architecture enables MATLAB users to customise their MATLAB experience by adding
a custom set of features to the MATLAB environment. This also applies to company’s
control design product, Simulink.

The flexibility in both feature set and operating environment has allowed The
MathWorks to capitalise quickly on new markets. The range of problems that can be
expressed in matrix or array form is vast and MATLAB’s ability to provide solutions has
been honed by years of mathematical research and algorithm design. To serve a new
market, developers at The MathWorks customise MATLAB for that market by creating a
new toolbox. With the wide range of capabilities in the base MATLAB product, the
development of a new toolbox has proven far more rapid than writing an equivalent
product from ground zero. Further, since the MATLAB language operates in multiple
computing environments, including Windows and Linux, customers do not have to
abandon their legacy systems to take advantage of MATLAB-based solutions.

One clear example of the flexibility to customise solutions for new market
applications is the company’s more recent expansion into the financial services market.
The MathWorks’ initial offering, the Financial Toolbox has grown to six toolboxes over
just several years, and the revenue derived from these new solutions increased from tens
of thousands to millions of dollars. Growth of this magnitude would have been
impossible without the support of a truly modular architecture.

 Modular, layered architecture 31

6 The MathWorks’ architecture challenge and its solution

What would not be obvious to the casual outside observer is that by the turn of the
millennium, MATLAB and Simulink had been heavily intertwined or co-mingled. The
reason for this was that MATLAB was developed first (the first version shipped in 1984).
When Simulink was developed in the early 1990s, it was based on the substantial amount
of code and libraries that already existed in MATLAB. To achieve the types of
functionality required for control design in highly complex automotive and aerospace
applications, the company found itself having to add increasing amounts of code to
MATLAB just to get the needed functionality in Simulink.

This intermingling of interfaces and the lack of clear layering caused problems for
other development groups within the company. For example, the Compiler group was
placed in a very difficult spot. Its role was to allow any user to create compiled versions
of M-file programmes that could run in a standalone manner. Because MATLAB’s
architecture was not highly modular, the Compiler had to maintain a separate runtime
library that mimicked the functionality in MATLAB. This made it nearly impossible for
the Compiler team to keep up with all the changes made to MATLAB language by its
own development team.

Other signs of unnecessary complexity existed in areas as basic as printing for
MATLAB to print graphs, it had to load the Simulink libraries simply because the
printing routines relied on certain key functions in those libraries. This established a
circular dependency: Simulink required the MATLAB language, but at the same time,
MATLAB required Simulink for certain key functions (such as printing). A change in
Simulink could therefore break MATLAB. Circular dependencies such as this can be
critical failure points in software.

In sum, The MathWorks could not enjoy the benefits normally associated with a
layered architecture, where improvements in lower level modules help all higher-level
modules, and bugs in those high-level modules that do not seep down into the lower level
modules. Simulink and MATLAB were entangled, and Compiler users often had to wait
several release periods to get access to the MATLAB interpreted M-file language
improvements for their own respective run-time programmes.

In 2001, management decided to redesign the MATLAB-Simulink combination to
create a new set of core software that would serve as a platform of shared components for
MATLAB, Simulink, and the MATLAB Compiler. This new platform of shared
components is called the MATLAB Component Runtime or MCR. This set of shared
subsystems would form the core runtime environment for MATLAB, Simulink and the
MATLAB Compiler. As one might expect, management formed and co-located a
dedicated team that drew upon talents from the MATLAB and Simulink groups within
the company.

Figure 6 shows the before and after architecture at its highest logical level. In this
new architecture, The MathWorks’ developers created a new layer of functionality to
serve MATLAB, Simulink, and the Compiler. These shared platform components include
what one might expect as common modules: memory management, function execution,
language processing, and the creation of graphic objects.

 32 M.H. Meyer and P.H. Webb

Figure 6 The further layering of the MathWorks architecture to increase modularity and
flexibility for release R14 (2004)

There are numerous direct benefits to both users, and developers within The MathWorks
itself. New functionality built into Simulink no longer weighs down MATLAB-only
users, and visa versa. The Simulink team can add its own new code without worrying
about ripple affects throughout MATLAB, (such as the printing function mentioned
earlier). Further, improvements made to the language processor at the core platform level
automatically flow through to the Compiler without additional programming. The
Compiler development team no longer has to maintain its own standalone runtime
library, vastly reducing the effort required to support all the features of the MATLAB
language. Perhaps most importantly, the core MCR team (working on the bottom box in
the new architecture shown in Figure 6) can be assured that the new functionality that it
adds in areas such as language improvements, performance, and graphics processing will
automatically flow through to MATLAB, Simulink, the Compiler, toolboxes, blocksets,
and all the applications developed by users with them. The MCR has became a new and
truly powerful product platform.

With this layered architecture as a foundation, the MathWorks and its customers have
moved rapidly into new mathematical design and simulation applications. For example,
end-users can more readily customise MATLAB and Simulink to suit their application
requirements. Both programmes allow users to change the appearance and behaviour of
the user interface and to add or modify core functionality. In MATLAB, for example, the
user interface metaphor is the desktop – a working surface that holds all the tools needed
for the day’s tasks. MATLAB’s default desktop configuration contains several of the
most frequently used tasks, each contained in its own window. While users start with a
pre-configured desktop, they soon proceed to create and save their own custom
configurations. Users can further customise the desktop by specifying the fonts and

New architecture

MATLAB Simulink

MathWorks
blocksets

3rd party
blocksets

MathWorks
toolboxes

3rd party
toolboxes

MATLAB component runtime
MCR

MathWorks
blocksets

3rd party
blocksets

MathWorks
toolboxes

3rd party
toolboxes

Simulink

MATLAB

Old architecture

Compiler

Binary
code

Compiler

Binary
code

Memory management
Function execution
Language processing
Graphics processing

Circular references caused many problems
Simulink changes could harm MATLAB functions

New layered architecture
Improvements to MCR flow through to all other programmes above it
Simulink no longer impacts MATLAB
Language improvement automatically incorporated into Compiler

 Modular, layered architecture 33

colours used to display text, adding new items to the main menu bar or shortcuts to the
‘Start’ menu.

Beyond these surface level customisations lies the customisation of core
functionality: many of the mathematical functions in MATLAB are shipped with
complete M-file source code, allowing users to copy or modify this code to create their
own MATLAB-based solutions. MATLAB’s open architecture also makes it easy for
users to develop toolboxes of their own, as many have done. A MathWorks’ customer
often deploys these toolboxes internally in his or her department. However, a number of
customers have added value to these toolboxes and now sell them as independent
products. The MathWorks provides reference channel for numerous independent software
companies that make plug-ins for MATLAB and Simulink, each with its own very
specific mathematical functionality for specific applications.

In sum, the development of the MCR has facilitated greater end-user customisation
by allowing users to deliver domain-specific MATLAB-based solutions to their
customers. MATLAB users can select a set of MATLAB functions, knit them together
with a customised GUI and use the MATLAB Compiler to deploy the final application.
The deployed application contains only those functions required by the task and a more
focused GUI than the general-purpose MATLAB desktop. All this customisation would
not be possible without the newly architectured MATLAB, Simulink, and Compiler, as
well as the MCR layer developed underneath and shared by them.

In other words, The MathWorks architecture-layering activities have made mass
customisation with its software even more feasible, and less painful, than ever before.

7 Concluding remarks

Even with such examples, our observation is that many practitioners, engineers as well as
business managers, do not really understand how good architecture in software drives
business growth for systems-developing companies. Poor architecture leads to problems
for developers and users alike. In software, this means ineffective project planning and
execution, as well as a myriad of bugs for new software brought to market. Developers
suffer; users suffer more.

This observation is not ours alone. One firm that studied US commercial software
projects in 2002 found such poor planning that companies cancelled about a quarter of
their projects outright with no final product, costing the developing companies $67
billion (Mann, 2002). Overruns on other projects cost another $21 billion. Poor planning
and cost overruns are clear indicators of the absence of robust architecture and product
line strategy. The same study found that 80% of the budgets for software projects were
often devoted to repairing bugs prior to commercial release. Bug-fixing after commercial
release was an additional and substantial cost.

These are sobering data. The hypercompetitiveness of the software industry forces
many software firms to rush new features out to their users. Firms spend insufficient time
developing and enhancing the underlying architectural foundations required to support
error-free, secure programmes. As software firms grow, and add more programmers to
development teams, development projects often become encumbered in poor
communications, leaving even less time for thoughtful consideration of layered, modular
architecture (Brooks, 1995).

 34 M.H. Meyer and P.H. Webb

Perhaps there is no better example of complexity and renewal in software, and none
with greater ramifications, than Microsoft itself. It can be argued that Microsoft’s lack of
a layered, modular architecture opened a window of market opportunity for Linux.
Microsoft’s architectural deficiencies have made the addition of new functionality not
only expensive but also error-prone. As Microsoft has added considerable functionality
with each new version of its Windows operating system, that functionality has carried
with it a substantial number of new bugs with each new release. The very day that
Microsoft released XP, the company posted 18 megabytes of bug fixes, security patches,
and other updates for XP on its website (Mann, 2002). Another industry observer
reported that that Windows NT 4.0 had 10,000 known bugs upon commercial release;
Windows 2000, which followed NT, 63,000 bugs upon commercial release; and
Windows XP, released in 2001, over 100,000 bugs (Rodrigues, 2001). Bill Gates testified
during the Microsoft antitrust trial that Windows would not function if customers
removed individual modules such as the Internet Explorer browser or the Exchange e-
mail programme (Mann, 2002,p.36), a clear sign of entanglement between modules.

Like The MathWorks, Microsoft decided to confront its problems by creating a new
architecture, which it calls .Net. In Microsoft’s new architecture, one finds a modular,
layered programming environment with highly structured interfaces that serves as an
applications programming interface pervasive across Microsoft’s database and
programming tools and libraries. It has more platform capabilities: .Net provides a
common foundation for memory management, function execution, language processing,
and a common execution environment for all of Microsoft’s programming languages
(such as Visual Basic or C#). It also features a highly specific and visible layer for
security. In short, .Net represents a strategic investment in modular, layered architecture
by enhance the productivity of its developers and users the world’s largest software
company.

The good news is that an increasing number of major software companies are now
applying the principles described in this article in ways similar to The MathWorks and
Microsoft. They realise that effective standard product development and follow-on user
customisation of these standard products relies on layered, modular architecture. The
business benefits of undertaking architectural renewal of software include:

• The flexibility for users to customise various parts of the software for their own
specific purposes, thereby making the original software both more useful and
longer-lived.

• Faster time to market for new versions of the software. With well-structured
interfaces, the product is less complex and integration, which is the hardest area in
software engineering, becomes manageable.

• Greater reuse of code for different versions or market applications of the software.

• Improved risk management. If one major subsystem or component of the software
has problems, the focus of the corrections or bug-fixing can be localised more
readily to that subsystem. Further, developers can rewrite the module without
affecting the other pieces, vastly simplifying not only the programming but also the
testing effort.

• The potential for rapid third party plug-in development, with the potential for new
market applications outside the original software company’s business plan.

 Modular, layered architecture 35

It is these business benefits that the software developer must understand and articulate
before embarking on the type of architectural renewal described in these pages, renewal
that is the foundation for effective mass customisation.

References

Bass, L., Clements, P. and Kaxman, R. (1998) Software Architecture in Practice, Reading, MA:
Addison-Wesley.

Brooks, F. (1995) The Mythical Man-Month – Essays on Software Engineering, 20th Anniversary
Edition, Reading, Massachusetts: Addison-Wesley.

Clements, P. and Northrop, L. (1996) ‘Software architecture: an executive overview’, Technical
Report CMU/SEI-96-TR-003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

Deming, E. (1982) Out of Crisis, Cambridge, MA: MIT Press.

Dilip, S., Nord, R. and Hofmeister, C. (1995) ‘Software architecture in industrial applications’,
Proceedings of the 17th International Conference on Software Engineering, Seattle,
Washington: ACM Press, 24–28 April, pp.196–207.

Von Hippel, E. (1988) The Sources of Innovation, Oxford, England: Oxford University Press.

Jazayeri, M., Ran, A. and van der Linden, F. (2000) Software Architecture for Product Families,
Reading MA: Addison Wesley.

Kelly, K. (1994) Out of Control, Reading, MA: Addison-Wesley.

Manis, R. and Meyer, M.H. (1986) The Unix Shell Programming Language, Indianapolis, IN:
Howard Sams & Company.

Mann, C. (2002) ‘Why software is so bad’, Technology Review, July–August, Vol. 105, No. 6,
pp.32–38.

Meyer, B. (1992) Eiffel: The Language, Englewood Cliffs, NJ: Prentice Hall.

Meyer, M.H. and Lehnerd, A. (2004) ‘Modular platforms and innovation strategy’, in R. Katz (Ed.)
The Human Side of Managing Technological Innovation, New York. N.Y.: Oxford
University Press.

Meyer, M.H. and Lehnerd, P. (1997) The Power of Product Platforms, New York, N.Y.:
The Free Press.

Meyer, M.H. and Seliger, R. (1998) ‘Product platforms in software development’, Sloan
Management Review, Vol. 40, No. 1, pp.61–74.

Ongardanunkul, J. (2001) Introducing Products with Network Externalities, Department of
Economics, Boston College, November.

Park, S. (2001) Integration Between Hardware and Software Producers in the Presence of Network
Externalities, Department of Economics, SUNY Stony Brook.

Pine, J. (1992) Mass Customization: The New Frontier in Business Competition, Allston, MA:
Harvard Business Press.

Rodrigues, P. (2001) ‘Windows XP Beta 02: Only 106,000 bugs!’, LowEnd Mac, 8 March.

Sharman, D. and Ali, Y. (2004) ‘Characterizing complex product architectures’, Systems
Engineering Journal, Vol. 7, No. 1, pp.39–44.

Simpson, T., Umapathy, K., Nanda, J., Halbe, S. and Hodge, B. (2003) ‘Development of a
framework for web-based product platform customization’, Journal of Computing and
Information Science in Engineering, Vol. 3, Iss. No. 2, pp.119–129.

Soni, D., Nord, R. and Hofmeister, C. (1995) ‘Software architecture in industrial applications’,
Proceedings of the 17th International Conference on Software Engineering, Seattle,
Washington: ACM Press, 24–28 April, pp.196–207.

 36 M.H. Meyer and P.H. Webb

Steward, D. (1981) ‘The design structure system: a method for managing the design of complex
systems’, IEEE Transactions on Engineering Management, Vol. 28, pp.71–74.

Sundgren, N. (1995) ‘Introducing interface management in new product family development’,
Journal of Product Innovation Management, Vol. 16, pp.40–51.

Note

1 The join command combines two databases on common fields. The fourth column of the result
contains the numerical amount of the purchases. The sort command sorts on this column, in
reverse order. The tee command splits the output to a file, and into the mail programme.
Everything is linked through pipes, and all command produce ASCII delimited output and
expect that as input.

