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Abstract Many companies design families of products

based on product platforms that enable economies of scale

and scope while satisfying a variety of market applications.

Product family design is a difficult and challenging task,

and a variety of methods and tools have been created to

support this platform-based product development. Unfor-

tunately, many of these methods and tools have been

developed—and consequently exist—in isolation from one

other. In this paper, we introduce an approach to integrate

several of these disparate tools into a framework to trans-

late user needs and requirements into commonality speci-

fications during product family design. The novelty of the

approach lies in how we integrate the market segmentation

grid, Generational Variety Index (GVI), Design Structure

Matrix (DSM), commonality indices, mathematical mod-

eling and optimization, and multi-dimensional data visu-

alization tools to identify what to make common, what to

make unique, and what parameter settings are best for each

component and/or subsystem in the product family. The

design of a family of unmanned ground vehicles (UGVs)

demonstrates the proposed approach and highlights its

benefits and limitations.

Keywords Product family design � Product platform �
Commonality � Generational variety index

1 Introduction

Across many industries, the prevailing practice is to design

families of products that exploit commonality to take

advantage of economies of scale and scope while targeting

a variety of market applications. A product family is a

group of related products that are derived from a common

set of components, modules, and/or subsystems to satisfy a

variety of market applications where the common ‘‘ele-

ments’’ constitute the product platform (Meyer and Leh-

nerd 1997). The platform is used to create individual

products either through addition/subtraction/substitution of

one or more modules to realize a module-based product

family or by scaling and/or ‘‘stretching’’ one or more

design variables to realize a scale-based product family

(Simpson 2004). Successful examples can be found in a

variety of companies, including Airbus (Aboulafia 2000),

Black & Decker (Meyer and Lehnerd 1997), Boeing

(Sabbagh 1996), and Rolls Royce (Rothwell and Gardiner

1990).

Product family design is a difficult task—it involves all

of the complexities of product design compounded by the

challenges of coordinating the design of multiple products.

There are many advantages to product families, however,

most of which stem from increased commonality among

the set of products. As Robertson and Ulrich (1998) point

out, ‘‘By sharing components and production processes

across a platform of products, companies can develop

differentiated products efficiently, increase the flexibility

and responsiveness of their manufacturing processes, and

take market share away from competitors that develop only
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one product at a time.’’ Platforms promote better learning

across products, and the use of common components and

modules can decrease lead-time and risk in the develop-

ment stage since the technology has already been proven in

other products (Collier 1981, 1982). Inventory and han-

dling costs are also reduced due to the presence of fewer

components in inventory. The reduction in product line

complexity, the reduction in setup and retooling time, and

the increase in standardization and repeatability improve

processing time and productivity and hence also reduce

costs (Collier 1981; Kim and Chhajed 2000). Fewer com-

ponents also need to be tested and qualified, which reduces

cost as well as time-to-market (Fisher et al. 1999; Rothwell

and Gardiner 1990).

Successful development of a platform and deployment

of a product family require input from multiple disciplines

(e.g., marketing, engineering, manufacturing as discussed

in Jiao et al. (2007a)); unfortunately, many of the tools and

methods for product family design have been developed—

and consequently exist—in isolation from one other.

Therefore, in this paper, we introduce a new approach for

effectively integrating several of these disparate tools to

translate user requirements into commonality specifications

during product family design. Section 3 introduces our

approach for integrating these tools and methods into a

coherent framework, and Sect. 4 demonstrates the proposed

approach using an example based on a family of unmanned

ground vehicles (UGVs). The benefits and limitations of

the proposed approach along with future work are dis-

cussed in Sect. 5.

2 Related work: methods and tools to support product

family design

A variety of tools and methods have been developed over

the past two decades to support product family design and

platform-based product development (Jiao et al. 2007a;

Simpson et al. 2005). For instance, Meyer and Lehnerd

(1997) introduced the market segmentation grid to help

marketing and engineering identify potential platform

leveraging strategies for the product family as it is being

developed. As shown in Fig. 1, market segments (e.g., user

groups) are listed on the horizontal axis, while the price/

performance tiers (i.e., range of uses) are plotted on the

vertical axis. Within this grid, four platform leveraging

strategies can be identified: (1) no leveraging; (2) hori-

zontal leveraging, which shares common technology across

several market segments within a given price/performance

tier; (3) vertical leveraging, which scales technology up/

down within market segment to address different price/

performance tiers; and (4) beachhead approach, which

combines vertical and horizontal leveraging to attack all of

the market segments within a single platform. Market

segmentation grids are useful in a wide range of applica-

tions (Marion and Simpson 2005; Meyer and Lehnerd

1997), including platform-based development at start-up

firms (Marion and Simpson 2009). They have also been

used to identify platform leveraging strategies during

product family redesign (Farrell and Simpson 2008).

Identifying ways to leverage a platform and reuse

common ‘‘elements’’ within a product family is not trivial.

Martin and Ishii (2002) modified Quality Function

Deployment (QFD)—a good tool for integrating marketing

and engineering (Hauser and Clausing 1988)—to compute

a Generational Variety Index (GVI) that can be used to

help identify subsystems/components that will need to be

redesigned over the lifetime of the product line; those that

are not subject to a lot of redesign are potential platform-

able ‘‘elements’’ within the family.

Figure 2 illustrates part of the seven-step process that

Martin and Ishii (2002) use to compute GVI. After deter-

mining the market and desired life for the platform (Step

1), a QFD matrix is used to map customer requirements to

engineering requirements (Step 2); the example in Fig. 2 is

for a water cooler that has four planned variants over its

lifetime—the requirements for each variant are not shown.

The expected changes in customer requirements (Step 3)

and engineering metric target values (Step 4) are identified,

and a normalized target value matrix is calculated (Step 5)

based on the mapping of engineering requirements to

subsystems and components (see QFD Matrix II in Fig. 2).

Using the GVI rating scale shown in the lower right of the

figure, the GVI matrix is created by replacing each x in the

second QFD matrix with a 1, 3, 6, or 9 (Step 6). Finally,

the ratings in each column are tallied (Step 7) to compute

the GVI value for each subsystem/component. As noted in

the figure, subsystems and components with low GVI

values will not require a lot of redesign over the life of the

product line; therefore, they can be integrated into the

platform. Meanwhile, the ‘‘elements’’ with high GVI
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Fig. 1 Market segmentation grid and platform leveraging strategies

(adapted from Meyer and Lehnerd 1997)
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values will require a lot of redesign to accommodate the

anticipated variation in the customer requirements; there-

fore, these subsystems/components should not be part of

the platform.

To complement the GVI analysis, Martin and Ishii

(2002) introduce a Coupling Index derived from the

product’s Design Structure Matrix (DSM) (Steward 1981)

to identify ways to modularize the product and standardize

interfaces between high GVI ‘‘elements’’, thereby mini-

mizing the impact of their redesign on the system. There

are many different types of DSMs (Braha and Maimon

1998; Browning 2001); our focus here is on component-

based DSMs given their ability to represent a product’s

architecture (Sharman and Yassine 2004; Yu et al. 2007).

Component-based DSMs have been used extensively for

identifying modules within a product architecture (Helmer

et al. 2010; Huang and Kusiak 1998; Kusiak and Larson

1995), which influences not only how the product family

will be designed (Dahmus et al. 2001; Sudjianto and Otto

2001) but also how teams should be staffed, structured, and

organized for effective product development (Sosa et al.

2003). Component-based DSMs are also being used to

identify platforms within a family (Kalligeros et al. 2006)

as well as strategies for embedding flexibility into sub-

systems/components that may vary over the product life-

cycle (Suh et al. 2007). These approaches draw heavily on

the findings from recent research into change propagation

in complex systems (Clarkson et al. 2004; Eckert et al.

2004).

Concurrently, metrics for product family design have

focused primarily on assessing (1) modularity and (2)

commonality. Metrics for modularity abound in the liter-

ature and are reviewed elsewhere (Gershenson et al. 2003;

Hölttä-Otto and de Weck 2007); instead, we focus on

commonality indices for product family design and their

use as surrogates for estimating the manufacturing and

production cost savings of platform-based product devel-

opment (Fixson 2007). Numerous commonality indices

have been developed to assess the ‘‘goodness’’ of a product

family from one or more perspectives, e.g., design, fabri-

cation, assembly (Thevenot and Simpson 2006). While

most of these indices rely on discrete component and part

counts [e.g., count the number of component instances that

have the same size/shape, material/manufacturing, and

assembly/fastening scheme within a family (Kota et al.

2000)], a few indices have been developed to assess

parametric variety, i.e., variations in the settings of design

parameters across products in a family (Khajavirad and

Michalek 2007). One such index is the Product Family

Penalty Function (PFPF) introduced by Messac et al.

(2002), which can be used during product family optimi-

zation. As defined in Eq. (1), PFPF is used to measure the
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dissimilarity among the different parameter settings for

each design variable used to define the product family.

PFPF ¼
Xn

j¼1

deviationj

�xj
where �xj ¼

Xp

i¼1

xij

p

deviationj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

i¼1

ðxij � �xjÞ2

ðp� 1Þ

s ð1Þ

In Eq. (1), xij is the individual value of the ith design

variable for the jth product, n is the number of design

variables being considered, and p is the number of products

in the family. The deviation is expressed as a percentage of

the mean for each design variable, so that while the

parameter values change during optimization, the percent

deviation is normalized against the mean value of each

variable—variables that approach or have a mean of zero

should be scaled accordingly. Minimizing PFPF during

product family optimization reduces the parametric

variation in the family, which is equivalent to maximizing

commonality in the family. PFPF has been applied to

electric motor family design (Messac et al. 2002) as well as

the design of a family of General Aviation Aircraft

(Simpson and D’Souza 2004).

Finally, to support product family optimization, more

than 40 different optimization-based methods have been

developed as reviewed in (Simpson 2005). These range

from engineering-centric (Bhandare and Allada 2009; Dai

and Scott 2007) to those that include manufacturing con-

siderations (Fujita 2002; Rai and Allada 2003) and market

analysis (Li and Azarm 2002; Michalek et al. 2006). A

wide range of algorithms have been used to support

product family optimization, including linear and non-lin-

ear programming (e.g., sequential linear/quadratic pro-

gramming, generalized reduced gradient) as well as

derivative-free methods such as pattern search, simulated

annealing, and genetic algorithms (Simpson 2005). Newer

optimization algorithms such as ant colony optimization

are also finding use in product family design (Kumar and

Allada 2007); however, genetic algorithms (GAs) are

becoming the predominant approach for product family

optimization given the flexibility in their problem formu-

lation, capability to handle multiple objectives, and their

ability to run in parallel computing environments (Jiao

et al. 2007b; Khajavirad et al. 2009). Multi-objective

optimization approaches for product family design are also

being used to combine other methods and tools, such as the

market segmentation grid to identify effective platform

leveraging strategies (Kumar et al. 2009), and integrate

engineering design, customer value, and production cost

models to identify profitable portfolios of products and

platforms (de Weck 2005). Given the potential synergies

among these methods and tools, an integrated approach to

product family design would provide an effective means to

translate user requirements into commonality specifica-

tions. Our proposed approach is introduced next.

3 Proposed approach: an integrated framework

for product family design

The starting point for our integrated approach is the

product platform planning framework introduced and

popularized by Robertson and Ulrich (1998). Their

framework consists of three phases as shown in Fig. 3: (1)

product plan, (2) differentiation plan, and (3) commonality

plan. In the product plan, the goal is to identify which

products to offer when. Identifying how products will be

positioned within each market segment is part of the dif-

ferentiation plan. Finally, the commonality plan outlines

which ‘‘chunks’’ (i.e., subsystems/components) will be

shared between each of these products. Taken together, the

three phases define the product platform plan for a product

family.

While the framework is a useful guide to structure

product platform planning, it can be difficult to implement

as it has not been linked to specific methods and tools to

support each phase (Simpson et al. 2006). Therefore, we

propose the integrated approach in Fig. 4 to link the

methods and tools discussed in the previous section into

the product family planning framework of Robertson and

Ulrich (1998). In particular, we integrate the market seg-

mentation grid, DSMs, GVI, commonality indices, and

optimization to translate user requirements (i.e., customer

needs) into commonality specifications for a product fam-

ily (i.e., what to make common, what to make unique, and

what parameter settings are best for each component and/or

subsystem). The proposed approach is flexible enough,

however, that additional tools and methods can be added

and/or substituted based on the product family designer’s

specific needs.

As shown in Fig. 4, the market segmentation grid (along

with reverse engineering and benchmarking of existing

systems) is used to identify a promising product plan and

platform leveraging strategy, which initiates the differen-

tiation plan and the commonality plan. GVI and DSM are

then used to identify ‘‘elements’’ that differentiate each

product and corresponding modules within the family. GVI

is also used to define platform ‘‘elements’’ that can be

common within the family. These results are then verified

using commonality indices and multi-objective optimiza-

tion for detailed trade studies. Multi-dimensional data

visualization tools (Stump et al. 2009) can be used to

display results, allowing designers to change and modify

their preferences, targets, etc. ‘‘on the fly’’ to bring the

commonality and differentiation plans into alignment. In

essence, our integrated approach enables a holistic ‘‘Design

144 Res Eng Design (2012) 23:141–153

123



by Shopping’’ paradigm (Balling 1999) for product family

design.

4 Example: design of a family of unmanned ground

vehicles

To demonstrate the proposed approach, consider the design

of a family of unmanned ground vehicles (UGVs) for

explosive ordnance disposal. Examples of existing systems

include the Foster-Miller Talon and iRobot Packbot. While

effective, there is no sharing or part commonality across

existing systems as there is little to no incentive for man-

ufacturers to collaborate with one another. As a result,

users must maintain multiple sets of spare parts, manuals,

and tools; keep multiple specialized technicians on staff for

logistical support and maintenance; and conduct different

sets of training and certification procedures for each robot

since the operating systems and user controls are different

for each. Furthermore, there is no plug-and-play capability

across systems from different manufacturers, e.g., a

manipulator arm from one manufacturer will not work on

the other manufacturer’s UGV and vice versa. By applying

our approach to this problem, we hope to identify prom-

ising opportunities for commonality within future UGV

systems.

4.1 Market segmentation and product plan for UGV

family

To develop the product plan for the UGV family, we

defined requirements for the UGV capabilities (e.g.,

weight, speed, range, lift capacity) for different potential

missions, and threshold and objective values were identi-

fied for each capability for each mission. Threshold values

represent the minimum values that must be met in order to

complete a mission, while the objective values provide

targets that users would like to achieve. Over 50 different

Fig. 3 Product platform

planning framework of

Robertson and Ulrich (1998)

Market Segmentation Grid

Multi-Objective Optimization

Commonality Index

Generational Variety Index (GVI)
Multi-Dimensional
Data Visualization

User Requirements

Commonality Specifications

Design Structure Matrix (DSM)

Product Plan

Commonality PlanDifferentiation Plan

Generational Variety Index (GVI)

Multi-Objective Optimization

Fig. 4 Integrated approach to

product family design

Res Eng Design (2012) 23:141–153 145

123



potential missions were identified based on type of ord-

nance, UGV functionality (e.g., dig, detonate, diffuse),

location of operation, etc. Initially, formal clustering

techniques (e.g., fuzzy clustering Moon et al. 2006; Zhang

et al. 2007) were used to group similar missions into rep-

resentative ‘‘market segments’’, but it made better sense to

group the UGVs into three classes consistent with current

systems. In the end, three ‘‘performance tiers’’ were iden-

tified corresponding to small, medium, and large UGVs

based on weight; threshold and objective values were

defined for each of these three weight classes.

In parallel to this effort, we also dissected and analyzed

several existing systems, including the Talon, Packbot,

Bombot, and RONS (see Fig. 5). The capabilities of each

UGV were measured (e.g., weight, speed, battery life, lift

capacity) to establish a baseline for comparison as well as

provide data for validating the mathematical models

developed for optimization and product family trade stud-

ies. These systems were also used to construct a ‘‘generic’’

UGV architecture, which is shown in the DSM in Fig. 6.

This DSM shows not only the connections between sub-

systems and components but also the extent to which a

change in one component is likely impact another com-

ponent (L = low, M = medium, H = high) by taking into

consideration the potential for change propagation within

the system (Clarkson et al. 2004), which helps when

assigning redesign ratings during GVI analysis.

4.2 Commonality and differentiation plans

With this as our ‘‘generic’’ reference architecture for the

UGV family, we proceeded to compute GVI for each sub-

system based on the requirements for the different ‘‘per-

formance tiers’’, i.e., small, medium, and large UGVs. The

GVI results are summarized in Fig. 7. Subsystems with low

GVI values will not vary much across the family, while

subsystems with high GVI values will vary considerably in

order to achieve the performance requirements for the

different sized UGVs. For instance, the arm and gripper had

high GVI values based on the different capabilities and

desired functionality for each size robot; therefore, the

recommendation is to modularize these subsystems and

standardize their interfaces in order to allow different

manipulators and grippers to be easily swapped out (and

upgraded) for different missions. Batteries, on the other

hand, have a low GVI value, and it appears that common

batteries may be used across different UGVs; however, the

number of batteries needs to be scalable given the different

power requirements for small, medium, and large UGVs.

Meanwhile, the chassis falls in the middle—many

requirements drive chassis sizing (e.g., long vs. short and

wide vs. narrow for maneuverability and stability, as well as

reach capability). Note that while GVI helps identify which

subsystems/components can be common between products

in the family, it does not indicate what the best parameters

settings are for those shared ‘‘elements’’; this is the primary

role for optimization in our integrated approach.
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A subsequent analysis of each pair of UGVs (e.g., small

and medium, medium and large, small and large) was used

to translate these GVI recommendations to the parameter

level (Donaldson 2010); in families with many variants,

using Martin and Ishii’s Coupling Index will be a more

efficient approach (Martin and Ishii 2002). Based on this

analysis, for instance, we sought to identify potential

opportunities for scaling the chassis in one or more

dimensions based on the threshold and objective values for

each UGV pair, even though the chassis will vary across

each weight class. This analysis helped us understand each

subsystem at the parameter level before creating mathe-

matical models to estimate the performance of new UGV

designs. The final GVI recommendations are listed in

Table 1 where an ‘‘x’’ indicates common settings across

two or more UGVs, e.g., chassis height can be common to

all three UGVS, but only the small and medium UGVs

have common chassis length and width based on the

threshold and objective requirements. Based on these GVI

recommendations, we develop a mathematical model and

use multi-objective optimization, commonality indices, and

multi-dimensional data visualization to perform trade

studies and determine the best parameter settings for the

subsystems/components in the UGV family.

4.3 Mathematical modeling and multi-objective

optimization

In order to finalize our commonality specifications for the

UGV family, we developed a mathematical model to

simulate system performance (Bobuk 2010; Logan 2010).

The model was developed to estimate UGV capabilities for

the specific threshold and objective requirements that

defined each ‘‘market segment’’, e.g., the analysis for the

chassis needed to compute its weight as well as estimate its

stair climbing capability and ground clearance for obstacle

avoidance. The DSM was also used to help identify sub-

system interactions of interest to include in the model, e.g.,

the interactions between the chassis and manipulator that

dictate lift capacity and center of gravity, which impacts

tipping, self-righting, etc.

The model was developed in Simulink� and employed a

combination of physics-based models, allometric design

principles, curve fits, and look-up tables to estimate the

capabilities of the different subsystems in a new UGV

design alternative. The overall structure of the model is

shown in Fig. 8, which is divided into 14 analysis blocks.

The first 11 blocks size the specified subsystem, while the

last 3 blocks compare the predicted performance against

the capabilities defined for each weight class to compute an

effectiveness measure for each UGV based on how well the

threshold and objective values are met. The blocks are

sequenced to minimize feedback loops in the model as each

block relies on a combination of user-specified inputs (e.g.,

battery type) and inputs from other subsystems (e.g.,

chassis mass) in order to perform its analysis. Key

parameters that serve as both inputs and outputs for anal-

ysis (e.g., chassis mass, vehicle mass, vehicle velocity)

require iteration in the model as indicated by the feedback

loops in Fig. 8. Even with these iterations, the model

executes a complete analysis in 4 s on a moderately

equipped desktop PC. Note that the model depicted in

Fig. 8 generates potential designs and evaluates the design

effectiveness, but it does not attempt to solve for an

‘‘optimal’’ design; the selection of the optimal design is

performed by the designer using the trade space visuali-

zation software.

After model convergence was verified, we confirmed

trends in the model, e.g., as battery size increased, vehicle

range increased for a given vehicle mass and velocity. We

validated the individual subsystems and overall model

using data from the four existing UGVs that we dissected

and analyzed (see Fig. 5). The model is linked directly to

our trade space visualization software (ATSV) (Stump

et al. 2009), which is used to generate new design alter-

natives to study the tradeoff between commonality and

effectiveness in the UGV family. Details on model
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Fig. 7 GVI analysis for ‘‘generic’’ UGV architecture (Donaldson

2010)
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convergence, validation, and linking to ATSV can be found

elsewhere (Bobuk 2010; Logan 2010).

Once the model is linked to ATSV, random sampling

and visual steering are used to generate about 15,000

design alternatives that span the small, medium, and large

weight classes. Figure 9 plots the predicted effectiveness

of each UGV versus its size; the best 90 UGV designs in

each weight class are highlighted in black, while the

remaining designs are shown in gray. While the majority

of the designs fall into the medium weight class, there are

many small and large alternatives; unfortunately, while

the small and medium designs appear to be relatively

effective, many of the large designs in this study are not.

Regardless, these design alternatives provide a basis for a

product family trade study, which considers families

composed of different combinations of these small,

medium, and large UGVs.

4.4 Product family trade study and commonality

specifications

For this product family trade study, we consider the best 90

designs from each weight class (see highlighted designs in

Fig. 9) to create families based on the GVI recommenda-

tions, e.g., select a set of small, medium, and large UGVs

that have common batteries, scaled chassis, and different

manipulators as recommended by GVI. For each family,

we compute the effectiveness of the family by averaging

the individual effectiveness of each UGV as well as the

dissimilarity in the family using PFPF from Eq. 1.

Table 1 GVI recommendations

for commonality in key

subsystems of UGV family

Subsystem Design parameters Small Medium Large

Chassis Length x x

Width x x

Height x x x

Mobility Wheels/tracks x x x

Wheel diameter

Track width

Wheelbase

Batteries Length x x x

Width x x x

Mass x x x

Manipulators Outer arm radius x x

Arm segment length x x

Number of links x x

Power Req.

Endurance

Vehicle 
Mass

Manipulator 
Capabilities

Functional 
Capabilities

Manipulator Batteries
Motor 

Controller

Chassis 
Dimensions

Chassis 
Structure

Wheels/ 
Tracks

Vehicle 
Dimensions

Drive Motor

Effectiveness

Fig. 8 System decomposition for UGV mathematical model
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Figure 10 shows the results of this analysis with white

points being an exact match with the GVI recommenda-

tions; black points match the GVI recommendations within

one parameter, i.e., all but one subsystem parameter are

shared as recommended by GVI. Based on this analysis, we

identify five families that are an exact match and about 250

families that are within a few parameters of the GVI rec-

ommendations. Table 2 lists some of the key subsystem

parameters for the five families that match the GVI rec-

ommendations. Additional parameters that are common

within these families are also highlighted, indicating that

we may have been too conservative and missed opportu-

nities for commonality given the level of analysis we used.

Concurrent to identifying the GVI-based families, we

enumerated all 729,000 possible UGV families (=90 small

designs 9 90 medium designs 9 90 large designs) and

computed the average effectiveness and PFPF for each

family. These UGV families are shown in gray in Fig. 10.

Unfortunately, when compared with all of these possible

options, none of the GVI-based families fall on the Pareto

frontier—the families indicated by 1’s in the figure that

offer the best combination of commonality (i.e., minimum

PFPF) and effectiveness. Of the families located on the

Pareto frontier, three are of particular interest as high-

lighted in the figure: (1) the Most Effective Family, (2) the

Most Common Family, and (3) the Best Compromise

Family. The Most Effective Family does the best job of

satisfying the effectiveness requirements for the small,

medium, and large UGVs (average effectiveness =

86.8%), but it has less commonality than the other families,

although by no means the worst. The Most Common

Family provides the opposite—it offers the most com-

monality among the three UGVs in the family, but this

comes at a small sacrifice in performance (average effec-

tiveness = 86.0%). Finally, the Best Compromise Family

falls between the two—it has more commonality than the

Most Effective Family but with less sacrifice in perfor-

mance compared to the Most Common Family. In fact, the

average effectiveness is 86.7%, indicating a remarkably

good compromise in this family given the high degree of

commonality that is achieved.

The corresponding parameter settings for these three

UGV families are listed in Table 3. Parameter values that

are common are highlighted in italic; similar values (i.e.,

values that are within 5% across two or more UGVs within

a given family) are shown in bold italic. Note that even

though some of the parameter values are the same across

families (i.e., they all use tracks, and nearly all of them

have the same battery specifications), the coding for

common and similar parameter values is within a single

family, not across the three families.

Comparing Tables 2 and 3, we see that UGV families

that lie on the Pareto frontier have less commonality than

the GVI-based families as one might expect. While key

battery and manipulator parameters are made common

across both sets of families along with the use of tracked

designs, the families on the Pareto frontier have very few

chassis parameters in common. At best, the chassis height

or length is shared between the medium and large UGVs,

and the small UGV has a completely different chassis in all

cases. It is interesting that the results differ so much and yet

the average effectiveness of the family is within 1–2% of

each other given how we used the best 90 designs.

Finally, to gain more insight into the differences

between the UGV families based on the GVI recommen-

dations and the enumerated families, we code all of the

Points in highlighted 
regions indicate the 
90 most effective 

design alternatives
for each size UGV

Fig. 9 Effectiveness versus size and vehicle mass

PFPF (smaller is better)
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Key:
Matches GVI exactly
Matches GVI to 1 setting
Varies from GVI in 2 or 
more parameters

Most Effective Family
Best Compromise Family

Most
Common
Family

Fig. 10 UGV families based on GVI recommendations (white/black)

and enumerated options (gray)
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families in Fig. 10 based on how closely they ‘‘match’’ the

GVI recommendations and plot the results in Fig. 11. The

scale in Fig. 11 shows that the families range from a

complete or very close match (dark gray) to little to no

match (light gray). As expected, the closer the match to

GVI, the lower the PFPF values (i.e., the more common-

ality), and the tradeoff is remarkably favorable: families

with high PFPF values (i.e., less commonality) actually do

not perform well either. Based on the results in Fig. 9, we

conclude that this drop-off in effectiveness is driven largely

by the poorly performing large UGVs in this study.

Apparently, these poorly performing designs are also very

dissimilar to the small and medium designs, while the most

effective large designs also have a lot in common with the

small and medium designs. In many situations, this may

not be the case; however, this is a promising and useful

finding from this product family trade study.

An important take-away from this analysis is that GVI

may suggest too much commonality because it was per-

formed at the subsystem/component level (e.g., make the

chassis common) and not at the parametric level (e.g., the

chassis should have common height and width but the

length should be scaled). Furthermore, GVI analysis is

performed for the entire family and may miss opportunities

for commonality between subsets of products within the

family (e.g., the small and medium chassis can be common

but the large chassis should be unique). In both cases, using

GVI in concert with quantitative analysis—a mathematical

model of the system and optimization—will provide addi-

tional insight into the commonality-performance tradeoffs

within the family. Furthermore, quantifying the benefits of

parametric commonality on manufacturing and assembly

cost savings may help with future product family trade

studies (De Lit and Delchambre 2003; Jiao et al. 2005). In

this UGV product family trade study, we are fortunate that

the effective small, medium, and large designs tended to

have a lot of commonality; however, that may not happen in

practice. This is why multi-dimensional data visualization is

important to product family trade studies: the ability to

‘‘see’’ trends in the data is critical to making effective

design decisions particularly when identifying the platform

elements within a family. Plots like Fig. 10 and 11 clearly

illustrate the tradeoff between commonality and perfor-

mance within the product family as it is being designed.

Table 2 UGV families that most closely resemble GVI recommendations

Robot Chassis Mobility Batteries Manipulator

Vehicle

length

(m)

Chassis

width

(m)

Chassis

height

(m)

Wheels

(=1)/

tracks

(=2)

Wheel

diameter

(m)

Wheel or

track

width

(m)

Battery

length

(m)

Battery

width

(m)

Battery

mass

(kg)

Outer

arm

radius

(m)

Arm

segment

length

(m)

Number

of arm

links

Family 1

Small 0.557 0.227 0.318 2 0.261 0.028 0.112 0.062 1.4 0.021 0.565 3

Medium 0.592 0.221 0.334 2 0.291 0.032 0.112 0.062 1.4 0.021 0.524 3

Large 0.665 0.301 0.344 2 0.181 0.130 0.112 0.062 1.4 0.021 0.306 3

Family 2

Small 0.544 0.203 0.079 2 0.269 0.034 0.112 0.062 1.4 0.021 0.134 3

Medium 0.575 0.191 0.086 2 0.279 0.043 0.112 0.062 1.4 0.021 0.133 3

Large 0.911 0.500 0.079 2 0.121 0.061 0.112 0.062 1.4 0.021 0.112 3

Family 3

Small 0.578 0.208 0.080 2 0.277 0.030 0.112 0.062 1.4 0.021 0.569 3

Medium 0.603 0.205 0.080 2 0.297 0.035 0.112 0.062 1.4 0.021 0.568 3

Large 0.911 0.500 0.079 2 0.121 0.061 0.112 0.062 1.4 0.021 0.112 3

Family 4

Small 0.646 0.223 0.350 2 0.307 0.025 0.112 0.062 1.4 0.021 0.104 3

Medium 0.608 0.224 0.320 2 0.301 0.035 0.112 0.062 1.4 0.021 0.110 3

Large 0.665 0.301 0.344 2 0.181 0.130 0.112 0.062 1.4 0.021 0.306 3

Family 5

Small 0.643 0.234 0.349 2 0.307 0.021 0.112 0.062 1.4 0.021 0.104 3

Medium 0.608 0.224 0.320 2 0.301 0.035 0.112 0.062 1.4 0.021 0.110 3

Large 0.665 0.301 0.344 2 0.181 0.130 0.112 0.062 1.4 0.021 0.306 3

Italic values both GVI and PFPF suggest commonality, bold italic values PFPF suggests additional commonality, unformatted values neither

GVI nor PFPF suggest commonality
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5 Closing remarks and future work

This paper introduces an integrated approach to product

family design that links several existing methods and tools

within a three-step framework to help translate user

requirements into commonality specifications for the

family. The integrated approach includes both qualitative

(e.g., market segmentation grid, GVI) and quantitative

(e.g., multi-objective optimization, commonality indices)

measures with multi-dimensional data visualization to

realize an effective approach for product family design.

The proposed approach is applied to the design of a family

of unmanned ground vehicles (UGVs) to demonstrate its

effectiveness and shed light on its shortcomings. Families

of UGVs are successfully created based on the recom-

mendations from GVI as well as through enumeration of

all possible combinations of small, medium, and large

designs. While the GVI-based families do not fall directly

on the Pareto frontier, they provide reasonably good

solutions that are very close to the best families that can be

obtained. As such, using GVI to guide product family

formation from sets of existing designs provides a basis for

future work in product family commonality selection.

The impetus for this work was integrating several dis-

parate methods and tools that existed in the literature into a

coherent framework that can help translate user require-

ments into commonality specifications. In many cases,

designers may not have the mathematical models neces-

sary for multi-objective optimization and product family

trade studies; in which case, using qualitative tools the

market segmentation grid, GVI, and DSM can still assist

designers in determining preliminary commonality speci-

fications for the family, and the proposed framework is

flexible enough to accommodate addition tools andT
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methods based on the product family designer’s specific

needs. The next step is to integrate the tools into a single

software package—the entire process would be expedited,

and errors would be minimized, if the output from one tool

fed directly into the input of another, which was not the

case in this example. Finally, depending on the computa-

tional expense of the models involved, some multi-objec-

tive optimization approaches may become intractable and

limit the ability to ‘‘steer and interact’’ with the data while

it is being generated.
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