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A novel approach to the design of complex, multi-disciplinary systems, such as space
telescopes, is presented in the form of a multivariable isoperformance methodology. The
isoperformance approach �rst �nds a point design within a topology, which meets the
performance requirements with suÆcient margins. The performance outputs are then
treated as equality constraints and the non-uniqueness of the design space is exploited
by trading key design variables with respect to each other. Three algorithms (branch-
and-bound, tangential front following and vector spline approximation) are developed
for the bivariate and multivariable problem. The isoperformance approach attempts to
avoid situations, where very diÆcult requirements are levied onto one subsystem, while
other subsystems hold substantial margins. An experimental validation is carried out on
a laboratory testbed, trading disturbance excitation amplitude and payload mass. The
predicted performance contours match the experimental data very well at low excita-
tion levels, typical of the disturbance environment on precision opto-mechanical systems.
The relevance of isoperformance to space systems engineering is demonstrated with a
comprehensive NEXUS spacecraft dynamics and controls analysis.

1 Introduction

I
N designing complex high-performance technical
systems there are typically two con
icting quanti-

ties that come into play: resources and system perfor-
mance. One traditional paradigm �xes the amount of
available resources (costs) and attempts to optimize
the system performance given this constraint. The
other approach is to constrain the system performance
to a desired level and to �nd a design (or a family of
designs) that will achieve this performance at mini-
mal cost. This paper explores the second approach by
developing a framework termed the \isoperformance
methodology" for dynamic, linear time-invariant (LTI)
systems. This is a framework, where the solutions to
a design problem do not distinguish themselves by the
performance they achieve, but rather by the \cost"
and \risk" required to achieve this performance.
This framework is �rst developed generically for LTI

systems, which can be described in state space form.
It is then applied speci�cally to dynamics and controls
problems of precision opto-mechanical systems, such
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Fig. 1 Block diagram of science target observation
mode of a space telescope.

as the next generation of space-based observatories.
These systems combine structures, optics and control
systems such that stringent pointing and phasing re-
quirements can be met in the presence of dynamic
disturbance sources. The typical problem setting is
depicted in Figure 1.

Inputs are white-noise unit-intensity disturbances
d and reference commands r. Outputs are opto-
scienti�c metrics of interest z. The performances,
Jz, are typically expressed in terms of the root-mean-
square (RMS) of the outputs. The goal of a dis-
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turbance analysis (= performance assessment) is to
predict the expected values of the performances, Jz;i,
where i = 1; : : : ; nz and nz is the number of perfor-
mance metrics. This has been previously developed
and demonstrated by Gutierrez.18

Oftentimes the number of parameters, np, for which
a designer has to determine speci�c values exceeds the
number of performance metrics nz, i.e. np � nz � 1.
The traditional approach is to �rst choose reason-
able numbers for the system parameters pj , where
j = 1; :::; np, and to predict the resulting performances
Jz;i (initial performance assessment). If all or some
of the predicted performances do not initially meet
the speci�ed requirements, Jz;req;i, including margins,
a sensitivity analysis can provide partial derivatives
@Jz;i=@pj which are used to identify in which direc-
tion important parameters pj should be changed. This
is intended to drive the system to a design point
which satis�es all requirements, i.e. a condition where
Jz;i � Jz;req;i is true for all i. This is as far as most
existing tools and methodologies will go in the design
process.
Once a nominal design, pnom, has been found that

meets all requirements with suÆcient margins, it is
important to realize that this design is generally not
unique. It is likely that di�erent combinations of val-
ues for the system parameters, pj , will yield the same
predicted system performance Jz;i. It is the essential
idea of isoperformance to �nd and exploit these per-
formance invariant solutions, piso, in the design space.
A formal process and speci�c tools are needed, which
will ensure that a required performance level is met,
while minimizing the cost and risk of the system. This
is the impetus for the following problem de�nition.

Problem De�nition

The primary objective of this paper is to develop a
comprehensive multivariable isoperformance method-
ology for precision opto-mechanical systems. In
other words, given the required system performances,
Jz;req;i, where i = 1; : : : ; nz, attempt to �nd a set of
independent solution vectors, piso = [p1; p2; : : : ; pnp ],
whose elements are the variable parameters pj , such
that an eÆcient system design can be achieved. This
can be formulated mathematically as follows.
An appended state space representation of the dy-

namics of a closed-loop or open-loop linear time-
invariant (LTI) system is given as

_q = Azd (pj) q +Bzd (pj) d+Bzr (pj) r

z = Czd (pj) q +Dzd (pj) d+Dzr (pj) r
(1)

where Azd is the state transition matrix, Bzd and Bzr

are the disturbance and reference input coeÆcient ma-
trices, Czd is the performance output coeÆcient ma-
trix, Dzd and Dzr are the disturbance and reference
feedthrough matrices, d are unit-intensity white noise

inputs, r are reference inputs, z are system perfor-
mance outputs, q is the state vector and pj are the
independent variable system parameters. Given that
the functionals

Jz;i (pj) = F (z) , e.g. Jz;i = E
�
zTi zi

�1=2
(2)

where i = 1; 2; :::; nz, are a de�nition of the perfor-
mance metrics of interest, �nd a set of vectors, piso,
such that the performance equality (isoperformance)
constraint

Jz;i (piso) � Jz;req;i 8 i = 1; 2; :::; nz (3)

is met, assuming that the number of parameters ex-
ceeds the number of performances

np � nz � 1 (4)

and that the parameters pj are bounded below and
above as follows:

pj;LB � pj � pj;UB 8 j = 1; 2; :::; np (5)

The isoperformance condition (3) has to be met sub-
ject to a numerical tolerance, �

����Jz (piso)� Jz;req
Jz;req

���� � �

100
(6)

If scalar or vector (multiobjective) cost functions, Jc,
and risk functions, Jr, are given, solve a constrained
non-linear optimization problem such that

NLP

min
�
�JTc QccJc + (1� �) JTr QrrJr

�
such that piso 2 I and pj;LB � pj � pj;UB

and � 2 [0 1]

(7)

where the weight � is used to trade between cost and
risk objectives and Qcc and Qrr are cost and risk
weighting matrices respectively. The set I is the per-
formance invariant (isoperformance) set, containing
only solutions satisfying (3).

Alternatively this can be formulated in terms of set
theory. Figure 2 shows various sets in the vector space

p =
�
p1 p2 ... pnp

�T
and their mutual relationship in

the general case1.

1The eigenvalues �i are obtained by solving the eigenvalue
problem [Azd � �iI]�i = 0.
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Fig. 2 Sets for problem de�nition.

set description

R
np np-dimensional Real valued

Euclidean vector space

B � Rnp subset of Rnp , which

is Bounded by (5)

I � B subset of B, which satis�es

Isoperformance, see (3),(6)

U � Rnp Unstable subspace, where

max(Re(�i)) > 0

P � Rnp Pareto optimal subset,

satis�es (7) without constr.

E = I \P EÆcient subset, satis�es

(7) with constraints

The �rst task is to �nd the elements of the isoperfor-
mance set I in B. Since the performance requirements
are bounded, i.e. jJz;req;ij <1 8 i, it is true that the
intersection U \ I = ?. In other words only stable
solutions can be part of the isoperformance set, thus
I � U, where the overline denotes the stable, comple-
mentary set U = fxjx 62 Ug. The ultimate goal is to
�nd a family of designs p�iso, which are elements of the
eÆcient set E. The eÆcient set is the intersection of
the isoperformance set I and the pareto optimal set P,
i.e. E = I \P.

Previous Work

The allocation of design requirements and resources
(costs) as well as an assessment of risk during early
stages of a program is based on preliminary analyses
using simpli�ed models that try to capture the be-
havior of interest.6 The kernel of the performance
assessment (disturbance analysis), sensitivity
and uncertainty analysis framework, which is
used as a starting point for developing the isoperfor-
mance methodology was established by Gutierrez.18

The H2-type performances used here are de�ned in
accordance with Zhou, Doyle and Glover.58

The idea of holding a performance metric or value

of an objective function constant and �nding the cor-
responding contours has been previously explored by
researchers in other areas. Gilheany15 for example pre-
sented a methodology for optimally selecting dampers
for multidegree of freedom systems.15 In that par-
ticular work (Fig.5) the contours of equal values of
the objective function2 are found as a function of the
damping coeÆcients d11 and d22. In the �eld of isop-
erformance methodology, work has been done by
Kennedy, Jones and coworkers47{49 on the need within
the U.S. Department of Defense to improve systems
performance through better integration of men and
women into military systems (human factors engineer-
ing). They present the application of isoperformance
analysis in military and aerospace systems design, by
trading o� equipment, training variables, and user
characteristics. A systematic approach to isoperfor-
mance in complex, opto-mechanical systems such as
the next generation of space observatories however is
lacking at this time.
A relevant �eld that has received a lot of attention

in recent years is integrated modeling. This encom-
passes e�orts to simulate complex systems in a uni�ed
and multidisciplinary environment. Important contri-
butions to integrated modeling were made by the Jet
Propulsion Laboratory (JPL) with the creation of a
MATLAB based �nite element package and optical
modeling software called IMOS (Integrated Model-
ing of Optical Systems).23 This code was developed
to assist in the synthesis of initial models of optical
instruments and to reduce the model creation, anal-
ysis and redesign cycle as described by Laskin and
San Martin.28 The IMOS package is used extensively
throughout this paper for the generation and manipu-
lation of �nite element models.
The application of isoperformance to multiobjec-

tive design optimization draws on previous research
results in multidisciplinary design optimization.
A fundamental book on the theory of multiobjective
optimization was published by Sawaragi, Nakayama
and Tanino.57 An important application of multi-
objective optimization is concurrent control/structure
optimization. Solutions of these multi-disciplinary op-
timizations are dependent on the type of objective
functionals speci�ed and the programming techniques
employed. The method developed by Milman et al.,38

does not seek the global optimal design, but rather
generates a series of Pareto-optimal designs that can
help identify the characteristics of better system de-
signs. This work comes closest to the spirit followed
in this paper. Masters and Crawley use Genetic Al-
gorithms to identify member cross-sectional properties
and actuator/sensor locations that minimize an opti-

2The objective function in reference15 is called ITSE = inte-
gral of time multiplied by the sum of squares of displacements
and velocities of the masses.
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cal performance metric of an interferometer concept.33

A good overview of structural and multidisciplinary
optimization research is given in the volume \Struc-
tural Optimization: Status and Promise" edited by
Kamat,25 with signi�cant contributions by Haftka,
Venkayya, Sobieszczanski-Sobieski and others.

Approach and Roadmap

A roadmap is shown in Figures 3 and 4. The 
ow di-
agram in Figure 3 comprises the development of the
isoperformance methodology and its implementation.
The dashed box comprises essentially the performance
assessment and enhancement framework developed by
Gutierrez.18 The analysis process starts with a given
integrated model of the system of interest, which is
populated by an initial design vector po. The perfor-
mance assessment calculates the performance vector
Jkz and compares it to the requirements Jz;req. If the
inequality j�Jkz =Jkz j < � , where �Jkz = Jkz � Jz;req , is
met, we have found a solution that satis�es the isop-
erformance condition. We will call this solution the
nominal design pnom. If the relative error is larger
than � we perform a sensitivity analysis, which yields
the gradient vector (Jacobian) rJkz at the k-th iter-
ation. This is used in a gradient search algorithm,
which attempts to drive all performances to the isop-
erformance condition by updating pk.

Once pnom is found we begin the actual isoperfor-
mance analysis. Before trying to attack the full multi-
variable isoperformance problem, the problem space is
restricted to only two parameters pj , j = 1; 2 and one
performance nz = 1 (Section 3). The generalization
to the multivariable case with np > 2 is the topic of
Section 4. The main result from the isoperformance
analysis is a set of points, piso, which approximates
the isoperformance set I in Rnp . If this set is empty it
means that the algorithm was not able to detect ele-
ments in the isoperformance set. The recommended
procedure is then to (a) switch to a more general
algorithm, (b) modify the upper or lower parameter
bounds pLB or pUB as indicated by the active con-
straints or (c) to modify the requirements Jz;req .

If an isoperformance solution was found the method-
ology proceeds to the multiobjective optimization step
as described in Section 6. The solutions in the isoper-
formance set, piso, are evaluated for the cost objective
function Jc and the risk objective function Jr. Note
that a preference order can be formulated, since often
multiple, possibly con
icting objectives exist. The so-
lution is not a single \optimal" point design, but rather
a family of pareto optimal designs p�iso, which make
up the \eÆcient" set E. At this point a speci�c design
vector p��iso has to be selected from the eÆcient set us-
ing engineering judgement. This design is then used
for a requirements pushback analysis, which repeats
a performance assessment and uncertainty analysis to
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verify that indeed all performance requirements Jz;req
are met with suÆcient margins, while taking into ac-
count a known or assumed uncertainty �i of the design
parameters. The resulting vectors J��z ; J��c and J��r are
returned giving the performance, cost and risk of the
selected design.

to Spacecraft
ApplicationSample

Problems

Open-Loop

Experiment

Validation

NexusDOLCE Testbed1DOF, 2DOF

ODL design

Fig. 4 Roadmap: Validation

Figure 4 contains the sequential steps used for the
validation of the isoperformance methodology. In
Section 2 we introduce a sample problem. This helps
in gaining intuitive understanding and con�dence in
the correct implementation of the governing equa-
tions. An experimental investigation is presented in
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Section 5. The experiment uses the DOLCE testbed
with a uniaxial vibration exciter as the surrogate me-
chanical noise source. The goal of the experiment is to
demonstrate the ability of the isoperformance analysis
code to predict the shape and locations of isoperfor-
mance contours for combinations of system parameters
such as payload mass and disturbance excitation am-
plitude. Once con�dence has been obtained that the
methodology can yield useful results on physical sys-
tems it is applied to an actual spacecraft model. The
NGST precursor mission NEXUS was chosen for an
in-depth analysis including performance, sensitivity,
uncertainty and isoperformance analyses (Section 6).
Contributions and recommendations for future work
are discussed in Section 7.

2 Sample Problem

Figure 5 shows a schematic representation of the
single degree-of-freedom oscillator, which is composed
of a mass m [kg], a linear spring of sti�ness k [N/m]
and a linear damper (dashpot) with coeÆcient c
[Ns/m]. The oscillator is excited by a zero-mean white-
noise disturbance force F [N], which has been passed
through a �rst order low-pass �lter (LPF) with unity
DC-gain and a corner frequency !d [rad/sec].

F

c

k

m

x

Ground

Fig. 5 Schematic of single degree-of-freedom
(SDOF) oscillator.

The displacement x [m] of the mass is passed
through a �rst order highpass �lter (HPF) with cor-
ner frequency !o [rad/sec], simulating the e�ect of an
optical controller. The resulting output z [m] is used
to compute the performance. The performance is the
RMS of z, speci�cally Jz = (E[zT z])1=2, where E[ ] de-
notes the expectation operator.4 This system is shown
in the block diagram of Figure 6.
The goal is to understand how this performance, Jz ,

depends on the variable design parameters, i.e. pi 7!
Jz(pi) for i = 1; 2; :::; 5 , where p = [!d m k c !o]

T .
Isoperformance results for this problem are presented
in the next two sections.

3 Bivariate Isoperformance

Methodology

This section solves the bivariate isoperformance
problem for two independent variable parameters pj ,

d F x

White 
Noise

1/m

s +(c/m)s+k/m2

SDOF Oscillator

s

s+ωo

Optical

Control

ωd

s+ωd

Disturbance

Filter

z

Fig. 6 SDOF block diagram. From left: white
noise disturbance source, disturbance LPF, oscilla-
tor and optical control HPF.

where j = 1; 2, and one (scalar) performance objec-
tive pj 7! Jz(pj). Three alternative algorithms (ex-
haustive search, gradient-based contour following and
progressive spline approximation) are developed and
compared. We want to �nd a set of solutions, piso,
which satis�es the isoperformance condition (3).

Algorithm I: Exhaustive Search

This method discretizes the parameter space, de-
�ned by the upper and lower bounds pj;LB; pj;UB ,
where j = 1; 2, by overlaying a �ne grid and com-
pletely evaluating all grid points. The subdivisions of
the grid are de�ned by means of uniform parameter in-
crements �p1;�p2. The size of the increments should
be small enough to capture details of the isoperfor-
mance contours. This is dependent on the smoothness
of Jz(pj), which is not known apriori. Small incre-
ments are desirable as this will allow to capture a large
number of points piso on the isoperformance contours.
On the other hand the computational expense grows
signi�cantly with smaller increments. Each grid point
on the grid represents a unique parameter combina-
tion pk;l = [ p1;k p2;l ]

T . The parameter values are
obtained from p1;k = p1;LB + (k � 1)�p1 and p2;l =
p2;LB + (l � 1)�p2, respectively, which leads to a lin-
early spaced grid. The performance (Jz)k;l = Jz(pk;l)
is evaluated for all parameter combinations (complete
enumeration). The number of increments in each pa-
rameter axis is obtained as3:

n1 =

�
p1;UB � p1;LB

�p1

�
and n2 =

�
p2;UB � p2;LB

�p2

�
(8)

The index k on the �rst parameter runs from 1 to
n1+1, the index l runs from 1 to n2+14. Thus a total
number of (n1 + 1)� (n2 + 1) combinations has to be
evaluated. This is algorithmically achieved by means
of two nested for loops. The resulting performances
(Jz)k;l are stored in a (n1 + 1) � (n2 + 1) matrix. A
representation of the parameter space B discretization

3The d e operator denotes the ceiling function.
4If k = n1 + 1 then p1;k = p1;UB and if l = n2 + 1 then

p2;l = p2;UB .

5 of 21

American Institute of Aeronautics and Astronautics



AIAA-2002-1420

is shown in Figure 7.

p
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p
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p
1

p
2

∆p
2

Parameter space B

Jz,req

grid
point

iso
contour

Fig. 7 Algorithm I: Discretization of B in a lin-
early spaced grid with increments �p = [�p1;�p2]

T .

Note that the result of a particular parameter com-
bination pk;l does not a�ect the computation of the
next point. Once all the parameter combinations
pk;l have been evaluated, linear interpolation between
neighboring grid points is used to �nd isoperformance
points piso;r. The linear interpolation algorithm uses
the following equation to �nd the r-th isoperformance
point:

piso;r =

�
p1;k
p2;l

�
+

(Jz)k;l � Jz;req

(Jz)k;l � (Jz)m;n

�
�
p1;m � p1;k
p2;n � p2;l

�
(9)

The above equation is invoked if it is found that ei-
ther (Jz)k;l � Jz;req � (Jz)m;n or (Jz)k;l � Jz;req �
(Jz)m;n, assuming continuity of Jz(p). This requires
that the predicted performance at each grid point
(Jz)k;l is compared to the performance of each neigh-
boring grid point (Jz)m;n. Note that (Jz)m;n is the
performance at a neighboring point such that m 2
[k � 1, k, k + 1] and n 2 [l � 1, l, l + 1]. The point
m = k, n = l is not tested, since it represents the
grid point pk;l itself. An alternate option replaces the
linear interpolation step with a call to the MATLAB
built-in function contourc.m for contouring. This al-
lows displaying a family of several performance levels
at once.

Algorithm II: Gradient-based Contour Following

The basic idea of gradient-based contour following
is to �rst �nd an \isopoint", piso;1, which is known to
yield the required performance Jz;req , i.e. it lies on an
isoperformance contour. Once such a point is found, a
neighboring point piso;k+1 on the same isoperformance
contour is computed by means of the gradient vector
rJz(p1; p2). Thus, a prerequisite is that Jz(pj) be
continuous and di�erentiable at all points in the pa-
rameter space p = [p1; p2]

T 2 B. The desired step

direction is colinear with the tangent vector tk to the
isoperformance contour. The derivation starts by con-
sidering the bivariate function

p1; p2 7! Jz(p1; p2) , where R
2 7! R and pj 2 B (10)

Next a Taylor series expansion of the vector func-
tion Jz(p) is performed around a nominal point, pnom,
where pnom 2 B, as follows:

Jz (p) = Jz (pnom) + (rJz)T
���
pnom

��p+
1
2�p

T H jpnom �p+H:O:T:
(11)

Note that p = pnom+�p and that rJz and H are the
gradient vector and Hessian matrix, respectively. The
parameter vector increment, �p, can be written as the
product of a step size, �, and a step direction (vector),
d. Note that d is normalized to unit length

�p = � � d (12)

The starting point of algorithm II is an initial guess
po = [p1;o; p2;o]

T , which is in the \vicinity" of, but not
necessarily exactly on the isoperformance contour. A
steepest descent algorithm14 is used to obtain a �rst
isopoint piso;1 on the isoperformance contour. A di-
rection d of Jz(p1; p2), where R

2 7! R at p = po is a
descent direction if

Jz(po + � � d) < Jz(po) (13)

for all suÆciently small positive values of �. The step
size � is a scalar value and is chosen to be positive
if the initial guess po lies \above" the isoperformance
contour (e.g. yields a larger Jz value). Conversely if
the initial guess po or any subsequent iterate is \below"
the isoperformance level, � will be a negative scalar.
The next iterate is then obtained as po+1 = po+�o �no,
where no is the unit-length vector of steepest descent.
Thus, one can write the �rst order approximation at
the point po as:

Jz(po + �o � no) �= Jz(po) +rJz(po)T � �ono (14)

Recall from the Cauchy-Schwartz inequality that

Jz +rJTz
��rJz
krJzk

�
� Jz +rJTz

�
d

kdk
�

(15)

for any d 6= 0. Thus, the steepest descent vector (step
direction) at po is obtained as

no =

��rJz (po)
krJz (po)k

�
(16)

The step size, �o, is found by assuming linearity from
the initial guess po to the �rst point on the isoperfor-
mance contour piso;1. From the expression

Jz (po + �odo) �= Jz (po) +rJTz � �ono � Jz;req (17)
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one can solve for �o , such that

�o =

 
�rJz (po)T rJz (po)

krJz (po)k

!�1
� (Jz;req � Jz (po))

(18)
This assumes that po is not an extremum or a saddle
point of Jz(p1; p2), where krJz (po)k = 0 would
be true. Using the above equations the algorithm
generally intercepts an isoperformance contour, if
it exists within B, at a point piso;1 within a few
iterations. In practice an upper limit is imposed
on the step size to avoid \overshooting", when go-
ing from a small gradient to a large gradient area of B.

Given that Jz(piso;k) = Jz;req , i.e. the point piso;k
lies on the isoperformance contour, one can �nd a
neighboring point piso;k+1 = piso;k + �pk such that
Jz(piso;k + �pk) = Jz(piso;k) = Jz;req by recalling
the Taylor series expansion in (11), neglecting second-
order and higher terms and setting the �rst order term
(perturbation) to zero. Speci�cally, if

Jz (piso;k+1) = Jz (piso;k +�pk) �=
Jz (piso;k) + (rJz)T

���
piso;k

�pk � Jz;req
(19)

is to be true, then

�Jz;k = (rJz)T
���
piso;k

�pk � 0 (20)

In other words, one must choose the vector �pk, such
that it is in the nullspace of the transposed gradient

vector (rJz)T . This condition can be written out com-
ponentwise as

�Jz;k =
@Jz
@p1

����
p1;k

�p1;k +
@Jz
@p2

����
p2;k

�p2;k � 0 (21)

Geometrically this condition corresponds to following
the tangential vector tk along the isocontour. Figure 8
shows that tk can be considered the tangential vector
at point piso;k and that it is orthogonal to the normal
vector nk. There are two ways in which tk can be
obtained from rJz(pk). First one can compute the
normal vector nk from equation (16) and then rotate
it by 90 degrees to obtain the tangential vector tk.

tk = R � nk =
�
0 �1
1 0

�
� nk (22)

The second method is more general, since it is also
applicable to the case of nz > 1 performances and
np > 2 parameters. A singular value decomposition
(SVD)55 is performed on the transpose of the gradient
vector.

UkSkV
T
k = rJTk (23)

Jz (p
1
,p
2 )

p
1

p
2

isocontour

Jz,req

n
1

ÑJ z(piso,1)

ÑJ
z (piso,k)

n
k

t
k

t1

p
iso,k

p
iso,1

set B

Fig. 8 Algorithm II: Depiction of gradient vector
rJz, normal vector n and tangential vector t along
the isoperformance contour.

In the bivariate case two singular values are obtained.
The non-zero singular value, s1;k 6= 0, corresponds to
the direction of steepest descent nk and the zero sin-
gular value, s2;k = 0, corresponds to the tangential
direction tk in matrix Vk = [nk tk]. An appropriate
step size �k needs to be chosen. An estimate of the
linearization error incurred due to a step of size �pk
can be written as:

�k =
1

2
�pTk H jpk �pk +H:O:T: (24)

Neglecting higher order terms, one solves for the step
size �k , by substituting �pk = �k � tk in the above
equation and setting �k = �Jz;req=100.

�k =

�
2�Jz;req
100

�
tTk �H

��
pk
� tk
��1�1=2

(25)

The quantity � is a user de�ned tolerance and is de-
�ned as the � % acceptable deviation from the nomi-
nal \centerline", Jz;req .
With equations (22) and (25) the step direction tk

and the step size �k have been determined and one
can �nd the next point on the isoperformance con-
tour piso;k+1 = piso;k + �ktk. At this new point the
performance Jz(piso;k+1) is recomputed along with the
gradient vector rJz(piso;k+1). The process is repeated
until the parameter boundaries of B are reached, the
solution reaches the unstable subspace U or the isop-
erformance contour closes on itself.

Algorithm III: Progressive Spline Approximation

The progressive spline approximation algorithm as-
sumes that the isoperformance contour intersects the
boundaryB, i.e. that no closed loops are present. This
is most often the case, when the performance func-
tion Jz(p1; p2) is monotonic in at least one of the two
parameters. The basic idea of this algorithm is to ap-
proximate the isoperformance contour with a piecewise
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polynomial (pp) function. The spline mathematics
and tools developed by de Boor7 as well as the re-
sulting MATLAB spline toolbox are leveraged for this
algorithm.
A mathematical description of a spline, Pl(x), is

given in terms of its break points (breaks) �1; : : : ; �l+1

and the local polynomial coeÆcients cl;i of its pieces.

Pl (x) =

kX
i=1

(x� �j)
k�i

(k � i)!
cl;i (26)

This form (ppform) is especially convenient for evalu-
ation, while the B-form is often used for construction
of a spline approximation. The order is chosen as
k = 4, which leads to cubic splines and two continuous
derivatives across the break points. The progressive
spline approximation algorithm assumes that the two
endpoints a; b are on the parameter space boundary
B. The initial estimate of the isoperformance contour
consists of a single piece. The isoperformance contours
are parameterized with parameter t from endpoint a to
endpoint b. Thus at endpoint a we have t = 0 and at
endpoint b we set t = 1:0. Instead of the coordinates x
and y = f(x) as in Equation (26) the algorithm works
with vector splines such that

Pl (t) =

�
piso;1 (t)

piso;2 (t)

�
=

�
s1 (t)

s2 (t)

�
= piso(t) (27)

where
t 2 [0; 1] 7! Pl (t) 2 [a; b] (28)

the vector components of each spline piece are ap-
proximated as piecewise polynomials in ppform, where

sj (t) = fj;l (t) for j = 1; 2 and 8 l (29)

The functional approximation for each piece is then
given as

fj;l (t) =

kX
i=1

(t� �l)
k�i

(k � i)!
cj;l;i where t 2 [�l : : : �l+1]

(30)
Note that all relevant information is contained in the
break point sequence, �1 : : : �l+1 and in the polynomial
coeÆcient array cj;l;i. The subscript j refers to the vec-
tor component of piso, l refers to the piece number of
the pp approximation and i is the index of the poly-
nomial degree. In practice the coeÆcient array cj;l;i is
stored as a 2-dimensional matrix by stacking the coef-
�cient matrices of the vector components j on top of
each other, along the �rst non-singleton dimension.
Next a bisection is performed at the mid-point of

the �rst piece, (t = 0:5), resulting in the point pmid;1.
If the true isoperformance contour is close to the cubic
spline approximation, then pmid;1 will lie on the con-
tour. Generally this will not be the case and pmid;1

is then used as the starting point for a steepest gra-
dient search to �nd the closest point on the contour.
This point piso;1 represents a new break �2 and splits
the original interval [a; b] into two pieces. The MAT-
LAB function csape.m is used to compute the spline
coeÆcient matrix c for the pieces [a = �1; �2] and
[�2; b = �3]. This bisection procedure is repeated until
the midpoints of all pieces lie on the contour, subject
to a tolerance � as de�ned above. This is graphically
shown in Figure 9 for the single degree-of-freedom ex-
ample introduced in Section 2.
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Fig. 9 Progressive (cubic) spline approximation.
Isoperformance analysis of SDOF problem with
variables !d and m. The required performance is
Jz;req = 0:0008 [m].

Algorithm Evaluation

This section applies the three algorithms, which
have been implemented in MATLAB code, to the sin-
gle DOF sample problem and quantitatively as well as
qualitatively compares the answers. The conclusions
provide guidance for applications to larger problems
and the multivariable case. We choose the disturbance
corner frequency, !d, and oscillator mass, m, as the
variable parameters in order to �nd the isoperformance
contour at the Jz = 0:8 [mm] level.

Quality of Isoperformance Solution

In order to assess how well the resulting isoperfor-
mance points, piso, actually meet the isoperformance
condition (3) it is necessary to de�ne a solution \qual-
ity" metric. The \quality" of the isoperformance solu-
tion can be quanti�ed as follows. Let

�iso =
100

Jz;req
�

2
664
nisoP
k=1

[Jz(piso;k)� Jz;req]
2

niso

3
775
1=2

(31)

be a quality metric expressing the relative % error
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with respect to Jz;req . In the above equation niso is
the total number of isopoints computed, Jz(piso;k),
is the performance of the k-th isopoint and Jz;req is
the performance requirement, i.e. the desired perfor-
mance level. This number, �iso, can then be directly
compared to the desired isoperformance contour toler-
ance, � , and should always be smaller than it. Note
that this de�nition of solution quality does not pre-
vent individual solutions piso from falling outside the
tolerance band [(1��=100) �Jz;req; (1+�=100) �Jz;req].
Algorithm Comparison

The isoperformance results for exhaustive search are
shown in Figure 10. The isoperformance curve shows
that a small increase in the disturbance �lter cor-
ner frequency !d below about 30 radians per second
(roughly 5 Hz), which is the natural undamped fre-
quency of the oscillator, requires a large increase in
mass m in order to maintain the same RMS level.
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[k

g]
   

  

 Isoperformance contour (I) for : Jz,req = 0.0008 m
Parameter Bounding Box

Fig. 10 Algorithm I (Exhaustive Search): Isoper-
formance contour for single DOF problem (!d;m)
with discretization �p = (1=20)[pUB �pLB] and a tol-
erance of � = 1%.

The quality of the isoperformance contour is very
dependent on the discretization level. The smaller
�p, the better the contour will be interpolated but the
more computation time is required. For the exhaus-
tive search algorithm the solution quality is shown in
Figure 11.
The isoperformance contours obtained with contour

following (not shown) and progressive spline approx-
imation (Fig. 9) are very similar. A comparison of
the computational cost among algorithms is shown in
Table 1. In order to achieve a fair comparison it was
deemed necessary that all three methods yield isoper-
formance solutions of nearly equal quality as expressed
by the �iso metric. Algorithm I is the most compu-
tationally expensive. This is due to the fact that in
the SDOF case 441 points had to be evaluated, but
only 35 points form the isoperformance contour. Algo-
rithm III (progressive spline approximation) is clearly
the fastest, however it only works for open segments
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Fig. 11 Quality: Contour solution quality accord-
ing to (31).

Table 1 Comparison of algorithms I-III for single
DOF problem.

Result Ex Search Co Follow Sp Approx

FLOPS 2,140,897 783,761 377,196

CPU [sec] 1.15 0.55 0.33

Tolerance: � 1.0 % 1.0 % 1.0 %

Error: �iso 0.057 % 0.379 % 0.087 %

isopoints 35 41 7

and assumes that there is only a single isoperformance
contour, which intersects the boundary B. Thus, it is
the most restrictive (least general) of the three algo-
rithms. The second algorithm (gradient-based contour
following) has a computational cost which is in be-
tween the other two methods. Multiple open or closed
segments can be detected, but several random trial
points pnom;i, where i = 1; 2; : : : ;#of trial points, are
required to detect multiple contours. The advantage
of this method is that it uses knowledge about the
previous points, piso;k, obtained in order to compute
the next isoperformance solution piso;k+1. Another ad-
vantage is that the step size, �k, automatically adjusts
according to the local curvature of Jz(piso;k) by means
of a �nite di�erence approximation of the Hessian ma-
trix. The disadvantage of algorithm II is that one must
recompute the gradient rJz(piso;k) at each new iso-
point. The generalization of these algorithms to the
multivariable case is discussed in the next section.

4 Multivariable Isoperformance

Methodology

This section generalizes the algorithms developed in
the previous section to the multivariable case. This
generalization is essential in order to render isoper-
formance a useful technique for realistic problems.
Speci�cally, there can be more than two variable pa-
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rameters and multiple performances, i.e. np > 2 and
nz > 1. The condition that the number of variable pa-
rameters always exceeds the number of performances
np�nz > 1 has to be maintained in order for there to
be a non-zero isoperformance set. There are two main
challenges in the multivariable case:

� Complexity as a function of np and nz

� Visualization of isoperformance set I in Rnp

Branch and Bound Search Algorithm (Ib)

The exhaustive search algorithm (Ia) in the multi-
variable case (np > 2) discretizes the parameter set
B, de�ned by the lower and upper bounds pLB;j and
pUB;j , where j = 1; 2; :::; np, with a �ne grid and eval-
uates all grid points. This was presented for the case,
when np = 2 in Section 3. Subsequently each grid
point is tested, and if the isoperformance condition
(6) is met, the grid point is retained in the isoper-
formance set I. The exhaustive search algorithm for
the multivariable problem can be implemented as np-
nested loops. Note that the value of the j-th parameter
in these loops is given as

pj;ij = pj;LB + (ij � 1) ��pj where j = 1; 2; : : : ; np
(32)

Clearly, this is not practical even for relatively modest
problems. Assume for example that np = 6 and that
n1 = : : : = nnp = 50, then the performance evaluation
pj 7! Jz has to be carried out 506 = 1:56 � 1010 times.
It it took one second of CPU time per performance
evaluation it would take 495.5 years to evaluate the
entire trade space on a single computer.
A remedy is found by modifying exhaustive search

as a branch-and-bound algorithm (Ia). The branch-
and-bound algorithm starts with an initial population
(branches), which are evenly but coarsely distributed
in B. It then tests if the performance at neighboring
points (branches), pm and pn, is such that the isoper-
formance surface passes in between them:

[Jz (pm) � Jz;req � Jz (pn)][[Jz (pm) � Jz;req � Jz (pn)]
(33)

where pm; pn are np � 1 vectors and Jz;req is a nz � 1
vector. If the answer is true, both branches are re-
tained and further re�ned in the next generation. If
the answer is false the point (branch) pm is elimi-
nated. This is graphically shown in Figure 12 for two
dimensions.
In the multivariable case the squares shown in Fig-

ure 12 are actually hyper-rectangles. The size of the
hyper-rectangles is reduced by a factor of two along
edges with each generation. This re�nement continues
with each generation, ng, until the exit criterion

�iso;ng < � (34)

generation n

generation n+1

pi pj

Parameter Bounding Box  B

points 
(branches)

unknown 
isoperformance

surface

Jz,req

Jz,req

branch bound

Fig. 12 Multivariable Isoperformance (Ib):
Branch-and-Bound graphic representation.
Crossed out points (branches) are dropped in
the next generation.

is met.
It was empirically found that setting a tolerance

tighter than 2% becomes very expensive, since in the
branch and bound approach each generation is roughly
2np times larger than the previous generation. An ad-
vantage of the branch-and-bound algorithm, however,
is that it does not require any sensitivity (gradient)
information.

Tangential Front Following Algorithm

In the multivariable case there will be nz per-
formance metrics and np parameters, where np �
nz � 1. A �rst order Taylor approximation of
the vector performance function Jz at a point pk =
[pk1 p

k
2 : : : pknp ]

T 2 B can be written as:

Jz
�
pk+1

�
= Jz

�
pk +�p

�
= Jz

�
pk
�
+rJTz

��
pk
�p+HOT

(35)
The Jacobian, rJz , is the matrix of �rst order partial
derivatives of Jz with respect to p:

rJz =

2
666666666664

@Jz;1
@p1

@Jz;2
@p1

� � � @Jz;nz
@p1

@Jz;1
@p2

@Jz;2
@p2

� � � @Jz;nz
@p2

...
...

...
...

@Jz;1
@pnp

@Jz;2
@pnp

� � � @Jz;nz
@pnp

3
777777777775

(36)

The singular value decomposition (SVD) of the Ja-
cobian is a key step. It provides a set of orthogonal
unit-length vectors, vj , as the columns of matrix, V ,
thus forming the column space and null space of the
Jacobian, respectively.

U�V T = rJTz (37)
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and the individual matrices are as follows:

U =
�
u1 � � � unz

�| {z }
nz�nz

�=
�
diag

�
�1 � � � �nz

�
0nz�(np�nz)

�| {z }
nz�np

V =

2
64 v1 � � � vnz| {z }

column space

vnz+1 � � � vnp| {z }
null space

3
75

(38)

Thus, at each point there are np�nz directions in the

null space. It is a linear combination of the vectors in
the null space, Vt, which is used to determine a tan-
gential step, �p, in a performance invariant direction.

�p = � � ��1vnz+1 + : : :+ �np�nzvnp
�
= �Vt� (39)

where �p is the performance invariant step increment
in Rnp , � is a vector of coeÆcients, which determines
the linear combination of directions in the nullspace,
Vt, and � is a step size. Currently, in the multivariable
case the step size, �, is set by the user. An automatic
step size determination could be added as a re�nement
in the future. The coeÆcient vector, �, is determined
as follows

� =

8<
:

�i = �1; �j = 0 for i 6= j

�i = � 1p
np � nz

8 i = 1; : : : ; np � nz

(40)
The principal front points, as shown in Figure 13,
propagate in one of the positive or negative directions
given by the principal vectors, vi, in the null space.
The intermediate front points on the other hand prop-
agate in directions, which have equal contributions
from all vectors in vt. The � sign for each �i deter-
mines in which \quadrant" the front point propagates.
The tangential front following algorithm is a gen-

eralization of the gradient-based contour following
algorithm, which was developed for the case when
np � nz = 1, see subsection 3. The idea is to grad-

ually explore the isoperformance set I, starting from

a random initial point, pnom, and subsequently step-

ping in tangential, orthogonal directions, vj , where

j = nz + 1; : : : ; np, which lie in the null space of the

Jacobian. The active points form a \front", when
connected to each other. The front grows gradually
outwards from the initial point until the boundary is
intercepted. This is similar to \moss", which grows
from an initial seed to gradually cover the entire ex-
posed surface of an imaginary np-dimensional rock.
This is shown graphically in Figure 13.
The main advantage of this algorithm, is that it

converts the computational complexity from a np to
a np � nz problem, albeit still in non-polynomial
time. The disadvantage of the algorithm is that a
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Fig. 13 Tangential Front Following (II) principle.

non-uniform distribution of isoperformance points can
result from the behavior of the Jacobian in di�erent
regions of the set B or at the boundary of B. The
underlying performance function Jz (p) has to be con-
tinuous and di�erentiable over the entire set B.

Vector Spline Approximation

Even though the tangential front following algo-
rithm is more eÆcient than branch-and-bound, it will
still be computationally expensive if np � nz, is large.
An estimate of the computational expense of each
algorithm is given below. Hence, it is desirable to
�nd an algorithm with a further signi�cant increase
in eÆciency. Such an algorithm is constructed by
generalizing the bivariate progressive spline approxi-
mation. The basic idea of vector spline approximation

is to only capture important border and interior points

of the isoperformance set I. A t-parameterized vector
spline in np-dimensional space connecting two points
A and B can be written as

p (t) =

2
66664

p1 (t)

pj (t)
...

pnp (t)

3
77775 =

2
66666666664

kP
i=1

(t� tA)
k�i

(k � i)!
� c1;i

kP
i=1

(t� tA)
k�i

(k � i)!
� cj;i

...
kP

i=1

(t� tA)
k�i

(k � i)!
� cnp;i

3
77777777775
= C�t̂

(41)
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where C is the vector spline coeÆcient matrix and t̂ is
a vector, which depends on the parameter t

t̂ =

�
1 � � � (t� tA)

k�i

(k � i)!
� � � (t� tA)

k�1

(k � 1)!

�T
(42)

whereby t 2 [tA; tB ] if the spline connects the points
A and B in np-space. The vector spline approximation
algorithm uses cubic splines of order, k = 4, one can
then write:

t̂ (t) =

�
1 t� tA

(t� tA)
2

2

(t� tA)
3

6

�T
(43)

and the cubic spline coeÆcient matrix, C, simpli�es to

C =

2
666666664

c1;1 c1;2 c1;3 c1;4
...

...
...

...

cj;1 cj;2 cj;3 cj;4
...

...
...

...

cnp;1 cnp;2 cnp;3 cnp;4

3
777777775

(44)

The �rst step of the vector spline approximation al-
gorithm is to �nd the border points, piso;border, which
meet the isoperformance condition (3) and lie on an
edge of the parameter bounding box B. These points
are found by �rst computing the performance vector,
Jz, at all 2

np corner points and searching for boundary
points, piso;border, which lie on an edge connecting two
corner points, which meet the condition

Jz (pcorner;i) � Jz;req � Jz (pcorner;j)[
Jz (pcorner;i) � Jz;req � Jz (pcorner;j)

(45)

The next step is to connect the isoperformance border
points with cubic splines along the boundary of B. In
this step the mid-points of the border splines are also
determined. Finally interior points of the isoperfor-
mance set I are obtained by computing the centroid.
This can be considered to be the center point of I. An
initial guess for the centroid is:

p̂cent =
h
p̂c;1 � � � p̂c;j � � � p̂c;np

iT
where p̂c;j =

1

nb

nbX
i=1

piso;border;i;j
(46)

and nb is the number of border points. The actual
centroid, pcent, is found by steepest gradient search as
described before. Finally the cubic splines connecting
the centroid and the mid-points of the border splines
are found, subject to tolerance, � .
The vector spline approximation algorithm does

not provide the same large number of isoperformance
points, piso, and \continuous" approximation to I

as branch-and-bound or tangential front following.
Rather, it only computes some key points and their
connecting splines. This might be acceptable, since
one of the goals of the isoperformance methodology is
to �nd solutions which are very \di�erent" in a design
vector sense, while still yielding the same performance
vector Jz.
The multivariable SDOF problem was tackled by the

vector spline approximation algorithm. The three vari-
able (design) parameters, !d, m and !o are considered.
The desired performance level is Jz;req = 0:8 [mm]
RMS. Results for the single DOF oscillator problem
are shown in Figure 14. The outline of the isoperfor-
mance surface can clearly be seen.

10
20

30
40

50
60 1

2
3

4
5

0

100

200

300

400

500

600

Parameter 2: mass m
  [kg]      

       
Parameter 1: disturbance corner ωd [rad/sec] 

Pa
ra

m
et

er
 3

: c
on

tr
ol

 c
or

ne
r 

 ω
c 

 [
ra

d/
se

c]
   

 

Multivariable Isoperformance (III): Vector Spline Approximation

Fig. 14 Multivariable Isoperformance (III): Vector
Spline Approximation for SDOF sample problem.

Multivariable Algorithm Comparison

A comparison of the multivariable algorithms using
the single degree-of-freedom problem is presented in
Table 2. The algorithms are compared based on the
CPU runtime, the number of 
oating-point operations
required, the solution quality expressed as �iso and
the number (quantity) of isoperformance points, piso,
found.
Even though the above numbers are obtained for a

speci�c low-order example, the relative trends between
algorithms are likely to apply to large-order problems
as well. As expected the exhaustive search is the most
expensive algorithm and requires almost 1.5 hours to
run. The vector spline approximation on the other
hand completes in merely 5 seconds. Branch-and-
Bound improves over exhaustive search by a factor of
roughly 10 and tangential front following in turn im-
proves over branch-and-bound by a factor of roughly
7. The tangential front following algorithm results in
the best numerical solution quality as measured by,
�iso. Branch-and-Bound provides the largest number
of isopoints (� 7500), whereas vector spline approxi-
mation yields \only" 20 such points. Recall, however,

12 of 21

American Institute of Aeronautics and Astronautics



AIAA-2002-1420

Table 2 Comparison of multivariable algorithms
for SDOF problem: (Ia) Exhaustive Search, (Ib)
Branch-and-Bound, (II) Tangential Front Follow-
ing and (III) Vector Spline Approximation.

Metric Ia Ib II III

MFLOPS 6,164 891 106 1.5

CPU time [s] 5078 498 69 4.5

Tolerance � 1.5 % 2.5 % 1.5 % 1.5%

Error �iso 0.87 % 2.43 % 0.22 % 0.42 %

# of isopoints 2073 7421 4999 20

that the spline approximation also provides the spline
coeÆcient matrices, such that additional points could
be easily generated along the connecting splines.
Vector spline approximation is the most restrictive

algorithm in the sense that it requires the underly-
ing performance vector function, pj 7! Jz(pj), where
pj = 1; : : : ; np, to be continuous, smooth, di�eren-
tiable and quasi-monotonic in B. Thus, if I were a
closed region with no boundary points onB, the vector
spline approximation would fail. Tangential front fol-
lowing does not require quasi-monotony and can deal
with closed regions. Here the problem is that if I con-
sists of several, distinct regions in B the algorithm
requires several random initial guesses, po, in order to
�nd all regions. There is no guarantee of completeness
with a �nite number of trial points. Distinct regions
are rarely observed in practice.
Finally branch-and-bound is the most general algo-

rithm and is very robust, as long as the initial grid is
chosen reasonably �ne. Another advantage of branch
and bound is that it does not require gradient (sen-
sitivity) information. The general strategy is to �rst
attempt an isoperformance solution with vector spline
approximation and move to the other, more expensive
algorithms if a solution in B is expected to existed but
cannot be found. This algorithm switching strategy
was suggested in the paper roadmap, see Figure 3.

5 Experimental Validation

The goal of the experimental validation is to demon-
strate the ability of the isoperformance methodology
to accurately predict performance contours for a phys-
ical laboratory testbed in a 1g environment.

Testbed Description

The DOLCE testbed shown in Figure 15 was ex-
plicitly designed for this purpose. The main feature
of DOLCE is that system parameters can be varied
over a large range. This is di�erent from the can-
tilever truss employed by Gutierrez,18 which was used
for physical parameter sensitivity validation via small

perturbations of masses and sti�nesses. The four vari-
able parameters on DOLCE are:

� Vs excitation RMS voltage [V]

� mp payload mass [lbs]

� ms seismic mass [g]

� ks suspension spring sti�ness [lbs/in]

Figure 15 shows the testbed, which, starting from
the top, is comprised of an uniaxial vibration exciter
(shaker), with a seismic mass, ms, driven by a band-
pass �ltered (0-100 Hz), random excitation voltage,
Vs. Next the upper stage contains a single small bay
of a square truss and a coupling plate. The lower stage
consists of a large square truss, a weight bed holding
a payload mass, mp, and an aluminum sandwich base
plate. Finally an axial stabilization system and four
(4) suspension springs of sti�ness ks complete the ar-
rangement.

ks

m p

Vs

Stabilization

System and

Suspension

Lower

Stage and

Weightbed

Upper

Stage

ShakerFd

z
base plate

displacement

ms

Fig. 15 DOLCE Testbed

The shaker generates a random axial disturbance
force, Fd, whose magnitude and frequency content de-
pend on the excitation voltage, Vs, and the seismic
mass, ms. This device is meant to simulate the distur-
bances generated by vibrating on-board machinery on
a spacecraft (e.g. reaction wheel, cryocooler), albeit
at a signi�cantly higher force level. The performance
is the root-mean-square (RMS) of the base plate dis-
placement

Jz = E
�
zT z

�1=2
(47)
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This would correspond to jitter of the spacecraft bus
in a real space system. The primary instrumentation
consists of a uniaxial load cell, which is attached to the
seismic mass and measures the disturbance force, Fd.
The performance is measured via an inductive prox-
imitor, which acts as a gap sensor (eddy current gap
sensor Bentley XL 5mm). The gap sensor is very sensi-
tive and was calibrated to 0.425 V/mil of displacement
with a LB-11/70 Laser Displacement Sensor. Also a
Sunstrand DC accelerometer was installed in order to
corroborate the gap sensor results. The sensor suite
below the sandwich plate is shown in Figure 16.

gap sensor

laser disp sensor

DC accelerometer

Fig. 16 DOLCE Testbed Sensors

Experimental Approach

The experimental approach is presented in Fig-
ure 17. First the testbed was assembled, instrumented
and calibrated. It was decided to conduct a bivari-
ate isoperformance test, with the performance given
by Equation 47. The variable parameters were the
excitation voltage, Vs, ranging from 0.1-1.0 [Vrms] as
well as the payload mass, mp, ranging from 0-200 [lbs].
A test matrix was run on the testbed and recorded
with parameter increments �Vs = 0:1 and �mp = 10,
respectively. From this gridded data isoperformance
contours were extracted via linear interpolation, see
above.

Compare experimental
results and model predicitions

Assemble
Testbed

Test Matrix

spring-mass 
model

Theoretical
FEM

Updated
FEM

?

Insights

Fig. 17 Experimental Approach

Independently and without knowledge of the exper-
imental results an apriori �nite element model (FEM)
was constructed (\original FEM"). This model only
used assembly drawings, masses from scale measure-
ments and catalogue values for material properties and
spring sti�nesses. The predictions from this model
would be equivalent to what could be expected from

isoperformance analyses for spacecraft in the concep-
tual and preliminary design phases, such as NEXUS.
A more accurate prediction is expected from an up-
dated FEM, which has its physical parameters tuned
such that the FEM and experimental transfer function
(measurement model) from Fd to z coincide well. Fi-
nally the isoperformance contours for DOLCE are pre-
dicted with a single degree-of-freedom (SDOF) model,
which lumps the entire testbed mass together with the
payload mass mp over the four suspension springs (in
parallel) represented as a single compliance. The hope
is that insights can be gained by comparing di�erent
performance contours for the experiment with the ones
predicted for the three models.

Testbed Characterization

The transfer function (FRF) from disturbance
(shaker) force to base plate displacement, Gzd(s) =
Z(s)=Fd(s), where s = j!, is obtained experimentally
and by model prediction, see Figure 18.
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FEM original     
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Fig. 18 DOLCE transfer function Gzd = Z(s)=Fd(s)
for mp = 0, Vs = 1:0

As can be seen there are two observable modes in
the bandwidth up to 100 Hz. The �rst mode at 10 Hz
is the axial base suspension mode, where the testbed
translated vertically up and down on the 4 suspension
(compression) springs. The second mode at 65 Hz is
the upper coupling plate bending mode, which causes a
vertical displacement via the center rod. Mode shapes
for these two modes are contained in Figure 19.

As expected the SDOF model can only predict the
�rst resonance. The original FEM overpredicts the up-
per plate mode by roughly 10 Hz. The agreement be-
tween the updated FEM and the experimental transfer
function is very good.

Next the testbed response was investigated as a
function of the single parameter mp. A waterfall plot
showing the power spectral density (PSD) of z as a
function of mp is depicted in Figure 20.

It can be seen that the axial suspension mode is
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mode 3 (10.2927 Hz) mode 6 (64.4872Hz)

Fig. 19 DOLCE Testbed Observable Modes
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Fig. 20 Waterfall Plot for 1.0 Vrms forcing level

dominant for all payload masses. As expected the
mode softens with increasing mass from about 10 Hz
at mp = 0 [lbs] to 6 Hz at mp = 200 [lbs]. The res-
onant plate mode at 65 Hz can also be seen, but it
is much less clear for larger mp. A higher frequency
mode around 40Hz appears mp-invariant and we sus-
pect some structural non-linearity. The performance
Jz can be computed by integrating under Szz and tak-
ing the square root.

Jz =

2
642

fmaxZ
fmin

Szz (f) df

3
75
1=2

(48)

Isoperformance Results and Interpretation

The basis for obtaining the experimental isoperfor-
mance contours is the test matrix with Vs and mp as
described previously. At each parameter combination
the time histories of Fd(t) and z(t), where recorded
and the performance Jz = Jz(Vs;mp) was computed
with 25 averages. The results from the test matrix are
shown in Figure 21.

The peak displacement RMS value of 57.6 [�m] is
obtained for the maximum excitation level (Vs = 1:0

0
50 100 150 200 0

0.5
1

10

20

30

40

50

60

excitation Vs [V
rms]

mass mp [lbs]

pe
rf

or
m

an
ce

 J
z 

[µ
m

]

Results DOLCE Test Matrix 

Fig. 21 DOLCE Test Matrix

[Vrms]) with an empty weight bed (mp = 0 [lbs]). This
is intuitively satisfactory, since at this point the max-
imum disturbance energy enters the system (about 7
N of force Fd RMS), while the disturbability of the
system is at a maximum. Recall that the plant trans-
fer function for such a system has a 1=m term in the
numerator. Conversely the lowest response (\best per-
formance") is found for Vs = 0:1 and mp = 200. This
information is used to obtain isoperformance contours
at the 7.5, 15 and 30 [�m] levels (Figure 22).
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Fig. 22 DOLCE Testbed Comparison of Exper-
imental versus Theoretical Isoperformance Con-
tours

Similar contours are predicted for the SDOF and
FEM's (original and updated). This suggests that the
axial suspension mode is dominant in most of the trade
space. Excellent correlation between experiment and
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theory is found at low forcing levels, see the 7.5 �m
contour. Deviations are found for larger forcing lev-
els (15 and 30 �m contours), even though the general
trends are still predicted correctly by the isoperfor-
mance models. The cause for this deviation is likely
due to non-linear e�ects in the structural plant as
the shaker amplitude increases. In conclusion it is
found that the isoperformance prediction capability
is good at low disturbance levels which are represen-
tative of the vibration environment on space based
opto-mechanical systems. Caution must be exercised
if non-linearities are suspected in any part of the sys-
tem.

6 NEXUS Spacecraft Study

At this point con�dence has been gained that the
isoperformance methodology is applicable to large or-
der multivariable systems and that isoperformance
predictions for real physical systems are possible.
The purpose of the NEXUS spacecraft case study is
to demonstrate the usefulness of the isoperformance
methodology on a realistic conceptual design model of
a high-performance spacecraft.

NEXUS Description

A graphical representation of the launch and on-
orbit con�gurations of NEXUS is shown in Figure 23.

on-orbit
configuration

Fairing

launch
configuration

Instrument
Module

Sunshield

Pro/E models
© NASA GSFC

0 1 2

meters

OTA

Delta II

Fig. 23 NEXUS Spacecraft Concept

NEXUS was planned as a technology risk-reduction
experiment in space and as a precursor to NGST. The
NEXUS project was oÆcially canceled in December
2000 as a part of the NGST rescoping exercise. It was
nevertheless decided to use NEXUS for this case study,
since the conceptual model is well developed and many
lessons learned from previous NGST Yardstick models
were incorporated.
NEXUS features a 2.8 m diameter primary mir-

ror, consisting of three AMSD-sized primary mirror
(PM) petals. Two of these are �xed and one is de-
ployable as shown in Figure 23 on the left side. The

total mass of the spacecraft is nominally 752.8 [kg]
at a cost of $M 105.88 (FY00). The target orbit is
L2 of the Sun/Earth system with a projected launch
date of 2004. The optical telescope assembly (OTA)
also features a 3-legged spider, which supports the sec-
ondary mirror (SM). The instrument module contains
the optics downstream of the tertiary mirror and the
camera (detector). The sunshield is large, deployable
and light-weight,thus accounting for the �rst 
exible
mode of the spacecraft structure around 0.2 Hz.

Integrated Modeling

The integrated model for NEXUS contains a struc-
tural �nite element model (FEM), see Figure 24. The
model was initially created in FEMAP/NASTRAN
and subsequently translated to IMOS.23 The �gure
shows the important locations at which disturbance
and control inputs enter as well as important output
nodes for the ACS as well as the locations where opti-
cal elements are mounted.
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Z

 
8 m 2 solar panel

RWA and hex
isolator ( 79-83 )

SM (202 )

sunshield

2 fixed PM
 petals

deployable
 PM petal ( 129 )

SM spider

(I/O Nodes)
Design Parameters

Instrument

Spacecraft bus
(84 )

t_sp

I_ss

Legend

m_SM
K_zpet

m_bus

K_rISO

K_yPM

(149,169)
(207 )

Fig. 24 NEXUS Finite Element Model. Impor-
tant I/O grid points (nodes) and variable design
parameters are shown.

The two performance metrics of interest are
the root-mean-mean-square wavefront error, Jz;1 =
RMMS WFE, and the root-sum-square line-of-sight
jitter, Jz;2 = RSS LOS. The optical linear sensitiv-
ity matrices for these performance with respect to the
translations and rotations of the optical elements were
computed with MACOS. There are four expected dis-
turbance sources in the model (nd = 4). The �rst is
broadband reaction wheel noise, assuming a 4-wheel
pyramid and uniform probability density on the wheel
speed distribution, with an upper (operational) wheel
speed Ru. The disturbance forces and torques are
caused by static and dynamic imbalances, Us and Ud,
as well as higher harmonics. The second disturbance
is due to a linear Sterling cryocooler at drive frequency
fc. This device is used to cool the IR detector and is
installed in the instrument module. The third distur-
bance is attitude noise, which is based on rate gyro
noise and star tracker noise measured on the Cassini
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mission (JPL). Finally there is guide star noise, which
is very sensitive to the guider sampling rate, Tgs, and
the guide star brightness,Mgs. The appended dynam-
ics of this system are shown in the block diagram of
Figure 25.
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Fig. 25 NEXUS block diagram with 4 disturbance
sources (RWA, Cryo, ACS noise, GS noise) and 2
performances (RMMS WFE, RSS LOS). Simula-
tion implemented in Simulink as well as state space.

In summary the appended dynamics, Szd, of this
system contain 320 states (ns = 320), two performance
metrics (nz = 2), four disturbance sources (nd = 4)
and 25 variable design parameters (np = 25). Ta-
ble 3 summarizes the variable design parameters in
the NEXUS case study.

Disturbance Analysis

A disturbance analysis was carried out with the ini-
tial parameters, po, given in Table 3. Results for LOS
jitter are contained in Figure 26. The bottom plot
shows a sample time realization for 5 seconds and the
centroid X location. The middle plot shows the PSD
of LOS jitter (RSS LOS) for a frequency domain and
time domain calculation. The top plot is the cumula-
tive RMS of LOS jitter as a function of frequency.

Another way to look at performance Jz;2 is to plot
the time histories from the motions of centroid X and
Y versus each other. This has been done in Figure 27.
The predicted RSS LOS is 14.97 �m, versus a require-
ment of 5 �m5.

The wavefront error performance is omitted here for
simplicity, but is discussed by the author elsewhere.9

Table 4 shows an overview of the predicted perfor-
mance, using the initial parameters po.

The wavefront error requirement (�=50) is nearly
met, but the pointing performance has to improve by
a factor of roughly three.

Sensitivity Analysis

The next step is a comprehensive sensitivity analysis
for the 25 variable design parameters of NEXUS. The
sensitivity produces the normalized Jacobian matrix

5This requirement comes from the assumption of 25 �m pixel
pitch and a desire to maintain LOS jitter below 1/5 of a pixel.

Table 3 NEXUS Variable Design Parameters pj,
j = 1; : : : ; 25.

Symbol Nom Description Units

disturbance parameters

Ru 3000 upr op wheel speed [RPM]

Us 1.8 stat whl imbalance [gcm]

Ud 60 dyn whl imbalance [gcm2]

fc 30 cryo drive freq [Hz]

Qc 0.005 cryo attenuation [-]

Tst 20 star track update [sec]

Srg 3e-14 RG noise intensity [rad2/s]

Sst 2 Tracker one sigma [arcsec]

Tgs 0.04 Guider int time [sec]

plant parameter

mSM 2.49 mass of SM [kg]

KyPM 0.8e6 PM bipod sti�ness [N/m]

KrISO 3000 RW Isolator sti� [Nm/rad]

mbus 0.3e3 S/C bus mass [kg]

Kzpet 0.9e8 petal hinge sti� [N/m]

tsp 0.003 Spider wall thick [m]

Iss 0.8e-8 SS bend inertia [m4]

Ipropt 5.11 prop sys inertia [kgm2]

� 0.005 modal damping [-]

optics parameters

� 1e-6 CL opt wavelength [m]

Ro 0.98 opt surf trans [-]

QE 0.80 CCD quantum e� [-]

Mgs 15.0 mag of guide star [mag]

controls parameters

fca 0.01 ACS control BW [Hz]

Kc 0.0 FSM/ACS coupling [0-1]

Kcf 2000 FSM controller gain [-]

evaluated at po

rJz = po
Jz;o

2
66664

@Jz;1
@Ru

@Jz;2
@Ru

� � � � � �
@Jz;1
@Kcf

@Jz;2
@Kcf

3
77775 (49)

which is graphically shown in Figure 28. Note that
parameters Ru through Tgs are disturbance parame-
ters, mSM through � are structural plant parameters,
� throughMgs are optical parameters and fca through
Kcf are control parameters.

17 of 21

American Institute of Aeronautics and Astronautics



AIAA-2002-1420

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
-50

0

50

Time [sec]

LO
S

 x
 S

ig
na

l [
µm

]

10
-1

10
0

10
1

10
2

10
-5

10
0

 P
S

D
 [µ

m
2 /H

z]
 

 Frequency [Hz]

Freq Domain
Time Domain

10
-1

10
0

10
1

10
2

0

5

10

15

20

 Frequency [Hz]

 R
M

S
 [µ

m
] 

Cumulative RSS for LOS

Fig. 26 LOS Jitter initial disturbance analysis

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

Centroid X [µm]

C
en

tr
oi

d 
Y

 [µ
m

]

Centroid Jitter on Focal Plane [RSS LOS]

T=5 sec

14.97 µm

1 pixel

Requirement: Jz,2=5µm

Fig. 27 RSS LOS Centroid Jitter Plot on Focal
Plane

The RMMS WFE is most sensitive to the upper
operational wheel speed, Ru, the RWA isolator sti�-
ness, KrISO, and the deployable petal hinge sti�ness,
Kzpet. The RSS LOS is most sensitive to the dy-
namic wheel imbalance, Ud, the RWA isolator sti�-
ness, KrISO, structural damping, zeta, the guide star
magnitude, Mgs and the FSM (�ne pointing loop)
control gain, Kcf . Interpreting these results one
would expect for example that a 1.0 % decrease in the

Table 4 Initial Performance Analysis Results

Performance Lyap Time Req Units

Jz;1 RMMS WFE 25.61 19.51 20 [nm]

Jz;2 RSS LOS 15.51 14.97 5 [� m]
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Fig. 28 NEXUS normalized sensitivity analysis
results at po.

isolator sti�ness, KrISO should lead to roughly a 1.5
% decrease in LOS jitter. The sensitivity analysis can
be used to select a subset of interesting parameters for
further analysis.

Bivariate Isoperformance

A bivariate isoperformance analysis is conducted for
NEXUS using Jz;1 = RSS LOS as the performance
and the two most sensitive parameters from Figure 28,
right column, as the parameters. Hence, dynamic
wheel imbalance, Ud, is traded versus RWA isolator
joint sti�ness, KrISO, while constraining the perfor-
mance the the requirement, Jz;2;req = 5[�m]. The
results are contained in Figure 29.
The isoperformance contour at RSS LOS = 5 �m

can be reached from the initial design, po, by keeping
the same amount of imbalance in the wheels (speci�-
cation value of E-wheel: Ud = 60 [gcm2]) and soften-
ing the isolator to below 1000 [Nm/rad], thus reduc-
ing the isolator corner frequency to roughly 1.2 Hz.
Alternatively the isolator can remain the same and
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Fig. 29 NEXUS Bivariate Isoperformance analysis
with p1 = Ud , p2 = KrISO and Jz = RSSLOSS .

the imbalance could be reduced to close to its lower
bound, Ud=1 [gcm2]. The isoperformance contour
passes through these two points, so a combination of
the above is likely to result in the desired e�ect. Note
that the performance degrades signi�cantly for sti�er
isolator struts and larger imbalances. The region in the
upper right of Figure 29, where LOS jitter of 160 �m
is predicted, occurs, when the isolator modes coincide
with other 
exible modes of the NEXUS structure.

Multiobjective Optimization

Since solutions, piso, in the isoperformance set I do
not distinguish themselves via their performance, we
may satisfy some additional objectives. For the previ-
ous bivariate analysis for example it is not immediately
clear whether it is more favorable or \expensive" to im-
prove the balancing of the reaction wheels or to build a
\softer" hexapod isolator. Once the (iso)performance
requirements, Jz(piso) = Jz;req , are met one may
consider competing cost objectives Jc (control e�ort,
implementation cost, system mass, dissipated power,
etc.) or risk objectives Jr (stability margins, sensi-
tivity of performance to parametric uncertainty etc.).
Which combination of Jc and Jr to use is application
dependent. A non-linear optimization problem, given
in (7) may be solved, whereby Qcc and Qrr are weight-
ing matrices among the cost and risk objectives and �
is used to trade between cost and risk. The result
is a family of pareto optimal solutions, p�iso, which is
presented to the designer.

Such a multivariable analysis was conducted for
a subset of 10 out of the 25 design parameters
for NEXUS. The two performance objectives RMMS
WFE and RSS LOS were de�ned above. The cost and
risk objectives are de�ned as follows:

� Jc;1 = Build-to Cost (closeness to \mid-range")

� Jc;2 = Smallest FSM control gain

� Jr;1 = Percent performance uncertainty

The three pareto optimal solutions, which each in-
dividually optimize one of the above objectives, while
meeting the isoperformance condition, are shown in
the radar plot of Figure 30.
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0.4 [sec]           

KrISO
5000 

[Nm/rad]

K zpet 
18e+8 [N/m]

tsp   
0.005 [m]             

Mgs    
20 [mag]           

Kcf    
1e+6       

A: min(Jc1)
B: min(Jc2)
C: min(Jr1)

Fig. 30 NEXUS Multivariable Isoperformance.
Radar plot of 3 pareto optimal designs.

Speci�cally, the isoperformance condition leads to
the fact that all designs, p�iso, asymptote to the same
value in the cumulative RMS plot, as shown for RSS
LOS as shown in Chapter 7 of reference.9 The results
for the NEXUS pareto optimal designs are summarized
in Table 5.

Table 5 NEXUS pareto optimal designs

Jz;1 Jz;2 Jc;1 Jc;2 Jr;1

A 20.0000 5.2013 0.6324 0.4668 � 14.3 %

B 20.0012 5.0253 0.8960 0.0017 � 8.8 %

C 20.0001 4.8559 1.5627 1.0000 � 5.3 %

Even though these designs achieve the same WFE
and LOS jitter performance, this performance is
achieved by placing the burden of di�erent parts of
the design.

7 Contributions and

Recommendations
Contributions

This paper develops and validates a novel approach
to the design of complex multi-disciplinary systems.
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The isoperformance approach enhances the under-
standing of complex opto-mechanical systems by ex-
ploiting physical parameter sensitivity and perfor-
mance information beyond the local neighborhood of
a particular point design. The following speci�c con-
tributions are identi�ed:

� Developed a methodology for identifying the locus
of parameters that yields constant performance
levels of an LTI system.

� Applied isoperformance analysis to model-based
error budgeting and multiobjective optimization
for dynamic systems

� Produced and validated a software toolbox for
conducting 2D or multivariable isoperformance
analyses

� Experimental validation of isoperformance tech-
nique on a laboratory test article in 1-g with two
parameters.

Limitations

The limitations of the isoperformance framework are
that it assumes Linear-Time-Invariant (LTI) systems
and operates on H2-performance metrics for zero-mean
random processes. Furthermore the dynamics are
treated in continuous time (no z-domain capability).
The algorithms (except exhaustive search) require con-
tinuous and di�erentiable parameters and work within
a given topology/architecture.

Recommendations

The recommendations for future work focus on re-
moving some of the current limitations and applying
the isoperformance concept on a more holistic level
in product design and system architecture. Isoperfor-
mance meshes well with a product design philosophy
called \satis�cing". In this approach not a product
that optimizes the performance is sought, but rather
a product that meets identi�ed customer performance
requirements, while being designed in a cost e�ective
way.
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