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Abstract

Precision opto-mechanical systems, such as space telescopes, combine structures, optics and
controls in order to meet stringent pointing and phasing requirements. In this context a novel
approach to the design of complex, multi-disciplinary systems is presented in the form of a
multivariable isoperformance methodology. The isoperformance approach �rst �nds a point
design within a given topology, which meets the performance requirements with suÆcient
margins. The performance outputs are then treated as equality constraints and the non-
uniqueness of the design space is exploited by trading key disturbance, plant, optics and
controls parameters with respect to each other.

Three algorithms (branch-and-bound, tangential front following and vector spline approx-
imation) are developed for the bivariate and multivariable problem. The challenges of large
order models are addressed by presenting a fast diagonal Lyapunov solver, apriori error bounds
for model reduction as well as a governing sensitivity equation for similarity transformed state
space realizations. Speci�c applications developed with this technique are error budgeting and
multiobjective design optimization. The goal of the multiobjective design optimization is to
achieve a design which is pareto optimal, such that multiple competing objectives can be
satis�ed within the performance invariant set. Thus, situations are avoided where very costly
and hard-to-meet requirements are levied onto one subsystem, while other subsystems hold
substantial margins.

An experimental validation is carried out on the DOLCE laboratory testbed. The testbed
allows veri�cation of the predictive capability of the isoperformance technique on models of
increasing �delity. A comparison with experimental results, trading excitation amplitude and
payload mass, is demonstrated. The predicted performance contours match the experimental
data very well at low excitation levels, typical of the disturbance environment on precision
opto-mechanical systems. The relevance of isoperformance to space systems engineering is
demonstrated with a comprehensive NEXUS spacecraft dynamics and controls analysis. It is
suggested that isoperformance is a useful concept in other �elds of engineering science such
as crack growth calculations in structures. The isoperformance approach enhances the under-
standing of complex opto-mechanical systems beyond the local neighborhood of a particular
point design.
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Chapter 1

Introduction

In designing complex high-performance technical systems, there are typically two con-


icting quantities that come into play: resources and system performance. One traditional

paradigm �xes the amount of available resources (costs) and attempts to optimize the system

performance given this constraint. The other approach is to constrain the system performance

to a desired level and to �nd a design (or a family of designs) that will achieve this perfor-

mance at minimal cost. This thesis explores the second approach by developing a framework

termed the \isoperformance methodology" for dynamic, linear time-invariant (LTI) systems.

The word \isoperformance" contains the Latin pre�x \iso", meaning \same". Thus it refers

to a framework where the solutions to a design problem do not distinguish themselves by

the performance they achieve but rather by the \cost" and \risk" required to achieve this

performance. Note that \cost" is to be understood in a broader sense than monetary cost.

The generalized cost metrics can include, among others, hardware costs, system mass, control

e�ort or the amount of energy dissipated in the system. The generalized notion of \risk" is

comprised, among others, of margins of stability, stability robustness, performance robustness

to uncertainty and system reliability1.

The novelty in this approach is that integrated modeling and physical parameter sensitivity

analysis for LTI systems are leveraged such that a family of \eÆcient" solutions is presented to

the designer rather than a single point-design as is often the case in pure systems optimization

or performance enhancement studies. The term \eÆcient" relates to a pareto optimal set of

solutions. This framework is �rst developed generically for LTI systems, which can described

1There is also technical risk associated with advanced technologies, which have never been implemented

before. This type of risk, however, is much more diÆcult to quantify.
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in state space form. It is then applied to dynamics and controls problems of precision opto-

mechanical systems, such as the next generation of space-based observatories. These systems

carefully combine structures, optics and controls such that stringent pointing and phasing

requirements can be met in the presence of dynamic disturbance sources.

The �rst step of an isoperformance analysis is to �nd a nominal system design (starting

from an initial guess) that meets all the dynamic performance requirements with suÆcient

margins. The performance is then treated as an equality constraint (i.e. it is held constant)

and those system parameters, which are considered to be variable, independent and important,

are traded with respect to each other. The reason the performance is treated as an equality

rather than a \smaller-or-equal" inequality is that the latter could lead to solutions which

are signi�cantly overdesigned, i.e. they may provide excessive performance margins which

will not be used during operations and will waste system resources such as mass and control

e�ort or they may carry unnecessary risk such as small stability margins. A prerequisite

for the methodology is that reasonable upper and lower bounds are de�ned for each variable

parameter. Reasonable means that the bounds do not violate physics (e.g. negative mass) and

are achievable within the current or foreseeable state-of-the-art. The computation of multiple

isoperformance contours (at di�erent performance levels) allows the designer to understand the

implications of pursuing increased performance beyond the requirements. The goal is to obtain

an isoperformance set, i.e. the locus of design points that yield equal nominal performance in

the design space de�ned by the upper and lower bounds. This information can subsequently

be utilized in support of important systems engineering tasks such as multiobjective design

optimization and error budgeting.

1.1 Research Background

The next generation of space and ground based astronomical observatories such as the Next

Generation Space Telescope (NGST), the Space Interferometry Mission (SIM) or the Ter-

restrial Planet Finder (TPF) will signi�cantly surpass the present generation, for example

the Hubble Space Telescope (HST), in terms of their sensitivity, angular resolution, spectral

resolution and imaging stability [105, 59, 27]. The present work is motivated by the need

to predict the dynamic behavior of these telescopes during the conceptual and preliminary

design phases before substantial resources are committed towards a particular system archi-
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tecture. Figure 1.1 shows the HST in the upper left corner and a number of proposed successor

spacecraft below. The science objectives for these missions are translated into functional re-

quirements. These are further 
owed down to engineering system requirements. It is these

engineering requirements, speci�cally relating to dynamics and controls, which constitute the

notion of \performance" in the present work.

HST - 1990

NEXUS-2004 SIM-2006
NGST-2009

Deployable Cold Optics
NGST Precursor Mission

Faint Star Interferometer
Precision Astrometry

Lightweight 8m-Optics
IR Deep Field Observations

Space-Based Observatory
Multipurpose UV/Visual/IR 

Imaging and Spectroscopy

Science
Requirements

Functional 
Requirements

Engineering
Requirements

TPF-2011

5 year wide-angle astro-
metric accuracy of 4 µasec
to limit  20th Magnitude stars

Fringe Visibility
> 0.8 for astrometry

Science Interferometer
OPD < 10 nm RMS

Sample Requirements Flowdown Process

Nulling Interferometer
Planet Detection

"Performance"

Figure 1.1: Hubble Space Telescope and proposed successor missions as part of
NASA's space science program. Sample requirements 
owdown for SIM.

While the HST has performed admirably well over the last decade [27], it is essentially a

multi-purpose instrument providing imaging and spectroscopy capabilities in the wavelength

range 0.110-2.6 [�m], i.e. from ultraviolet (UV) to near-infrared (NIR). In order to achieve

this large scope of science capabilities, a number of engineering compromises had to be made.2

The astronomical science community has realized that specialization is necessary such that

the ambitious astrophysical research goals of the �rst half of the 21st century (e.g. observation

of proto-galaxies at high redshifts z, direct IR detection of extra-solar earth-sized planets out

to 15 parsecs) can be achieved [105]. Consequently a number of successor spacecraft have

2The angular resolution for HST is given by the Dawes limit �res � �=D, where D = 2:4 [m] is the diameter

of the primary mirror and � is the observing wavelength. Thus at � = 0:63 [�m] (WFPC2) the observatory

achieves an angular resolution (FWHM) of 0.053 arcsec. In the infrared regime at � = 1:6 [�m] as seen with

the NICMOS camera, however, the achievable angular resolution is reduced to 0.14 arcsec.
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been proposed (Figure 1.1).

At �rst sight it appears impossible to attempt a uni�ed engineering treatment of these

various missions due to the large di�erences in their respective science objectives. Once

these objectives have been broken down into tangible engineering requirements, however, the

missions can be analyzed with a common set of tools. All missions require that electromag-

netic radiation emanating from a science or guide source (e.g. star, proto-galaxy, extra-solar

planet...) is collected by an aperture, compressed and redirected to an electronic detector

(e.g. sprectrograph, CCD camera, fringe tracker). During this process it is paramount that

the distortion of the wavefront (surface of common phase of light) inside the optical train be

kept to a minimum, while the boresight axis of the observatory be held nearly �xed in inertial

space3.

For interferometers, additional requirements for the angular propagation of the wavefront

(wavefront tilt-WFT), the pathlength the light travels in the di�erent arms of the interferome-

ter (optical pathlength di�erence-OPD) and the amount of overlap the interfering light beams

experience at the detector (beamshear-BS) must be formulated. In order to ascertain that

these telescopes will meet their stringent phasing and pointing requirements, the path from

disturbance sources to the performance metrics of interest must be modeled in detail before

construction, integration and testing. Additionally, for a number of light-weight deployable

structures, pre-launch tests in a 1-g gravity �eld are not feasible. Hence, it is paramount that

a preliminary design of the system is available, which can be used as a basis for a simulation

model.

The science target observation mode is in quasi steady-state and is of particular impor-

tance. Other modes of interest can be transient such as the slewing and acquisition mode.

Figure 1.2 shows a simpli�ed block diagram of the main elements involved in a steady-state

dynamics simulation. This is the reference problem setting considered in this thesis. The

premise is that a number of disturbance sources (reaction wheel assembly, cryocooler, guide

star noise, etc.) are present during the science target observation mode as zero-mean ran-

dom stochastic processes [11]. Their e�ect is captured with the help of state space shaping

�lters4, such that the input to the appended system dynamics is assumed to be a vector of

3A common inertial reference frame is the equatorial system, where the location of a celestial object is

de�ned by its declination Æ and right ascension � [65].
4Sometimes these are referred to as pre-whitening �lters.
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unit-intensity white noises d, which are generally uncorrelated between disturbance sources,

see Equation (1.1). Reference input commands are designated as r. The simplest assumption

is that the reference commands are zero, i.e. r = 0, this, however, is not always the case.
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Figure 1.2: Reference problem: Science target observation mode of a space telescope
with pointing (RSS LOS) and phasing (RMMS WFE) performances.

The shaped disturbances w are then propagated through the opto-structural plant dynam-

ics, which include the structural dynamics of the spacecraft and the linear sensitivity optics

matrices [120]. A compensator is often present in order to stabilize the observable rigid body

modes (attitude control) and to improve the disturbance rejection or tracking capability (op-

tical control). The sensor outputs y and actuator inputs u might also be subject to colored

noise n. The goal of a disturbance analysis is to accurately predict the expected values of the

performances Jz;i, where i = 1; 2; :::; nz and nz is the number of performance metrics. This

has been previously developed and demonstrated by Gutierrez [45]. A summary of the distur-

bance, sensitivity and uncertainty analysis framework is contained in Appendix A. Outputs of

the appended dynamics model are opto-scienti�c metrics of interest, z. The performances are

typically expressed in terms of the root-mean-square (RMS) of the outputs. Alternatively we

can combine channels in a RSS or RMMS metric, see Appendix A for details. Note that nray
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is the number of light rays traced to compute the wavefront error (WFE). Other performance

metrics could be the in�nity norm Jz;i = kzik1 or settling time Jz;i = Tsz;i of a particular

transient signal.

Another objective is to identify the \key" modal and/or physical parameters of the system

that strongly drive the system performance. Sensitivity analysis has been previously identi-

�ed [45] as a useful tool for examining the dependency of the predicted performance values Jz;i

on these \key" system parameters pj, where j = 1; 2; :::; np and np is the number of parame-

ters5. Some or all of the parameters might be subject to uncertainty. Oftentimes the number

of parameters, np, for which a designer has to determine speci�c values exceeds the number

of performance metrics, nz, i.e. np � nz � 1. The traditional approach is to �rst choose rea-

sonable numbers for the system parameters pj and to predict the resulting performances Jz;i

(initial performance assessment). If all or some of the predicted performances do not initially

meet the speci�ed requirements Jz;req;i for i = 1; 2; :::; nz , including margins, a sensitivity anal-

ysis can provide partial derivatives @Jz;i=@pj which can be used to identify in which direction

important parameters pj should be changed. This is intended to drive the system to a design

point that satis�es all requirements, i.e. a condition where Jz;i � Jz;req;i for all i = 1; 2; ::; nz

is true. This process is called performance enhancement [45]. A �% uncertainty on the pre-

dicted performances, �4Jz;i, can be computed based on known or assumed �% uncertainties,

�j , of the parameters pj. This is useful in establishing performance error bounds.

1.2 Isoperformance Motivation and Analogies

Once a nominal design has been found that meets all requirements with suÆcient margins,

it is important to realize that this design is generally not unique. It is likely that di�erent

combinations of values for the \key" system parameters, pj , will yield the same predicted

system performances Jz;i. Consider the following analogy from civil engineering (statics).

A metal supporting column for a bridge, see Figure 1.3(a), is to be designed, such that it

can sustain an axial buckling load of 500 metric tons6 with a 100% safety margin (=9.81

[MN]). The buckling load in this case represents the \performance" and the static axial load

is the static analog of the dynamic \disturbance". The critical buckling load, PE , is given

by Euler's column formula as PE = c�2EI=l2, where E is the modulus of elasticity, I is

5It is assumed that these parameters are continuous over their interval pj 2 [pLB;j pUB;j ]
6Buckling occurs at the bifurcation point, when the column becomes elastically unstable.
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the column moment of inertia, l is the length of the column and c is a boundary condition-

dependent parameter, the so called \end �xity coeÆcient" [121, 140]. The bending moment of

inertia I of the circular column is a function of the radius r according to I = �r4=4. The end

�xity coeÆcient is c = 2:05, assuming that the column has a uniform cross section, is axially

loaded, has one end �xed (
oor) and one end pinned (ceiling). We can reasonably assume that

l = 15 [m] and that this length is a constant given by the overall design of the bridge. The

remaining variable design parameters are therefore the elastic modulus E (material) and the

column radius r (geometry). The performance speci�cation can be met if we use steel V2A

(74% Fe, 18% Cr, 8% Ni) with E = 19:1 � 1010 [Nm�2] and a column radius of r = 16:42 [cm].

Alternatively the same performance can be achieved if we use aluminum (99.99% Al) with

E = 7:1 �1010 [Nm�2] and a column radius of r = 21:03 [cm]. In fact, we see that the \contour

of equal performance" is given by the equation E(r) = (4PE l
2=c�3) �r�4. The critical buckling

load will remain constant as long as the product EI is kept constant. In practice the choice of

materials and geometry in the bridge example will be governed by additional considerations

such as cost, corrosion resistance or ease of inspection.
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Figure 1.3: (a) Simple model of axially loaded column in bridge analogy. (b) United
States sea level pressure distribution [mbar], 1600 Z time, Tuesday, May
9th, 2000, based on http://ww2010.atmos.uiuc.edu [110].

In the design of high-precision opto-mechanical systems, such as ground and space ob-

servatories, it is also important to �nd the combinations of design solutions that will yield

equal performance (thus the term \isoperformance"). In this multi-disciplinary �eld the dis-

turbance, structural, optical and control parameters, pj, interact in complex and sometimes

29



non-intuitive ways7. Knowledge of this interaction can give valuable insight into the design

space and predicted behaviour of the system. From an economic perspective an \isoperfor-

mance" analysis is important, since it can help to design a product that achieves the required

performance at a more a�ordable cost. Consequently, according to Wehner [139], the system

parameters that have small sensitivities are also important in this context, since they can

be changed (presumably in the less costly direction) without signi�cantly a�ecting system

performance. This is di�erent from classical optimization of performance, where the goal is

to �nd the design which provides the best performance, i.e. minimization or maximization

of a performance objective function given a set of constraints. From a systems engineering

and project management perspective an isoperformance analysis is useful, since it supports

multiobjective design optimization, error budgeting and to some extent technology roadmap-

ping. For example if the requirements levied on a subsystem in the preliminary design phase

cannot be met during detailed design, the \burden" has to be redistributed within the system.

Knowledge of the locus of design points that will (theoretically) yield equal performance is

useful in such a scenario.

The isoperformance loci are surfaces or contours, which can be compared to the isobars on

a weather chart. In this analogy the system \parameters" would be the geographic longitude

and latitude and the \performance" would correspond to the atmospheric pressure in millibars

at a given altitude. Figure 1.3(b) depicts a pressure chart for the United States at mean sea

level as recorded on May 9, 2000. The isobars are the lines of constant pressure. The isobars

are generated from mean sea level pressure reports from individual weather stations and are

useful in locating areas of high and low pressure, which correspond to the positions of surface

cyclones and anticyclones. A map of isobars is also useful in identifying strong pressure

gradients which are revealed by a tight packing of the isobars. Stronger winds are associated

with larger gradients in pressure [110]. For dynamic opto-mechanical systems, areas where

the isoperformance lines are close together are \steep"-gradient areas. This analogy will be

exploited in a later chapter and is related to the notion of performance robustness, assuming

that some of the variable parameters are uncertain. In these regions of the trade space the

performance is very sensitive to small changes in the system parameters.

In summary, the motivation for the isoperformance methodology is to obtain a tradeo�

tool in support of the multiobjective design optimization, error budgeting and technology

7The thermal aspects are also important but are ignored in this thesis, see Section 1.3.3.
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roadmapping processes for precision opto-mechanical systems. These processes rely heavily

on integrated modeling, model conditioning, as well as disturbance and sensitivity analysis. A

tool is needed in order to obtain speci�cations on the system plant and control parameters and

error sources, which will ensure that a required performance level is met, while minimizing

the cost and risk of the system. The need for computational tools, which provide such a rapid

synthesis and simulation capability has been recognized by NASA [138]. This is the impetus

for the following formal thesis problem formulation.

1.3 Thesis Problem Formulation

1.3.1 Thesis Objectives

The �rst objective of this thesis is to develop a comprehensive multivariable isoperformance

methodology for precision opto-mechanical systems. In other words, given the required system

performances Jz;req;i, where i = 1; : : : ; nz, attempt to �nd a set of independent solution vectors,

piso = [p1; p2; : : : ; pnp ]
T , whose elements are the variable parameters, pj, such that an eÆcient

system design can be achieved. The theoretical questions to be answered by such a framework

are:

1. Can a speci�c precision opto-mechanical system described by an integrated model in

state space form meet all required performance levels Jz;req;i for given variable parameter

bounds pLB;j � pj � pUB;j ?

2. What is the locus (set) of points piso in R
np that will produce the required performances

Jz;i(pj) � Jz;req;i (including margins) within an allowable numerical tolerance, � ?

3. How can the set of isoperformance points, piso, be approximated by a functional rela-

tionship piso = fiso(tl), where l = 1; 2; :::; np � nz ?

A second objective of the thesis is to demonstrate the usefulness of this methodology in

the context of dynamics and controls system engineering problems. Speci�cally the research

attempts to answer the following applied questions:

1. What are the speci�c values for disturbance, plant, optics and control parameters, pj, of

a given dynamic system that meet the isoperformance condition and at the same time
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minimize a scalar or multiobjective cost function Jc and risk function Jr ? (Multiobjec-

tive Design Optimization)

2. What is a physically realizable error allocation 	l;i for the anticipated disturbance

sources l = 1; 2; :::; nd and the i-th performance of a dynamic LTI system ? (Dynamics

Error Budgeting)

3. Assuming that the required performance levels Jz;req;i are not achievable within the

speci�ed parameter bounds (state-of-the art), which constraints should be moved (and

by what amount) in order to achieve the required performance ? (Technology Roadmap-

ping)

A third objective of the thesis is to implement the isoperformance framework and to

experimentally demonstrate its ability to predict correct isoperformance loci given a system

model and corresponding laboratory artifact:

1. Implement the isoperformance methodology in a common and user-friendly technical

computing environment and thoroughly test it with various system models of increasing

complexity.

2. Validate the resulting toolbox with experimental results from a laboratory testbed in a

1-g environment.

3. Obtain insights about the level of model �delity required to accurately predict the isop-

erformance surfaces in real world systems.

Finally a fourth objective is to demonstrate if and how the kernel isoperformance algo-

rithms can be applied to engineering problems outside of the dynamics and controls area, e.g.

in metal fatigue engineering.

1.3.2 Mathematical Problem De�nition

An appended state space representation of the dynamics of a closed-loop or open-loop linear

time-invariant system is given as

_q = Azd (pj) q +Bzd (pj) d+Bzr (pj) r

z = Czd (pj) q +Dzd (pj) d+Dzr (pj) r , where j = 1; 2; :::; np
(1.1)
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where Azd is the state transition matrix, Bzd and Bzr are the disturbance and reference input

coeÆcient matrices, Czd is the performance output coeÆcient matrix, Dzd and Dzr are the

disturbance and reference feedthrough matrices, d are unit-intensity white noise inputs, r

are reference inputs, z are system performance outputs, q is the state vector and pj are the

independent variable system parameters. Given that the functionals

Jz;i (pj) = F (z) , e.g. Jz;i = E
�
zTi zi

�1=2
(1.2)

where i = 1; 2; :::; nz , are a de�nition of the performance metrics of interest, �nd a set of

vectors, piso, whose elements are the independent variable parameters, pj, such that the

performance equality (isoperformance) constraint

Jz;i (piso) � Jz;req;i 8 i = 1; 2; :::; nz (1.3)

is met, assuming that the number of parameters exceeds the number of performances

np � nz � 1 (1.4)

and that the parameters pj are bounded below and above as follows:

pj;LB � pj � pj;UB 8 j = 1; 2; :::; np (1.5)

The isoperformance condition (1.3) has to be met subject to a numerical tolerance, �����Jz (piso)� Jz;req
Jz;req

���� � �

100
(1.6)

If scalar or vector (multiobjective) cost functions, Jc, and risk functions, Jr, are given, solve

a constrained non-linear optimization problem such that

NLP

min
�
�JTc QccJc + (1� �) JTr QrrJr

�
such that piso 2 I and pj;LB � pj � pj;UB

and � 2 [0 1]

(1.7)

where the weight � is used to trade between cost and risk objectives and Qcc and Qrr are cost

and risk weighting matrices respectively. The set I is the performance invariant (isoperfor-

mance) set, containing only solutions satisfying (1.3).

Alternatively this can be formulated in terms of set theory. Figure 1.4 shows various sets

in the vector space p =
�
p1 p2 ... pnp

�T
and their mutual relationship in the general case. The
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goal is to �rst �nd the elements of the isoperformance set I. Note, that since the performance

requirements are bounded, i.e. jJz;req;ij <1 8 i, it is true that the intersection U\ I = ?. In

other words only stable solutions can be part of the isoperformance set, thus I � U, where the

overline denotes the stable, complementary set U = fxjx 62 Ug. Our ultimate goal is to �nd a
family of designs p�j , j = 1; 2; :::; np, which are elements of the eÆcient set E. The eÆcient set

is the intersection of the isoperformance set I and the pareto optimal set P, i.e. E = I \P.

I

E
P

U

B

p
n
R

set description

R
np np-dimensional Real valued

Euclidean vector space

B � R
np subset of Rnp , which

is Bounded by (1.5)

I � B subset of B, which satis�es

Isoperformance, see (1.3)

U � R
np Unstable subspace, where

max(Re(�i)) > 0

P � R
np Pareto optimal subset,

satis�es (1.7) without constr.

E = I \P EÆcient subset, satis�es

(1.7) with constraints

Figure 1.4: Sets related to thesis problem de�nition. The eigenvalues �i are obtained
by solving the eigenvalue problem [Azd � �iI]�i = 0.

1.3.3 Limitation of thesis scope

It shall be noted that (quasi) static disturbance (=error) sources, such as thermal mirror

distortions, manufacturing aberrations or optical misalignments will not be included in this

analysis. Thus the disturbance sources d are assumed to be zero mean: �d = E [d] = 0,

while E
�
dTd

� 6= 0. Furthermore this thesis focuses on the science target observation mode,

thus representing a steady state condition. This is true while an observatory is phased up

and locked onto a desired science target for the duration of the image or fringe integration

time. The concept of isoperformance could, however, also be applied to transient modes of

operation.
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When applying the isoperformance methodology to precision opto-mechanical systems we

will always assume linearity and time-invariance (LTI). This entails the assumption that the

system behaviour is linear over the entire de�nition interval of the parameters pj, see Equation

(1.5). The scope is limited to continuous time problems (s-domain). The e�ect of D/A or

A/D conversion noise and time delay associated with digital control implementations can be

included via shaping �lters and Pad�e approximations, respectively. We will exclude discrete or

topology-type design parameters such as structural connectivity or actuator/sensor placement

and type. Also it is assumed that a baseline controller has been chosen (e.g. PID, LQG) and

that it can be parameterized.

Also, some system parameters need to be �xed ahead of time to make the problem for-

mulation tractable for realistic systems. The thesis will provide guidance, however, as to

which parameters to select for an isoperformance analysis. The thesis is essentially limited

to dynamics and controls problems for opto-mechanical systems, but application of the core

isoperformance algorithms to a crack growth problem in metallic structures is presented in

Appendix C. This suggests the use of isoperformance in other �elds.

1.4 Previous Work

1.4.1 Literature Review

This section gives a short overview of the scienti�c literature which is relevant to the devel-

opment and validation of the isoperformance methodology. The literature search areas begin

with papers on the processes and tools used by systems engineers and designers during con-

ceptual and preliminary design. The current state-of-the-art in performance assessment and

enhancement of linear time-invariant systems is discussed along with initial work by other

researchers in the area of isoperformance methodology. The building blocks of integrated

modeling of such systems are structural dynamics, classical and modern control theory, op-

tical ray tracing as well as empirical and analytical modeling of various disturbance sources.

In order to leverage these models and simulations in a multidisciplinary design optimization

(MDO) context, issues of numerical conditioning, sensitivity analysis and uncertainty analysis

cannot be ignored. Finally, past and presents e�orts in laboratory testing and implementation

on space
ight missions are brie
y discussed.

The conceptual and preliminary design phases are important times during a program
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in which various system architectures are analyzed and estimates are made of the top level

and subsystem functional requirements. Additionally, initial budget allocations are made

and enabling technologies are identi�ed. The allocation of design requirements and resources

(costs) and an assessment of risk during these early stages of a program is based on preliminary

analyses using simpli�ed models that try to capture the behavior of interest [19]. This was a

major driver for the development of tools that allow quantitative analysis and design of these

preliminary dynamics models early in a program. The kernel of the performance assessment

(disturbance analysis), sensitivity and uncertainty analysis framework, which is used as a

starting point for developing the isoperformance methodology was established by Gutierrez

[45]. The H2-type performances used here are de�ned in accordance with Zhou, Doyle and

Glover [143].

The theory behind the performance assessment of linear dynamical systems is well-

developed. A special case of the general performance assessment of a dynamical system

is given when stochastic random noise processes are present. In this instance we speak of

disturbance analysis and governing equations and methodologies are presented in random

vibration textbooks such as those by Crandall [18] and Wirsching [141]. They characterize

the response of systems driven by stochastic inputs in the time-domain (using autocorrelation

functions) and equivalently in the frequency-domain (using power spectral density functions).

The concept of a linear shaping or \pre-whitening" �lter whose input is white noise and whose

output is \colored" noise, presumably containing more disturbance energy in some frequency

bands than in others, is covered by Brown and Hwang [11]. For the case of state-space systems

driven by white noise, the output steady-state covariance matrix is known to be the solution

of a Lyapunov equation [45].

The idea of holding a performance metric or value of an objective function constant and

�nding the corresponding contours has been previously explored by researchers in other ar-

eas. Gilheany [36] for example presented a methodology for optimally selecting dampers for

multidegree of freedom systems [36]. In that particular work (Fig.5) the contours of equal

values of the objective function8 are found as a function of the damping coeÆcients d11 and

d22. In the �eld of isoperformance methodology, work has been done by Kennedy, Jones

and coworkers [70, 71, 69] on the need within the U.S. Department of Defense to improve

8The objective function in reference [36] is called ITSE = integral of time multiplied by the sum of squares

of displacements and velocities of the masses.
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systems performance through better integration of men and women into military systems (hu-

man factors engineering). They present the application of isoperformance analysis in military

and aerospace systems design, by trading o� equipment, training variables, and user charac-

teristics. Once the level of operational performance is settled upon (e.g. \pilot will check out

all aircraft 
ight systems within 30 seconds"), tradeo�s among equipment variables, adapta-

tion, training, and individual predisposing factors can be made9. A systematic approach to

isoperformance in complex, dynamic opto-mechanical systems such as the next generation of

space observatories however is lacking at this time.

A �eld that has received a lot of attention in the last few years is integrated model-

ing. This encompasses research and e�orts to simulate complex systems in a uni�ed and

multidisciplinary environment. Several important initiatives in this �eld, like NASA's Intel-

ligent Synthesis Environment (ISE) described by Venneri, Malone and coworkers [138] are

underway. Important contributions to integrated modeling were made by the Jet Propulsion

Laboratory (JPL) with the creation of a MATLAB based �nite element package and optical

modeling software called IMOS (Integrated Modeling of Optical Systems) [62]. This code was

developed to assist in the synthesis of initial models of optical instruments and to reduce the

model creation, analysis and redesign cycle as described by Laskin and San Martin [76]. The

IMOS package is used extensively throughout this thesis for the generation and manipulation

of �nite element models of spacecraft and a laboratory testbed.

Structural dynamics fundamentals, in particular the single degree-of-freedom oscillator

used as a sample problem in this thesis, are treated by Craig [17]. More advanced concepts on

the �nite-element method are presented by Bathe [4] and Cook [16]. The structural dynamics

and controls of large 
exible spacecraft have been extensively studied by Junkins and Kim [63]

as well as Crawley [19]. As will be seen later the stringent pointing and phasing requirements

of opto-mechanical systems often require closed-loop attitude and optical control. Thus,

actuators, sensors, and compensators must be included in the integrated model. Control

textbooks by Van de Vegte [137] and Ogata [111] provide an overview of classical control

design techniques, while those of Zhou et al. [143] and B�elanger [6] emphasize modern control

theory (state space based). Typically control systems are implemented on digital computers

9A company named Isoperformance Inc. was founded as a result of this research. More information can

be found at the following URL: http://www.isoperformance.com. The company focuses on human factors

engineering.
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as described by �Astr�om [1] and Franklin and Powell [32]. It is interesting to note that there

still is a large discrepancy between theoretical modern control theory based on LQR, LQG

and sensitivity weighted LQG, H-in�nity and �-synthesis techniques and controllers that are

actually implemented in space 
ight vehicles up to this day. Aerospace contractors, NASA

and other space agencies still rely mainly on analog or digital implementations of classical

control techniques such as PID and loop-shaping for attitude, thermal, optical and, among

others, end e�ector control. This is likely due to an aversion towards risk and to the ease with

which classical controllers are designed, understood, implemented and tested. Additionally

the advantage of extensive 
ight heritage frequently o�sets the potential performance bene�ts

of modern controllers. This fundamental disparity was recognized by Mallory and Miller [86].

They proposed, developed and validated a MIMO controller tuning technique which begins

with a simple local (often classical) baseline controller, which is then analyzed and iteratively

tuned by opening up promising cross-channels and adjusting controller parameter settings

based on a gradient search technique.

The fundamental work that allows the computation of optical linear sensitivity matrices

and their incorporation into dynamics models is attributed to Redding and Breckenridge [120].

The linear sensitivity matrices allow computing optical metrics such as centroid position on the

focal plane, wavefront error, wavefront tilt or beam shear as a function of linear and rotational

displacements of the points where elements in the optical train (mirrors, beamsplitters, �lter

wheels etc.) are attached to the structure. The software program called MACOS10 (Modeling

and Analysis for Controlled Optical Systems) [61] creates the sensitivity matrix based on a

prescription of optical elements in the system and unit perturbations of the structural degrees-

of-freedom. General recommended references for optics are by Born and Wolf [10] as well as

Hecht [50]. Telescope optics in particular are described by Rutten and van Venrooij [123].

When considering a disturbance analysis it is important to enumerate and characterize

all potential energy sources that might interfere with the opto-mechanical performance of

the system. Eyerman and Shea [30] provide a very complete overview of spacecraft dis-

turbances. Reaction wheel disturbances are often expected to be the dominant source and

Bialke [7], Davis, Wilson, Jewell and Roden [21], Melody [91] as well as Masterson [89] have

contributed to this �eld. Reaction wheel disturbance models are also included in this thesis

and an attempt is made to derive performance derivatives with respect to physical parame-

10formerly known as COMP
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ters of the wheels. These are needed for the computation of isoperformance solutions that

involve reaction wheel parameters. Other likely disturbance sources are linear Sterling cry-

ocoolers, attitude determination sensors, guide star noise in a CCD guider camera or A/D,

D/A conversion noise.

Once an integrated model has been assembled into a large appended state space model

numerical conditioning becomes important, before it can be useful in a disturbance, sen-

sitivity or isoperformance analysis. This is due to that fact that numerically ill-conditioned

models are likely to produce inaccurate results in time simulations or when solving Riccati

or Lyapunov equations. Additionally it is often true that the dynamic response of a com-

plex opto-mechanical system is often dominated by a small subset of states or modes. Large

computational savings can be obtained if this subset can be identi�ed and isolated apriori via

model conditioning and reduction. Creating a balanced state-space realization according to

Moore [102] can not only improve the numerical conditioning properties of a model, but it

also serves as a technique for identifying states that can be eliminated from the model due

to low observability and controllability [143]. Additional techniques for balancing large state

space models are presented by Laub and coworkers [77, 78]. For the case of systems dominated

by lightly-damped modes, the method proposed by Gregory [39] is an eÆcient approach for

ranking the importance of these modes. An e�ective pre-balancing technique was proposed

by Mallory [86]. A comprehensive view of model quality management was taken by Uebelhart

[136].

A sensitivity analysis provides useful information related as to how dependent certain

outputs of a model are with respect to modal or physical parameters of the model. A key aspect

of the isoperformance methodology is the ability to compute exact analytical sensitivities, as

opposed to inexact and ineÆcient �nite di�erence based gradients which are strongly a�ected

by the chosen perturbation size. These are then assembled into a gradient vector or Jacobian

matrix in the multivariable case. The isoperformance technique operates in the nullspace of

the Jacobian. A good overview of linear algebra in this context, describing the nullspace and

singular value decomposition of a matrix, is provided by Strang [132]. Analytical expressions

for the sensitivities of performance metrics previously derived by Gutierrez [45] are used

throughout this thesis. A Lagrange multiplier approach was proposed by Jacques [56] to

obtain analytical sensitivities of a system's outputs with respect to various parameters. The

calculation of sensitivities requires mode shape and frequency derivatives, which fall under the
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category of eigenvalue and eigenvector derivatives. A good survey of various eigenderivative

methods is provided by Murthy and Haftka [104]. When the parameters are element mass

and sti�ness properties of a �nite-element model, these derivatives can be computed exactly

using methods developed by Fox and Kapoor [31] and Nelson [107]. Practical implementation

of these methods is done by Kenny [72], and this work is extended by Gutierrez [45]. Previous

work by Hou and Koganti [52] in the context of integrated controls-structure design also makes

extensive use of sensitivities.

Once an isoperformance set I has been computed we are looking for other metrics, which

can be assembled into a cost objective function Jc and/or a risk objective function Jr, re-

spectively, in order to discriminate between competing solutions. Since not all parameters

in a system are known to the same degree, parametric uncertainty represents an important

element of risk. Uncertainty analysis of the performances (performance robustness) and

stability margins (stability robustness) are the topic of publications by Yang [142], How [53],

Skelton [126], Zhou et al. [143] and the work by Campbell and Crawley [14]. An approximate

method for predicting worst-case performance RMS values due to parametric uncertainties is

that used by Bryson and Mills [12]. One particular method is the �rst-order approach that re-

lates the covariance matrix of output quantities in terms of the covariance matrix of uncertain

parameters and the sensitivity matrix of the outputs with respect to the parameters.

The multiobjective design optimization aspects of this work draw on previous research

results in multidisciplinary design optimization. A fundamental book on the theory

of multiobjective optimization was published by Sawaragi, Nakayama and Tanino [124]. An

important application of multiobjective optimization is concurrent control/structure optimiza-

tion. The objective is to develop structure and control designs simultaneously such that the

overall system design has improved properties compared to a system design obtained through

a traditional, sequential approach. This allows the same performance to be achieved with

less control e�ort or less structural mass, for example. This philosophy is carried on in this

thesis by additionally including disturbance and optical design parameters. Solutions of these

multi-disciplinary optimizations are dependent on the type of objective functionals speci�ed

and the programming techniques employed. The method developed by Milman et al. [100]

does not seek the global optimal design, but rather generates a series of Pareto-optimal de-

signs that can help identify the characteristics of better system designs. This work comes

closest to the spirit followed in this thesis. Masters and Crawley use Genetic Algorithms to
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identify member cross-sectional properties and actuator/sensor locations that minimize an

optical performance metric of an interferometer concept [88]. Performance enhancement on

systems with uncertain parameters is treated by Parkinson et al. [117] and Pritchard et al.

[119]. A good overview of structural and multidisciplinary optimization research is given in

the volume \Structural Optimization: Status and Promise" edited by Kamat [64]. Crawley et

al. present a methodology for the conceptual design of controlled structural systems [19]. It

applies a controlled structures technology (CST) framework in a consistent level of modeling

detail in order to identify and modify the critical disturbance-to-performance transmission

paths.

It is interesting to note that the research presented on dynamics and controls of actual

precision spacecraft or laboratory testbeds is much less voluminous than the theoretical

literature in the �eld. The integrated modeling process is demonstrated by Melody and Neat

[94] on JPL's Micro-Precision Interferometer (MPI) testbed and is experimentally validated

based on the comparison of predicted and measured closed-loop transfer functions. Optical

pathlength control of a JPL Phase B interferometer testbed was presented by O'Neal and

Spanos [113]. Another example is the work done at NASA Langley Research Center by

Maghami et al. [84]. The pointing performance of a large, laboratory testbed was successfully

maintained while control e�ort was decreased. The genetic algorithm approach to evolutionary

design of 
exible structures developed by Masters et al. was experimentally validated on a

closed-loop, truss-like testbed [87]. Mallory [86] presents experiments of slewing, pointing and

phasing control of the ORIGINS space telescope testbed.

Apart from the more generic literature in the �eld we can also �nd publications devoted to

speci�cmissions. Disturbance analysis results for space optical systems have been presented

for SIM by Grogan and Gutierrez [42],[46], as well as by de Weck along with Miller, Uebelhart,

Grogan and Basdogan [98]. Open loop and closed loop NGST results have been published by

de Weck, Miller and Mosier [24]. A preliminary analysis of the dynamics of the Terrestrial

Planet Finder mission was also prepared by Miller, de Weck and co-workers [96].

1.4.2 Implementation Context (DOCS Framework)

The isoperformance methodology developed in this thesis is implemented in the MATLAB

technical computing environment. As such it represents a module of the DOCS analysis

framework. The DOCS (Dynamics-Optics-Controls-Structures) framework is a powerful tool
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set for the modeling and analysis of precision opto-mechanical space systems. Its develop-

ment spans over the last 10 years at MIT's Space Systems Laboratory and the former Space

Engineering Research Center (SERC). Within the MATLAB environment a model of the

spacecraft (or ground system) can be created, which simulates the dynamic behavior of the

structure, the optical train, the control systems and the expected disturbance sources in an

integrated fashion (Figure 1.5). The existing toolbox is compatible with IMOS (version 5.0)

and MACOS11, MSC/NASTRAN as well as the packages DynaMod and ControlForge12.
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Figure 1.5: DOCS-Framework block diagram. The shaded area in the lower right
is in the scope of this thesis. The modules marked with an asterisk are
available commercially or through academic licensing.

The modules in DOCS can be subdivided into four categories, which correspond to the

columns of the block diagram in Figure 1.5. The �rst column contains modules which are

useful in the initial modeling of the dynamic system under investigation. This system can

be a conceptual or preliminary design model of a scienti�c spacecraft, a spaceborne or ground

based telescope or some other high performance dynamic system. The initial design is the

11Available for academic licensing from the Jet Propulsion Laboratory (JPL).
12Available commercially from Mid�e Technology Corporation.
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starting point for the creation of a structural model, which provides the sti�ness and mass

distribution of the system. This is typically done via the �nite element method (FEM) and

produces the natural frequencies, 
, and mode shapes, �, which are used to obtain a state

space representation of the structural dynamics. This can be done via commercial codes such

as FEMAP and MSC/NASTRAN or with the help of IMOS. The corresponding optical model

typically traces a large number of on-axis and o�-axis rays through the system to obtain

the linear sensitivity matrices. These matrices relate motions of the attachment points of

optical elements to the optical performance metrics (wavefront error, optical path di�erence,

wavefront tilt, beam shear etc.). DOCS has provisions for modeling a large variety of on-

board and external disturbance sources, such as reaction wheel noise, cryocooler disturbances,

thermal snap, D/A and A/D noise and various sensor noises. In some cases, if disturbance

measurement data is available, these disturbance models are empirical and based on actual

disturbance data from spacecraft operations or laboratory tests. The module DYNAMOD

provides an alternative to �nite element modeling, if physical measurements can be made

on the system or subsystem. In that case model �tting techniques are used to obtain a

MIMO measurement model which is a good �t to the experimentally determined transfer

function matrix of the actual system (measurement model). Most high performance dynamic

systems rely on feedback control systems to achieve the required performance levels. Thus,

a baseline controller (compensator) must be synthesized based on a chosen system control

strategy (e.g. local versus global control as in decoupled control loops for attitude and optical

control, classical control versus modern control). Finally, it is likely that physical or modal

parameters of the system model are uncertain. This uncertainty can be estimated apriori by

consulting an uncertainty database of past model errors of similar systems, such as the one

provided by Hasselman [47, 48, 49].

The second category of tools in the DOCS framework is dedicated tomodel preparation

and conditioning. Model assembly is the process of aggregating the disciplinary sub-models

into an overall, integrated model of the system dynamics. This assembled model will be open

or closed-loop an can be mathematically represented in transfer matrix form Gzd(j!), as an

appended state space system, Szd, or in system block diagram form (e.g. in Simulink). Typ-

ically the integrated model will initially be numerically ill-conditioned. A number of tools

are provided to facilitate model \quality management". This includes veri�cation of absolute

and relative stability (margins), extraction of minimal representations, model balancing and
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reduction as well as model diagonalization. Model reduction is a critical step, since it reduces

the model size leading to faster model evaluation, while maintaining the critical informa-

tion. The recommended model conditioning in DOCS is a two step procedure with an initial

conditioning of the opto-structural plant dynamics alone. The objective of this �rst step is

to eliminate pole-zero cancellations and obtain a well conditioned plant model. The second

conditioning and reduction step is more aggressive and is executed on the aggregated model,

which contains the frequency weighting introduced by control and disturbance dynamics. Fi-

nally a number of software routines are emerging in DOCS which allow model updating of the

plant model with measurement data.

After an integrated model has been created and numerically conditioned, the performances

such as root-mean-square (RMS) values of opto-mechanical metrics (e.g. pathlength di�er-

ence, pointing jitter, fringe visibility, null-depth) can be predicted. This capability is provided

by the disturbance analysis module, which appears in the third column of the DOCS block

diagram. The disturbance analysis can be conducted in the time domain, frequency domain

or as a Lyapunov analysis. The predicted performance values are compared with the require-

ments. The goal of the uncertainty analysis is to associate error bars with the predicted

performance values, which are based on an uncertainty database resulting from past ground

and 
ight experience. The actuator-sensor topology of the system can be analyzed numerically

to ensure that the control system uses the actuator-sensor pairs that will ensure maximum

disturbance rejection or tracking performance. This gives an indication if additional sensor-

actuator channels should be included in the compensator beyond the ones in the baseline

controller. The controller can also be analyzed and modi�ed with ControlForge. This module

is the product of control synthesis and analysis work on MACE and other experimental pro-

grams and allows implementation of modern control techniques such as sensitivity-weighted

LQG.

An initial design will usually not be satisfactory without some amount of iteration. The

exact analytical sensitivities of the performance with respect to modal or physical design

parameters can be useful in this instance. These sensitivities are essential for conducting

gradient-based optimization, redesign or uncertainty analyses. This capability is used in the

model updating, ControlForge, uncertainty analysis, optimization, sensitivity and isoperfor-

mance modules shown in Figure 1.5. These activities are part of the \design" category of tools

in DOCS. A control tuning engine was developed by Mallory [86] such that a parameterized
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controller is tweaked to provide improved performance with satisfactory stability margins for a

�xed plant. An outer optimization loop is carried out during performance enhancement. Here

insights from Controlled Structures Technology (CST) are levied such that a combination

of performance enhancement steps (disturbance isolation, output isolation, plant redesign,

low-authority control (LAC), high-authority control (HAC)) is implemented in the system

design. Once a design has been found that meets all requirements with suÆcient margins,

an isoperformance analysis can be conducted. This module, shown in the lower right hand

corner of Figure 1.5, is the main contribution of this thesis. Treating the performance as an

equality constraint, the expected error sources (error budgeting) or key design parameters

(multiobjective design optimization) can be traded with respect to each other. This is useful

in ensuring that the level of diÆculty in implementing the design is similar for all subsystems.

If hardware exists, the experimental transfer functions can be used to update the dynamics

models throughout the life of the program to achieve a convergent design that will achieve

mission success. Preliminary versions of the framework have been successfully applied to

conceptual designs of SIM, NGST, the Terrestrial Planet Finder (TPF) mission and NEXUS.

Substantial contributions to the framework were made by Blaurock, Gutierrez [45], Jacques

[57], Mallory [85, 86], Uebelhart [136], Masterson [89] as well as Miller and co-workers.

1.5 Thesis Overview

A thesis roadmap is shown in Figures 1.6 and 1.7. The purpose of this roadmap is to logically

organize the thesis research, which solves the problem de�nition given in Section 1.3. The


ow diagram in Figure 1.6 comprises the development of the methodology and its imple-

mentation. The dashed box depicts essentially the performance assessment and enhancement

framework developed by Gutierrez [45], which is brie
y summarized in Appendix A.

In order to solve realistic problems with a large number of parameters, np, performance

metrics, nz, and states, ns, it is necessary to solve hundreds of Lyapunov equations involving

hundreds to thousands of states. These challenges are addressed in Chapter 5 by presenting

numerical methods, which allow eÆcient solutions of Lyapunov equations for diagonalizable

systems, sensitivity computations for similarity state space transformations and apriori er-

ror bounds for model reduction. These contributions represent extensions of the research

presented by Gutierrez [45] and Uebelhart [136].
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As shown in Figure 1.6, the analysis process starts with an initial design vector po. The

performance assessment calculates the performance vector Jz and compares it to the require-

ments Jz;req. If the absolute value of the relative di�erence �Jkz = Jkz � Jz;req between the

actual performance vector Jkz and the requirement Jz;req, divided by Jkz;req, is smaller than a

numerical tolerance �=100, we have found a solution that satis�es the isoperformance condi-

tion, see Equation (1.6). We will call this solution our nominal design, pnom. If the relative

error is larger than �=100 we perform a sensitivity analysis, which yields the gradient vector

(Jacobian) rJkz at the k-th iteration. This is used in a performance enhancement algorithm,

which attempts to drive all performances to the isoperformance condition by updating pk.

Once pnom is found we begin the actual isoperformance analysis.

Before trying to attack the full multivariable isoperformance problem, the problem space

is restricted to only two parameters pj, j = 1; 2 and one performance nz = 1. Thus, if the

number of variable parameters is np = 2 we perform a bivariate isoperformance analysis,

which is developed in Chapter 3. The generalization of the methodology to the multivariable

case with np > 2 is the topic of Chapter 4. The main result from the isoperformance analysis

is a set of points, piso, which approximates the isoperformance surfaces in Rnp .

If this set is empty, the recommended procedure is to (a) switch to a more general al-

gorithm, (b) modify the upper or lower parameter bounds pLB or pUB as indicated by the

active constraints or (c) to modify the requirements Jz;req. If this does not lead to a non-zero

isoperformance set it is likely that not all performance requirements are achievable with the

proposed system architecture.

If an isoperformance solution was found the methodology proceeds to the multiobjective

optimization module as described in Chapter 2 for the sample problems and in Chapter 7 for

the NEXUS spacecraft. The solutions in the isoperformance set piso are evaluated for the cost

objective function Jc and the risk objective function Jr. A preference order is quanti�ed by

the scalar �, which trades cost versus risk and by the normalization/weighting matrices Qcc

and Qrr, which rank the cost and risk objectives within Jc and Jr with respect to each other.

The solution is not a single \optimal" point design, but rather a family of pareto optimal

designs, p�iso, which form the \eÆcient" set E, shown in Figure 1.4. At this point a speci�c

design vector, p��iso, has to be selected from the eÆcient set using engineering judgement. This

design is then used for an error budget analysis.

The application of the isoperformance methodology to dynamics error budgeting is de-
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scribed in Chapter 7. An initial error budget 	 is usually established. The (l,i)-entry of the

matrix 	 is 	l;i and represents the fractional contribution of the l-th disturbance source to the

i-th performance metric. This initial budget is input into the error budget analysis module.

The module returns a �nal error budget 	�� by �nding the actual error contributions for

p��iso, thus insuring that the error budget is physically achievable within the given parameter

constraints and underlying integrated model.
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Figure 1.7: Thesis Roadmap: Validation (chapter numbers in bold font)

Figure 1.7 contains the sequential steps used for the validation of the isoperformance

methodology. In Chapter 2 we introduce three sample problems of increasing complexity,

which help in gaining intuitive understanding and con�dence in the correct implementation

of the governing equations. An experimental investigation is presented in Chapter 6. The

experiment uses a structural dynamics testbed called DOLCE with a uniaxial vibration exciter

as the surrogate mechanical noise source. The goal of the experiment is to demonstrate the

ability of the isoperformance analysis code to predict the shape and locations of isoperformance

curves for a physical system, using payload mass and excitation amplitude as parameters.

Once con�dence has been obtained that the methodology can yield useful results on physical

systems it is applied to a realistic spacecraft model. The NGST precursor mission NEXUS

was chosen for an in-depth analysis including performance, sensitivity and isoperformance

analyses (Chapter 7). The error budgeting process is also brie
y discussed. A thesis summary,

contributions and recommendations for future work can be found in Chapter 8.
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Chapter 2

Sample Problems

Throughout the thesis a number of sample problems are used to demonstrate the theory

and to explore features of the isoperformance methodology. These sample problems are in-

troduced early in the thesis to avoid cluttering the subsequent presentation and to anchor

the development in concrete examples. The sample problems attempt to capture some of the

complexity and interesting relationships of larger dynamic systems, with a small number of

states and design parameters.

The �rst sample problem is the classical single degree-of-freedom (SDOF) oscillator prob-

lem described by Craig [17]. The oscillator is acted upon by a colored noise random disturbance

force and the displacement is highpass-�ltered, thus simulating the e�ect of optical control.

The �ve parameters in this problem are the mass,m, the linear spring sti�ness, k, the damping

coeÆcient, c, the disturbance corner frequency, !d, and the optical control corner frequency,

!o. This set allows conducting some preliminary isoperformance analyses with two or more

parameters. The second sample problem is the two degree-of-freedom (2DOF) oscillator prob-

lem. It adds the diÆculty of dealing with multi-mode systems and multiple performances to

the previous problem. The third problem is a simpli�ed single-stage optical delay line (ODL)

design. Here issues of trading sensor noise versus process noise, while keeping the resulting

OPD performance constant, can be investigated. Also the ODL problem is set up such that

the design can go unstable for some combinations of design parameters (e.g. involving the

derivative control gain, Kd). This corresponds to the unstable subset, U, shown in Figure 1.4.

Sample problems have been used by Jacques (\typical sections") [56] and others to derive

insights and draw conclusions about controlled, dynamic structures. Additionally the sample
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problems are used to ensure that the governing equations have been implemented correctly.

While these problems are useful in an academic sense, they do not re
ect the complexities,

numerical conditioning problems and computational challenges of large order, real-world sys-

tems. Chapters 5 and 7 are devoted speci�cally to large order systems and a case study of a

conceptual spacecraft design.

2.1 Single Degree-of-Freedom Oscillator

As a simple introduction, the single degree-of-freedom (SDOF) oscillator problem will be con-

sidered. This represents the simplest mechanical oscillatory system and has been extensively

analyzed by Craig [17] and others.

2.1.1 Problem Description

Figure 2.1 shows a schematic representation of the oscillator, which is composed of a mass

m [kg], a linear spring of sti�ness k [N/m] and a linear damper (dashpot) with coeÆcient c

[Ns/m]. The oscillator is excited by a zero-mean white-noise disturbance force F [N], which

has been passed through a �rst order low-pass �lter (LPF) with unity DC-gain and a corner

frequency !d [rad/sec]. This represents the amount of disturbance isolation present in the

system. The displacement x [m] of the mass is passed through a �rst order highpass �lter

(HPF) with corner frequency !o [rad/sec], thus simulating the e�ect of an optical controller.

This is a simpli�cation, but it is generally true that closing optical control loops is only e�ective

in suppressing disturbances at low frequency due to limitations on the optical sensor sampling

frequency. The table on the right side of Figure 2.1 contains the initial parameter values, po,

F

c

k

m

x

Ground

pi pLB po pUB units �i

!d 2� 10� 20� [rad/s] �10%
m 0.5 1 5 [kg] �1%
k 500 1000 3000 [N/m] �5%
c 0.1 0.5 2.0 [Ns/m] �10%
!o 1.0 100� 200� [rad/s] �5%

Figure 2.1: Schematic of single degree-of-freedom (SDOF) oscillator (left) with table
of design parameters (right).
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as well as upper and lower bounds (range of allowable values) for pi, where i = 1; 2; :::; 5, as

well as a � percentage uncertainty, �i, in the true value of the i-th parameter.

The resulting output z [m], i.e. the �ltered displacement, x, of the mass, is used to compute

the performance. The performance is the RMS of z(t), speci�cally Jz = (E[zT z])1=2, where

E[ ] denotes the expectation operator [11]. One can also write Jz = �z, since for zero-mean

stochastic processes the RMS and the standard deviation � are equal to each other [45]. This

system is shown in the block diagram of Figure 2.2.

d F x

Plant
Position

White Noise Scope

1/m

s +(c/m)s+k/m2

SDOF Oscillator

s

s+ωo

Optical
Control

ωd

s+ωd

Disturbance
Isolation

z

ωd

1.0
1/k ωo

PerformanceForce

k/m

1.0

Figure 2.2: SDOF block diagram. From left: white noise disturbance source, dis-
turbance isolation, oscillator and the \optical control" HPF.

The goal is to understand how this performance depends on the variable design parameters,

i.e. pj 7! Jz(pj) for j = 1; 2; :::; 5 , where p = [!d m k c !o]
T .

2.1.2 Disturbance Analysis

The �rst step is to compute the performance Jz;o for the initial parameter values, po, given

in the table of Figure 2.1. This process is typically called a \disturbance analysis" or \initial

performance assessment" [45]. The result, Jz;o, will be compared to a requirement, Jz;req �
0:001 [m], which has been set based on \customer" needs. Note that Jz;req corresponds to 1

mm of RMS motion of the (�ltered) signal z for the mass m and about 6 mm of motion peak-

to-peak1. The three most common methods for carrying out such a disturbance analysis are

a time domain analysis with forward time integration of the equations of motion, a frequency

domain analysis using power spectral densities (PSD) and a Lyapunov analysis, assuming

that the system is driven by white noise. The mathematics behind these three methods are

1A 1 Volt RMS random electrical signal will exhibit a waveform amplitude of roughly � 3 volts, i.e. 6 volts

peak-to-peak on an oscilloscope.
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summarized in Appendix A.

One can �rst write the (linear) equation of motion of the oscillator as:

m�x+ c _x+ kx = F (2.1)

For small values of c (lightly damped plant), the natural frequency of the oscillator is approx-

imately !p '
p
k=m. Rewriting (2.1) in state space form and appending the �lter dynamics

results in the following \integrated model" of the system:

_q =

2
6666664

�!d 0 0 0

0 0 1 0

!d/m �k/m �c/m 0

0 1 0 �!o

3
7777775

| {z }
Azd

2
6666664

qd

x

_x

qc

3
7777775

| {z }
q

+

2
6666664

1

0

0

0

3
7777775

| {z }
Bzd

d

z =
h
0 1 0 �!o

i
| {z }

Czd

q + [0]|{z}
Dzd

d

(2.2)

A numerical time domain simulation was conducted with this system for the initial values

po and zero initial state conditions. The resulting time history for a T = 40 [sec] simulation

is shown in Figure 2.3. The dark trace corresponds to the initial case po, while the light trace

is obtained for the improved design pnom, which is developed below. The performance Jz is

computed from the output z(t) as:

Jz =

2
4 1
T

TZ
0

z2(t)dt

3
5
1=2

(2.3)

Since this random process is simulated with a digital computer and sampling time tk = k � dt,
where T = N � dt and N is the number of samples, Jz is obtained as:

Jz =

"
1

N

NX
k=1

z2k

#1=2
(2.4)

The resulting performance is Jz;o = Jz(po) = 2:3281 � 10�3 [m] = 2.3291 [mm], which does

not meet the requirement Jz;req
2.

A disturbance analysis was also conducted with the second method (PSD analysis) and

the third method (Lyapunov analysis), yielding RMS values of 2:2232 � 10�3 and 2:2231 � 10�3
2In the �elds of vibration suppression, precision optics, micro-positioning devices etc... numbers larger than

the requirement, say the RMS, usually mean that the performance is not met.
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Figure 2.3: SDOF time simulation: (Top) disturbance F (t), (Bottom) output z(t).
Dark curve for po, light trace for improved design pnom.

[m], respectively. This corroborates the results obtained from the time simulation and demon-

strates the equivalence of the three methods. For large order models, signi�cant discrepancies

between the three methods may occur due to di�erent integration schemes (Dormand-Prince

[26] was used here), frequency resolution issues and/or numerical ill-conditioning as discussed

by Gutierrez [45].

While these three methods are valuable for predicting performance, they do not explicitly

reveal how parameters should be changed to improve performance. One way to reveal these

trends is to algebraically solve for the performance, Jz;o, via the integral of the PSD Szz(!),

as discussed in earlier work by the author [23]. This results in a closed form expression for

the performance, Jz , as a function of the variable system parameters Jz = f(!d;m; k; c; !o)

as follows:

Jz = �z =

s
!d 2 (m!o + !d m+ c)

2c (!o + !d ) (m!o2 + k + c!o) (!d 2m+ c!d + k)
(2.5)

For larger systems with many degrees-of-freedom these equations become intractable, such
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that a closed form solution cannot generally be obtained. A dimensionality analysis can be

done by looking at the magnitude and sign of the largest exponent, with which a speci�ed

parameter occurs in Equation (2.5). This suggests that the performance Jz should be de-

pendent on � m�1=2, thus increasing the mass m of the oscillator should decrease the RMS

and improve performance. The same is true for k; c and !o, which should in
uence Jz as

� k�1=2; c�1 and !�1o , respectively. For !d the highest exponents cancel in the numerator and

denominator of (2.5) such that it is not directly clear whether an increase or decrease in !d

will improve performance. Intuitively, however, we expect that a decrease in the lowpass �lter

corner frequency should also decrease the RMS, since less disturbance energy is entering the

system. This is analogous to disturbance isolation.

2.1.3 Sensitivity Analysis

In order to quantify these dependencies of Jz on p, a sensitivity analysis is performed, which

is the second step in the process. This means computing the gradient vector rJz, evaluated
at po. The governing sensitivity equation (A.32) presented in Appendix A is used to obtain

the gradient vector rJz, whose elements are the partial derivatives @Jz=@pj . The gradient

vector, rJz;j, is normalized.3. The normalized gradient vector, rJz;j, facilitates comparing
the elements of the gradient vector (i.e. the sensitivities) for di�erent parameters.

rJzjpo =

2
6666666664

@Jz=@!d

@Jz=@m

@Jz=@k

@Jz=@c

@Jz=@!o

3
7777777775
=

2
6666666664

3:56 � 10�5

�5:36 � 10�4

�5:66 � 10�7

�2:24 � 10�3

�7:00 � 10�6

3
7777777775

and rJzjpo =

2
6666666664

0:5032

�0:2413
�0:2547
�0:5040
�0:9899

3
7777777775

(2.6)

The right vector of normalized sensitivities in Equation (2.6) is easiest to interpret. Even

though the gradient vector is only valid in the in�nitesimal neighborhood of po, one can say

that a 1% increase in the disturbance corner frequency !d, should lead to approximately a 0.5%

increase in the RMS. On the other hand a 1% increase in the optical control \bandwidth"

!o would cause a � 1% decrease (negative sensitivity) in the RMS. This last result is not

3The normalized sensitivity is computed as rJz;j = (pj;o=Jz;o) � (@Jz=@pj), where the overbar denotes that

the sensitivity is normalized. It is a measure of the relative change in performance per relative change in the

parameter value.
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surprising, since in precision opto-mechanical systems the performance is often most sensitive

to optical control parameters. The normalized sensitivities are graphically shown in Figure 2.4.

These sensitivities were con�rmed via a �nite di�erence approximation with a 1% perturbation

and by analytically taking the derivatives of expression (2.5).

-1 -0.5 0 0.5 1

ωo

c 

k 

m 

ωd

Normalized Sensitivities for po

-1 -0.5 0 0.5 1

Normalized Sensitivities for pnom

Analytical Sensitivities
Finite Differences      

ωo

c 

k 

m 

ωd

(po/Jz,o)*(∂Jz/∂p) (pnom/Jz,nom)*(∂Jz/∂p)

Figure 2.4: SDOF Problem: Sensitivities of performance Jz w.r.t. parameters po for
the initial case (left) and after performance enhancement pnom (right).

2.1.4 Uncertainty Analysis

Given the slope around po, one can estimate reasonable error bounds on the predicted per-

formance. This computation has been denoted as an uncertainty analysis. From the Table in

Figure 2.1 one �nds the �% uncertainties, �i, in the knowledge of the exact value of a design

parameter. Note that these values do not take into account non-parametric uncertainty, which

is most likely present in opto-mechanical systems as reported by Campbell [13]. In order to

get an estimate of the uncertainty in the performance, �J�z , due to the uncertainty in the

individual pj, the �rst-order approach introduced by Gutierrez [45] is used. More formal ap-

proaches, taking into account the probability density function (pdf) for each parameter, are
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also available but are beyond the scope of this thesis. The uncertainty �J�z is then

�J�z (p) =

npX
j=1

����@Jz@pj
� (�jpj)

���� (2.7)

For the initial solution po, an uncertainty of �Jz = 3:676 � 10�4 [m] is obtained, which

corresponds to �16:5% of the nominal performance value Jz;o. Thus the (theoretically) pre-

dicted RMS performance of the initial system should be quoted as Jz;o = 2:2231 � 0:3676

[mm]. Even in the best case, it does not meet performance.

2.1.5 Performance Enhancement

An attempt to modify the system parameters po is made, such that the system performance

falls below the requirement Jz;req with some margin. This will ensure that even the upper

uncertainty bound will be below Jz;req. This exercise has been termed \performance enhance-

ment." A new working requirement of 0:8 � Jz;req is adopted, which should provide roughly

20% of performance margin. The gradient vector rJz is used in a line search algorithm as

follows:

while ����0:8Jz;req � Jz;k
0:8Jz;req

���� > �=100

1. step size: �k =

"P
j
rJzj;k ((�1)sgn(rJzj;k)pj;k)

#
�1

��Jzk

2. step direction: �pk = �k � (�1)sgn(rJzk)pk

3. update iterand: pk+1 = pk +�pk

4. update k: k = k + 1

5. recompute: Jzk and rJzk

end

The tolerance �=100 was set to a value of 0.01, i.e. the enhanced performance is ex-

pected to be within 1% of 0:8 � Jz;req. After three iterations, the enhanced solution pnom =
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[!d m k c !o]
T = [19:92 , 1:45 , 1450 , 0:725 , 455:4]T is obtained. It is veri�ed that this so-

lution is still within the upper and lower parameter bounds. The improved performance,

including uncertainty, is Jz;nom = 0:802 � 0:153 mm ( � 19%), thus remaining under Jz;req

even in the worst case.
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Figure 2.5: (Bottom) PSD function Szz(!) for po (dark) and pnom (light). (Top)
Cumulative RMS curve. Requirements line is dashed.

Comparing this solution, pnom, to po, one sees that the disturbance corner frequency !d

is smaller, the mass m and sti�ness k are both increased (thus !p remains constant), the

damping c is increased (decreases response magnitude), and the optical control bandwidth

!o is increased. The combination of these changes leads to a signi�cant improvement in

performance as shown in Figure 2.5. The lower part of the plot shows the power spectral

density (PSD) of the performance, Szz, as a function of frequency. Taking the square-root

of the cumulative integral under this function, according to Equation (A.23), leads to the

cumulative RMS curve in the top part of Figure 2.5. As expected the large step in the

cumulative RMS is caused by the lightly damped resonance of the oscillator which is excited

by the broadband disturbance force F (t).

Figure 2.4 depicts the normalized sensitivities for the improved design on the right side.
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The signs of the sensitivities have not changed, which indicates that the performance function

Jz(p) appears to be monotonic in this neighborhood. The magnitudes of the sensitivities are

similar, except that Jz;nom is more sensitive to !d. This can be explained by the fact that

the oscillator natural frequency !p is at 5 Hz and the disturbance corner frequency !d is now

at 3.2 Hz, thus the resonance is in the rollo� region of the disturbance �lter and therefore

more sensitive to changes in the �lter corner frequency. Also the design pnom is somewhat less

sensitive to changes in the mass m. A time simulation for the improved design was carried

out and the results are shown as the light trace in Figure 2.3. As expected the (�ltered)

displacements z(t) of the mass m are signi�cantly smaller than in the initial case and remain

below the requirements line in an RMS sense.

2.1.6 Conclusion

In a traditional analysis framework and using the tools presented by Gutierrez [45] one would

stop at this point. The requirements are met by the improved design pnom, it is feasible since

the condition pLB � pnom � pUB is met and the uncertainty bounds also remain within Jz;req.

At �rst glance there does not seem to be a reason for continued analysis and the improved

design could indeed be implemented as is.

The design pnom is, however, the starting point for the isoperformance analysis, which is the

main subject of this thesis. The motivation for continued analysis is the fact that the improved

design is not unique. Other combinations of pj 's will likely achieve the same performance, but

perhaps at a lower \cost". Thus other cost criteria such as hardware (implementation) cost

or performance robustness to uncertainty can be used to come up with an alternative design.

The �rst step is to �nd the set (or locus) of design points that yield the same performance as

Jz;nom. This is the focus of Chapters 3 and 4.

2.2 Two Degree-of-Freedom Oscillator

A sample two degree-of-freedom (2DOF) problem was chosen as an extension of the previ-

ous example. The two degrees-of-freedom mimic the multi-mode behavior of more complex

systems and allow the formulation of an additional performance metric, i.e. nz = 2.
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2.2.1 Problem Description

The system is depicted in Figure 2.6 and consists of two masses m1 and m2, which are

connected to ground and to each other by linear springs k1 and k2, respectively. Also there are

two linear dampers c1 and c2, which cause velocity-dependent damping forces. Interpreting

this problem as a simple spacecraft model, we can view the mass m1 as the \base" mass

(spacecraft bus) and m2 as an \appendage" mass (payload). The parameters k1 and c1 would

then represent the e�ects of a low frequency attitude control system (ACS), which controls

the rigid body rotations. The parameters k2 and c2 represent the internal damping and

compliance of the vehicle. The parameter k2 will be called the \appendage sti�ness". A

colored noise disturbance force F of intensity Sdd [N
2/Hz] and rollo� frequency !d [rad/sec]

is entering at the appendage mass, m2, representing a mechanical disturbance generated by

onboard machinery.

The two performance metrics of interest are the RMS of the relative displacement (DPL)

x2 � x1, i.e. Jz;1 = (E[(x2 � x1)
2])1=2 and the RMS displacement of the �rst mass, Jz;2 =

(E[x21])
1=2. Figure 2.6 shows a schematic representation of the two DOF oscillator and a table

of variable system parameters. This table contains the initial parameter values, po, as well as

upper and lower bounds (range of allowable values) for pj, where j = 1; : : : ; 8, as well as a �
percentage of uncertainty, �j, in the knowledge of the true value of the j-th parameter.

F

c
1

c
2

k
1

k
2

m
1

m
2

x
1

x
2 pj pLB po pUB units �j

Sdd 10�3 10�2 10�1 [N2=Hz] �10%
!d 2� � 5 2� � 200 2� � 103 [rad/s] �5%
m1 8.55 53.55 112.5 [kg] �1%
m2 8.55 9.5 11.25 [kg] �1%
k1 6:95 � 104 3.89�105 107 [N/m] �5%
k2 104 106 107 [N/m] �5%
c1 10 120 500 [Ns/m] �10%
c2 10 30 500 [Ns/m] �20%

Figure 2.6: Schematic of two degree-of-freedom (2DOF) oscillator (left) with table
of variable parameters (right).
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2.2.2 Disturbance, Sensitivity and Uncertainty Analyses

As in the previous section, we perform a disturbance, sensitivity and uncertainty analysis. The

equations of motion (EOM) can be formulated directly by looking at the freebody diagram

for each mass and writing the EOM in matrix form as shown in equation (2.8):2
4 m1 0

0 m2

3
5

| {z }
M

2
4 �x1

�x2

3
5+

2
4 c1 + c2 �c2

�c2 c2

3
5

| {z }
C

2
4 _x1

_x2

3
5+

2
4 k1 + k2 �k2

�k2 k2

3
5

| {z }
K

2
4 x1

x2

3
5 =

2
4 0

F

3
5
(2.8)

We can then solve the generalized eigenvalue problem for the undamped system or write the

state space system directly in physical coordinates. This second approach was chosen here,

since it will be easier to compute the Jacobian (matrix of partial derivatives) for this small

order model. With the disturbance isolation �lter given as Ad = [�!d] , Bd = [1] , Cd =

[
p
Sdd!d] and Dd = [0], we obtain an \integrated model" of the system from (2.8) by pre-

multiplying with the inverted mass matrix:

_q =

2
6664

Ad 0 0

0 0 I

M�1�dCd �M�1K �M�1C

3
7775

| {z }
Azd

q +

2
6664
Bd

0

0

3
7775

| {z }
Bzd

d

z =
h
0 Czx 0

i
| {z }

Czd

q + [0]|{z}
Dzd

d

(2.9)

Note that the system is open loop and that the output coeÆcient matrix is Czx = [�1 1 ; 1 0]
and the disturbance in
uence coeÆcient matrix is �d = [0 1]T . This allows computing the

performances Jz;1 and Jz;2 with the three methods presented in Appendix A. We set the

RMS requirements to Jz;req;1 = 10�6 [m] = 1 [�m] and Jz;req;2 = 7:5 � 10�6 [m] = 7:5 [�m] .

As will be seen in Chapter 6 these requirements are realistic and close to the experimental

observations made on the DOLCE isoperformance testbed.

A time simulation was carried out with the Dormand-Prince [26] integrator and an integra-

tion step size of 0.001 seconds. The results shown in Figure 2.7 were obtained with Equation

(2.4) and parameter vector po and indicate that Jz;1 = 9:37 [�m] and Jz;2 = 11:80 [�m], which

exceeds (i.e. does not meet) the RMS requirement for both performances.

The next step consists of computing the sensitivities of the parameters with respect to the

two performances. Note that in this case rJz is the Jacobian, which is de�ned as follows:
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Figure 2.7: 2DOF time simulation for Jz;1 (top) and Jz;2 (bottom). Dark trace for
po, lighter trace for improved design pnom.

rJz =

2
6666664

@Jz;1=@p1 @Jz;2=@p1

@Jz;1=@p2 @Jz;2=@p2
...

...

@Jz;1=@p8 @Jz;2=@p8

3
7777775 =

2
6666664

@Jz;1=@Sdd @Jz;2=@Sdd

@Jz;1=@!d @Jz;2=@!d
...

...

@Jz;1=@c2 @Jz;2=@c2

3
7777775 (2.10)

The sensitivity analysis is accomplished by using the governing sensitivity equation (GSE)

presented in Appendix A. Note that partial derivatives of the inverted sti�ness matrix have

to be taken. The relationship

dM�1

dp
= �M�1dM

dp
M�1

was used to facilitate these calculations [143]. Figure 2.8 shows the normalized sensitivities

for the 2DOF sample problem. Note that the left subplot shows the results for performance

Jz;1 (the �rst column of the Jacobian) and the right subplot shows the sensitivities for Jz;2,

i.e. the second column of the Jacobian.
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Decreasing the disturbance force intensity, Sdd will result in a decrease of the RMS of

both performances. The disturbance corner frequency, !d, a�ects primarily performance Jz;1,

but not Jz;2. The reason for this will become apparent shortly. The mass sensitivities are

interesting since they have opposite signs for both performances. This means that decreasing

m1 for example will improve Jz;1 but worsen Jz;2. These parameters are interesting, since they

cannot simply be tuned in one direction to improve all performances at once. This has to

be taken into account in the performance enhancement step. While the sti�ness sensitivities

have the same sign it is noteworthy that Jz;1 primarily responds to changes in k2, while Jz;2 is

more sensitive to k1. This is intuitively satisfactory, since Jz;1, the RMS of the gap distance

between m1 and m2, strongly depends on the compliance between the two masses, whereas x1

is strongly driven by the suspension mode and thus the value of k1. Increasing the damping

coeÆcients also has a positive impact on the performances.

Now that the sensitivities are known, one may again obtain an estimate of the performance

uncertainties due to parametric uncertainty, as shown in Equation (2.7). The resulting un-
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certain performances are Jz;1 = 9:37 � 1:79 [�m] (� 18.04%) and Jz;2 = 11:80 � 1:404 [�m]

(� 12.74%), respectively. The requirements were set at Jz;req;1 = 1:0 and Jz;req;2 = 7:5 [�m].

Thus, even in the best case the system does not meet the performance requirements.

2.2.3 Performance Enhancement

The computed sensitivities are used for a performance enhancement exercise. One di�erence

with the SDOF problem is that in this performance enhancement cycle both performance

objectives Jz;req;1 and Jz;req;2 have to be met simultaneously. The simple line search from

the SDOF example will not work here, since two performances Jz;1 and Jz;2 have to be

simultaneously driven to the working requirement of 0:8 � Jz;req (includes 20% performance

margin). The algorithm in this case uses the singular value decomposition (SVD) of the

Jacobian as discussed in Chapter 4.

while

max

�����0:8Jz;req � Jz;k
0:8Jz;req

����
�
> �=100

1. SVD of Jacobian: USV T = rJTz

2. Normalize column space: Vn = pk � V1;2 (elementwise multiplication)

3. step size vector: �k =
�rJTz � Vn��1 ��Jz;k

4. step direction: �pk = Vn � �k

5. update iterand: pk+1 = pk +�pk

6. update k: k = k + 1

7. recompute: Jz;k and rJz;k;rJTz;k

end

After �ve iterations an improved design, pnom, is found, which meets both working require-

ments. It turns out that the requirement Jz;req;1 is harder to meet than Jz;req;2. The resulting

design vector, pnom, and the initial design, po, are contrasted in Table 2.1

From this comparison one sees that the performance enhancement algorithm has found a

viable design pnom, which is not \optimal"4, but rather a \good" design that meets the re-

quirements, Jz;req. As expected, the improved solution requires a reduction in the disturbance
4An optimal design would satisfy the Karush-Kuhn-Tucker [33] optimality conditions.
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Table 2.1: Comparison of po and pnom with the ratio of parameter values in the
second to last column. A non-zero value in the last column indicates
that this parameter is at the upper (+1) or lower bound (-1).

i pi Parameter Name po pnom units ratio B

1 Sdd Disturbance Intensity 10�2 2:36 � 10�3 [N2/Hz] 0.24 0

2 !d Disturbance Bandwidth 2� � 200 2� � 133:8 [rad/sec] 0.67 0

3 m1 Base Mass 53.55 16.26 [kg] 0.30 0

4 m2 Appendage Mass 9.5 11.25 [kg] 1.18 +1

5 k1 Base Sti�ness 3:89 � 105 3:10 � 105 [N/m] 0.80 0

6 k2 Appendage Sti�ness 106 3:6 � 106 [N/m] 3.59 0

7 c1 Damping CoeÆcient 120 110.3 [Ns/m] 0.92 0

8 c2 Damping CoeÆcient 30 83.2 [Ns/m] 2.78 0

force intensity Sdd and a somewhat reduced disturbance corner frequency !d, which probably

only bene�ted Jz;1. Furthermore mass m1 was decreased, while mass m2 was increased to

its upper constraint (see +1 in the last column of Table 2.1). This again suggests that Jz;1

is the \driving" performance, since these are the changes that would have been indicated

by its sensitivities alone, see the left side of Figure 2.8. The same pattern is apparent in

the sti�nesses, where increasing the inter-mass sti�ness k2 reduces the RMS of x2 � x1, i.e.

Jz;1. Finally increasing the damping coeÆcient c2 also reduces Jz;1 as expected. The only

unexpected change is the decrease in the damping c1, since all its sensitivities are negative.

A likely explanation is that the exit criterion for the performance enhancement loop on the

previous page enforces the \isoperformance condition". The damping coeÆcient c1 is actually

decreased (thus worsening Jz;2) to make the performance Jz;2 fall in the performance band

dictated by the \while" condition and the tolerance of �=100 = 0:01.

A more intuitive insight into the e�ects of these changes can be gained by considering

the performance PSD's and their cumulative RMS curves in Figure 2.9. This is a bimodal

system and for the �rst performance, Jz;1, both modes contribute to the RMS, with the second

mode being dominant. The second performance, Jz;2, on the other hand is driven by the �rst

mode alone. The performance improvement is primarily achieved by reducing the disturbance

magnitude and by sti�ening the system, which shifts the modes to higher frequencies. The
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�rst mode goes from 12.5 Hz to 16.8 Hz and the second mode goes from 56.3 to 117.8 Hz.
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Figure 2.9: 2DOF sample problem PSD analysis. Dashed horizontal line is Jz;req.

A summary of the RMS performance results is shown in Table 2.2.

Table 2.2: Results overview for two DOF oscillator problem.

Initial Design Improved Design Requirement

Jz Method Jz;o [�m] �% Jz;nom [�m] �% Jz;req [�m]

1 time 9.3674 18.04 0.80497 20.21 1.0

psd 9.9431 0.80961

lyap 9.9442 0.80983

2 time 11.797 12.74 6.2518 12.66 7.5

psd 11.011 5.9939

lyap 11.017 5.998

One could stop at this point and implement pnom. It is, however, expected that the

improved design pnom is not unique and other designs might perform as well, but at a lower

\cost". This is explored in Chapter 4.
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2.3 Optical Delay Line Design Problem

2.3.1 Problem De�nition

The third sample problem presented in this thesis is the design of a single-stage optical delay

line (ODL). A schematic of the ODL design problem considered is shown in Figure 2.10.
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Jz;1: RMS OPD �z � 100 [nm]

Jz;2: Settling Time Ts;z � 0.05 [sec]

OPD Range (Span) � 1 [mm]

Step Overshoot < 25 %

Steady State Error "s < 10 [nm]

Mass < 5 [kg]

Gain Margin > 6 [dB]

Phase Margin > 30 [deg]

Figure 2.10: Left: Optical Delay Line (ODL) design concept. Right: Table contain-
ing performance Jz and other requirements for ODL design.

Optical delay lines are actively controlled devices which are used to precisely control the path-

length of light. A typical application is as an actuator in a stellar Michelson interferometer.

A detailed engineering prototype of a three stage ODL for interferometry was built and tested

by the Jet Propulsion Laboratory. The delay line requirements (see Figure 2.10) levied on

this sample problem are most similar to the intermediate (voice coil) stage. Delay line design

was studied in detail by Park and Miller [116]. Some of the aspects of that study are included

here such as stability and performance considerations. Others are neglected such as the use

of multiple stages or the noise 
oor introduced by D/A-conversion actuator noise. The goal

is to investigate a physically meaningful isoperformance sample problem, where instability

(presence of a subset U) can be an issue.

The primary performance goal of the ODL is to control the pathlength of science light
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in the delay line over a range of � 1 [mm] to an accuracy of 100 [nm] RMS (Jz;1) with only

a small steady state error, "s. This is a steady-state performance metric similar to the ones

formulated in the oscillator problems. Additionally it is stipulated that the step response

of the ODL should settle within 0.05 [sec] (Jz;2) and not exhibit more than 25% overshoot.

This is a transient (time domain) performance speci�cations. These performances have to be

simultaneously met by the system.

2.3.2 ODL Integrated Model

The ODL design concept is translated into a block diagram as shown in Figure 2.11.
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Figure 2.11: ODL block diagram. Signal units in square brackets.

A reference signal r [m] commands the ODL to a desired position within the operational range

via the feedforward gain Kf . The advantage of feedforward is the avoidance of time delay

in the feedback path for repositioning of the delay line and the ability to coarse position the

ODL in the case of a feedback path failure. The feedforward command, uf , is added to the

feedback command, uc, and fed to the combination power ampli�er/actuator. The actuator

dynamics are given as:
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Power
Amp

Actuator

Ga(s)

Uf(s)
+
Uc(s)

Fc(s)

Fc = Ga (s) � (Uf + Uc) =
Ka!a
s+ !a

� (Uf + Uc)

_qa = [�!a]| {z }
Aa

qa +
�
1 1

�| {z }
Ba

�
uf uc

�T
Fc = [Ka!a]| {z }

Ca

qa +
�
0 0

�| {z }
Da

�
uf uc

�T
(2.11)

The control force, Fc [N], produced by the actuator acts on the 
exure stage and results in a

displacement x [m]. The other input into the 
exure stage dynamics is a base motion xb(t)

[m], which is considered a process noise. This disturbance is driven by random white noise of

intensity Sdd [m/
p
Hz] and corner frequency !d [rad/sec]. The disturbance dynamics of the

base motion are assumed as:

Base
Motion

Gd(s)
D(s) Xb(s)

Xb(s) = Gd (s) �D =
Sdd!d
s+ !d

�D(s)

_qd = [�!d]| {z }
Ad

qd + [1]|{z}
Bd

d(t)

xb(t) = [Sdd!d]| {z }
Cd

qd + [0]|{z}
Dd

d(t)

(2.12)

The dynamics of the 
exure stage are fully determined by the mass m [kg], the sti�ness k

[N/m] and the damping coeÆcient c [Ns/m]. The dynamics in transfer function form are as

follows:

Plant

Gp(s)

Xb(s)

Fc(s)

X(s)

X(s) = Gp (s) �
�
Xb(s) Fc(s)

�T
=

2
64

c

m
s+

k

m

s2 +
c

m
s+

k

m

1

m

s2 +
c

m
s+

k

m

3
75 � � Xb

Fc

� (2.13)

This can be written in state space form as:
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_qp =

2
666664

0 1 0 0

� k

m
� c

m
0 0

0 0 0 1

0 0 � k

m
� c

m

3
777775

| {z }
Ap

qp +

2
664
0 0

1 0

0 0

0 1

3
775

| {z }
Bp

�
xb
Fc

�

x(t) =
�
k/m c/m 1/m 0

�| {z }
Cp

qp +
�
0 0

�| {z }
Dp

�
xb
Fc

�
(2.14)

The ODL motion x(t) causes an optical pathlength di�erence z(t) = Ko � x(t), where Ko is

the linear optical sensitivity. In this case 
at (re
ective) mirrors are mounted on the 
exure

stage such that the pathlength is shortened by twice the amount of positive displacement of

x as de�ned in Figure 2.10, hence Ko = �2. The equation for the optical pathlength in the

ODL is:

OPL =ABCD=Lo +�L = Lo �2|{z}
Ko

x (2.15)

The OPD z(t) is measured by a laser sensor with gain Ks [V/m]. This gain converts a mea-

surement in meters to volts, thus y(t) = Ks � z(t). The sensor signal contains sensor noise,

such that yOPD = y + ns. Thus the sensed performance Jz;1 of the system is corrupted by

noise. This disturbance is described as colored white noise according to:

Sensor
Noise

Gn(s)
N(s) Ns(s)

Ns(s) = Gn (s) �N(s) =
Snn!n
s+ !n

N(s)

_qn = [�!n]| {z }
An

qn + [1]|{z}
Bn

n(t)

ns(t) = [Snn!n]| {z }
Cn

qn + [0]|{z}
Dn

n(t)

(2.16)

where Snn [V/
p
Hz] is the sensor noise intensity and !n [rad/sec] is the sensor noise corner

frequency. The sensor noise RMS voltage can be computed as �ns =
�
(1=2)S2

nn!n
�1=2

. The

measurement, yOPD, is then compared to the reference signal r multiplied by the sensor gain

Ks. The error signal e = yOPD�Ksr is used as the input to the controller. A PID controller

was chosen for this application. The SISO controller dynamics are:
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PID
Control

Gc(s)
E(s) Uc(s)

Uc = Gc (s) �E =

Kd!c

�
s2 +

Kp

Kd
s+

Ki

Kd

�
s (s+ !c)

E

_qc =

�
0 1

0 �!c

�
| {z }

Ac

qc +

�
0

1

�
| {z }
Bc

e(t)

uc(t) =
�
Ki!c Kp!c �Kd!

2
c

�| {z }
Cc

qc + [Kd!c]| {z }
Dc

e

(2.17)

whereKp, Ki andKd are the proportional, integral and derivative gain, respectively. The PID

control has been augmented by a �rst order lowpass �lter with corner frequency !c, which

allows writing the controller in proper form5 and makes it physically realizable. The output

of the controller is the signal uc, which completes the loop.

The dynamics described above are shown in Figure 2.11 and are assembled into an ap-

pended state space realization (2.18) of the form shown in Equation (1.1), which will be

referred to as the \integrated model" of the ODL.
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77775 =
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(2.18)

The performance output equation for z(t) is obtained as:

z(t) =
�
0 0 KoCp 0 0

�| {z }
Czd

q +
�
0 0

�| {z }
Dzd

�
d

n

�
+ [0]|{z}

Dzr

r (2.19)

From this signal the RMS OPD is computed as:

5Proper form means that numerator polynomial degree is equal or smaller than the denominator degree.
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Jz;1 = �z = RMS OPD =

2
4 1
T

TZ
0

z2(t)dt

3
5
1=2

(2.20)

The OPD settling time (using a � 2% threshold) is computed as:

Jz;2 = Ts;z = t > 0 \ min(t) such that

����z(t)� r

r

���� < 0:02 (2.21)

This allows computation of the performances, Jz, that are speci�ed in the requirements of

Figure 2.10. The next subsection will de�ne and analyze an initial design for the optical delay

line.

2.3.3 ODL Initial Design

At this point initial values, bounds and uncertainties for the ODL design parameters, pj , have

to be speci�ed. There is a distinction between constant, dependent and variable parameters

as shown in Table 2.3.

Table 2.3: ODL design parameters. Explanations of the column headings are given
in the paragraph below.

sys j nom description pj;LB pj;o pj;UB �j units type

(D) 1 Sdd base motion int. E�7 5:64E�7 2E�6 5.0 [m/
p
Hz] var

(D) - !d base motion cut. - 2�100 - - [rad/sec] �x

(D) 2 Snn sensor noise int. 1:5E�5 5:15E�5 E�4 5.0 [V/
p
Hz] var

(D) - !n sensor noise cut. - 2�120 - - [rad/sec] �x

(P) 3 m mass 1.0 2.0 5.0 0.1 [kg] var

(P) 4 k 
exure sti�ness 10 19.74 500 1.0 [N/m] var

(P) 5 c damping coe�. 0.1 0.9173 2.0 2.5 [Ns/m] var

(O) - Ko optical sensitivity - -2.0 - - [m/m] �x

(C) 6 Kd derivative gain 0.0 0.5 5 1.0 [V/V] var

(C) 7 !c controller cuto� 2�100 2�200 2�500 1.0 [rad/sec] var

(C) - Kf feedforward gain - k=(KoKa) - - [V/m] dep

(C) - Kp proportional gain - Kd(c=m) - - [V/V] dep

(C) - Ki integral gain - Kd(k=m) - - [V/V] dep

(S) - Ks sensor gain - 104 - - [V/m] �x

(A) - Ka ampli�er gain - 0:1 - - [N/V] �x

(A) 8 !a actuator BW 2�50 2�98 2�500 5.0 [rad/sec] var
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In Table 2.3 \sys" denotes the subsystem that the parameter belongs to: (D) disturbance

sources, (P) structural plant, (O) optics, (C) controls, (S) sensors, (A) actuators; \j" is the

number of the j-th variable parameter; \nom" is a nomenclature symbol; \description" is the

parameter name; \pj;LB" is the lower bound; \pj;o" is the initial value; \pj;UB" is the upper

bound and \�j" is a parameter uncertainty in �%. The column \units" shows the SI-units of

the parameter in model and \type" designates if the parameter is constant (�x), dependent

(dep) or independently variable (var).

Constant parameters such as !d, !n and Ko can typically not be changed and are dictated

by constraints such as environmental factors, physical limitations of the electronics or the

speci�c optical design chosen. Dependent parameters are not constant, since they change as a

function of the truly independent (variable) design parameters of the system. An example of

depended parameters are the feedforward gain Kf or the control gains Kp and Ki. Once these

values are substituted in Equations (2.11-2.18) the dynamics of the system can be evaluated.
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Figure 2.12: ODL plant transfer functions: Gp1 = X(s)=Xb(s) (left) and Gp2 =
X(s)=Fc(s) (right). Suspension mode at 0.5 Hz and � = 0:073 as
experimentally determined by Park [116].

The plant transfer functions from Xb(s) to X(s) and Fc(s) to X(s) are shown in Fig-

ure 2.12. The fundamental \suspension" mode is at 0.5 Hz as recommended by Park [116].
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The DC gain for the X=Fc transfer is 1=k, which corresponds to Hooke's law. There is a

phase loss of -180 degrees at frequencies above the suspension mode, which will in
uence the

stability of the loop gain function.

The PID control strategy is to set !c to a frequency, which is limited by the capability of the

electronics to provide gain at high frequency. It is attempted to achieve a pole-zero cancellation

of one of the complex conjugate pole pairs given by the structural plant. From (2.17) one

obtains the relationships Kp=Kd = c=m and Ki=Kd = k=m, which leaves the derivative gain

Kd as the only variable control parameter. The PID controller transfer function is expected

to look similar to a notch �lter. This is con�rmed by Figure 2.13.

10-2 10-1 100 101 102 103
-20

0

20

40

60

M
ag

ni
tu

de
 [

dB
]

Transfer function: E(s)-> Uc(s)  PID-controller

10-2 10-1 100 101 102 103
-100

-50

0

50

100

Frequency [Hz]

Ph
as

e 
[d

eg
]

Figure 2.13: ODL PID controller transfer function: Gc = Uc(s)=E(s).

2.3.4 Stability Margins

Absolute and relative stability must be assessed before proceeding. Absolute (asymptotic)

stability is met, since all closed loop poles of the system lie in the left half of the s-plane

as shown in Figure 2.14. The relative stability is examined via the loop gain function, see

Figure 2.15. The crossover (0 [dB]) occurs at 63.5 Hz. The phase margin is 39.4 [deg]

(requirement: PM > 30 [deg]), the gain margin frequency is 140.0819 [Hz] and the gain

margin is 11.5 [dB] (requirement: GM > 6 [dB]). These margins are con�rmed by the Nyquist

diagram in Figure 2.15(b) and meet the requirements laid out in Figure 2.10.
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2.3.5 Disturbance, Sensitivity and Uncertainty Analyses

The performance Jz;1= RMS OPD of the system is computed using the methods presented

in Appendix A. An analysis of z(t) as well as its power spectral density function Szz(!) and

cumulative RMS curves are shown in Figure 2.16.
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Figure 2.16: ODL simulation results: Cumulative RMS function for Jz;1 (top),
Power spectral density function (PSD) Szz(!) (middle), Sample time
realization for z(t) with T=18 [sec] (bottom).

Time simulation results in a performance of �z = 90:482 [nm]. This is close to the performances

computed via the PSD method (�z = 89:581 [nm]) and the Lyapunov approach (�z = 89:584

[nm]). Since Jz;1 < Jz;req;1, i.e the RMS OPD is smaller than 100 [nm], the initial system

meets the steady state performance requirement. It is interesting to note that the contributions

to �z come from the suspension mode at 0.5 Hz and, somewhat unexpectedly, from higher

frequency contributions up to roughly 100 Hz. The reason for this will become clear in the

ODL isoperformance analysis of Chapter 3.
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Another observation is that the \sensed" performance RMS, yOPD, has a value of 122 [nm]

and is signi�cantly di�erent from the actual performance RMS value of 90 [nm]. By consulting

the block diagram in Figure 2.11, we see that the di�erence between the performance , z, and

the sensed performance, yopd, can only be due to sensor noise, ns. The disturbance signals

for this analysis were generated with the parameters po from Table 2.3 and resulted in a base

motion with RMS xb = 10 [�m] and a sensor noise with a 1 [mV] RMS voltage.

The step performance of the system, Jz;2 = Ts;z was computed using the MATLAB step.m

command. The result is shown in Figure 2.17(a) and indicates that the ODL settles from the

initial position at 0 [mm] to a new position at r = +1 [mm] in 0.0236 [sec], assuming a 2%

threshold. This suggests that the transient performance Jz;2 also meets requirements, since

Ts;z < 0:05 [sec]. The overshoot, however, is 30.4% and somewhat larger than the maximum

of 25% stipulated earlier.

A sensitivity analysis for the design was conducted with respect to the �rst performance

Jz;1. The results are shown in Figure 2.17(b).
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Figure 2.17: (a) Step response of ODL for r=1.0 [mm]; (b) Sensitivities of RMS
OPD �z w.r.t. parameters pj (normalized).

The sensitivities with respect to the noise intensities Sdd and Snn are positive. The large

positive sensitivity of Snn suggests that excessive sensor noise is present in the control signal

or that the control gain, Kd, is too large. This is likely, since the sensitivity with respect to

the control gain, Kd, is positive. Thus, increasing gain will increase the RMS OPD. The issue

of balancing sensor noise versus process noise will be explored in Chapter 3.
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The sensitivity analysis allows computing an uncertainty estimate on the performance

via equation (2.7). The estimated uncertainty on the RMS OPD is 89.6 � 5.64 [nm], which

corresponds to � 6.3 %. Even in the worst case the performance Jz;1 is expected to remain

within the requirement, Jz;req;1 � 100 [nm].

2.3.6 ODL conclusions

At this point a satisfactory design has been achieved since the two performance requirements:

RMS OPD Jz;1 = 89:6 [nm] and settling time Jz;2 = 0:0236 [sec] have been met. The other

requirements such as mass m � 2 [kg] and zero steady state error "s � 10 [nm] are also met.

The only exception is the step overshoot of 30.4%, which slightly exceeds the requirement of

25%. Note that the span (OPD range) requirement cannot be veri�ed with this simpli�ed

linear model. In contrast to the oscillator problems, pnom = po, will be accepted as the

nominal design without further performance enhancement. Note that the RMS control force,

Fc, to achieve this performance (with r=0) was 0.02 [N]. A search for ODL design vectors

that might also meet the performance requirements, albeit at di�erent \cost" and \risk" will

be discussed in subsequent chapters.

2.4 Summary

This chapter introduced three sample problems. These are the single degree-of-freedom

(SDOF) oscillator, the two degree-of-freedom (2DOF) oscillator and the optical delay line

(ODL) design problem. The motivation of the sample problems is to provide speci�c exam-

ples for illustrating isoperformance related concepts in subsequent chapters, without cluttering

the discussion. For each of the problems a disturbance, sensitivity and uncertainty analysis is

conducted. If necessary a performance enhancement (line or gradient search) algorithm was

applied such that a satisfactory design, pnom, was obtained starting from an initial guess, po.

The nominal designs, pnom, are not unique. For the SDOF problem for example it is expected

that the same performance could be achieved by simultaneously increasing the mass, m, and

decreasing the disturbance isolation corner frequency, !d. This will be explored in Chapter 3

for bivariate problems and in Chapter 4 for multivariable problems.
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Chapter 3

Bivariate Isoperformance

Methodology

This chapter solves the bivariate isoperformance problem for two independent variable

parameters pj, where j = 1; 2, and one (scalar) performance objective pj 7! Jz(pj). Three

alternative algorithms (exhaustive search, gradient-based contour following and progressive

spline approximation) are developed, implemented and evaluated. The solutions, piso, form

the isoperformance set, I. This set meets the isoperformance condition Jz (piso) = Jz;req. Ap-

plications of the bivariate isoperformance methodology are presented for the sample problems

introduced in Chapter 2 and some realistic spacecraft dynamics examples. The algorithms

have been implemented in a MATLAB module function called isoperf 2var.m.

3.1 Bivariate Isoperformance Problem

Once a viable initial design, pnom, has been found, it is important to determine the combi-

nations of values for the independent parameters pj , j = 1; 2; :::; np, of the system, that will

result in the same (predicted) dynamical performance Jz(pj) = Jz;req. A �rst step towards

solving the problem stated in Section 1.3 is undertaken by considering two variable parame-

ters, np = 2 and one (scalar) performance metric Jz, where nz = 1. This gives the impetus

for the following task formulation:
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Problem: Find algorithms, which are able to eÆciently compute the isocontours pj 7!
Jz(pj) = Jz;req for a dynamic LTI system. Develop these algorithms for two system

parameters p = [p1 p2]
T and one (scalar) performance, Jz(p), �rst. The methodology

must be generalizable to nz > 1 performance metrics and np > 2 parameters.

The extension to the full multivariable case in presented in Chapter 4. Formally, an

appended state space representation of the dynamics of a closed-loop or open-loop linear

time-invariant system is given as

_q = Azd (pj) q +Bzd (pj) d+Bzr (pj) r

z = Czd (pj) q +Dzd (pj) d+Dzr (pj) r , where j = 1; 2
(3.1)

where Azd is the state transition matrix, Bzd and Bzr are the disturbance and reference input

coeÆcient matrices, Czd is the performance output coeÆcient matrix, Dzd and Dzr are the

disturbance and reference feedthrough matrices, d contains unit-intensity white noise inputs,

r represents reference inputs, z contains system performance outputs, q is the state vector

and pj is the j-th variable, independent system parameter. Additionally the functional

Jz (pj) = F (z) (3.2)

represents a de�nition of the (scalar) performance metric of interest. See Appendix A for a

list of typical performance speci�cations such as RMS or RSS. Regardless of which metric is

used, the resulting Jz, will always be a scalar quantity.

We want to �nd solution vectors, piso, such that the performance equality constraint

Jz (piso) � Jz;req (3.3)

is met, assuming that the parameters pj are bounded below and above as

pj;LB � pj � pj;UB 8 j = 1; 2 (3.4)

The isoperformance condition (3.3) has to be met subject to a numerical tolerance, �����Jz (piso)� Jz;req
Jz;req

���� � �

100
(3.5)

In the case of spline approximation a functional approximation to the isoperformance

contours, t 7! fiso(t) = piso, where R 7! R
2 , may be obtained. Note that in this case the

parameter t is the analog of the parameter t in a parametric curve description in R2 or R3 . This

80



would be describing the time t in the curved path of a particle in three dimensional Euclidean

space. For example the position vector �!r (t) = [x(t); y(t); z(t)] of a helical trajectory is

t 7! [cos(t); sin(t); t]. In the isoperformance context the coordinates x; y; z correspond to the

coordinates p1; p2; :::; pnp into the parameter space B in Rnp .

3.2 Algorithm Development

The purpose of this section is to work out the fundamental mathematics and algorithms for

determining the isoperformance contours for the case of a single performance metric, Jz, and

two parameters pj , j = 1; 2. The performance is a function of an opto-mechanical output

quantity, z, of the system. The parameters are structural, optical, disturbance or control

parameters of the system (e.g. beam moment of inertia, detector quantum eÆciency, reaction

wheel static imbalance, derivative control gain). Note that physical parameters are typically

used for an isoperformance analysis, as opposed to modal parameters, since they relate more

directly to engineering design quantities of interest and are more readily and independently

alterable by the designer. On a conceptual level there are three fundamentally di�erent

algorithms, which will be considered:

1. Exhaustive Search

2. Gradient-based Contour Following

3. Progressive Spline Approximation

There is no claim that this set is complete and that no other viable algorithms exist. Note

that a fourth approach, using Newton's method for �nding the roots of a multivariable function

numerically, is conceivable if the performance objective Jz(pj) is known in closed form. This,

however, is only true for relatively simplistic low-order problems, such that the requirement:

\generalizable to the multivariable case" is not met. The next section quantitatively evaluates

and compares these three approaches by solving the single degree-of-freedom (SDOF) oscillator

problem introduced in Section 2.1.

Before developing each algorithm, it shall be noted that three quantities must be speci�ed

apriori, regardless of the algorithm used. First, upper and lower bounds for each variable

system parameter pj , where j = 1; 2, must be de�ned such that:

pj;LB � pj � pj;UB (3.6)
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Here the subscripts \LB",\UB" identify a lower bound and upper bound for the j-th parameter,

respectively. In practice these bounds are chosen not to violate physics (e.g. negative mass)

and are based on empirical experience regarding the range which is physically realizable within

the current or foreseeable state-of-the-art for a given parameter. For example a realistic lower

bound for the noise voltage RMS produced by o�-the-shelf 12-bit electronics is 4 [mV].

Furthermore an allowable tolerance, � , on the isoperformance (contour) solution must be

speci�ed, since a digital computer with a limited 
oating-point accuracy is used to determine

individual solution points, piso. If this tolerance, � , is expressed as a permissible � percent

deviation from the required performance, Jz;req, one expects the k-th solution piso;k 7! Jz;k to

be \on" the isoperformance contour such that

Jz;req � [1� �=100] � Jz;k � Jz;req � [1 + �=100] (3.7)

Finally, the required performance, Jz;req, which corresponds to the \level" or \height" of the

isoperformance contours, needs to be de�ned. This is analogous to looking at the pressure

chart in Figure 1.3(b) and asking for the locus of the 1006 [mb] isobars, as an example. It is

possible that no point in the parameter space R2 bounded by (3.6) will yield Jz;req, i.e. the

isoperformance set is empty I=;, or that there are several closed or open contours as shown

in Figure 3.1. These contours are sometimes referred to as level curves [28].
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parameter space
boundary  B
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individual
solution
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(c)

(b)

p1

p2

Figure 3.1: Theoretical instances of isoperformance contours pj 7! Jz(pj) = Jz;req
in R2 . (a) regular boundary point on B, (b) interior solution point piso
in set I and (c) boundary point on the unstable subset U.
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It is also true that isoperformance contours will never cross, since a particular design

point pj, j = 1; 2, will always map to a unique performance value pj 7! Jz(pj), where j = 1; 2.

The multivariable function pj 7! Jz(pj) is said to be unidirectionally unique. Note that the

isoperformance algorithms should be as general as possible to eÆciently compute all of the

cases presented in Figure 3.1. Speci�cally, there can be multiple instances of open and closed

contours. Closed contours, by de�nition, close on themselves (non-zero curl in vector calculus)

and can be circumscribing other closed contours. Closed contours can only be tangent to the

parameter space boundary B, but never intersect it. Open contours always have a start

and end point on a parameter space boundary of B or at the absolute stability boundary

of the unstable subset U. The next three subsections develop the bivariate isoperformance

algorithms, which solve the problem posed above.

3.2.1 Algorithm I: Exhaustive Search

This method discretizes the parameter space, de�ned by the lower and upper bounds pj;LB; pj;UB,

where j = 1; 2, by overlaying a �ne grid and completely evaluating all grid points. The subdi-

visions of the grid are de�ned by means of uniform parameter increments �p1;�p2. The size

of the increments should be small enough to capture details of the isoperformance contours.

This is related to the smoothness of Jz(pj). Small increments are desirable as this will allow

to capture a large number of points, piso, on the isoperformance contours. On the other hand

the computational expense grows signi�cantly with smaller increments.

Each grid point on the grid represents a unique parameter combination pk;l = [ p1;k p2;l ]
T .

The parameter values are obtained from p1;k = p1;LB+(k�1)�p1 and p2;l = p2;LB+(l�1)�p2,
respectively, which leads to a linearly spaced grid. The performance (Jz)k;l = Jz(pk;l) is eval-

uated for all parameter combinations (complete enumeration). The number of increments in

each parameter axis is obtained as1:

n1 =

�
p1;UB � p1;LB

�p1

�
and n2 =

�
p2;UB � p2;LB

�p2

�
(3.8)

The index k on the �rst parameter runs from 1 to n1+1, the index l runs from 1 to n2+1
2. Thus

a total number of (n1+1)� (n2+1) combinations has to be evaluated. This is algorithmically

1The d e operator denotes the ceiling function.
2If k = n1 + 1 then p1;k = p1;UB and if l = n2 + 1 then p2;l = p2;UB .
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achieved by means of two nested for loops. The resulting performances (Jz)k;l are stored in a

(n1+1)� (n2+1) matrix. A representation of the parameter space B discretization is shown

in Figure 3.2(a) along with a zoomed region in Figure 3.2(b).
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Figure 3.2: (a) Algorithm I: Discretization of B in a linearly spaced grid with incre-
ments �p = [�p1;�p2]

T . (b) Linear interpolation between neighboring
grid points. The gray shaded area is a zoomed region.

Note that the result of a particular parameter combination, pk;l, does not a�ect the com-

putation of the next point. The algorithm will be shown to be computationally expensive,

particularly for more than two parameters and �ne discretization, see Chapter 4. Once all the

parameter combinations pk;l have been evaluated, linear interpolation between neighboring

grid points, as shown in Figure 3.2(b), is used to �nd isoperformance points piso;r. The linear

interpolation algorithm uses the following equation to �nd the r-th isoperformance point:

piso;r =

"
p1;iso;r

p2;iso;r

#
=

"
p1;k

p2;l

#
+

(Jz)k;l � Jz;req

(Jz)k;l � (Jz)m;n
�
"
p1;m � p1;k

p2;n � p2;l

#
(3.9)

The above equation is invoked if it is found that either (Jz)k;l � Jz;req � (Jz)m;n or

(Jz)k;l � Jz;req � (Jz)m;n, assuming continuity of Jz(p). This requires that the predicted

performance at each grid point (Jz)k;l is compared to the performance of each neighboring

grid point (Jz)m;n. Note that (Jz)m;n is the performance at a neighboring point such that

m 2 [k � 1, k, k + 1] and n 2 [l � 1, l, l + 1]. The point m = k, n = l is not tested, since it

represents the center grid point pk;l itself as shown in Figure 3.2(b).

This procedure is similar to the process that is used to obtain the pressure chart shown in
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Figure 1.3(b). Consider the following example: We are interested in �nding the 1006 [mbar]

isobar. We know that the atmospheric pressure is 1003.3 [mbar] in Boston and 1007.2 [mbar]

in New York City at 5:00 p.m. on a given day. Since the distance between Boston and New

York is 216 miles, we expect the point, which is at a distance of 66.5 miles from New York

on the straight-line between the two cities to be on or close to the 1006 mbar isobar. This

assumes that the pressure varies linearly and that no other reporting station exists between

the two cities.

An alternate option replaces the linear interpolation step with a call to the MATLAB built-

in function contourc.m for contouring. This allows displaying a family of several performance

levels at once. The 
ow diagram used to implement Algorithm I is shown in Figure 3.3.
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Figure 3.3: Flow Diagram for Algorithm I: Exhaustive Search

The algorithm �rst requires the user to input a performance requirement Jz;req, a tolerance

� , the upper and lower bounds pLB and pUB , as well as the desired discretization �p. Next

it loops over all points in the parameter space B and builds a state space model according to

(1.1) for each combination pk;l. The corresponding performance (Jz)k;l is evaluated for each

combination. After evaluating all grid points (complete enumeration) the algorithm branches

into two separate options. Option I(a) calls the built-in MATLAB function contourc.m

for contouring. If the matrix of isoperformance points, piso, is non-zero, it is stored and the
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algorithm ends. Option I(b) searches for all closest neighboring grid points and checks whether

the isoperformance contour passes in between them. If it does, an intermediate point, piso;r, is

obtained using linear interpolation according to (3.9). The resulting points have to be sorted

with a \closest neighbor" algorithm, which is accomplished by the function find segments.m.

In summary, the exhaustive search algorithm attempts to �nd contours of equal perfor-

mance by laying a �ne grid over the trade space B in R2 and evaluating all grid points. It

obtains an estimate of the isoperformance contours via linear interpolation.

3.2.2 Algorithm II: Gradient-based Contour Following

The exhaustive search algorithm does not exploit knowledge about previous points piso;k =

[piso;1;k; piso;2;k]
T found on an isoperformance contour in any way. The basic idea of the

gradient-based contour following scheme is to �rst �nd an \isopoint" piso;1, which is known

to yield the required performance Jz;req, i.e. it lies on an isoperformance contour. Once such

a point is found a neighboring point piso;k+1 on the same isoperformance contour is found by

means of a direction derived from the gradient vector, rJz(p1; p2). Thus, a prerequisite is

that Jz(pj) is continuous and di�erentiable at all points in the parameter space p = [p1; p2]
T 2

B. It will be shown that this step direction is colinear with the tangent vector tk to the isop-

erformance contour. This step-wise \contour following" is repeated until the isoperformance

contour intersects the parameter space boundary B, the absolute stability boundary U or it

closes on itself.

If several segments (i.e. separate contours as in Figure 3.1) are present, di�erent \random"

initial trial points are necessary in order to detect all segments. This algorithm promises to

be signi�cantly more eÆcient than exhaustive search, since it only computes points on the

contours and takes advantage of previously computed solutions. The derivation starts by

considering the bivariate function

p1; p2 7! Jz(p1; p2) , where R
2 7! R and pj 2 B (3.10)

The vector of parameters can be stacked as follows:

p =

"
p1

p2

#
and �p =

"
�p1

�p2

#
(3.11)

Next a Taylor series expansion of the vector function Jz(p) is performed around a nominal
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point, pnom, where pnom 2 B, as follows:

Jz (p) = Jz (pnom) + (rJz)T
���
pnom

��p+ 1

2
�pT Hjpnom �p+H:O:T: (3.12)

Note that p = pnom +�p and that rJz and H are the gradient vector and Hessian matrix,

respectively.

rJz =

2
666664

@Jz
@p1

@Jz
@p2

3
777775 and H =

2
666664

@2Jz
@p21

@2Jz
@p1@p2

@2Jz
@p2@p1

@2Jz
@p22

3
777775 (3.13)

From multivariable calculus [28] we know that the cross-derivatives are equal to each other

and therefore the Hessian is symmetric: H = HT . The parameter vector increment �p can

be written as the product of a step size � and a step direction (vector) d. Note that d is

normalized to unit length

�p = � � d (3.14)

The starting point of Algorithm II is an initial guess po = [p1;o; p2;o]
T , which is in the \vicinity"

of, but not necessarily exactly on the isoperformance contour. A steepest descent algorithm

[33] is used to obtain a �rst isopoint, piso;1, on the isoperformance contour. This was demon-

strated for the oscillator sample problems in sections 2.1 and 2.2.

A direction d of Jz(p1; p2), where R
2 7! R at p = po is a descent direction if

Jz(po + � � d) < Jz(po) (3.15)

for all suÆciently small positive values of �. The step size � is a scalar value and is chosen

to be positive if the initial guess po lies \above" the isoperformance contour (e.g. yields a

larger RMS value). Conversely if the initial guess po or any subsequent iterate is \below"

the isoperformance level, � will be a negative scalar. The next iterate is then obtained as

po+1 = po + �o � no, where no is the unit-length vector of steepest descent3. Thus, one can

write the �rst order approximation at the point po as:

Jz(po + �o � no) �= Jz(po) +rJz(po)T � �ono (3.16)

Recall from the Cauchy-Schwartz inequality that

Jz (po) +rJz (po)T
��rJz (po)
krJz (po)k

�
� Jz (po) +rJz (po)T

�
d

kdk
�

(3.17)

3Note: \n" is chosen to indicate the \normal" vector and \t" is chosen to designate the \tangential" vector.

This is not the same \t" used to parameterize isoperformance contours presented in Subsection 3.2.3
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for any d 6= 0. Thus, the steepest descent vector (step direction) at po is obtained as

no =

��rJz (po)
krJz (po)k

�
(3.18)

The step size, �, is found by assuming linearity from the initial guess, po, to the �rst point

on the isoperformance contour piso;1. Traditionally a line search is performed on a function

h(�) for steepest descent in order to �nd �. This, however, is only useful in an optimization

problem setting [33]. Here, we are merely trying to intercept the desired isoperformance

contour Jz;req in a minimum number of iterations. From the expression

Jz (po + �o � do) �= Jz (po) +rJz (po)T � �o
��rJz (po)
krJz (po)k

�
| {z }

no

� Jz;req (3.19)

one can solve for �o , such that

�o =

 
�rJz (po)T rJz (po)

krJz (po)k

!
�1

� (Jz;req � Jz (po)) (3.20)

This assumes that po is not an extremum or a saddle point of Jz(p1; p2), where krJz (po)k = 0

would be true. Using the above equations, the algorithm generally intercepts an isoperfor-

mance contour, if it exists within B, within a few iterations. In practice an upper limit is

imposed on the step size to avoid \overshooting", when going from a small gradient to a large

gradient area of the parameter space B.

If one assumes that the point piso;k lies on the isoperformance contour, one can �nd a

neighboring point piso;k+1 = piso;k + �pk such that Jz(piso;k +�pk) = Jz(piso;k) = Jz;req by

recalling the Taylor series expansion in Equation (3.12). One then neglects second-order and

higher terms and sets the �rst order term (perturbation) to zero. Speci�cally, if

Jz (piso;k+1) = Jz (piso;k +�pk) �= Jz (piso;k) + (rJz)T
���
piso;k

�pk � Jz;req (3.21)

is to be true, then

�Jz;k = (rJz)T
���
piso;k

�pk � 0 (3.22)

In other words, one must choose the vector �pk, such that it is in the nullspace of the trans-

posed gradient vector (rJz)T . This condition can be written out componentwise as

�Jz;k =
@Jz
@p1

����
p1;k

�p1;k +
@Jz
@p2

����
p2;k

�p2;k � 0 (3.23)
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Geometrically this condition corresponds to following the tangential vector t along the

isocontour. Figure 3.4 shows that tk can be considered the tangential vector at point piso;k,

which is orthogonal to the normal vector nk. It is true that the vector nk is the direction of

steepest descent and is obtained according to equation (3.18). There are two ways in which

Jz (p
1
,p
2 )

p
1

p
2

isocontour

Jz,req

n
1

ÑJ z(piso,1)

ÑJ
z (piso,k)

n
k

t
k

t1

p
iso,k

p
iso,1

set B

Figure 3.4: Algorithm II: Depiction of gradient vector rJz, normal vector n and
tangential vector t along the isoperformance contour.

tk can be obtained from rJz(pk). First one can obtain the normal vector nk from equation

(3.18) and then rotate it by 90 degrees to obtain the tangential vector tk.

tk = R � nk =
2
4 0 �1
1 0

3
5 � nk (3.24)

The second method is more general, since it is also applicable to the case of nz > 1 perfor-

mances and np > nz parameters. A singular value decomposition (SVD) [118] is performed

on the transpose of the gradient vector.

UkSkV
T
k = rJTk (3.25)

In the bivariate case two singular values are obtained. The non-zero singular value, s1;k 6=
0, corresponds to the direction of steepest descent nk and the zero singular value, s2;k =

0, corresponds to the tangential direction tk. In the extension of this framework to the

multivariable case, see Chapter 4, the power of the SVD to map out this nullspace will be

discussed in detail. The vectors nk and tk are the columns of the unitary Vk-matrix, as in the
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following example:

Vk =
h
nk tk

i
=

2
4 0:0369

�0:9993| {z }
normal
vector

0:9993

0:0369

3
5

| {z }
tangential
vector

(3.26)

Note that nk and tk are orthogonal to each other, i.e. nTk � tk = 0. The vector tk is used as

the direction, when stepping along the isoperformance contour.

Now that the step direction tk has been found an appropriate step size, �k, needs to be

chosen. The step size should be variable and take into account errors incurred due to the

linearization in equation (3.16). An estimate of the linearization error incurred due to a step

of size �pk can be written as:

�k =
1

2
�pTk Hjpk �pk +H:O:T: (3.27)

Neglecting higher order terms, one solves for the step size �k , by substituting �pk = �k � tk
in the above equation and setting �k = �Jz;req=100.

�k =

�
2�Jz;req
100

�
tTk �H

��
pk
� tk
�
�1
�1=2

(3.28)

In practice it is expected that the exact computation of the Hessian matrix Hjpk will be

quite expensive. Gutierrez shows in Appendix C of Reference [45] that solving for the second

order derivatives, i.e. a single entry in the Hessian, @2Jz=@p
2
j , requires the solution of four

Lyapunov equations for H2 performance metrics. However, assuming that the exact �rst

partial derivatives @Jz=@pj , where j = 1; 2, are known, one can approximate the Hessian

matrix H 4 for purposes of �nding the step size �k by �nite di�erences as follows:

Hjpk =

2
6666666664

@2Jz
@p21

@2Jz
@p1@p2

@2Jz
@p2@p1

@2Jz
@p22

3
7777777775
pk

�=

2
6666666664

@Jz
@p1

����
k

� @Jz
@p1

����
k�1

p1;k � p1;k�1

@Jz
@p2

����
k

� @Jz
@p2

����
k�1

p1;k � p1;k�1

@Jz
@p1

����
k

� @Jz
@p1

����
k�1

p2;k � p2;k�1

@Jz
@p2

����
k

� @Jz
@p2

����
k�1

p2;k � p2;k�1

3
7777777775

(3.29)

With equations (3.26) and (3.28) the step direction tk and the step size �k have been

determined and one can �nd the next point on the isoperformance contour piso;k+1 = piso;k +

4Note that the step size �k has to be arti�cially limited in a region of small curvature, i.e. when the norm

of tTkH
�1tk becomes very small.
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�ktk. At this new point the performance Jz(piso;k+1) is recomputed along with the gradient

vector rJz(piso;k+1). The process is repeated until the parameter boundaries of B are reached,

the solution reaches the unstable subspace U or the isoperformance contour closes on itself.

In practice a \front" is created, where new points on the isocontour are found in the positive

and negative step directions. The new points represent the \front", pfront, which is used to

�nd the next generation of front points. Also a \control" algorithm was implemented to check

whether the isoperformance solution points are drifting away from the Jz;req \centerline". If

the inequality ����Jz (piso;k+1)� Jz;req
Jz;req

���� > �

100
(3.30)

is true, a correction term in the normal direction, nk, is applied to bring the solution back

on the centerline of the isoperformance contour. In that instance the parameter step �pk is

augmented by a normal correction term as:

�pk = �k � tk + �k � nk| {z }
correction term

(3.31)

where �k is computed from equation (3.20).

An overview of Algorithm II is shown in the 
ow diagram of Figure 3.5. The �rst it-

eration loop on the left brings the solution from the initial guess po to the �rst point on

the isoperformance contour piso;1. The second loop on the right hand side traces along the

isoperformance contour until the parameter space boundaries de�ned by the upper and lower

bounds pj;LB and pj;UB, where j = 1; 2, are intercepted, the solution becomes unstable or

the contour closes on itself. The outer loop indicated by a dashed line is relevant if several

(random) initial guesses are used to detect multiple segments within B. Finally the points,

piso, on the isoperformance contours are sorted and stored for further processing.

3.2.3 Algorithm III: Progressive Spline Approximation

The previous algorithm is an improvement over exhaustive search, since it uses information

about previously computed points along the isoperformance contours. Also the algorithm

automatically adjusts the step size �p in \shallow" gradient areas, where krJzk is small. A
further eÆciency increase can be obtained by exploiting a progressive spline approximation

scheme. This assumes that the isoperformance contour intersects the boundary B, i.e. that
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Figure 3.5: Flow Diagram for Algorithm II: Gradient-based Contour Following.
Note: The correction step from equation (3.31) is omitted for simplicity.

no closed loops are present. This is most often the case, when the performance function

Jz(p1; p2) is monotonic in at least one of the two parameters. This condition will be referred

to as \quasi-monotonic" throughout this thesis.

The basic idea of this algorithm is to approximate the isoperformance contour with a

piecewise polynomial (pp) function. The spline mathematics and tools developed by Carl de

Boor [22] as well as the resulting MATLAB spline toolbox are leveraged for this algorithm. A

function f(x) can be approximated by a truncated Taylor series as follows:

f (x) =

nX
i=0

(x� a)i

i!

df i

dxi

����
a

=

nX
i=0

(x� a)i

i!
Dif(a) (3.32)

This provides a satisfactory approximation to f(x) if f is suÆciently smooth and x is suÆ-

ciently close to a. The approximation interval [a; b] is then subdivided into suÆciently small

intervals [�l; �l+1; : : :] with

a = �1 < : : : < �l+1 = b (3.33)

On each such interval a polynomial Pl of relatively low degree can provide a good approxima-
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tion to f . The composite function (piecewise polynomial) is then:

s (x) = Pl(x) for x 2 [�l; �l+1] 8 l (3.34)

A smooth blending of the polynomial pieces can be achieved such that s(x) has several contin-

uous derivatives. We will call s(x) a spline, an expression that was originally created by I.J.

Schoenberg. Splines have been extensively treated by de Boor [22]. This work also resulted

in the MATLAB spline toolbox, which is used extensively throughout this thesis.

Of particular interest is the ppform of a spline, which provides a mathematical description

in terms of its break points (breaks) �1; : : : ; �l+1 and the local polynomial coeÆcients cl;i of

its pieces.

Pl (x) =

kX
i=1

(x� �j)
k�i

(k � i)!
cl;i (3.35)

This form is especially convenient for evaluation, while the B-form is often used for construc-

tion of a spline approximation. The order is chosen as k = 4, which leads to cubic splines

and two continuous derivatives across the break points.

The progressive spline approximation algorithm assumes that the two endpoints a; b are

on the parameter space boundary. The knowledge of the �rst derivatives at these endpoints

facilitates the formulation of correct end conditions. Thus, the initial estimate of the isop-

erformance contour consists of a single piece. Instead of using the formulation in (3.34), the

isoperformance contours are parameterized with parameter t from endpoint to endpoint. Thus

at endpoint a we have t = 0 and at endpoint b we set t = 1:0. Instead of the coordinates x

and y = f(x) as in equation (3.35) the algorithm works with vector splines such that

t 7! Pl (t) =

2
664 piso;1 (t)

piso;2 (t)

3
775 =

2
664 s1 (t)

s2 (t)

3
775 = piso (3.36)

where

t 2 [0; 1] 7! Pl (t) 2 [a; b] (3.37)

the vector components of each spline piece are approximated as piecewise polynomials in

ppform, where

sj (t) = fj;l (t) for j = 1; 2 and 8 l (3.38)

The functional approximation for each piece is then given as

fj;l (t) =

kX
i=1

(t� �l)
k�i

(k � i)!
� cj;l;i where t 2 [�l : : : �l+1] (3.39)
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Note that all relevant information is contained in the break point sequence, �1 : : : �l+1 and

in the polynomial coeÆcient array cj;l;i. The subscript j refers to the vector component of

piso, l refers to the piece number of the pp approximation and i is the index of the polynomial

degree. In practice the coeÆcient array cj;l;i is stored as a 2-dimensional matrix by stacking

the coeÆcient matrices of the vector components j on top of each other, along the �rst non-

singleton dimension. As a practical example the isoperformance contour shown in Figure 3.6

is saved in MATLAB with the following variables:

� form: `pp'

� breaks: t 2 �1 : : : �l+1 = [0 0:1667 0:3333 0:5000 0:6667 0:8333 1]T

� coefs: cj;l;i: 12x4 double precision matrix

� pieces: l = 6

� order: k = 4

� dim: max(j) = 2

Next a bisection is performed at the mid-point of the �rst piece, (t = 0:5), resulting in the

point pmid;1. If the true isoperformance contour is close to the cubic spline approximation,

then pmid;1 will lie on the contour. Generally this will not be the case and pmid;1 is then used

as the starting point for a steepest gradient search to �nd the closest point on the contour.

This point piso;1 represents a new break �2 and splits the original interval [a; b] into two pieces.

The MATLAB function csape.m is used to compute the spline coeÆcient matrix c for the

pieces [a = �1; �2] and [�2; b = �3]. This bisection procedure is repeated until the midpoints of

all pieces lie on the contour, subject to a tolerance � . This is graphically shown in Figure 3.6.

A 
ow diagram of the progressive spline algorithm is shown in Figure 3.7. The algorithm

�rst �nds the isoperformance points, piso, on the boundary as well as their �rst derivatives.

Next a cubic spline (cs) interpolation is performed in order to obtain an initial estimate of

the shape of the isoperformance contour. This initial estimate is re�ned via a bisection at the

mid-point of each piece (t=0.5). Pieces, where the mid-point is not within the tolerance � are

bisected further until all pieces meet the tolerance. Thus, computational resources are focused

on areas where the shape of the contours varies rapidly. This algorithm requires access to the

MATLAB spline toolbox (e.g. function csape.m).
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The algorithm is expected to be the most eÆcient, but also the most restrictive, since it

is only able to �nd open segments (no closed segments), which intercept the boundary of B,

as is the case for (quasi-)monotonic functions.

3.3 Algorithm Evaluation

This section applies the three algorithms, which have been implemented in MATLAB code,

to the single DOF sample problem and quantitatively as well as qualitatively compares the

answers. The conclusions will provide guidance for applications to larger problems and the

multivariable case. The single DOF problem from Section 2.1 is used to compute and display

isoperformance contours. We choose the disturbance corner frequency, !d, and oscillator mass,

m, as the variable parameters with the parameter bounds given in Figure 2.1.

3.3.1 Quality of Isoperformance Solution

In order to assess how well the resulting isoperformance points, piso, actually meet the isop-

erformance condition (3.3) it is necessary to de�ne a solution \quality" metric. The \quality"

of the isoperformance solution can be quanti�ed as follows. Let

�iso =
100

Jz;req
�

2
664
nisoP
k=1

[Jz(piso;k)� Jz;req]
2

niso

3
775
1=2

(3.40)

be a quality metric expressing the relative % error with respect to Jz;req. In the above

equation niso is the total number of isopoints computed, Jz(piso;k) is the performance of

the k-th isopoint and Jz;req is the performance requirement, i.e. the desired performance

\level". This number can then be directly compared to the desired isoperformance contour

tolerance, � , and should always be smaller than it. Note that this de�nition of solution

quality does not prevent individual solutions, piso, from falling outside the tolerance band

[(1� �=100) � Jz;req; (1 + �=100) � Jz;req].

3.3.2 Results for Exhaustive Search (Algorithm I)

This subsection shows the results obtained for Algorithm I (exhaustive search). Subsection

3.2.1 speci�ed that it is necessary to de�ne a discretization step size �p. This was chosen as

1/20 of the interval pUB � pLB. The results for exhaustive search are shown in Figure 3.8(a).
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The isoperformance curve shows that a small increase in the disturbance �lter corner frequency,

!d, below about 30 radians per second (roughly 5 Hz), which is the natural undamped fre-

quency of the oscillator, requires a large increase in mass m in order to maintain the same

RMS level. Thus, as the disturbance energy increases the disturbability of the oscillator must

be decreased by increasing the mass. Once the disturbance corner frequency, !d, exceeds the

natural undamped frequency of the oscillator any further increases in !d have only a small

e�ect on the RMS of z and the isoperformance curve 
attens out.

The quality of the isoperformance contour is very dependent on the discretization level.

The smaller �p, the better the contour will be interpolated but the more computation time is

required. For the exhaustive search algorithm the solution quality is shown in Figure 3.8(b).
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Figure 3.8: (a) Algorithm I (Exhaustive Search): Isoperformance contour for single
DOF problem (!d;m) with discretization �p = (1=20)[pUB�pLB] and a
tolerance of � = 1%. (b) Quality: Contour quality according to (3.40).

The points on the isoperformance contour in Figure 3.8(a) were obtained by using the

MATLAB function contourc.m and exhaustive search. The tolerance for the isoperformance

contour was set to � = 1:0 %. In order to obtain this plot a total of 21x21=441 plant models

in the form of equation (1.1) had to be evaluated. This suggests that this algorithm will likely

be computationally expensive for large order models with np > 2 variable parameters. A

comparison of the computational cost with the other algorithms is shown in Table 3.1.

Since for Algorithm I (exhaustive search), solutions are computed over the entire parameter

space B, it is possible to graphically represent the bivariate function Jz(p1; p2) as shown in
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Figure 3.9(a). The best performance (lowest RMS value �z) in the system is achieved for a

large mass m (small disturbability) and low disturbance corner frequency !d (low disturbance

power). Another advantage is that a family of contours can be displayed, see Figure 3.9(b),

with little additional computational expense.
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Figure 3.9: (a) Algorithm I (Exhaustive Search): Surface plot of Jz(p1; p2) for SDOF
oscillator problem. (b) Family of isoperformance contours in 0.2 mm
RMS increments.

The answers to the questions posed in Subsection 1.3.1 for the single DOF problem are:

(1) Yes, there are solutions within pj;LB and pj;UB, where j = 1; 2, which yield the desired

performance Jz;req=0.8 [mm]. Since p1 and p2 are considered to be continuous, there is an

in�nite number of combinations, which yield Jz;req. (2) The locus of points that yield Jz;req

within a � = 1:0 % tolerance is shown in Figure 3.8(a).

At this point one might be tempted to ask: \Why do we compute the isoperformance

contours at all, when we can achieve much better performance within the parameter bounds

B as shown in Figure 3.9 for small !d and large m ?". In general it is expected that parameter

values that yield good performance (i.e. low Jz) will also have a higher \cost" associated with

them. In this example it means that we cannot tolerate a large amount of external distur-

bance (large !d) and that a lot of mass m has to be used to reduce oscillator disturbability.

This notion of cost will be discussed in more detail in Chapters 4 and 7. Examples of other

system parameters that will improve dynamic performance at a higher \cost" are small reac-

tion wheel imbalance, sti�er secondary tower, lower detector noise, higher control bandwidth
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etc. Thus, instead of �nding the best performance achievable within the parameter bounds

(=performance optimization) and perhaps over-designing the system, we want the system to

perform just \well enough", as expressed by the Jz;req curve (which includes the necessary

safety margins). Once that family of designs is found, one can determine the lowest cost

solution within this isoperformance set I.

3.3.3 Results for Gradient-Based Contour Following (Algorithm II)

Figure 3.10(a) shows the isoperformance contour obtained with Algorithm II (gradient-based

contour following) and the associated error, �iso, in Figure 3.10(b) for the single DOF sample

problem. By comparing the isoperformance contours in Figure 3.8 and 3.10, one sees that both

algorithms yield similar results. A detailed comparison of the computational e�ort required

for each method is shown in Table 3.1.
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Figure 3.10: (a) Algorithm II (Gradient-Based Contour Following): Isoperformance
contour for single DOF problem (!d;m) with tolerance � = 1%. (b)
Quality: Contour solution quality according to (3.40).

The quality of the solution in algorithm II is governed by the tolerance � , which leads to

a variable step size. The step size also depends on the curvature of the underlying bivariate

function, Jz(p1; p2) . This is a very desirable property of the algorithm, since it will use many

points to represent areas with a large change in sensitivity and few points in areas of small

sensitivity change. Note that the quality of the solution, as measured by the �iso metric,

see equation (3.40), is well within the tolerance mandated by � . This precise tracking of
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the isoperformance contour was only achievable once the \control" mechanism introduced in

Subsection 3.2.2 was implemented. Previously the isoperformance solution would gradually

wander away from the \centerline" of the isoperformance contour, due to the cumulative e�ect

of linearization errors.

The algorithm starts by evaluating the performance Jz(pnom) and the gradient vector

rJz(pnom) for the nominal solution pnom, which was found via the performance enhance-

ment step in Section 2.1. By design this point is already on the isoperformance contour. In

general, however, the initial guess, pnom, is close to, but not exactly on the isoperformance

contour. The algorithm then tries to �nd an initial point on the contour, piso;1, using the

steepest descent algorithm from Subsection 3.2.2. This initial convergence to intercept the

desired isoperformance contour is shown for a di�erent initial guess pnom = [!d;m; k; c; !o] =

[31:416; 1; 1449:7; 0:72486; 455:44]T in Figure 3.11. The isoperformance contour is intercepted

after three iterations.
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Figure 3.11: Intercept of isoperformance contour: (a) Iterates from initial point
(pnom) to isoperformance contour (piso;1). (b) Convergence history.

It noteworthy that the steepest descent algorithm can overshoot the isoperformance con-

tour, when the bivariate function Jz(p1; p2) transitions from an area of low curvature to an

area of higher curvature. The algorithm then gradually \climbs" back to the isoperformance

contour Jz;req. Once the �rst isopoint, piso;1, is found, the algorithm switches to using the tan-

gential vector t introduced in Subsection 3.2.2 to trace along the isocontour until a boundary
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of B or the unstable set U is intercepted or the contour closes on itself.

3.3.4 Results for Progressive Spline Approximation (Algorithm III)

The progressive spline approximation algorithm produces the results shown in Figure 3.12.

The predicted isoperformance contour resembles the results obtained with the previous two

methods. One di�erence is that far fewer isopoints (break points) need to be computed than

with the previous methods, since the ppform approximation is used.
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Figure 3.12: (a) Algorithm III Progressive Spline Approximation: Isoperformance
contour for single DOF problem (!d;m) with tolerance � = 1%. (b)
Quality: Contour solution quality according to (3.40).

The progress in approximating the isocontour with cubic splines can be graphically recorded.

Figure 3.6 shows the successive iterations, which are computed until all mid-points lie on the

isoperformance contour within tolerance � . This algorithm performs very well for open con-

tours and for performance functions Jz(p), which are smooth and (quasi-)monotonic over the

interval [pLB; pUB ].

3.3.5 Algorithm comparison

The purpose of this subsection is to compare the three isoperformance algorithms and to derive

recommendations for their use in bivariate problems. In order to achieve a fair comparison it

was deemed necessary that all three methods yield isoperformance solutions of nearly equal

quality as expressed by the �iso metric. A comparison of the three methods in terms of
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computational cost and quality is followed by a more qualitative comparison of advantages

and disadvantages.

From Table 3.1 and by comparing Figures 3.8, 3.10 and 3.12, one sees that all three

algorithms have the ability of accurately �nding an isoperformance contour, if it exists within

B. There are, however, signi�cant di�erences in the amount of computational resources needed

and in the scaleability to larger problems. Algorithm I is by far the most computationally

expensive5. This is due to the fact that in the SDOF case 441 points (Jz)k;l had to be

evaluated, but only 35 points form the isoperformance contour. If a multivariable scenario

is considered, say four variable parameters and one performance Jz, and a discretization of

ni = 50 increments is assumed, where i = 1; 2; 3; 4, in each parameter axis, one will have to

evaluate 504 = 6:25 � 106 points. If one solves for the output RMS of a state space system

of a realistic size, say 400 states, and if it takes 90 seconds to solve the Lyapunov equation

for the state covariance matrix, �q, it would take 6510.4 days of CPU time to evaluate all

combinations (Jz)k;l, which is clearly prohibitive.

Table 3.1: Comparison of algorithms I-III for isoperformance analysis of single
degree-of-freedom problem.

Result I: Ex. Search II: Co. Follow III: Sp. Approx.

FLOPS 2,140,897 783,761 377,196

Tolerance: � 1.0 % 1.0 % 1.0 %

Actual Error: �iso 0.057 % 0.379 % 0.087 %

number of isopoints 35 41 7

The third approach (progressive spline approximation) is the fastest, however it only works

for open segments and assumes that there is only a single isoperformance contour which inter-

sects the boundary B. Thus, it is the most restrictive (least general) of the three algorithms.

The �rst algorithm (exhaustive search) is the most general. Also the quality of the solution

is strongly depended on the assumed discretization �p.

The second algorithm (gradient-based contour following) has a computational cost which

is in between the other two methods. Multiple open or closed segments can be detected, but

5This can be di�erent when multiple contours are desired.
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several random trial points pnom;i, where i = 1; 2; : : : ;#of trial points, are required to detect

multiple contours. The advantage of this method is that it uses knowledge about the previous

points piso;k obtained in order to compute the next isoperformance solution piso;k+1. Another

advantage is that the step size �k automatically adjusts according to the local curvature of

Jz(piso;k) by means of a �nite di�erence approximation of the Hessian matrix, see Equation

(3.29). The disadvantage of algorithm II is that one must recompute the gradient rJz(piso;k)
at each new isopoint. Methods to accelerate the speed of gradient calculations are presented

in Chapter 5. The scaleability of these algorithms to the multivariable case is investigated in

Chapter 4.

A fourth algorithm uses Newton's method, but is based on a closed form solution of the

Jz(p1; p2) function and is therefore not applicable to general large order problems. Unfortu-

nately the expressions for systems with more than just a few states become intractable and

after about 8 states, closed form, published expressions for the integral of Szz (!) no longer

exist [141]. Even symbolic mathematical engines such as Maple would not be able to deal

with a state space model on the order of 102 to 103 states. For these reasons this algorithm

was abandoned early in this thesis research.

3.4 Application Examples

The purpose of this section is to demonstrate the kind of answers and insights that can be

gained by solving bivariate isoperformance problems. The problems are essentially a subset of

the sample problems introduced in Chapter 2 as well as a more realistic SIM Classic example.

3.4.1 Single DOF oscillator

Figure 3.13 shows isoperformance contours for the SDOF problem and the variable parameter

combinations [!d; !o] and [k; c]. The two plots show a tradeo� between disturbance corner

frequency !d and control \bandwidth" !o, see Figure 3.13(a). The other values m; k; c are

�xed at the nominal values for pnom speci�ed in Section 2.1.

As expected the control bandwidth, !o, needs to be increased as !d increases, since more

disturbance energy enters the system at higher frequencies. With the other parameters �xed at

the values of pnom we cannot tolerate a disturbance corner frequency of more than roughly 35

[rad/sec]. The results also suggest that disturbance isolation (reducing !d) is more e�ective
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Figure 3.13: (a) SDOF isoperformance for !d versus !o with Jz;req = 0:0008 [m]
and � = 1 %. (b) SDOF isoperformance for k versus c.

than output isolation (increasing !o) on a relative (per Hz) basis. The contour in Figure

3.13(b) trades the spring sti�ness k with the damping coeÆcient c. In order to maintain a

constant displacement RMS, the restoring force in the oscillator comes from a combination of a

displacement dependent force kx and velocity dependent force c _x. As the spring is made softer

more damping needs to be added in order to maintain the same level of (RMS) performance.

3.4.2 ODL Design Problem

An application of the bivariate isoperformance methodology to the ODL problem is demon-

strated in this subsection. In Section 2.3 an initial design, po, was developed, which resulted

in a RMS OPD performance of 89.6 [nm], which meets the requirement of 100 [nm]. There

was a suspicion that sensor noise of intensity Snn was a major contributor to this error and

that better performance might be achieved with a smaller derivative gain Kd. In this context

two important isoperformance contours were computed at the 100 [nm] level, see Figure 3.14.

The left isoperformance contour (a) shows the trade between the process noise and sensor

noise intensity. As the process noise increases the ODL can tolerate less sensor noise (at the

same control gain Kd) in order to maintain constant performance. The relative contribution

of each disturbance source to the total performance Jz is the subject of error budgeting, which

is discussed in Chapter 7.

104



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

-6

1

2

3

4

5

6

7

8

9

10

x 10
-5

100 [nm]
pnom

Base motion intensity Sdd  [m/sqrt(Hz)]

Se
ns

or
 n

oi
se

 in
te

ns
ity

 S
nn

 [
V

/s
qr

t(
H

z)
]

 Isoperformance contour (I) for RMS OPD 

Parameter Bounding Box

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

-6

0

0.5

1

1.5

2

2.5

100 [nm]

pnom

Base motion intensity Sdd  [m/sqrt(Hz)]

D
er

iv
at

iv
e 

ga
in

   
K

d 
   

 [
V

/V
] 

   
   

 Isoperformance contour (II) for RMS OPD 
Parameter Bounding Box

stability boundary

(b)

Figure 3.14: (a) ODL isoperformance for Sdd versus Snn at Jz;req = 100 [nm] and
� = 1 %. (b) ODL isoperformance for Sdd versus Kd.

The isoperformance contour in Figure 3.14(b) shows the relationship between process

noise intensity Sdd and (derivative) control gain Kd. Without sensor noise and stability

considerations one expects the control gain to increase monotonically as the process noise

increases. In the presence of sensor noise, however, the relationship is more complex. The 100

[nm] contour shows that, all other parameters being constant as shown by po in Table 2.3,

one cannot tolerate a process noise intensity Sdd larger than 1:05 �10�6 [m=
p
Hz]. For smaller

Sdd there are two control gain settings Kd that will yield a 100 [nm] RMS OPD performance.

At the higher setting residual sensor noise is dominant, while at the lower setting residual

process noise dominates. The stability boundary is shown as a dashed horizontal line within

the parameter bounding box B. Another way to visualize this relationship is by computing

the performance Jz (RMS OPD) as a function of control gain Kd from zero to the absolute

stability limit, see Figure 3.15(a).

One sees that the open loop performance (Kd = 0) does not meet the requirements. The

initial design (Kd = 0:5) is satisfactory but not optimal and the absolute stability limit is at

Kd = 1:87. It is interesting to note that the performance improves very quickly as the gain

is increased from 0 to 0.2. After roughly Kd = 0:4 the performance worsens with increasing

control gain due to the increased contribution of sensor noise. The optimum appears to be

where sensor noise and process noise have equal contribution around Kd � 0:4. The absolute
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Figure 3.15: Left(a): Performance Jz (RMS OPD) as a function of Kd alone.
Right(b): Root Locus for ODL sample problem (parameter: Kd).

stability limit is con�rmed via root locus, see Figure 2.15(b). The isoperformance contours

provide engineering insight into the relationship between control gainKd as well as the process

and sensor noise intensities Sdd and Snn, respectively.

3.4.3 SIM Classic (V1.0)

As an application of the bivariate isoperformance technique to a realistic spacecraft problem

the Space Interferometry Mission (SIM - Version 1.0) was chosen. This is the same model

used by Gutierrez in Reference [45] and in Chapter 5. The system considered consists of a

state space representation of reaction wheel noise (assumptions: single wheel, fundamental

harmonic only, only radial force Fy), a mechanical RWA isolator and the open-loop SIM plant

dynamics. The goal is to �nd the combination of isolator corner frequency p1 = fi in [Hz]

and static wheel imbalance p2 = Us in units of [gcm] that will yield a speci�ed RMS OPD

performance Jz = �z;req.

The Space Interferometry Mission (SIM) is a cornerstone of the ORIGINS program and

will rely on a �ne-phasing capability in order to achieve 10 nm fringe-tracking on the science

interferometer (closed loop) in the astrometry mode. This requirement has to be achieved in

the presence of dynamic disturbances, such as reaction wheel noise. A picture of SIM Classic

is shown in Figure 3.16(a), along with a ray-trace/FEM of SIM in Figure 3.16(b). A block

diagram of the state space model for this isoperformance analysis is shown in Figure 3.17.
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SIM Optical Model Ray Trace

Figure 3.16: Left: (a) Artistic rendering of SIM Classic (V1.0). Right: (b) Corre-
sponding FEM with ray trace for interferometer #1 (version 1.0).

The three blocks contain the dynamics of (from left to right) the RWA noise, the isolator

transmissivity and the open loop plant dynamics. A realization of these dynamics (magnitude

only) is shown in Figure 3.18. Note that the plant dynamics up to 100 Hz have been taken

into account.

SIM - Wheel Imbalance versus Corner Frequency Isoperformance Study

Scope

x' = Ax+Bu
y = Cx+Du
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RWA Noise
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OPD Science Int.
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IsolatorBand-Limited
White Noise

d w1 w2 z

Figure 3.17: SIM Classic (version 1.0) Simulink block diagram for bivariate isoper-
formance problem

In the block diagram the �rst block represents the magnitude of the radial force (Fy)

generated by a single reaction wheel due to a static imbalance Us, which expresses itself as the

fundamental harmonic (h = 1:0) at the frequency of the wheel rotation [89, 45]. Note that the

radial force generated is related to the square of the wheel speed as Fy(t) = Us!
2 � sin(!t+�)

according to Bialke [7]. Only the fundamental harmonic is taken into account and a state
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Figure 3.18: SIM Classic frequency response functions: (a) wheel disturbance, (b)
mechanical isolator and (c) open-loop plant dynamics.

space representation of the wheel disturbance, in accordance with (A.11) is written as:2
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This representation approximates the fundamental harmonic of radial force as a lightly

damped second order system with �d = 0:001 and a disturbance magnitude, which is pro-

portional to the second parameter p2 = Us. See the work by Uebelhart [136] for further

details on state-space modeling of discrete harmonic disturbances. The wheel static imbal-

ance is bounded below as Us;LB = 0:01 [gcm] and above as Us;UB = 5 [gcm]. These values are

reasonable within current state-of-the-art wheel manufacturing practices [7].

The second block represents the isolator transmissivity. It is approximated by a second

order low-pass-�lter (LPF) and obeys the following state space representation:2
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Note that for the isolator a damping ratio �i of 5 % was assumed. The �rst variable

parameter p1 is equal to fi = !i=2�. The isolator corner frequency is bounded below as

fi;LB = 0:5 [Hz] and above as fi;UB = 20 [Hz].

The open-loop plant dynamics shown in the third block are kept constant throughout this

analysis. The next step consists in deciding at which wheel speed [RPM] to run the reaction
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Figure 3.19: Left:(a) PSD-based disturbance analysis for SIM Classic (1.0). (bot-
tom) PSD of OPD (total) int. # 1. (top) Cumulative RMS curve.
Right: (b) Bar chart of relative % contribution of the three most crit-
ical modes to the RMS.

wheel. It was decided to run the wheel at a speed, which corresponds to most critical mode of

the open loop plant, when driven by unit-intensity white noise. A PSD disturbance analysis,

as discussed in Appendix A, was conducted on the open loop SIM Classic plant (version 1.0)

and the result is shown in Figure 3.19(a). The bottom plot shows the output PSD (total

OPD int #1) and the upper plot shows the cumulative RMS curve. The disturbance analysis

assumes unit intensity white noise at the Fy RWA input channel. From the cumulative RMS

curve one can extract the three most critical frequencies. This leads to plot 3.19(b).

Based on the relative percentage contribution of these modes it was decided to run the

reaction wheel at 738.9 RPM, which provides a worst case ampli�cation of the 12.31 Hz

mode. The actual isoperformance analysis is entered with the wheel speed �xed at the above

speed. A required performance of Jz;req = �z;req = 20 [nm] was speci�ed6. The variable

6Recall that the SIM model (V1.0) is open-loop, thus we don't expect the 10 nm phasing requirement to be
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system parameters are p1 = fi the isolator corner frequency [Hz] and p2 = Us, the static

wheel imbalance [gcm]. The isoperformance analysis was conducted using Algorithm II with

a tolerance of � = 1:0%. The resulting isoperformance contour is shown in Figure 3.20.
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Figure 3.20: SIM Classic (version 1.0): Isoperformance analysis for OPD (total)
interferometer # 1 �xed at 20 nm. Trading isolator corner frequency
fi vs. reaction wheel static imbalance Us.

It is interesting to interpret the isoperformance contour somewhat closer. Three important

insights can be gained:

� As isolator corner frequency fi decreases we can tolerate larger values of wheel imbalance

Us below the critical 12.31 Hz mode.

� It is not advisable to choose the isolator corner frequency fi to coincide with the critical

system modes. The \dip" in the isoperformance contour results from dynamic ampli�-

cation of the isolator around the critical 12.31 Hz mode.

� The isoperformance contour is useful for subsystem requirements de�nition purposes. If

for example a 5 [Hz] corner frequency is speci�ed for the isolator (achievable passively),

achievable in the absence of optical control.
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one will levy a wheel imbalance speci�cation of Us < 0:4 [gcm] to the reaction wheel

supplier, see point B in Figure 3.20.7

The quality of the isoperformance solution in Figure 3.20 is within the speci�ed � = 1:0 %

tolerance. Figure 3.21 shows the isoperformance quality plot, whereby the isoperformance

points (�z;iso)k have been ordered in increasing value of the isolator corner frequency fi.
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Figure 3.21: SIM Classic (version 1.0): Isoperformance quality plot for � = 1:0 %
and the isoperformance solution shown in Figure 3.20.

Upon closer inspection of this �gure one notices the points at which the \control" al-

gorithm, which keeps the isoperformance solution close to the �z;req centerline, has applied

correction steps according to equation (3.31).

The computational expense of the isoperformance solution was 6:185 � 109 
oating point

operations, which required a total of 121.34 seconds of CPU-time8. In order to verify the re-

sults obtained from the isoperformance analysis a particular solution (Point A in Figure 3.20:

fi = 1:5571 [Hz] and Us = 5:0 [gcm]) was chosen and a Simulink time simulation was con-

7This number is not unreasonable, since e.g. the current ITHACO E-Wheel TW-50E300 speci�cation calls

for a static imbalance < 1:8 [gcm] and Bialke [7] mentions that a factor 2-5 improvement of this �gure is feasible

with careful balancing.
8PC with Pentium III 500 MHz processor
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ducted. The results are shown in Figure 3.22.
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Figure 3.22: SIM Classic (v1.0): Time simulation (240 seconds) for fi = 1:5571 [Hz]
and Us = 5:0 [gcm]. RMS value of z is 20.0157 [nm], which is � �z;req.

The top plot shows the sample realization of the radial reaction wheel force Fy [N] (this

signal is denoted as \rwa time" in the block diagram of Figure 3.17), whereas the bottom plot

shows the resulting OPD (total) for the science interferometer in [nm] (this signal is denoted

as \opd time" in the block diagram of Figure 3.17). The RMS predicted for the OPD is

obtained by taking the standard deviation of the \opd time" signal. The result is a value of

20.01 nm, which is very close to the requirement Jz;req = �z;req. This validates the accuracy

of the isoperformance analysis. Note that the RWA force sample realization is dominated

by the 12.3 Hz signal. There are, however, other frequency contributions, since the PSD of

the radial force was modeled as a \lightly damped 2nd order system" and not as a discrete

delta-Dirac function. This is why the sample realization \rwa time" does not appear to be a

pure harmonic.

112



3.5 Summary

This chapter attempts to �nd solutions to the bivariate isoperformance problem. In other

words, given a scalar performance function Jz(p1; p2), we wanted to �nd contours of equal

performance Jz = Jz;req in the trade space, B. Three algorithms are developed for this purpose.

The exhaustive search algorithm attempts to �nd contours of equal performance by laying a

�ne grid over the trade space B in R2 and evaluating all grid points. It obtains an estimate of

the isoperformance contours via linear interpolation. The contour following algorithm begins

with an initial guess, po, and intercepts an iso-contour via gradient search. Once a point, piso,

on a contour is found, it is used as a starting point for a tangential stepping scheme along the

open or closed contour. The most eÆcient, but also the most restrictive algorithm, appears to

be vector spline approximation. Here an initial cubic spline approximation to the contour is

re�ned by doing successive bisections until a tolerance (exit criterion) is met. The algorithms

are applied to sample problem and their computational expense is compared. For a model of

SIM Classic the isolator corner frequency, fi, and the static wheel imbalance, Us, are traded

against each other and engineering insights are gained from the results.
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Chapter 4

Multivariable Isoperformance

Methodology

This chapter generalizes the algorithms developed in the previous chapter to the mul-

tivariable case. Speci�cally, there can be more than two variable parameters and multiple

performances, i.e. np > 2 and nz > 1. The condition that the number of variable parameters

always exceeds the number of performances, np � nz > 1, has to be maintained in order for

there to be a non-zero isoperformance set, I. This condition is necessary but not suÆcient.

In addition the rank of the Jacobian rJz (containing the partial derivatives @Jz;i=@pj) must
be such that the largest dimension of rJz minus its rank is greater than 1. In other words,

two parameters that a�ect the performance in the same way e�ectively correspond to one

parameter.

The generalization to the multivariable case is essential in order to render isoperformance

a useful technique for realistic problems. There are two main challenges in the multivariable

case:

� Computational complexity as a function of np (# of parameters), nz(# of performances)

and ns (# of states)

� Visualization of isoperformance set I in Rnp -space

The extensions of the three core isoperformance algorithms (exhaustive search, gradient-

based contour following, progressive spline approximation) are developed in Rnp -space. The

single degree-of-freedom (SDOF) problem is used for a quantitative comparison. The chap-
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ter then introduces some basic notions in complexity theory and their relationship with the

isoperformance algorithms. Issues of graphical representation of the isoperformance set, I, for

np > 3 are discussed. Examples of multivariable isoperformance analyses for the sample prob-

lems introduced in Chapter 2 conclude the chapter. The MATLAB module, which embodies

the multivariable algorithms is designated as isoperf mvar.m.

4.1 Branch and Bound Search Algorithm

The exhaustive search algorithm (Ia) in the multivariable case (np > 2) discretizes the param-

eters, pj, where j = 1; 2; :::; np, in set B, de�ned by the lower and upper bounds pLB;j and

pUB;j, with a �ne grid and evaluates all grid points. This was presented for the case when

np = 2 in Subsection 3.2.1. Subsequently, each grid point is tested, and if the isoperformance

condition (1.6) is met, the grid point is retained in the isoperformance set I. The exhaustive

search algorithm for the multivariable problem can be implemented as np-nested loops as

follows:

for i1 = 1 : n1
...

for inp = 1 : nnp

evaluate performance: (Jz)i1;:::;inp = Jz

�
p1;i1 ; : : : ; pnp;inp

�
end

...

end

where

nj =

�
pj;UB � pj;LB

�pj

�
(4.1)

is the number of grid points along the j-th parameter axis.

The code recognizes the number of variable parameters, np, and automatically writes and

executes the above nested loops if exhaustive search is chosen. Note that the value of the j-th

parameter in the above loops is given as

pj;ij = pj;LB + (ij � 1) ��pj where j = 1; 2; : : : ; np (4.2)
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Clearly, this is not practical even for relatively modest problems. Assume for example

that np = 6 and that n1 = n2 = : : : = nnp = 50, then the performance evaluation pj 7! Jz has

to be carried out 506 = 1:56 � 1010 times. If it took one second of CPU time per performance

evaluation it would take 495.5 years to evaluate the entire trade space, B, on a single computer.

A remedy is found by modifying exhaustive search as a branch-and-bound algorithm. The

branch-and-bound algorithm starts with an initial population of points (branches), which are

evenly distributed in B. It then tests if the performance at neighboring points (branches), pm

and pn, is such that the isoperformance surface passes in between them. This test is

[Jz (pm) � Jz;req � Jz (pn)] [ [Jz (pm) � Jz;req � Jz (pn)] (4.3)

where pm; pn are np � 1 vectors and Jz;req is a nz � 1 vector. If the answer is true, both

branches are retained and further re�ned in the next generation. If the answer is false the

point (branch) pm is eliminated. This is graphically shown in Figure 4.1 for two dimensions.

In the multivariable case the squares shown in Figure 4.1 are actually hyper-rectangles. The

generation n

generation n+1

pm pn

Parameter Bounding Box  B

points 
(branches)

unknown 
isoperformance

surface

Jz,req

Jz,req

branch bound

Figure 4.1: Multivariable Isoperformance (Ib): Branch-and-Bound graphic repre-
sentation. Crossed out points are dropped in the next generation.

size of the hyper-rectangles is reduced by a factor of two (edge length) with each generation.

This re�nement continues with each generation, until the exit criterion

�iso;ng < � (4.4)
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is met, where �iso is the isoperformance error according to Equation (3.40), ng is the genera-

tion number or level in the branch-and-bound tree and � is a numerical tolerance as introduced

in Section 3.3.

A 
ow diagram of the branch-and-bound algorithm is shown in Figure 4.2. An initial

population of points is de�ned in terms of a coarse discretization nj = dpj;UB�pj;LB�pj
e, where

nj is empirically chosen as a number in the range 5-20. Next the performance, Jz, at these

initial points is computed and subjected to the test in Equation (4.3). The branches (points),

which do not pass the test are bounded and the algorithm enters an iterative loop. With

each subsequent generation, ng, the remaining points better approximate the isoperformance

surface in Rnp space. The branches are tested with the quality criterion (4.4), and once the

exit criterion is met the remaining branches are considered to be the solutions, piso, of the

isoperformance problem (1.3).
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User Input
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Discretization

initial population

∆p

Tolerance: t

Evaluate

Initial Branches

non-empty

Test acc.

to (4.3)

Create branches

in generation ng
(J )z k,l

=

Performance: Jz,req

F(z)
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p
iso

J
z,iso

End

Sort

Solutions
p
iso

Is

?

z m z req z n, , ,³ ³

z m z req z, , ,£ £
nJJJ

JJJ

test initial
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Eliminate

Branches which

do not meet (4.3)

empty

ng=ng+1

Bound, compute

quality Yiso of

retained branches

Yiso < t

?no

yes

Figure 4.2: Multivariable Isoperformance (Ib): Flow Diagram for Branch-and-
Bound Algorithm.

To demonstrate this algorithm the single DOF oscillator problem from Subsection 3.3.2 is

augmented by adding a third variable parameter, !o. The variable parameters are now the

disturbance corner frequency, !d, the mass, m, and the optical control corner frequency, !o.

The performance requirement is that the RMS of z be equal to Jz = 0:0008 [m], corresponding
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to 1 [mm] of �ltered RMS motion with 20% performance margin, as before. The lower and

upper bounds for the parameters are given in Figure 2.1. The results using the (multivariable)

branch-and-bound algorithm are graphically shown in Figure 4.3 and the isoperformance set,

piso 2 I, in this instance is a 2-dimensional surface in 3-dimensional space. The quality of this
solution is computed with Equation (3.40) and shown in Figure 4.4.
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Figure 4.3: Multivariable Isoperformance (Ib): Branch-and-Bound results for SDOF
problem with three variable parameters: !d, m and !o and required
performance Jz;req = 0:8 [mm].

From the results one can see that for a large disturbance corner frequency, !d, a high control

bandwidth, !o, and large mass, m, are required to meet the requirement, Jz;req. Also it is

noteworthy that if !d is low, the isoperformance surface is not very dependent on the mass m,

but strongly dependent on the control bandwidth !o. The branch-and-bound algorithm �nds

a large number of isopoints piso (> 7000) and approximates the continuous isoperformance

surface quite well. The quality metric, �iso, remains under the numerical tolerance, � = 2:5%.

It was noted that setting a tolerance tighter than 2% becomes very expensive, since in

the branch and bound approach each generation is roughly 2np times larger than the previous

generation. An advantage of the branch-and-bound algorithm, however, is that it does not

require any sensitivity (gradient) information.
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Figure 4.4: Multivariable Isoperformance (Ib): Quality of solution for SDOF ex-
ample. Each one of the � 7000 points corresponds to a point on the
performance-invariant surface in Figure 4.3.

4.2 Tangential Front Following Algorithm

The tangential front following algorithm is a generalization of the gradient-based contour

following algorithm, which was developed for the case when np�nz = 1, see Subsection 3.2.2.

The idea is to gradually explore the isoperformance set I, starting from a random initial

point, pnom, and subsequently stepping in tangential, orthogonal directions, vj, where j =

nz + 1; : : : ; np, which lie in the null space of the Jacobian. Thus, instead of following a single

curved line, the locus of performance invariant points, piso, will be an (np � nz)-dimensional

surface in Rnp -space as was shown in Figure 4.3.

A �rst order Taylor approximation of the vector performance function Jz at a point p
k =

[pk1 p
k
2 : : : pknp ]

T 2 B can be written as:

Jz

�
pk+1

�
= Jz

�
pk +�p

�
= Jz

�
pk
�
+ rJTz

��
pk
�p+ H.O.T. (4.5)

The Jacobian, rJz, is the matrix of �rst order partial derivatives of Jz with respect to p and
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is written as follows:

rJz =

2
666666666664

@Jz;1
@p1

@Jz;2
@p1

� � � @Jz;nz
@p1

@Jz;1
@p2

@Jz;2
@p2

� � � @Jz;nz
@p2

...
...

...
...

@Jz;1
@pnp

@Jz;2
@pnp

� � � @Jz;nz
@pnp

3
777777777775

(4.6)

A singular value decomposition (SVD) of the Jacobian is a key step. It provides a set

of orthogonal unit-length vectors, vj , as the columns of matrix, V , thus forming the column

space and null space of the Jacobian. See Reference [132] by Strang for a good introduction

to vector spaces and the SVD.

U�V T = rJTz (4.7)

The individual matrices are structured as follows:

U =
h
u1 � � � unz

i
| {z }

nz�nz

�=
h
diag

�
�1 � � � �nz

�
0nz�(np�nz)

i
| {z }

nz�np

V =

2
664 v1 � � � vnz| {z }

column space

vnz+1 � � � vnp| {z }
null space

3
775

(4.8)

Thus, at each point there are np � nz directions in the null space. This can be illustrated

with the following matrices from the SDOF example from Section 2.1, evaluated at pnom =

[!d m k c !o]
T = [19:92 , 1:45 , 1450 , 0:725 , 455:4]T .

U = [1]

� =
h
0:56 � 10�3 0 0 0 0

i

V =

2
666666666666664

0:0511

�0:1361
�0:0004
�0:9894
�0:0031| {z }

Vn
column space

�0:9987 0 0 0

�0:0070 �0:0004 �0:9907 �0:0031
�0:0000 1:0000 �0:0003 �0:0000
�0:0506 �0:0003 0:1363 �0:0027
�0:0002 �0:0000 �0:0027 1:0000| {z }

Vt
null space

3
777777777777775

(4.9)
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Since there is only one performance metric, Jz=RMS of z(t), there will only be one non-zero

singular value, �1 = 0:56 � 10�3. The corresponding vector Vn is normal to the isoperformance
surface and the vectors in Vt are tangential to it and form the nullspace of the Jacobian. A

linear combination of the vectors, Vt, in the nullspace is used to determine a tangential step,

�p, in a performance invariant direction starting from an initial point such as pnom.

�p = � � ��1vnz+1 + : : :+ �np�nzvnp
�
= �Vt� (4.10)

where �p is the performance invariant step increment in Rnp , � = [�1; : : : ; �np ]
T is a vector

of coeÆcients, which determines the linear combination of directions in the nullspace, Vt, and

� is a step size. Recall that in the bivariate case the step size, �, was found using a �nite

di�erence approximation of the Hessian, see Equation (3.28). Currently, in the multivariable

case, the step size, �, is arbitrarily set by the designer. An automatic step size determination

could be added as a re�nement in the future. The coeÆcient vector, �, is determined as

follows

� =

8><
>:

�i = �1; �j = 0 for j 6= i (principal front points)

�i = � 1p
np � nz

8 i = 1; : : : ; np � nz (intermediate front points)
(4.11)

The principal front points, as shown in Figure 4.5, propagate in one of the positive or

negative directions given by the principal vectors, vi, in the null space. The intermediate

front points on the other hand propagate in directions which have equal contributions from

all vectors in vt. The � sign for each �i determines in which \quadrant" the front point

propagates.

The active points form a \front", when connected to each other. The front grows gradually

outwards from the initial point until the boundary is intercepted. This is analogous to \moss",

which grows from an initial seed to gradually cover the entire exposed surface of an imaginary

R
np -dimensional rock. This is shown graphically in Figure 4.5.

The main advantage of this algorithm, is that it converts the computational complexity

from a np to a (np � nz)-dimensional problem. This is further explored in Section 4.5. The

disadvantage of the algorithm is that a non-uniform distribution of isoperformance points can

result from the behavior of the Jacobian in di�erent regions of the set B or at the boundary

of B. Additionally if there are several separate regions of I in B, they can only be found via

separate, random initial guesses. Nevertheless, tangential front following is a very reliable
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Figure 4.5: Multivariable Isoperformance (II): Tangential Front Following principle.
Note the di�erence between principal and intermediate front points.
Axes p1,p2 and p3 are values of some generic parameters.

algorithm, which can also detect closed regions. Note that the performance vector, Jz, and

Jacobian, rJz, have to be recomputed at each front point. The underlying performance

function, Jz (pj), has to be continuous and di�erentiable over the entire set B. A 
ow diagram

of the multivariable tangential front following algorithm is shown in Figure 4.6.

The results for the SDOF problem obtained with the tangential front following Algorithm

are shown in Figure 4.7. The same three variable (design) parameters, !d, m and !o as before

are considered. By comparing Figures 4.3 and 4.7 one can ascertain that both algorithms

produce the same isoperformance surface, apart from slight numerical and algorithmic dif-

ferences. Tangential front following features characteristic \bands" of isoperformance points,

piso, which are the result of the front points propagating along the principal directions, vj, of

the null space. The density of points is mainly a function of the user-de�ned step size, �.
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The quality of this solution is computed with Equation (3.40) and is shown in Figure 4.8.

The ratio of the normalized error over the tolerance, �iso=� , is smaller for this algorithm than

for branch-and-bound. This suggests that tangential front following delivers a numerically

superior solution due to incorporation of gradient (sensitivity) information. Also the same

\control" mechanism was implemented as in the bivariate case, where a normal correction

increment is applied whenever a front point drifts outside the tolerance band de�ned by � .

This does not exclude outlier solutions such as the pair seen in Figure 4.8 around solution

number 2800.

Even though the tangential front following algorithm is more eÆcient than branch-and-

bound, it will still be computationally expensive if the dimensionality of the isoperformance

set I, i.e. np � nz, is large. An estimate of the computational expense of each algorithm is

given in Section 4.5. Hence, it is desirable to �nd an algorithm with a further increase in

eÆciency.
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Figure 4.7: Multivariable Isoperformance (II): Tangential Front Following results
for SDOF problem with three variable parameters: !d, m and !o.
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4.3 Vector Spline Approximation

An eÆcient algorithm is constructed by generalizing the bivariate progressive spline approxi-

mation from Subsection 3.2.3. The basic idea of vector spline approximation is to only capture

important border and interior points of the isoperformance set, I, including the cubic splines,

which connect them. A t-parameterized vector spline in Rnp -dimensional space connecting

two points A and B can be written as

p (t) =

2
6666666664

p1 (t)

pj (t)

...

pnp (t)

3
7777777775
=

2
666666666664

kP
i=1

(t� tA)
k�i

(k � i)!
� c1;i

kP
i=1

(t� tA)
k�i

(k � i)!
� cj;i

...

kP
i=1

(t� tA)
k�i

(k � i)!
� cnp;i

3
777777777775
= C � t̂ (4.12)

where C is the vector spline coeÆcient matrix

C =

2
66666666666664

c1;1 � � � c1;i � � � c1;k

...
. . .

... . .
. ...

cj;1 � � � cj;i � � � cj;k

... . .
. ...

. . .
...

cnp;1 � � � cnp;i � � � cnp;k

3
77777777777775

(4.13)

and t̂ is a vector, which depends on the parameter t

t̂ =

�
1 � � � (t� tA)

k�i

(k � i)!
� � � (t� tA)

k�1

(k � 1)!

�T
(4.14)

whereby t 2 [tA; tB ] if the spline connects the points A and B in Rnp -space. The vector spline

approximation algorithm presented here uses cubic splines of order, k = 4. One can then

write:

t̂ (t) =

�
1 t� tA

(t� tA)
2

2

(t� tA)
3

6

�T
(4.15)
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and the cubic spline coeÆcient matrix, C, simpli�es to

C =

2
66666666666664

c1;1 c1;2 c1;3 c1;4

...
...

...
...

cj;1 cj;2 cj;3 cj;4

...
...

...
...

cnp;1 cnp;2 cnp;3 cnp;4

3
77777777777775

(4.16)

The �rst step of the vector spline approximation algorithm is to �nd the border points,

piso;border, which meet the isoperformance condition (1.6) and lie on an edge of the parameter

bounding box B. These points are found by �rst computing the performance vector, Jz , at all

2np corner points and searching for boundary points, piso;border, which lie on an edge connecting

two corner points, which meet the condition

Jz (pcorner;i) � Jz;req � Jz (pcorner;j) [ Jz (pcorner;i) � Jz;req � Jz (pcorner;j) (4.17)

This is the �rst step in the vector spline approximation algorithm as shown on the left side of

Figure 4.9. The second step is to connect the isoperformance border points with cubic splines

along the boundary of B. This is shown in the middle of Figure 4.9 and utilizes the progressive

spline approximation method presented in Subsection 3.2.3. In this step the mid-points of

the border splines are also determined. Finally interior points of the isoperformance set I are

obtained by computing the centroid. This can be considered to be the center point of I. An

initial guess for the centroid is:

p̂cent =

�
p̂c;1 � � � p̂c;j � � � p̂c;np

�T
where p̂c;j =

1

nb

nbX
i=1

piso;border;i;j

(4.18)

and nb is the number of border points. The actual centroid, pcent, is found by steepest gradient

search, see Subsection 3.2.2. Finally the cubic splines connecting the centroid and the mid-

points of the border splines are found, subject to tolerance, � . This third step is depicted in

Figure 4.9 on the right side. The functions csape.m and fnval.m from the MATLAB spline

toolbox are used extensively for computing the coeÆcient matrix, C, and for spline evaluation,

respectively. Figure 4.9 shows the elements of this approach for an imaginary isoperformance

surface. The vector spline approximation algorithm is summarized in the 
ow diagram of

Figure 4.10.
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The vector spline approximation algorithm does not provide the same large number of

isoperformance points, piso, and \continuous" approximation to I as branch-and-bound or

tangential front following. Rather, it only computes some key points and their connecting

splines. If the isoperformance set I were an imaginary \house" this algorithm provides the

frame, but not the panels in between. This might be acceptable, since one of the goals of the

isoperformance methodology is to �nd solutions which are very \di�erent" in a design vector

sense, while still yielding the same performance vector, Jz. Also it is true that, for the front

following algorithm, with a small tangential step size �, neighboring points, piso, will not be

dramatically di�erent from each other. An early idea was to use Product Tensor Splines [22].

This was ultimately abandoned, since product tensor splines require gridded data.

The same three parameters, !d, m and !o are considered for the SDOF problem. The

desired performance is Jz;req = 0:8 [mm] RMS. Results for the single DOF oscillator problem

using vector spline approximation are shown in Figure 4.11.
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Figure 4.11: Multivariable Isoperformance (III): Vector Spline Approximation for
SDOF Problem and performance level Jz;req = 0:8 [mm].

There are a total of �ve border points, which are connected via cubic splines along the

perimeter of B. The centroid connects to the mid-points of the border spline approximations.

This looks similar to Figures 4.3 and 4.7, since the outline of the isoperformance surface can
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clearly be seen.

The solution quality is plotted in Figure 4.12 for the isoperformance points. Note that

additional information is obtained in the form of a spline coeÆcient matrix, C, for each

segment. It is expected that this algorithm will be the \workhorse" of the isoperformance

methodology for large order problems.
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Figure 4.12: Multivariable Isoperformance (III): Quality of solution

4.4 Algorithm Comparison

A comparison of the multivariable algorithms using the single degree-of-freedom (SDOF)

problem is presented in Table 4.1. The algorithms are compared based on the CPU run time,

the number of 
oating-point operations required, the solution quality expressed as �iso, see

Equation (3.40), and the number (quantity) of isoperformance points, piso, found.

Even though the above numbers are obtained for a speci�c low-order example, the relative

trends between algorithms are likely to apply to large-order problems as well. As expected

the exhaustive search is the most expensive algorithm and requires almost 1.5 hours to run.

The vector spline approximation on the other hand completes in merely 5 seconds.

Branch-and-bound improves over exhaustive search by a factor of roughly 10 and tangen-
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Table 4.1: Comparison of multivariable algorithms for SDOF problem: (Ia) Exhaus-
tive Search, (Ib) Branch-and-Bound, (II) Tangential Front Following and
(III) Vector Spline Approximation.

Metric Algorithm Ia Algorithm Ib Algorithm II Algorithm III

MFLOPS 6,163.72 891.35 106.04 1.49

CPU time [sec] 5078.19 498.56 69.59 4.45

Tolerance � 1.5 % 2.5 % 1.5 % 1.5%

Actual Error �iso 0.87 % 2.43 % 0.22 % 0.42 %

# of isopoints 2073 7421 4999 20

Results N/A Fig. 4.3 Fig. 4.7 Fig. 4.11

tial front following in turn improves over branch-and-bound by a factor of roughly 7. The

tangential front following algorithm results in the best numerical solution quality as mea-

sured by, �iso. Branch-and-bound provides the largest number of isopoints (� 7500), whereas

vector spline approximation yields \only" 20 such points. Recall, however, that the spline

approximation also provides the spline coeÆcient matrices, such that additional points could

be easily generated along the connecting splines. These results suggest that vector spline

approximation is the most advantageous algorithm, provided the \sparseness" of the results

is acceptable.

Vector spline approximation is the most restrictive algorithm in the sense that it requires

the underlying performance vector function, pj 7! Jz(pj), where pj = 1; : : : ; np, to be continu-

ous, smooth, di�erentiable and quasi-monotonic in B. Thus, if I were a closed region with no

boundary points on B, the vector spline approximation would fail. Tangential front following

does not require quasi-monotony and can deal with closed regions. Here the problem is that if

I consists of several, distinct regions inB the algorithm requires several random initial guesses,

po, in order to �nd all regions. There is no guarantee of completeness with a �nite number

of trial points. Distinct regions are rarely observed in practice. Finally branch-and-bound is

the most general algorithm and is very robust, as long as the initial grid is chosen reasonably

�ne. Another advantage of branch-and-bound is that it does not require gradient (sensitivity)
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information. The general strategy is to �rst attempt an isoperformance solution with vector

spline approximation and move to the other, more expensive algorithms if a solution in B is

expected to exist but cannot be found. This algorithm switching strategy was suggested in

the thesis roadmap, see Figure 1.6.

4.5 Complexity Theory

The previous section revealed that there are large di�erences in the computational expense of

an isoperformance problem as a function of the selected algorithm. This has implications for

the approach to large order problems. Hence, some basic notions of complexity theory and how

it relates to isoperformance will be introduced in this section. Complexity theory, according

to Goldreich, is concerned with the study of the intrinsic complexity of computational tasks

and the relationship with limited resources [37]. One of the aims of complexity theory is

to establish concrete lower bounds on the complexity of various kinds of problems, via an

analysis of the evolution of the process of computation. This section will attempt to quantify

the complexity of the isoperformance problem. This is done by looking at the asymptotic

growth of the number of 
oating point operations required as a function of the number of

performances, nz, the number of disturbances, nd, the number of parameters, np, and the

number of states, ns.

The di�erent types of problems in complexity theory are: the search problem, i.e., �nding a

feasible solution, the decision problem, i.e., determining whether a feasible solution exists, and

the veri�cation problem, i.e. deciding whether a given solution is correct. The isoperformance

problem is essentially a search problem, where one attempts to �nd solutions pj to the problem

Jz (pj)� Jz;req = 0, where j = 1; 2; : : : ; np.

4.5.1 Exhaustive Search

The exhaustive search approach requires the following number of performance function Jz(pj)

evaluations:

Nexs =

npY
j=1

�
pUB;j � pLB;j

�pj

�
(4.19)

where Nexs is the number of performance function evaluations, np is the number of variable

parameters, pLB;j and pUB;j are the lower and upper bounds of the j-th parameter and �pj

is the discretization step size of the j-th parameter. If all parameters are discretized with an
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equal number of steps, Equation (4.19) simpli�es to:

Nexs = dpUB � pLB
�p

e| {z }
Æ

np
(4.20)

As an approximation we can assume that the main computational cost for computing Jz comes

from solving the Lyapunov equation (A.25) for the state covariance �q. Chapter 5 empirically

derives that this cost is roughly 50 � n3s 
oating point operations. Thus the expected number

of 
oating point operations (FLOPS) for exhaustive search is

Jexs = Ænp � 50n3s (4.21)

Looking at the asymptotic growth of the algorithm can be accomplished by taking the log of

(4.21) such that

log (Jexs) = nplog(Æ) + 3log(ns) + const. (4.22)

Thus, exhaustive search is solvable in polynomial time as a function of ns (\size of the model"),

but it is non-polynomial (NP) in np (\number of variable parameters").

4.5.2 Branch-and-Bound

The complexity of branch-and-bound, as developed in Section 4.1, is more diÆcult to assess

than exhaustive search, since the number of branches kept at each generation is problem

dependent. One could, however, assume that the ratio, �, of kept to discarded branches is

roughly constant at each generation. If the the initial generation has n1 branches, then the

second generation will have 2np � n1 � � branches after bounding, the third will have 22npn1�
2

branches and so forth. The computational cost for branch-and-bound is then approximated

as

Jbab = 2ngnp � n1 � �ng � 50n3s (4.23)

Again, taking the logarithm (base 10) provides insight into the asymptotic behavior.

log (Jbab) = ng (nplog2 + log�) + 3log(ns) + const. (4.24)

Note that the number of generations, ng, is diÆcult to predict apriori but is strongly dependent

on the isoperformance tolerance, � . The smaller the tolerance, � , the more generations will

be required to meet the exit criterion (4.4). A small value for � , say smaller than 1%, can

actually render the branch-and-bound algorithm more expensive than exhaustive search, since

each generation is roughly 2np times more expensive than the previous one.
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4.5.3 Tangential Front Following

The tangential front following computational cost can be estimated by considering that at

each point we must compute the performance, Jz, and the Jacobian, rJz. This requires

(1 + nz) Lyapunov equations each costing 50n3s 
oating point operations. The number of

performances, nz, appears in this expression, since a separate Lagrange multiplier matrix, Li,

must be solved for each performance metric according to (A.31). The number of directions

in the nullspace is np � nz. The distance before reaching the parameter boundary B from

a starting point such as, pnom, can be approximated as some constant, 
, which depends on

the parameter bounds, pLB ; pUB and the step size, �. The cost of tangential front following

is thus approximated as

Jtff = 
np�nz � (1 + nz) � 50n3s (4.25)

The logarithmic cost is

log (Jtff ) = (np � nz) log
 + log(1 + nz) + 3log(ns) + const. (4.26)

4.5.4 Vector Spline Approximation

The �rst step in the vector spline approximation algorithm is to compute the performance

at all 2np corner points, see Section 4.3. These boundary points have to be connected with

vector splines at an additional cost. An approximate expression for the cost of vector spline

approximation, using constants where appropriate, is

Jvsa = 2np � 50n3s + (1 + nz) � 50n3s (4.27)

The logarithmic cost is

log (Jvsa) = nplog2 + log(1 + nz) + 3log(ns) + const. (4.28)

From Equations (4.22), (4.24), (4.26) and (4.28) one can see that the isoperformance

problem is intrinsically non-polynomial (NP) in np. There are, however, some noticeable

di�erences between algorithms. The bene�t of tangential front following is that it reduces

the logarithmic asymptote from np to np � nz. This means that solving a problem with 105

parameters and 101 performance metrics has the \same" theoretical cost as solving a problem

with 5 parameters and a single performance. The actual number of 
oating point operations

(FLOPS) required is problem dependent. There is no doubt that isoperformance problems
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with more than � 10 parameters are still quite expensive to solve. This is true despite the

contributions of Chapter 5, which deals mainly with large ns, i.e. a large number of states in

the model.

4.6 Graphical Representation of Results

The second challenge in the multivariable case is the graphical portrayal of isoperformance

results. This is an important issue, since one use of isoperformance \charts" is as a tradeo�

and negotiating tool. Graphs showing trades between \key" design parameters help to decide

design questions involving multiple design parameters, possibly \owned" by di�erent subsys-

tem teams. The two fundamental ways of showing isoperformance results in this thesis are

contour plots and radar plots.

4.6.1 Contour Plots

Contour plots are the most common way of showing isoperformance results. These plots

can be constructed whenever np � 3. Possible scenarios are one-dimensional contours in

2-dimensional space, see Figure 3.10, one-dimensional contours in 3-dimensional space, or

2-dimensional contours in 3-dimensional space, see Figure 4.11. A potential technique for

showing multivariable relationships is nomography, as discussed in Reference [5]. In nomog-

raphy, contour charts in multiple dimensions can be constructed by using auxiliary variables,

thus linking 2-dimensional charts together.

4.6.2 Radar Plots

Once there are more than 5-6 variable parameters, pj , where j = 1; 2; : : : ; np, even nomograms

become impractical and it is no longer feasible to e�ectively graphically represent all vector

solutions, piso, which are members of the isoperformance set. An alternative is to select a

subset of \interesting" solutions for display to the designer. An interesting subset could be

a set of vectors, piso, which are most di�erent from each other. \Di�erent" in a vector sense

is related to the notion of orthogonality. This leads naturally to the concept of a cross-

orthogonality matrix1. The cross-orthogonality matrix (COM) is de�ned as:

1This is similar to the matrix used for the modal assurance criterion (MAC) in structural dynamics
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COM(i; j) =
~piso;i � ~piso;j
j~piso;ij � j~piso;jj (4.29)

Note that the vectors ~piso;i and ~piso;j have been normalized to their upper bound, pUB.

A pair of performance invariant solutions i,j which has a low COM value, possibly close to

zero, represents a pair of nearly orthogonal design vectors. Note that the COM i;j values will

always be between 0 and 1. The COM matrix for the single DOF problem solution using

vector spline approximation (Section 4.3) is shown graphically in Figure 4.13.
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Figure 4.13: Cross-orthogonality matrix (COM) for solution to SDOF problem with
Algorithm III (Tangential Front Following).

From the COM an arbitrary number of combinations, piso, corresponding to low cross-

orthogonality can be extracted. In the above example the minimum COM value is 0.4325 and

is found for i = 3 and j = 11. The two vectors, piso;3 and piso;11, are both members of the

isoperformance set. The corresponding values of the design parameters are:

piso;3 =

2
666664

6:2832

5:0000

186:5751

3
777775 and piso;11 =

2
666664

21:3705

0:5000

628:3185

3
777775

!d[rad=sec]

m[kg]

!o[rad=sec]

(4.30)
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These two solutions are marked as \A" (piso;3) and \B" (piso;11) in the isoperformance chart

on Figure 4.11. As can be seen, both are on the boundary of the trade space B. This is not

always the case. In Figure 3.14(b) the design solutions which are most di�erent from each other

include the design point in the interior of B with Sbb = 10�6 [m/
p
Hz] and Kd = 0:4 [V/V].

The two solutions \A" and \B" are interesting, since the �rst one , piso;3, achieves the required

RMS performance mainly passively, by specifying a low disturbance environment (small !d),

large mass m and low optical control bandwidth !o. The second solution, however, could be

termed the \active" solution since it features a larger disturbance input, is light-weight and

relies mainly on a large optical control bandwidth, !o. Both solutions nominally produce the

same RMS performance of 0.008 [m]. In order to distinguish between these options further

additional objective functions have to be introduced. This is the subject of Section 4.7.

The two solutions above can be graphically shown in a so called radar plot, see Figure 4.14.

The radial spokes on the radar plot correspond to the j = 1; 2; : : : ; np variable parameters of

Radar Plot for Isoperformance Points

ωd

m       
5 [kg]     

ωo
628.3185 
[rad/sec]

62.8319
[rad/sec]

Design B
Design A

"Disturbance"

"Plant"

"Controls"
upper bound

lower
bound

Figure 4.14: Radar plot for SDOF problem solutions

the problem. Each axis has been normalized by the upper and lower bounds pUB and pLB

respectively, such that a parameter value at the upper bound always corresponds to a value of

1, and a lower bound value always corresponds to a value of 0.1 on the radar plot. The vector

entries for a solution are then connected to form a polygon. Thus, multiple np-dimensional

vectors can be shown in the same graph and di�erences between them become apparent to
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the designer. The display of more than 10 or so design vectors at the same time renders the

radar plot cluttered and somewhat less e�ective. The next section applies the multivariable

theory and plotting techniques to multivariable isoperformance cases, which are based on the

sample problems introduced in Chapter 2.

4.7 Examples

This section develops and discusses results from exercising the multivariable isoperformance

methodology on the following sample problems: SDOF, 2DOF and ODL. Aside from comput-

ing the performance invariant set, I, the topic of multiobjective optimization is introduced.

This is essentially the process of obtaining a pareto set, p�iso from piso.

4.7.1 Single DOF oscillator

The SDOF oscillator problem was �rst introduced in Section 2.1. A graphical representation

of the oscillator and a block diagram are shown in Figures 2.1 and 2.2, respectively. The �ve

variable parameters are the disturbance corner frequency !d [rad/sec], the mass m [kg], the

linear sti�ness k [N/m], the linear damper (dashpot) with coeÆcient c [Ns/m] and the optical

control corner frequency !o [rad/sec]. The performance requirement was set to Jz;req = 0:8

[mm], which includes a 20% margin. In Section 2.1 a disturbance, sensitivity and uncertainty

analysis was carried out for an initial design, po, and an improved, nominal design, pnom.

Bivariate isoperformance trades for the SDOF problem were carried out in Section 3.4.1,

trading [!d; !o] and [k; c]. In this chapter the SDOF problem was used to demonstrate the

multivariable isoperformance algorithms using the parameter combination [!d;m; !c].

The �nal step is to include all �ve parameters in a multivariable isoperformance analysis

simultaneously2. This has been done with the parameter bounds given in the Table of Fig-

ure 2.1 and the vector spline approximation algorithm presented in Section 4.3. The results

are shown in Figures 4.15 and 4.16.

Figure 4.15(a) shows the 32 corner points, which are �rst computed for the SDOF problem

with all �ve parameters, whereas Figure 4.15(b) shows the gradient search for the border

points, piso;border, projected onto the plane of the �rst two parameters.

2For realistic opto-mechanical systems there can be hundreds of design parameters, such that a relevant

subset has to be selected.
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Figure 4.15: (a) Representation of the 32 corners (25) of the trade space B for
the SDOF problem. (b) Border point search (piso;border) for boundary
points of SDOF isoperformance set.

The isoperformance set, I, computed for the SDOF problem with �ve parameters (Algo-

rithm III: Vector Spline Approximation) is shown in Figure 4.16(a). Note that the performance

invariant points, piso, are 5 � 1 vectors and have been projected to three dimensions. The

quality of the solution, according to metric, �iso, is 0.2069% and is shown in Figure 4.16(b).

The computation with function isoperf mvar.m yields 414 isoperformance points, required

29:2 � 106 
oating point operations and took 241.78 seconds of CPU time (Pentium III, 650

MHz processor).

Figure 4.16(a) shows that isoperformance solutions appear to exist over a large portion of

trade space B, at least for the displayed parameters pj , j = 1; 2; 3. Otherwise, it is diÆcult to

gain any insights from the plot, since trends between parameters are not easily detected. Thus,

a small subset of the 414 isoperformance solutions will subsequently be extracted from set I.

One way to do this was presented earlier, using cross-orthogonality as de�ned in Equation 4.29.

Another way is to introduce additional objective criteria (multiobjective optimization).

The use of a scalar or vector cost function, Jc, and risk function, Jr, was suggested in the

thesis roadmap, see Figure 1.6. We will consider \closeness to mid-range" as a measure of

implementation cost of the system. The underlying notion is that for each variable parameter

there is a \cheap" bound and an "expensive" bound. For example for a parameter such as

static wheel imbalance, Us, as introduced in Subsection 3.4.3, the upper bound, pUB, is the

139



10
20

30
40

50
60 1

2
3

4
5

500

1000

1500

2000

2500

3000

p2: m
ass  m

 [kg]  

SDOF Multivariable Isoperformance Analysis

p1: disturbance corner ω
d [rad/sec]

p 3
: s

tif
fn

es
s 

k 
[N

/m
]

(a)

0 50 100 150 200 250 300 350 400
7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

x 10
-4

Isoperformance Solution Number

Pe
rf

or
m

an
ce

 R
M

S 
z 

[m
]

Quality of Isoperformance Solution Plot

Normalized Error : 0.20689 [%]
Allowable Error: 1 [%]

(b)

Figure 4.16: (a) Vector Spline Approximation of SDOF isoperformance set, I, pro-
jected to the �rst three parameters,[!d;m; k]. (b) Quality of solution
plot for SDOF isoperformance set.

cheap bound and pLB is the expensive bound. According to Bialke more and more expense is

incurred as one tries to improve the balancing of typical ball bearing reaction wheels [7]. For

other parameters such as detector quantum eÆciency, QE, (see Chapter 7), the upper bound

will be the expensive one.

The reasoning is then that a design that meets the performance requirements, Jz;req,

while holding each design parameter close to its mid-range (on average), can be implemented

at reasonable cost, since the \burden" is evenly distributed in the system. Mathematically,

such a cost metric can be expressed as:

Jc;i =

npX
j=1

�
(piso)j;i � pLB;j

pUB;j � pLB;j
� 0:5

�2
(4.31)

where Jc;i is the \implementation cost" of the i-th isoperformance solution, piso;i.

The risk metric, Jr, used here is the \performance robustness to parametric uncertainty"

introduced in Equation (2.7) and repeated here for convenience.

Jr;i =
100

Jz;req
��J�z (piso;i) =

100

Jz;req
�
npX
j=1

����@Jz@pj
� (�jpj)

����
piso;i

This metric corresponds to the \�rst order" approach to uncertainty analysis as discussed

by Gutierrez [45]. In e�ect it represents the expected �% uncertainty around the predicted

performance level, Jz(pj); j = 1; 2; : : : ; np, given the sensitivities, @Jz=@pj and assumed �%
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uncertainties in the values of each parameter, pj. The assumed uncertainties, �i, for the

SDOF problem are given in Figure 2.1. The mass, m, is the least uncertain (�1%), while the
damping, c, and disturbance corner frequency, !d, are most uncertain (�10%).

A metric, Jcr, which combines cost and risk can be constructed as suggested in Equa-

tion (4.32).

Jcr = �JTc QccJc + (1� �) JTr QrrJr (4.32)

whereQcc = 1=max(Jc)
2 and Qrr = 1=max(Jr)

2 are normalization factors and � is a weighting

factor between cost and risk. Thus, by sliding � from 0 to 1 the combined metric, Jcr, goes

from weighting exclusively risk to weighting exclusively cost.

For the 414 SDOF isoperformance solutions shown in Figure 4.16 we evaluate the cost

function Jcr at �=0, 0.5 and 1.0. The three designs which minimize, Jcr at these values of

� are shown in the radar plot of Figure 4.17(a). The corresponding power spectral densities

(PSD) and cumulative RMS plots are contained in Figure 4.17(b), thus con�rming that all

three solutions are performance-invariant.
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Figure 4.17: (a) Radar plot for SDOF problem pareto optimal designs. (b) PSD
and cumulative RMS plot for SDOF pareto optimal designs.

At this point we want to critically analyze the di�erence between the three pareto optimal

SDOF designs. The lowest cost design (� = 1:0), which minimizes Jc, shows all 5 parameters

near the mid-range as expected. The lowest risk design (� = 0:0), which minimizes Jr, is

signi�cantly di�erent in terms of disturbance corner frequency, !d, mass m and sti�ness,

k. The low risk design relies on a large mass (well known) and small sti�ness to achieve
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the desired performance, which results in a low natural frequency. The large disturbance

corner frequency, !d, for the low risk design appears surprising at �rst, since the parametric

uncertainty is large, i.e. �5 = �10%. The fact that !d � 10 [Hz], however, shows that the

disturbance corner frequency is roughly a decade above the natural frequency of the oscillator

and does not signi�cantly a�ect the performance, Jz . The compromise design (� = 0:5) lies

between the other two, as expected. Table 4.2 shows a comparison of performance, cost and

risk for the three pareto optimal SDOF designs.

Table 4.2: Comparison of pareto optimal designs for SDOF sample problem.

Design � Jz Jc Jr !d m k c !o

[m] [-] [%] [rad/s] [kg] [N/m] [Ns/m] [rad/s]

Lowest Risk 0.0 0.8000039 0.79189 10.8853 62.0 4.35 503.3 1.12 393.07

Compromise 0.5 0.8000027 0.33688 12.8982 35.95 3.65 1153.0 1.18 380.2

Lowest Cost 1.0 0.8001169 0.16175 15.4779 30.86 2.56 1712.5 1.10 401.8

As mandated by the isoperformance condition, all three designs are equivalent in terms

of Jz. This is con�rmed by looking at the cumulative RMS plot in Figure 4.17(b), see upper

subplot. All three designs asymptote to the same RMS value within the numerical tolerance,

� . What is di�erent between the designs is the frequency region over which the RMS is

accumulated. Since the SDOF problem represents a single mode system, this is only dependent

on the natural frequency of the oscillator. The \low risk" design has its natural frequency at

� 1.5 [Hz], whereas the \low cost" design oscillates around 4 [Hz]. For more realistic problems

such as NEXUS (see Chapter 7) it is still true that all designs, piso 2 I, asymptote to the same
performance values. The cumulative RMS curves are signi�cantly more complicated, however,

due to the dynamics of the disturbances, the opto-mechanical plant and the controller(s).

Which pareto optimal design, p�iso, from Table 4.2 should be implemented is not necessarily

given by the mathematics of the problem or the preference order. At this point the �nal

design, p��iso, has to be chosen from the pareto set via engineering judgement and negotiation.

Therefore the isoperformance methodology is not designed to be a fully automated process,

rather it requires the designer to remain \in the decision loop".

Once a �nal design, p��iso, is chosen the roadmap (Figure 1.6) calls for an error budgeting
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analysis. An error budgeting analysis is unnecessary for the SDOF problem, since only a

single disturbance source (random force F ) is present, thus contributing 100% to the RMS of

z(t). This concludes the investigation of the SDOF problem in the context of this thesis.

4.7.2 Two DOF oscillator

The two degree-of-freedom problem (2DOF) was introduced in Section 2.2. It adds a second

performance metric, i.e. nz = 2 and additional parameters, i.e. np = 8, compared to the

SDOF problem. Section 2.2 contains an initial performance assessment, sensitivity and un-

certainty analyses, as well as performance enhancement iterations. It was found that the �rst

performance, Jz;1 = RMS(x2�x1), is dominated by the second mode, while the second perfor-
mance, Jz;2 = RMS(x1), is mainly a function of the �rst mode. This subsection demonstrates

a multivariable isoperformance analysis for the 2DOF problem.

Figure 4.18(a) shows the result of a bivariate isoperformance analysis with the disturbance

corner frequency, !d, and appendage sti�ness, k2 as the variable parameters. The constrained

performance is Jz;1 = RMS(x2 � x1). One can see that the appendage sti�ness, k2, needs to

be increased as the disturbance corner frequency, !d, increases starting from its lower bound

in order to maintain constant performance. Above !d = 3000 [rad/sec], however, the value

of k2 can remain constant, since the rollo� region of the disturbance spectrum is well above

the 
exible modes of the system. This is an important �nding, since in this region !d can be

changed without signi�cant e�ect on Jz;1. The algorithm used here is gradient-based contour

following.

When the base sti�ness, k1, is added as a parameter a multivariable analysis is conducted

with three parameters. The results, using progressive spline approximation, are shown in

Figure 4.18(b). This two-dimensional isoperformance surface shows that performance Jz;1

is not very sensitive to k1, but very sensitive to k2 at low values of the disturbance corner

frequency, !d.

A full isoperformance analysis using all 8 parameters is shown in Figure 4.19. Using vector

spline approximation and constraining only Jz;1 produces the results in Figure 4.19(a) with

the corresponding quality plotted in (c). The most noticeable trend is the tradeo� between

disturbance corner frequency, !d, and disturbance intensity, Sdd. Introducing and constraining

the second performance, Jz;2, see Figures 4.19(b) and (d), drops the number of isoperformance

solutions, piso, from � 1200 to 37. Thus, the isoperformance subset, I 2 B, gets substantially
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Figure 4.18: (a) Bivariate Isoperformance analysis for 2DOF problem with !d and
k2. (b) Multivariable Isoperformance analysis for 2DOF problem with
three parameters: !d, k1 and k2.

smaller the more performance metrics, nz, are introduced.
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Figure 4.19: (a) 2DOF Isoperformance analysis with all parameters (np = 8) con-
straining a single performance , Jz;1. (b) 2DOF Isoperformance anal-
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(nz = 2). (c) Quality plot for 2DOF and nz = 1 corresponding to
(a). (d) Quality plot for 2DOF and nz = 2 corresponding to (b).
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The same cost metric, Jc, according to Equation (4.31), risk metric Jr and combined

metric, Jcr, see Equation (4.32), as in the SDOF example are used here. This allows extracting

a pareto optimal subset of solutions from the isoperformance set. For the same settings of the

weighting factor, � = 0:0; 0:5; 1:0, as in the previous example we obtain a low risk, low cost

and a compromise design for the 2DOF problem. These three designs are shown in the radar

plot of Figure 4.20. The uncertainties, �j, of the parameters pj were speci�ed in Figure 2.6.

Again masses are assumed to be most certain, while damping and disturbance magnitude are

least certain.

Sdd
0.1 [N

2
/Hz] 

wd 
6283.2 
[rad/sec]

m1 112.5 [kg]     

m2 
11.25 [kg]     

k1 
10E6 [N/m]    

k2 
10E6 [N/m]    

c1 
500 [Ns/m]   

c2 
500 [Ns/m]   

η=0.0: lowest risk
η=0.5: compromise 
η=1.0: lowest cost

Figure 4.20: Two DOF Problem: Radar plot for pareto optimal designs.

The radar plot shows that the low cost design (\closeness to mid-range") is not, on average,

nearly as close to mid-range as the low cost solution for the SDOF problem. This is mainly

due to the fact that the 2DOF problem is more constrained. The low cost design is close

to the nominal design, pnom, from Section 2.2 with the appendage mass, m2, pegged at its

upper limit. Note that both performances, Jz;1 and Jz;2, simultaneously asymptote the desired

performance levels, Jz;req for all solutions, piso. This is graphically shown in the cumulative

RMS plots of Figure 4.21. It is noteworthy that the low risk design has also the lowest natural

frequencies for both modes, as in the SDOF example. This is mainly due to the fact that the

massive designs lead to lower frequency modes and are assumed to be less uncertain. It is not

immediately clear whether this insight can be generalized to more complex 
exible structures.
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Figure 4.21: Two DOF Problem: PSD and cumulative RMS comparison of pareto
optimal designs.

4.7.3 ODL Design Problem

The optical delay line (ODL) design problem was �rst introduced in Section 2.3. The driving

requirements are summarized in Figure 2.10. The problem deals with a total of eight inde-

pendently variable parameters, see Table 2.3. The steady-state performance requirement is

that Jz;1 = RMS OPD = 100 [nm] and the settling time of the ODL after a step command

should be Jz;2 = Ts;z < 0:05 [sec]. A bivariate isoperformance analysis (only constraining

Jz;1) was discussed in Subsection 3.4.2. The present subsection presents insights gained from

a multivariable isoperformance analysis of the ODL design problem.

Figure 4.22 shows the isoperformance results for an analysis with the four variable param-

eters: base motion intensity Sdd, sensor noise intensity Snn, mass m and derivative control

gain, Kd. The other values are constant at the values given for pj;o, see Table 2.3.

The isoperformance set, I, as approximated in Figure 4.22(a) is a 3-dimensional volume
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Figure 4.22: (a) ODL Problem: multivariable isoperformance with four parameters:
Sdd, Snn, m and Kd. Performance Requirement: Jz;1;req = 100 [nm].
Isoperformance set, I projected onto the �rst three parameters. (b)
Quality of solution plot corresponding to (a) with tolerance � = 2:0 %.

in 4-dimensional space. One can discern the tradeo� between the noise intensities of process

noise, Sdd, and sensor noise, Snn. This means that no solution which has both of these

disturbance intensities pegged at their upper limit, see lower left corner of Figure 4.22(a), will

meet the requirements. The quality plot Figure 4.22(b) shows the existence of a few outlier

solutions which exist when the gradient search does not fully converge in the multivariable

case (isoperf mvar.m). In total there are 276 isoperformance solutions, piso 2 I, for the ODL
design problem which took 1:25 GFLOPS and 556 [sec] to solve3.

As in the previous examples we introduce additional objectives to select a small subset

of pareto-optimal designs from the 276 performance invariant solutions. We will consider the

settling time after a step input command, Jz;2 = Ts;z, as an additional criterion according to

Equation (2.21). The \risk" will be embodied by the gain (GM) and phase (PM) stability

margins, normalized by the required stability margins:

Jr =
1

GMreq
�GM(piso;i) +

1

PMreq
� PM(piso;i) (4.33)

Also, of the 276 performance-invariant solutions, only the ones with Ts;z < 0:05 [sec] will be

considered. Figure 4.23 shows the two pareto-optimal designs, which optimize settling time

and stability margins, respectively.

3Pentium III at 650 MHz clock speed.
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Sdd
2e-6 
[m]/sqrt(Hz)]

Snn
0.0001 
[V/sqrt(Hz)]

m  5 [kg]        

k  200 
[N/m]       

c  
2 [Ns/m] 

Kd 
2.5 [V/V]       

wc 
3141.6 
[rad/sec]   

wa 
3141.6 
[rad/sec]   Shortest Ts

Largest GM,PM

Figure 4.23: ODL Problem: Radar plot for pareto optimal designs.

All parameters, except the four variable ones, are the same for both designs. The shortest

settling time design (blue, solid line) relies on a large mass, m, and control gain, Kd, to achieve

the performance. The design with the largest stability margins (red, dashed line) in terms of

gain and phase margin on the other hand uses a smaller derivative gain, Kd, and smaller mass,

m. Figure 4.24 compares the stability margins (Nyquist diagram) and settling time for both

designs. Both of these designs are superior to the original design in Section 2.3 and would

likely not have been found without the multivariable isoperformance technique presented here.

Table 4.3: Comparison of original design with pareto optimal designs for ODL sam-
ple problem.

Design Jz;1 = RMS OPD Jz;2 = Ts;z PM GM

Requirements 100 [nm] < 0.05 [sec] 30 [deg] 6.0 [dB]

Original Design po 89.6 [nm] 0.0236 [sec] 39.4 [deg] 11.5 [dB]

Shortest Step Response piso;47 101.24 [nm] 0.0172 [sec] 57.9 [deg] 17.1 [dB]

Largest Stab. Margins piso;86 98.56 [nm] 0.0217 [sec] 68.3 [deg] 21.1 [dB]

Finally both designs are contrasted to the original design, po, in Table 4.3. This concludes
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the discussion of the ODL sample problem.
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Figure 4.24: (a) ODL Problem: Comparison of settling times for a r = 1:0 [mm]
step input command for both pareto optimal designs. (b) Nyquist
diagram showing phase margin (PM) and gain margin (GM) for both
designs.

4.8 Summary

This chapter discusses solutions to the multivariable isoperformance problem. The general-

ization of the bivariate search algorithms results in three multivariable techniques: Branch-

and-Bound, Tangential Front Following and Vector Spline Approximation. A comparison for

the SDOF problem shows that Vector Spline Approximation is most eÆcient for multivari-

able problems, since it only approximates the performance invariant set with border points

and some interior points. Complexity theory leads to the conclusion that the isoperformance

problem is a search problem, whose computational cost is non-polynomial in the number of

variable parameters, np. Thus, problems with more than � 10 variable parameters are still ex-

pensive to solve without additional advancements (e.g. parallel computing). The application

of the multivariable isoperformance algorithms to the sample problems (SDOF, 2DOF and

ODL design) demonstrates that superior solutions can be obtained compared to performance

enhanced designs, which are based on a random initial guess.
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Chapter 5

Challenges of Large Order Systems

A key element of the isoperformance methodology is the ability to compute performances,

Jz, and analytical sensitivities, rJz, for disturbance, plant and control parameters. This

has to be done in a computationally eÆcient manner for large order, typically numerically

ill-conditioned systems. As was seen in the previous chapter it is likely that hundreds or even

thousands of Lyapunov equations have to be solved during a comprehensive isoperformance

analysis. This is true even when the eÆcient algorithms (Tangential Front Following and

Vector Spline Approximation) are selected. The solutions to the Lyapunov equation provide

either the state covariance matrix, �q, see Equation (5.1), or the Lagrange multiplier matrices,

Li, where i = 1; 2; : : : ; nz, according to Equation (5.2).

Empirical considerations in Section 5.1 show that the computational cost of solving a

Lyapunov equation is roughly 50 � n3s 
oating point operations (FLOPS), where ns is the

number of states of the state space system Szd. Thus, for a realistic model with say, 500

states, the cost would be 6:25 � 109 FLOPS, which would have taken upwards of an hour to

solve on 1990 vintage computers. Even taking into account the increase in computational

capability in the last decade it is desirable to improve the computational eÆciency in solving

for �q and Li, respectively. The �rst strategy is to attempt a reduction in the \3" exponent

of the cost expression with a fast Lyapunov solver for diagonalizable systems, presented in

Section 5.1. The second approach is to reduce the number of states, ns, while preserving the

essential information in the model. Performance prediction for balanced and reduced systems

in this context is the topic of Section 5.2. Finally, the sensitivity analysis has to be generalized

such that it can handle similarity transformed and reduced systems, see Section 5.3.
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5.1 EÆcient Solution of Lyapunov Equation

Lyapunov equations in isoperformance must be solved frequently for the state covariance

matrix, �q, and the Lagrange multiplier matrices, Li, where i = 1; 2; : : : ; nz. For convenience

we repeat the expressions for the Lyapunov equation of the state covariance matrix

Azd�q +�qA
T
zd +BzdB

T
zd = 0 (5.1)

and the Lagrange multiplier matrix

LiAzd +AT
zdLi + CT

zd;iCzd;i = 0 (5.2)

for the i-th performance, respectively. Recall that Azd; Bzd and Czd represent the (closed loop)

assembled state space matrices containing the disturbance, plant and compensator dynamics.

Note that matrix Azd is of size ns�ns , where ns is a measure of the model order (size). This

section presents an algorithm which signi�cantly accelerates these computations, provided that

the state space system can be transformed into the real modal (diagonal) form. The algorithm

was applied to the solution of large order gramians in the context of model conditioning by

Uebelhart [136]. The following description contains results by Uebelhart with respect to

optimizing the solution block size, m. The author's contribution lies in recognizing the key

role the algorithm plays in isoperformance computations and in integrating the solver into the

DOCS framework via the new function newlyap.m.

5.1.1 Computational Cost of Lyapunov Solution and Balancing

In order to assess the bene�ts of a more eÆcient Lyapunov solver one �rst needs to obtain

an estimate of the computational cost of solving Equation (5.1). Additionally an estimate is

obtained for the cost of balancing the state space system, which is a prerequisite for model

reduction, see Section 5.2. There are computational savings that can be realized by balancing

and reducing the size of the model prior to conducting isoperformance analyses. Clearly, some

of this savings will be consumed by the balancing process. This section derives the amount

of model reduction, as a function of the original model's size, beyond which computational

savings are realized.

The computational e�ort is assessed by considering the number of 
oating-point operations

(FLOPS) rather than CPU time, since FLOPS are machine independent. The operations

required for diagonalizing and balancing the system initially are taken into account. The basic
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assumption is that the cost of computing Jz = f(�q) is dominated by the computational cost

of solving Lyapunov Equation (5.1). For balanced (and reduced systems) the solution cost for

the balancing matrix, T , needs to be considered as well.

Assume that the cost of solving a Lyapunov equation, Jlyap, and for balancing the system,

JT , can be cast as a polynomial expression of the number of states ns with constant coeÆcients,

such that

Jlyap �= � � (ns)p

JT �= � � (ns)q
(5.3)

Since the exact operations count for solving a Lyapunov equation cannot be determined apri-

ori1, we will empirically determine the required FLOPS for solving the Lyapunov equation

(for �q) and the balancing of the system (for T ), as a function of the number of states, ns. A

multiple degree-of-freedom spring mass system, see Subsection 5.4.2, provides the state space

system, Szd, for this analysis. The results of recording the FLOPS count as a function of ns,

while solving Equation (5.1) and solving for T are shown in Figure 5.1 on a loglog scale.
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Figure 5.1: Computational cost of balancing (T ) and solving a Lyapunov equation
for �q as a function of the number of states ns.

1This is similar to LU-factorization, which goes as roughly (2=3)n3s FLOPS, but depends on the intricacies

of the Gaussian elimination algorithm, e.g. row swapping if a zero-pivot is encountered.
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Curve �tting with the least-squares method leads to the following results:

� = 50:42 � 50 ; p = 3:0412 � 3

� = 146:7 � 150 ; q = 2:998 � 3
(5.4)

The results suggest that there is a linear relationship on the loglog-scale. Both operations

depend on the number of states, ns, to the third power. Balancing a system is roughly three

times more expensive than solving a Lyapunov equation of the same dimensions.

With this information one can compare the cost of performing a sensitivity analysis (only

taking into account balancing and the solution of Lyapunov equations) for the original system,

Szd, and a balanced-reduced system, �Szd. The computational cost of the disturbance and

sensitivity analysis for the original system is the cost of solving for the state covariance matrix,

�q, and for the Lagrange multiplier matrices, Li. Each equation has dimension ns. The

equivalent cost for the balanced-reduced system is the upfront cost of balancing the system

(order ns) - this can be regarded as a \�xed" cost component - and the subsequent Lyapunov

solutions for the reduced ��q and �Li's of smaller order nk. The computational cost in terms

of 
oating-point operations can be expressed as:

Jo = � (ns)
p| {z }

�q

+nz � � (ns)p| {z }
Li

(5.5)

Jr = � (ns)
q| {z }

T

+ 0 � � (nk)p| {z }
��q

+nz � � (nk)p| {z }
�Li

(5.6)

where ns is the number of original states, nk is the number of states kept in the system and

nz is the number of performances. In Equation (5.6) we can set the cost of computing the

reduced state covariance matrix to zero, since the Hankel singular values, which are kept in

the system, are already known. Thus, one can establish an inequality such that Jr < Jo :

� � nqs + nz � � � npk < (nz + 1) � � � nps (5.7)

After substituting the coeÆcients from Equation (5.4) in Equations (5.5) and (5.6) and rear-

ranging we obtain: �
nk
ns

�3

<
nz � 2

nz
(5.8)

The above inequality is found for the crossover point, i.e. when Jr (balanced-reduced

system cost) < Jo (original system cost). It is concluded that CPU time savings are only

possible once there are 3 or more performances, i.e. nz > 2. The above inequality is useful
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since it can provide the required state reduction ratio nk=ns that will lead to a time savings,

given the number of performances nz. For nz = 4 a reduction of slightly more than 21 %

of the number of states of the original system is suÆcient to speed up computations. This

percentage becomes lower as more performance metrics of interest are present in the system.

The SIM Classic model, presented in Subsection 3.4.3, for example has 15 performances of

interest. The reason for the high \upfront" cost is that the system balancing operation requires

the solution of two Lyapunov equations for the gramians, two Cholesky factorizations of the

gramians, a singular value decomposition (SVD) of the product of the Cholesky factors2 and

matrix multiplications to obtain T , T�1 and the balanced system matrices. Inequality (5.8)

together with (5.65) allows a quantitative assessment of the tradeo� between computational

speed and accuracy as a function of the truncation threshold nk.

5.1.2 Fast Lyapunov Solver for Diagonalizable Systems

This subsection presents a fast Lyapunov solver for diagonalizable state space systems. The

goal is to improve on the 50n3s Lyapunov computational cost estimate when ns is large (e.g.

ns > 100). This subsection is essentially identical to Section 3.3 of Reference [136]. The

general form of the Lyapunov Equations (5.1) and (5.2) can be written as

AX +XAT +Q = _X (5.9)

Assuming that only the values of the states, but not their statistics, change over time (steady-

state analysis), the temporal derivative of the state covariance matrix, X, on the right side

can be set to zero.

AX +XAT +Q = 0 (5.10)

Diagonalize A using its eigenvectors3, A = S�S�1. Substitute this matrix product for A in

Equation (5.10), pre-multiply by S�1 and post-multiply by S�T .

S�1
�
(S�S�1)X +X(S�T�ST ) +Q

�
S�T = 0

S�1S| {z }
=I

�S�1XS�T + S�1XS�T�STS�T| {z }
=I

+S�1QS�T = 0

2According to Laub's method [78]
3Note that Matlab uses a Schur decomposition. In practice, the eigenvalue method described may be

unstable if the matrices are ill-conditioned.
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This can be rewritten as

�S�1XS�T| {z }
� ~X

+S�1XS�T| {z }
� ~X

� + S�1QS�T| {z }
� ~Q

= 0 (5.11)

This is a new Lyapunov equation with the matrix de�nitions given above. The important

property is that � is diagonal. For a simple 2� 2 case we obtain

2
4 �1 0

0 �2

3
5
2
4 ~x11 ~x12

~x21 ~x22

3
5+

2
4 ~x11 ~x12

~x21 ~x22

3
5
2
4 �1 0

0 �2

3
5+

2
4 ~q11 ~q12

~q21 ~q22

3
5 = 0 (5.12)

�i are the diagonal values of �, and the ~xij are the scalar entries in each (i; j) element of

~X. We also know that ~x21 = ~x12 and that ~q21 = ~q12. By multiplying the matrices out, the

diagonal nature of � succeeds in decoupling the entire set of equations.

2
6664
�1~x11 + ~x11�1 + ~x11 = 0 �1~x12 + ~x12�2 + ~q12 = 0 � � �
�2~x21 + ~x21�1 + ~q21 = 0

...

3
7775

The resulting equations are decoupled, so that solving for each ~xij requires solving a simple

algebraic equation �i~xij + ~xij�j + ~qij = 0.

~xij = � ~qij
(�i + �j)

: (5.13)

After solving for all the ~xij, they can be incorporated into ~X , which in turn can be substituted

into the original matrix product X = S ~XST . This produces the Lyapunov solution X.

For systems where ns > 2000, this one computation may take upwards of an hour to

complete and involves over 1011 
oating point operations. Clearly this would preclude mean-

ingful isoperformance analyses for large order models. A potentially faster algorithm can

be constructed, which exploits the diagonal properties described above. Consider again the

Lyapunov form outlined in Equation (5.12). The diagonal nature of � permits the individual

equations to decouple for each ~xij , thus allowing independent solutions to build the entire

ns � ns matrix X. This same idea can be applied when � is block diagonal instead of diag-

onal. Using the variable A in place of �, consider the general Lyapunov form described by

Equation (5.10), but for the case where A is 2� 2 matrix-block diagonal.
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2
4 A1 0

0 A2

3
5
2
4 X11 X12

XT
12 X22

3
5+

2
4 X11 X12

XT
12 X22

3
5
2
4 A1 0

0 A2

3
5T +

2
4 Q11 Q12

QT
12 Q22

3
5 = 0 (5.14)

Four matrix equations result.

1) A1X11 +X11A
T
1 +Q11 = 0 2) A1X12 +X12A

T
2 +Q12 = 0

3) A2X
T
12 +XT

12A
T
1 +QT

12 = 0 4) A2X22 +X22A
T
2 +Q22 = 0

(5.15)

Notice that equations 1) and 4) in Equation (5.15) are just new Lyapunov equations. Equa-

tions 2 ) and 3) are also Lyapunov equations, though in a more general form AX+XB+C = 0.

This is sometimes called the Sylvester equation. Each of these can be solved using whichever

technique was formerly applied for the full matrix X, but because of their smaller size they

can individually take far less time than the full ns�ns system. This is due to the fact that the
Lyapunov computational cost goes with n3s. Also note that Equation 3) is just the transpose

of Equation 2), so of the four equations only three must be solved.

The requirement on A is that it can be made into a block diagonal form. Luckily the

decoupled modal form resulting from a normal modes analysis can be easily written in such a

form. If the system is no longer in a modal form, the eigenvalues of most A matrices can be

written in a diagonal Jordan form [143]. This is also sometimes referred to as the real modal

form.

Ai =

2
4 ��i!i !i

q
1� �2i

�!i
q
1� �2i ��i!i

3
5 (5.16)

Using the 2� 2 modal system, there are now ns=2 blocks along the diagonal of A. Keeping in

mind the symmetry of X, this means

Nlyap =

ns
2

�ns
2
+ 1
�

2
(5.17)

separate 2�2 Lyapunov solutions Xij must be solved. One concern may be that although the

computational time for each solution is fast, the number of computations and the ineÆciencies

of the required for -loops may not yield an overall time savings. As will be seen, the time to

solve all the 2� 2 equations is less than the time required to solve the entire ns�ns problem;

however this is not the most eÆcient block size, m, to use.

157



There is no reason that larger blocks can not be selected, so long as the size is an even

factor of ns. Using a block size of m, a general relation for the number of Lyapunov equations

can be written.

Nlyap =

ns
m

�ns
m

+ 1
�

2
(5.18)

As an example of the eÆciency that can be gained, this method was run on sample problems

with ns =600, 1000, 1500, and 2000 states by Uebelhart [136]. A modal system was created

using ns=2 logarithmically even-spaced frequencies between 10�3 and 103 Hertz. A damping

ratio of 0.001 was used, and an input Bzd matrix was chosen randomly. All even factors of ns

are chosen as possible block sizes m. For n = 1000, this allows m =[2 4 8 10 20 40 50 100 200

250 500 1000]. Even numbers are required since the Azd matrix is still 2� 2 block diagonal.

Figure 5.2(a) shows the variation of CPU time in minutes versus block size, m, for each

problem of size ns. The last point on each curve represents the full ns�ns Lyapunov solution.
For m = ns = 2000, nearly 2:5 hours are required to obtain an answer (on a 850 MHz Pentium

III computer). This compares to 14 minutes for m = 2. This considerable time savings is

improved further with slightly larger block sizes. A minimum in all four curves, shown clearer

in Figure 5.2(b), indicates an optimum m between m = 20 and 40. For m = 40, the 2000

state model takes only 1.6 minutes. A summary of the results from Figure 5.2 is included in

Table 5.1.
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Figure 5.2: (a) CPU Time in minutes to solve a Lyapunov equation of size ns using
blocks of size m. (b) Zoom in on optimal region between m = 20 � 40.
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Table 5.1: Time improvements using diagonal Lyapunov solver

ns time to solve full fastest block time to solve using time savings

ns � ns system size m m�m blocks ratio

(minutes) (minutes) tmax=tmin

600 3.5 24 0.13 26.9

1000 16.1 20 0.37 43.5

1500 53.7 20 0.90 59.7

2000 145.5 40 1.65 88.2

The quality of the solution is checked by placing the answer back into the Lyapunov

Equation (5.10). This resultant matrix should equal zero. Due to numerical inaccuracies, the

maximum value of the resultant is actually on the order of 10�13 for all ns. What is important

is that the resultant for each block solution is identical to the resultant for the full ns � ns

solution. The solutions su�er from no additional inaccuracies.

Another metric with which to judge the routines is the number of 
oating point operations,

or FLOPS. The advantage of measuring FLOPS over CPU time is that FLOPS are machine

independent. The nature of Matlab's lyap.m function is such that an exact FLOPS count

based on the number of required operations can not be speci�ed. The Schur decomposition

used byMatlab requires a Gram-Schmidt factorization A = QR. This may require a di�erent

number of operations depending on intricacies of the QR factorization (e.g. row swapping).

Reference [2], used for the lyap.m function, suggests that the number of required operations

is probably overestimated by

NFLOPS < (5:5 + 4�)n3s

where � is an average number of steps in the factorization, dependent on the matrix A. Earlier

it was empirically found that the number of FLOPS goes by 50n3s, which would give a value

of � = 11:125. Using the fast Lyapunov method, a single 50n3s operation is replaced by many

50m3 operations, with ns � m. If the number of Lyapunov equations is described by Equation

(5.18), then the estimated number of FLOPS is

Jnewlyap = 25(mn2s +m2ns) (5.19)
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The total number of FLOPS to solve every problem of size ns with block sizes m is plotted

as points in Figure 5.3. The curves plotted over the points are the approximations given in

Equation (5.19) above. The approximation is shown to work very well. The fast Lyapunov

method succeeds in reducing the FLOPS count by several orders of magnitude. For the 2000

state model, the full ns � ns system requires over 4 � 1011 FLOPS compared to 4:9 � 108

FLOPS when a block size of m = 2 is used. The number of FLOPS for those block sizes with

the fastest times (as given in Table 5.1) are provided in Table 5.2.
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Figure 5.3: Number of FLOPS for the diagonal Lyapunov solver, along with curves
showing the 
op count approximation.

Table 5.2: Improvements in FLOPS using fast Lyapunov solver

ns states # 
ops for fastest block # 
ops using

full ns � ns size m m�m blocks

600 1:1 � 1010 24 2:4� 108

1000 5:0 � 1010 20 5:6� 108

1500 1:7 � 1011 20 1:3� 109

2000 4:0 � 1011 40 4:3� 109

160



The diagonal Lyapunov solver was initially written for gramian computations as newgram.m

and has been incorporated in DOCS as a general Lyapunov solver, newlyap.m. Note that func-

tion ss2mod7.m (available from MIT Space Systems Laboratory) must be used to diagonalize

the state space system prior to using the fast Lyapunov solver. The fast diagonal Lyapunov

solver drops the highest exponent in the Lyapunov computational cost expression from \3"

to \2", which results in a signi�cant bene�t for large order systems. This approach can be

combined with the balanced reduction discussed below.

5.2 Analyses for Similarity Transformed Systems

The second strategy for reducing the burden of computing the performance, Jz, is to reduce

the number of states from ns to nk, while preserving the important dynamics in the model.

The �rst step in model reduction is typically a similarity transformation, such as internal

balancing. Therefore in this section the computation of the performance and sensitivity,

assuming root-mean-square (RMS) metrics, for open or closed-loop LTI systems driven by

white noise is derived for internally balanced (transformed) models.

The results are �rst validated with single and multi-degree-of-freedom examples. The ex-

tensions to the framework have then been incorporated in revisions of the DOCS functions

dist analysis.m and sens analysis.m. Finally a validation is carried out by applying the

method to internally balanced and subsequently reduced models of the Space Interferometry

Mission (SIM Classic). A number of numerical issues such as minimality have been success-

fully addressed, which allow fast and numerically robust sensitivity computations for large

order, closed-loop systems that are inherently ill-conditioned. This work contributes to higher

computational eÆciency and robustness for trade and optimization studies such as the one

presented in Chapter 7 for the NEXUS spacecraft. It is assumed that the systems are all

linear and time-invariant.

5.2.1 Motivation and Scope

For realistic MIMO systems such as SIM, NGST, Nexus or TPF the models can contain several

hundred or even thousands of states, ns. Factors that tend to increase the size of the overall

state vector are a complicated disturbance spectrum and many di�erent disturbance sources,

important structural modes over a large bandwidth and large order (= modern) compensators.
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A signi�cant impediment for the practical use of isoperformance for these large order models

has been the fact that the state-space realization of the system4 representing the appended

overall dynamics (open or closed loop) had to be preserved. This was necessary in order for

the system parameters of interest (e.g. modal parameters !, �, m̂, �ij)
5 to appear explicitly

in the system matrices Azd, Bzd, Czd . The assumed structure of the appended Azd matrix,

which can span on the order of 100-10000 states, as stipulated by Gutierrez [45], is given as

follows:

Azd =

2
6664

Ad 02
4 Bw

BcDyw

3
5Cd

2
4 Ap BuCc

BcCy Ac +BcDyuCc

3
5
3
7775 (5.20)

Any kind of similarity transformation [102],[77, 78] removes the explicit dependence of the

state space matrices on the parameters of interest. In that case the matrix partial deriva-

tives @Azd=@pj , @Bzd=@pj , @Czd=@pj needed for determining the sensitivity of the root-mean-

square (RMS) of the i-th performance metric Jz;i, with respect to the j-th parameter pj , i.e.

@Jz;i=@pj = @�zi=@pj cannot be easily computed. Additionally when model reduction is per-

formed on the balanced system, states which correspond to small Hankel singular values are

removed, which a�ects the resulting performance RMS and sensitivity values. Gutierrez [45,

p.268] recognized the need for an extension of the existing framework in his recommendations

for future work (third item):

\The numerical conditioning problem discovered during the �nite-di�erence

computations in the SIM Classic example needs to be resolved. Balancing and

model reduction techniques might alleviate this problem; however, the sensitivity

framework currently does not support alternative system realizations. E�orts to

accommodate other state-space realizations should be made."

This recommendation gave the impetus for the work presented in this section. The cur-

rent capabilities are extended such that RMS values and sensitivities (for modal or physical

parameters) can be computed for internally balanced and reduced systems. The equations

are validated with simple and large-order examples and useful error bounds are found.

4De�ned in Equations (4.58)-(4.60) of Reference [45]
5The physical parameters appear implicit and are recovered from the modal parameters via the chain rule.
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5.2.2 Internal Balancing Transformation

The internal balancing transformation ~q = Tq of a state space system was �rst described by

Moore [102] as well as Laub [77],[78] and co-workers. Gregory [39] successfully applied internal

balancing to the model reduction of lightly damped space structures. Essentially the internal

balancing operation is a similarity transformation, which does not a�ect the input-output

relationship of the state space system (i.e. the transfer function matrix Gzd(j!)). It is true

that for a similarity transformation the transfer function matrix Gzd (s) of the original system

and the transfer matrix of the balanced system ~Gzd (s) are equal. This can be proven by

showing that the di�erence between the transfer function matrices is zero, see Appendix B.1.

The goal of the operation is to obtain a (unique) state space realization in which the

transformed controllability and observability gramians ~Wc and ~Wo are equal to each other,

thus the term \balanced".

~Wc = ~Wo = �H (5.21)

This allows ranking the states in decreasing order of observability/controllability. In the

context of the disturbance analysis one could also say that the states are ranked in decreasing

order of disturbability/performability. The diagonal elements of the transformed gramians

are the Hankel singular values of the system.

~Wc = TWcT
T = ~Wo =

�
T�1

�T
WoT

�1 = �H = diag
�
�H1 ; : : : ; �

H
ns

	
(5.22)

The key question is how to compute the balancing matrix T . The �rst step is always to

compute the controllability and observability gramians of the original system Wc, Wo. First

we solve the Lyapunov equation for the controllability gramian

AzdWc +WcA
T
zd +BzdB

T
zd = 0 (5.23)

and then for the observability gramian

AT
zdWo +WoAzd + CT

zdCzd = 0 (5.24)

A number of di�erent algorithms for �nding T , starting with Moore's method [102] in 1981,

have been suggested over the years. The second method uses a singular value decomposition

(SVD) and was developed by Laub [78]. Both algorithms are presented in more detail in

Appendix B.2.
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The resulting properties of T are such that it is a real, square and non-singular similarity

transformation matrix. The matrix T does indeed depend on the physical and modal pa-

rameters of the system. The assumption by Gutierrez that " ... T is not a function of the

parameter p" [45, p.177] is not necessary as will be shown in the next section. Once T and

its inverse are known, the internal balancing operation transforms the states of the original

system q into the states of the internally balanced system ~q.

~q = Tq (5.25)

We recover the original state vector by pre-multiplying the above equation with the inverse

of the transformation matrix T . (Note: Caution is advised, since sometimes in practice this

de�nition is reversed). The original state vector is recovered as:

q = T�1~q (5.26)

Substituting the above equation into the original state space system (A.13), noting that T

is independent of time and pre-multiplying with the transformation matrix T we obtain the

internally balanced state space system as

_~q = TAzdT
�1~q + TBzdd = ~Azd~q + ~Bzdd

z = CzdT
�1~q = ~Czd~q

(5.27)

The tilde superscript will denote the balanced realization in the subsequent development. We

can use the S-matrix notation and write:

Szd =

2
4 Azd Bzd

Czd Dzd

3
5 ) ~Szd =

2
4 TAzdT

�1 TBzd

CzdT
�1 Dzd

3
5 (5.28)

Looking at the example of a single degree-of-freedom (SDOF) oscillator (2 states), which is

subjected to a white-noise random disturbance force, we see that the S-matrix of the original

system, see left side of Equation (5.29), is sparse. The S-matrix of the internally balanced

system, ~Szd, is fully populated with the exception of the zero, which corresponds to the

feedthrough term ~Dzd.

S =

2
6664

0 1 0

�1714:3 �0:42857 1:1952

1:1952 0 0

3
7775 ) ~S =

2
6664
�0:21318 41:403 0:13134

�41:403 �0:21539 0:13134

0:13134 �0:13134 0

3
7775 (5.29)
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Also we note that the entries of the balanced matrix are closer to each other in magnitude

and that symmetries in the entries can be seen. However, neither the ~Azd, nor the ~S matrix

are truly symmetric or skew-symmetric. The next subsection discusses the implications of

balancing (similarity transformations) on disturbance and sensitivity analyses.

5.2.3 Disturbance and Sensitivity Analysis for Similarity Transformed State

Space Systems

This subsection discusses performance and sensitivity analysis for balanced systems. The re-

sults are applicable to any similarity transformation. One assumption is that Jz;i = �z;i. The

performance (RMS) is computed exactly as for the original system, except that the trans-

formed system matrices (superscript tilde) are used. Based on substitution of the matrices

from Equation (5.27) into Equation (A.26), the RMS of the i-th performance metric of the

internally balanced system is obtained as

~�zi =
�
~Czd;i�~q

~CT
zd;i

�1=2
=
�
Czd;iT

�1�~q

�
T�1

�T
CT
zd;i

�1=2
(5.30)

Since the internal balancing operation does not change the input-output relationship, but

only transforms the internal states of the system, the RMS of the i-th performance of the

original and the transformed system are identical in theory. In practice it was observed that

the answers did not match exactly, if T was computed for a large-order nearly unobserv-

able/uncontrollable system.

We can write:

�zi = ~�zi (5.31)

Thus by comparing the inner terms of Equation (5.30) with (A.26), we see that the following

identities are true:

�q = T�1�~q

�
T�1

�T
; �~q = T�qT

T (5.32)

Here �~q is the state covariance matrix of the internally balanced system and is obtained as a

solution to the steady-state Lyapunov equation:

~Azd�~q +�~q
~AT
zd +

~Bzd
~BT
zd = 0 (5.33)

This can be written as a function of the original system matrices as:

TAzdT
�1�~q +�~q

�
T�1

�T
AT
zdT

T + TBzdB
T
zdT

T = 0 (5.34)
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At this point we recognize that the state covariance matrix of the internally balanced

system �~q has a very important and useful property. It is diagonal and contains the Hankel

singular values as diagonal elements, thus �~q = �H . Here the subscript \H" stands for

\Hankel" singular value matrix and not the Hermitian operator. The proof of this statement

is straightforward, since for the internally balanced system the observability and controllability

gramians ~Wo and ~Wc are equal to each other and equal to the Hankel singular value matrix 6,

see [102],[77]. We write

~Wo = ~Wc = �H (5.35)

Furthermore the controllability gramian of the internally balanced system obeys the same

Lyapunov equation (5.33) as the state covariance matrix �~q.

~Azd
~Wc + ~Wc

~AT
zd +

~Bzd
~BT
zd = 0 (5.36)

From (5.36), (5.35) and (5.33) we conclude that

~Wc = �~q = �H (5.37)

This is a very useful property, since it means that the Lyapunov equation for the balanced

state covariance matrix does not have to be solved, since the entries (same as �H) are already

known. The sensitivity of the i-th performance RMS with respect to the j-th parameter for

an internally balanced system is then computed as follows:

@~�zi
@pj

=
1

2~�zi
� @~�

2
zi

@pj
(5.38)

The RMS in the denominator of the �rst term is directly substituted from Equation (5.30).

The second term is obtained by solving the transformed governing sensitivity equation (TGSE).

The governing sensitivity equation for a similarity transformed system (e.g. internally bal-

anced) is the most important contribution in this section and was determined to be:

@~�2zi
@pj

= trace

2
4T�1�~q

�
T�1

�T @
�
CT
zd;iCzd;i

�
@pj

3
5+

trace

"
~Li

(
T
@Azd

@pj
T�1�~q +�~q

�
T�1

�T @AT
zd

@pj
T T + T

@
�
BzdB

T
zd

�
@pj

T T

)# (5.39)

6The squares of the Hankel singular values are sometimes referred to as the "second order modes" of the

system [102].
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The TGSE (5.39) allows computing the partial derivative of the variance of the i-th per-

formance Jz;i = �z;i with respect to the j-th parameter pj using the transformed quantities,

including the Lagrange multiplier matrices for the balanced system. The Lagrange multiplier

matrix ~Li for the i-th performance of the internally balanced system obeys the Lyapunov

equation

~AT
zd
~Li + ~Li ~Azd + ~CT

zd;i
~Czd;i = 0 (5.40)

This can be written explicitly in terms of the original system matrices as:

�
T�1

�T
AT
zdT

T ~Li + ~LiTAzdT
�1 +

�
T�1

�T
CT
zd;iCzd;iT

�1 = 0 (5.41)

The matrix derivatives in (5.39) may still be computed using the original (non-transformed)

system matrices, where the parameters appear in known locations. At �rst the simplicity of the

Governing Sensitivity Equation (5.39) is surprising, since we expect to �nd derivative terms

of the transformation matrix T in this equation. If we substitute the transformed matrices

~Azd , ~Bzd , ~Czd into (A.32), we will obtain non-zero derivative terms of the transformation

matrix T and in general we have:
@T

@pj
6= 0 (5.42)

The mathematical derivation of the TGSE, however, shows that all derivative terms of the

transformation matrix, T , are multiplied by a term which is equal to zero, which leads to

Equation (5.39). The proof for the correctness of the TGSE is contained in Appendix B.3.

The transformed governing sensitivity equation is correct regardless of whether pj is a modal or

physical parameter of the system. Finally it shall be noted that balancing does not introduce

any approximation and that the values obtained for ~�zi and @~�zi=@pj are identical to the ones

for the original system, subject to good numerical conditioning.

5.3 Disturbance and Sensitivity Analysis for Reduced Systems

This section presents the extension of the framework to reduced systems. First the process of

model reduction by truncation is explained in detail. Next the computation of the RMS and

its error bound for reduced systems is derived. Finally the sensitivity and its error bounds

are established for reduced LTI systems.
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As shown above, the balanced state covariance matrix �~q is identical to the Hankel sin-

gular value matrix �H for the internally balanced system. Thus states that are both highly

disturbable (= controllable) and contribute signi�cantly to the performance (= observable)

correspond to large Hankel singular values �Hi . This property can be invoked for model reduc-

tion in the sense that only states with large Hankel singular values are kept in the model. Once

the system has been internally balanced we can partition the state space system from Equa-

tion (5.27) into states that are going to be \kept" and states that are going to be \removed"

as follows:

_~q = ~Azd~q + ~Bzdd =

2
4 ~Akk

~Akr

~Ark
~Arr

3
5
2
4 ~qk

~qr

3
5+

2
4 ~Bk

~Br

3
5d

z = ~Czd~q =
h

~Ck ~Cr

i24 ~qk

~qr

3
5

(5.43)

Here the subscript \k" indicates states that are \kept" and subscript \r" refers to states that

are \removed". The number of states kept, nk, and the number of states removed, nr, add

up to the original number of states, ns, in the state vector q or ~q.

The reduced state space system can then be written as:

_�q = �Azd�q + �Bzdd = ~Akk~qk + ~Bkd

z = �Czd�q = ~Ck~qk
(5.44)

Here the superscript bar refers to the reduced (= truncated and previously internally

balanced) system. The reduction operation to go from the balanced system (5.43) to the

reduced system (5.44) can also be represented by a multiplication with a selection matrix P ,

de�ned as:

P =
h
Inkxnk 0nkxnr

i
(5.45)

Then the reduced system can be written as:

_�q = �Azd�q + �Bzdd = P ~AzdP
T �q + P ~Bzdd = PTAzdT

�1P T �q + PTBzdd

z = �Czd�q = ~CzdP
T �q = CzdT

�1P T �q
(5.46)

where the feedthrough matrix is �Dzd = 0. The operator P is a rectangular matrix, which

selects the states to be kept. This truncation method is sometimes casually referred to as

\brutal" truncation. The reason for this designation is that the e�ect of the removed states

on the DC-gain is lost and the reduced and original system do - in general - not have matching

DC-gains.
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Static condensation is a more sophisticated reduction method, which is not treated here,

but which can achieve matching DC-gains followed by removal of the resulting D-term as

shown by Gutierrez [45, p.171]. In general, however, the disturbance and sensitivity analysis

results obtained for a truncated model are very good, since \DC" contributes only negligibly

to the RMS values and the sensitivities for zero-mean processes. By reducing the system,

the number of states is reduced from ns to nk, while keeping the essential dynamics of the

system. The e�ect of balancing the original system on the state transition matrix, Azd, and

the subsequent truncation operation are illustrated for the SIM Classic model (version 1.0,

closed ACS and ODL loops, open FSM loops) in Figure 5.4.
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Figure 5.4: Sparsity structure of (a) the original SIM-Classic A-matrix (308 states)
according to equation (5.20); note cross-coupling terms. (b) Balanced
A-matrix (308 states, fully populated) and (c) the reduced A-matrix
(120 states, fully populated).

5.3.1 RMS and Error Bound for Reduced Systems

First the RMS can be computed using the reduced system matrices directly by substituting

Equation (5.44) into Equation (A.26). The RMS performance of the i-th performance metric

is computed as:

��zi =
�
�Czd;i��q

�CT
zd;i

�1=2
(5.47)

Now we have introduced an approximation, since the matrix P selects only the nk states

that have Hankel singular values �Hi above a threshold value that we have de�ned before the

reduction step. Thus, it is evident that ��zi 6= �zi = ~�zi , since states have been removed and
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so has their contribution to the resulting RMS. We are �rst interested in �nding the error

in the RMS value, ��zi , introduced due to the model reduction. The absolute error for the

RMS is the di�erence between the RMS of the original (balanced) and the reduced system.

This di�erence is always a positive quantity, since the variance (RMS squared) is by de�nition

always a positive quantity. This error term, designated as "RMS , is a function of the number of

states removed during model reduction, nr. Additionally we will develop a simple error bound,

which allows prediction of the maximum expected relative error on the RMS based only on

the singular values of the states that have been (or will be = apriori estimate) removed.

First the error on the performance RMS can be computed as the di�erence in the variance

of the performance as predicted by the original and reduced models :

��2zi = �2zi � ��2zi = ~�2zi � ��2zi =
~Czd;i�~q

~CT
zd;i � �Czd;i��q

�CT
zd;i

= ~Czd;i�~q
~CT
zd;i � ~Czd;iP

T��qP ~CT
zd;i =

~Czd;i
�
�~q � P T��qP

�
~CT
zd;i

(5.48)

The expression in round brackets is interesting enough to be analyzed in more depth. We have

previously established that the balanced state covariance matrix �~q is equal to the Hankel

singular value matrix �H . We use this fact to rewrite (5.48) as

��2zi = ~�2zi � ��2zi =
~Czd;i

�
�~q � P T��qP

�
~CT
zd;i =

~Czd;i

0
@�~q �

2
4 ��q 0nkxnr

0nrxnk 0nrxnr

3
5
1
A ~CT

zd;i

= ~Czd;i

0
@�H �

2
4 �k 0nkxnr

0nrxnk 0nrxnr

3
5
1
A ~CT

zd;i =
~Czd;idiag

0
BBB@01xnk ; �Hnk+1; : : : ; �

H
ns| {z }

removed singular
values

1
CCCA ~CT

zd;i

= ~Czd;i�R
~CT
zd;i

(5.49)

The matrix �R is thus a diagonal matrix of the same size as the Hankel singular value matrix

�H , but with only the removed singular values retained and zeroes everywhere else as de�ned

in Equation (5.63). The original RMS performance can then be written as:

�zi = ~�zi =
�
��2zi +

�
~�2zi � ��2zi

��1/2
=
�
��2zi +

~Czd;i�R
~CT
zd;i

�1/2
(5.50)

This can be used to obtain a closed form expression for the RMS prediction error due to

balanced model reduction.

"RMS = ��zi = ~�zi � ��zi =
�
��2zi +

~Czd;i�R
~CT
zd;i

�1=2
� ��zi (5.51)
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The relative error for the RMS �zi due to model reduction is obtained by dividing equation

(5.51) by the nominal RMS value for the i-th performance metric �zi :

��zi
�zi

=
��zi
~�zi

= 1� ��zi�
��2zi +

~Czd;i�R
~CT
zd;i

�1=2 (5.52)

It is noteworthy that the reduced model performance ��zi must �rst be computed before the

relative RMS error according to (5.52) can be obtained. It would be useful to have an upper

bound for the relative RMS error ��zi/�zi before the model reduction is actually performed.

In order to develop this error bound we �rst consider the algebraic quantities a and b , where

we assume that a > b > 0. If we know the di�erence of the squares of a and b we can write

a2 � b2 = (a+ b) (a� b) (5.53)

Then the following inequality is true, since a > b > 0 :

2a (a� b) > (a+ b) (a� b)| {z }
a2�b2

> 2b (a� b) (5.54)

Dividing inequality (5.54) by 2b and only focusing on the two last terms we obtain

a2 � b2

2b
> a� b (5.55)

Now we substitute for a = ~�zi and b = ��zi and knowing that the inequality ~�zi > ��zi > 0

holds, we get an error bound on the RMS for ��zi = ~�zi � ��zi such that

~�2zi � ��2zi
2��zi

> ��zi (5.56)

Dividing by the reduced model performance RMS ��zi yields the desired relative error bound

��zi
��zi

<
~�2zi � ��2zi
2��2zi

(5.57)

At this point we will attempt to express the inequality in terms of the singular values of the

system. Substituting (5.49) in the numerator and (5.47) in the denominator of (5.57) we can

write

��zi
��zi

<
~Czd;i�R

~CT
zd;i

2 � �Czd;i��q
�CT
zd;i

=
1

2

~Czd;i�R
~CT
zd;i

~Czd;iP T��qP ~CT
zd;i

=
1

2

~Czd;idiag
�
01xnk ; �Hnk+1; : : : ; �

H
ns

�
~CT
zd;i

~Czd;idiag
�
�H1 ; : : : ; �

H
nk
; 01xnr

�
~CT
zd;i

(5.58)
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Taking the trace operator of both sides of (5.58) is allowed, since they represent scalars. The

C matrices cannot be eliminated inside the trace operator, since they are not square matrices.

Thus a tight error bound on the relative RMS error is given by:

��zi
��zi

<
1

2

trace
h
~Czd;i�R

~CT
zd;i

i
trace

h
~Czd;i�K

~CT
zd;i

i (5.59)

The computation of this tight error bound involves taking the trace of the expressions in

the numerator and denominator of (5.59). Note that all the information in (5.59) is available

before the RMS of the reduced system ��zi is actually computed. A more elegant, but also

more conservative error bound is achieved, when we realize that the magnitude of the entries

in the ~Czd;i-matrix (it actually is a vector, since it only comprises the i-th row of ~Czd) is

decreasing in a way such that the following inequality generally holds true:

trace
h
~Czd;i�R

~CT
zd;i

i
trace

h
~Czd;i�K

~CT
zd;i

i < trace [�R]

trace [�K ]
(5.60)

A more compact error bound for the relative RMS error due to model reduction is:

��zi
��zi

<
1

2
�

nP
i=k+1

�Hi

kP
i=1

�Hi

(5.61)

This error bound is useful for determining the number of states nk to be kept during model

reduction in order to achieve a desired accuracy of the RMS prediction. The error term "RMS

is computed as follows:

"RMS = ��zi = ~�zi � ��zi =
�
��2zi +

~Czd;i�R
~CT
zd;i

�1=2
� ��zi (5.62)

We see that we must save the unreduced, balanced matrix ~Czd if we want to obtain an exact

value for "RMS . Here the diagonal matrix �R 2 Rnsxns contains only the removed Hankel
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singular values at the appropriate locations and zeroes everywhere else.

�R =

2
66666666666664

0

. . .

0

�H
nk+1

. . .

�Hns

3
77777777777775
=

2
4 0nkxnk 0nkxnr

0nrxnk �nrxnr
H

3
5

(5.63)

The relative error of the RMS performance is:

��zi
�zi

=
��zi
~�zi

= 1� ��zi�
��2zi +

~Czd;i�R
~CT
zd;i

�1=2 (5.64)

The computation of the RMS error "RMS and the relative error ��zi=�zi requires knowledge

of the reduced system RMS performance ��zi , the balanced, unreduced system matrix ~Czd,

the Hankel singular value matrix �H and the truncation threshold nk. An apriori (= before

model reduction) bound on the relative error, which only necessitates knowledge of the Han-

kel singular values and the truncation threshold nk was derived above, and is given by the

inequality:

��zi
��zi

<
1

2
�

nsP
i=nk+1

�Hi

nkP
i=1

�Hi

(5.65)

The inequality is half the ratio of the sum of removed Hankel singular values over the

sum of kept singular values. This inequality is useful, since it can be used to determine the

number of states nk that have to be kept in the model in order to achieve a desired accuracy

on the RMS prediction. Gutierrez [45] for example has previously stated that \In actuality,

the model reduction process should be iterative in nature, and states should be removed until

performance predictions begin to deviate by a predetermined amount." This suggests that the

model should be run several times until the correct level of reduction is found. This time

consuming procedure can be avoided by applying the error bound in (5.65) apriori. If for

example an accuracy of 1 % is desired on the RMS performance prediction, the left side of the

inequality becomes 0.01. Then the expression on the right hand side can easily be evaluated
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for all values of nk between 1 (all states except one truncated) and ns � 1 (only one state

truncated), since the Hankel singular values �Hi are known7. The correct value for nk is then

the smallest number of states, which still meets the above inequality. Also the error bound is

less conservative than the model reduction bound typically used in the literature, see Equation

(5.66) from Reference [143, p. 159].



G(s)� �G(s)



1
� 2

nsX
i=nk+1

�Hi (5.66)

To illustrate this, the Hankel singular values, i.e. the diagonal elements of �H , for a multi-

DOF system, as presented in Subsection 5.4.2, are shown graphically in Figure 5.5(a). For the

MDOF example an allowable RMS error < 0:5% leads to a truncation level nk = 14 (dashed

vertical line), where the original system had 42 states. Further details for this example are

shown in Subsection 5.4.2.
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Figure 5.5: (a) Hankel singular values and model truncation threshold level nk for
RMS error < 0.5 %. The original MDOF model has 42 states, of which
14 must be kept in the reduced model. (b) Validity of RMS error bound
for various truncation levels according to Inequality (5.65)

The relative RMS error (MDOF example) as a function of the truncation level, nk, is

shown in Figure 5.5(b). It can be seen that the conservative error bound from Inequality

(5.65) is valid. The conservatism ratio, de�ned as the ratio of error bound (5.65) over the

actual relative RMS error, was observed to decrease from 46794 with only 2 states removed to
7In practice we remove 2 states at a time, since 2 states are required to represent an open-loop structural

mode or a complex conjugate pair of poles.
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a ratio of 1.169 with only 2 states kept in the system. This means that the RMS error bound

(5.65) becomes increasingly accurate the more states are truncated.

5.3.2 Sensitivity and Error Bound for Reduced System

Having computed the RMS performance Jz;i � ��zi and associated error for the balanced

reduced system, we want to obtain the sensitivity @��zi=@pj and its error. The derivation of

the sensitivity for the reduced, balanced system is straightforward with Equation (5.39) as a

starting point. This is due to the fact that the selection matrix P is not a function of any

system parameters pj, since it contains only ones and zeros. The sensitivity of a reduced,

internally balanced state space system is given as:

@��zi
@pj

=
1

2��zi
� @��

2
zi

@pj
(5.67)

Here the partial derivative with respect to the variance is obtained from the transformed gov-

erning sensitivity equation (TGSE) with the reduced system matrices from (5.44) substituted

in.

@��2zi
@pj

= trace

2
4��q

@
�
�CT
zd;i

�Czd;i

�
@pj

3
5+ trace

"
�Li

(
@ �Azd

@pj
��q +��q

@ �AT
zd

@pj
+
@
�
�Bzd

�BT
zd

�
@pj

)#
(5.68)

After taking into account (5.39) and some matrix algebra we obtain

@��2zi
@pj

= trace

2
4T�1P T��qP

�
T�1

�T @
�
CT
zd;iCzd;i

�
@pj

3
5+

trace

"
�Li

(
PT

@Azd

@pj
T�1P T��q +��qP

�
T�1

�T @AT
zd

@pj
T TP T + PT

@
�
BzdB

T
zd

�
@pj

T TP T

)#
(5.69)

The last Equation (5.69) shows that the sensitivity of a reduced, internally balanced

system can be calculated, if the matrix partial derivatives @Azd/@pj , @Bzd/@pj , @Czd/@pj

of the original system8, the balancing transformation matrix T and the selection matrix P

are known. This is an important result, since it was previously not possible to compute

this quantity due to the fact that the balancing transformation and model reduction removes

the explicit dependency of the parameters pj in the system matrices �Azd , �Bzd and �Czd , as

mentioned by Gutierrez [45, p.176].

8These derivatives are identical to the ones computed in the previous framework [45].
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The Lagrange multiplier matrix for the reduced system obeys:

�AT
zd
�Li + �Li �Azd + �CT

zd;i
�Czd;i = 0 (5.70)

In the case where there is only one performance metric i = 1 , i.e. �Czd 2 R1xnk , the Lagrange

multiplier matrix �Li , is equal to the diagonal matrix of Hankel singular values �nkxnk
H that

are kept in the system, �Li = �nkxnk
H , where

�nkxnk
H =

2
6664
�H
1

. . .

�Hnk

3
7775 (5.71)

Consider that in this particular case the solution to the Lyapunov equation (5.70) is already

known, since there is only one performance metric. In this instance it is actually compu-

tationally cheaper to compute the sensitivity for a balanced system (reduced or unreduced)

than for an unbalanced system, provided the transformation matrix T is already known. A

computational bene�t also exists in the general case (of several performances), since we can

now solve for the Lagrange multiplier matrices for the reduced system according to (5.70).

The more performance metrics we have, the larger we expect that bene�t to be. This bene�t

was quanti�ed in Section 5.1, see Equation (5.8).

As was the case for the computation of the reduced system RMS performance ��zi , we can

expect that the reduced system sensitivity @��zi=@pj will be in error due to the removal of

system states. A sensitivity error bound similar to the error bound for the performance RMS

(5.65) has been derived in Appendix B.4.��������
�
@�zi
@pj

@��zi
@pj

�������� <
nsP
i=1

�
�Hi
�2

nkP
i=1

�
�Hi
�2 � 1 +

1

2
�

nsP
i=nk+1

�Hi

nkP
i=1

�Hi

(5.72)

The ratio involving the squared singular values on the right side is generally very close to 1,

since the Hankel singular values that are kept in the system are often larger by several orders

of magnitude than the singular values that have been removed. In practice it is then observed

that the relative error bound on the sensitivity (5.72) is nearly identical to the relative error

bound on the RMS itself according to (5.65). This bound involves the same ratio of Hankel

singular values as for the relative RMS error in addition to a ratio of the Hankel singular

values squared.
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Again the sensitivity error bound was shown to be valid for the MDOF example for all

truncation levels in Figure 5.10(b), see Subsection 5.4.2. The sensitivity error bound is

signi�cantly less conservative than the RMS error bound and the conservatism ratio (ratio

of error bound to actual maximum sensitivity error) is independent of the truncation level.

It shall be noted that in this case the error bound is on the absolute value of the relative

sensitivity error, since the sensitivity @��zi=@pj could be positive or negative.

5.4 Veri�cation and Examples

In order to validate the equations for the performance (RMS) and sensitivity of internally bal-

anced and reduced systems from the previous sections, a number of problems were computed

numerically. These examples include the single degree-of-freedom oscillator, a multi-degree-

of-freedom (MDOF) system and a large-order SIM closed-loop model.

5.4.1 Single Degree of Freedom Oscillator

The single-degree-of-freedom (SDOF) oscillator is the simplest dynamic mechanical system.

It was introduced in Section 2.1. Ignoring the disturbance and control �lters here, the system

consists of a discrete mass m , which is attached to a �xed boundary condition via a linear

spring of sti�ness k and a dashpot with damping constant c. The system is driven with a

zero-mean unit-intensity white noise disturbance force d. We want to determine the root-

mean-square (RMS) value of the displacement response x of the system and the sensitivity of

this RMS with respect to the system parameters.

We have arbitrarily chosen the nominal physical parameters m = 0:7 [kg], k = 1200 [N/m]

and c = 0:3 [Ns/m], which results in the following modal parameters:

Modal frequency : ! =
p
k/m = 41:4 [rad/sec] = 2�f ) f = 6:6 [Hz]

Modal damping : � =
c

2
p

km
= 0:0052 [ - ]

Modal mass : m̂ = o�Tmo� =
1p
m
�m � 1p

m
= 1 [ - ]

Mode shape : o� =
1p
m

= 1 .195 [kg - 1/ 2]

(5.73)
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The closed form expression for the RMS was found to be equal to:

�z =

0
@ 1

2�

+1Z
�1

jGzd (j!)j2 d!
1
A1/2

=
�
Czd�qC

T
zd

�1/2 =
s

o�4

4m̂2�!3
=

1p
2ck

(5.74)

The physical mass, m, drops out of the expression for the RMS due to the assumption of

proportional damping. Substituting the numerical values c = 0:3 and k = 1200 in (5.74) we

obtain a RMS value of �z = 0:037268 [m] . This result is used as a reference for the numerical

answers. Now that we have an expression for �z, we want to compute the sensitivity with

respect to the di�erent parameters of the system. For large order systems a closed form

expression for �zi , such as (5.74), cannot be obtained and the numerical method, which

employs Equation (5.39) has to be used. Next the RMS was computed for the internally

balanced SDOF system using (5.30). As expected we obtain the same answer: ~�z = �z =

0.037268 [m]. Internal balancing does not a�ect the performance for the SDOF oscillator

model. Subsequently the sensitivities of the RMS with respect to the physical parameters

m, c and k and the modal parameters !, �, m̂, o� were computed for the balanced system

using the Transformed Governing Sensitivity Equation (5.39). The results, including a �nite

di�erence approximation, are shown and compared to the original system in Table 5.3.

Table 5.3: Comparison of RMS sensitivities for single degree-of-freedom (SDOF)
physical parameters (top) and modal parameters (bottom), including
a 1% �nite di�erence (fd) approximation. Normalized Sensitivities are
snorm and ~snorm for the balanced system.

p
��z
�p

(fd)
@�z
@p

snorm
@~�z
@p

~snorm

m 0 0 0 �5:7 � 10�16 0

c �0:061651 �0:062113 �0:5 �0:062113 �0:5

k �1:54 � 10�5 �1:55 � 10�5 �0:5 �1:55 � 10�5 �0:5

! �0:001334 �0:001350 �1:5 �0:001350 �1:5

� �3:5736 �3:6004 �0:5 �3:6004 �0:5

m̂ �0:036899 �0:037268 �1:0 �0:037268 �1:0
o� 0:062673 0:062361 2 0:062361 2

It is diÆcult to directly compare the sensitivities of various parameters with each other,
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since they can vary by several orders of magnitude and are generally in di�erent units. There-

fore normalization has been proposed by Gutierrez [45, p.112] according to:

snorm =
pnom

(�z)nom
� @�z
@p

=

@�z
(�z)nom
@p

pnom

� % change in �z
% change in p

(5.75)

This quantity can be interpreted as the percent change in the performance RMS for a given

percent change in the value of the parameter p in the vicinity of the nominal parameter

value pnom . This is used in Figure 5.6 to compare the normalized sensitivities of all SDOF

oscillator parameters with each other. As expected, the normalized sensitivity with respect

to the (physical) mass m is zero. This is consistent with (5.74). The normalized sensitivities

for all other parameters are negative with exception of the mode shape ("displacement") o� .

Intuitively this is satisfying. If we increase the damping ratio, �, for example, we will expect

a decrease in the displacement RMS of the mass, therefore the associated sensitivity has to

be negative. Also an increase in the spring sti�ness k or the damping coeÆcient c will lead to

a smaller RMS value.
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Figure 5.6: Comparison of normalized sensitivities for SDOF system parameters
(from top to bottom). Modal parameters: �o mode shape, mmod =
m̂ modal mass, � modal damping ratio, ! modal frequency. Physical
Parameters: k spring sti�ness, c damping coeÆcient and m (physical)
mass.

Figure 5.6 also shows that the normalized sensitivities in the unbalanced (left subplot) and
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balanced case (right subplot) are equal. We can conclude that the extension of the performance

prediction and sensitivity analysis framework to balanced systems as presented in Section 5.2

has been validated for single degree-of-freedom, single mode systems. The next section will

\inductively" extend the proof to multi-degree-of freedom systems. Model reduction cannot

be investigated for the SDOF case, since both states are needed to represent the resonance.

5.4.2 Multiple Degree-of-Freedom Problem

A multiple degree-of-freedom (MDOF) problem extends the veri�cation of the balanced and

reduced sensitivity analysis. Figure 5.7 shows a structure consisting of nm masses that are

interconnected by linear springs of sti�ness ki. The sti�ness of the �rst spring is computed

from the relationship k1 = EA=lo for the axial sti�ness of a rod. Each following spring

constant is a multiple of the �rst one such that ki = i � k1 , where i 2 [1; nm � 1] . Both ends

of the chain have a free boundary condition. The central mass is mhub = m(nm+1)=2 and is

signi�cantly larger than the other masses, marm. It is assumed that a random white-noise

disturbance force d of unit-intensity Sdd = 1 acts on the hub mass. This arrangement could

represent a simpli�ed interferometer model.

......
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k

k
k

m1 m2 m(nm-1)/2

m
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m mnm-1 mnm(nm+3)/2

modal damping: ζ

(nm+1)/2x
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disturbance: d

1 2

(nm-1)/2 nm-1

star light

Figure 5.7: Mass-spring model of a multi-degree-of-freedom (MDOF) structure rep-
resenting an interferometer with free-free boundary conditions.

The �rst performance metric, Jz;1 = RMS(z1), is the RMS of the displacement of the

hub mass itself, whereas the second performance, Jz;2 = RMS(z2), is the optical pathlength

di�erence (OPD) between the left and right arm. The performance matrix, Czx, relates the
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physical degrees of freedom x to the performances z .

z =

2
664 z1

z2

3
775 =

2
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(5.76)

Note that the number of masses, nm, is always an odd number. We arbitrarily choose

nm = 21 . The sti�ness k1 is computed as k1 = 3:55 � 104 [N/m], the hub mass is chosen to be

mhub = 120 [kg] , the appendage mass is marm = 10 [kg] and the modal damping ratio is set

to � = 0:005 for all modes. The equations of motion are then written as:2
666666666666664
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. . .
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After solving the generalized eigenvalue problem
h
K � !2

jM
i
�j = 0 the system is written in

orthonormal second order modal form as follows:

_qp =

2
664 O I

�
2 �2Z


3
775

| {z }
Azd

qp +

2
664 0

M̂�1o�T�d

3
775

| {z }
Bzd

d

z =

�
Czx

o� 0

�
| {z }

Czd

qp

(5.78)

where 
, Z, o�, M̂ , �d , Czx are the modal frequency matrix, the modal damping matrix, the

mass-normalized modeshape matrix, the mass-normalized modal mass matrix, the disturbance

in
uence coeÆcient matrix and the performance in
uence coeÆcient matrix respectively.
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The RMS performances for the system in (5.78) are computed according to (A.25). Next

the system is internally balanced according to the procedure in Section 5.2. Again the perfor-

mances are computed according to Equation (5.30). Next model reduction is performed using

the procedure outlined in Section 5.3. The error bound (5.65) is used with a tolerance of 0.5%

on the RMS for both performances. The RMS values for the reduced system are computed

according to (5.47). The resulting truncation threshold, nk, says that only 14 out of the 42

states of the original system need to be kept as shown in Figure 5.5(a). The RMS results for

the original, the balanced and the reduced system are shown in Table 5.4.

Table 5.4: Comparison of RMS results [in �m] for MDOF example.

model # of states cond(A) �z1 ��z1=�z1 �z2 ��z2=�z2

original 42 281848.16 496.4692 0 389.9561 0

balanced 42 303.5706 496.4692 0 389.9561 0

reduced 14 68.9907 496.4682 2:125 � 10�6 389.9088 0.0001213

The RMS comparison shows that the RMS for the original and balanced system are equal

as expected. Removing (42-14=28 states) causes a relative RMS error of 0.0002125 % for z1

and 0.01213 % for z2, which is below the 0.5% error bound. Also it can be seen that the

reduced system is much better conditioned than the original system. Figure 5.8 contains the

disturbance to performance transfer functions for both performances. The full order system

(42 states) and reduced order model (14 states) are shown. It can be seen that the RMS

of the hub displacement is mainly driven by the low-frequency (rigid body) behavior of the

system. We expect the sensitivities with respect to modal parameters to be small for z1 . In

the second performance z2 the rigid body mode is not observable and the 
exible dynamics

of modes 2, 3 and 4 dominate the RMS response. This could be con�rmed with a frequency-

domain performance analysis and cumulative RMS plots as presented by Gutierrez [45]. We

expect the modal parameter sensitivities for these critical modes to be large.

The normalized modal sensitivities for the MDOF problem were computed using Equa-

tions (5.67-5.71) for the modal frequencies !j, modal damping �j and modal mass m̂j. The

modes j = 2; 3; : : : ; 10 were taken into consideration as shown in the horizontal bar charts of

Figure 5.9 for performance z1.
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Figure 5.8: Disturbance to performance transfer functions for MDOF example. Left
column: z1. Right column: z2. The reduced transfer function (14 states
- solid line) is shown along with the original unreduced system (42 states
- dashed line).

Three cases are compared: (1) original full order model (42 states), (2) reduced model (14

states) and (3) a 1% �nite di�erence approximation. The results are seen to match well up to

Mode 7. For higher modes two important phenomena are observed.

First we see that the modal sensitivities of the reduced system do not match the (correct)

sensitivities of the full order system. This is due to the fact that the states, which correspond to

the modes of interest have been truncated (7 modes = 14 states). It is thus not meaningful to

try and compute the modal sensitivities of a mode which is no longer represented in the system

dynamics. Secondly the �nite di�erence approximation starts to break down for higher order

modes. As indicated by Gutierrez [45], it has been observed empirically that the errors of �nite

di�erence approximations of the sensitivity increases with model order due to numerical ill-

conditioning. The normalized sensitivity comparison for the second performance z2 is shown

in Figure 5.10(a).

As expected the normalized modal sensitivities (modes j=2 to 5) for the second perfor-
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Figure 5.9: (MDOF) Normalized modal sensitivity comparison for performance 1

mance z2 are larger than for z1. Subsequently the validity of the sensitivity error bound

(5.72) was veri�ed numerically by comparing the absolute value of the relative sensitivity er-

ror j�(@�zi/@pj)/(@��zi/@pj)j with the conservative error bound from (5.72). Figure 5.10(b)

shows that the conservative error bound on the sensitivity from (5.72) is valid in the MDOF

case. The maximum relative sensitivity error for the modal parameters of the three dominant

modes 2, 3 and 4 is plotted and compared to the upper error bound from (5.72). It is interest-

ing to observe that the error bound (5.72) is signi�cantly tighter than the RMS error bound

(5.65). The conservatism ratio9 lies between a value of 1.75 and 6.73 and does not show the

same dependence on the truncation level, nk, as the RMS error bound did.

So far the sensitivity computations for the balanced and reduced MDOF model have

only been validated for modal parameter sensitivities. We need to verify that the physical

parameter sensitivities for the reduced model would still be accurate within the error bound

(5.72). This is presumably true since the contribution to the sensitivity is captured in the

critical modes (j = 1; 2; : : : ; 7) via the chain rule as shown in (5.79-5.81).

9Ratio of sensitivity error bound (5.72) over the actual maximum sensitivity error computed with (B.58).
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Figure 5.10: (a) Normalized Sensitivity comparison for performance 2. (b) Numer-
ical validity of relative sensitivity error bound (5.72) in the MDOF
case. The maximum sensitivity error (Max SENS Error) is taken from
the set of modal parameter sensitivities for performances i = 1; 2 and
modes j = 2; 3; 4

The physical parameter sensitivities in the MDOF example are computed with respect to

the mass of the hub, mhub, the mass parameter of the arms, marm, and the spring sti�ness

parameter, k = k1. The physical parameter sensitivities are signi�cantly more expensive to

compute than the modal parameter sensitivities. This is due to the fact that the physical

parameters mhub, marm and k do not explicitly appear in the matrix derivatives shown in

Equation (A.32). The derivatives with respect to physical parameters of the system matrices

are computed as:

Azd ! Azd (
 (p)) and
@Azd

@p
=

NX
j=1

�
@Azd

@!j
� @!j
@p

�
(5.79)
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Czd ! Czd (
o�(p)) and

@Czd
@p

=
NX
j=1

nmX
i=1

�
@Czd
@o�ij

� @
o�ij
@p

�
(5.81)

where N is the number of modes and nm is the number of masses (equal to the number of

degrees-of freedom).

Inside the expressions (5.79)-(5.81) the derivatives of the modal frequency, mode shapes

and modal mass with respect to the physical parameter p are required. These derivatives have
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been computed with the methods suggested by Gutierrez [45, p.126-133], including Nelson's

method [107] for the mode shape derivatives @o�ij=@p . The derivatives of the global mass

matrix @M=@p and sti�ness matrix @K=@p are required and can be easily computed since the

parameters mhub , marm and k appear explicitly in (5.77). The governing sensitivity equation

of the internally balanced and reduced system from (5.69) is implemented as follows:

@��2zi
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= trace

"
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)# (5.82)

The physical parameter sensitivities for a balanced reduced system can be computed pro-

vided we know the matrix derivatives of the original system. The results of the physical

parameter sensitivity analysis for the MDOF case are normalized and shown in Figure 5.11.
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Figure 5.11: Normalized Sensitivities for physical parameters (MDOF problem), left
shows performance 1 (hub displacement RMS), right shows perfor-
mance 2 (OPD RMS) sensitivities.
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The left subplot contains the result for performance z1, whereas the right subplot shows

the results for performance z2. The results are veri�ed with a 1 % �nite di�erence approxima-

tion of the sensitivities. We see that the performances are most sensitive to the spring sti�ness

parameter k. Increasing the mass on the extremities, i.e. increasing the parameter marm will

actually increase the resulting RMS. This is a counterintuitive result at �rst, since we gener-

ally expect that increasing any mass parameter will always lower the RMS of a displacement

related performance metric. This kind of insight is valuable for system optimization, isoper-

formance and uncertainty analyses. We see that in order to increase the performance of the

"interferometer" (i.e. lower the RMS values of z1 and z2) in the presence of the white-noise

hub disturbance d we should increase the mass of the hub, decrease the mass in the arms and

increase the sti�ness of the arms.

The results (1) are for the original system (42 states), (2) for the reduced system (14

states) and (3) for a 1% perturbation size �nite di�erence approximation. The physical pa-

rameter sensitivity analysis for the original system cost 1:28 � 107 
oating-point operations,

where it cost only 6:70 � 106 
oating-point operations for the reduced system (factor 2 sav-

ings). We can also see that the answers for the three systems (1), (2) and (3) are very

close. The error bound (5.72) predicts that the absolute value of the relative sensitivity error

j�(@�zi/@pj)/(@��zi/@pj)j should be smaller than 0.0033. The largest relative sensitivity error
was found to be equal to 0.0024 for the sensitivity @�z2=@marm. Thus the sensitivity error

bound (5.72) is shown to be valid for physical parameter sensitivities as well.
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5.4.3 Application to SIM Classic (V1.0)

In order to demonstrate the usefulness for realistic models, a disturbance and modal sensitivity

analysis was conducted for a closed-loop model of SIM. The model of SIM Classic and the

disturbance analysis results for the full-order (308 states) and reduced model (110 states) are

shown in Figure 5.12.
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Figure 5.12: (a) SIM Classic; (b) FEM with ray trace for interferometer #1; (c)
Disturbance PSD's for RWA disturbances; (d) Cumulative RMS plot
(top) and PSD (bottom) for the total OPD of interferometer #1, where
the dashed line is the reduced model (110 states) and the solid line is
the full order model (308 states).

The disturbance analysis (PSD-method according to [45]) was performed using a 4-wheel
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reaction wheel assembly (RWA) as disturbance input, see Figure 5.12(c). The power spectral

density (PSD) of the performance (Total OPD interferometer #1) along with its cumulative

RMS curve is shown in Figure 5.12(d). We see that a performance around 4.2 nm RMS is

predicted, which meets the 4.4 nm requirement. The cumulative RMS plot shows that 6 \crit-

ical "modes are responsible for the RMS. Subsequently a Lyapunov analysis was conducted

with the full order (308 states) and a balanced reduced model (110 states). The equations

derived above were used to compute the RMS and modal parameter sensitivities after they

were incorporated in the functions dist analysis.m and sens analysis.m.

The RMS results for the original and the reduced system match closely, when using the

PSD method, where the precision is mainly a function of the resolution of the frequency

vector. The RMS predicted by the Lyapunov method di�ers by 5.2% between the original

(308 states) and the reduced model (110 states), which is in excess of the 0.2% allowed by the

RMS error bound. This is likely due to numerical ill-conditioning as discussed below. The

results are compared in Table 5.5. The reduced system solves at 4% the CPU time of the

Table 5.5: RMS Results comparison for SIM Classic

Results Full Model Red Model

# of states 308 110

RMS (PSD) 4.21 nm 4.21 nm

RMS (Lyap) 4.3321 nm 4.1077 nm

CPU (Lyap) 39.567 sec 1.552 sec

original system for a 65 % reduction in the number of states. (This doesn't include the CPU

time for the balancing and reduction process itself).

The normalized modal parameter sensitivity results for 10 modes of the system are com-

pared for the original system (308 states) and the reduced system (110 states) of SIM Classic

on the left and right of Figure 5.13(a) and (b), respectively. The results are in good agreement

with the exception of some of the less dominant modes. It is noticeable that the agreement is

better for \critical" modes of the system compared to \non-critical" modes (i.e. modes that

do not signi�cantly contribute to the performance RMS). It took 78.2 seconds to solve for the

original system sensitivities, but only 3.3 seconds to solve for the reduced system.

Signi�cant and persistent numerical problems were initially encountered, when trying to
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(b) Balanced Reduced Model

Figure 5.13: (a) SIM Classic modal parameter sensitivities for 10 modes and full-
order system (308 states, 78.2 seconds CPU time), (b) Modal sensi-
tivity results for balanced and reduced model (110 states, 3.3 seconds
CPU time).

produce these results. The reason, discussed below, has to do with observability/controllability

of the system. The results in Figure 5.13 were obtained by successfully applying Mallory's

pre-balancing method for model reduction [85]. The key to the pre-balancing method is that

the system is brought into 2x2 block-diagonal form and each of these 2x2 blocks is balanced

individually. Then nearly uncontrollable states are removed based on a user-de�ned tolerance

before the overall T -matrix is computed.

Another noteworthy result is that the �nite di�erence validation of the modal sensitivities

became possible with the balanced reduced system. Gutierrez has previously reported the in-

ability of the �nite di�erence approximation to validate the analytical sensitivities for large

order ill-conditioned systems [45, p.124] . This is due to the fact that the state covariance

matrix solution does not vary smoothly with small changes in a system parameter due to

ill-conditioning. This ill-conditioning of the system is removed with the method presented in

this thesis. The resulting �nite di�erences for the balanced reduced system closely match the

analytical answers as shown by the bar chart in Figure 5.14(b). The �gure shows the logarithm

of the relative percent di�erence between the analytical sensitivities and the �nite di�erence

approximations for the original system (left) and the balanced, reduced system (right). This

quantity was computed as log f100 � (@�z/@p���z/�p) = (@�z/@p)g, where the term with

the partials comes from the analytical sensitivity calculations and the �-term comes from
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the �nite di�erence approximation. Thus, a value of one for a horizontal bar indicates a 10%

di�erence between the analytical sensitivity and the �nite di�erence approximation. A value

of two indicates a 100% di�erence.
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Figure 5.14: (a) Very large errors between �nite di�erence approximation (1%) and
the analytical modal parameter sensitivities for the full order model;
(b) Good approximation with �nite di�erences (1%) in the reduced
model case. Mode numbers correspond to modes in Figure 5.13

Some numerical conditions must be met in order to successfully apply the balanced and

reduced LTI system extensions to the DOCS framework that are presented in this chapter.

First the system must be asymptotically stable. This means that no poles (of the appended,

closed-loop system) are allowed on the j!-axis or in the right half-plane (RHP). Physically

this would mean that the system response diverges for a �nite input disturbance and that the

performance RMS is not bounded. Secondly the system must be in a minimal realization.

This requirement is harder to meet since larger order models (SIM, NGST, TPF and Nexus)

invariably all feature pole-zero cancellations after initial model assembly, which are indicative

of uncontrollable or unobservable states. Even though these states do not prevent a solution

for �q to be found (by de�nition they don't contribute to the RMS), they cause the system

to be ill-conditioned. This causes problems when we try to compute the balancing matrix T .

Finally we want the system (and the Azd- matrix in particular) to be numerically well con-

ditioned from the start. Certain canonical realizations of the disturbances or the compensator

and the traditional 2nd-order modal form of the structural dynamics are counterproductive

in this sense. Alternate realizations such as the real modal form, see Equation (5.16), are
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recommended. All these conditions point to the need for a reliable, 
exible and robust model

reduction and conditioning module in DOCS. This need has been addressed by Uebelhart

[136].

An interesting observation was made when the RMS for OPD #1 for SIM Classic (308

states) was initially computed for the original and the balanced (unreduced) system and

the answers were compared. Even though the RMS resulting from the Lyapunov approach

should be identical for both cases (similarity transformation), the answers di�ered by roughly

10% (4.33 nm versus 3.85 nm) even though the system was merely balanced and no states

were removed. The cause of this disturbing result was linked to the presence of unobserv-

able/uncontrollable states in the original system. The erroneous results for the modal pa-

rameter sensitivities in this case are shown in Figure 5.15(a). The correct answers are shown

in Figure 5.13. The erroneous answers in Figure 5.15(a) are produced without any warn-

ing, which suggests that numerical conditioning checks and safeguards as well as engineering

judgement are indispensable.
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Figure 5.15: (a) Erroneous modal parameter sensitivity results for SIM Classic ob-
tained when balancing matrix T is computed without �rst removing
unobservable and uncontrollable states, e.g. via pre-balancing. (b)
Hankel singular values for original closed-loop SIM Classic model.

The numerical reason for the erroneous result is that very small (very small means on the

order of eps = 2:2204 � 10�16, the numerical 
oating-point accuracy of the computer) Hankel

singular values are associated with the (nearly) unobservable/uncontrollable states. These

very small numbers are inverted in the computation of T or T�1, where they become very big

192



numbers, even though they correspond to insigni�cant states. Consider the last term in the

following equation, which inverts the Hankel singular values in Moore's method [102]:

T�1 = �
�
1
2

c UT
c Ub�

�
1
2

H (5.83)

This leads to ill-conditioning of the T -matrix itself and to numerical errors in the TGSE.

Mallory's pre-balancing method (gmxobal.m) [85] was successfully applied to solve this prob-

lem, since the pre-balancing algorithm removes the unobservable/uncontrollable states before

the inversion. This leads to a balanced, reduced, minimal and well-conditioned system and ac-

curate answers for the RMS and sensitivities. This is a key element in the accurate prediction

of isoperformance contours.

5.5 Summary

The cost of solving a Lyapunov Equation (5.1) is shown to be roughly 50 �n3s. Since hundreds
or even thousands of Lyapunov equations have to be solved in a multivariable isoperformance

problem, e�orts were undertaken to �nd a solution more eÆciently. This can be achieved in

two di�erent ways. The �rst way is to diagonalize the integrated state space system, (1.1),

and to apply the new, fast Lyapunov solver presented in Section 5.1. This drops the exponent

of ns in the Lyapunov solution cost from a value of three to two. The second approach is

to reduce the number of states, ns, while retaining the important information in the model.

Section 5.2 discussed improvements in performance prediction and sensitivity analysis for

similarity transformed systems, including derivation of the transformed governing sensitivity

equation (TGSE). Section 5.3 derived error bounds for performance and sensitivity analysis

for reduced systems. Using these methods analytical sensitivities can be accurately computed,

even when matrix derivatives, such as @Azd=@pj , are only known with respect to the original

matrices in the \assembly" realization. The equations are veri�ed with a single degree-of-

freedom example, a MDOF example and an analysis of the SIM Classic model. The sum

of these contributions enables a meaningful isoperformance analysis for realistic, large order

systems.
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Chapter 6

Experimental Validation

The goal of the experimental validation is to demonstrate the ability of the isoperformance

methodology to accurately predict performance contours for a physical laboratory testbed in

a 1-g environment. This chapter provides a testbed description, lays out the experimental

approach, presents results from the testbed characterization and discusses a comparison of

theoretical predictions with experimentally measured isoperformance contours.

6.1 Testbed Description

The DOLCE1 testbed shown in Figure 6.1 was explicitly designed for this purpose. The

main feature of DOLCE is that system parameters can be varied over a large range. This is

di�erent from the cantilever truss employed by Gutierrez [45], which was used for physical

parameter sensitivity validation via small perturbations of masses and sti�nesses. The four

variable parameters on DOLCE are shown in Table 6.1.

Table 6.1: Variable parameters of DOLCE testbed.

Symbol Parameter Range Units

Vs excitation RMS voltage 0.1-1.0 [Vrms]

mp payload mass 0-200 [lbs]

ms seismic mass 30-850 [grams]

ks suspension spring sti�ness 80-216 [lbs/in]

1The testbed name contains the initials of all students who worked on its design and development: Dusty

DeQuine, Olivier de Weck, Laila Elias and Cemocan Yesil.
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6.1.1 Physical Test Setup

Figure 6.1(a) shows the testbed which, starting from the top, is comprised of an uniaxial

vibration exciter (shaker), with a seismic mass, ms, driven by a band-pass �ltered (0-100

Hz), random excitation voltage, Vs. Next the upper stage contains a single small bay of a

square truss and a coupling plate. The lower stage consists of a large square truss, a weight

bed holding a payload mass, mp, and an aluminum sandwich base plate. Finally an axial

stabilization system and four (4) suspension springs of sti�ness ks complete the arrangement.

The shaker disturbance force, Fd, excites the testbed mainly in the vertical (axial) direction

and simulates an on-board mechanical disturbance source. The induced axial motion is sensed

and recorded as described below. This can be thought of as representing jitter of a spacecraft,

with the soft suspension springs providing a functions similar to the attitude control system

(ACS). The lower stage is then analogous to a spacecraft bus, while the upper stage represents

the payload. The testbed is open-loop, i.e. no controller was implemented.

ks

mp

Vs

Stabilization

System and

Suspension

Lower

Stage and

Weightbed

Upper

Stage

Shaker
Fd

z(t)
base plate

displacement

ms

coupling plate

composite plate

(a)

Legend
bar element
rigid body 
plate element
spring element

grid point
fixed boundary
mass or inertia

DOLCE FEM
(IMOS V5.0)

input node (40)

output node (17)

(b)

Figure 6.1: (a) DOLCE testbed setup in laboratory. (b) Finite element model
(FEM) of DOLCE using IMOS version 5.0.
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6.1.2 Finite-Element Model

A �nite element model (FEM) of the testbed was constructed using the Matlab toolbox

IMOS (version 5.0), see Reference [62]. The model consists of 44 nodes with 188 independent

degrees-of-freedom (after Guyan reduction). A graphical rendering of the FEM is shown in

Figure 6.1(b).

The truss members are represented by beam elements, while quadrilateral plate elements

are used for the coupling plate (uplate) and the composite plate (splate). This latter plate is

actually an aluminum sandwich plate with two 1.9 [mm] thick face sheets and a 3.15 [mm] thick

core sheet. The core consists of two half inch thick hexagonal honeycomb cores. This sturdy

construction was necessary in order to accommodate a payload mass up to 200 [lbs] without

signi�cant elastic deformation. The four suspension springs are modeled with uniaxial spring

elements (celas), while the shaker and its attachment is modeled as a rigid body (rbe2).

Concentrated masses (conm) are placed at the nodes of the truss elements, accounting for the

ball masses, as well as at the locations of the seismic mass, ms, and the payload mass, mp,

respectively. The lower grid points of the suspension springs are assigned a �xed boundary

condition, which is representative of the attachment of the testbed to the concrete slab in the

laboratory.

The input node for the disturbance force, Fd, is #40, while the z-displacement of node

#17 is used to predict the axial motion of the testbed. The assembly of the FEM, including

solution of the generalized eigenvalue problem takes 0.82 [sec] (Pentium III, 650 MHz) and

requires 13.1 million 
oating point operations. The �rst 
exible mode is a rocking mode and

occurs at a frequency of 6.28 [Hz] withmp = 100 [lbs] and ks = 168 [lbs/in] suspension springs.

A listing of the FEM de�nition �le is contained in Appendix D.

6.1.3 Disturbance Model

The shaker (Model 4809 Br�uel & Kjaer) generates a random axial disturbance force, Fd, whose

magnitude and frequency content depend on the excitation voltage, Vs, and the seismic mass,

ms. The seismic mass, ms, was determined to be 339.75 [grams]; it is held constant in this

experiment. This device is meant to simulate the disturbances generated by vibrating on-

board machinery on a spacecraft (e.g. reaction wheel, cryocooler), albeit at a signi�cantly

higher force level.
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A sample time realization of the measured disturbance force is shown in Figure 6.2(a). The

sensor consists of a uniaxial load cell (see Table 6.2 for speci�cation), which is attached to the

seismic mass and measures the disturbance force, Fd. The power spectral density (PSD) of the

disturbance force, Sdd, can be seen in Figure 6.2(b). The bandpass nature of the disturbance

is evident, where the low frequency rollo� below 20 [Hz] is due to the combined ampli�er,

shaker and load cell (sensor) dynamics. The high frequency rollo� was chosen at 100 [Hz].

This bandpass nature is typical from many disturbance sources, such as reaction wheels [89].
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Figure 6.2: (a) Shaker disturbance force, Fd(t), sample time history for shaker volt-
age, Vs = 0:5 [Vrms]. (b) Averaged disturbance PSD Sdd - 25 averages.

6.1.4 Performance Model

The performance is the root-mean-square (RMS) of the composite (base) plate displacement,

z(t):

Jz = E
�
zT z

�1=2
(6.1)

This quantity can be computed from the time history of z(t) directly or alternatively from the

PSD, Szz. The performance Jz is computed by integrating under Szz and taking the square

root.

Jz =

2
642

fmaxZ
fmin

Szz (f) df

3
75
1=2

(6.2)

The second approach was chosen here since it allows averaging of the PSD's and a more

accurate result. Figure 6.3(a) shows a sample time history of the base plate displacement,
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z(t), as measured with the proximitor (gap sensor). The corresponding (averaged) power

spectral density function, Szz, in units of [�m2=Hz] is shown in Figure 6.3(b). The features

of this function are discussed below.
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Figure 6.3: (a) Sample time history of displacement, z(t), for Vs = 0:5 [Vrms] and
mp = 160 [lbs]. (b) Averaged performance PSD Szz - 25 averages.

This performance metric would correspond to jitter of the spacecraft bus in a real space system.

The performance signal, z(t), is measured via an inductive proximitor, which acts as a gap

sensor (eddy current gap sensor by Bentley XL 5mm). The gap sensor is very sensitive and was

calibrated to 0.425 V/mil of displacement with a LB-11/70 Laser Displacement Sensor. Also

a Sunstrand DC accelerometer was installed in order to corroborate the gap sensor results.

The sensor speci�cations are summarized in Table 6.2.

Table 6.2: DOLCE Testbed sensor speci�cations.

Sensor Model Range Calibration

Force Sensor (LC) 208A02 0-889.6 [N] 94.87 � 6.67 [N/V]

DC Accelerometer QA-1400 � 15 [g] 1.0 � 0.01 [g/V]

Laser Displacement Sensor LB-11/70 60-140 [mm] 10.28 � 0.3 [mm/V]

Proximitor (Gap Sensor) 3300-XL 5mm 10-100 [mil] 2.35 [mil/V]

The sensor suite below the sandwich plate is shown in Figure 6.4. The load cell is attached

below the seismic mass (top of testbed) and cannot be seen on this picture.
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laser disp sensor

DC accelerometer

Figure 6.4: DOLCE Testbed Sensors

6.2 Experimental Approach

The experimental approach is presented in Figure 6.5(a). First the testbed was assembled,

instrumented and calibrated. It was decided to conduct a bivariate isoperformance test, with

the performance given by Equation 6.1. The variable parameters were the excitation voltage,

Vs, ranging from 0.1-1.0 [Vrms] as well as the payload mass, mp, ranging from 0-200 [lbs] as

shown in Figure 6.5(b). A test matrix was run on the testbed and recorded with parameter

increments �Vs = 0:1 [Vrms] and �mp = 10 [lbs], respectively. From this gridded data

isoperformance contours were extracted via linear interpolation, see Subsection 3.2.1.

Compare experimental
results and model predicitions

Assemble
Testbed

Test Matrix

spring-mass 
model

Theoretical
FEM

Updated
FEM

?

Insights

(a) Experimental Procedure (b) Variable Parameters

mp (payload mass)

Vs (excitation voltage)

Units: [lbs]
Lower Bound: 0
Upper Bound: 200
Step Increment: 10

Units: [Vrms]
Lower Bound: 0.1
Upper Bound: 1.0
Step Increment: 0.1

Figure 6.5: (a) DOLCE Experimental Approach. (b) Variable system parameters
mp and Vs.

Independently and without knowledge of the experimental results an apriori �nite element

model (FEM) was constructed (\original FEM"). This FEM was described in the previous

subsection, see Figure 6.1(b), and a complete listing of the IMOS model input deck is contained
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in Appendix D. Only assembly drawings, masses from scale measurements and catalogue

values for material properties and spring sti�nesses were used for this \original" (unupdated)

FEM. The predictions from this model would be equivalent to what could be expected from

isoperformance analyses for spacecraft in the conceptual and preliminary design phases, such

as NEXUS. For these types of early models system-level test data is usually unavailable.

A more accurate prediction is expected from an updated FEM, which has its physical

parameters tuned such that the FEM and experimental transfer function (measurement model)

from Fd to z coincide well. A tuning procedure similar to the one used by Gutierrez [45] was

used here. Finally the isoperformance contours for DOLCE are predicted with a single degree-

of-freedom (SDOF) model. This model lumps the entire testbed mass (30.585 [kg]) together

with the payload mass mp over the four suspension springs (in parallel) represented as a single

compliance. The damping ratio is assumed to be � = 0:02. The model of the SDOF oscillator

used here was previously introduced in Section 2.1.

The goal of the experiment is to gain insights by comparing di�erent performance contours

for the experiment with the ones predicted for the three models. In this way limitations of the

isoperformance methodology might appear, which would not be revealed by solving additional

theoretical problems.

6.3 Testbed Characterization

6.3.1 System Identi�cation

The transfer function (FRF) from disturbance (shaker) force to base plate displacement,

Gzd(s) = Z(s)=Fd(s), where s = j!, was obtained experimentally and by model prediction,

see Figure 6.6. For this system identi�cation the load cell (Fd) and the gap sensor (z) speci�ed

in Table 6.2 were used. The coherence function 
2(f) corresponding to the experimental

transfer function Z(s)=Fd(s) is shown in Figure 6.7. It can be seen that the coherence is

close to one from roughly 15 to 75 [Hz], thus providing a good estimate of the disturbance to

performance transfer function in that region. Below 15 [Hz] the coherence drops because the

shaker dynamics prevent a lot of low frequency disturbance energy to be generated. Above

75 [Hz] the attenuation of the bandpass �lter rollo� starts to take e�ect.
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As can be seen there are two observable modes in the bandwidth up to 100 Hz. The

�rst mode at 10 Hz is the axial base suspension mode, where the testbed translates vertically

up and down on the 4 compression springs. The second mode at 65 Hz is the coupling plate

bending mode, which causes a vertical displacement via the center rod. Mode shapes for these

two modes are contained in Figure 6.8.

mode 3 (10.2927 Hz) mode 6 (64.4872Hz)

Figure 6.8: DOLCE Testbed Observable Modes

As expected the SDOF model can only predict the �rst resonance. The original FEM

overpredicts the upper plate mode by roughly 10 Hz. The agreement between the updated

FEM and the experimental transfer function is very good.

6.3.2 Performance Testing

Next the testbed response was investigated as a function of the single parameter, mp. A

waterfall plot showing the power spectral density (PSD) of z as a function of mp is depicted

in Figure 6.9.

It can be seen that the axial suspension mode is dominant for all payload masses. As

expected the mode softens with increasing mass from about 10 Hz at mp = 0 [lbs] to 6 Hz at

mp = 200 [lbs]. The resonant plate mode at 65 Hz can also be seen, but it is much less clear

for larger mp. A higher frequency mode around 40Hz appears mp-invariant and we suspect

some structural non-linearity.
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6.4 Isoperformance Results and Interpretation

At each parameter combination the time histories of Fd(t) and z(t), where recorded and the

performance Jz = Jz(Vs;mp) was computed with 25 averages according to Equation (6.2).

The results from the test matrix are shown in Figure 6.10.
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Figure 6.10: DOLCE Experimental Test Matrix (Vs;mp).

The peak displacement RMS value of 57.6 [�m] is obtained for the maximum excitation

level (Vs = 1:0 [Vrms]) with an empty weight bed (mp = 0 [lbs]). This is intuitively satisfac-
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tory, since at this point the maximum disturbance energy enters the system (about 14.86 [N]

of force RMS), while the disturbability of the system is at a maximum. Recall that the plant

transfer function for such a system has a 1=m term in the numerator. Conversely the lowest

response (\best performance") is found for Vs = 0:1 and mp = 200.

This information is used to obtain isoperformance contours at the 7.5, 15 and 30 [�m]

levels (Figure 6.11). The basis for obtaining the experimental isoperformance contours is the

test matrix with Vs and mp shown in Figure 6.10 and the linear interpolation scheme from

Subsection 3.2.1.
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Figure 6.11: DOLCE Testbed: Comparison of experimental versus theoretical isop-
erformance contours at the levels: Jz =7.5, 15 and 30 [�m] with
p1 = mp and p2 = Vs.

Similar contours are predicted for the SDOF model and the FEM's (original and updated).

This suggests that the axial suspension mode is dominant in most of the trade space. Excellent

correlation between experiment and theory is found at low forcing levels, see the 7.5 �m

contour. Deviations are found for larger forcing levels (15 and 30 �m contours), even though

the general trends are still predicted correctly by the isoperformance models.
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The cause for this deviation is diÆcult to determine, but is likely due to non-linear e�ects

in the structural plant as the shaker amplitude increases. To illustrate this statement the

performance PSD's, Szz, have been plotted for the experimental data (blue - solid line) and the

FEM prediction (red - dashed line) at two di�erent points in the trade space, see Figure 6.12.

Subplot (a) shows the PSD's for point \A" in Figure 6.11 with mp = 0 [lbs] and Vs = 0:1

[Vrms]. Here good agreement between theory and experiment is found. Subplot (b) on the

other hand represents Point \B" in Figure 6.11 which experiences the maximum disturbance

level. Figure 6.12(b) shows that the discrepancy in performance prediction is manly due to

the second mode (coupling plate bending). This mode is not visible in the test data and does

not contribute to the experimental cumulative RMS. This is due to a non-linear e�ect, which

has not been investigated in greater detail.

0 10 20 30 40 50 60 70 80 90 100
10

-5

10
0

Frequency [Hz]

PS
D

 [
µm

2 /
H

z]

Performance PSD : RMS = 7.0294 [µm]
exp
fem

0 10 20 30 40 50 60 70 80 90 100
0
5

10
15
20
25
30

C
um

ul
at

iv
e 

Jz
 [

µm
]

Comparison mp=000 [lbs], Vs=0.1 [Vrms]

Point "A"

(a)

0 10 20 30 40 50 60 70 80 90 100
10

-4
10

-2
100

102

104

Frequency [Hz]

PS
D

 [
µm

2 /
H

z]

Performance PSD : RMS = 21.65 [µm]
exp
fem

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40
C

um
ul

at
iv

e 
J z

 [
µm

] Comparison mp=100 [lbs], Vs=1.0 [Vrms]

Point "B"

(b)

Figure 6.12: (a) Comparison of PSD Szz (bottom) and cumulative RMS plot (top)
between experiment and FEM prediction for con�guration: mp = 0
[lbs], Vs = 0:1 [lbs]. Good Agreement. (b) Comparison of PSD Szz
(bottom) and cumulative RMS plot (top) between experiment and
FEM prediction for con�guration: mp = 100 [lbs], Vs = 1:0 [lbs]. Poor
Agreement.

In conclusion it is found that the isoperformance prediction capability is good at low

disturbance levels which are representative of the vibration environment on space based opto-

mechanical systems. Caution must be exercised if non-linearities are suspected in any part

of the system and particularly if performance predictions are to be made at high excitation

levels. Additional parameters such a ks and ms could be included in future tests.
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6.5 Summary

The goal of the experimental validation was to demonstrate the ability of the isoperformance

methodology and toolbox to predict isoperformance contours on a real physical system. The

1-g DOLCE testbed was designed to have multiple disturbance and structural parameters,

which are variable over a large range. The testbed characterization of the transfer function

from disturbance force, Fd(t) to base displacement, z(t), shows that two modes are dominant

in the bandwidth of interest up to 100 Hz. These are the fundamental, axial suspension mode

and the �rst coupling plate bending mode. The fundamental mode softens from 10 to 6 [Hz]

as more payload mass is added.

A test matrix was experimentally determined with the RMS excitation voltage of the

shaker, Vs, and the payload mass, mp, as independent parameters. Theoretical isoperfor-

mance contours were predicted with a SDOF spring-mass model, an un-updated FEM and an

updated (tuned) FEM. These contours were compared with experimental contours obtained

from the test matrix via linear interpolation. Good agreement was shown for the 7.5 �m

RMS displacement level, where the excitation amplitude is small. This corresponds to the

low vibration levels expected on precision opto-mechanical spacecraft. At higher disturbance

levels (15 and 30 �m contours) the agreement is not as good and deviations between the

experimental and theoretical performance are likely due to structural non-linearities.
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Chapter 7

NEXUS Spacecraft Study

The previous two chapters provide con�dence that the isoperformance methodology is

applicable to large order, multivariable systems and that isoperformance predictions for real

physical systems are possible. The purpose of the NEXUS spacecraft study which is presented

in this chapter, is to demonstrate the usefulness of the isoperformance methodology on a

realistic conceptual design model of a high-performance spacecraft.

The chapter �rst provides a description of the NEXUS spacecraft as well as the underlying

integrated model. A disturbance analysis (= performance assessment) with time simulation

and Lyapunov analysis is carried out for an initial vector, po, of 25 variable system parameters.

These variables represent selected disturbance, plant, optics and controls parameters of the

system. After establishing that the initial design does not meet the performance requirements

for wavefront error (RMMS WFE) and line-of-sight jitter (RSS LOS), a sensitivity analysis

is conducted in order to obtain the Jacobian, rJz. A bivariate and multivariable isoperfor-

mance analysis is presented for NEXUS. The application of isoperformance to multiobjective

optimization and error budgeting completes the chapter.

7.1 NEXUS Description

NEXUS was planned as a technology risk-reduction experiment in space and as a precursor

to NGST with an anticipated launch date of 2004. The innovative technology areas for

this project are lightweight optical telescope assembly (OTA) fabrication and veri�cation,

cryogenic instrument and actuator development, deployable sunshield technology and image-

based wavefront sensing and control. A graphical representation of the launch and on-orbit
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con�gurations of NEXUS is shown in Figure 7.1. The NEXUS project was oÆcially canceled

in December 2000 as a part of the NGST rescoping exercise. It was nevertheless decided to

use NEXUS for this case study, since the conceptual model is well developed and many lessons

learned from previous NGST Yardstick models [24, 103, 23] were incorporated.

on-orbit
configuration

Fairing

launch
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Instrument
Module

Sunshield

Pro/E models
© NASA GSFC

0 1 2

meters

OTA

Delta II

Figure 7.1: NEXUS Spacecraft Concept

NEXUS features a 2.8 m primary mirror, consisting of three AMSD-sized primary mirror

(PM) petals. Two of these are �xed and one is deployable as shown in Figure 7.1 on the left

side. The total mass of the spacecraft is nominally 810 [kg] at a cost of $M 105.88 (FY00),

which includes launch and mission operations. The expected power consumption is 225 [W]

and the target orbit is the Lagrange point L2 of the Sun/Earth system with a projected launch

date of 2004. The optical telescope assembly (OTA) also features a 3-legged spider, which

supports the secondary mirror (SM). The instrument module contains the optics downstream

of the tertiary mirror and the camera (detector). The sunshield is large, deployable and

accounts for the �rst 
exible mode of the spacecraft structure around 0.2 Hz.

The challenge at a systems level is to �nd a design that will meet optical performance

requirements in terms of pointing and phasing of the science light. This has to be done taking

into account the 
exible dynamics of the system, the control loops for attitude and pointing

as well as the on-board mechanical and electronic noise sources. The following analyses are

carried out in order to �nd such a well \balanced" design, using the isoperformance technique.
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7.2 Integrated Modeling

7.2.1 Finite Element Model

The integrated model for NEXUS contains a structural �nite element model (FEM) in the de-

ployed con�guration, see Figure 7.2. The model was initially created in FEMAP/NASTRAN

and subsequently translated to IMOS [62]. The advantage of IMOS is that it can easily ma-

nipulate the model for parametric trade studies (such as isoperformance) inMatlab, whereas

Nastran is better suited for the analysis of large, high-�delity point designs. This model

features 273 grid points, 678 independent degrees-of-freedom after Guyan reduction and is

optimized for use as a dynamics model below � 100 [Hz]. Figure 7.2 shows the important

locations at which disturbance and control inputs enter as well as important output nodes for

the ACS as well as the locations where optical elements are mounted.

X
Y
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RWA and
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SM (202 )

sunshield

2 fixed PM
 petals

deployable
 PM petal ( 129 )
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Instrument

Spacecraft bus
(84 )

t_sp

I_ss

Legend

m_SMK_zpet

m_bus

K_rISO

K_yPM
(149,169 )( 207)

Figure 7.2: NEXUS Finite Element Model. Important I/O grid points (nodes) and
variable design parameters are shown.

The primary mirror petals are rigid body elements, but the actuators are modeled as

spring elements. The sunshield is approximated as four 
exible beams with the membrane

added as distributed non-structural mass (nsm). The instrument is modeled as a point mass

with inertia matrix. The secondary spider support structure is modeled with three 
exible

bipods. The variable FEM parameters are shown in Table 7.1 under \plant parameters".
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7.2.2 Optics Model

The Cassegrain optics of NEXUS consist, among others, of a three petal primary mirror with

an equivalent diameter of 2.8 [m]. Two of the petals are �xed (PM segments #2 and 3) to

the primary optical bench, while the third petal (PM segment #1) is deployable. The hinge

sti�ness, Kzpet, is one of the variable design parameters considered in Table 7.1. The light

from distant science targets and guide stars is then re
ected from the concave primary and

directed towards the convex secondary mirror (SM). Note that the optical boresight axis in

the optics model (ZEMAX) is in the +z direction. The back end optics consist of a fold mirror,

a focal tertiary mirror, a deformable mirror (DM), a 
at fast steering mirror (FSM), several

dichroics and camera fold mirrors and, �nally, the exit pupil and the detector focal plane. A ray

tracing diagram of the NEXUS optical train is shown in Figure 7.3. The optical prescription

contains a total of 20 optical elements, including the source reference plane (object) and the

detector focal plane (image).

(a) NEXUS Optical Train (Side View) (b) NEXUS Optical Train (Isometric)

Reference(1)
Primary
Mirror (2-4)

Secondary
Mirror (5)

Secondary
Mirror (5)

Fold (6)

Tertiary (7)

FSM (9)

DM (8)

Detector
Focal Plane (20)

+z

Figure 7.3: NEXUS Optical Train modeled with ZEMAX. (a) Side View. (b) Iso-
metric View. Selected mirror surfaces are labeled according to their
element number (iElt) in the NEXUS OTA prescription. Key optics
data: PM f/#=1.25, Magni�cation M=12, back focal length BFL=0.2
[m], SM diameter 0.27 [m], f/15 beam at Cassegrain focus, f/24 telescope
at focal plane, same as NGST. Plate scale = 2.06 [masec/�m].

Ray tracing according to the method developed by Redding and Breckenridge [120] is

used to characterize the e�ect of perturbations in the positions and rotations of the optical
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elements. The motion of optical elements a�ects the image quality of NEXUS. This e�ect is

characterized by the dependence of the image centroid and wavefront error on the translation

and rotation of optical components. The two performance metrics of interest are the root-

mean-mean-square wavefront error, Jz;1 = RMMS WFE, and the root-sum-square line-of-sight

jitter, Jz;2 = RSS LOS. The optical linear sensitivity matrices for these performances with

respect to the translations and rotations of the optical elements were computed with MACOS,

see Reference [83] for details. The wavefront error and centroid are then computed with the

following, linearized relationships:

Wi =Wo;i +
ndofP
j=1

@Wi

@uj
��uj where i = 1; 2; : : : ; nrays

Cx =
ndofP
j=1

@Cx
@uj

��uj and Cy =
ndofP
j=1

@Cy
@uj

��uj
(7.1)

where Wo;i is the residual design wavefront error of the i-th ray, @W=@u, is the wavefront

sensitivity matrix, u is a vector of displacements and rotations and @C=@u is the centroid

linear sensitivity matrix. A total of nrays=1340 rays are used for the analysis. The RMMS

metric averages the Wi's over the entire light bundle, while the LOS jitter metric is the

root-sum-squared (RSS) of Cx and Cy.

7.2.3 Disturbance Sources

There are four expected disturbance sources in the NEXUS integrated model (nd = 4). The

�rst is broadband reaction wheel noise, assuming a 4-wheel pyramid and uniform probability

density on the wheel speed distribution, with an upper (operational) wheel speed Ru. The

disturbance forces and torques are caused by static and dynamic imbalances, Us and Ud, as

well as higher harmonics. Figure 7.4 shows the typical \sawtooth" pattern of the broadband

disturbance PSD's for a single wheel along with low-order state space overbounds. This allows

including the pre-whitening �lters in the overall state space system, Szd.

The second disturbance is due to a linear Sterling cryocooler at drive frequency fc. This

device is used to cool the IR detector and is installed in the instrument module. The third

disturbance is attitude noise, which is based on rate gyro noise and star tracker noise measured

on the Cassini mission (JPL). Finally there is guide star noise, which is very sensitive to the

guider sampling rate, Tgs, and the guide star brightness, Mgs.
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Figure 7.4: NEXUS broadband reaction wheel disturbance model. Nominal param-
eters: Ru = 3000 [RPM], Us = 0:7160 [gcm] and Ud = 29:536 [gcm2].

7.2.4 Appended Dynamics and Controls

The appended dynamics of this system are shown in the block diagram of Figure 7.5. These

dynamics have also been cast in an equivalent state space form as shown in Equation 7.2. Note

that the subscripts refer to the respective subsystem dynamics: dw reaction wheel disturbance,

dc cryocooler disturbance, ds ACS sensor noise, dg guide star noise, p structural plant, ca ACS

controller and cf for the FSM controller.

_qzd =

2
6666666664

Adw 0 0 0 0 0 0

0 Adc 0 0 0 0 0

0 0 Ads 0 0 0 0

0 0 0 Adg 0 0 0

Bp1RCdw Bp2Cdc 0 0 Ap Bp3Cca 0

0 0 Bca2Cds 0 BcaCp Aca Bca3Ccf
0 0 0 BcfCdg Bcf

@C
@uCp1 0 Acf �BcfKfsmCcf

3
7777777775
qzd

+

2
6666666664

Bdw 0 0 0

0 Bdc 0 0

0 0 Bds 0

0 0 0 Bdg

0 0 0 0

0 0 0 0

0 0 0 0

3
7777777775

2
664
dRWA

dCryo
dACS
dFGS

3
775

z =

�
0 0 0 0 @W

@u Cp1 0 0

0 0 0 0 @C
@uCp1 0 �KfsmCcf

�
qzd + [0]1340x10 d

(7.2)
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Figure 7.5: NEXUS block diagram with 4 disturbance sources (RWA, Cryo, ACS
noise, GS noise) and 2 performances (RMMS WFE, RSS LOS). Simu-
lation implemented in Simulink as well as state space.

In summary the appended dynamics, Szd, of this system contain 320 states (ns = 320),

two performance metrics (nz = 2), four disturbance sources (nd = 4) and 25 variable design

parameters (np = 25). To the author's knowledge this is the �rst occurrence in the literature

were variable disturbance, structural, optics and control parameters are considered simultane-

ously. Mostly one �nds subsets such as controls/structures, but with the assumption of �xed

noise sources. Table 7.1 summarizes the variable design parameters in the NEXUS case study.

7.3 Disturbance Analysis

A disturbance analysis of the science target observation mode was carried out with the initial

parameters, po, given in Table 7.1. Results for LOS jitter are contained in Figure 7.6. The

bottom plot shows a sample time realization for 5 seconds and the centroid X location. The

middle plot shows the PSD of LOS jitter (RSS LOS) for a frequency domain and time domain

calculation. The top plot is the cumulative RMS of LOS jitter as a function of frequency.

One can see that a mode at 23 [Hz] contributes signi�cantly to LOS jitter (secondary tower

bending). The group of highly damped modes in the region from 3-10 [Hz] represents the

RWA isolator dynamics.
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Table 7.1: NEXUS Variable Design Parameters pj, j = 1; : : : ; 25.

Number Symbol Nominal Description Units

disturbance parameters

1 Ru 3000 Upper operational wheel speed [RPM]

2 Us 1.8 Static wheel imbalance [gcm]

3 Ud 60 Dynamic wheel imbalance [gcm2]

4 fc 30 Cryocooler drive frequency [Hz]

5 Qc 0.005 Cryocooler attenuation factor [-]

6 Tst 20 Star tracker update rate [sec]

7 Srg 3e-14 Rate gyro noise intensity [rad2/s]

8 Sst 2 Star tracker one sigma [arcsec]

9 Tgs 0.04 Guider integration time [sec]

plant parameter

10 mSM 2.49 mass of secondary mirror [kg]

11 KyPM 0.8e6 Primary mirror bipod sti�ness [N/m]

12 KrISO 3000 RWA Isolator joint sti�ness [Nm/rad]

13 mbus 0.3e3 Spacecraft bus mass [kg]

14 Kzpet 0.9e8 PM petal hinge sti�ness [N/m]

15 tsp 0.003 Spider wall thickness [m]

16 Iss 0.8e-8 Sunshield bending inertia [m4]

17 Ipropt 5.11 Propulsion system inertia [kgm2]

18 � 0.005 modal damping ratio [-]

optics parameters

19 � 1e-6 Centerline optical wavelength [m]

20 Ro 0.98 Optical surface re
ectivity [-]

21 QE 0.80 CCD quantum eÆciency [-]

22 Mgs 15.0 Magnitude of guide star [mag]

controls parameters

23 fca 0.01 ACS control bandwidth [Hz]

24 Kc 0.0 FSM/ACS coupling gain [0-1]

25 Kcf 2000 FSM controller gain [-]
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Another way to look at performance Jz;2 is to plot the time histories from the motions of

centroid X and Y versus each other. This has been done in Figure 7.7. The predicted RSS

LOS is 14.97 �m, versus a requirement of 5 �m1. Note that the RSS of the centroid jitter is

larger than the size of a single pixel (25 � 25 [�m]), which is undesirable.
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Figure 7.6: LOS Jitter initial disturbance analysis

The wavefront error performance is omitted here for simplicity. Table 7.2 shows an

overview of the predicted performance, using the initial parameters po. The wavefront error

1This requirement comes from the assumption of 25 �m pixel pitch and a desire to maintain LOS jitter

below 1/5 of a pixel.
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Figure 7.7: RSS LOS Centroid Jitter Plot on Focal Plane (NEXUS).

requirement (�=50) is nearly met, but the pointing performance has to improve by a factor of

roughly 3. This is not atypical for many isoperformance analyses with multiple performances

(nz > 1), where only a subset of performance requirements is initially close to being met.

Table 7.2: Initial Performance Analysis Results

Performance Lyap Time Req Units

Jz;1 RMMS WFE 25.61 19.51 20 [nm]

Jz;2 RSS LOS 15.51 14.97 5 [� m]

The next step is to conduct a comprehensive sensitivity analysis using the relationships

presented in Appendix A and the enhancements developed in Chapter 5 for large order sys-

tems.

7.4 Sensitivity Analysis

This section shows the results of a comprehensive sensitivity analysis for the 25 variable design

parameters of NEXUS which are shown in Table 7.1. The sensitivity produces the normalized
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Jacobian matrix (25� 2 matrix) evaluated at po

rJz = po
Jz;o

2
66664

@Jz;1
@Ru

@Jz;2
@Ru

� � � � � �
@Jz;1
@Kcf

@Jz;2
@Kcf

3
77775 (7.3)

which is graphically shown in Figure 7.8. Note that parameters Ru through Tgs are distur-

bance parameters, mSM through zeta are structural plant parameters, lambda through Mgs

are optical parameters and fca through Kcf are control parameters.

0.5 0 0.5 1 1.5

Kcf    

Kc     

fca    

Mgs    

QE     

Ro     

lambda 

zeta   

I_propt

I_ss   

t_sp   

K_zpet 

m_bus  

K_rISO 

K_yPM  

m_SM   

Tgs    

Sst    

Srg    

Tst    

Qc     

fc     

Ud     

Us     

Ru     

Norm Sensitivities: RMMS WFE

D
es

ig
n 

P
ar

am
et

er
s

p
nom

/J
z,1,nom

*∂ J
z,1

 /∂ p

analytical       
finite difference

0.5 0 0.5 1 1.5

Kcf    

Kc     

fca    

Mgs    

QE     

Ro     

lambda 

zeta   

I_propt

I_ss   

t_sp   

K_zpet 

m_bus  

K_rISO 

K_yPM  

m_SM   

Tgs    

Sst    

Srg    

Tst    

Qc     

fc     

Ud     

Us     

Ru     

Norm Sensitivities: RSS LOS

p
nom

/J
z,2,nom

*∂ J
z,2

 /∂ p

disturbance
parameters

plant

parameters

control
params

optics

params

Figure 7.8: NEXUS normalized sensitivity analysis results at po.

The RMMS WFE is most sensitive to the upper operational wheel speed, Ru, the RWA
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isolator sti�ness, KrISO, and the deployable petal hinge sti�ness, Kzpet. The RSS LOS

is most sensitive to the dynamic wheel imbalance, Ud, the RWA isolator sti�ness, KrISO,

structural damping, zeta, the guide star magnitude, Mgs and the FSM (�ne pointing loop)

control gain, Kcf . Interpreting these results one would expect for example that a 1.0 %

decrease in the isolator sti�ness, KrISO should lead to roughly a 1.5 % decrease in LOS

jitter. The sensitivity analysis can be used to select a subset of interesting parameters for

further analysis.

7.5 Bivariate Isoperformance

7.5.1 Imbalance versus Isolation

A bivariate isoperformance analysis is conducted for NEXUS using Jz;1 = RSS LOS as the

performance and the two most sensitive parameters from Figure 7.8, right column, as the pa-

rameters. Hence, dynamic wheel imbalance, Ud, is traded versus RWA isolator joint sti�ness,

KrISO, while constraining the performance to the requirement, Jz;2;req = 5[�m]. A graphical

representation of these two variable parameters in the context of the NEXUS spacecraft bus

design is shown in Figure 7.9.
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Design Parameter p1:
Dynamic Wheel Imbalance

NEXUS Spacecraft Bus Concept
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Hexapod Isolator Joint Stiffness

JPL 
Soft 6-axis Vibration Isolator 

Figure 7.9: NEXUS Bus design with a 4-wheel symmetric pyramid of ITHACO E-
wheels (39.3 [cm] diameter, 16.6 [cm] height, 10.6 [kg] mass each). See
Reference [130] for 6-axis Active Vibration Isolator design.
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The isoperformance contours (Figure 7.10) were obtained using the exhaustive search

algorithm developed in Subsection 3.2.1. This analysis required 1506.2 [sec] of CPU time

(Pentium III, 650 MHz processor) and a total of 2:51 � 1011 FLOPS. This is signi�cantly more
expensive than the analyses for the sample problems presented in Chapter 2. The use of the

fast, diagonal Lyapunov solver causes the FEM (mass and sti�ness) assembly time to be the

most time consuming operation instead of the solution of the Lyapunov equation for the state

covariance matrix, �q.
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Figure 7.10: NEXUS Bivariate Isoperformance analysis with p1 = Ud , p2 = KrISO
and Jz =RSS LOS.

The isoperformance contour at RSS LOS = 5 �m can be reached from the initial design,

po, by keeping the same amount of imbalance in the wheels (speci�cation value of E-wheel:

Ud = 60 [gcm2]) and softening the isolator to below 1000 [Nm/rad], thus reducing the isolator

corner frequency to roughly 1.2 Hz. Alternatively the isolator can remain the same and the

imbalance could be reduced to close to its lower bound, Ud=1 [gcm2]. The isoperformance

contour passes through these two points, so a combination of the above is likely to result in

the desired e�ect. Note that the performance degrades signi�cantly for sti�er isolator joints

and larger imbalances. The region in the upper right of Figure 7.10, where LOS jitter of 160
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�m is predicted, occurs, when the isolator modes coincide with other 
exible modes of the

NEXUS structure.

7.6 Multivariable Isoperformance

Since solutions, piso, in the isoperformance set I do not distinguish themselves via their per-

formance, we may satisfy some additional objectives. For the bivariate analysis in Section 7.5

for example it is not immediately clear whether it is more favorable or \expensive" to im-

prove the balancing of the reaction wheels or to build a \softer" hexapod isolator. Once the

(iso)performance requirements, Jz(piso) = Jz;req, are met one may consider competing cost

objectives Jc (control e�ort, implementation cost, system mass, dissipated power, etc.) or risk

objectives Jr (stability margins, sensitivity of performance to parametric uncertainty etc.).

Which combination of Jc and Jr to use is application dependent. A non-linear optimization

problem, given in (1.7) may be solved, whereby Qcc and Qrr are weighting matrices among the

cost and risk objectives and � is used to trade between cost and risk. The result is a family of

pareto optimal solutions, p�iso, which is presented to the designer. This type of multiobjective

analysis was demonstrated for the sample problems in Section 4.7.

In the NEXUS case a multivariable analysis was conducted for a subset of 10 out of the

25 design parameters from Table 7.1. The two performance objectives RMMS WFE and RSS

LOS were de�ned above. The cost and risk objectives are de�ned as follows:

� Jc;1 = Build-to Cost (closeness to \mid-range"), Equation (4.31)

� Jc;2 = Smallest FSM control gain, Kfsm

� Jr;1 = Percent performance uncertainty, Equation (2.7)

The three pareto optimal solutions, which each individually optimize one of the above

objectives, while meeting the isoperformance condition, are shown in the radar plot of Fig-

ure 7.11. Speci�cally, the isoperformance condition leads to the fact that all designs, p�iso,

asymptote to the same value in the cumulative RMS plot, as shown for RSS LOS in Fig-

ure 7.12.
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Figure 7.11: NEXUS Multivariable Isoperformance. Radar plot of 3 pareto optimal
designs. Jc;1 is best mid-range design, Jc;2 is the design with smallest
FSM gain, Jr;1 is the design with smallest performance uncertainty.
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The results for the NEXUS pareto optimal designs are summarized in Table 7.3.

Table 7.3: NEXUS pareto optimal designs

Jz;1 Jz;2 Jc;1 Jc;2 Jr;1

A 20.0000 5.2013 0.6324 0.4668 � 14.3 %

B 20.0012 5.0253 0.8960 0.0017 � 8.8 %

C 20.0001 4.8559 1.5627 1.0000 � 5.3 %

Even though these designs achieve the same WFE and LOS jitter performance, their

dominant contributors in terms of disturbance sources are likely di�erent. This leads naturally

to the application of isoperformance for dynamics error budgeting.

7.7 Error Budgeting

Error budgeting �nds a design, which balances the error contributions from all expected

sources (e.g. reaction wheel imbalances, sensor noise) and assesses the feasibility of an apriori

allocation. Table 7.4 shows the apriori allocation, 	, and the actual disturbance contributions,

	��, to the variance of RSS LOS for Design \A", which is chosen as the �nal design, p��iso.

Table 7.4: NEXUS error budget 	2

Error Source variance % Budget [�m] variance % Capability [�m]

RWA 50.00 3.54 0.92 0.499

Cryocooler 25.00 2.50 0.22 0.244

ACS Noise 5.00 1.12 0.00 7E-6

GS Noise 20.00 2.24 98.8 5.172

Total 100 5.00 100 5.2013

The error budget can be expressed in terms of the fractional contribution of the j-th

disturbance source to the i-th performance as

	i =

ndX
j=1

	i;j = J2
z;req;i (7.4)

The relative contributions to the performance can be shown by plotting the fractional
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contributions of the j-th error source on a sphere (not showing ACS noise). This sphere is

called the Error Sphere, see Figure 7.13.
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Figure 7.13: NEXUS Error Sphere for RSS LOS. Note: ACS sensor noise contribu-
tions not shown.

Error Budgeting is an obvious application of isoperformance, since an apriori error budget

will always result in the desired performance level. The advantage of using isoperformance

in this context is that a \capability" error budget, 	��, can be found, which is theoretically

achievable since it is based on the underlying integrated model.

7.8 Summary

This chapter demonstrates the usefulness of isoperformance on a realistic conceptual design

of a space telescope. NEXUS is chosen due to its interesting, 
exible dynamics and the pres-

ence of important disturbance, plant, control and optics parameters. An initial disturbance

and sensitivity analysis are conducted for an initial vector, po, of 25 design parameters. A

bivariate isoperformance analysis trades dynamic wheel imbalance, Ud, versus isolator corner

frequency, KrISO. A multivariable isoperformance analysis is conducted with 10 parameters.

By applying cost and risk objectives, such as implementation cost (closeness to \mid-range"),

smallest FSM control gain (Kcf ) and smallest performance uncertainty a set of three pareto
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optimal designs was identi�ed. The application of isoperformance to dynamics error bud-

geting is demonstrated by comparing an apriori allocation (\budget") with the error source

contributions of a pareto optimal design.
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Chapter 8

Conclusions and Recommendations

8.1 Thesis Summary and Conclusions

Precision opto-mechanical systems, such as space telescopes, combine structures, optics and

controls in order to meet stringent pointing and phasing requirements. In this context a novel

approach to the design of complex, multi-disciplinary systems is presented in this thesis in the

form of a multivariable isoperformance methodology. Chapter 1 gives an introduction into

the context and previous work and a rigorous mathematical de�nition of the problem using

the state space formulation and set theory. Three sample problems (single degree-of-freedom

(SDOF) oscillator, 2-DOF oscillator and ODL design) are developed in Chapter 2. These

problems are used throughout the thesis to gain intuitive understanding, to verify the correct

implementation of the governing equations and to test the algorithms before they are applied

to complex, large and expensive problems.

The isoperformance approach �rst �nds a point design within a topology, which meets the

performance requirements with suÆcient margins. This is mainly based on the performance

assessment and enhancement framework developed by Gutierrez [45], which is summarized

in Appendix A. The performance outputs are then treated as equality constraints and the

non-uniqueness of the design space is exploited by trading key disturbance, plant, optics and

controls parameters with respect to each other. Reasonable upper and lower bounds have to

be speci�ed for the design parameters.

The isoperformance problem is initially solved for only two variable parameters (np = 2)

and a single performance (nz = 1), see Chapter 3. Three algorithms (exhaustive search,

tangential contour following and cubic spline approximation) are developed and compared
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for the SDOF problem. While exhaustive search appears to be the most expensive, it does

not require gradient information and provides multiple contours via linear interpolation. The

algorithm, which shows most promise in the multivariable case is spline approximation. It,

however, is also the most restrictive, since it requires that the underlying performance function

Jz(p1; p2) is monotonic in at least one of the two parameters (no closed contours). The

bivariate isoperformance methodology is demonstrated for a number of sample problems and

for a conceptual model of SIM Classic.

The previous algorithms are generalized for the multivariable case (Chapter 4), when

np > 2. These algorithms are branch-and-bound, tangential front following and vector spline

approximation. The results are viewed as isoperformance contours, nomograms or radar-

plots. The challenges of computational complexity and graphical representation in the multi-

dimensional case are also addressed. It turns out that the isoperformance problem cannot be

solved in polynomial time as a function of the number of variable parameters, np. However,

a meaningful analysis for a limited set of parameters (np < 20) is reasonably achievable.

The challenges of large order models are addressed in Chapter 5 by presenting a fast

diagonal Lyapunov solver, apriori error bounds for model reduction as well as a governing

sensitivity equation for similarity transformed state space realizations. These contributions

enable sensitivity and isoperformance analyses for large order integrated models, which were

previously not possible. Proofs of the governing equations for similarity transformed systems

are contained in Appendix B.

The goal of the experimental validation (Chapter 6) is to demonstrate the ability of the

isoperformance methodology and toolbox to predict isoperformance contours on a real physi-

cal system. The 1-g DOLCE testbed was designed to have multiple disturbance and structural

parameters, which are variable over a large range. The testbed characterization of the trans-

fer function from disturbance force, Fd(t) to base displacement, z(t), shows that two modes

are dominant in the bandwidth of interest up to 100 Hz. A test matrix is experimentally

determined with the RMS excitation voltage of the shaker, Vs, and the payload mass, mp,

as independent parameters. Theoretical isoperformance contours are predicted with a SDOF

spring-mass model, an un-updated FEM and an updated (tuned) FEM. These contours are

compared with experimental contours obtained from the test matrix via linear interpola-

tion. Good agreement is shown for the 7.5 �m RMS displacement level, where the excitation

amplitude is small. This corresponds to the low vibration levels expected on precision opto-
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mechanical spacecraft. At higher disturbance levels (15 and 30 �m contours) the agreement is

not as good and deviations between the experimental and theoretical performance are likely

due to structural non-linearities.

Chapter 7 demonstrates the usefulness of isoperformance on a realistic conceptual design of

a space telescope. NEXUS is chosen due to its interesting, 
exible dynamics and the presence

of important disturbance, plant, control and optics parameters. A disturbance and sensitivity

analysis is conducted for an initial vector, po, of 25 design parameters. A bivariate isoperfor-

mance analysis trades dynamic wheel imbalance, Ud, versus isolator corner frequency, KrISO.

A multivariable isoperformance analysis is conducted with 10 parameters. By applying cost

and risk objectives, such as implementation cost (closeness to \mid-range"), smallest FSM

control gain, Kcf , and smallest performance uncertainty a set of three pareto optimal designs

was identi�ed. The application of isoperformance to dynamics error budgeting is demon-

strated by comparing an apriori allocation (\budget") with the error source contributions of

a pareto optimal design.

Isoperformance helps to avoid situations where very costly and hard-to-meet requirements

are levied onto one subsystem, while other subsystems hold substantial margins. It is sug-

gested that isoperformance is a useful concept in other �elds of engineering science such as

crack growth calculations in structures, see Appendix C. The isoperformance approach en-

hances the understanding of complex opto-mechanical systems by exploiting physical param-

eter sensitivity and performance information beyond the local neighborhood of a particular

point design. All of the thesis research objectives formulated in Subsection 1.3.1 were accom-

plished.
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8.2 Contributions

This thesis develops and validates a novel approach to the design of complex multi-disciplinary

systems. The following speci�c thesis contributions can be identi�ed:

1. Developed a methodology for identifying the locus of parameters that yields

constant H2 performance levels of an LTI system (isoperformance).

2. Applied isoperformance analysis to model-based error budgeting and

multiobjective optimization for dynamic systems.

3. Extended disturbance and sensitivity analysis to handle large size models

(up to 2200 states demonstrated), transformed state space systems,

as well as disturbance, plant, optics and control parameters.

4. Produced and validated a software toolbox for conducting 2D or

multivariable isoperformance analyses, compatible with DOCS.

5. Experimental validation of isoperformance technique on a

laboratory test article in 1-g with two parameters.

6. Demonstrated applicability of isoperformance technique for a

structural fatigue problem, suggesting use in other �elds.

8.3 Limitations

The limitations of the isoperformance framework are that it assumes Linear-Time-Invariant

(LTI) systems and operates on H2-performance metrics for zero-mean random processes. At

present transient performance metrics, such as the settling time presented in the ODL sample

problem (Section 2.3), can only be accommodated as additional objectives during multiob-

jective optimization but not during an isoperformance analysis. Furthermore the dynamics

are treated in continuous time (no z-domain capability). The algorithms (except exhaus-

tive search) require continuous and di�erentiable parameters and work within a given topol-

ogy/architecture. Finally it shall be mentioned that thermal dynamics have not been included,

since they tend to occur at much slower time scales and don't typically couple strongly to the


exible dynamics of a structure.
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8.4 Recommendations for Future Work

The recommendations for future work focus on removing some of the current limitations and

applying the isoperformance concept on a more holistic level in product design and system

architecture. Isoperformance meshes well with a product design philosophy called \satis�s-

ing". In this approach not a system that optimizes the performance is sought, but rather a

system that meets identi�ed customer performance requirements, while being designed in a

cost e�ective way. Speci�c recommendations for future research are:

� Robustify isoperformance toolbox on other projects

� Closed loop experimental validation (ORIGINS testbed)

� Extend methodology for discrete/continuous problems

� Extend methodology for non-steady-state/transients

� Investigate application to FEM updating/tuning

� Analyze e�ect of non-linearities on isoperformance contour predictions

� Automate step size determination for tangential front following in the multivariable case

� Investigate ways of generating simple functional approximations to the isoperformance

surfaces

� Research the relationship between isoperformance, parameter constraints and technology

roadmapping

� Link to emerging system architecture,and product design methodologies
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Appendix A

Summary of Disturbance,

Sensitivity and Uncertainty

Framework

The kernel of the current disturbance, sensitivity and uncertainty analysis framework was

originally developed by Gutierrez [45]. It is a powerful methodology for predicting the root-

mean-square (RMS)1 of the performance outputs, z, recast as the performance metrics Jz.

This performance prediction can occur using the time domain, PSD or Lyapunov approach.

Additionally a Lagrange multiplier approach is used to obtain the (exact) analytical sensitiv-

ities. The computation of sensitivities in the time-domain or frequency domain has not yet

been explored and remains for future work. The uncertainty analysis approach used in this

thesis is the �rst order approach. The purpose of this appendix is to provide a short summary

of the framework and the mathematics presented in [45], thus allowing this thesis to be self-

contained and clearly establishing the theoretical foundation upon which the isoperformance

methodology builds.

A.1 Disturbance Modeling

A disturbance analysis is required, when deterministic or stochastic disturbances w(t) are

present and it is unclear whether the performances Jz will remain within a required value Jz;req.

1or root-sum-square (RSS), root-mean-mean-square (RMMS)
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Note that generally w and Jz will be vectors. The disturbances w(t) can be undesired forces,

torques, base motion, sensor and actuator noise, among others. The correlation function of

the random process w(t) is de�ned as

Rww (t1; t2) = E
�
w (t1)w

T (t2)
�

(A.1)

where E [ ] is the expectation operator and w(t) is a vector of stochastic random processes. If

w(t) is stationary the values of w(t) will change over time, but the statistics of w(t) will not

and Rww is a function of the single time-lag � .

Rww (�) = E
�
w (t)wT (t+ �)

�
(A.2)

Assuming that all w(t) are zero-mean, the covariance matrix �w of the disturbance signals

is the value of the correlation matrix Rww for � = 0.

�w = Rww (0) =

2
666664

E
�
w2
1

�
E [w1w2] � � � E [w1wn]

E [w2w1] E
�
w2
2

� � � � E [w2wn]
...

...
. . .

...

E [wnw1] E [wnw2] � � � E
�
w2
n

�

3
777775

=

2
666664

�2w1
�w2w1

� � � �w1wn

�w2w1
�2w2

� � � �w2wn

...
...

. . .
...

�wnw1
�wnw1

� � � �2wn

3
777775

(A.3)

The simpli�cation in the covariance matrix �w can be made for zero-mean processes, since

for a typical term �wiwj
in the covariance matrix we can write

�wiwj
= E

�
(wi � �wi

)
�
wj � �wj

��
=

E [wiwj]�E
�
wi�wj

�| {z }
=0

�E [�wi
wj]| {z }

=0

+E
�
�wi

�wj

�| {z }
=0

= E [wiwj ] = �wiwj
(A.4)

where �wi
= E [wi] is the mean (expected value) of the i-th random process. The mean-square

values of the elements of w are simply the diagonal entries in the covariance matrix.

(�w)i;i = E
�
w2
i (t)

�
(A.5)

where wi (t) is the i-th element in w. If w is zero-mean, then the mean-square values and the

variances are identical.

�2wi
= E

�
w2
i (t)

�� (E [wi])
2| {z }

=0

= RMS2 (A.6)
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The (power) spectral density function Sww(!) can be obtained by taking the Fourier transform

of equation (A.2)

Sww (!) = F [Rww (�)] =

Z +1

�1

Rww (�) e
�j!�d� (A.7)

Note that the 1=2� factor is not included in the de�nition of the Fourier transform. Other

authors [141] place it in the Fourier transform formula. Either de�nition will produce the same

result in the end as long as the de�nition is used consistently. The inverse Fourier transform

of Sww (!) recovers the correlation function.

Rww (�) = F�1 [Sww (!)] = 1

2�

Z +1

�1

Sww (!) e
+j!�d! (A.8)

Evaluating (A.8) at � = 0 will produce the covariance matrix of w.

Rww (0) = �w =
1

2�

Z +1

�1

Sww (!) d! (A.9)

Equation (A.9) suggests an alternative way of calculating the mean-square values of w by

integrating under the spectral density functions, namely

�2wi
= [�w]i;i =

1

2�

Z +1

�1

[Sww (!)]i;i d! (A.10)

The diagonal elements of the spectral density function matrix Sww (!) are usually referred to

as power spectral densities (PSD's), whereas the o�-diagonal elements are the cross spectral

densities. Equation (A.10) states that the variance is equal to the area beneath the PSD

scaled by a factor of 1
2� . Depending on the shape of the PSD's representing w it is possible to

approximate the shape of the functions Sww (!) by pre-whitening �lters in state space form,

where the inputs to the state space system are unit intensity white noise processes d:

_qd = Awdqd +Bwdd

w = Cwdqd +Dwdd
(A.11)

Note that the feedthrough matrix Dwd is generally zero, since white noise will otherwise feed

through, which is not physically realizable since an ideal white noise process has in�nite energy.

A.2 Integrated Modeling

The plant, optics and control loops are modeled in a continuous linear time-invariant model

as:

_qp = Apqp +Bzww +Bzrr

z = Cpqp +Dzww +Dzrr
(A.12)
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where qp is the appended state vector, r is the vector of reference inputs (commands) and z is

a vector of performance outputs, from which the actual performance metrics Jz are formed.

If the disturbances are cast in state space form as suggested in (A.11), they can be appended

into (A.12). This overall state space system (A.13) then becomes the \integrated model"

of the opto-mechanical system representing the closed or open loop dynamics and is shown

in Figure A.1. In steady-state the reference commands are often r = 0 and generally the

Disturbance
Modeld

Opto-Mechanical

Plant Model

r

z

(Closed or Open Loop)white

noise

w

Reference

commands

Gp w( )

Gwd w( )

Figure A.1: General block diagram of system dynamics from white noise distur-
bances d to system performance signals z.

feedthrough matrix Dzd is also zero, since otherwise the white-noise input d will lead to an

in�nite variance �2zi of the i-th performance signal zi that is a�ected by the feedthrough.

_q = Azdq +Bzdd+Bzrr

z = Czdq +Dzdd+Dzrr
(A.13)

In this thesis it is assumed that the feedthrough matrix Dzd is always zero. The vector

q represents the state vector of length ns and has to be ordered similar to the convention

de�ned in [45, eq.(4.5)] as q = [ qd qp qc qz]
T , where qd are the disturbance �lter states, qp

are the (structural) plant states, qc are the controller states and qz are performance weighting

states, if applicable.

A.3 Performance Assessment

Once an integrated model of a nominal system design is available, the next step is to assess

the performance when the model is subjected to anticipated disturbances. In this thesis we

will consider H2 performance metrics according to Zhou [143] as follows:
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=
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(A.14)

The RMS (root-mean-square) metric is typically used to describe the \on-average" opti-

cal pathlength di�erence (OPD) in an interferometer. The RSS (root-sum-squared) can be

employed to describe the line-of-sight (LOS) jitter of an observatory in xy-coordinates on the

focal plane and, for example, the RMMS (root-mean-mean squared) metric is used to describe

the \mean" wavefront error of a light bundle by averaging the phase errors of all rays mod-

eled by an optical ray tracing program. Three disturbance analysis approaches are discussed

below.

A.3.1 Time Domain Analysis

A linear time-invariant system from (colored) disturbances w to performances z is given as:

_qp = Azwqp (t) +Bzww (t)

z (t) = Czwqp (t) +Dzww (t)
(A.15)

where qp consists of structural states and compensator states, if applicable. Equivalently, the

system can be described in the frequency-domain by the transfer function matrix

Gzw (!) = Czw [j!I �Azw]
�1Bzw +Dzw (A.16)

The disturbances, w, are the inputs to the system, while the performances, z, are the outputs

of interest. When measured time histories of the disturbances w (t) exist2, they can be used

for time integration of the state space equations (A.15). Once the initial condition on the state

vector, qp (0), is speci�ed, numerical integration of (A.15) can then be performed to obtain

estimates of the performance time histories z (t). The standard di�erence method technique

2These can be obtained from spinup tests of reaction wheels, vibration testing of cryocoolers or noise 
oor

measurements on sensors, among others.
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approximates the continuous �rst-order equation (A.15) with a di�erence equation such as

(qp)n+1 � (qp)n
�t

= Azw (qp)n +Bzwwn

zn = Czw (qp)n +Dzwwn

(A.17)

The state vector (qp)n+1 at the n+1-th time step can be found by the forward Euler method

as

(qp)n+1 = [�tAzw + I] (qp)n +�tBzwwn (A.18)

This integration method is simple but can diverge easily when �t � �tcrit. For time integra-

tions in this thesis it was found that the results obtained with the ode45.m solver according

to Dormand and Prince [26] gave the best results. An advantage of the time-domain dis-

turbance analysis is that transient e�ects can be observed, the compliance with time-domain

performance speci�cations can be examined and threshold crossings can be determined from

the time simulation. Generally the time domain analysis is computationally more expensive

than the other methods. Other disadvantages are the dependency of the answers on the initial

conditions of the state vector qp (0) and on the seed used for the white noise random number

generators.

A.3.2 Frequency Domain Analysis

For linear systems in the time domain, the output can be expressed as a convolution of the

input with the impulse-response function of the system. In the frequency domain (i.e. Laplace

domain), the output is equal to the input multiplied by the transfer function (matrix). The

disturbance spectral density matrix Sww (!) can be measured experimentally or obtained

from a shaping (pre-whitening) �lter as Sww (!) = Gd (!)G
H
d (!). The performance spectral

density matrix Szz can be obtained from [141]

Szz (!) = Gzw (!)Sww (!)G
H
zw (!) (A.19)

where Sww is the disturbance spectral density matrix discussed above and Gzw is the open or

closed loop plant transfer function matrix from (A.16). Sww (!) can be a continuous function

of frequency, or for the case of disturbances consisting of a series of discrete harmonics, it

can contain impulses at the frequencies of the harmonics. In the latter case, Szz (!) will also

contain a series of impulses. Szz (!) provides information on the frequency content of the
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performances. The covariance matrix of the performances �z (for zero-mean processes) is

obtained as

�z =
1

2�

Z +1

�1

Szz (!) d! =

Z +1

�1

Szz (f) df (A.20)

The variance of the i-th performance is therefore given by

�2zi = [�z]i;i =
1

2�

Z +1

�1

[Szz (!)]i;id! =R +1
�1

[Szz (f)]i;idf = 2
R +1
0 [Szz (f)]i;idf

(A.21)

Taking the square root of �2zi produces the root-mean-square (RMS) value. It is important to

specify whether a PSD is one or two sided and given in Hz or rad/sec [141]. In practice the

upper and lower frequency integration limits are fmin and fmax, respectively.

�2zi � 2

Z fmax

fmin

[Szz (f)]i;idf (A.22)

It is important to ensure that the frequency range that contributes most to the RMS value is

suÆciently captured within these limits. One way to verify this is by computing the cumulative

RMS function �zi;c (fo) as

�zi;c (fo) =

�
2

Z fo

fmin

[Szz (f)]i;i df

� 1

2

(A.23)

where fo 2 [fmin : : : fmax]. If most of the energy lies in this range, then �zi;c (fmax) should be

very close to the true value of �zi . Generally, the frequency-domain approach is more eÆcient

than a time-domain analysis. The method however requires high frequency resolution near

lightly damped modes in order to arrive at correct RMS values. Also the frequency domain

method is not well suited to assess the transient performance of a linear time-invariant system.

A.3.3 Lyapunov Analysis

The third type of disturbance analysis can be conducted if the disturbances w are modeled as

the outputs of a shaping �lter in the form of equation (A.11). In order to keep the disturbance

w from having in�nite energy, there should be no feedthrough matrix Dwd. The state space

system (A.11) containing the disturbance dynamics is appended to the plant model (A.12)

resulting in the overall system model (A.13). If the system is asymptotically stable, the state

covariance matrix obeys the Lyapunov equation [35].

Azd�q +�qA
T
zd +BzdB

T
zd =

_�q (A.24)

239



In order to do time integration of the above dynamics, the initial state covariance, �qo, would

have to be speci�ed. Since the white noise disturbance processes d are assumed to be stationary

and the reference commands r have been set to zero, the statistics of the state vector are also

stationary and _�q = 0. This is not true for transient processes. One may then solve the

steady-state Lyapunov equation of order ns for the state covariance matrix �q of the system

(A.13).

Azd�q +�qA
T
zd +BzdB

T
zd = 0 (A.25)

For i = 1; 2; : : : ; nz one solves for each RMS value by extracting the i-th row from the Czd

matrix, pre- and post-multiplying �q and by taking the square root. The RMS of the i-th

performance metric is then given as:

�zi =
�
Czd;i�qC

T
zd;i

�1=2
(A.26)

where Czd;i is the vector formed by the i-th row of the Czd matrix and �q is the state co-

variance matrix of the state space system that obeys the steady-state Lyapunov equation in

(A.25). Alternatively one can pre- and post-multiply with the entire Czd matrix to obtain the

performance covariance matrix �z.

�z = E
�
zzT

�
= E

�
Czdqq

TCT
zd

�
= CzdE

�
qqT
�
CT
zd = Czd�qC

T
zd (A.27)

The variances of the individual performances (RMS squared) are then contained on the diag-

onal of �z, where �z is of the form

�z =

2
666664

�2z1 �z1z2 � � � �z1zn

�z2z1 �2z2 � � � �z2zn
...

...
. . .

...

�znz1 �znz2 � � � �2zn

3
777775 (A.28)

and n is the total number of elements in the performance vector z. Thus, the Lyapunov

method provides a relatively direct way of arriving at the RMS estimates (in the sense of

statistical steady state) by solving one matrix equation (A.25) and computing a matrix triple

product (A.27).

One problem is that the computational cost of solving (A.25) increases as � n3s, where ns

is the number of states. Chapter 5 addresses potential solutions for large order systems, which

arise from modeling of complex systems such as precision opto-mechanical systems. It is true

that often only a subset of the states in q will contribute signi�cantly to the large entries in
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the state covariance matrix �q. If the performance metric of interest is a weighted sum of the

performance outputs z and the zi in (A.28) represent these weighted outputs, then the scalar

performance cost Jz can be de�ned as

Jz = trace [�z] = �2z1 + �2z2 + � � �+ �2zn (A.29)

The percent contribution of the i-th weighted output to the overall performance cost Jz is

then

% contribution =
�2zi
Jz

� 100% (A.30)

The main drawback of the Lyapunov approach is that it does not provide insight into the fre-

quency content of the outputs. The main advantage is that the answers provided are immune

to the frequency resolution and time step, �t, problems associated with the frequency-domain

and time-domain approaches, respectively. Also, analytical sensitivities can be calculated as

presented in the next section.

A.4 Sensitivity Analysis

Determining the sensitivity of certain outputs (e.g. performance metrics) of a system with

respect to model parameters can provide useful information. This information can be used for

model-to-test-data correlation, performance enhancement, uncertainty analysis and - the main

topic of this thesis - isoperformance analysis. Gutierrez [45] proposes a Lagrangian approach

for obtaining the sensitivities @�z=@p or @Jz=@p based on earlier work by Jacques [56]. Note

that p can be a vector of modal or physical parameters of the system. The �rst step, for each

performance metric zi, i = 1; 2; : : : ; nz , is to solve for the corresponding Lagrange multiplier

matrix Li. Again a steady state Lyapunov equation of order ns has to be solved.

LiAzd +AT
zdLi + CT

zd;iCzd;i = 0 (A.31)

Next the governing sensitivity equation (GSE) is solved by substituting the results from Equa-

tions (A.25) and (A.31). Additionally the matrix derivatives with respect to the parameters

of interest pj , j = 1; 2; : : : ; np, need to be computed. The result is the partial derivative of

the variance of the i-th performance zi with respect to the j-th parameter pj .

@�2zi
@pj

= trace

2
4�q

@
�
CT
zd;iCzd;i

�
@pj

3
5+ trace

"
Li

(
@Azd

@pj
�q +�q

@AT
zd

@pj
+
@
�
BzdB

T
zd

�
@pj

)#
(A.32)
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Here Li is the Lagrange multiplier matrix for the i-th performance. The Lagrange multiplier

matrix obeys the dual Lyapunov equation given in (A.31). Consult References [45] and [56]

for a detailed derivation of the GSE. The above equation gives the sensitivity of the variance

�2zi , but usually the sensitivity with respect to the RMS is desired. The results from (A.26)

and (A.32) are substituted in
@�zi
@pj

=
1

2�zi
� @�

2
zi

@pj
(A.33)

in order to obtain the desired sensitivity. Normalization with a factor pj;nom=�zi;nom is op-

tional. This normalization allows comparing sensitivities with respect to parameters of di�er-

ent units:

pnom
(�zi)nom

@�zi
@p

=

@�zi
(�zi)nom

@p

pnom

�
��zi

(�zi)nom
�p

pnom

� % change in �zi
% change in p

(A.34)

The matrix partial derivatives such as @Azd=@pj in (A.32) represent the main diÆculty in

�nding the sensitivities for large order systems. Initial work on sensitivities for modal param-

eters (frequencies, damping ratio, modal mass) and physical parameter (masses, sti�nesses)

is presented by Gutierrez [45]. Progress in this area is reported in Chapter 5.

A.5 Uncertainty Analysis

Disturbance analyses during early design stages of aerospace systems are typically conducted

on simpli�ed models of nominal point designs. The models attempt to capture the behav-

ior of interest, and although they are generally suitable for judging relative merits between

competing designs in a trade study, the validity of their use in making absolute performance

predictions is not as clear. An uncertainty analysis is one way to account for uncertainties in

an immature design model, thus establishing error bounds on the predicted performances.

If it is found that performance requirements are met even under worst-case model un-

certainties, then con�dence in design margins can be increased. In the isoperformance con-

text an uncertainty analysis is bene�cial, since it allows comparing designs which have the

same nominal performance, but exhibit di�erent performance sensitivity to parametric uncer-

tainty. Optimization for minimum sensitivity to uncertain parameters has been investigated

by Pritchard, Adelman and Sobieszczanski-Sobieski [119]. In the most general sense, a model

uncertainty represents an unknown error in a model of a physical system. Model uncertainty
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is typically divided into parametric and non-parametric uncertainties. Focusing on parametric

uncertainty an estimate of the e�ect of parametric uncertainty on the system performances can

be obtained via the �rst-order approach. The �rst-order approach expresses the performance

RMS values as a Taylor series approximation about the nominal values.

�z = �z;nom +
@�z
@p

(p� pnom) + H:O:T: (A.35)

where �z is a vector containing the RMS values for each performance output z. The vector p

contains all of the uncertain parameters, and @�z=@p is referred to as the sensitivity matrix (or

Jacobian). Neglecting the higher order terms and making the substitutions ��z = �z��z;nom
and �p = p� pnom results in

��z � @�z
@p

�p (A.36)

The parameter uncertainty is captured by �p, and it is assumed that �p is speci�ed based

on empirical experience with similar systems or a best guess. For example, if all parameters

are uncertain to within � 1 % of the nominal values, then for the j-th parameter, �pj 2
[�0:01 + 0:01] � pj;nom. It is desirable to �nd the worst-case ��z for �p within the speci�ed

bounds. When several performance metrics with di�erent units are present, �rst de�ne a

normalization vector r. For instance, r could contain the performance RMS requirements as

follows

rT =

�
1

�z1;req
� � � 1

�zn;req

�
(A.37)

where nz is the number of performance metrics. The maximum uncertainty \cost" Jr can be

de�ned as

Jr = rT��z =
��z1
�z1;req

+ � � �+ ��znz
�znz ;req

(A.38)

Expanding (A.36) yields,

��z1 =
@�z1
@p1

�p1 +
@�z1
@p2

�p2 + � � �+ @�z1
@pnp

�pnp

...

��znz =
@�znz
@p1

�p1 +
@�znz
@p2

�p2 + � � � +
@�znz
@pnp

�pnp

(A.39)

where np denotes the total number of uncertain parameters. Computing the uncertainty

\cost" results in the following expression.
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Jr =

�
1

�z1;req

@�z1
@p1

+ � � �+ 1

�znz ;req

@�znz
@p1

�
| {z }

=a1

�p1 + � � �

+

�
1

�z1;req

@�z1
@pnp

+ � � �+ 1

�znz ;req

@�znz
@pnp

�
| {z }

=anp

�pnp = a1�p1 + � � �+ anp�pnp

(A.40)

The vector �p that maximizes Jr is therefore given by

�pj =

8>><
>>:

�pj;LB , if sgn (aj) = �1
�pj;UB , if sgn (aj) = +1

unde�ned , if aj = 0

(A.41)

This assumes that the �p's can occur independently. Substituting the worst-case �p into

(A.36) produces an estimate of the increase in RMS values due to the parametric uncertainties.

Note that other approaches such as \bad corner" evaluation, constrained optimization or ro-

bust control methods have been suggested [45]. The �rst order approach is used in Chapters 4

and 7 to distinguish between designs that have the same nominal performance Jz .
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Appendix B

Derivations for Large Order

Systems

B.1 Proof of Similarity Transformation

It is true that for a similarity transformation the transfer function matrix Gzd (s) of the

original system and the transfer matrix of the balanced system ~Gzd (s) are equal. This can be

proven by showing that the di�erence between the transfer function matrices is zero.

Gzd (s)� ~Gzd (s) = Czd [sI �Azd]
�1Bzd +Dzd � CzdT

�1
�
sI � TAzdT

�1
�
�1

TBzd +Dzd =

Czd

�
[sI �Azd]

�1 � T�1
�
sI � TAzdT

�1
�
�1

T
�
Bzd = 0

(B.1)

This is true if the inner term in round brackets can be shown to vanish, since we assume that

Czd 6= 0 and Bzd 6= 0 . Thus we have to show that

[sI �Azd]
�1 = T�1

�
sI � TAzdT

�1
�
�1

T (B.2)

We �rst pre-multiply both sides by T

T [sI �Azd]
�1 =

�
sI � TAzdT

�1
�
�1

T (B.3)

and then take the inverse of both sides, which leads to

[sI �Azd] T
�1 = T�1

�
sI � TAzdT

�1
�

(B.4)
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Next we post-multiply both sides with T and show that the right hand side of (B.4) is equal

to the left-hand side

RHS = T�1
�
sI � TAzdT

�1
�
T = s T�1IT| {z }

I

�T�1T| {z }
I

Azd T
�1T| {z }
I

= sI �Azd = LHS (B.5)

q.e.d.

B.2 Computation of Balancing Transformation

The goal of the internal balancing operation is to �nd a transformation matrix T , such that

the observability and controllability gramians of the transformed system are diagonal and

equal to each other. A number of di�erent algorithms for �nding T , starting with Moore's

method [102] in 1981, have been suggested over the years. This method is implemented in the

MATLAB function xobalreal.m. First the gramians are each computed as the solution of a

Lyapunov equation.

Controllability Gramian Wc:

AzdWc +WcA
T
zd +BzdB

T
zd = 0 (B.6)

Observability Gramian Wo :

AT
zdWo +WoAzd + CT

zdCzd = 0 (B.7)

Moore then proposed directly performing a singular value decomposition (SVD) on Wc:

Wc = Uc�cU
T
c (B.8)

The elements of the diagonal matrix �c are the sorted controllability singular values of the

unbalanced system such that:

�c = diag f�c1; �c2; : : : ; �cNg (B.9)

Similarly, a singular value decomposition is used on the matrix product

Uc�
1
2
c Wo�

1
2
c U

T
c = Ub�

2
HU

T
b (B.10)

where the diagonal elements of the diagonal matrix �H are the Hankel singular values of the

system and �Hi > �Hj for i > j. The square transformation matrix T is then formed as:
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T = �
1
2
HU

T
b Uc�

1
2
c (B.11)

and the inverse can be directly computed as:

T�1 = �
�
1
2

c UT
c Ub�

�
1
2

H (B.12)

The second algorithm presented here was developed by Laub and coworkers [77],[78] and

it is also the one implemented in the MATLAB function balreal.m. Laub (1987) �rst com-

putes the controllability and observability gramians Wo, Wc according to (B.6) and (B.7)

respectively. Next a Cholesky factorization of the gramians is performed such that:

Wc = RT
c Rc and Wo = RT

o Ro (B.13)

The next step consists in performing a singular value decomposition of the mixed product of

the Cholesky factors from (B.13) such that:

U�HV
T = RoR

T
c (B.14)

Of these matrices the matrix �H is of importance, since it contains the Hankel singular values

on the diagonal.

�H = diag
�
�H1 ; �

H
2 ; : : : ; �

H
ns

�
(B.15)

The resulting singular values, eigenvector matrices U and V as well as the Cholesky factors

are used to determine T and its inverse T�1 as follows:

T = �
�1/2
H UTRo and T�1 = RT

c V �
�1/2
H (B.16)

The balancing matrix T can then be used to obtain the transformed gramians.

~Wc = TWcT
T and ~Wo =

�
T�1

�T
WoT

�1 (B.17)

It can be shown that the transformed gramians are equal to each other and equal to the

Hankel singular value matrix.

~Wc = ~Wo = �H and thus �2
H = TWcWoT

�1 (B.18)
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The original state space system can be written in terms of the S matrix, which is trans-

formed into an internally balanced realization ~S :

S =

2
4 Azd Bzd

Czd Dzd

3
5 ) ~S =

2
4 TAzdT

�1 TBzd

CzdT
�1 Dzd

3
5 (B.19)

It is true that the matrices Ro;Rc;�H ;U;V all depend on the system parameters pj and so

does T . This knowledge is however not necessary in order to compute the performance RMS

and sensitivity of the system as will be shown later. A prerequisite however is that the system

be stable and minimal. Especially the last requirement is often not met for large order systems

without prior model conditioning (e.g. pre-balancing according to [85]). Further details are

available from Mallory [86] and Uebelhart [136].

Bene�ts of Balancing: A remarkable and desirable e�ect of the balancing transformation is

the reduction of the condition number of the A-matrix. The condition number is the ratio of

the largest to the smallest singular value of A. For the SDOF example in (5.29) the condition

number is reduced from 1714 for the original system (left) to 1.001 for the balanced system

(right). Also balancing is often used as a precursor operation for model reduction, since it

ranks the states in descending order of disturbability/performability.

Drawbacks of Balancing: Since the balanced matrices are fully populated the parameters of

interest do not appear explicitly anymore. This complicates the computation of the matrix

derivatives in the sensitivity analysis, see Appendix A. The original realization can however

be recovered by inverse transformation. For systems that are uncontrollable or unobservable

the traditional computation of T fails. Also internal balancing is a computationally expensive

and its computational cost was estimated to be roughly 150 � n3s 
oating point operations.

B.3 Derivation of Transformed Governing Sensitivity Equa-

tion (TGSE)

The purpose of this section is to derive the governing sensitivity equation for a transformed

system. This is done assuming that the similarity transformation is internal balancing. At no

point is any property of balancing used, except for similarity, such that the results are valid

for any similarity transformation, e.g. into Jordan form, 2nd order modal form, real modal
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form, controller or observer realization etc. The �rst step is to recognize that the sensitivity

of a balanced system is given as:

@~�zi
@pj

=
1

2~�zi
� @~�

2
zi

@pj
(B.20)

where the RMS of the balanced system ~�zi is computed using equation (5.30). The derivative

of the variance ~�2zi with respect to parameter pj can be computed as follows. The �rst step is to

substitute the transformed system matrices ~Azd , ~Bzd and ~Czd into the governing sensitivity

equation (A.32):

@~�2zi
@pj

= trace

2
4�~q

@
�
~CT
zd;i

~Czd;i

�
@pj

3
5+ trace

2
4~Li

8<
:@ ~Azd

@pj
�~q +�~q

@ ~AT
zd

@pj
+
@
�
~Bzd

~BT
zd

�
@pj

9=
;
3
5
(B.21)

whereby �~q is the balanced state covariance matrix and ~Li is the balanced Lagrange multi-

plier matrix. These matrices are computed solving the Lyapunov equations (5.33) and (5.40),

respectively. The diÆculty lies in computing the partial derivatives of the system matrices

~Azd = TAzdT
�1 , ~Bzd = TBzd and ~Czd;i = Czd;iT

�1 with respect to the j-th parameter pj .

It shall be noted that pj could be a modal or physical parameter of the system. The gov-

erning sensitivity equation can be rewritten in terms of the original system matrices and the

balancing transformation matrix T :

@~�2zi
@pj

= trace

2
4�~q

@
��
T�1

�T
CT
zd;iCzd;iT

�1
�

@pj

3
5

+trace

2
4~Li

8<
:@

�
TAzdT

�1
�

@pj
�~q +�~q

@
��
T�1

�T
AT
zdT

T
�

@pj
+
@
�
TBzdB

T
zdT

T
�

@pj

9=
;
3
5

(B.22)

Invoking the product rule of matrix calculus [143, p.24], which states that the derivative of

the product of two matrices A (�) ; B (�) is given as:

d (AB)

d�
=
dA

d�
B +A

dB

d�
(B.23)

we can rewrite the above equation to yield
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+ trace
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AT
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trace
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| {z }
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(B.24)

The above expression makes use of the fact that the trace of the sum of two matrices is

equal to the sum of the traces of each individual matrix, i.e.

trace [A+B] = trace [A] + trace [B] (B.25)

Then equation (B.24) can be reordered such that terms 2, 5, 8 and 11 appear �rst. We

recognize that these terms correspond exactly to the governing sensitivity equation (A.32).

The sum of the remaining terms are called residual. In order to prove that (A.32) is correct

we must then show that the residual always vanishes. We rewrite (B.24) as

@~�2zi
@pj

= trace

2
4�~q

�
T�1

�T @
�
CT
zd;iCzd;i

�
@pj

T�1

3
5

| {z }
term2

+

trace

"
~Li

(
T
@Azd

@pj
T�1�~q +�~q

�
T�1

�T @AT
zd

@pj
T T + T

@
�
BzdB

T
zd

�
@pj

T T

)#
| {z }

terms5+8+11

+residual

(B.26)

The residual can be written as:
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residual = trace
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+

trace
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@pj
BzdB

T
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+

trace
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T
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#
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(B.27)

At this point we make use of two important properties of the trace operator. First it is

true that the trace of the transpose of the product of two matrices is equal to the trace of the

product of the two matrices:

trace
�
ABT

�
= trace

h�
ABT

�T i
= trace

�
BAT

�
(B.28)

This is obviously true, since the trace is the sum of the diagonal elements, which are not

a�ected by the transpose operator. Secondly it is true that we can cycle the matrices inside

the trace operator, without a�ecting the result, provided that the matrices are square, which

they are in equation (B.27).

trace [ABC] = trace [CAB] = trace [BCA] (B.29)

Invoking (B.28) for terms 3,9,7 and 12 and reordering according to (B.29), we realize that

terms 1 and 3, 4 and 9, 6 and 7 as well as 10 and 12 are equal to each other. This will be

illustrated for terms 4 and 9 and applied to the other terms.
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(B.30)
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Note that we have made use of some additional facts in order to arrive at equation (B.30).

The state covariance matrix and the Lagrange multiplier matrix are each symmetric, since

they are the solution of a steady state Lyapunov equation, i.e.

�~q = �T
~q and ~Li = ~LTi (B.31)

This has been used to arrive from the third to the fourth step in equation (B.30). Addi-

tionally we know from matrix calculus that the transpose operator and the (partial) derivative

of a matrix are interchangeable, i.e.

�
dA

d�

�T
=

�
daij
d�

�T
=

�
daji
d�

�
=
d
�
AT
�

d�
(B.32)

This has been used on the balancing transformation matrix to arrive from step three to

step four in equation (B.30). Applying the same operations as shown above to terms 1, 7 and

12 we have only four distinct terms. Thus we can factor out a factor 2 and obtain:

residual = 2 � trace
�
�~q

�
T�1

�T
CT
zd;iCzd;i

@T�1

@pj

�
+

2 � trace
�
~Li
@T

@pj
AzdT

�1�~q + ~LiTAzd
@T�1

@pj
�~q + ~Li

@T

@pj
BzdB

T
zdT

T

� (B.33)

The diÆculty with equation (B.33) is that there are mixed terms with partial derivatives

of the transformation matrix T and it inverse. This can be resolved by recalling from matrix

calculus that

dA�1

d�
= �A�1dA

d�
A�1 (B.34)

Thus equation (B.33) is rewritten as:

residual = 2 � trace
�
��~q

�
T�1

�T
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zd;iCzd;iT

�1 @T

@pj
T�1

�
+

2 � trace
�
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�1�~q � ~LiTAzdT
�1 @T

@pj
T�1�~q + ~Li

@T

@pj
BzdB

T
zdT

T

� (B.35)

Next we can factor out the derivative term of T and the inverse of T and rearrange the

remaining terms.
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residual =

2 � trace
�
@T

@pj
T�1

�
��~q

�
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�T
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zd;iCzd;iT

�1 + TAzdT
�1�~q

~Li � �~q
~LiTAzdT

�1 + TBzdB
T
zdT

T ~Li

��
(B.36)

We know that the state covariance matrix �~q obeys the Lyapunov Equation (5.34), from

which we can isolate the term containing the Bzd matrix, which results in

TBzdB
T
zdT

T = �TAzdT
�1�~q � �~q

�
T�1

�T
AT
zdT

T (B.37)

This expression (B.37) is then substituted into (B.36), which cancels the second term in

the round brackets of (B.36). An additional term ��~q can then be factored out which leads

to

residual =

2 � trace
�
� @T

@pj
T�1�~q

��
T�1

�T
CT
zd;iCzd;iT

�1 +
�
T�1

�T
AT
zdT

T ~Li + ~LiTAzdT
�1
�� (B.38)

We recognize that the matrices inside the round brackets are the transformed system

matrices and that their sum contains all the elements of the left side of the Lyapunov Equation

(5.40). After rewriting we obtain:

residual = 2 � trace

2
64� @T

@pj
T�1�~q

�
~AT
zd
~Li + ~Li ~Azd + ~CT

zd;i
~Czd;i

�
| {z }

0

3
75 = 0 (B.39)

Thus the residual is zero due to the fact that the term in round brackets obeys the Lya-

punov equation for the Lagrange multiplier matrix ~Li and is always equal to zero. Hence it

does not matter that the partial derivative of the transformation matrix T with respect to

parameter pj is non-zero, since it does not enter into the �nal expression for the sensitivity of

an internally balanced system. We have thus shown that the expression for the sensitivity of a

balanced system according to Equation (5.39) is correct. It shall also be noted that at no point

in this derivation was it necessary to stipulate that T is an internal balancing transformation.

Equation (5.39) is thus valid for other kinds of similarity transformations such as input or

output normalization [102].
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Note: A simpler proof can be carried out by invoking the similarity transformation property.

By substituting the inverse transformation of the balanced state covariance matrix (5.32) into

the original GSE (A.32), the TGSE (5.39) can be obtained directly.

B.4 Computation of Sensitivity Error Bound due to Model

Reduction

The goal of this appendix is to derive the error in the RMS sensitivity prediction @��zi/@pj

due to balanced model reduction. The RMS value for the i-th performance metric zi of a

balanced, reduced system is computed as:

��zi =
�
�Czd;i��q

�CT
zd;i

�1=2
=
�
Czd;iT

�1P T��qP
�
T�1

�T
CT
zd;i

�1=2
(B.40)

The sensitivity of a reduced, internally balanced state space system is given as:

@��zi
@pj

=
1

2��zi
� @��

2
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@pj
(B.41)

Here the partial derivative with respect to the variance is obtained as:
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The Lagrange multiplier matrix for the reduced system obeys:

�AT
zd
�Li + �Li �Azd + �CT

zd;i
�Czd;i = 0 (B.43)

As was the case for the computation of the reduced system RMS performance ��zi , we can

expect that the reduced system sensitivity @��zi/@pj is in error due to the removal of system

states. The quantity we are trying to determine is:
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With the following substitutions we can derive an expression for "sensRMS more easily:

254



a =
@��2zi
@pj

, b =
@~�2zi
@pj

, c = ��zi , d = ~�zi = ��zi +��zi = c+�c (B.45)

We can then rewrite (B.44) as:
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Substituting in the original variables we obtain an expression for the absolute error on the

sensitivity @��zi/@pj due to balanced model reduction.
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Of the quantities in equation (B.47), we can obtain ��zi from equation (5.47), the RMS error

��zi from equation (5.62) and the partial derivative of the variance @��2zi
Æ
@pj from equation

(B.42). An expression for the di�erence of partial derivatives of the variances is derived below.
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(B.48)

Terms 1 and 3 correspond to each other and the result of their subtraction is:
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since

�~q = �H and ��q = P�HP
T (B.50)

we can rewrite (B.49) as
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The di�erence of terms 2 and 4 from equation (B.48) is computed as
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The Lagrange multiplier matrix for the i-th performance metric in the balanced and the

reduced case are related to each other as follows

�Li = P ~LiP
T (B.53)
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This relationship is invoked to rewrite (B.52) as
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Combining corresponding terms and rearranging allows expressing the di�erence in terms

of the matrices �R and IR as de�ned in (5.63) and (B.55) respectively.

IR =

2
664 0nkxnk 0nkxnr

0nrxnk Inrxnr

3
775 (B.55)

Then the di�erence of the partial derivatives of the variances can be written using (B.54)

and (B.51) as follows.
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Where �R is the matrix containing the Hankel singular values corresponding to the re-

moved states, as de�ned in (5.63) and IR is the identity matrix with ones as diagonal entries

corresponding to the removed states and zeros everywhere else. The computation of the sen-

sitivity error "sensRMS according to (B.47) requires many terms. Especially the computation of

the Lagrange multiplier matrix of the balanced, unreduced system ~Li as shown in equation

(5.40) is undesirable. What is needed is therefore an (upper) error bound for the sensitivity

error similar to the bound for the RMS performance error shown in (5.65). Such a bound can

be found by �rst computing the relative sensitivity error. This is done by dividing equation

(B.47) with the reduced model sensitivity @��zi/@pj such that
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Substituting in (5.67) for @��zi/@pj in the denominator and rearranging yields
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Even though the above expression is valid, it does not yet represent the simple error

bound we are trying to �nd. A �rst simpli�cation is introduced by replacing ~�zi with ��zi in

the denominator. Since ~�zi > ��zi we obtain an inequality. We also keep the absolute value of

both sides, since the relative sensitivity error from (B.47) can be positive or negative and we

are only interested in the magnitude of the relative sensitivity error. This results in:
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We recognize that the second term on the right side of (B.59) corresponds to the expression

for the relative RMS error according to (5.65). Since we have an upper bound for the relative

RMS error we 
ip the negative sign in (B.59), which preserves the inequality. The ratio of

partial derivatives of the variances is approximated as follows:
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Finally we arrive at an upper error bound for the sensitivity error by substituting (B.60)

and (5.65) into (B.59).
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B.5 Summary

This appendix contains derivations in support of Chapter 5. These include a proof for sim-

ilarity transformations, the derivation of the Transformed Governing Sensitivity Equation

(TGSE) and the derivation of error bounds for reduced state space systems.
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Appendix C

Application of Isoperformance to

other Fields of Engineering

The focus of this thesis has been on applying the isoperformance methodology to dynamics

and controls problems. The kernel isoperformance algorithms developed in Chapters 3 and 4

are, however, applicable to a wide range of engineering problems. The purpose of this appendix

is to demonstrate the versatility of the isoperformance technique. The application to crack

growth in a metallic structure is presented by means of a cracked panel sample problem.

C.1 Crack Growth in Metallic Structures

Consider the problem shown in Figure C.1, where a 
at, in�nitely long metallic panel of width,

w, is subjected to a longitudinal stress loading, �� = �max � �min.

Center
Cracked

Panel
2a

2ao

w=6"

Cyclical stress loading of amplitude ∆σ

∆σ∆σ

Figure C.1: Crack growth sample problem: Center cracked in�nitely long panel.

The stress varies sinusoidally as a function of time with a stress range ��, whereby R =

�min=�max = 0. The amplitude ��=2 is assumed constant. Any thermal e�ects which might
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come into play above a cycling frequency of about 5 [Hz] are ignored. Since this is a crack

growth calculation, an initial transverse crack of length, 2ao, is assumed to exist at the center

of the panel. The crack will subsequently propagate to length, 2a, until it reaches the critical

crack length, 2ac. This is due to stress concentration at the crack tip, giving rise to a stress

intensity �K, see Reference [134]:

�K = ��
p
�a �

r
sec
��a
w

�
= ��

p
�a �

h
cos
��a
w

�i
�1=2

(C.1)

The rate of crack growth as a function of the stress intensity, �K, is given by the Paris Law

as:
da

dN
= C�Km (C.2)

where C and m are material dependent crack growth parameters. The goal of the calculation

is to determine the critical number of load cycles, Nc, from initial to critical crack length,

ao ! ac. The critical number of load cycles can be computed by integrating from ao to ac:

Nc =

acZ
ao

�
da
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�
�1
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acZ
ao

C�1�K�mda =C�1��
m
2 ���m

acZ
ao

h
cos
��a
w

�im
2
a�

m
2 da (C.3)

Unfortunately Equation (C.3) is transcendental, such that a solution can only be found numer-

ically. The solution, Nc, is quite sensitive to the integration step, �a. If �a is chosen smaller

and smaller the solution will asymptote to the correct value. This is shown in Figure C.2(b).
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Figure C.2: (a) Nominal crack growth curve from ao to ac with integration step
�a = 0:01". (b) Dependence of predicted critical number of load cycles,
Nc, on crack length integration step size, �a.
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The nominal case assumes a stress range, �� = �max � �min = 12 [ksi], R = 0, an initial

crack length ao = 0:1" [inch], a critical crack length ac = 2:8" as well as material coeÆcients

C = 4 � 10�9 and m = 3:5. The panel width is w = 6" as shown in Figure C.1. The crack

propagation from ao to ac for this nominal case is plotted in Figure C.2(a). It can be seen

that the crack grows slowly at �rst and that the rate of growth increases until the crack goes

unstable at ac = 2:8", causing the panel to fail. The dependence of the answer on the crack

length increment, da ' �a, is depicted in Figure C.2(b). One can see that the number of

critical load cycles, Nc, is underpredicted for large step sizes. Below �a � 0:01" the number

of load cycles asymptotes to a value of Nc = 35; 668. This is why this step size is used.

Applying the isoperformance technique to this problem, we may consider the critical num-

ber of load cycles to be the \performance" of the system, i.e. Jz = Nc. Assume that a

performance of Jz;req = Nc;req = 25; 000 load cycles to failure is required for safety and de-

sign life considerations. For a bivariate problem we consider the initial crack length, ao, and

the stress range, ��, to be the variable design parameters. The intervals over which the

parameters can vary are [0.01",0.5"] and [8 ksi,20 ksi], respectively.
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Figure C.3: (a) Crack growth problem: Gradient search for Jz = 25; 000 isoperfor-
mance contour. (b) Iterations to intercept.

Figure C.3(a) shows the gradient search from the initial guess (ao = 0:1",�� = 12 [ksi])

until the Nc = 25; 000 isoperformance contour is intercepted. Since the �rst order derivatives

of the integral in Equation (C.3) cannot be obtained analytically, we approximate the gradient
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vector rJz = [@Nc=@��; @Nc=@ao]
T via �nite di�erences1. The isocontour (=\curve of equal

crack growth life") is found in �ve iterations, given a numerical tolerance of � = 0:5%, see

Figure C.3(b).

Once the isoperformance contour is intercepted we apply the Gradient-Based Contour

Following Algorithm which was developed in Subsection 3.2.2. The performance-invariant

curve is computed until the parameter bounding box, B, is intercepted. The result is shown

in Figure C.4(a). Every combination along this curve will (theoretically) produce a crack

growth life of Nc = 25; 000. A total of 72 isoperformance points, piso, are obtained. This

required 1.79 million 
oating point operations and 15.87 seconds of CPU time (Pentium III,

650 MHz computer).
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Figure C.4: (a) Crack growth problem: Isoperformance contour for Nc = 25; 000
and variable parameters �� and ao. (b) Quality of solution plot for
tolerance � = 0:5%.

As expected, the isoperformance curve shows that as the initial crack length, ao, increases

the stress range, ��, must be decreased in order to achieve the same performance. This is

a non-linear relationship and assumes that the critical crack length, ac, is the same for all

con�gurations and does not depend on the maximum stress �max. The \quality of solution",

using the metric, �iso, from Equation (3.40), is shown in Figure C.4(b). It can be seen that

the computed isoperformance curve is within the required numerical tolerance, � .

The curve in Figure C.4(a) could support important design decisions. Assume for example

1A 1% perturbation size is used.
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that the detectable crack length at manufacture is 0.1" or larger and that the panel could not

be inspected during operations; this would then restrict the stress range to 13 [ksi] or smaller.

A multivariable analysis involving the other parameters (ac, w, C and m) could be conducted

using the multivariable algorithms from Chapter 4. In this way tradeo�s between loading

conditions, material properties and geometry could be made, while holding the performance

in terms of crack growth life (�xed by a \customer" requirement) constant. This demonstrates

the applicability of isoperformance to problems other than dynamics and controls.
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Appendix D

DOLCE Finite Element Model

This listing is for the DOLCE testbed �nite element model and is compatible with IMOS

version 5.0 [62].

% dolce_fem

% Simple FEM of the DOLCE testbed

% see lab notebook page 46 and following

% dWo, 6/30/2001

flops(0) tic;

% constants

diagnostics=0;

lbs2kg=0.45;

mp=0*lbs2kg;

%grid locations [m]

xyz=[...

1 -0.25 -0.25 0.0

2 0.25 -0.25 0.0

3 0.25 0.25 0.0

4 -0.25 0.25 0.0

5 -0.25 -0.25 0.5

6 0.25 -0.25 0.5
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7 0.25 0.25 0.5

8 -0.25 0.25 0.5

9 -0.125 -0.125 0.5

10 0.125 -0.125 0.5

11 0.125 0.125 0.5

12 -0.125 0.125 0.5

13 -0.125 -0.125 0.75

14 0.125 -0.125 0.75

15 0.125 0.125 0.75

16 -0.125 0.125 0.75

17 0.0 0.0 0.0

18 0.0 0.0 0.5

19 0.0 0.0 0.75

20 0.0 -0.25 0.0

21 0.25 0.0 0.0

22 0.0 0.25 0.0

23 -0.25 0.0 0.0

24 -0.125 -0.25 0.5

25 0.0 -0.25 0.5

26 0.125 -0.25 0.5

27 0.25 -0.125 0.5

28 0.25 0.0 0.5

29 0.25 0.125 0.5

30 0.125 0.25 0.5

31 0.0 0.25 0.5

32 -0.125 0.25 0.5

33 -0.25 0.125 0.5

34 -0.25 0.0 0.5

35 -0.25 -0.125 0.5

36 0.0 -0.125 0.5

37 0.125 0.0 0.5

38 0.0 0.125 0.5
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39 -0.125 0.0 0.5

40 0.0 0.0 0.868

101 -0.25 -0.25 -0.1

102 0.25 -0.25 -0.1

103 0.25 0.25 -0.1

104 -0.25 0.25 -0.1 ];

% connectivity beam elements

nibar=[ ...

1 1 2 0 1 0 0 1 1 1

2 2 3 0 1 0 0 1 1 1

3 3 4 0 1 0 0 1 1 1

4 4 1 0 1 0 0 1 1 1

5 1 5 0 1 0 0 1 1 1

6 2 6 0 1 0 0 1 1 1

7 3 7 0 1 0 0 1 1 1

8 4 8 0 1 0 0 1 1 1

9 5 6 0 1 0 0 1 1 1

10 6 7 0 1 0 0 1 1 1

11 7 8 0 1 0 0 1 1 1

12 8 5 0 1 0 0 1 1 1

13 4 5 0 1 0 0 1 1 1

14 3 8 0 1 0 0 1 1 1

15 2 7 0 1 0 0 1 1 1

16 9 10 0 2 0 0 1 1 1

17 10 11 0 2 0 0 1 1 1

18 11 12 0 2 0 0 1 1 1

19 12 9 0 2 0 0 1 1 1

20 9 13 0 2 0 0 1 1 1

21 10 14 0 2 0 0 1 1 1

22 11 15 0 2 0 0 1 1 1

23 12 16 0 2 0 0 1 1 1
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24 13 14 0 2 0 0 1 1 1

25 14 15 0 2 0 0 1 1 1

26 15 16 0 2 0 0 1 1 1

27 16 13 0 2 0 0 1 1 1

28 9 11 0 2 0 0 1 1 1

29 9 16 0 2 0 0 1 1 1

30 16 11 0 2 0 0 1 1 1

31 11 14 0 2 0 0 1 1 1

32 9 14 0 2 0 0 1 1 1

33 13 15 0 2 0 0 1 1 1

34 17 18 0 3 0 0 1 1 1];

% Create bar element property matrix

Alarge=((0.02212/2)^2)*pi-(((0.02212/2)-0.001016)^2)*pi;

Asmall=((0.009398/2)^2)*pi-(((0.009398/2)-0.001524)^2)*pi;

Iblarge=(pi*(0.02212/2)^4/4)-(pi*((0.02212/2)-0.001016)^4/4);

Ibsmall=(pi*(0.009398/2)^4/4)-(pi*((0.009398/2)-0.001524)^4/4);

Jlarge=2*Iblarge; %approximation

Jsmall=2*Ibsmall; %approximation

propbar=[ ...

% pid mid A I22 I33 J

1 1 Alarge Iblarge Iblarge Jlarge

2 1 Asmall Ibsmall Ibsmall Jsmall

3 1 0.005^2*pi pi*0.005^4/12 pi*0.005^4/12 pi*0.005^4/6

];

% connectivity plate elements

%sandwich

nisplate=[...

35 1 20 17 23 4
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36 20 2 21 17 4

37 17 21 3 22 4

38 23 17 22 4 4];

%top Al Plate

niuplate=[...

39 5 24 9 35 5

40 24 25 36 9 5

41 25 26 10 36 5

42 26 6 27 10 5

43 35 9 39 34 5

44 9 36 18 39 5

45 36 10 37 18 5

46 10 27 28 37 5

47 34 39 12 33 5

48 39 18 38 12 5

49 18 37 11 38 5

50 37 28 29 11 5

51 33 12 32 8 5

52 12 38 31 32 5

53 38 11 30 31 5

54 11 29 7 30 5];

tface=0.0019; tcore=0.03146; tplate=0.004572;

msp=6.751; % mass of sandwich plate

propsplate=[...

4 1 tface 1 tcore msp/0.25];

propuplate=[...

5 1 tplate 0];

% springs

lbs2kg=0.45; in2m=0.0254; lbspin2Npm=lbs2kg*9.81/in2m;

k_green=168; %catalogue value lbs/in

k_spring=k_green*lbspin2Npm;
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nicelas2=[...

55 1 1 101 1 1e3*k_spring 0

56 1 2 101 2 1e3*k_spring 0

57 1 3 101 3 k_spring 0

58 1 4 101 4 0.1*k_spring 0

59 1 5 101 5 0.1*k_spring 0

60 1 6 101 6 1e-3*k_spring 0

61 2 1 102 1 1e3*k_spring 0

62 2 2 102 2 1e3*k_spring 0

63 2 3 102 3 k_spring 0

64 2 4 102 4 0.1*k_spring 0

65 2 5 102 5 0.1*k_spring 0

66 2 6 102 6 1e-3*k_spring 0

67 3 1 103 1 1e3*k_spring 0

68 3 2 103 2 1e3*k_spring 0

69 3 3 103 3 k_spring 0

70 3 4 103 4 0.1*k_spring 0

71 3 5 103 5 0.1*k_spring 0

72 3 6 103 6 1e-3*k_spring 0

73 4 1 104 1 1e3*k_spring 0

74 4 2 104 2 1e3*k_spring 0

75 4 3 104 3 k_spring 0

76 4 4 104 4 0.1*k_spring 0

77 4 5 104 5 0.1*k_spring 0

78 4 6 104 6 1e-3*k_spring 0];

%concentrated masses

m_bn=0.2281; m_sn=0.03475; mshk=11.921+0.33975;

niconm2= [ ...

79 17 lbs2kg*mp 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

80 1 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

81 2 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0
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82 3 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

83 4 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

84 5 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

85 6 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

86 7 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

87 8 m_bn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

88 9 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

89 10 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

90 11 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

91 12 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

92 13 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

93 14 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

94 15 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

95 16 m_sn 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0

96 19 mshk 0.0E+00 0.0E+00 0.0E+00 0 0 0 0 0 0];

% material Al 2219-T851

mat=0; mid= 1; E= 72e9; nu= 0.31000E+00; rho= 2.85e3;

alpha= 22.1e-6; Tref= 20.00000E+00;

mat=mat1(mid,E,nu,rho,alpha,Tref,mat);

% boundary conditions - initialize m and k

% Create initial boundary condition matrix

% (0= constrain, 1= free)

bci=ones(size(xyz,1),6);

% fix nodes 101-104 to concrete foundation (ground)

bci(size(bci,1)-3:end,:)=zeros(4,6);

% fix z-rotation for plate nodes

bci([17:18 20:39],6)=zeros(22,1);

% Compute the number of dofs and dof numbers, initialize k and m

[bc,ndof]=bcond(bci); nset=[1:ndof]; k=sparse(ndof,ndof); m=k;
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g=k;

% assemble m and k

if diagnostics

disp('Assembling m for conm2s')

end

m=conm2(niconm2,bc,m,xyz);

if diagnostics

disp('Assembling k and m for beams')

end

[k,m]=beam_lump(nibar,xyz,propbar,mat,bc,k,m);

if diagnostics

disp('Assembling k and m for plates')

end

[k,m] = uplate(niuplate,xyz,propuplate,mat,bc,k,m);

[k,m]= splate(nisplate,xyz,propsplate,mat,bc,k,m);

if diagnostics

disp( 'Assembling k for spring elements')

end

[k,g]=celas2(nicelas2,xyz,bc,k,g);

% mass properties

[xyzcg]=cg_calc(m,xyz,bc); mass=wtcg(bc,xyz,m,xyzcg);

% process rigid body elements

rg=[0];

mset=[0];

if diagnostics

disp('Processing RBE2 rigid body elements')

end

gn=[40]; cm=[ ...

1
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2

3

4

5

6

];

gm=[ ...

13

14

15

16

19

];

[nset,mset,rg]=rbe2(bc,xyz,nset,mset,rg,gn,cm,gm);

rg=sparse(rg);

if diagnostics

disp('Reducing k and m to independent dofs')

end

[gm,k,m]=mce1(nset,mset,rg,k,m);

bc=bcnset(bc,nset,mset);

fset=nset;

% solve eigenproblem

[phi,omeg]=eigfem(k,m); omeg=abs(omeg); phi=real(phi);

phi=normphi(phi,m); % mass normalize

phi=mce_dis(nset,mset,rg,phi);

phi_full=zeros(prod(size(bci)),size(phi,2));

phi_full(find(bci'),:)=phi; phi=phi_full;

% select modes for analysis

nm=20; % number of modes in FEM

omeg=omeg(1:nm); phi=phi(:,1:nm);
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% (1) build state space model using mode2ss2

% define input dofs

% input node: 40 direction 3

ig=[ 40 0 0 1 0 0 0 ];

% ig= input vector 1- shaker Force Fc

str_in= str2mat('1 Fc');

% define displacement output dofs

% output nodes: 17 in 3 direction

dg=[ 17 0 0 1 0 0 0];

str_out=str2mat('1 z');

za=0.005*ones(1,nm); % flexible prop damping

za(1:3)=0.025*ones(1,3); % Suspension modes have higher damping (refine later)

nrbm=0;

vg=[];

% compute state space model

[Ap,Bp,Cp,Dp,lb,lc] =

mode2ss2(xyz,bc,nm,ig,dg,vg,nrbm,za,phi,omeg);

sysp=ss(Ap,Bp,1e6*Cp,Dp); if 0

f=logspace(-1,2,1000);

[mag_fem,phs_fem]=bode(sysp,f*2*pi);

mag_fem=squeeze(mag_fem);

figure

semilogy(f,mag_fem)

end

toc flops
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