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This paper presents an adaptive weighted sum method for multiobjective optimization 
problems. The authors developed the bi-objective adaptive weighted sum method, which 
determines uniformly-spaced Pareto optimal solutions, finds solutions on non-convex regions, 
and neglects non-Pareto optimal solutions. However, the method could solve only problems 
with two objective functions. In this work, the bi-objective adaptive weighted sum method is 
extended to problems with more than two objective functions. In the first phase, the usual 
weighted sum method is performed to approximate Pareto surfaces quickly, and a mesh of 
Pareto front patches is identified. Each Pareto front patch is then refined by imposing 
additional equality constraints that connect the pseudo nadir point and the expected Pareto 
optimal solutions on a piecewise planar surface in the objective space. It is demonstrated 
that the method produces a well-distributed Pareto front mesh for effective visualization and 
finds solutions in non-convex regions. Two numerical examples and a simple structural 
optimization problem are solved as case studies. 

Nomenclature 
J  = objective function vector 
x  = design vector 
p  = vector of fixed parameters 
g  = inequality constraint vector 
h  = equality constraint vector 
m  = number of objectives 

iα  = thi  weighting factor 

iJ  = normalized objective function  
UtopiaJ  = utopia point 
NadirJ  = nadir point 
*iJ   =   thi  anchor point *iJ  
jP  =   position vector of the thj  expected solution on the piecewise linearized plane 

I. Introduction 
Design optimization is to seek the best design that minimizes the objective function by changing design variables 

while satisfying design constraints. During design optimization one often needs to consider several design criteria or 
objective functions simultaneously. For example, we may want to maximize range and payload mass while trying to 
minimize lifecycle cost for an airplane design. When more than one design objective is associated, the design 
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problem becomes multiobjective, in which case the usual design optimization for a scalar objective function cannot 
be used.  

Multiobjective optimization can be stated as follows: 

 

( )

1, ..., ) ,, ,

min ,
s.t.   , 0   
        , =0

(i ni LB i i UBx x x =

≤

≤ ≤

J x p
g(x p)
h(x p)

 (1) 

where the objective function vector J  is a function of design vector x  and a fixed parameter vector p ; g  and h  
are inequality and equality constraints; and ,i LBx  and ,i UBx  are the lower and upper bounds for the thi  design 
variable, respectively.  

Stadler1,2 applied the notion of Pareto optimality to the fields of engineering and science in the 1970s. The most 
widely-used method for multiobjective optimization is the weighted sum method. The method transforms multiple 
objectives into an aggregated objective function by multiplying each objective function by a weighting factor  and 
summing up all weighted objective functions: 

 weighted sum 1 1 2 2 m mJ w J w J w J= + + +  (2) 

where ( 1, , )iw i m=  is a weighting factor for the thi objective function (potentially also dividing each objective 

by a scaling factor, i.e. i i iw sfα= ). If 
1

1
m

ii
w

=
=∑  and 0 1iw≤ ≤ , the weighted sum is said to be a convex 

combination of objectives. Each single objective optimization determines one particular optimal solution point on 
the Pareto front. The weighted sum method then changes weights systemically, and each different single objective 
optimization determines a different optimal solution. The solutions obtained approximate the Pareto front. Initial 
work on the weighted sum method can be found in Zadeh3. Koski4 applied the weighted sum method to structural 
optimization. Marglin5 developed the -constraintε  method, and Lin6 developed the equality constraint method. 
Heuristic methods are also used for multiobjective optimization: Suppapitnarm7 applied simulated annealing to 
multiobjective optimization, and multiobjective optimization by Genetic Algorithms can be found in Goldberg8, and 
Fonseca and Fleming9 among others. 

Das and Dennis10 developed the NBI (Normal Boundary Intersection) method, in which sub-optimizations are 
performed on normal lines to the utopia hyperplane that is defined and bounded by all anchor points. The NBI 
method produces well-distributed solutions, and it is easily scalable to -dimensionaln  problems. The method can 
also determine Pareto optimal solutions in non-convex regions, which the weighed sum method misses. The weak 
points of the method are (1) in highly nonlinear problems, it is hard to obtain optimal solutions due to equality 
constraints, (2) non-Pareto optimal solutions (dominated solutions) are also obtained, and a Pareto filtering must be 
used to filter out those solutions, and (3) in high dimensional problems (more than two objective functions), the 
projection of the utopia plane does not cover the entire Pareto front, and some Pareto front regions are not 
discovered by this method. Messac and Mattson11,12 used physical programming for generating Pareto fronts for 
concept selection. They also developed the normal constraint method13, which generates uniformly distributed 
solutions along the Pareto front without missing any Pareto front regions. The method can be extended to 

-dimensionaln  problems. 
The well-known drawbacks of the weighted sum method, as discussed in a number of studies11,14,15, are that (1) 

often the optimal solution distribution is not uniform, and that (2) more seriously, optimal solutions in non-convex 
regions are not detected. The adaptive weighted sum (AWS) method16 was developed recently by the authors to 
address these two drawbacks. By imposing additional inequality constraints in the usual weighted sum method, the 
optimization is performed only in a newly-defined feasible region where more exploration is needed. The adaptive 
weighted sum method successfully solves multiobjective optimization problems: the AWS method produces well-
distributed solutions, finds Pareto optimal solutions in non-convex regions, and neglects non-Pareto optimal 
solutions. The AWS method, however, was previously only applicable to bi-objective optimization problems. 
Therefore, we will refer to the previous technique as the “bi-objective adaptive weighted sum method” to 
differentiate it from the generalized multiobjective adaptive weighted sum method presented here.  
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In this work, the bi-objective adaptive weighted sum method is extended to multiobjective optimization 
problems with more than two objective functions. Unfortunately, the additional inequality constraints that are used 
in the bi-objective adaptive weighted sum method are not suitable for higher-dimensional multiobjective 
optimization. The reason is that the Pareto-front patches (extension of segments in two dimensions) to be 
constructed by additional constraints can be arbitrarily-shaped hyperplanes in multidimensional problems, and it is 
difficult to define feasible regions for refinement by inequality constraints alone. In the multiobjective adaptive 
weighted sum method, additional equality constraints are introduced that connect the pseudo-nadir point and the 
expected locations of Pareto optimal solutions on the piecewise linearized plane in the objective space. Sub-
optimizations for further refinement are conducted along these lines (equality constraints) determining solutions near 
desired positions, which leads to a well-distributed mesh representation of the Pareto. 

II. Multiobjective Adaptive Weighted Sum Method: Fundamental Concepts 
The fundamental philosophy of the adaptive weighted sum method is to adaptively refine the Pareto front. In the 

first stage, the method determines a rough profile of the Pareto front. By estimating the size of each Pareto patch 
(line segment in the case of two-dimensional problems), the regions for further refinement in the objective space are 
determined. In the subsequent stage, only these regions are specified as feasible domains for sub-optimization by 
assigning additional constraints. In the bi-objective adaptive weighted sum method, the feasible domain for further 
exploration is determined by specifying two inequality constraints. The usual weighted sum method is then 
performed as sub-optimization in these feasible domains obtaining more Pareto optimal solutions. When a new set 
of Pareto optimal solutions are determined, the Pareto patch size estimation is again performed to determine the 
regions for further refinement. These steps are repeated until a termination criterion is met. Figure 1 compares the 
typical weighted sum method and the bi-objective adaptive weighted sum method for a sample problem that has a 
relatively flat region and a non-convex region.   

 
We found that the inequality constraints as boundaries for constructing feasible regions are not suitable for 

optimization problems with more than two objective functions. Feasible regions for further refinement in the two-

Figure 1. The concept and procedure of the adaptive weighted sum method. 
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dimensional case can be defined easily by laying two inequality constraints that are parallel to each of the axes with 
prescribed offset distances from the end points, because the Pareto front is a two-dimensional curve, and there are 
always only two end points for each Pareto-front segment. 

In higher-dimensional cases, however, the 
Pareto front becomes a surface (for three objective 
functions) or a hypersurface (for more than three 
objective functions), and it becomes difficult to 
impose constraints such that sub-optimizations are 
performed only in a selected Pareto-front patch and 
to adaptively refine the patches. This is because 
Pareto-front patches may have arbitrary shapes, and 
the number of edges for each Pareto-front patch may 
vary. In addition, when the number of vertices is 
larger than the dimension of the objective space, all 
vertices or their connecting edges may not lie in the 
same (hyper-) plane, and it becomes even more 
difficult to impose constraints for sub-optimization 
of further refinement and to perform adaptive 
refinement in the following stages. Indeed, the 
problems encountered then resemble adaptive 
remeshing in the Finite Element Method, but in 
higher dimensions. There has been very extensive 
research conducted in this field for decades, and it 
remains to be seen whether the 
sophisticated and sometimes 
complicated adaptive remeshing 
techniques of the FEM are 
applicable to Pareto front 
generation. It is also important 
to note that the FEM techniques 
can be applied only to three-
dimensional problems. 

In this work, we adopt 
equality constraints to define 
feasible regions for further 
refinement, which is more 
robust for obtaining well-
distributed solutions in 
multidimensional problems than 
inequality constraints. Adding 
equality constraints increases 
the likelihood of entrapment in 
local minima, but also 
facilitates the adaptive 
procedure by simplifying patch refinement. Although Pareto front patches of any shape can be used, we demonstrate 
the method with quadrilateral patches with applications to three-dimensional problems in this paper.  

In the first stage, the approximate shape of the Pareto front is determined by using the usual weighted sum 
method. Pareto front patches are then identified, and patches for further refinement are selected on the basis of the 
patch size. Sub-optimization is performed only in the selected patches by specifying additional equality constraints. 
Figure 2 shows the concept of the multiobjective adaptive weighted sum method with equality constraints for 
multiobjective optimization. In the bi-objective adaptive weighted sum method, feasible regions for further 
refinement are defined by two inequality constraints (Fig. 1), but in the multiobjective adaptive weighted sum 
method, one or several equality constraints are specified that connect the pseudo nadir point and expected solutions 
on the piecewise linearized Pareto front. Actual solutions obtained will be on the equality constraint line, but they 
may be located in different positions from the expected solutions as shown in the figure. 

Figure 2. Adaptive weighted sum method for 
multidimensional problems (2-D representation).
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Figure 3. Adaptive weighted sum method for 
multidimensional problems (3-D representation). 
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The equality constraint, which is represented by a line, allows us to have great control over the position of new 
Pareto optimal solutions obtained, and this simplifies adaptive refinement. In the three-dimensional case, the Pareto 
front becomes a surface, and the linearized Pareto front patch is represented by four line segments that connect four 
vertices, as shown in Fig. 3. When solutions are obtained in all patches for further refinement, a new set of Pareto 
front patches are identified, and a patch-size evaluation is performed to determine where to further refine. These 
steps are repeated until a termination criterion is met. The complete and detailed procedure is presented in the 
following section.  
 

III. Multiobjective Adaptive Weighted Sum Method: Procedures 
In this section, we detail the  procedure for implementing the multiobjective adaptive weighted sum method. 
[Step 1] Stage = 1. Normalize the objective functions. When *ix  is the optimal solution vector for the single 

objective optimization of the thi  objective function iJ , the utopia point UJ  is defined as 

 1* 2* *
1 2[ ( ) ( ) ( )]Utopia m

mJ J J=J x x x , (3) 

and the pseudo nadir point NadirJ  is defined as 

 1 2[ ]Nadir Nadir Nadir Nadir
mJ J J=J  (4) 

where m  is the number of objective functions or the dimension of the objective space, and each component Nadir
iJ  

is determined by 

 1* 2* *max[ ( ) ( ) ( )]Nadir m
i i i iJ J J J= x x x . (5) 

The thi  anchor point *iJ  is defined as 

 * * * *
1 2[ ( ) ( ) ( )]i i i i

mJ J J=J x x x . (6) 

Now the normalized objective function iJ  is obtained as 

 
Utopia

i i
i Nadir Utopia

i i

J J
J

J J
−

=
−

. (7) 

[Step 2] Perform multiobjective optimization using the usual weighted sum approach with a small number of 
divisions, initialn .  

For three objective functions, the weighted single objective function TotalJ  is obtained as  

 
( ) ( )

( ) ( )
2 1 1 1 2 2 3

1 2 1 1 2 2 2 3

1 1

1 1 , [0,1]
Total

i

J J J J

J J J

α α α α

α α α α α α

= + − + −  
= + − + − ∈

 (8) 

where iα  is the thi weighting factor. As a general form, the weighted single objective function of m  objective 

functions, m
TotalJ , is determined by 

 ( )1
1 11 , 2m m

Total m Total m mJ J J mα α−
− −= + − ≥  (9) 

where 1
1TotalJ J≡ .Note that m-1 weighting factors are needed to explore an m-dimensional objective space. 
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The uniform step size of the thi weighting factor iα  is determined by the number of initial divisions along the 
thi  objective dimension: 

 
initial, i

1 , 1, , 1i i m
n

α∆ = = −  (10) 

where m  is the number of objective functions. 
In this work, we use the same step size for all weighting factors. There is a scheme that systemically determines 

each weighting factor and helps produce well-distributed solutions10. In the adaptive weighted sum method, however, 
the usual step size strategy Eq. (10) can be used because this approximate multiobjective optimization is conducted 
only once, after which adaptive refinement is conducted. 

[Step 3] Delete nearly overlapping solutions. It occurs often that several nearly identical solutions are obtained 
when the weighted sum method is used. The Euclidian distances between these solutions are nearly zero, and among 
these, only one solution is needed to represent the Pareto front. In the computer implementation, if the distance 
among solutions in the objective space is less than a predetermined distance (ε ), then all solutions except one are 
deleted.  

[Step 4] Identify Pareto-front patches. Patches of any shape can be used, but in this work we use quadrilateral 
patches in three-dimensional problems. Four Pareto-optimal solutions become the four nodes of each patch, and 
edges are line segments that connect two neighboring nodes of each patch. Constructing and maintaining meshes on 
the Pareto front may be tedious, but there are two advantages of using a mesh, which will be discussed in detail in 
the following sections: (1) patches play the role of primitives for further refinement for subsequent stages, as will be 
seen in Step 5, and (2) if only non-dominated solution points are displayed, it is difficult to visualize and interpret 
the shape of the Pareto front. A mesh representation makes it very easy to visualize the Pareto surface as in the case 
of finite element meshes. 

[Step 5] Stage = Stage + 1. Determine the layout for further refinements in each of the Pareto-front patches. The 

larger the patch is, the more it needs to be refined. Figure 4 shows an example of refinement, in which a patch is 
composed of four nodes in three dimensional objective space, as will be studied in this paper. Because the lower 
patch is larger, it is refined more than the upper one. In each mesh, the locations of expected solutions are 
determined by interpolation, and sub-optimizations are conducted along the lines that connect the pseudo nadir point 
and the expected solutions. The actual solutions may be different from expected solutions, and there can be 
dominated solutions, which must be deleted by a Pareto filter. 

The position vector of the thj expected solution on the piecewise linearized plane ( jP ) is obtained as the 
weighed sum of the four vectors of the nodal solutions as 

 31 2 4
1 2 3 4 , [0,1]j

iβ β β β β= + + + ∈P N N N N  (11) 

where iN  is the position vector the thi  node of a Pareto-front patch (Fig. 4(b)), and iβ  is a weighting factor for 
interpolation. 

(a) Original patches (b) Refined patches 
     (Expected solutions)

(c) Refined patches 
     (Actual solutions) 

Figure 4. Adaptive refinement procedure. 
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The normalized vector of jP  is obtained as 

 
j Utopia

j i i
i Nadir Utopia

i i

P JP
J J

−
=

−
 (12) 

where j
iP  is the thi coordinate of the thj expected solution on the piecewise linearized (hyper-)plane. The 

refinement level, which is represented by the step size of weighting factors, is determined based on the relative 
average length of the patch in each direction.  

[Step 6] Impose an additional equality constraint for each expected solution and conduct a sub-optimization with 
the weighted sum method. For the thj normalized expected solution, jP , the sub-optimization problem is defined 
as 

 

minimize ( )

( ) ( ( ) )subject to  1
( )

( ) 0
( ) 0

i
j Nadir Nadir

j Nadir Nadir

⋅

− ⋅ −
=

− −

=
≤

w J x

P J J x J
P J J x J

h x
g x

 (13) 

where ( )j Nadir
i = − −w P J  is a vector of weighting factors, and ( )h x  and ( )g x  are normalized equality and 

inequality constraint vectors. Note that the normalized nadir point NadirJ  is a vector whose components are one, i.e. 
(1, 1, , 1)Nadir =J . 
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Figure 5. Configuration of an additional equality constraint for refinement 
(3-D representation). 
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The equality constraint ( ) ( )( ) ( ( ) ) / ( ) 1j Nadir Nadir j Nadir Nadir− ⋅ − − − =P J J x J P J J x J  makes the two vectors 

 and ( )j Nadir Nadir− −P J J x J  be collinear in the objective space. This constraint therefore ensures that the solution 

is obtained only along the line j Nadir−P J , which connects the expected solution on the piecewise linearized plane 
and the pseudo nadir point. The objective function ( ) ( )j Nadir− − ⋅P J J x is a scalar function to be minimized 

determining the solution that is nearest to the utopia point in the direction of ( )j Nadir− −P J . 

The actual solution obtained for the thj normalized expected solution, *jP , would be different from the 

expected solution. In Figure 5, the origin of the vector j Nadir−P J  is actually (0,0, 0)  but moved for better 
visualization. 

[Step 7] Perform Pareto filtering. In the bi-
objective adaptive weighted sum method, non-
Pareto optimal solutions are automatically rejected, 
so the filtering is not needed. In the multiobjective 
adaptive weighted sum method, however, any 
solution that lies on the equality constraint is 
feasible, and non-Pareto optimal solutions may be 
obtained. In each step, it is necessary to perform 
Pareto filtering to obtain the true Pareto front. 

[Step 8] Delete overlapping solutions. Identify 
Pareto-front patches with all Pareto optimal 
solutions including newly obtained solutions in the 
previous steps. If a termination criterion is met, 
stop; otherwise go to Step 5. Several types of 
termination criteria may be used: (1) the number of 
stages reaches a prescribed number; (2) the size of 
largest Pareto-front patch falls below a prescribed 
value; (3) the standard deviation among the sizes of 
all Pareto-front patches falls below a prescribed 
value. In this work, the maximum number of stages 
is used as the termination criterion. 

IV. Numerical Examples 
Three numerical examples are presented in this section to demonstrate the performance of the multiobjective 

adaptive weighted sum method. All examples are three-dimensional problems. Sequential Quadratic Programming 
(SQP) in MATLAB is used for every optimization. 

A. Example 1: Convex Pareto Front 
The first example is a multiobjective maximization problem whose Pareto front is convex. The problem 

statement is  

 

1 2 3
4 3 2
1 2 3

1 1

2 2

3 3

maximize [ ]

subject to 2 5 1

0 ( 1, 2,3).

T

i

J J J

x x x
J x
J x
J x
x i

+ + ≤
=
=
=
≥ =

 (14) 

The Pareto front of this problem is convex, but the curvatures are different in three axes. Figure 6 shows the 
Pareto front obtained by the usual weighted sum method. The step sizes for the two weighting factors in Eq. (8), 

1 2 and α α∆ ∆ ,  are 1/9. The number of Pareto optimal solutions on the front is 100 with ten solutions coincident on 

Figure 6. Pareto front obtained by the usual 
weighted sum method for Example 1. 
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the top vertex. These solutions represent a 9 9×  Pareto-front mesh. The patch size varies greatly according to the 
position: the meshes on the top are slender, and the meshes near to the two anchor points 1*J  and 3*J  on the bottom 
are relatively large and slender while the patches in the middle region of the front are small and nearly square.  

Figure 7 shows the three stages of the Pareto front evolution produced by the multiobjective adaptive weighted 
sum method. In the first stage, the usual three-dimensional weighted sum method with 1 2 0.5α α∆ = ∆ =  is 
performed obtaining a coarse 2 2×  Pareto-front mesh. Based on this initial Pareto front, the relative size of each 
Pareto-front patch is estimated, and adaptive refinement is performed. Note that the Pareto front is not symmetric in 
any direction, and 
this is the reason 
that mesh 
refinement in the 
second stage is 
asymmetric. The 
number of Pareto 
front patches is 72 
in the third stage. 
Contrary to the 
Pareto front 
representation by 
the usual weighted 
sum method in Fig. 
6, the mesh shape 
and size are quite 
uniform.  

In this work, the goal of adaptive refinement is to have not only uniformly distributed solutions but also solutions 
that form a well-shaped mesh layout. Multiobjective optimization is conducted in order to present trade-off 
information to engineers such that best decisions can be made. In the two-dimensional case, it is not difficult to 
interpret a Pareto front that is represented only by solution points. In higher dimensions, however, the point-based 
representation is often hard to interpret. By maintaining meshes as in this work, further adaptive refinement 
considering the mesh size can be performed systematically, and it is very easy to visualize the Pareto front obtained 
– at least in three objective dimensions at-a-time. 

B. Example 2: Non-convex Pareto Front with Dominated Solutions 
In the previous example, the Pareto front was convex, and the problem associated with the usual weighted sum 

method was only that we could not obtain evenly-distributed solutions, or the mesh layout was not uniform. In this 
example, we solve a multiobjective problem whose Pareto front has non-convex regions and is disconnected due to 
dominated solutions. The problem statement is 

 

2

1 2 3

1 3

1 1

2 2

3 3

1

2

3

maximize [ ]

subject to cos 0

0
0
1.2 .

T

x

J J J

x e x
J x
J x
J x

x
x
x

π

−− − + ≤

=
=
=

≤ ≤
≥
≥

 (15) 

Figure 8 shows the Pareto front of this problem including the dominated solution region from two different 
viewpoints, which was generated with MATLAB executing a full factorial evaluation (which would not be feasible 
for higher dimensional design spaces). The boundary of the Pareto front is composed of three curves: the curve 
between *

1J  and *
3J  is convex with a gap due to a dominated solution region, but the other two curves are not 
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Figure 7. Pareto front obtained by the multiobjective adaptive weighted 
sum method for Example 1. 
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convex. There is a dominated region in the 
middle, which looks like a valley. The usual 
weighted sum method is used to determine 
the Pareto front with a 20 20×  mesh. As 
appears in Fig. 9, solutions are obtained only 
on the convex curve between 1*J  and 3*J  
and on the short convex curve segment near 

2*J . Dominated solutions are not obtained, 
however most of the Pareto front, which is 
non-convex, is not revealed by this method. 

The multiobjective adaptive weighted 
sum method is performed to find the Pareto 
front adaptively. In the first stage, the usual 
weighted sum method with 1 2 1α α∆ = ∆ =  
determines the three anchor points forming 
an approximate Pareto front (Fig. 10). In the 
second stage, the overall shape of the non-
convex Pareto front is found; a result which 
cannot be obtained no matter how many 
solutions are found by the usual weighted 
sum method. Because equality constraints are 
used, dominated solutions (non-Pareto 
optimal solutions) are obtained by the 
multiobjective adaptive weighted sum 
method. A Pareto filtering step is conducted 
in each stage. In the final stage, the Pareto 
front in its “entirety” is determined. We can 
clearly see a dominated region in the middle, 
and the mesh representation makes it easy to 
interpret the surface. 
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Figure 8. Pareto front profile (including the dominated 
region) for Example 2. 

Figure 9. Pareto front obtained by the usual 
weighted sum method for Example 2. 
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Figure 10. Pareto front obtained by the multiobjective adaptive weighted sum method 
for Example 2. 
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C. Example 3: Three-bar Problem 
Finally, the multiobjective adaptive weighted sum method is applied to the three-bar problem15. The geometry 

and material properties are presented in Fig. 11. The upper end of each bar is fixed, and a horizontal and vertical 
load are applied at Point P. The objective functions to be minimized are the total volume, stress in Truss 1, and 
stress in Truss 3. The mathematical problem statement is  

 
1 3minimize [Volume( ) ( ) ( )]

subject to 200 MPa ( ) 200 MPa ( 1,2,3)
0.1 cm 2 cm ( 1,2,3)

T

i

i

i
A i

σ σ
σ− ≤ ≤ =

≤ ≤ =

A A A
A  (16) 

where the design variable iA  is 
the cross-sectional area of the thi  
truss. 

The Pareto front of this 
problem is non-convex, and some 
part of the objective space is 
dominated. Figure 12 shows the 
results obtained with the 
multiobjective adaptive weighted 
sum method. For better 
visualization, the graph is inverted, 
i.e. all three objective functions 
are multiplied by minus one (it is 
often easier to interpret the Pareto 
surface when we view it from 
outside the feasible range rather 
than from the inside). The pseudo 
nadir point is the origin where 
three reference planes in the 
figure meet. In the first stage, the 
approximate Pareto front is 
represented by 6 patches. The 
multiobjective adaptive weighted 
sum method is then applied 
determining more refined Pareto 
front meshes until convergence is 
reached in three stages. 
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Figure 12. Pareto front obtained by the multiobjective adaptive weighted sum method for Example 3.
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Figure 11. Three-bar problem.  
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V. Discussions 
The multiobjective adaptive weighted sum method effectively solves multiobjective optimization problems with 

more than two objective functions. In the bi-objective adaptive weighted sum method, which is applicable to only 
optimizations with two objective functions, inequality constraints are used to specify regions for further refinement. 
In the multiobjective adaptive weighted sum method, on the other hand, equality constraints are used and the method 
is scalable to -dimensionaln problems. The equality constraints allow us to decide where to obtain additional 
solutions, and this makes the Pareto front mesh well conditioned.    

There are two important issues in using the multiobjective adaptive weighted sum method. First, adaptive 
refinement is conducted only within the Pareto front that is determined by the usual weighted sum method in the 
first stage. If the first stage optimization misses some regions on the Pareto front, they are not discovered in the 
following adaptive refinement stages. In general, the usual weighted sum method finds most parts of the Pareto front 
reliably and quickly. This is, in addition to its adaptivity, a distinctive advantage of the adaptive weighted sum 
method, which utilizes the usual weighted sum method in the first 
stage, over the NBI method. Figure 13 shows a Pareto surface that 
is obtained by the adaptive weighted sum method (based on the 
first stage usual weighted sum method) and the utopia plane for 
the NBI method. The view-direction is rotated such that it is 
normal to the utopia plane. As can be seen in the figure, the NBI 
method cannot determine the three regions that are not covered by 
the normal projection of the utopia plane. The main difference 
between AWS and NBI, aside from adaptive refinement, is the fact 
that equality constraints in AWS are imposed radially from the 
pseudo-Nadir point rather than normal to the utopia plane defined 
by the anchor points as is done in NBI.  Second, equality 
constraints are generally difficult to be satisfied. Optimizers are 
often good at finding a (local) optimal solution if it starts from 
within a feasible region, but optimization may fail to find a 
feasible solution if the initial design is far from the feasible region. 
When a line constraint (equality constraint) is specified in the 
objective space, we should make sure the initial design lies on or 
near the line. It is often difficult to find such an initial design, 
however, and we have to try many initial designs, which is 
computationally expensive. 

A convex Pareto front example, non-convex Pareto front with dominated regions, and a three-bar problem are 
solved successfully by the multiobjective adaptive weighted sum method. The advantages over the usual weighted 
sum method – uniform distribution and the ability to determine non-convex Pareto front – are presented by the 
examples. Adaptivity and the ability to find the entire Pareto front are the merits of this method that the NBI method 
does not have. This method will be applied to problems with practical applications and complicated Pareto fronts as 
further work. This includes benchmarking AWS against NBI and other methods in terms of uniformity, 
completeness and computational effort for Pareto front generation. One typical case in which the usual weighted 
sum method fails to discover all parts of the Pareto front is when the anchor points are not unique (in the two-
dimensional case, an anchor solution may be a line segment, and in the three-dimensional case, it can be a plane). 
The usual weighted sum method for the first stage will also be improved such that problems with non-unique anchor 
solutions can be treated. Furthermore, visualization challenges for patch representations in cases with more than 
three objectives (m>3) will be investigated. 
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