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Abstract 

Francis Y. Edgeworth (1845-1926) and Vilfredo Pareto (1848-1923) are credited for first introducing the concept 
of non-inferiority in the context of economics. Since then multiobjective optimization has permeated engineering and 
design and has developed at a rapidly increasing pace. This paper gives a brief review of the history of multiobjective 
optimization and motivates its importance in the context of the engineering and design of complex systems. A brief 
review of methods distinguishes between Scalarization and Pareto approaches. These are primarily distinguished by 
ways in which designer (or customer) preferences are brought into the design optimization process. This review is not 
intended to be comprehensive, but focuses on the most popular multiobjective methods. The Karush-Kuhn-Tucker 
(KKT) optimality conditions for multiple objectives and the associated role of Lagrange multipliers and preference 
weights are briefly illuminated. Two emerging trends in multiobjective optimization are presented: the inclusion of 
manufacturing cost alongside performance considerations as well as the emergence of adaptive multiobjective 
algorithms. Applications of interest to the author include structural design, communications satellites, radio telescope 
arrays and automotive platforms. The importance of Pareto frontiers goes far beyond finding a “best design” or “set of 
non-dominated” solutions and includes analysis of technology infusion in existing systems, system architecture 
selection as well as lifecycle engineering of systems for reconfigurability, platforming and extensibility. 
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1. Introduction 
 
A generic multi-objective design optimization problem may be formulated as in Eq. (1): 
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Here, J is a column vector of z objectives, whereby iJ ∈ " . The individual objectives are dependent on a vector x of n 

design variables as well a vector of fixed parameters, p. The individual design variables are assumed continuous and 

can be changed independently by a designer within upper and lower bounds, xUB and xLB, respectively. In order for a 

particular design x to be in the feasible domain S, both a vector of m1 inequality constraints, g, and m2 equality 

constraints, h, have to be satisfied. The problem is to minimize – simultaneously – all elements of the objective vector. 

A number of names have been given to this type of problem: vector minimization, multi-criteria optimization, 

multi-attribute maximization and so forth. For the most part these are synonymous and we will refer collectively to this 

class of problems as multiobjective optimization (MOO) problems. 

Why should one care about this class of problems in the first place? The answer – at first – is very obvious. All design 

and engineering activity is fundamentally multi-objective in nature because of the existence of inherent tensions 
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between the four main objectives in product or system design 

(Fig.1): performance, cost, schedule and risk (Maier & Rechtin, 

2000). With schedule and risk levels (e.g. probability of failure of a 

component) fixed, better performance can generally only be 

achieved by increasing cost. Pulling along one of the dimensions in 

the diagram of Fig.1 generally requires compromises along the 

other dimensions.  

             Fig. 1: Tensions during system design 

Trading off schedule, cost and product performance is generally considered the domain of project management. Trading 

of various dimensions of performance with each other as well as with cost and risk is generally considered as the 

domain of Engineering. Quantifying, visualizing and resolving tradeoffs is one of the key duties of system designers.  

An emphasis on multiobjective thinking helps avoid potentially sub-optimal point designs. One may argue that one can 

circumvent the dilemma posed by a multiobjective problem1 by selecting the most important objective from J and 

converting the other objectives to constraints. This often requires setting arbitrary constraint levels during early design 

and such artificial constraints may not truly exist.  An example of an existing complex system where multiple – 

conflicting – objectives had to be met is the F/A-18 aircraft. This system has both continuous design variables (aspect 

ratio, dihedral angle, engine thrust level and so forth) as well as many discrete design variables (number and location of 

engines, fuselage splice locations …). These objectives capture both the operational performance of the aircraft (top 

speed, range, payload capability, stall speed, radar cross section…) as well as its lifecycle objectives 

(mean-time-between-failure, maintainability, cost-per-flight-hour and avionics growth potential, among others …).  

Furthermore, it is important to distinguish between multiobjective and multidisciplinary design situations (Fig.2). 

 

Fig.2: Multiobjective, multidisciplinary situations are prevalent in system-level design situations (lower right), while 

single discipline, single objective design often applies only at the component level (upper left) 

                                                   
1 generally there will not be a single solution, x*, that is optimal along all dimensions 

 

    

S
in

gl
e 

ob
je

ct
iv

e 

  

M
ul

ti-
ob

je
ct

iv
e single discipline multiple disciplines 

Minimize displacement s.t. mass constraints

 

F 

δ l 

m   
cantilever beam support bracket

 
Minimize stamping   
costs (mfg) subject   

to loading constraints 

 

F 

D 

$ 

airfoil   

α   (x,y) 

Maximize C L /C D    and maximize 
wing fuel volume 

Vfuel 

v o   

Minimize SFC and maximize 
 cruise speed s.t. fixed range, payload 

commercial aircraft 
 

Performance

Schedule Risk

Cost

single discipline multiple disciplines 



CJK-OSM3, 2004, Kanazawa 

The following - strongly non-linear - example illustrates some of the difficulties in solving multi-objective optimization 

problems. We seek to simultaneously maximize two “peaks” functions within the two-dimensional interval [-3, 3]: 
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Fig. 3 shows the design space for each objective along with the optimal solutions for each objective, taken alone: 

[ ] ( ) [ ]
[ ] ( ) [ ]2 2

0.0532 1.5973 with 8.9280 4.8202

1.5808 0.0095 with 6.4858 8.1118

T T

T T

= = −

= − = −

1* 1*

* *

x J x

x J x
    (4) 

While the first solution maximizes J1, the second maximizes J2. The problem is that the value of J2 at x1* is very low 

and the value of J1 evaluated at x2* is also low. There exists no single solution x* that maximizes both J1 and J2 at the 

same time.  

 

Fig.3: Function J1 with optimal solution x1* (left) and function J2 with optimal solution x2* (right). Black dots indicate 

the final population of a genetic algorithm used to identify the maxima of both functions. Squares indicate optima. 

 

One potential solution is to form an aggregate objective function, containing contributions from both J1 and J2, and to 

find its optimum. An objective function Jtot=J1+J2 , for example, exhibits an optimum “tradeoff” solution: 

[ ] ( ) ( ) [ ]0.8731 0.5664   with  6.1439  and  3.0173 3.1267T T
totJ= = =tot* tot* tot*x x J x    (5) 

The values of each objective are lower than previously, but the aggregate – with equal weighting – is maximized. While 

this approach is relatively primitive, it is also most common. Other more sophisticated methods have been developed. 
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2. History 
 
Rational people attempt to make the “best” decision within a specified set of possible alternatives. Historically, “best” 

has been defined differently in different fields. In economics, where multiobjective thinking arguably originated, the 

“best” referred to decisions taken by buyers and sellers (micro-economics) or governments (macro-economics), which 

simultaneously optimize or balance several criteria. Taxation is a good example. An optimal, average level of tax 

collected (% per $ of economic activity) maximizes the revenue available for the common good, while maintaining a 

sufficient incentive for individuals to earn income from their own work. One of the first individuals to consider such 

tradeoffs was F.Y Edgeworth (Fig. 4 left).  

   
Fig.4 (left) Francis Y. Edgeworth (1845-1926) and (right) Vilfredo Pareto (1848-1923) 

In 1881 at King’s College (London) and later at Oxford, economics Professor F.Y. Edgeworth was the first to define an 

optimum for multicriteria economic decision making (Edgeworth 1881).  He did so for the multi-utility problem 

within the context of two hypothetical consumer criteria, P and π: “It is required to find a point (x,y,) such that in 

whatever direction we take an infinitely small step, P and π do not increase together but that, while one increases, the 

other decreases.”  Pareto on the other hand was a contemporary of Edgeworth, born in Paris in 1848 to a French 

mother and Genovese father. He graduated from the University of Turin in 1870 with a degree in Civil Engineering and 

a thesis with the title: “The Fundamental Principles of Equilibrium in Solid Bodies”.2 While working in Florence as a 

civil engineer from 1870-1893, Pareto took up the study of philosophy and politics and was one of the first to analyze 

economic problems with mathematical tools. In 1893, Pareto became the Chair of Political Economy at the University 

of Lausanne in Switzerland, where he created his two most famous theories: Circulation of the Elites and The Pareto 

Optimum. While the first remains controversial to this day due to some racial undertones, the second has found broad 

acceptance (Pareto 1906):  “The optimum allocation of the resources of a society is not attained so long as it is 

possible to make at least one individual better off in his own estimation while keeping others as well off as before in 

                                                   
2 One may speculate that the notion of force and torque equilibrium in static structures may have stimulated Pareto to 

think about equilibria in the larger econo-political context. The generalized Karush-Kuhn-Tucker optimality conditions 

(Eq. 13-16) also embody the notion of equilibrium between objective and constraint gradients. The KKT conditions, 

however, were only formulated after Pareto’s death. The term “Pareto Frontier” is attributed to him.  
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their own estimation.” 

The translation of Pareto’s work into English in 1971 spurred the development of multi-objective methods in Applied 

Mathematics and Engineering. The growth of this field manifested itself particularly strongly in the United States with 

pioneering contributions by (Stadler 1979), (Steuer 1985) and many others. Another hot spot of activity and progress, 

particularly in the theoretical aspects of multiobjective optimization can be found in Japan (Sawaragi, Nakayama and 

Tanino, 1985). Over the last three decades the applications of multiobjective optimization have grown steadily in many 

areas of Engineering and Design. The advent of the internet and a number of focused conferences on the topic have also 

contributed to the formation of a community of researchers and practitioners in multiobjective optimization. A 

particularly remarkable resource in this area is the website created and maintained by (Coello-Coello 2004).  

 
3. Scalarization Methods 
 
There is general consensus that multiobjective optimization methods can be broadly decomposed into two categories: 

Scalarization approaches and Pareto approaches. While different names are used for these categories, the fundamental 

discriminator is always the same. In the first group of methods the multiobjective problem is solved by translating it 

back to a single (or a series of) single objective, scalar problems. This requires the formation of an overarching 

objective function which contains contributions from the sub-objectives in vector J. The formation of the aggregate 

objective function requires that the preferences or weights between objectives are assigned apriori, i.e. before the results 

of the optimization process are known. The Pareto methods, on the other hand, keep the elements of the objective vector 

J separate throughout the optimization process and typically use the concept of dominance to distinguish between 

inferior and non-inferior solutions. Methods where preferences are expressed during optimization represent a third, 

albeit less well developed category. The end goal of all these methods is the same: to provide designers and decision 

makers with a set of `optimal’ alternatives to choose from. This recognizes the fact that design alternatives – in practice 

– are also selected on the basis of objectives which may not be contained in J, perhaps because they are not easily 

quantifiable. Table 1 provides and overview of Multiobjective Optimization Methods. 

 

Table 1: Overview of Multiobjective Methods – underlined methods are mentioned in this paper 

Scalarization Methods  

(apriori preference expression) 

Weighted Sum Approach 

Compromise Programming (Non-linear combinations) 

Multiattribute Utility Analysis (MAUA) – Utility Theory 

Physical Programming, Goal Programming 

Lexicographic Approaches 

Acceptability Functions, Fuzzy Logic 

Pareto Methods 

(a-posteriori preference expression) 

Exploration and Pareto Filtering 

Weighted Sum Approach (with weight scanning) 

Adaptive Weighted Sum method (AWS) 

Normal Boundary Intersection (NBI) 

Multiobjective Genetic Algorithms (MOGA) 

Multiobjective Simulated Annealing (MOSA) 

 

A comprehensive overview and comparison of these methods can be found in (Andersson 2001). Here, we briefly 

discuss a few representatives to highlight some of the prevalent issues associated with the current state-of-the-art. 
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Scalarization methods are based on the assumptions that (i) designer or decision-maker preferences are known before 

design solutions are found and that (ii) the z objectives can be meaningfully combined to express a utility, U, a 

dimensionless scalar quantity expressing the goodness of a particular design (Eq. 6). 
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The easiest to understand – and most widely used – Scalarization method is the Weighted Sum (WS) approach: 
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Formulated in this way the aggregate objective U always forms a strictly convex combination of objectives. This is 

achieved by ensuring that all (preference) weights, λ j, add to unity and are themselves positive scalars. One of the issues 

in this method is the appropriate choice of scaling factors sfj for all constituent objectives. In the case of two equally 

scaled objectives, Eq. (7) simplifies to the well known form: 

( )1 21U J Jλ λ= + −           (8) 

Finding optima for U as λ  is changed gradually, in equal intervals, from 0 ! 1 reveals a set of optimal solutions as the 

weight is gradually shifted from one objective to another. We may apply this method to the numerical example 

presented in Eq. (2,3) with the resulting objective space shown in Fig. 5. 

 

The series of optima (obtained with a weight increment 

∆λ=0.05) are identified towards the upper right corner of the 

graph (maximize both J1 and J2) and are connected by 

straight line segments. The black dots indicate results of a 

full factorial analysis on the interval [-3,3]. The optimum 

obtained for λ=0 is x2* (upper left), while the optimum for 

λ=1 is x1* (lower right), see Eq. (4). This illustrates that 

interesting solutions are found, but unfortunately: 

1. Many interesting Pareto points are missed 

2. The resulting optima are unevenly distributed  Fig.5: Optimal solutions from Weighted Sum Approach 

 

A more comprehensive approach, underpinned by utility theory, is based on the mathematical construction of a utility 

function which allows non-linear combinations of objectives via intermediate utility functions. The most prevalent 

shapes of these utility functions have been classified by various researchers as shown in Fig. 6. 
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Monotonically increasing or decreasing relationships 

between an objective Ji and its corresponding utility 

Ui  are captured by larger-is-better or smaller-is-better 

relationships, while (strictly) convex or concave 

functions capture a nominal-is-better or in 

range-is-better type of utility. There also exist 

non-monotonic utility functions to capture periodic 

utilities, but these are special cases that are 

encountered infrequently in practice. Multiattribute 

utility analysis (MAUA) is one popular method. 

Fig.6: Types of utility functions, (Cook 1997, Messac 2000) 

 In multiattribute utility analysis (MAUA) the total utility of a design solution is a scalar on the interval between 0 (no 

utility) and 1 (highest utility). This scalar is a weighted sum of partial utilities obtained by mapping the raw objectives Ji 

to the utility functions shown in Fig. 6. For two objectives we obtain the special case: 

( )1 2 1 2 1 1 2 2 1 1 1 2 2 2, ( ) ( ) ( ) ( )U J J Kk k U J U J k U J k U J= + +      (9) 

where k1 and k2 are the individual weights corresponding to J1 and J2, respectively. The scalar K 

1 2 1 2(1 ) /K k k k k= − −          (10) 

is needed to scale the cross-utility term to ensure that the overall utility remains in the interval [0,1]. While utility 

optimization is effective and widely used it requires extensive interviews to determine appropriate utility functions 

(Fig.6) and weights (Eq. 9, 10). Once the utility function has been constructed, optimization can occur and the design 

with maximal utility can be found. One of the dangers of this approach is that decision makers will be influenced by the 

ways in which the utility interviews are conducted. Also, shifts in preferences can occur once the set of feasible designs 

becomes known. Most – if not all – Scalarization approaches can be represented via the utility function approach.. 

 

4. Pareto Methods 
 
Pareto methods attempt to find a set of efficient solutions, x*j, such that the objective vectors corresponding to those 

solutions are non-dominated in z-dimensional objective space. Dominance (for maximization) is defined as follows:  

 

Let z∈1 2J , J "  be two feasible objective vectors. Then J1 dominates J2 (weakly) iff  
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For strong dominance all elements of J1 would have to be greater than the corresponding elements of J2. 
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Based on the notion of dominance, the simplest approach is a combination of design space exploration and dominance 

(Pareto) filtering. This has been applied to our numerical example (Eq. 2,3) and is shown in Fig. 7. 

A comparison with Fig.5 shows a much more 

complete approximation of the Pareto front of 

non-dominated solutions. This is appealing, but raises 

two important points: 

1. A comprehensive or full-factorial evaluation of the 

design space is often impossible due to the 

n-dimensionality of the design vector, x, and the 

required computational effort for obtaining J, g and h. 

2. The solutions obtained in this way are mere 

approximations of the Pareto Front. More precisely, 

the points only satisfy non-dominance (Eq. 11, 12). 

Fig.7: Approximation to Pareto Front via dominance filtering 

 

A stronger condition is to seek solutions that satisfy the multi-objective version of the Karush-Kuhn-Tucker (KKT) 

optimality conditions: 

 

If x* is non-inferior (=Pareto optimal) it satisfies the following KKT conditions: 

a.) x* is feasible, i.e.   and  S S∈ = ∅*x                 (13) 
b.) all objective functions Ji and constraints gj are differentiable3             (14) 

c.) At x* the constraints are satisfied ( ) 0    1, 2,...,jg j m≤ ∀ =*x          (15) 

and  ( ) 0 j jgλ =*x  whereby 0   1, ..,j j mλ ≥ ∀ =  
d.)  There exist 0   1,..,i i nµ ≥ ∀ =  with strict inequality holding for at least one i such that    (16) 

    the condition * *

1 1

( ) ( ) 0
n m

i i j j
i j

J x g xµ λ
= =

∇ + ∇ =∑ ∑  is true. 

 

The condition described in Eq. (16) expresses the fact that the gradients of the objectives and gradients of the 

constraints are in equilibrium with each other at a Pareto-optimal point. Note, that among multipliers, the preferences µi 

are the corollary to the weights (λ i) discussed in Eq. (7), while the λ j’s in Eq. (16) are the Lagrange multipliers. 

Among the Pareto approaches shown in Table 1 (right column) two in particular have gained increased acceptance and 

use in recent years: Normal Boundary Intersection (NBI) as well as Multiobjective Genetic Algorithms (MOGA). While 

NBI (Das and Dennis 1998) relies on equality constraints normal to a line connecting the anchor points (e.g. x1* and x2*) 

in objective space, MOGA’s evolve populations of designs gradually so that they approximate a Pareto frontier as 

closely as possible. NBI and MOGA results for the numerical example, Eq. (2,3), are shown in Fig.8. 

                                                   
3 All equality constraints h can be transformed into pairs of related inequality constraints g.  
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  Fig. 8: (left) Optimization results obtained with NBI, (right) results obtained with MOGA (10 generations) 

 

While both of these methods are effective and don’t require apriori assignments of weights, there are issues with both 

methods. In the case of NBI a nearly uniform representation of the Pareto front is usually obtained. However, due to its 

reliance on equality constraints NBI will converge to local optima for complex, non-linear problems resulting in 

dominated or non-Pareto points (Fig.8 left). In the case of MOGA the main issues are the large computational expense 

as well as a tendency for niching (clumping of solutions in objective space) which results in underrepresented regions 

of the Pareto front (Fig. 8 right). All of these issues (and others) are subjects of ongoing research in the multiobjective 

optimization community. 

 
5. Emerging Trends: Manufacturing Cost, Adaptivity 
 
Among the new developments in multiobjective optimization we will focus on two in particular: the inclusion of 

manufacturing cost, as well as the emergence of adaptivity in multiobjective optimization algorithms. 

 

5.1 Manufacturing Cost 

Traditionally, structural design and optimization have focused on maximization of structural performance alone 

(compliance, displacements, natural frequencies/stiffness), subject to a variety of stress and perhaps mass constraints. 

Increasingly there is recognition that structural components must also be cost effective in terms of manufacturing. One 

of the trends in multiobjective, structural optimization is the inclusion of manufacturing cost as an objective which is on 

par with structural performance (Kim, Nadir and de Weck 2004). The tradeoff between manufacturing cost and 

structural performance for a simple fixed-free cantilever with end load is shown in Fig.9. All three designs have the 

same mass and are subjected to the same tip load. The tradeoff is between tip displacement (x-axis, J1) and 

manufacturing cost (y-axis, J2), using abrasive water jet cutting as the reference process. The simplest design is made 

up of a single bar. It is the cheapest to manufacture, but also uses the material in the least efficient way. The 17-bar 
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design on the other hand has both high performance (= small displacement under load) and high manufacturing cost due 

to its complexity. This complexity manifests itself through higher cutting length and sharper cutting radii. Along both 

objectives there is a relationship of diminishing returns. For many applications the design near the “knee” of the curve 

in Fig.9 will be most attractive. That “knee”, however, cannot be found if artificial constraints are introduced ab initio 

as is the case in many single objective optimization formulations. 
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Fig.9: Tradeoff between structural performance and cost  Fig.10: Framework for performance/cost optimization

   
A simplified version of a concurrent multiobjective optimization framework for structural performance and 

manufacturing cost is depicted in Fig.10. The idea is that topology/shape optimization are combined with FEM 

evaluation of structural performance and cost estimation. More details on initial work in this area are provided in (Kim, 

Nadir and de Weck 2004). One of the most interesting conclusions is that high-fidelity manufacturing cost models can 

be very non-linear. This is particularly true when features are introduced that push a design close to the feasibility 

constraints of a particular manufacturing process. These non-linearities cause convergence and stability challenges in 

the optimization loop. Conventional wisdom approximates cost models with low order cost estimation relationships 

(CERs); a practice which we found to be far removed from industrial reality. 

 

5.2 Adaptivity 

All multiobjective methods discussed thus far attempt to find the Pareto Front of a system in a pre-determined fashion. 

In the case of the traditional weighted sum method (Eq. 7) the weights λ i are defined a-priori. This can result in wasted 

computational effort in many cases. Fig. 5 shows that despite equal spacing of weights, many points are nearly identical 

in the objective space for our numerical example from Eq. (2,3).  

A new set of adaptive methods are currently being developed, whereby a few points are found on (or near) the Pareto 

front initially and this information is subsequently used to invest computational effort in unexplored, or poorly 

represented regions of the objective space. The Adaptive Weighted Sum (AWS) method is one such approach (de Weck 

and Kim 2004a, 2004b). The following paragraph demonstrates the use of the AWS method for multi-objective 

optimization of the classical three-bar truss problem first presented by (Koski 1985). Figure 11 illustrates the problem 

and shows the values of the parameters used. A horizontal load and a vertical load are applied at Point P, and the 
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objective functions are the total volume of the truss members and the displacement of point P. The mathematical 

problem statement is 

lower limit upper limit

lower limit upper limit

1 2
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The Pareto front for this example is non-convex, and the Pareto line is separated into two regions by a segment of 

dominated solutions, as shown in Fig. 11. The adaptive weighted sum method with an offset Jδ  of 0.1 is used. The 

optimization history is shown in the figure. The adaptive weighted sum method converges in three phases, and the 

solutions are quite evenly distributed. Note, that there is no solution obtained in the non-Pareto region, without using a 

Pareto filter. The parameter Jδ  is used to tune the desired density of Pareto points generated by the algorithm. 

The adaptive weighted sum method effectively approximates the Pareto front by gradually increasing the number of 

solutions on the front. In that sense it gradually “learns” the shape of the Pareto front and concentrates computational 

effort where new information can be gained most effectively. This is in contrast to other Pareto generation methods 

such as traditional weighted sum or NBI, which generally explore the Pareto front in a predetermined fashion. Because 

it adaptively determines where to divide further, the adaptive weighted sum method produces well-distributed solutions. 

In addition, performing optimization only in feasible regions by imposing additional inequality constraints enables the 

method to find Pareto solutions in non-convex regions. Because the feasible region includes only the regions of 

non-dominated solutions, it automatically neglects non-Pareto optimal solutions. It is potentially more robust in finding 

optimal solutions than other methods where equality constraints are applied.  

 

Non-Pareto 
optimal region 

Non-Pareto 
optimal region 

Non-Pareto 
optimal region 

 

Fig. 11: Optimization history by the adaptive weighted sum method. 0.1Jδ = . 

 

There are clear indications that research in adaptive multiobjective methods will continue in the coming years. 

 
6. Emerging Applications for Complex Systems 
 
So far, we have discussed Multiobjective Optimization under the assumption that its purpose is simply to identify a set 

of Pareto-optimal, or at least non-dominated solutions, among which a final alternative will be chosen. We have not 

discussed in detail how such a final choice would be made. This aspect is treated extensively in the field of decision 
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theory. 

There are however, a number of very interesting and emergent uses of Pareto Frontiers, which have not yet been 

discussed. These emerging applications of Pareto analysis involve complex systems4, as well as lifecycle considerations. 

Many such lifecycle considerations are summarized under the term “Illities”: reliability, maintainability, 

reconfigurability or extensibility, among others. These are also “performance” objectives; however, they often reveal 

themselves only over time and not necessarily at the time of manufacture or first usage of a system. Pareto frontiers can 

be very helpful in understanding, quantifying and visualizing the relationship between these lifecycle objectives and the 

short-term objectives of performance, cost and risk (Fig.1) which are manifest during product development. 
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Fig.12: Emerging Applications of MOO and Pareto Frontiers to Complex Systems and Lifecycle Engineering 

 

Fig.12 shows an overview of such emergent applications of Pareto frontiers to Complex Systems and Lifecycle 

Engineering. In product platforms (e.g. for automobiles) tradeoffs have to be resolved between commonality and 

performance of variants in the same product family. MOO was applied to the optimization of large future radio 

telescope arrays (Cohanim, Hewitt and de Weck 2004). It was found that different topologies dominate different regions 

of the Pareto front. Multiobjective optimization was also applied to the concept of staged deployment of satellite 

constellations (de Weck, de Neufville and Chaize 2004). It was found that embedding flexibility in a system to allow for 

future expansion leads to sub-optimality and short term (cost and mass) penalties. The benefits of such flexibility over 

the lifetime of the system, however, can significantly outweigh these initial expenses if future demand for the system is 

uncertain. Finally, it is suggested that Pareto Fronts are potentially more effective than S-curve models at quantifying 

                                                   
4 We define complex systems as those that have > 73 components and are relatively long-lived. Single components or 

simple structures such as the three-bar truss discussed above are not complex systems. 
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the performance/cost effects of technology infusion and technology obsolescence studies applied to complex systems 

(de Weck, Chang 2003). The infusion of new technologies often leads to the removal of existing constraints, see Eq. (1, 

16), which in turns can cause shifts in existing Pareto Frontiers. These Pareto shifts can be quantified and used as an 

indication of likely success of new technologies or designs over the status-quo. 

 
Conclusions 
 
A multiobjective (vector) optimization problem generally has more than one solution. As was shown in this paper we 

are typically interested in finding a z-dimensional Pareto front or a set of non-dominated solutions to solve a design 

optimization problem. Two fundamental approaches to MOO problems can be distinguished: Scalarization Methods for 

multiple objectives (e.g. Utility Theory) and Pareto Approaches with a-posteriori preference expression. Various 

methods for computing Pareto Fronts have been developed in the last 30 years to support engineering design and 

multicriteria decision making: Weighted Sum Approach (and variants), Design Space Exploration + Pareto Filtering, 

Normal Boundary Intersection (NBI), Multiobjective Heuristic Algorithms (GA and SA), among others. None of these 

methods are perfect and selecting among them depends on the requirements of a particular design situation. Resolving 

tradeoffs is an essential part of system optimization and design and this will remain so in the future. 

Future trends include a stronger emphasis on manufacturing cost as well as the emergence of adaptive algorithms for 

multiobjective optimization and visualization. There are many applications for Pareto analysis, particularly for complex 

systems and lifecycle engineering. We have barely scratched the surface in terms of understanding the relationship 

between short term performance/cost/risk criteria and long term system properties such as: maintainability, 

reconfigurability or extensibility.  
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