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This paper develops a mathematical model of how subsurface reservoir uncertainty, in particular estimated
ultimate recovery (EUR), can evolve over time. The model assumes that epistemic uncertainty reduces over
time as information from seismic surveys, appraisal wells and production logs is used to improve EUR estimates.
A reverse Wiener diffusion process with superimposed jumps is developed to capture the exponential decrease
in estimate volatility due to learning but also the existence of sudden jumps in estimates due to unexpected
discoveries such as reservoir fault lines or aquifer support. The model can be applied to quantify the evolution
of reservoir uncertainty over time during appraisal and planning of new oil and gas development projects.
Appreciation Factor data from 34 North Sea fields is used to calibrate and validate the model showing that the
evolution of EUR estimates is predicted with 82.4% of validation data points within the simulated P10 and P90
uncertainty envelope, which should theoretically cover 80% of data points if there is no model error. The key
parameters in the model are the initial EUR distribution, as well as the exponential decay rates for EUR volatility
and the likelihood of occurrence of discrete jumps.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the Exploration and Production (E&P) of oil and gas fields, sub-
surface reservoir uncertainty is one of the major uncertainties with
preeminent influence on project economic viability. Specifically, the
recoverable volume known as, estimated ultimate recovery (EUR),
defines the estimated amount of hydrocarbons that can ultimately
be produced from reservoirs. It is convenient to use EUR as it can be
applied at all stages of development planning whereas alternative
terms such as resource estimates and reserves are more appropriate
to prospects and from the time of project sanction respectively. EUR is
an important source of uncertainty that influences the strategic
planning of field development. To some extent, the unfolding of subsur-
face uncertainty over time (e.g., EUR) drives the direction and progres-
sion of E&P projects. Major energy companies spend a significant
amount of resources on quantifying and managing subsurface uncer-
tainty. A reservoir is a complex geological system and many factors
(e.g., geological structures, rock properties, fluid characteristics, reser-
voir drive mechanism, and reservoir connectivity) affect EUR.

In E&P, a traditional approach normally describes two periods re-
lated to estimating recoverable volumes for a hydrocarbon accumulation
rights reserved.
during the appraisal stage. Fig. 1 illustrates the typical development
phases for E&P projects and their associated range of subsurface uncer-
tainty. There are two consecutive stages for the appraisal phase.

(1) Scale appraisal: a periodmarked by large jumps in the estimation
of resources. The purpose of scale appraisal is to understand the
potential size of reservoirs and associated characteristics post
discovery of a field. Normally, seismic surveys, exploration or
appraisal well drilling, are utilized to collect data and hopefully
reduce the uncertainty. Sometimes scale appraisal is also called
primary appraisal or resource appraisal. Scale appraisal activities
usually reside in the exploration division of an E&P company.

(2) Confidence appraisal: a period during which gradual narrowing
of the EUR distribution occurs although sometimes it may not
lead to desired continuous reduction of uncertainty. Confidence
appraisal is also called secondary appraisal which leads up to
project sanction,whichmeans the development of a field is tech-
nically feasible and economically viable. Confidence appraisal
usually resides in the projects or developments division of an
E&P company.

Thunnissen (2003) gives a literature survey of uncertainty defini-
tions and classifications from various fields ranging from social sci-
ences, to natural sciences, to engineering. Thunnissen proposes an
uncertainty classification framework for design and development of
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Fig. 1. Development phases for E&P Projects.
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complex systems. In this framework, there are four types of uncer-
tainty: ambiguity, aleatoric, epistemic, and interaction uncertainty:

(1) Ambiguity uncertainty is imprecision due to vague definitions
and communication.

(2) Aleatoric uncertainty is inherent variation associated with a
physical system or environment under consideration. Aleatoric
uncertainty has several other names: irreducible uncertainty,
inherent uncertainty, noise, type A uncertainty.

(3) Epistemic uncertainty is due to lack of knowledge or information
in any phase or activity of themodeling process. In the literature,
epistemic uncertainty also goes by the names: reducible uncer-
tainty, subjective uncertainty, model form uncertainty, state of
knowledge, and type B uncertainty.

(4) Interaction uncertainty arises from unanticipated interaction of
many events and/or disciplines, each of which might, in princi-
ple, be foreseeable.

Under Thunnissen's uncertainty framework, market uncertainty
(such as prices for crude oil and gas products) is aleatoric uncertainty,
or irreducible uncertainty, as the market prices of crude oil are
continuously evolving into the future and individual firms have little
influence on future crude prices. Much research has been done and
models have been developed to simulate the propagation of this type
of aleatoric uncertainty in financial options and real options theory
(Trigeorgis, 2002; Copeland and Antikarov, 2003). However, reservoir
subsurface uncertainty can be characterized as epistemic uncertainty,
or reducible uncertainty, because the uncertainty stems from limited
human knowledge about the reservoirs underground during a project's
planning and operation stages. The fundamental characteristics of oil
and gas reservoirs have evolved over millions of years; therefore they
are essentially static (e.g., original oil in place) on the time-scale of
their development and exploitation. To the authors' knowledge, very
limited research has been devoted tomodel and simulate the stochastic
process of human learning on epistemic uncertainty, particularly the
evolution of reservoir subsurface uncertainty. The rest of this section
further motivates the need for such a model and describes the learning
behavior of epistemic uncertainty based on actual reservoir uncertainty
examples.

For reservoir subsurface uncertainty, there is an important distinc-
tion between the unknown “true” state of a reservoir and human
perception of this state (i.e., estimates of the subsurface parameters).
A reservoir's geological structures, fluid properties, and quantity and
quality of hydrocarbons are in fact “deterministic” as they are physical
entities and have evolved over millions of years to a quasi steady-
state before any human intervention, such as exploration and appraisal,
and production well drilling occurs. However, the human perception
(or estimation) of reservoirs' physical conditions is evolving over time
as new information is acquired through field exploration and produc-
tion. The decisions about field development are made based on
human perception of reservoir conditions rather than the underlying
“true” values, which are unknown.

The true quantity of original hydrocarbons in place for a specific
field is a deterministic number. It is unlikely to change in a short
period of time and neither is the recoverable quantity based on a
given recovery mechanism. However, the estimates of recoverable
hydrocarbons even from a fixed recovery mechanism are uncertain.
Through investment in the exploration and production, such as seis-
mic surveys, appraisal or production well drilling, and well logging,
more information is gathered which hopefully reduces the uncertain-
ty of EUR over time. Fig. 2 illustrates the concepts of evolution of sub-
surface uncertainty. It assumes that at any given point of time, the
estimate of an uncertain variable (i.e., EUR) follows a distribution
characterized by a mean and standard deviation. The solid line repre-
sents one possible trajectory for the estimated mean. It is assumed
that the estimated mean progressively approaches the “true” under-
lying value. This trajectory may not be monotonic. It is possible that
the estimate initially approaches a “false” underlying value, and
then suddenly the estimate changes significantly as discrete pieces
of new information are discovered about the reservoirs. For example,
as shown in Fig. 2, the estimate of existing EUR decreases significantly
at t2 which may be due to discovery of a new fault structure in a reser-
voir, which reducesflow connectivity amongdifferent compartments of
the reservoir. As a result, the EUR reduces if following the same devel-
opment plan (i.e., the same number of production wells). In theory as
well as in practice, it is also possible that the true underlying value is
greater than the initial estimate. For example, the actual hydrocarbon-
bearing area and play or porosity could turn out to be much higher
than the initial estimates may have suggested. In Fig. 2, Δμ represents
the initial estimation error for the mean. Fig. 2 simply represents one
trajectory for the mean estimate among many possible evolutionary
trajectories for these estimates. However, for any past project, there is
only one “realized” estimation trajectory. Therefore, an important ques-
tion is: How does one simulate the evolutionary trajectory of a variable
subject to epistemic uncertainty and human learning a-priori before any
such learning has occurred?

In this paper, we develop a stochastic model to simulate epistemic
uncertainty for subsurface EUR over time. This model is based on a re-
verse Wiener stochastic process (“randomwalk”) with superimposed
discrete jumps. The classical Wiener process is continuous but we
found that jumps are necessary to represent “surprise” discoveries
of new information over time. This model is applicable to the evolu-
tion of EUR uncertainty either pre- or post-discovery of a field.

This epistemic uncertainty model is motivated by real world
examples. Fig. 3 shows the distribution of two projects' EUR estimates
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Fig. 2. Evolution of epistemic subsurface uncertainty over time.
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from early exploration discovery to the end of appraisal. We can
extract several key observations from these two examples:

(1) First, the range of uncertainty can increase or decreases over
time. For the first example in Fig. 3, the range between the 10th
percentile (P10) and the 90th percentile (P90) narrows from
exploration discovery to end of appraisal, although it is not a
monotonic trend. For the second example in Fig. 3, the range of
uncertainty actually increases for a certain period of time.

(2) Secondly, there are some discontinuous “jumps” in median
(P50) estimates. When these jumps occur, the range of uncer-
tainty increases simultaneously.

The fact that the range of uncertainty for EUR does not necessarily
diminish has been previously reported in the literature. Demirmen
(2007) shows the non-diminishing uncertainty for a field in the
North Sea and a producing well in Colorado. Watkins (2000) con-
ducted a study on reserve Appreciation Factors (AF) for 126 fields in
the North Sea. Fig. 4 shows three actual evolutionary trajectories for
Fig. 3. Reserve estimates from exploration discove
Source: BP Exploration and Production.
reserve AF from the Watkins study. The AF is defined as the ratio be-
tween the EUR at time t and the initial value at time t0. There are three
distinct evolutionary behaviors for these three oil fields. For Valhall,
the AF increases four fold during the first 15 years. For Beryl, there
are two discrete jumps, and as a result, AF increases nearly 200%.
For Tartan, on the other hand there is a rapid reduction of AF in the
first 2 years and then AF remains relatively stable for the remaining
years. These examples show just three evolutionary trajectories. In
reality there are many potential evolutionary trajectories for AF (or
EUR) that could have occurred for each of these fields depending on
the arrival of specific subsurface information and the interpretation of
such information. The question is how we can conceptually model the
human learningprocess and simulate the underlying epistemic stochas-
tic process starting from t0 where only the initial EUR distribution may
exist.

There are many reasons that could change EUR distributions over
time. First, the inherent reason for too high or too low initial EUR is
geological complexity of fields. These inherent geological factors and
ry to end of appraisal for two unnamed fields.
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Fig. 4. Evolution of reserve appreciation factors for three oil fields in the North Sea.
Figures are adapted from Watkins (2000).
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reservoir characteristics (such as gross rock volume, reservoir drive
mechanism, reservoir connectivity and fluid and petrophysical pa-
rameters) are not well understood at the beginning. These factors
include

(1) Trap geometry and reservoir distribution/thickness, which im-
pact the gross volume estimate.

(2) Reservoir drive mechanism: such as the presence of aquifer
support or a gas gap, which affect the reservoirs' recovery
factor.

(3) Petrophysical parameters: such as rock porosity, oil saturation,
permeability.

(4) Reservoir fluid characteristics: such as viscosity, pressure, vol-
ume, temperature (PVT), and volumetric factor.

As field development progresses from appraisal to execute,
knowledge about the subsurface accumulates over time through
seismic surveys and analysis and appraisal well drilling. Ideally, the
range of uncertainty in EUR reduces monotonically and eventually
approaches the underlying true values. In many cases, not until oil
production starts to decline, can true reservoir dynamics be fully
observed and understood. Therefore, uncertainty reduction in EUR is
the result of active scientific and engineering activities, which cannot
be obtained without capital investment in E&P (usually millions or
billions of dollars) and time (around 10 years from exploration to
production). Secondly, it is possible that there are “sudden jumps”
in EUR estimates with time. These discontinuities may be due to the
discovery of static reservoir structures (e.g., faults, compartment
size1) and dynamic behaviors (e.g., aquifer support). These new dis-
coveries will potentially cause a revision of previous estimates and
this can happen at any stage of the field life cycle. In general, the
probability of having such discrete jumps is higher in the early stages
as there is limited knowledge about reservoirs. Thirdly, EUR is not
independent of field development plans. The development decisions,
such as well spacing, water and gas injection, wet or dry trees, will all
impact the EUR. Alongside the technical challenges of obtaining
accurate EUR, human, economic, and political factors are also respon-
sible for estimating bias, because public knowledge of EUR may affect
an E&P Company's worth or stock price in the market (Mackay, 2004).
Therefore, understanding and estimating the underlying true EUR is
very critical during the field exploration and appraisal stages. Such
1 Although an E&P Company could possibly maintain the same EUR by adapting field
development plans (such as drilling more wells with discovery of smaller compart-
ment size), which just means more capital investment would be needed to recover
the same amount of reserve.
estimates determine key decisions about field development, facility
concepts, field architectures, and designed processing capacities.

2. Literature review

In the petroleum engineering literature, subsurface volumetric
uncertainty, such as Stock Tank Original Oil In Place (STOOIP) and Ul-
timate Recovery (UR), has been studied and described in terms of
Probability Distribution Function (PDF) or Expectation Curve ap-
proaches, and decline curve approaches (Arps, 1945; Arps, 1956) etc.

The standard textbook formula (Jahn et al., 1998) for calculating
the STOOIP and UR is shown as follows:

STOOIP ¼ GRV·
N
G
·φ·So·

1
Bo

ð1Þ

UR ¼ STOOIP·RF ð2Þ

where

STOOIP stands for stock tank original oil in place. It normalizes vol-
ume of oil present in subsurface conditions to the standard
surface conditions.

GRV is Gross Rock Volume of the hydrocarbon-bearing interval.
It can be estimated based on the area containing hydrocar-
bons and the interval thickness.

N/G is Net to Gross Ratio (N/G). It is the ratio between the thick-
nesses of productive reservoir rock within the total (gross)
reservoir thickness.

φ is the porosity of the productive reservoir rock. It is the per-
centage of volume for bearingfluidswithin the reservoir rock.

So is the oil saturation. It is the percentage of pore space which
contains oil.

Bo is the oil formation volume factor, which transforms volume
at reservoir conditions to standard surface conditions.

UR Ultimate Recovery. It is linked to volumes initially in place by
the recovery factor. They are a fraction of the initial volume. It
is the quantity of oil that is ultimately produced.

RF Recovery Factor. It depends on reservoir drive mechanisms
(primary, secondary, and tertiary recovery) and field produc-
tion schemes and is the fraction of oil in place that is ultimately
recovered.

All the parameters for calculating STOOIP are uncertain. They are
estimated using various techniques. For example, seismic surveys and
exploration well drilling can be used to estimate reservoir location

image of Fig.�4
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and area, and core samples can be used to estimate the net gross ratio,
formation volume factor, and porosity. Given the heterogeneous nature
of an oilfield, the values for these parametersmay vary across fields. For
offshore petroleum fields, it is very expensive (tens or even hundreds of
millions of dollars) to get log samples by drilling an appraisal well. Thus,
the estimates of these parameters are generally uncertain given limited
samples. Therefore, the estimates of STOOIP and EUR are uncertain.
Quantifying the uncertainty of STOOIP and the Estimate of Ultimate Re-
covery (EUR) is one of themajor tasks in the early phases of field devel-
opment. In practice, these uncertainties are expressed in terms of
probability distributions or cumulative probability distributions (called
expectation curves in petroleum engineering). In the petroleum engi-
neering literature, there are two general approaches for estimating
the distributions of STOOIP and EUR:

(1) Monte Carlo simulation: Input parameters are sampled from their
assumed distributions. Each sample combines these uncertain
inputs and obtains one instance of STOOIP. After obtaining a
large number of samples, a frequency histogram can be obtained
to approximate the probability distributions of STOOIP or EUR.
Table 1 shows the assumed distributions for input parameters.
For simplicity, all input parameters are assumed tohave a normal
distribution. Fig. 5 shows a histogram and expectation curve for
EUR based on the inputs assumption in Table 1. The Monte
Carlo sampling results are based on 5000 samples. The estimated
distributions for EUR appear to be lognormal. This is not a
surprise since probability theory (as an extension of the central
limit theorem, Rice, 1995) says that the product ofmultiple inde-
pendent normally (or any) distributed variables has a lognormal
distribution. The expectation curve shown in Fig. 5 is essentially
equivalent to one minus cumulative distribution function. For
example, the point (200, 0.2) on the curve means that there is
a 20% chance that the EUR is greater than 200 mmbbls. For an
undrilled prospect, there is a finite probability to have zero
recoverable hydrocarbons. Therefore, the expectation curve will
not reach one.

(2) Parametric method: This is an established statistical technique
used for combining variables containing uncertainties. This
method is based on basic statistical rules to add or multiply
uncertain variables if each variable can be characterized by a
distribution with its own mean and standard deviation. The
parametric method provides a convenient way to estimate the
relative contribution of each input parameter's uncertainty. If
we assume that the inputs are independent of each other, the
relative contribution of each input parameter to the overall
uncertainty is (1+Ki

2), where Ki=σi/μi for each input parame-
ter. Applying this formula to the previous example, Fig. 6 shows
the relative impact of input parameters on uncertainty of STOOIP
and EUR. Typically, gross rock volume is the most uncertain,
followed by recovery factor, geological model factors (i.e., net-
to-gross), followed by petrophysical parameters (i.e., porosity
and oil saturation) and finally formation volume factor as the
least uncertain parameter. However, the actual ranking of these
factors for a specific field will depend on the assumptions on
the input data shown in Table 1.
Table 1
Input parameters for STOOIP and EUR.

Input parameters Assumed distribution Definition of distribution

GRV Normal distribution Mean=1010 barrels, std=3×109

N/G Normal distribution Mean=0.4, std=0.1
φ Normal distribution Mean=0.5, std=0.1
So Normal distribution Mean=0.2, std=0.03
Bo Normal distribution Mean=1.2, std=0.1
RF Normal distribution Mean=0.4, std=0.1
Both Monte Carlo sampling and the parametric method for sub-
surface uncertainty assessment have been widely applied in practice.
However, the classical reservoir uncertainty modeling approaches are
still static in the sense that they only provide a snapshot of uncertain-
ty at a given point in time. These approaches do not capture the epi-
stemic aspect of uncertainty, in other words, how our understanding
of uncertain variables could possibly evolve over time.

Recently, an extensive body of research has emerged with focus
on quantifying and modeling market (i.e. oil price) and subsurface
(i.e. EUR, production rates) uncertainty and their impact on field de-
velopment and production strategies. A special issue (Suslick and
Schiozer, 2004) in the Journal of Petroleum Science and Engineering
was devoted to risk analysis and its application to petroleum explora-
tion and production. There are two streams of literature in this
research area:

(1) Market uncertainty: Dias (2004) gives an overview of classical
real option models for evaluating E&P assets, and presents
various stochastic models (i.e., Geometric Brownian Motion
(GBM), Mean–Reversion Model (MRM), and two and three
factor models) for oil price uncertainty. However, subsurface
uncertainty remains unaddressed in the classical real options
models. Lima and Suslick (2006) estimate the volatility of 12
deep-water offshore oil projects considering that oil price will
evolve according to either GBM or MRM. They assume that vola-
tility only stems from the uncertainty in oil price. A fairly recent
paper by Abid and Kaffel (2009) shows a methodology to evalu-
ate an option to defer an oilfield development. The oil price is
modeled as GBM with discrete jumps.

(2) Subsurface uncertainty: Chang and Lin (1999) develop a sto-
chastic method based on decline curve analysis to predict the
future production rates and EUR probabilistically. Armstrong
et al. (2004) incorporate technical uncertainty using Bayesian
updating based on Archimedean copulas and evaluate the
option to acquire more information through a production
logging tool. Subbey et al. (2004) present an approach for
generating uncertain reservoir performance predictions using
a Bayesian framework and an adaptive sampling technique.
Caumon et al. (2004) proposed a workflow based on Bayesian
analysis to assess the uncertainty about a global reservoir
parameter such as net-to-gross given multiple geological
scenarios during early exploration. Zabalza-Mezghani et al.
(2004) developed a proxy model for reservoirs based on a
Design of Experiments approach to quantify the impact of un-
certainty on production forecasts. A recent paper by Maschio et
al. (2010) presents a methodology to reduce uncertainties in
reservoir simulation models using observed data and the
Latin hypercube sampling technique.

Although uncertainty has been addressed from two fronts separate-
ly (oil price and subsurface), to authors' knowledge there has not been
any research on modeling how epistemic subsurface uncertainty
evolves over time. For thefirst streamof research cited above, stochastic
models, such as GBM with jumps (Dias and Rocha, 1999; Abid and
Kaffel, 2009), have been developed to model oil price uncertainty. In
the Dias and Rocha model, jumps are used to model sudden changes
of oil prices due to abnormal events, such as wars and market crashes.
This model assumes that the probability of jumps occurring is constant
over time. However, this underlying assumption does not fit the human
learning process (i.e., progressive learning) regarding subsurface uncer-
tainty. In general, fewer surprises would be expected as we learn more
about reservoirs through field exploration and production. For the
second body of literature on subsurface uncertainty, various statistical
or probabilistic approaches have been developed and applied, such as
the Bayesian approach, decline curve analysis, and the proxy model.
However, these approaches generally require some level of field data
(i.e., production rates) and they are more suitable for performance
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prediction when a field is in the production stage. Moreover, classical
reserve estimation approaches (Demirmen, 2007), such as determinis-
tic or stochastic volumetric calculations are all bottom–up. They first
assume certain probability distributions for input parameters and
then combine these through analytic formulae or Monte Carlo simula-
tion to yield a probability distribution for EUR. While valid these
methods only give a snap shot of the EUR distribution at one particular
point in time but leave the question of how EUR evolves over time
unanswered.

This paper proposes a top–down stochastic model to simulate the
evolution of EUR considering both progressive learning and “surprise”
changes. Knowledge of possible EUR distribution trajectories is im-
portant because irreversible investment decisions are based on
human perception of EUR and not on the underlying “unknown”
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true ultimate recovery. This important distinction is glossed over in
much of the petroleum-related real options literature. Therefore, the
purpose of this model is not to accurately predict reservoir perfor-
mance per se, but to give decision makers a view of how their current
EUR could evolve over time. Given the nature of this problem, gener-
ally there are two types of modeling approaches:

(1) Data-driven approach: requires samples of petroleum projects
with historical data on EUR, and then applying statistical tech-
niques (i.e., regression, response surfacemethod) to fit empirical
models to the distribution of EUR and its evolutionary behavior.

(2) Analytical approach: assumes an initial distribution for uncertain
variables and uses several parameters (i.e., mean, standard devi-
ation) to describe the distribution and the evolutionary behavior
phi So Bo

on uncertainties in STOOIP and EUR.
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(i.e., speed of convergence, probability of sudden jumps) of EUR
distributions over time. Once an analytical model is in place, it
can be calibrated against historical data. Recently, the Bayesian
approach (Armstrong et al., 2004; Caumon et al., 2004; Subbey
et al., 2004; Sarma, 2006) has been proposed in the literature
to update posterior probability distribution of uncertainty esti-
mates by incorporating new information.

For the first approach, there are several limitations: First, it requires
a large number of samples in order to obtain statistically significant
estimates of model parameters. In practice, it could very challenging
to get access to a reasonable number of samples for reservoirs' historical
data. Second, since each reservoir is unique, the estimated parameters
tend to mix reservoirs with distinct geological characteristics. As a
result, the estimatemay not be very relevant to any particular reservoir.
This paper develops a stochastic reservoir uncertainty model based on
the second analytical approach.

3. Model development

First, this model makes several initial assumptions about EUR (i.e.,
type of distribution, speed of convergence), this approach avoids re-
quiring large samples of historical data initially and it allows updating
the model parameters when more information becomes available
later. Therefore, the model can be tuned to a specific reservoir by ac-
quiring more information from the reservoir or benchmarking to
other similar reservoirs. The rest of this section presents a stochastic
reservoir uncertainty model based on a reverse Wiener jump–diffu-
sion process.

The theoretical foundation for this model is Geometric Brownian
Motion (GBM) or Wiener processes. GBM and Wiener processes
appeared in the finance literature to model commodity price uncer-
tainty (Black and Scholes, 1973; Merton, 1973) and have been applied
to model oil price uncertainty (Paddock et al., 1988; Dias and Rocha,
1999) in petroleum E&P projects. If we assume P as a stochastic vari-
able (i.e.., oil price) and it follows a GBM, the following stochastic dif-
ferential equation describes the discrete dynamics of P:

dP
P

¼ αPdt þ σPdz ð4Þ

where αP is the drift rate, σP is the instantaneous volatility and dt is
the time increment of the Wiener process. dz is a random sample
from a standard normal distribution dz~N(0,1). Essentially, a GBM
is a continuous or discrete “random walk” from an initial position to
future positions, whereby the stochasticity comes from dz.
In this paper, we adapt the Wiener process by adding stochastic
behavior that is more appropriate to model the evolution of epistemic
uncertainty:

(1) “Reverse” Wiener process: The proposed model retains the ran-
dom walk behavior but exponentially decreases the volatility
due to randomwalk over time. In a classical randomwalk the ini-
tial starting position is known but subsequent positions that are
further and further away from the start time are increasingly
uncertain. In modeling epistemic uncertainty, the difference
between the initial value and the true value could be large initial-
ly and then tends to decrease over time in general. Adding a
“damping” factor (the exponentially declining rate for the vola-
tility) to the Wiener process, diminishes the contribution of the
randomwalk over time to allow gradual convergence to a steady
value for each sample. However, for an ensemble of samples
starting from the same initial value, the final values of the
samples still have a distribution of outcome, thus, this modified
process retains the diffusion characteristics of the standard
Wiener process. Because each sample converges – rather than
diverges – to a steady value over time,we add theword “reverse”
to the original Wiener process. The exponential decline rate
reflects the speed of human learning.

(2) Jump diffusion process: This model addswith a certain probability
discrete jumps in the stochastic process, and this probability also
exponentially decreases over time. Whenever a discrete jump
occurs, it resets the current volatility to a fraction of the initial
volatility (e.g., applying a reset factor between 0.5 and 1.5) and
therefore partially restarts the randomwalk process. Jump diffu-
sion reflects the fact that human learning is not perfect.

By adding these two stochastic characteristics to theWiener process,
we are able to qualitatively and quantitatively model the human
learning process regarding epistemic uncertainty. These two model
enhancements and their application to modeling EUR uncertainty
in E&P projects are the main contribution of this paper. The rest of
this section will show the detailed mathematical development of
the reverse Wiener jump–diffusion process.

The overall modeling steps are illustrated in Fig. 7.

(3) The first step is to define an initial probability distribution for EUR
given a snapshot at t0. The vector D(t0) contains the moments of
the distribution, such as the mean and standard deviation for a
lognormal distribution. In the previous section, we have shown
that EUR follows a lognormal distribution if each individual factor
is assumed to have an independent normal distribution. Other dis-
tributions (such as beta distribution) can be used for EUR as long
as the moments of the chosen distribution fit the moments of

image of Fig.�7


Table 2
An example of initial EUR. (Percentile estimates are normalized based on the initial P50
estimate).

P100 P90 P80 P70 P60 P50 P40 P30 P20 P10 P0

Initial inputs 0 0 0 0.57 0.82 1.00 1.18 1.36 1.57 1.89 3.82
D(to) model 0 0 0 0.71 0.88 1.02 1.18 1.36 1.59 1.96
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the statistical data for a field under study. The selection of lognor-
mal distributions in this paper is not critical as our approach does
not rely on the underlying distribution assumption and it is appli-
cable to other distributions.

(4) The second step is to update the distribution vector D from the
previous time step t−1 to the current time step at t. In this pro-
cess, the model parameter vector, W(t), needs to be updated
once an actual EUR becomes available. If the information is not
available, W(t) remains the same asW(t−1).

(5) The third step consists of generating an ensemble of EUR trajec-
toriesE(t) given themodel. These trajectories give petroleumen-
gineers and decision makers a view of how the initial EUR could
potentially evolve over time. Modelers can use these evolution-
ary trajectories as inputs for Monte Carlo simulations to test
how well various field development plans respond to this type
of epistemic uncertainty.

In this model, there are two functions, the first one is the update
function W(t)=g(W(t−1)), which updates model parameters
using available data (such as historical data of EUR). One type of
update function is based on Bayesian theory, however, as new in-
formation is not usually available in the early exploration and ap-
praisal phases of a field, we assume that W(t)=W(t−1). The
other one is the distribution evolution function D(t)=f(D(t−1),
W(t)), which updates the mean and variance of actual EUR. The
rest of this section will describe the details of the three modeling
steps shown in Fig. 7.

3.1. Step 1: generate an initial distribution vector D(t0)

Inputs for the first step include quantities defining the initial distri-
bution of EURs, such as P0–P100, which are generally available for pros-
pect, discovery and appraisal fields.

Table 2 gives the initial EUR for a hypothetical prospect. At any
given point in time, we assume that EUR follows a lognormal distribu-
tion, which is characterized by its mean2 (μ) and standard deviation
(σ) of log(x), where x is EUR. These two parameters are estimated
using the least squares method such that the mean and standard

deviation minimize the sum of squares of residuals
Pk
i¼1

r2i , where r

are the residuals between input data and estimations of the fitted
model for P10–P90. Because the theoretical P0 for a lognormal distribu-
tion is infinity, we ignore the P0 data point for least squares curve fitting.
For a prospect3 field, there is a finite probability of having zero recover-
able hydrocarbons. The example shown in Table 2 has 80% chance of suc-
cess for the prospect field. The probability distribution of EUR can be
approximated by a delta function (finite probability with zero EUR)
plus a “scaled” lognormal distribution. For the specific case shown in
Table 2, we have seven data points (k=7) for least squares fitting.

Fig. 8 shows the resulting expectation curve obtained by least
squares fitting based on the data in Table 2. The fitted initial
2 Mean and standard deviation define the random variable log(x), where x follows a
lognormal distribution. According to statistical theory, log(x) follows a normal
distribution.

3 For a prospect field, there is a finite probability of having zero EUR underground;
for a discovery field, it is certain that the EUR are positive.
distribution is a scaled lognormal distribution (P10–P80) plus a
delta function (P80–P100). Fig. 9 shows the simulated initial proba-
bility distribution for EUR estimated based on the fitted model. In
this example, the distribution vector D(t0) contains three elements:

D t0ð Þ ¼
μ t0ð Þ
σ t0ð Þ
λ t0ð Þ

2
4

3
5 ¼

1
0:13
0:2

2
4

3
5 ð5Þ

μ(t0) and σ(t0) define the scaled lognormal distribution between P10
to P80. λ(t0) defines the delta function for cumulative probability
from (1−λ(t0)) to 1. The value of σ(t0) is normalized against μ(t0).
Therefore, D(t0) defines the initial distribution of uncertainty variable
x. In this particular application, x represents the EUR normalized to its
initial P50 estimate.

3.2. Step 2: update the model parameter W(t) and distribution vectors
D(t) at time t

The second step is to update the distribution vector D from time t−1
to t. A set of parameters and functions will define how each element of
D(t) evolves over time.
0 1 2 3 4 5 6
0

200

Resource (normalized based on the initial P50 estimate)

Fig. 9. Simulated probability distribution for EUR at t0.
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• μ(t): There are two assumptions governing the evolution of μ(t).
First, we assume that the mean of log(x) starts from the initial esti-
mate and follows a random walk at each time step. Secondly, the
volatility of the random walk is assumed to decrease exponentially
over time to reflect the effect of learning. Ideally, this decrease rate
should be estimated from historical data (if available) in a similar
geographical region. It also assumes that the probability of a dis-
crete jump decreases exponentially. Hence, the following equations
can be used to define the evolution of the mean EUR μ(t):

μ tð Þ ¼ μ t−Δtð Þ þ Δt ð6Þ

Δt ¼ bΣ0e
−βt if a≥ p tð Þ

Δt ¼ cΣ0 if a b p tð Þ
�

ð7Þ

p tð Þ ¼ p0e
−γt ð8Þ

where

p(t) the probability of a sudden jump at time t
β exponential decline rate for the variation of random walk
γ exponential decline rate for the probability of a sudden jump
a a random number drawn from a uniform distribution be-

tween 0–1
b a random number drawn from a standard normal

distribution
c a random number drawn from a uniform distribution either

between 0.5 and 1.5 or between −1.5 and−0.5 with equal
probability

Σ0 the initial standard deviation for random walk of log(x),
default [0.2]

p0 the initial probability of a sudden jump, default [0.05]
Δt the discrete time increment, default [3 months].

In each incremental time step, there is p(t) probability to have a dis-
crete jump, where the probability p(t) exponentially decreases over time
governed by the parameter γ. There is an equal probability to jump up or
down. The jump size is the multiplication of the initial volatility and a
random sample from a uniform distribution between [0.5 1.5] (jump
up) or [−1.5 −0.5] (jump down). In each incremental time step, there
is a (1−p(t)) probability to continue a randomwalk with exponentially
decreasing volatility governed by the parameter β.

(1) σ(t): The standard deviation of the uncertain variable (i.e., log
(x)) starts from an initial value and decreases exponentially.
Whenever the mean μ(t) has a sudden jump, the standard
deviation increases simultaneously.

σ tð Þ ¼ σ t−Δtð Þe−α if a≥ p tð Þ
σ tð Þ ¼ max σ t−Δtð Þe−α

; dσ0

� �
if a b p tð Þ

�
ð9Þ

where

α exponential decline rate for the standard deviation of log(x)
d a random number drawn from a uniform distribution

between 0.5–1
σ0 the initial standard deviation of the uncertain variable, log

(x), default [0.3].

The random sample d partially resets the volatility to the initial
value whenever a jump occurs. The max function is to ensure that
the resulting volatility following a jump is no less than the volatility
if the underlying random walk had continued.

(2) λ(t): This parameter is non-zero for a prospect field, which has
a finite probability of having a zero EUR. For discovered fields,
λ(t)=0. If no future information is available, the model as-
sumes that this parameter remains at the initial estimate. If fu-
ture information is available, it is possible to estimate the
evolutionary trend for λ(t). For simplicity, we assume:

λ tð Þ ¼ λ t0ð Þ: ð10Þ

Eqs. (6) through (10) define the function g for each element ofD(t).
Function g (D(t)=g(D(t−1),W(t))) updatesD(t) from time step t−1 to
t. Themodel parameter vectorW(t) can also be a function of time.W(t)
includes parameters, such as α(t), β(t), and γ(t), which define the var-
ious exponential decline rates. An extended version of the W(t) vector
would also need to include the parameters a, b, c, and d. We also need
to define the initial parameters of the model, such as σ0, Σ0, and p0. If
improved EUR distributions become available over time, the parameter
vector should beupdated accordingly (e.g., Bayesian approach). If only a
snap shot of EUR is available, we assume that themodel parameter vec-
torW(t) is constant.

With this model, we can generate an ensemble of possible evolu-
tionary trajectories for EUR given the best knowledge of reservoirs
today. However, the actual evolution history for EUR is only one real-
ization among many possibilities. This is the main difference between
human perception of EUR evolution (many possibilities) and the
actual evolution history (only one evolutionary trajectory). The
ensemble of EUR evolution trajectories allows decision makers to
experiment with various field development strategies in view of pos-
sible EUR evolutions. In this type of application, since the future has
not yet unfolded, we can assume W(t)=W(t0) as a constant vector.
The next section of this paper shows a set of numerical experiments
simulated by this model.

3.3. Step 3: generating an ensemble of future scenarios

The step 3 is to generate an ensemble of future scenarios E(t) given
the model parameters as defined in steps 1 and 2. We will illustrate
the evolutionary behavior of scenarios using numerical experiments.

With the defined stochastic processes of the model, an ensemble
of future scenarios E(t) can be generated using Monte Carlo simula-
tions. This is step 3 as shown in Fig. 7. The simulation is discretized
in time steps Δt (typically 3 months over a 25 year lifecycle). Within
each simulation time step, samples are drawn from given distribu-
tions, and the evolution of EUR is simulated according the procedures
in steps 1 and 2. Fig. 10 shows two sample evolution trajectories for
EUR with two different resulting underlying values. These two trajec-
tories start from the same initial estimate and diverge in different
directions. In year 12, one of the trajectories has a sudden jump in
its EUR. The other trajectory follows a random walk and the uncer-
tainty reduces monotonically. Eventually the estimation trajectories
approach their underlying values. As a result, the range of uncertainty
decreases simultaneously. The behavior of the stochastic model can
be tuned by changing the model parameter vector W(t). Fig. 10 shows
only two possible evolution trajectories for EUR.

One practical way to quantify the range of EUR uncertainty is to
define an uncertainty spread metric as the ratio of (P10–P90)/P50.
Fig. 11 shows the uncertainty spread for the same two realizations
as in Fig. 10. Both realizations follow the same uncertainty curve up
to year 11. In year 12, the first realization has a jump which instanta-
neously increases its uncertainty spread and then declines. Because
this model assumes exponential decline of variation, governed by
the parameter β, the uncertainty spread curves also follow similar ex-
ponential decline functions. However, the decline rate of uncertainty
spread is less than β because uncertainty spread only computes part
(between P90 and P10) of the full uncertainty range.

Fig. 12 shows 100 realizations of the P50 EUR over 24 years. All 100
realizations start from the same P50 value (800 mmstb) and evolve to
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different final values, which are initially unknown. As shown in Fig. 12,
some realizations have increasing trends of EUR while others have de-
creasing trends over time. Occasionally, there are some jumps in the
evolution trajectories. Since the underlying value is unknown initially,
the underlying value predicted by this model shows a distribution of
outcomes at the end. It is important to retain a distribution of outcomes
for the underlying EUR because at the time the model is developed or
used the true underlying EUR is unknown. Each trajectory has a certain
probability to become the “realized” trajectory for the actual EUR. As
more information becomes available over time, the model parameters
can be adjusted so that the range of epistemic uncertainty narrows
and EUR approaches to the true underlying value. This model is used
to generate possible evolutionary trajectories given the best knowledge
of reservoirs at any given point of time, but not to predict the underlying
"unknown" true value.

4. Model validation

The model was developed to reproduce qualitatively the behavior
seen in several historical data sets and it has a number of parameters
0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Evolution of uncertainty spread

Number of Years

U
n

ce
rt

ai
n

ty
 s

p
re

ad

the first realization with jump
the second realization w/o jump

Fig. 11. Evolution of uncertainty spread (corresponding to the two realizations shown
in Fig. 10).
to tune the evolutionary behavior of EUR. We use the data presented
by Watkins (2000) to perform model validation. The most important
aspect which the model must reproduce is the appreciation factor
(the ratio of the EUR at times t and to=0). To validate the predicted
outcome for this quantity, a comparison between the model results
and the data fromWatkins (2000) wasmade. The validation procedure
has the following three steps:

(1) Firstly, split the original data set randomly into two groups with
equal number of field data (17 fields each). The purpose of
random allocation of data into two data sets is to maintain simi-
lar statistics. The first data set is used to calibrate the model pa-
rameters while the second data set is used for model validation.

(2) Modify model parameter Σ0 until that the model predicted P10
to P90 uncertainty envelope covers 80% of the data points in
the calibration data set. In this case, we only change one
model parameter. This model tuning process is based on the
first half of the data.

(3) Plot the second data set on the same chart and verify whether
80% of data points fall within the P10 to P90 uncertainty enve-
lope predicted by the model. This model validation process is
based on the second half of the data.

Fig. 13 overlays the actual data (“+” symbols for calibration data set,
“o” symbols for validation data set) and the envelope curves predicted
by the model. The P10, P50, and P90 envelope curves are based on the
results of 200 simulated trajectories and all the model parameters
were set at the default values except for Σ0=0.16 where the default
value was originally 0.2. By tuning the model parameter Σ0 to 0.16,
exactly 80% of the data points fall within the predicted P10 to P90 un-
certainty envelope. Then we plot the validation data set on the same
graph and count the number of data points falling within the P10 to
P90 uncertainty envelope. As shown in Fig. 13, 82.4% of validation
data points fall within the same envelope predicted by the reverseWie-
ner jump–diffusionmodel. Although 82.4% is not an exact match of 80%
that the P10 to P90 uncertainty envelope should theoretically cover, the
result validates the overall model behavior well given given the limited
data available for calibrating and validating the model parameters. As
shown in Fig. 13, there are a couple of outliers, and in one instance AF
goes up to 4 in year 12. They are clearly outside the P10 and P90 enve-
lope. This could be inherent variability in the dataset. A sensitivity study
of including or excluding certain data points could help understand the
robustness of the model. We reserve this as future work. This process
demonstrates that, given the historical data, this model can be
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calibrated by tuning the parameters, such as the initial volatility and
other parameters governing the jump–diffusion process, to reproduce
the evolutionary behavior of epistemic uncertainty.

5. Conclusions

This paper develops a reverse Wiener jump–diffusion process
model to simulate the propagation of epistemic uncertainty. This
model is developed for the purpose of simulating the evolution of
subsurface uncertainty (e.g., EUR). Based on the comparison between
the jump–diffusion model simulation results and historical data, the
model is able to represent the stochastic learning processes as seen
from data of 34 North Sea fields. Although the model is developed
with specific application to modeling reservoir subsurface uncertainty
in mind, the generic reverse Wiener jump diffusion stochastic process
is applicable to other types of epistemic uncertainty, in which uncer-
tainty stems from limited and imperfect human knowledge of under-
lying natural or physical systems that can be considered to be in
quasi steady state.

Future work includes refining and tuning the model parameters in
W(t)with larger data sets from reservoirs in different basins. If larger
data sets are available, a further multi-parameter calibration and val-
idation can be done by segregating the data sets into calibration and
validation sets, or applying the Bootstrap re-sampling technique and
conducting a sensitivity study with respect to using different datasets
for model tuning and validation. Another item for future work is to
examine and classify the sources of jumps in EUR such as geological
fault discoveries or the presence of aquifers.

Nomenclature
AF appreciation factor
UR ultimate recovery
EUR estimated ultimate recovery
Δμ initial error for EUR (or reserve estimate)
dP increment for a stochastic variable in GBM
αP drift rate for GBM
σP volatility for GBM
dz increment forWiener process, a random sample from N(0,1)
D(t0) initial distribution vector for EUR or reserve estimates
W(t) model parameter vector at time t
E(t) an ensemble of evolution trajectories at time t
I(t) new information at time t
t time [years]
Δt increment time step [months]
g update function for model parameter vector W(t)
f update function for distribution vector D(t)
x probabilistic EUR [normalized value against P50]
μ(t) mean of log(x) at time t [normalized value against P50]
σ(t) standard deviation of log(x) at time t [normalized value

against P50]
λ(t0) probability of having zero resource for a prospect field
Δt a randomwalk for EUR estimate mean from time (t−Δt)to t
p(t) the probability of a sudden jump at time t
α exponential decline rate for the standard deviation of log

(x), default [0.15]
β exponential decline rate for the variation of random walk,

default [0.2]
γ exponential decline rate for the probability of sudden jump,

default [0.15]
Σ0 the initial standard deviation for random walk of log(x),

default [0.2]
p0 the initial probability of a sudden jump, default [0.05]
σ0 the initial standard deviation of the uncertainty variable,

default [0.3]
a a random number drawn from a uniform distribution

between 0 and 1
b a random number drawn from a standard normal

distribution
c a random number drawn from a uniform distribution

between 0.5 and 1.5 or −1.5 and −0.5 with equal
probability

d a random number drawn from a uniform distribution
between 0.5 and 1
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