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Abstract

Precision opto-mechanical systems, such as space telescopes, combine structures, optics and
controls in order to meet stringent pointing and phasing requirements. In this context a novel
approach to the design of complex, multi-disciplinary systems is presented in the form of a
multivariable isoperformance methodology. The isoperformance approach first finds a point
design within a given topology, which meets the performance requirements with sufficient
margins. The performance outputs are then treated as equality constraints and the non-
uniqueness of the design space is exploited by trading key disturbance, plant, optics and
controls parameters with respect to each other.

Three algorithms (branch-and-bound, tangential front following and vector spline approx-
imation) are developed for the bivariate and multivariable problem. The challenges of large
order models are addressed by presenting a fast diagonal Lyapunov solver, apriori error bounds
for model reduction as well as a governing sensitivity equation for similarity transformed state
space realizations. Specific applications developed with this technique are error budgeting and
multiobjective design optimization. The goal of the multiobjective design optimization is to
achieve a design which is pareto optimal, such that multiple competing objectives can be
satisfied within the performance invariant set. Thus, situations are avoided where very costly
and hard-to-meet requirements are levied onto one subsystem, while other subsystems hold
substantial margins.

An experimental validation is carried out on the DOLCE laboratory testbed. The testbed
allows verification of the predictive capability of the isoperformance technique on models of
increasing fidelity. A comparison with experimental results, trading excitation amplitude and
payload mass, is demonstrated. The predicted performance contours match the experimental
data very well at low excitation levels, typical of the disturbance environment on precision
opto-mechanical systems. The relevance of isoperformance to space systems engineering is
demonstrated with a comprehensive NEXUS spacecraft dynamics and controls analysis. It is
suggested that isoperformance is a useful concept in other fields of engineering science such
as crack growth calculations in structures. The isoperformance approach enhances the under-
standing of complex opto-mechanical systems beyond the local neighborhood of a particular
point design.
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Subscripts and Superscripts

() Lagrangian

()" Hermitian (complex-conjugate transpose)
()T transpose

()i (")ij (,7) entry of a matrix

(+); ith entry of a vector

Units:
Units in this thesis are typically given in the SI-system (systéme international) and are en-
closed in square brackets, e.g. [N/m)].

Definitions

Isoperformance: A methodology which treats the performance of a system as an equality
constraint and finds the locus or set of parameters that meet this condition, thus allowing
tradeoff based on objectives other than performance.

Precision Opto-Mechanical System: A system which captures electromagnetic radiation
in the form of light via an optical train and a photographic or electronic detector. The op-
tical elements (mirrors, beam splitters, lenses) are mounted to a supporting structure, whose
dynamics are excited by disturbance and input commands or non-zero initial conditions. The
system is a “precision” system, when the phasing (and pointing) requirements are on the order
of a single wavelength of light.

Pareto Optimal Set: A pareto optimal set is the solution of a multiobjective optimization
problem. The characteristic of these solutions is that an improvement in one of the vector
components of the objective can only be achieved by degrading the performance in at least
one of the other objective components. The set contains only non-dominated solutions.

Integrated Model: State space representation of the dynamics of a system, which captures
structural dynamics, optics, controls and disturbance sources in a unified manner in a single
computing environment.
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Chapter 1

Introduction

In designing complex high-performance technical systems, there are typically two con-
flicting quantities that come into play: resources and system performance. One traditional
paradigm fixes the amount of available resources (costs) and attempts to optimize the system
performance given this constraint. The other approach is to constrain the system performance
to a desired level and to find a design (or a family of designs) that will achieve this perfor-
mance at minimal cost. This thesis explores the second approach by developing a framework
termed the “isoperformance methodology” for dynamic, linear time-invariant (LTI) systems.

The word “isoperformance” contains the Latin prefix “iso”

, meaning “same”. Thus it refers
to a framework where the solutions to a design problem do not distinguish themselves by
the performance they achieve but rather by the “cost” and “risk” required to achieve this
performance. Note that “cost” is to be understood in a broader sense than monetary cost.
The generalized cost metrics can include, among others, hardware costs, system mass, control
effort or the amount of energy dissipated in the system. The generalized notion of “risk” is
comprised, among others, of margins of stability, stability robustness, performance robustness
to uncertainty and system reliability!.

The novelty in this approach is that integrated modeling and physical parameter sensitivity
analysis for LTI systems are leveraged such that a family of “efficient” solutions is presented to
the designer rather than a single point-design as is often the case in pure systems optimization

or performance enhancement studies. The term “efficient” relates to a pareto optimal set of

solutions. This framework is first developed generically for LTI systems, which can described

!There is also technical risk associated with advanced technologies, which have never been implemented

before. This type of risk, however, is much more difficult to quantify.
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in state space form. It is then applied to dynamics and controls problems of precision opto-
mechanical systems, such as the next generation of space-based observatories. These systems
carefully combine structures, optics and controls such that stringent pointing and phasing
requirements can be met in the presence of dynamic disturbance sources.

The first step of an isoperformance analysis is to find a nominal system design (starting
from an initial guess) that meets all the dynamic performance requirements with sufficient
margins. The performance is then treated as an equality constraint (i.e. it is held constant)
and those system parameters, which are considered to be variable, independent and important,
are traded with respect to each other. The reason the performance is treated as an equality
rather than a “smaller-or-equal” inequality is that the latter could lead to solutions which
are significantly overdesigned, i.e. they may provide excessive performance margins which
will not be used during operations and will waste system resources such as mass and control
effort or they may carry unnecessary risk such as small stability margins. A prerequisite
for the methodology is that reasonable upper and lower bounds are defined for each variable
parameter. Reasonable means that the bounds do not violate physics (e.g. negative mass) and
are achievable within the current or foreseeable state-of-the-art. The computation of multiple
isoperformance contours (at different performance levels) allows the designer to understand the
implications of pursuing increased performance beyond the requirements. The goal is to obtain
an isoperformance set, i.e. the locus of design points that yield equal nominal performance in
the design space defined by the upper and lower bounds. This information can subsequently
be utilized in support of important systems engineering tasks such as multiobjective design

optimization and error budgeting.

1.1 Research Background

The next generation of space and ground based astronomical observatories such as the Next
Generation Space Telescope (NGST), the Space Interferometry Mission (SIM) or the Ter-
restrial Planet Finder (TPF) will significantly surpass the present generation, for example
the Hubble Space Telescope (HST), in terms of their sensitivity, angular resolution, spectral
resolution and imaging stability [105, 59, 27]. The present work is motivated by the need
to predict the dynamic behavior of these telescopes during the conceptual and preliminary

design phases before substantial resources are committed towards a particular system archi-
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tecture. Figure 1.1 shows the HST in the upper left corner and a number of proposed successor
spacecraft below. The science objectives for these missions are translated into functional re-
quirements. These are further flowed down to engineering system requirements. It is these
engineering requirements, specifically relating to dynamics and controls, which constitute the

notion of “performance” in the present work.

HST - 1990
Sample Requirements Flowdown Process
Science Functional | » Engineering
Requirements Requirements Requirements
J year T @ EiT- —» Fringe Visibility Science Interferometer
met'rlc. accuracy of 4 Hasec > 0.8 for astrometry OPD < 10 nm RMS
to limit 20th Magnitude stars
Space-Based Observatory
Multipurpose UV/Visual/IR
Imaging and Spectroscopy NGST-2009 "Performance”
NEXUS-2004 SIVE2006
f— TPF-2011
=
Deployable Cold Optics Lightweight 8m-Optics ~ Faint Star Interferometer ~ Nulling Interferometer

NGST Precursor Mission IR Deep Field Observations ~Precision Astrometry Planet Detection

Figure 1.1: Hubble Space Telescope and proposed successor missions as part of
NASA’s space science program. Sample requirements flowdown for SIM.

While the HST has performed admirably well over the last decade [27], it is essentially a
multi-purpose instrument providing imaging and spectroscopy capabilities in the wavelength
range 0.110-2.6 [pm], i.e. from ultraviolet (UV) to near-infrared (NIR). In order to achieve
this large scope of science capabilities, a number of engineering compromises had to be made.?
The astronomical science community has realized that specialization is necessary such that
the ambitious astrophysical research goals of the first half of the 215! century (e.g. observation
of proto-galaxies at high redshifts z, direct IR detection of extra-solar earth-sized planets out

to 15 parsecs) can be achieved [105]. Consequently a number of successor spacecraft have

2The angular resolution for HST is given by the Dawes limit 0,.s = A\/D, where D = 2.4 [m] is the diameter
of the primary mirror and X is the observing wavelength. Thus at A = 0.63 [um] (WFPC2) the observatory
achieves an angular resolution (FWHM) of 0.053 arcsec. In the infrared regime at A = 1.6 [wm] as seen with

the NICMOS camera, however, the achievable angular resolution is reduced to 0.14 arcsec.
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been proposed (Figure 1.1).

At first sight it appears impossible to attempt a unified engineering treatment of these
various missions due to the large differences in their respective science objectives. Once
these objectives have been broken down into tangible engineering requirements, however, the
missions can be analyzed with a common set of tools. All missions require that electromag-
netic radiation emanating from a science or guide source (e.g. star, proto-galaxy, extra-solar
planet...) is collected by an aperture, compressed and redirected to an electronic detector
(e.g. sprectrograph, CCD camera, fringe tracker). During this process it is paramount that
the distortion of the wavefront (surface of common phase of light) inside the optical train be
kept to a minimum, while the boresight axis of the observatory be held nearly fixed in inertial
space’.

For interferometers, additional requirements for the angular propagation of the wavefront
(wavefront tilt-WF'T), the pathlength the light travels in the different arms of the interferome-
ter (optical pathlength difference-OPD) and the amount of overlap the interfering light beams
experience at the detector (beamshear-BS) must be formulated. In order to ascertain that
these telescopes will meet their stringent phasing and pointing requirements, the path from
disturbance sources to the performance metrics of interest must be modeled in detail before
construction, integration and testing. Additionally, for a number of light-weight deployable
structures, pre-launch tests in a 1-g gravity field are not feasible. Hence, it is paramount that
a preliminary design of the system is available, which can be used as a basis for a simulation
model.

The science target observation mode is in quasi steady-state and is of particular impor-
tance. Other modes of interest can be transient such as the slewing and acquisition mode.
Figure 1.2 shows a simplified block diagram of the main elements involved in a steady-state
dynamics simulation. This is the reference problem setting considered in this thesis. The
premise is that a number of disturbance sources (reaction wheel assembly, cryocooler, guide
star noise, etc.) are present during the science target observation mode as zero-mean ran-
dom stochastic processes [11]. Their effect is captured with the help of state space shaping

filters?, such that the input to the appended system dynamics is assumed to be a vector of

3A common inertial reference frame is the equatorial system, where the location of a celestial object is

defined by its declination ¢ and right ascension a [65].
“Sometimes these are referred to as pre-whitening filters.
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unit-intensity white noises d, which are generally uncorrelated between disturbance sources,
see Equation (1.1). Reference input commands are designated as r. The simplest assumption

is that the reference commands are zero, i.e. r = 0, this, however, is not always the case.

Science Target Observation Mode

White Noise Input
___ Reference commands Phasing (WFE)
! “Hw‘uw‘"“v‘u‘ | ”\Iﬂ",‘”” ‘HI‘I“”‘ | “l‘“"\\ Appended LTI System Dynamics
‘ ‘ I ‘ [Azd:B2d:Bzr:C7d:D7d:Dz ]
r Opto-Structural Plant
1/2
1 r
Disturbance 2 , Jop= E|:n_meFEZWFE:|
i WFE
Dynamics 2=[ ] — RMS WFE
Z Cen

Performances

®

I
[Ad.B3.Cq,Dql

Pointing (LOS)

[Ap’Br’BW’BU’CY’CZ]
Control
f 't y

Actuator Sensor r 1/2
Noise  [A¢,B..Ce.Dcl Jon = E|:ZCen ZCen ]

Noise
=RSS LOS

Figure 1.2: Reference problem: Science target observation mode of a space telescope
with pointing (RSS LOS) and phasing (RMMS WFE) performances.

The shaped disturbances w are then propagated through the opto-structural plant dynam-
ics, which include the structural dynamics of the spacecraft and the linear sensitivity optics
matrices [120]. A compensator is often present in order to stabilize the observable rigid body
modes (attitude control) and to improve the disturbance rejection or tracking capability (op-
tical control). The sensor outputs y and actuator inputs u might also be subject to colored
noise n. The goal of a disturbance analysis is to accurately predict the expected values of the
performances J ;, where ¢ = 1,2,...,n, and n, is the number of performance metrics. This
has been previously developed and demonstrated by Gutierrez [45]. A summary of the distur-
bance, sensitivity and uncertainty analysis framework is contained in Appendix A. Outputs of
the appended dynamics model are opto-scientific metrics of interest, z. The performances are
typically expressed in terms of the root-mean-square (RMS) of the outputs. Alternatively we

can combine channels in a RSS or RMMS metric, see Appendix A for details. Note that 1.4,
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is the number of light rays traced to compute the wavefront error (WFE). Other performance
metrics could be the infinity norm J,; = ||z||,, or settling time J,; = T's,; of a particular
transient signal.

Another objective is to identify the “key” modal and/or physical parameters of the system
that strongly drive the system performance. Sensitivity analysis has been previously identi-
fied [45] as a useful tool for examining the dependency of the predicted performance values J, ;
on these “key” system parameters p;, where j = 1,2,...,n;, and n, is the number of parame-
ters®. Some or all of the parameters might be subject to uncertainty. Oftentimes the number
of parameters, n,, for which a designer has to determine specific values exceeds the number
of performance metrics, n,, i.e. n, —n, > 1. The traditional approach is to first choose rea-
sonable numbers for the system parameters p; and to predict the resulting performances J, ;
(initial performance assessment). If all or some of the predicted performances do not initially
meet the specified requirements J; ;¢4 for i = 1,2,...,n,, including margins, a sensitivity anal-
ysis can provide partial derivatives 0.J, ;/Jp; which can be used to identify in which direction
important parameters p; should be changed. This is intended to drive the system to a design
point that satisfies all requirements, i.e. a condition where J, ; < J, yeq; for all i = 1,2,..,n,
is true. This process is called performance enhancement [45]. A £% uncertainty on the pre-
dicted performances, £AJ, ;, can be computed based on known or assumed +% uncertainties,

vj, of the parameters p;. This is useful in establishing performance error bounds.

1.2 Isoperformance Motivation and Analogies

Once a nominal design has been found that meets all requirements with sufficient margins,
it is important to realize that this design is generally not unique. It is likely that different
combinations of values for the “key” system parameters, p;, will yield the same predicted
system performances J,;. Consider the following analogy from civil engineering (statics).
A metal supporting column for a bridge, see Figure 1.3(a), is to be designed, such that it
can sustain an axial buckling load of 500 metric tons® with a 100% safety margin (=9.81
[MN]). The buckling load in this case represents the “performance” and the static axial load
is the static analog of the dynamic “disturbance”. The critical buckling load, Pg, is given

by Euler’s column formula as Pp = c¢r?EI/I?, where E is the modulus of elasticity, I is

5Tt is assumed that these parameters are continuous over their interval p; € [prs,; PUB,;]
5Buckling occurs at the bifurcation point, when the column becomes elastically unstable.
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the column moment of inertia, [ is the length of the column and ¢ is a boundary condition-
dependent parameter, the so called “end fixity coefficient” [121, 140]. The bending moment of
inertia I of the circular column is a function of the radius 7 according to I = 7r*/4. The end
fixity coefficient is ¢ = 2.05, assuming that the column has a uniform cross section, is axially
loaded, has one end fixed (floor) and one end pinned (ceiling). We can reasonably assume that
[ = 15 [m] and that this length is a constant given by the overall design of the bridge. The
remaining variable design parameters are therefore the elastic modulus E (material) and the
column radius r (geometry). The performance specification can be met if we use steel V2A
(74% Fe, 18% Cr, 8% Ni) with £ = 19.1-10'° [Nm 2] and a column radius of 7 = 16.42 [cm].
Alternatively the same performance can be achieved if we use aluminum (99.99% Al) with
E =7.1-10'° [Nm~?] and a column radius of 7 = 21.03 [cm]. In fact, we see that the “contour
of equal performance” is given by the equation E(r) = (4Pgl?/cr3)-r—*. The critical buckling
load will remain constant as long as the product ET is kept constant. In practice the choice of

materials and geometry in the bridge example will be governed by additional considerations

such as cost, corrosion resistance or ease of inspection.

Figure 1.3: (a) Simple model of axially loaded column in bridge analogy. (b) United
States sea level pressure distribution [mbar], 1600 Z time, Tuesday, May
9th, 2000, based on http://ww2010.atmos.uiuc.edu [110].

In the design of high-precision opto-mechanical systems, such as ground and space ob-
servatories, it is also important to find the combinations of design solutions that will yield
equal performance (thus the term “isoperformance”). In this multi-disciplinary field the dis-

turbance, structural, optical and control parameters, p;, interact in complex and sometimes
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non-intuitive ways’. Knowledge of this interaction can give valuable insight into the design
space and predicted behaviour of the system. From an economic perspective an “isoperfor-
mance” analysis is important, since it can help to design a product that achieves the required
performance at a more affordable cost. Consequently, according to Wehner [139], the system
parameters that have small sensitivities are also important in this context, since they can
be changed (presumably in the less costly direction) without significantly affecting system
performance. This is different from classical optimization of performance, where the goal is
to find the design which provides the best performance, i.e. minimization or maximization
of a performance objective function given a set of constraints. From a systems engineering
and project management perspective an isoperformance analysis is useful, since it supports
multiobjective design optimization, error budgeting and to some extent technology roadmap-
ping. For example if the requirements levied on a subsystem in the preliminary design phase
cannot be met during detailed design, the “burden” has to be redistributed within the system.
Knowledge of the locus of design points that will (theoretically) yield equal performance is
useful in such a scenario.

The isoperformance loci are surfaces or contours, which can be compared to the isobars on
a weather chart. In this analogy the system “parameters” would be the geographic longitude
and latitude and the “performance” would correspond to the atmospheric pressure in millibars
at a given altitude. Figure 1.3(b) depicts a pressure chart for the United States at mean sea
level as recorded on May 9, 2000. The isobars are the lines of constant pressure. The isobars
are generated from mean sea level pressure reports from individual weather stations and are
useful in locating areas of high and low pressure, which correspond to the positions of surface
cyclones and anticyclones. A map of isobars is also useful in identifying strong pressure
gradients which are revealed by a tight packing of the isobars. Stronger winds are associated
with larger gradients in pressure [110]. For dynamic opto-mechanical systems, areas where
the isoperformance lines are close together are “steep”-gradient areas. This analogy will be
exploited in a later chapter and is related to the notion of performance robustness, assuming
that some of the variable parameters are uncertain. In these regions of the trade space the
performance is very sensitive to small changes in the system parameters.

In summary, the motivation for the isoperformance methodology is to obtain a tradeoff

tool in support of the multiobjective design optimization, error budgeting and technology

"The thermal aspects are also important but are ignored in this thesis, see Section 1.3.3.

30



roadmapping processes for precision opto-mechanical systems. These processes rely heavily
on integrated modeling, model conditioning, as well as disturbance and sensitivity analysis. A
tool is needed in order to obtain specifications on the system plant and control parameters and
error sources, which will ensure that a required performance level is met, while minimizing
the cost and risk of the system. The need for computational tools, which provide such a rapid
synthesis and simulation capability has been recognized by NASA [138]. This is the impetus

for the following formal thesis problem formulation.

1.3 Thesis Problem Formulation

1.3.1 Thesis Objectives

The first objective of this thesis is to develop a comprehensive multivariable isoperformance
methodology for precision opto-mechanical systems. In other words, given the required system
performances J, yeqi, wheres = 1,...,n,, attempt to find a set of independent solution vectors,
Diso = [P1,P2y -+ pnp]T, whose elements are the variable parameters, p;, such that an efficient
system design can be achieved. The theoretical questions to be answered by such a framework

are:

1. Can a specific precision opto-mechanical system described by an integrated model in

state space form meet all required performance levels J, ;¢4 ; for given variable parameter

bounds prp; <pj <pup,; ?

2. What is the locus (set) of points p;s, in R™» that will produce the required performances

J2i(pj) = Jz req,i (including margins) within an allowable numerical tolerance, 7 ?

3. How can the set of isoperformance points, p;s,, be approximated by a functional rela-

tionship piso = fiso(t1), where l =1,2,...,n, —n, ?

A second objective of the thesis is to demonstrate the usefulness of this methodology in
the context of dynamics and controls system engineering problems. Specifically the research

attempts to answer the following applied questions:

1. What are the specific values for disturbance, plant, optics and control parameters, p;, of

a given dynamic system that meet the isoperformance condition and at the same time
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minimize a scalar or multiobjective cost function J. and risk function J, 7 (Multiobjec-

tive Design Optimization)

2. What is a physically realizable error allocation ¥;; for the anticipated disturbance
sources | = 1,2, ...,ng and the i-th performance of a dynamic LTI system ? (Dynamics

Error Budgeting)

3. Assuming that the required performance levels J, .q; are not achievable within the
specified parameter bounds (state-of-the art), which constraints should be moved (and

by what amount) in order to achieve the required performance ? (Technology Roadmap-

ping)

A third objective of the thesis is to implement the isoperformance framework and to
experimentally demonstrate its ability to predict correct isoperformance loci given a system

model and corresponding laboratory artifact:

1. Implement the isoperformance methodology in a common and user-friendly technical
computing environment and thoroughly test it with various system models of increasing

complexity.

2. Validate the resulting toolbox with experimental results from a laboratory testbed in a

1-g environment.

3. Obtain insights about the level of model fidelity required to accurately predict the isop-

erformance surfaces in real world systems.

Finally a fourth objective is to demonstrate if and how the kernel isoperformance algo-
rithms can be applied to engineering problems outside of the dynamics and controls area, e.g.

in metal fatigue engineering.

1.3.2 Mathematical Problem Definition

An appended state space representation of the dynamics of a closed-loop or open-loop linear

time-invariant system is given as

q=A.q4(pj)q+ B.q(pj)d+ Bz (pj) r
z=Cuq(pj) ¢+ D.q(pj)d+ D,y (pj) 7, where j =1,2,...,n,
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where A,  is the state transition matrix, B,4 and B,, are the disturbance and reference input
coefficient matrices, C,q is the performance output coefficient matrix, D,q and D,, are the
disturbance and reference feedthrough matrices, d are unit-intensity white noise inputs, r
are reference inputs, z are system performance outputs, ¢ is the state vector and p; are the

independent variable system parameters. Given that the functionals
T 1/2
Toi(pj) = F(2) , e Joi = E [2] 2] (1.2)

where ¢ = 1,2,...,n,, are a definition of the performance metrics of interest, find a set of
vectors, pjso, whose elements are the independent variable parameters, p;, such that the

performance equality (isoperformance) constraint
i (Piso) = Jopeqi Vi=1,2,..,n, (1.3)
is met, assuming that the number of parameters exceeds the number of performances
np—mn;>1 (1.4)
and that the parameters p; are bounded below and above as follows:
pjLB <pj <pjuvpVji=12,..,n, (1.5)

The isoperformance condition (1.3) has to be met subject to a numerical tolerance, T

J, (piso) - Jz,req < L
Torea = 100

(1.6)

If scalar or vector (multiobjective) cost functions, J., and risk functions, J,, are given, solve

a constrained non-linear optimization problem such that

NLP

min [nJ7 Qecde + (1 — 1) JX QrrJy ]

such that piso € T and pj e < pj <pjus
and n € [0 1]

(1.7)

where the weight 7 is used to trade between cost and risk objectives and Q.. and @, are cost
and risk weighting matrices respectively. The set I is the performance invariant (isoperfor-
mance) set, containing only solutions satisfying (1.3).

Alternatively this can be formulated in terms of set theory. Figure 1.4 shows various sets

in the vector space p = [pl P2 ... pnp]T and their mutual relationship in the general case. The
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goal is to first find the elements of the isoperformance set I. Note, that since the performance

requirements are bounded, i.e. |J; ;eq,i| < 00 V i, it is true that the intersection UNI = @. In
other words only stable solutions can be part of the isoperformance set, thus I C U, where the
overline denotes the stable, complementary set U = {z|z ¢ U}. Our ultimate goal is to find a
family of designs p7, j = 1,2, ...,np, which are elements of the efficient set E. The efficient set

is the intersection of the isoperformance set I and the pareto optimal set P, i.e. E=1INP.

- - - - - - - — — — — | set description
R

R"» n,-dimensional Real valued

Euclidean vector space
B B C R™ subset of R, which

is Bounded by (1.5)

ICB subset of B, which satisfies
Isoperformance, see (1.3)

UCR» Ununstable subspace, where
max(Re(\;)) >0

PCR» Pareto optimal subset,
satisfies (1.7) without constr.
E =1INnP Efficient subset, satisfies

___________ (1.7) with constraints

Figure 1.4: Sets related to thesis problem definition. The eigenvalues ); are obtained
by solving the eigenvalue problem [A,; — A\ I]¢; = 0.

1.3.3 Limitation of thesis scope

It shall be noted that (quasi) static disturbance (=error) sources, such as thermal mirror
distortions, manufacturing aberrations or optical misalignments will not be included in this
analysis. Thus the disturbance sources d are assumed to be zero mean: pug = E[d] = 0,
while [de] # 0. Furthermore this thesis focuses on the science target observation mode,
thus representing a steady state condition. This is true while an observatory is phased up
and locked onto a desired science target for the duration of the image or fringe integration
time. The concept of isoperformance could, however, also be applied to transient modes of

operation.
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When applying the isoperformance methodology to precision opto-mechanical systems we
will always assume linearity and time-invariance (LTT). This entails the assumption that the
system behaviour is linear over the entire definition interval of the parameters p;, see Equation
(1.5). The scope is limited to continuous time problems (s-domain). The effect of D/A or
A /D conversion noise and time delay associated with digital control implementations can be
included via shaping filters and Padé approximations, respectively. We will exclude discrete or
topology-type design parameters such as structural connectivity or actuator/sensor placement
and type. Also it is assumed that a baseline controller has been chosen (e.g. PID, LQG) and
that it can be parameterized.

Also, some system parameters need to be fixed ahead of time to make the problem for-
mulation tractable for realistic systems. The thesis will provide guidance, however, as to
which parameters to select for an isoperformance analysis. The thesis is essentially limited
to dynamics and controls problems for opto-mechanical systems, but application of the core
isoperformance algorithms to a crack growth problem in metallic structures is presented in

Appendix C. This suggests the use of isoperformance in other fields.

1.4 Previous Work

1.4.1 Literature Review

This section gives a short overview of the scientific literature which is relevant to the devel-
opment and validation of the isoperformance methodology. The literature search areas begin
with papers on the processes and tools used by systems engineers and designers during con-
ceptual and preliminary design. The current state-of-the-art in performance assessment and
enhancement of linear time-invariant systems is discussed along with initial work by other
researchers in the area of isoperformance methodology. The building blocks of integrated
modeling of such systems are structural dynamics, classical and modern control theory, op-
tical ray tracing as well as empirical and analytical modeling of various disturbance sources.
In order to leverage these models and simulations in a multidisciplinary design optimization
(MDO) context, issues of numerical conditioning, sensitivity analysis and uncertainty analysis
cannot be ignored. Finally, past and presents efforts in laboratory testing and implementation
on spaceflight missions are briefly discussed.

The conceptual and preliminary design phases are important times during a program
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in which various system architectures are analyzed and estimates are made of the top level
and subsystem functional requirements. Additionally, initial budget allocations are made
and enabling technologies are identified. The allocation of design requirements and resources
(costs) and an assessment of risk during these early stages of a program is based on preliminary
analyses using simplified models that try to capture the behavior of interest [19]. This was a
major driver for the development of tools that allow quantitative analysis and design of these
preliminary dynamics models early in a program. The kernel of the performance assessment
(disturbance analysis), sensitivity and uncertainty analysis framework, which is used as a
starting point for developing the isoperformance methodology was established by Gutierrez
[45]. The Ho-type performances used here are defined in accordance with Zhou, Doyle and
Glover [143].

The theory behind the performance assessment of linear dynamical systems is well-
developed. A special case of the general performance assessment of a dynamical system
is given when stochastic random noise processes are present. In this instance we speak of
disturbance analysis and governing equations and methodologies are presented in random
vibration textbooks such as those by Crandall [18] and Wirsching [141]. They characterize
the response of systems driven by stochastic inputs in the time-domain (using autocorrelation
functions) and equivalently in the frequency-domain (using power spectral density functions).
The concept of a linear shaping or “pre-whitening” filter whose input is white noise and whose
output is “colored” noise, presumably containing more disturbance energy in some frequency
bands than in others, is covered by Brown and Hwang [11]. For the case of state-space systems
driven by white noise, the output steady-state covariance matrix is known to be the solution
of a Lyapunov equation [45].

The idea of holding a performance metric or value of an objective function constant and
finding the corresponding contours has been previously explored by researchers in other ar-
eas. Gilheany [36] for example presented a methodology for optimally selecting dampers for
multidegree of freedom systems [36]. In that particular work (Fig.5) the contours of equal
values of the objective function® are found as a function of the damping coefficients d;; and
dos. In the field of isoperformance methodology, work has been done by Kennedy, Jones

and coworkers [70, 71, 69] on the need within the U.S. Department of Defense to improve

8The objective function in reference [36] is called ITSE = integral of time multiplied by the sum of squares

of displacements and velocities of the masses.
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systems performance through better integration of men and women into military systems (hu-
man factors engineering). They present the application of isoperformance analysis in military
and aerospace systems design, by trading off equipment, training variables, and user charac-
teristics. Once the level of operational performance is settled upon (e.g. “pilot will check out
all aircraft flight systems within 30 seconds”), tradeoffs among equipment variables, adapta-
tion, training, and individual predisposing factors can be made”. A systematic approach to
isoperformance in complex, dynamic opto-mechanical systems such as the next generation of
space observatories however is lacking at this time.

A field that has received a lot of attention in the last few years is integrated model-
ing. This encompasses research and efforts to simulate complex systems in a unified and
multidisciplinary environment. Several important initiatives in this field, like NASA’s Intel-
ligent Synthesis Environment (ISE) described by Venneri, Malone and coworkers [138] are
underway. Important contributions to integrated modeling were made by the Jet Propulsion
Laboratory (JPL) with the creation of a MATLAB based finite element package and optical
modeling software called IMOS (Integrated Modeling of Optical Systems) [62]. This code was
developed to assist in the synthesis of initial models of optical instruments and to reduce the
model creation, analysis and redesign cycle as described by Laskin and San Martin [76]. The
IMOS package is used extensively throughout this thesis for the generation and manipulation
of finite element models of spacecraft and a laboratory testbed.

Structural dynamics fundamentals, in particular the single degree-of-freedom oscillator
used as a sample problem in this thesis, are treated by Craig [17]. More advanced concepts on
the finite-element method are presented by Bathe [4] and Cook [16]. The structural dynamics
and controls of large flexible spacecraft have been extensively studied by Junkins and Kim [63]
as well as Crawley [19]. As will be seen later the stringent pointing and phasing requirements
of opto-mechanical systems often require closed-loop attitude and optical control. Thus,
actuators, sensors, and compensators must be included in the integrated model. Control
textbooks by Van de Vegte [137] and Ogata [111] provide an overview of classical control
design techniques, while those of Zhou et al. [143] and Bélanger [6] emphasize modern control

theory (state space based). Typically control systems are implemented on digital computers

9A company named Isoperformance Inc. was founded as a result of this research. More information can
be found at the following URL: http://www.isoperformance.com. The company focuses on human factors

engineering.
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as described by Astrém [1] and Franklin and Powell [32]. It is interesting to note that there
still is a large discrepancy between theoretical modern control theory based on LQR, LQG
and sensitivity weighted LQG, H-infinity and p-synthesis techniques and controllers that are
actually implemented in space flight vehicles up to this day. Aerospace contractors, NASA
and other space agencies still rely mainly on analog or digital implementations of classical
control techniques such as PID and loop-shaping for attitude, thermal, optical and, among
others, end effector control. This is likely due to an aversion towards risk and to the ease with
which classical controllers are designed, understood, implemented and tested. Additionally
the advantage of extensive flight heritage frequently offsets the potential performance benefits
of modern controllers. This fundamental disparity was recognized by Mallory and Miller [86].
They proposed, developed and validated a MIMO controller tuning technique which begins
with a simple local (often classical) baseline controller, which is then analyzed and iteratively
tuned by opening up promising cross-channels and adjusting controller parameter settings
based on a gradient search technique.

The fundamental work that allows the computation of optical linear sensitivity matrices
and their incorporation into dynamics models is attributed to Redding and Breckenridge [120].
The linear sensitivity matrices allow computing optical metrics such as centroid position on the
focal plane, wavefront error, wavefront tilt or beam shear as a function of linear and rotational
displacements of the points where elements in the optical train (mirrors, beamsplitters, filter
wheels etc.) are attached to the structure. The software program called MACOS! (Modeling
and Analysis for Controlled Optical Systems) [61] creates the sensitivity matrix based on a
prescription of optical elements in the system and unit perturbations of the structural degrees-
of-freedom. General recommended references for optics are by Born and Wolf [10] as well as
Hecht [50]. Telescope optics in particular are described by Rutten and van Venrooij [123].

When considering a disturbance analysis it is important to enumerate and characterize
all potential energy sources that might interfere with the opto-mechanical performance of
the system. Eyerman and Shea [30] provide a very complete overview of spacecraft dis-
turbances. Reaction wheel disturbances are often expected to be the dominant source and
Bialke [7], Davis, Wilson, Jewell and Roden [21], Melody [91] as well as Masterson [89] have
contributed to this field. Reaction wheel disturbance models are also included in this thesis

and an attempt is made to derive performance derivatives with respect to physical parame-

Yformerly known as COMP
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ters of the wheels. These are needed for the computation of isoperformance solutions that
involve reaction wheel parameters. Other likely disturbance sources are linear Sterling cry-
ocoolers, attitude determination sensors, guide star noise in a CCD guider camera or A/D,
D/A conversion noise.

Once an integrated model has been assembled into a large appended state space model
numerical conditioning becomes important, before it can be useful in a disturbance, sen-
sitivity or isoperformance analysis. This is due to that fact that numerically ill-conditioned
models are likely to produce inaccurate results in time simulations or when solving Riccati
or Lyapunov equations. Additionally it is often true that the dynamic response of a com-
plex opto-mechanical system is often dominated by a small subset of states or modes. Large
computational savings can be obtained if this subset can be identified and isolated apriori via
model conditioning and reduction. Creating a balanced state-space realization according to
Moore [102] can not only improve the numerical conditioning properties of a model, but it
also serves as a technique for identifying states that can be eliminated from the model due
to low observability and controllability [143]. Additional techniques for balancing large state
space models are presented by Laub and coworkers [77, 78]. For the case of systems dominated
by lightly-damped modes, the method proposed by Gregory [39] is an efficient approach for
ranking the importance of these modes. An effective pre-balancing technique was proposed
by Mallory [86]. A comprehensive view of model quality management was taken by Uebelhart
[136].

A sensitivity analysis provides useful information related as to how dependent certain
outputs of a model are with respect to modal or physical parameters of the model. A key aspect
of the isoperformance methodology is the ability to compute exact analytical sensitivities, as
opposed to inexact and inefficient finite difference based gradients which are strongly affected
by the chosen perturbation size. These are then assembled into a gradient vector or Jacobian
matrix in the multivariable case. The isoperformance technique operates in the nullspace of
the Jacobian. A good overview of linear algebra in this context, describing the nullspace and
singular value decomposition of a matrix, is provided by Strang [132]. Analytical expressions
for the sensitivities of performance metrics previously derived by Gutierrez [45] are used
throughout this thesis. A Lagrange multiplier approach was proposed by Jacques [56] to
obtain analytical sensitivities of a system’s outputs with respect to various parameters. The

calculation of sensitivities requires mode shape and frequency derivatives, which fall under the
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category of eigenvalue and eigenvector derivatives. A good survey of various eigenderivative
methods is provided by Murthy and Haftka [104]. When the parameters are element mass
and stiffness properties of a finite-element model, these derivatives can be computed exactly
using methods developed by Fox and Kapoor [31] and Nelson [107]. Practical implementation
of these methods is done by Kenny [72], and this work is extended by Gutierrez [45]. Previous
work by Hou and Koganti [52] in the context of integrated controls-structure design also makes
extensive use of sensitivities.

Once an isoperformance set I has been computed we are looking for other metrics, which
can be assembled into a cost objective function J. and/or a risk objective function .J,, re-
spectively, in order to discriminate between competing solutions. Since not all parameters
in a system are known to the same degree, parametric uncertainty represents an important
element of risk. Uncertainty analysis of the performances (performance robustness) and
stability margins (stability robustness) are the topic of publications by Yang [142], How [53],
Skelton [126], Zhou et al. [143] and the work by Campbell and Crawley [14]. An approximate
method for predicting worst-case performance RMS values due to parametric uncertainties is
that used by Bryson and Mills [12]. One particular method is the first-order approach that re-
lates the covariance matrix of output quantities in terms of the covariance matrix of uncertain
parameters and the sensitivity matrix of the outputs with respect to the parameters.

The multiobjective design optimization aspects of this work draw on previous research
results in multidisciplinary design optimization. A fundamental book on the theory
of multiobjective optimization was published by Sawaragi, Nakayama and Tanino [124]. An
important application of multiobjective optimization is concurrent control/structure optimiza-
tion. The objective is to develop structure and control designs simultaneously such that the
overall system design has improved properties compared to a system design obtained through
a traditional, sequential approach. This allows the same performance to be achieved with
less control effort or less structural mass, for example. This philosophy is carried on in this
thesis by additionally including disturbance and optical design parameters. Solutions of these
multi-disciplinary optimizations are dependent on the type of objective functionals specified
and the programming techniques employed. The method developed by Milman et al. [100]
does not seek the global optimal design, but rather generates a series of Pareto-optimal de-
signs that can help identify the characteristics of better system designs. This work comes

closest to the spirit followed in this thesis. Masters and Crawley use Genetic Algorithms to
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identify member cross-sectional properties and actuator/sensor locations that minimize an
optical performance metric of an interferometer concept [88]. Performance enhancement on
systems with uncertain parameters is treated by Parkinson et al. [117] and Pritchard et al.
[119]. A good overview of structural and multidisciplinary optimization research is given in
the volume “Structural Optimization: Status and Promise” edited by Kamat [64]. Crawley et
al. present a methodology for the conceptual design of controlled structural systems [19]. It
applies a controlled structures technology (CST) framework in a consistent level of modeling
detail in order to identify and modify the critical disturbance-to-performance transmission
paths.

It is interesting to note that the research presented on dynamics and controls of actual
precision spacecraft or laboratory testbeds is much less voluminous than the theoretical
literature in the field. The integrated modeling process is demonstrated by Melody and Neat
[94] on JPL’s Micro-Precision Interferometer (MPI) testbed and is experimentally validated
based on the comparison of predicted and measured closed-loop transfer functions. Optical
pathlength control of a JPL Phase B interferometer testbed was presented by O’Neal and
Spanos [113]. Another example is the work done at NASA Langley Research Center by
Maghami et al. [84]. The pointing performance of a large, laboratory testbed was successfully
maintained while control effort was decreased. The genetic algorithm approach to evolutionary
design of flexible structures developed by Masters et al. was experimentally validated on a
closed-loop, truss-like testbed [87]. Mallory [86] presents experiments of slewing, pointing and
phasing control of the ORIGINS space telescope testbed.

Apart from the more generic literature in the field we can also find publications devoted to
specific missions. Disturbance analysis results for space optical systems have been presented
for SIM by Grogan and Gutierrez [42],[46], as well as by de Weck along with Miller, Uebelhart,
Grogan and Basdogan [98]. Open loop and closed loop NGST results have been published by
de Weck, Miller and Mosier [24]. A preliminary analysis of the dynamics of the Terrestrial

Planet Finder mission was also prepared by Miller, de Weck and co-workers [96].

1.4.2 Implementation Context (DOCS Framework)

The isoperformance methodology developed in this thesis is implemented in the MATLAB
technical computing environment. As such it represents a module of the DOCS analysis

framework. The DOCS (Dynamics-Optics-Controls-Structures) framework is a powerful tool
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set for the modeling and analysis of precision opto-mechanical space systems. Its develop-

ment spans over the last 10 years at MIT’s Space Systems Laboratory and the former Space

Engineering Research Center (SERC). Within the MATLAB environment a model of the

spacecraft (or ground system) can be created, which simulates the dynamic behavior of the

structure, the optical train, the control systems and the expected disturbance sources in an

integrated fashion (Figure 1.5). The existing toolbox is compatible with IMOS (version 5.0)
and MACOS!, MSC/NASTRAN as well as the packages DynaMod and ControlForge'?.
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Figure 1.5: DOCS-Framework block diagram. The shaded area in the lower right
is in the scope of this thesis. The modules marked with an asterisk are
available commercially or through academic licensing.

The modules in DOCS can be subdivided into four categories, which correspond to the

columns of the block diagram in Figure 1.5. The first column contains modules which are

useful in the initial modeling of the dynamic system under investigation. This system can

be a conceptual or preliminary design model of a scientific spacecraft, a spaceborne or ground

based telescope or some other high performance dynamic system. The initial design is the

! Available for academic licensing from the Jet Propulsion Laboratory (JPL).

12 Available commercially from Midé Technology Corporation.
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starting point for the creation of a structural model, which provides the stiffness and mass
distribution of the system. This is typically done via the finite element method (FEM) and
produces the natural frequencies, 2, and mode shapes, ®, which are used to obtain a state
space representation of the structural dynamics. This can be done via commercial codes such
as FEMAP and MSC/NASTRAN or with the help of IMOS. The corresponding optical model
typically traces a large number of on-axis and off-axis rays through the system to obtain
the linear sensitivity matrices. These matrices relate motions of the attachment points of
optical elements to the optical performance metrics (wavefront error, optical path difference,
wavefront tilt, beam shear etc.). DOCS has provisions for modeling a large variety of on-
board and external disturbance sources, such as reaction wheel noise, cryocooler disturbances,
thermal snap, D/A and A/D noise and various sensor noises. In some cases, if disturbance
measurement data is available, these disturbance models are empirical and based on actual
disturbance data from spacecraft operations or laboratory tests. The module DYNAMOD
provides an alternative to finite element modeling, if physical measurements can be made
on the system or subsystem. In that case model fitting techniques are used to obtain a
MIMO measurement model which is a good fit to the experimentally determined transfer
function matrix of the actual system (measurement model). Most high performance dynamic
systems rely on feedback control systems to achieve the required performance levels. Thus,
a baseline controller (compensator) must be synthesized based on a chosen system control
strategy (e.g. local versus global control as in decoupled control loops for attitude and optical
control, classical control versus modern control). Finally, it is likely that physical or modal
parameters of the system model are uncertain. This uncertainty can be estimated apriori by
consulting an uncertainty database of past model errors of similar systems, such as the one
provided by Hasselman [47, 48, 49].

The second category of tools in the DOCS framework is dedicated to model preparation
and conditioning. Model assembly is the process of aggregating the disciplinary sub-models
into an overall, integrated model of the system dynamics. This assembled model will be open
or closed-loop an can be mathematically represented in transfer matrix form G,4(jw), as an
appended state space system, S,4, or in system block diagram form (e.g. in Simulink). Typ-
ically the integrated model will initially be numerically ill-conditioned. A number of tools
are provided to facilitate model “quality management”. This includes verification of absolute

and relative stability (margins), extraction of minimal representations, model balancing and
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reduction as well as model diagonalization. Model reduction is a critical step, since it reduces
the model size leading to faster model evaluation, while maintaining the critical informa-
tion. The recommended model conditioning in DOCS is a two step procedure with an initial
conditioning of the opto-structural plant dynamics alone. The objective of this first step is
to eliminate pole-zero cancellations and obtain a well conditioned plant model. The second
conditioning and reduction step is more aggressive and is executed on the aggregated model,
which contains the frequency weighting introduced by control and disturbance dynamics. Fi-
nally a number of software routines are emerging in DOCS which allow model updating of the
plant model with measurement data.

After an integrated model has been created and numerically conditioned, the performances
such as root-mean-square (RMS) values of opto-mechanical metrics (e.g. pathlength differ-
ence, pointing jitter, fringe visibility, null-depth) can be predicted. This capability is provided
by the disturbance analysis module, which appears in the third column of the DOCS block
diagram. The disturbance analysis can be conducted in the time domain, frequency domain
or as a Lyapunov analysis. The predicted performance values are compared with the require-
ments. The goal of the uncertainty analysis is to associate error bars with the predicted
performance values, which are based on an uncertainty database resulting from past ground
and flight experience. The actuator-sensor topology of the system can be analyzed numerically
to ensure that the control system uses the actuator-sensor pairs that will ensure maximum
disturbance rejection or tracking performance. This gives an indication if additional sensor-
actuator channels should be included in the compensator beyond the ones in the baseline
controller. The controller can also be analyzed and modified with ControlForge. This module
is the product of control synthesis and analysis work on MACE and other experimental pro-
grams and allows implementation of modern control techniques such as sensitivity-weighted
LQG.

An initial design will usually not be satisfactory without some amount of iteration. The
exact analytical sensitivities of the performance with respect to modal or physical design
parameters can be useful in this instance. These sensitivities are essential for conducting
gradient-based optimization, redesign or uncertainty analyses. This capability is used in the
model updating, ControlForge, uncertainty analysis, optimization, sensitivity and isoperfor-
mance modules shown in Figure 1.5. These activities are part of the “design” category of tools

in DOCS. A control tuning engine was developed by Mallory [86] such that a parameterized
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controller is tweaked to provide improved performance with satisfactory stability margins for a
fixed plant. An outer optimization loop is carried out during performance enhancement. Here
insights from Controlled Structures Technology (CST) are levied such that a combination
of performance enhancement steps (disturbance isolation, output isolation, plant redesign,
low-authority control (LAC), high-authority control (HAC)) is implemented in the system
design. Once a design has been found that meets all requirements with sufficient margins,
an isoperformance analysis can be conducted. This module, shown in the lower right hand
corner of Figure 1.5, is the main contribution of this thesis. Treating the performance as an
equality constraint, the expected error sources (error budgeting) or key design parameters
(multiobjective design optimization) can be traded with respect to each other. This is useful
in ensuring that the level of difficulty in implementing the design is similar for all subsystems.

If hardware exists, the experimental transfer functions can be used to update the dynamics
models throughout the life of the program to achieve a convergent design that will achieve
mission success. Preliminary versions of the framework have been successfully applied to
conceptual designs of SIM, NGST, the Terrestrial Planet Finder (TPF) mission and NEXUS.
Substantial contributions to the framework were made by Blaurock, Gutierrez [45], Jacques

[57], Mallory [85, 86], Uebelhart [136], Masterson [89] as well as Miller and co-workers.

1.5 Thesis Overview

A thesis roadmap is shown in Figures 1.6 and 1.7. The purpose of this roadmap is to logically
organize the thesis research, which solves the problem definition given in Section 1.3. The
flow diagram in Figure 1.6 comprises the development of the methodology and its imple-
mentation. The dashed box depicts essentially the performance assessment and enhancement
framework developed by Gutierrez [45], which is briefly summarized in Appendix A.

In order to solve realistic problems with a large number of parameters, n,, performance
metrics, n,, and states, ng, it is necessary to solve hundreds of Lyapunov equations involving
hundreds to thousands of states. These challenges are addressed in Chapter 5 by presenting
numerical methods, which allow efficient solutions of Lyapunov equations for diagonalizable
systems, sensitivity computations for similarity state space transformations and apriori er-
ror bounds for model reduction. These contributions represent extensions of the research

presented by Gutierrez [45] and Uebelhart [136].
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As shown in Figure 1.6, the analysis process starts with an initial design vector p,. The
performance assessment calculates the performance vector J, and compares it to the require-
ments J, r¢q. If the absolute value of the relative difference AJF = JF — J req between the
actual performance vector Jf and the requirement J, ,.4, divided by Jf,req, is smaller than a
numerical tolerance 7/100, we have found a solution that satisfies the isoperformance condi-
tion, see Equation (1.6). We will call this solution our nominal design, ppom. If the relative
error is larger than 7/100 we perform a sensitivity analysis, which yields the gradient vector
(Jacobian) V.J¥ at the k-th iteration. This is used in a performance enhancement algorithm,
which attempts to drive all performances to the isoperformance condition by updating p*.
Once ppom is found we begin the actual isoperformance analysis.

Before trying to attack the full multivariable isoperformance problem, the problem space
is restricted to only two parameters p;, j = 1,2 and one performance n, = 1. Thus, if the
number of variable parameters is n, = 2 we perform a bivariate isoperformance analysis,
which is developed in Chapter 3. The generalization of the methodology to the multivariable
case with n, > 2 is the topic of Chapter 4. The main result from the isoperformance analysis
is a set of points, p;s,, which approximates the isoperformance surfaces in R"».

If this set is empty, the recommended procedure is to (a) switch to a more general al-
gorithm, (b) modify the upper or lower parameter bounds prp or pyp as indicated by the
active constraints or (c) to modify the requirements J, ;4. If this does not lead to a non-zero
isoperformance set it is likely that not all performance requirements are achievable with the
proposed system architecture.

If an isoperformance solution was found the methodology proceeds to the multiobjective
optimization module as described in Chapter 2 for the sample problems and in Chapter 7 for
the NEXUS spacecraft. The solutions in the isoperformance set p;s, are evaluated for the cost
objective function J, and the risk objective function J,.. A preference order is quantified by
the scalar n, which trades cost versus risk and by the normalization/weighting matrices Q..
and r,, which rank the cost and risk objectives within J. and J, with respect to each other.
The solution is not a single “optimal” point design, but rather a family of pareto optimal

designs, pJ,,, which form the “efficient” set E, shown in Figure 1.4. At this point a specific

design vector, p;; , has to be selected from the efficient set using engineering judgement. This
design is then used for an error budget analysis.

The application of the isoperformance methodology to dynamics error budgeting is de-
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scribed in Chapter 7. An initial error budget ¥ is usually established. The (Li)-entry of the
matrix ¥ is ¥; ; and represents the fractional contribution of the I-th disturbance source to the
i-th performance metric. This initial budget is input into the error budget analysis module.
The module returns a final error budget ¥** by finding the actual error contributions for
Diey, thus insuring that the error budget is physically achievable within the given parameter

constraints and underlying integrated model.

Validation
Ch2 Cho6 Ch7
Sample | Open-Loop »| Application
Problems Experiment to Spacecraft
IDOF, 2DOF DOLCE NEXUS
ODL design Testbed

Figure 1.7: Thesis Roadmap: Validation (chapter numbers in bold font)

Figure 1.7 contains the sequential steps used for the validation of the isoperformance
methodology. In Chapter 2 we introduce three sample problems of increasing complexity,
which help in gaining intuitive understanding and confidence in the correct implementation
of the governing equations. An experimental investigation is presented in Chapter 6. The
experiment uses a structural dynamics testbed called DOLCE with a uniaxial vibration exciter
as the surrogate mechanical noise source. The goal of the experiment is to demonstrate the
ability of the isoperformance analysis code to predict the shape and locations of isoperformance
curves for a physical system, using payload mass and excitation amplitude as parameters.
Once confidence has been obtained that the methodology can yield useful results on physical
systems it is applied to a realistic spacecraft model. The NGST precursor mission NEXUS
was chosen for an in-depth analysis including performance, sensitivity and isoperformance
analyses (Chapter 7). The error budgeting process is also briefly discussed. A thesis summary,

contributions and recommendations for future work can be found in Chapter 8.
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Chapter 2

Sample Problems

Throughout the thesis a number of sample problems are used to demonstrate the theory
and to explore features of the isoperformance methodology. These sample problems are in-
troduced early in the thesis to avoid cluttering the subsequent presentation and to anchor
the development in concrete examples. The sample problems attempt to capture some of the
complexity and interesting relationships of larger dynamic systems, with a small number of
states and design parameters.

The first sample problem is the classical single degree-of-freedom (SDOF) oscillator prob-
lem described by Craig [17]. The oscillator is acted upon by a colored noise random disturbance
force and the displacement is highpass-filtered, thus simulating the effect of optical control.
The five parameters in this problem are the mass, m, the linear spring stiffness, &, the damping
coefficient, ¢, the disturbance corner frequency, wy, and the optical control corner frequency,
wo- This set allows conducting some preliminary isoperformance analyses with two or more
parameters. The second sample problem is the two degree-of-freedom (2DOF) oscillator prob-
lem. It adds the difficulty of dealing with multi-mode systems and multiple performances to
the previous problem. The third problem is a simplified single-stage optical delay line (ODL)
design. Here issues of trading sensor noise versus process noise, while keeping the resulting
OPD performance constant, can be investigated. Also the ODL problem is set up such that
the design can go unstable for some combinations of design parameters (e.g. involving the
derivative control gain, Ky). This corresponds to the unstable subset, U, shown in Figure 1.4.

Sample problems have been used by Jacques (“typical sections”) [56] and others to derive

insights and draw conclusions about controlled, dynamic structures. Additionally the sample
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problems are used to ensure that the governing equations have been implemented correctly.
While these problems are useful in an academic sense, they do not reflect the complexities,
numerical conditioning problems and computational challenges of large order, real-world sys-
tems. Chapters 5 and 7 are devoted specifically to large order systems and a case study of a

conceptual spacecraft design.

2.1 Single Degree-of-Freedom Oscillator

As a simple introduction, the single degree-of-freedom (SDOF) oscillator problem will be con-
sidered. This represents the simplest mechanical oscillatory system and has been extensively

analyzed by Craig [17] and others.

2.1.1 Problem Description

Figure 2.1 shows a schematic representation of the oscillator, which is composed of a mass
m [kg], a linear spring of stiffness & [N/m] and a linear damper (dashpot) with coefficient ¢
[Ns/m]. The oscillator is excited by a zero-mean white-noise disturbance force F' [N], which
has been passed through a first order low-pass filter (LPF) with unity DC-gain and a corner
frequency wy [rad/sec]. This represents the amount of disturbance isolation present in the
system. The displacement = [m] of the mass is passed through a first order highpass filter
(HPF) with corner frequency w, [rad/sec], thus simulating the effect of an optical controller.
This is a simplification, but it is generally true that closing optical control loops is only effective
in suppressing disturbances at low frequency due to limitations on the optical sensor sampling

frequency. The table on the right side of Figure 2.1 contains the initial parameter values, p,,

] — £ Pi  PLB Do pup units  wv;
¢ wg 2r  10r  20r  [rad/s] +10%
H m 05 1 5 ke  +1%
Ground m k500 1000 3000 [N/m] +5%
J\/\/\/_ c 01 05 20 [Ns/m] +10%
k L, we 1.0 100r 200r [rad/s] +£5%

Figure 2.1: Schematic of single degree-of-freedom (SDOF) oscillator (left) with table
of design parameters (right).
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as well as upper and lower bounds (range of allowable values) for p;, where i = 1,2,...,5, as
well as a &+ percentage uncertainty, v;, in the true value of the i-th parameter.

The resulting output z [m], i.e. the filtered displacement, z, of the mass, is used to compute
the performance. The performance is the RMS of z(t), specifically .J, = (E[z"2])'/?, where
E[ | denotes the expectation operator [11]. One can also write J, = o,, since for zero-mean
stochastic processes the RMS and the standard deviation o are equal to each other [45]. This

system is shown in the block diagram of Figure 2.2.

Plant
o Force Position 10 Performance
. | .
~—P wdi —p| 17k ! —» i o 4>/\
! ~/ k/m ‘
d
i} o oo L0y um ~ =yl
. ‘ s+od SZ+(C/m) stk/m s+mo
White Noise Disturbance SDOF Oscillator Optical Scope
Isolation Control

Figure 2.2: SDOF block diagram. From left: white noise disturbance source, dis-
turbance isolation, oscillator and the “optical control” HPF.

The goal is to understand how this performance depends on the variable design parameters,

ie. pj > Jy(pj) for j =1,2,...,5 , where p = [wg m k ¢ w,)".

2.1.2 Disturbance Analysis

The first step is to compute the performance J,, for the initial parameter values, p,, given
in the table of Figure 2.1. This process is typically called a “disturbance analysis” or “initial
performance assessment” [45]. The result, J, ,, will be compared to a requirement, J; ¢y <
0.001 [m], which has been set based on “customer” needs. Note that .J, ., corresponds to 1
mm of RMS motion of the (filtered) signal z for the mass m and about 6 mm of motion peak-
to-peak!. The three most common methods for carrying out such a disturbance analysis are
a time domain analysis with forward time integration of the equations of motion, a frequency
domain analysis using power spectral densities (PSD) and a Lyapunov analysis, assuming

that the system is driven by white noise. The mathematics behind these three methods are

'A 1 Volt RMS random electrical signal will exhibit a waveform amplitude of roughly % 3 volts, i.e. 6 volts

peak-to-peak on an oscilloscope.
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summarized in Appendix A.

One can first write the (linear) equation of motion of the oscillator as:
mz +cx +kxr = F (2.1)

For small values of ¢ (lightly damped plant), the natural frequency of the oscillator is approx-
imately w, ~ \/k/m. Rewriting (2.1) in state space form and appending the filter dynamics

results in the following “integrated model” of the system:

[ s 0 0o o0 |[a] [1]
0 0 1 0 x 0
q= + d
wg/m —k/m —c/m 0 z 0
0 1 0 —wo || ¢ 0 (2.2)
L g JLla] [0
~ zd q Bzd
z=[0 10 —w e+ 01 d

A numerical time domain simulation was conducted with this system for the initial values
Do and zero initial state conditions. The resulting time history for a 7' = 40 [sec] simulation
is shown in Figure 2.3. The dark trace corresponds to the initial case p,, while the light trace
is obtained for the improved design ppem, which is developed below. The performance J, is

computed from the output z(t) as:

J, = %/z2(t)dt (2.3)

Since this random process is simulated with a digital computer and sampling time t; = k - dt,
where T'= N - dt and N is the number of samples, .J, is obtained as:
N 1/2
J, = l% kzl zg] (2.4)
The resulting performance is J,, = J,(p,) = 2.3281 - 1073 [m] = 2.3291 [mm)], which does
not meet the requirement Jz,rqu.

A disturbance analysis was also conducted with the second method (PSD analysis) and

the third method (Lyapunov analysis), yielding RMS values of 2.2232- 102 and 2.2231-103

2In the fields of vibration suppression, precision optics, micro-positioning devices etc... numbers larger than

the requirement, say the RMS, usually mean that the performance is not met.
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SDOF simulation sample time realizations
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Figure 2.3: SDOF time simulation: (Top) disturbance F(¢), (Bottom) output z(t).
Dark curve for p,, light trace for improved design prpom.-

[m], respectively. This corroborates the results obtained from the time simulation and demon-
strates the equivalence of the three methods. For large order models, significant discrepancies
between the three methods may occur due to different integration schemes (Dormand-Prince
[26] was used here), frequency resolution issues and/or numerical ill-conditioning as discussed
by Gutierrez [45].

While these three methods are valuable for predicting performance, they do not explicitly
reveal how parameters should be changed to improve performance. One way to reveal these
trends is to algebraically solve for the performance, J, ,, via the integral of the PSD S, ,(w),
as discussed in earlier work by the author [23]. This results in a closed form expression for

the performance, J,, as a function of the variable system parameters J, = f(wq, m,k,c,w,)

as follows:

7 wa? (Mmw, + wgm + ¢)
= 0— =
£ 2¢ (wo + wg) (Mwo? + k + cw,) (wg?m + cwy + k)

(2.5)

For larger systems with many degrees-of-freedom these equations become intractable, such
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that a closed form solution cannot generally be obtained. A dimensionality analysis can be
done by looking at the magnitude and sign of the largest exponent, with which a specified
parameter occurs in Equation (2.5). This suggests that the performance .J, should be de-
pendent on ~ m~'/2, thus increasing the mass m of the oscillator should decrease the RMS
and improve performance. The same is true for k,c and w,, which should influence J, as
~ k12 ¢! and w, !, respectively. For w, the highest exponents cancel in the numerator and
denominator of (2.5) such that it is not directly clear whether an increase or decrease in wy
will improve performance. Intuitively, however, we expect that a decrease in the lowpass filter
corner frequency should also decrease the RMS, since less disturbance energy is entering the

system. This is analogous to disturbance isolation.

2.1.3 Sensitivity Analysis

In order to quantify these dependencies of J, on p, a sensitivity analysis is performed, which
is the second step in the process. This means computing the gradient vector VJ,, evaluated
at po. The governing sensitivity equation (A.32) presented in Appendix A is used to obtain
the gradient vector VJ,, whose elements are the partial derivatives 0J,/0p;. The gradient
vector, WZJ, is normalized.®. The normalized gradient vector, WZJ, facilitates comparing

the elements of the gradient vector (i.e. the sensitivities) for different parameters.

[ 0J,/0ws | [ 3.56-107° ] [ 05032 ]
0.J,/0m —5.36-10~* —0.2413
VI, =| 0J./0k | =| =5.66-10"7 | and V.J.|,, = | —0.2547 (2.6)
dJ,/0c —2.24-1073 —0.5040
| 0. /0w, | | —7.00-107° | | —0.9899 |

The right vector of normalized sensitivities in Equation (2.6) is easiest to interpret. Even
though the gradient vector is only valid in the infinitesimal neighborhood of p,, one can say
that a 1% increase in the disturbance corner frequency wy, should lead to approximately a 0.5%
increase in the RMS. On the other hand a 1% increase in the optical control “bandwidth”

w, would cause a ~ 1% decrease (negative sensitivity) in the RMS. This last result is not

3The normalized sensitivity is computed as VJ, ; = (pj,0/Jz,0) - (0J./0p;), where the overbar denotes that
the sensitivity is normalized. It is a measure of the relative change in performance per relative change in the

parameter value.
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surprising, since in precision opto-mechanical systems the performance is often most sensitive
to optical control parameters. The normalized sensitivities are graphically shown in Figure 2.4.
These sensitivities were confirmed via a finite difference approximation with a 1% perturbation

and by analytically taking the derivatives of expression (2.5).

Normalized Sensitivities for p, Normalized Sensitivities for ppom

(J.)d F il

o
o

1 05 0 05 1 1 05 0 05 1
(Po/T2,0)(@12/dp) PromVz.nom)* @IZ/ap)

El Analytical Sensitivities
B Finite Differences

Figure 2.4: SDOF Problem: Sensitivities of performance J, w.r.t. parameters p, for
the initial case (left) and after performance enhancement py,qp, (right).

2.1.4 Uncertainty Analysis

Given the slope around p,, one can estimate reasonable error bounds on the predicted per-
formance. This computation has been denoted as an uncertainty analysis. From the Table in
Figure 2.1 one finds the +% uncertainties, v;, in the knowledge of the exact value of a design
parameter. Note that these values do not take into account non-parametric uncertainty, which
is most likely present in opto-mechanical systems as reported by Campbell [13]. In order to
get an estimate of the uncertainty in the performance, AJY, due to the uncertainty in the
individual pj;, the first-order approach introduced by Gutierrez [45] is used. More formal ap-

proaches, taking into account the probability density function (pdf) for each parameter, are
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also available but are beyond the scope of this thesis. The uncertainty AJY is then

Tp

AT () =3

J=1

0J,

Er (vjp;) (2.7)

For the initial solution p,, an uncertainty of AJ, = 3.676 - 10~* [m] is obtained, which
corresponds to £16.5% of the nominal performance value J, ,. Thus the (theoretically) pre-

dicted RMS performance of the initial system should be quoted as J,, = 2.2231 £ 0.3676

[mm]|. Even in the best case, it does not meet performance.

2.1.5 Performance Enhancement

An attempt to modify the system parameters p, is made, such that the system performance
falls below the requirement .J, ;., with some margin. This will ensure that even the upper
uncertainty bound will be below J, . This exercise has been termed “performance enhance-
ment.” A new working requirement of 0.8 - J, ,., is adopted, which should provide roughly
20% of performance margin. The gradient vector VJ, is used in a line search algorithm as

follows:

while
‘0.8Jz,req — ok
0.8 req

> 7/100

-1
1. step size: qi = EVszyk((—l)sgn(Vszyk)pjyk)] - AJzy,
J

2. step direction: Apy = oy - (—1)sgn(VJzg)pk
3. update iterand: ppi1 = pr + Apg
4. update k: k=k+1

5. recompute: Jzi and VJz

end

The tolerance 7/100 was set to a value of 0.01, i.e. the enhanced performance is ex-

pected to be within 1% of 0.8 - J, ;¢4. After three iterations, the enhanced solution pyem =
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[wg m k cw)t =[19.92 , 1.45 , 1450 , 0.725 , 455.4]7 is obtained. It is verified that this so-
lution is still within the upper and lower parameter bounds. The improved performance,
including uncertainty, is J, pom = 0.802 & 0.153 mm ( £ 19%), thus remaining under J; 4

even in the worst case.

<103 SDOF problem frequency domain results
E25[—p, P U S D ]
Aol 7 Jzreq i
g 2 fpnom
~ 1.5+ -
2
B s s S S Y S0 S S S
= : :
£ 0.5F . s .
=) : .
) ; g
107! 10° 10! 10
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107! 10° 10 10
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Figure 2.5: (Bottom) PSD function S,.(w) for p, (dark) and ppem (light). (Top)
Cumulative RMS curve. Requirements line is dashed.

Comparing this solution, ppem, to po, one sees that the disturbance corner frequency wy
is smaller, the mass m and stiffness &k are both increased (thus w, remains constant), the
damping c is increased (decreases response magnitude), and the optical control bandwidth
w, 1s increased. The combination of these changes leads to a significant improvement in
performance as shown in Figure 2.5. The lower part of the plot shows the power spectral
density (PSD) of the performance, S,,, as a function of frequency. Taking the square-root
of the cumulative integral under this function, according to Equation (A.23), leads to the
cumulative RMS curve in the top part of Figure 2.5. As expected the large step in the
cumulative RMS is caused by the lightly damped resonance of the oscillator which is excited
by the broadband disturbance force F(t).

Figure 2.4 depicts the normalized sensitivities for the improved design on the right side.
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The signs of the sensitivities have not changed, which indicates that the performance function
J.(p) appears to be monotonic in this neighborhood. The magnitudes of the sensitivities are
similar, except that J, pm, is more sensitive to wq. This can be explained by the fact that
the oscillator natural frequency w, is at 5 Hz and the disturbance corner frequency wy is now
at 3.2 Hz, thus the resonance is in the rolloff region of the disturbance filter and therefore
more sensitive to changes in the filter corner frequency. Also the design ppopm, is somewhat less
sensitive to changes in the mass m. A time simulation for the improved design was carried
out and the results are shown as the light trace in Figure 2.3. As expected the (filtered)
displacements z(t) of the mass m are significantly smaller than in the initial case and remain

below the requirements line in an RMS sense.

2.1.6 Conclusion

In a traditional analysis framework and using the tools presented by Gutierrez [45] one would
stop at this point. The requirements are met by the improved design p,om, it is feasible since
the condition pr,g < ppom < pup is met and the uncertainty bounds also remain within J; ;4.
At first glance there does not seem to be a reason for continued analysis and the improved
design could indeed be implemented as is.

The design ppom is, however, the starting point for the isoperformance analysis, which is the
main subject of this thesis. The motivation for continued analysis is the fact that the improved
design is not unique. Other combinations of p;’s will likely achieve the same performance, but
perhaps at a lower “cost”. Thus other cost criteria such as hardware (implementation) cost
or performance robustness to uncertainty can be used to come up with an alternative design.
The first step is to find the set (or locus) of design points that yield the same performance as

J nom- This is the focus of Chapters 3 and 4.

2.2 Two Degree-of-Freedom Oscillator

A sample two degree-of-freedom (2DOF) problem was chosen as an extension of the previ-
ous example. The two degrees-of-freedom mimic the multi-mode behavior of more complex

systems and allow the formulation of an additional performance metric, i.e. n, = 2.
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2.2.1 Problem Description

The system is depicted in Figure 2.6 and consists of two masses m; and mg, which are
connected to ground and to each other by linear springs k1 and ko, respectively. Also there are
two linear dampers ¢; and c¢g, which cause velocity-dependent damping forces. Interpreting
this problem as a simple spacecraft model, we can view the mass m; as the “base” mass
(spacecraft bus) and mg as an “appendage” mass (payload). The parameters k; and ¢; would
then represent the effects of a low frequency attitude control system (ACS), which controls
the rigid body rotations. The parameters ks and co represent the internal damping and
compliance of the vehicle. The parameter ky will be called the “appendage stiffness”. A
colored noise disturbance force F of intensity Syq [N?/Hz] and rolloff frequency wy [rad/sec]
is entering at the appendage mass, mo, representing a mechanical disturbance generated by
onboard machinery.

The two performance metrics of interest are the RMS of the relative displacement (DPL)
xp — 1, ie. J,1 = (El(z2 — x1)2])1/2 and the RMS displacement of the first mass, J,» =
(E[z3])'/?. Figure 2.6 shows a schematic representation of the two DOF oscillator and a table
of variable system parameters. This table contains the initial parameter values, p,, as well as
upper and lower bounds (range of allowable values) for p;, where j =1,...,8, as well as a &+

percentage of uncertainty, v;, in the knowledge of the true value of the j-th parameter.

F‘ T X2 Pj  PLB Po PUB units v;
m,

Sgq 1073 1072 1071 [N?2/Hz] +10%

¢, ‘J-|=‘ $ k, wg 2m-5 2m-200 27 -10%  [rad/s] +5%

X, mi  8.55 53.55 1125  [kg] +1%

I my  8.55 9.5 1125 [k +1%

m

! ki 6.95-10* 3.89-105 107 [N/m]  +5%

ko 10% 108 107 [N/m] +5%
¢, M K, ¢ 10 120 500 [Ns/m]  +10%
¢z 10 30 500 [Ns/m]  +20%

Figure 2.6: Schematic of two degree-of-freedom (2DOF) oscillator (left) with table
of variable parameters (right).
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2.2.2 Disturbance, Sensitivity and Uncertainty Analyses

As in the previous section, we perform a disturbance, sensitivity and uncertainty analysis. The
equations of motion (EOM) can be formulated directly by looking at the freebody diagram

for each mass and writing the EOM in matrix form as shown in equation (2.8):

mi 0 T c1+c —co T ki + ko —ko T 0
+ +

0 ma .fg —C2 C9 ig —kg kg xI9 F

M C K
(2.8)

We can then solve the generalized eigenvalue problem for the undamped system or write the
state space system directly in physical coordinates. This second approach was chosen here,
since it will be easier to compute the Jacobian (matrix of partial derivatives) for this small
order model. With the disturbance isolation filter given as Ay = [—wq| , Bg = [1] , Cq4 =
[V/Sgawq] and Dy = [0], we obtain an “integrated model” of the system from (2.8) by pre-

multiplying with the inverted mass matrix:

A 0 0 B,
q= 0 0 I g+ | 0 |d
M~1'B,Cy —M'K —-M~'C 0 (2.9)
R g g .
Aza B.a
ZZ[O Cez 0]q+ 0] d
« L =~
Ca D.q
Note that the system is open loop and that the output coefficient matrix is C,, = [-11; 1 0]
and the disturbance influence coefficient matrix is 83 = [0 1]7. This allows computing the

performances J,; and J,2 with the three methods presented in Appendix A. We set the
RMS requirements to J, eq1 = 107¢ [m] =1 [um] and J, eq2 = 7.5-107% [m] = 7.5 [um)] .
As will be seen in Chapter 6 these requirements are realistic and close to the experimental
observations made on the DOLCE isoperformance testbed.

A time simulation was carried out with the Dormand-Prince [26] integrator and an integra-
tion step size of 0.001 seconds. The results shown in Figure 2.7 were obtained with Equation
(2.4) and parameter vector p, and indicate that J, ; = 9.37 [um] and J, » = 11.80 [pm], which
exceeds (i.e. does not meet) the RMS requirement for both performances.

The next step consists of computing the sensitivities of the parameters with respect to the

two performances. Note that in this case V.J, is the Jacobian, which is defined as follows:
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Figure 2.7: 2DOF time simulation for J,; (top) and J, > (bottom). Dark trace for

Do, lighter trace for improved design ppom,-

[ 0J,,1/0p1 0J,2/0m ] [ 0J,1/084q 0J,2/0844 ]
0J,1/0 0J,9/0 0J,1/0w 0J,.9/0w
o ,1'/ D2 ,2'/ p2 | _ ,1./ d ,2'/ d (2.10)
| an,l/aps 8JZ72/8p8 ] L an,l/acg 8JZ72/862

The sensitivity analysis is accomplished by using the governing sensitivity equation (GSE)
presented in Appendix A. Note that partial derivatives of the inverted stiffness matrix have
to be taken. The relationship

dM 1
dp

=-M'—M"
dp

was used to facilitate these calculations [143]. Figure 2.8 shows the normalized sensitivities
for the 2DOF sample problem. Note that the left subplot shows the results for performance
J1 (the first column of the Jacobian) and the right subplot shows the sensitivities for .J, o,

i.e. the second column of the Jacobian.
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Performance Jz,1: RMS(x2-x1) Performance Jz2 : RMS(x1)
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| ]

Figure 2.8: 2DOF sensitivity analysis VJ,: (Left) normalized sensitivities w.r.t.
J..1, (Right) w.r.t J, 2. Dark bars show p,. Light bars show ppom.-

Decreasing the disturbance force intensity, Sz; will result in a decrease of the RMS of
both performances. The disturbance corner frequency, wy, affects primarily performance J, 1,
but not J, 2. The reason for this will become apparent shortly. The mass sensitivities are
interesting since they have opposite signs for both performances. This means that decreasing
my for example will improve J, ; but worsen J, 5. These parameters are interesting, since they
cannot simply be tuned in one direction to improve all performances at once. This has to
be taken into account in the performance enhancement step. While the stiffness sensitivities
have the same sign it is noteworthy that J, ; primarily responds to changes in k9, while J; o is
more sensitive to k;. This is intuitively satisfactory, since J, 1, the RMS of the gap distance
between m; and me, strongly depends on the compliance between the two masses, whereas x;
is strongly driven by the suspension mode and thus the value of k. Increasing the damping
coefficients also has a positive impact on the performances.

Now that the sensitivities are known, one may again obtain an estimate of the performance

uncertainties due to parametric uncertainty, as shown in Equation (2.7). The resulting un-
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certain performances are J,; = 9.37 £ 1.79 [pm] (£ 18.04%) and J, 2 = 11.80 & 1.404 [pm]
(£ 12.74%), respectively. The requirements were set at J, y¢q1 = 1.0 and J; yeq2 = 7.5 [pm].

Thus, even in the best case the system does not meet the performance requirements.

2.2.3 Performance Enhancement

The computed sensitivities are used for a performance enhancement exercise. One difference
with the SDOF problem is that in this performance enhancement cycle both performance
objectives J, req,1 and J; req2 have to be met simultaneously. The simple line search from
the SDOF example will not work here, since two performances J,; and J,o have to be
simultaneously driven to the working requirement of 0.8 - J, ¢, (includes 20% performance
margin). The algorithm in this case uses the singular value decomposition (SVD) of the
Jacobian as discussed in Chapter 4.

while

(08T sreg = T
0.87. req

> > 7/100

1. SVD of Jacobian: USVT :V—JZT

2. Normalize column space: V;, =pj *Vio (elementwise multiplication)
3. step size vector: i = [VJZT-Vn]fl-AJZ,k

4. step direction: App =V, - g

5. update iterand: pyi1 = pr + Apg

6. update k: k=k+1

7. recompute: J,; and VJzyk,VTzTyk

end
After five iterations an improved design, pnom, is found, which meets both working require-
ments. It turns out that the requirement J, ;4,1 is harder to meet than J; ;¢4 2. The resulting
design vector, pnom, and the initial design, p,, are contrasted in Table 2.1

From this comparison one sees that the performance enhancement algorithm has found a
viable design ppom, which is not “optimal”?, but rather a “good” design that meets the re-

quirements, J, y¢q. As expected, the improved solution requires a reduction in the disturbance

*An optimal design would satisfy the Karush-Kuhn-Tucker [33] optimality conditions.
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Table 2.1: Comparison of p, and py., with the ratio of parameter values in the
second to last column. A non-zero value in the last column indicates
that this parameter is at the upper (+1) or lower bound (-1).

i p Parameter Name Po Prom units ratio B
1 Syy Disturbance Intensity 1072 2.36-1073 [N2/Hz] 024 0
2 wg Disturbance Bandwidth 27 -200 27 -133.8  [rad/sec] 0.67 0
3 m; Base Mass 53.55 16.26 [kg] 0.30 0
4 my Appendage Mass 9.5 11.25 [kg] 1.18  +1
5 k;  Base Stiffness 3.89-10° 3.10-10°  [N/m] 0.80 0
6 ko  Appendage Stiffness 10° 3.6 - 106 [N/m)] 3.59 0
7 ¢;  Damping Coefficient 120 110.3 [Ns/m] 092 0
8 «¢o  Damping Coefficient 30 83.2 [Ns/m] 278 0

force intensity Syq and a somewhat reduced disturbance corner frequency wgy, which probably
only benefited J, ;. Furthermore mass m; was decreased, while mass mo was increased to
its upper constraint (see 41 in the last column of Table 2.1). This again suggests that J, ;
is the “driving” performance, since these are the changes that would have been indicated
by its sensitivities alone, see the left side of Figure 2.8. The same pattern is apparent in
the stiffnesses, where increasing the inter-mass stiffness k9 reduces the RMS of o — 1, i.e.
J,1. Finally increasing the damping coefficient co also reduces J, ; as expected. The only
unexpected change is the decrease in the damping c;, since all its sensitivities are negative.
A likely explanation is that the exit criterion for the performance enhancement loop on the
previous page enforces the “isoperformance condition”. The damping coefficient c; is actually
decreased (thus worsening J, ) to make the performance J, 5 fall in the performance band
dictated by the “while” condition and the tolerance of 7/100 = 0.01.

A more intuitive insight into the effects of these changes can be gained by considering
the performance PSD’s and their cumulative RMS curves in Figure 2.9. This is a bimodal
system and for the first performance, J, 1, both modes contribute to the RMS, with the second
mode being dominant. The second performance, J, 2, on the other hand is driven by the first
mode alone. The performance improvement is primarily achieved by reducing the disturbance

magnitude and by stiffening the system, which shifts the modes to higher frequencies. The
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first mode goes from 12.5 Hz to 16.8 Hz and the second mode goes from 56.3 to 117.8 Hz.

x10°  Perf: RMS (x2-x1) x 10 Perf: RMS (x1)
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Figure 2.9: 2DOF sample problem PSD analysis. Dashed horizontal line is J; ;¢q.

A summary of the RMS performance results is shown in Table 2.2.

Table 2.2: Results overview for two DOF oscillator problem.

Initial Design Improved Design Requirement

J, Method | J,, [pm] +% | Jznom [pm] +% | Jireq [pm]
1 time 9.3674 18.04 | 0.80497 20.21 | 1.0

psd 9.9431 0.80961

lyap 9.9442 0.80983
2 time 11.797 12.74 | 6.2518 12.66 | 7.5

psd 11.011 5.9939

lyap 11.017 5.998

One could stop at this point and implement ppem,. It is, however, expected that the
improved design ppem, is not unique and other designs might perform as well, but at a lower

“cost”. This is explored in Chapter 4.
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2.3 Optical Delay Line Design Problem

2.3.1 Problem Definition

The third sample problem presented in this thesis is the design of a single-stage optical delay
line (ODL). A schematic of the ODL design problem considered is shown in Figure 2.10.

—— science light ‘
reference
—<&— metrology light -

+

Requirement value units

J.1: RMS OPD o, <100 [nm]

J2: Settling Time T, , < 0.05 [sec]

x controller OPD Range (Span) +1 [mm]
A
C
Step Overshoot < 25 %
Steady State Error <10  [nm]
k
Mass < [kg]
flexure
stage . .
Gain Margin > 6 [dB]
base motion Phase Margin > 30 [deg]
C o, ~ B ST S 2 \3\/// Sk

Figure 2.10: Left: Optical Delay Line (ODL) design concept. Right: Table contain-
ing performance J, and other requirements for ODL design.

Optical delay lines are actively controlled devices which are used to precisely control the path-
length of light. A typical application is as an actuator in a stellar Michelson interferometer.
A detailed engineering prototype of a three stage ODL for interferometry was built and tested
by the Jet Propulsion Laboratory. The delay line requirements (see Figure 2.10) levied on
this sample problem are most similar to the intermediate (voice coil) stage. Delay line design
was studied in detail by Park and Miller [116]. Some of the aspects of that study are included
here such as stability and performance considerations. Others are neglected such as the use
of multiple stages or the noise floor introduced by D/A-conversion actuator noise. The goal
is to investigate a physically meaningful isoperformance sample problem, where instability
(presence of a subset U) can be an issue.

The primary performance goal of the ODL is to control the pathlength of science light

66



in the delay line over a range of £ 1 [mm)] to an accuracy of 100 [nm] RMS (J, ;) with only
a small steady state error, €;. This is a steady-state performance metric similar to the ones
formulated in the oscillator problems. Additionally it is stipulated that the step response
of the ODL should settle within 0.05 [sec] (J;2) and not exhibit more than 25% overshoot.
This is a transient (time domain) performance specifications. These performances have to be

simultaneously met by the system.

2.3.2 ODL Integrated Model

The ODL design concept is translated into a block diagram as shown in Figure 2.11.

Process )
Noise d Base Motion

M Sdd*wd Flexure Stage
ODL Position stod § [m]

Feedforward Muxfl p
r uf Ka*wma Fc ODL
— | Kf
J [m] V] stoa | [N] motion
reference Power Amp/ T—
input [Vl ue Actuator )
PID | g=Aq+Be Optical
r Controller | uc=Cq+De Sensitivity __
Error | e sensed [m] | z
performance y
- Ks I1
Yopd [V]
. A%
Sensor Gain LV Laser Sensor (performance)
O e LD
actual performance
Sensor Sensor Scope
Noise n .
Noise

Figure 2.11: ODL block diagram. Signal units in square brackets.

A reference signal r [m] commands the ODL to a desired position within the operational range
via the feedforward gain K;. The advantage of feedforward is the avoidance of time delay
in the feedback path for repositioning of the delay line and the ability to coarse position the
ODL in the case of a feedback path failure. The feedforward command, uy, is added to the
feedback command, u., and fed to the combination power amplifier/actuator. The actuator

dynamics are given as:
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Ux(s)

—>
Uc(S)

Power
Amp
Actuator

Ga(S)

Fo=Gq(s) (U +U:) = au;a U+ U
> Fe(s) Go=[waga+[1 1][uf wuc] 2.11
~ — (2.11)
Fe=[Kwa@a+ [0 0][us ue]
—_——
Ca D,

The control force, F,. [N], produced by the actuator acts on the flexure stage and results in a

displacement z [m]. The other input into the flexure stage dynamics is a base motion ()

[m], which is considered a process noise. This disturbance is driven by random white noise of

intensity Sgq [m/vHz] and corner frequency wy [rad/sec|. The disturbance dynamics of the

base motion are assumed as:

Sdawa

Xy(s) =Ga(s) D = - D(s)

D(s) —»

Base
Motion

Gad(s)

S+ wy
da = [~wqlqa + [1] d(t)
——
Ag By

—> X(s) (2.12)

zp(t) = [Sdawd] qa +\[0,]_/d(t)

Ca Dy

The dynamics of the flexure stage are fully determined by the mass m [kg], the stiffness &

[N/m] and the damping coefficient ¢ [Ns/m]. The dynamics in transfer function form are as

follows:
Xb(s) —»
Fc(s) —»

Plant
Gp(s)

X(s)=Gp(s)- [ Xp(s) Fu(s) ] =
A oy d i (2.13)
vl A NN
82+E3+£ SZ—F%&—F% Fe

This can be written in state space form as:
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o 1 0 0
k ¢ 0 0 0
. T 1 0 Ty
— m m
b o o o 1 |®T]o o0 [Fc]
k c 0 1
0 0 - =] —— (2.14)
AP
z(t)=[k/m ¢/m 1/m 0]g+][0 0][?]
~ ~ / N, e’ c
CP DP

The ODL motion z(t) causes an optical pathlength difference z(t) = K, - z(t), where K, is
the linear optical sensitivity. In this case flat (reflective) mirrors are mounted on the flexure

stage such that the pathlength is shortened by twice the amount of positive displacement of

z as defined in Figure 2.10, hence K, = —2. The equation for the optical pathlength in the
ODL is:
OPL =ABCD=L,+AL=L, -2 x (2.15)
~—
K,

The OPD z(t) is measured by a laser sensor with gain K [V/m]. This gain converts a mea-
surement in meters to volts, thus y(t) = K - z(t). The sensor signal contains sensor noise,
such that yopp = y + ns. Thus the sensed performance J,; of the system is corrupted by

noise. This disturbance is described as colored white noise according to:

Shnw
Ny(s) = Gy (5) - N(s) = 22 N(s)
Sensor s+ n
N(s) —» Noise v Nofs) n = [~wn] qn "‘\[1’]/"(’5) (2.16)
Gn(s) Ap
ns(t) = [Spnwn] gn + 0] n(t)

where S,,,, [V/vHz] is the sensor noise intensity and w, [rad/sec| is the sensor noise corner
frequency. The sensor noise RMS voltage can be computed as o, = [(1/2)52,wy] Y2 The
measurement, yopp, is then compared to the reference signal r multiplied by the sensor gain
K. The error signal e = yopp — K7 is used as the input to the controller. A PID controller

was chosen for this application. The SISO controller dynamics are:
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Kyw, [32 + Fps + %]
U,=G.(s) - E = d ilp
PID s (s + we)
Control
E(s) —» > Uds) . _ |0 1 01 ot 2.17
GC(S) dc 0 —w, qc + 1 8( ) ( . )
A B

ue(t) = [ Kiw. Kyw. —Kqw? ]qc—l— [Kqwc] e

~ J

Ce D.

where K, K; and K, are the proportional, integral and derivative gain, respectively. The PID
control has been augmented by a first order lowpass filter with corner frequency w., which
allows writing the controller in proper form® and makes it physically realizable. The output
of the controller is the signal u., which completes the loop.

The dynamics described above are shown in Figure 2.11 and are assembled into an ap-
pended state space realization (2.18) of the form shown in Equation (1.1), which will be

referred to as the “integrated model” of the ODL.

dd Aq 0 0 0 0 qd
q = qp = BplCd 0 Ap 0 Bnga qp
q‘c 0 Bch BcKsKon Ac 0 de
Qa 0 BachCn BachKsKon Balcc Aa Ga
A‘z'd
By, 0 0 (2.18)
0 B, d 0
+]1 0 O [ n ] + 0 [r]
0 0 —B.K;
0 0 BypoKj — BaD K
N—— . ~ ~
Bzd By
The performance output equation for z(¢) is obtained as:
zt)=[0 0 K,Cp 0 0]g+][0 0][d]+[0]r (2.19)
~~ - S——— n ~~
C.aq D.q4 Der

From this signal the RMS OPD is computed as:

SProper form means that numerator polynomial degree is equal or smaller than the denominator degree.
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J.1 =0, = RMS OPD =

=l

T 1/2
/ 22 (t)dt (2.20)
0

The OPD settling time (using a £+ 2% threshold) is computed as:

z(t) —r

< 0.02 (2.21)
"

Jopo=Ts, =t > 0 N min(¢) such that ‘

This allows computation of the performances, J,, that are specified in the requirements of
Figure 2.10. The next subsection will define and analyze an initial design for the optical delay

line.

2.3.3 ODL Initial Design

At this point initial values, bounds and uncertainties for the ODL design parameters, p;, have
to be specified. There is a distinction between constant, dependent and variable parameters

as shown in Table 2.3.

Table 2.3: ODL design parameters. Explanations of the column headings are given
in the paragraph below.

sys j mnom description Dj,LB Djo pjuB v; units type
(D) S4q  base motion int.  E-T7 564E—7 2E—6 5.0 [m/VHz] var
(D) - wg  base motion cut. - 27100 - - [rad/sec] fix
(D) 2 Sn, sensor noiseint. 1.5E—5 5.15E-5 E-4 50 [V/VHz] var
(D) - wp,  sensor noise cut. - 27120 - - [rad/sec]  fix
P) 3 m mass 1.0 2.0 5.0 0.1 [kg] var
(P) 4 k flexure stiffness 10 19.74 500 1.0 [N/m)] var
Py 5 ¢ damping coeff. 0.1 0.9173 2.0 2.5 [Ns/m] var
(O) - K, optical sensitivity - -2.0 - - [m/m] fix
(C) 6 Ky derivative gain 0.0 0.5 5 1.0 [V/V] var
(C) 7 we controller cutoff ~ 27100 27200 27500 1.0 [rad/sec] var
(C) - Ky feedforward gain - E/(KoK,) - - [V/m] dep
(C) - K, proportional gain - Ky(e/m) - - [V/V] dep
(C) - K; integral gain - Ky(k/m) - - [V/V] dep
(S) - K,  sensor gain - 104 - - [V/m] fix
(A) - K, amplifier gain - 0.1 - - [N/V] fix
(A) 8 w, actuator BW 2750 2m98 27500 5.0 [rad/sec] var
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In Table 2.3 “sys” denotes the subsystem that the parameter belongs to: (D) disturbance
sources, (P) structural plant, (O) optics, (C) controls, (S) sensors, (A) actuators; “j” is the
number of the j-th variable parameter; “nom” is a nomenclature symbol; “description” is the

»

parameter name; “p;r,g” is the lower bound; “p;,” is the initial value; “p;yp” is the upper
bound and “v;” is a parameter uncertainty in £%. The column “units” shows the SI-units of
the parameter in model and “type” designates if the parameter is constant (fix), dependent
(dep) or independently variable (var).

Constant parameters such as wq, w, and K, can typically not be changed and are dictated
by constraints such as environmental factors, physical limitations of the electronics or the
specific optical design chosen. Dependent parameters are not constant, since they change as a
function of the truly independent (variable) design parameters of the system. An example of

depended parameters are the feedforward gain K or the control gains K, and K;. Once these

values are substituted in Equations (2.11-2.18) the dynamics of the system can be evaluated.

Transfer function: xb(s)> x(s) Plant Transfer function: Fe(s)> x(s) Plant
sof T ofF T T

g 2 .50
o 0 )
s ks,

p= 2 -100
= =i
250 g

= S -150

-100 -200

107 10° 10? 107

0 0

750 & -50
E E

9-100 2 -100
3 =
= ™

150 -150

-200! -200!

1072 10° 10? 1072 10° 10?
Frequency [Hz] Frequency [Hz]

Figure 2.12: ODL plant transfer functions: Gp1 = X(s)/Xp(s) (left) and Gp =
X(s)/Fc(s) (right). Suspension mode at 0.5 Hz and { = 0.073 as
experimentally determined by Park [116].

The plant transfer functions from X,(s) to X(s) and F.(s) to X(s) are shown in Fig-

ure 2.12. The fundamental “suspension” mode is at 0.5 Hz as recommended by Park [116].
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The DC gain for the X/F, transfer is 1/k, which corresponds to Hooke’s law. There is a
phase loss of -180 degrees at frequencies above the suspension mode, which will influence the
stability of the loop gain function.

The PID control strategy is to set w, to a frequency, which is limited by the capability of the
electronics to provide gain at high frequency. It is attempted to achieve a pole-zero cancellation
of one of the complex conjugate pole pairs given by the structural plant. From (2.17) one
obtains the relationships K,/Kq = ¢/m and K;/K; = k/m, which leaves the derivative gain
K, as the only variable control parameter. The PID controller transfer function is expected
to look similar to a notch filter. This is confirmed by Figure 2.13.

Transfer function: E(s)-> Uc(s) PID-controller

Magnitude [dB]
o P foN
(=} S (=}

=
T

50

. Phase [deg]
(=}

wn
=
T

-100 R I L
1072 107! 10° 10" 107 103
Frequency [Hz]

Figure 2.13: ODL PID controller transfer function: G, = U.(s)/E(s).

2.3.4 Stability Margins

Absolute and relative stability must be assessed before proceeding. Absolute (asymptotic)
stability is met, since all closed loop poles of the system lie in the left half of the s-plane
as shown in Figure 2.14. The relative stability is examined via the loop gain function, see
Figure 2.15. The crossover (0 [dB]) occurs at 63.5 Hz. The phase margin is 39.4 [deg]
(requirement: PM > 30 [deg]), the gain margin frequency is 140.0819 [Hz] and the gain
margin is 11.5 [dB] (requirement: GM > 6 [dB]). These margins are confirmed by the Nyquist

diagram in Figure 2.15(b) and meet the requirements laid out in Figure 2.10.
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Figure 2.14: Pole-Zero map for closed loop ODL system. The zoomed region shows
the pole-zero cancellation of the plant complex-conjugate pole pair.
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2.15: (a) Loop Gain function for ODL, (b) Nyquist diagram for ODL.
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2.3.5 Disturbance, Sensitivity and Uncertainty Analyses

The performance J, ;= RMS OPD of the system is computed using the methods presented
in Appendix A. An analysis of z(¢) as well as its power spectral density function S,,(w) and

cumulative RMS curves are shown in Figure 2.16.
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Figure 2.16: ODL simulation results: Cumulative RMS function for J,; (top),
Power spectral density function (PSD) S,,(w) (middle), Sample time
realization for z(t) with T=18 [sec| (bottom).

Time simulation results in a performance of o, = 90.482 [nm]. This is close to the performances
computed via the PSD method (0, = 89.581 [nm]) and the Lyapunov approach (o, = 89.584
mm]). Since J,1 < J;req,1, i.e the RMS OPD is smaller than 100 [nm], the initial system
meets the steady state performance requirement. It is interesting to note that the contributions
to 0, come from the suspension mode at 0.5 Hz and, somewhat unexpectedly, from higher
frequency contributions up to roughly 100 Hz. The reason for this will become clear in the

ODL isoperformance analysis of Chapter 3.
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Another observation is that the “sensed” performance RMS, yopp, has a value of 122 [nm]
and is significantly different from the actual performance RMS value of 90 [nm]. By consulting
the block diagram in Figure 2.11, we see that the difference between the performance , z, and
the sensed performance, y,,4, can only be due to sensor noise, ng. The disturbance signals
for this analysis were generated with the parameters p, from Table 2.3 and resulted in a base
motion with RMS zj, = 10 [ym] and a sensor noise with a 1 [mV] RMS voltage.

The step performance of the system, J, » = T , was computed using the MATLAB step.m
command. The result is shown in Figure 2.17(a) and indicates that the ODL settles from the
initial position at 0 [mm] to a new position at r = +1 [mm]| in 0.0236 [sec], assuming a 2%
threshold. This suggests that the transient performance J, 2 also meets requirements, since
T, < 0.05 [sec]. The overshoot, however, is 30.4% and somewhat larger than the maximum
of 25% stipulated earlier.

A sensitivity analysis for the design was conducted with respect to the first performance

Jz 1. The results are shown in Figure 2.17(b).
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Figure 2.17: (a) Step response of ODL for r=1.0 [mm]; (b) Sensitivities of RMS
OPD o, w.r.t. parameters p; (normalized).

The sensitivities with respect to the noise intensities Sy; and S, are positive. The large
positive sensitivity of S, suggests that excessive sensor noise is present in the control signal
or that the control gain, K, is too large. This is likely, since the sensitivity with respect to
the control gain, K, is positive. Thus, increasing gain will increase the RMS OPD. The issue

of balancing sensor noise versus process noise will be explored in Chapter 3.
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The sensitivity analysis allows computing an uncertainty estimate on the performance
via equation (2.7). The estimated uncertainty on the RMS OPD is 89.6 &+ 5.64 [nm]|, which
corresponds to £ 6.3 %. Even in the worst case the performance J,; is expected to remain

within the requirement, J, ;41 < 100 [nm)].

2.3.6 ODL conclusions

At this point a satisfactory design has been achieved since the two performance requirements:
RMS OPD J,; = 89.6 [nm] and settling time J, » = 0.0236 [sec] have been met. The other
requirements such as mass m < 2 [kg| and zero steady state error £5 < 10 [nm] are also met.
The only exception is the step overshoot of 30.4%, which slightly exceeds the requirement of
25%. Note that the span (OPD range) requirement cannot be verified with this simplified
linear model. In contrast to the oscillator problems, pnom = po, Will be accepted as the
nominal design without further performance enhancement. Note that the RMS control force,
F,, to achieve this performance (with r=0) was 0.02 [N]. A search for ODL design vectors
that might also meet the performance requirements, albeit at different “cost” and “risk” will

be discussed in subsequent chapters.

2.4 Summary

This chapter introduced three sample problems. These are the single degree-of-freedom
(SDOF) oscillator, the two degree-of-freedom (2DOF) oscillator and the optical delay line
(ODL) design problem. The motivation of the sample problems is to provide specific exam-
ples for illustrating isoperformance related concepts in subsequent chapters, without cluttering
the discussion. For each of the problems a disturbance, sensitivity and uncertainty analysis is
conducted. If necessary a performance enhancement (line or gradient search) algorithm was
applied such that a satisfactory design, pnom, was obtained starting from an initial guess, p,.
The nominal designs, ppom, are not unique. For the SDOF problem for example it is expected
that the same performance could be achieved by simultaneously increasing the mass, m, and
decreasing the disturbance isolation corner frequency, wy. This will be explored in Chapter 3

for bivariate problems and in Chapter 4 for multivariable problems.
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Chapter 3

Bivariate Isoperformance

Methodology

This chapter solves the bivariate isoperformance problem for two independent variable
parameters p;, where j = 1,2, and one (scalar) performance objective p; — J,(pj). Three
alternative algorithms (exhaustive search, gradient-based contour following and progressive
spline approximation) are developed, implemented and evaluated. The solutions, p;s,, form
the isoperformance set, I. This set meets the isoperformance condition J, (piso) = J; req- Ap-
plications of the bivariate isoperformance methodology are presented for the sample problems
introduced in Chapter 2 and some realistic spacecraft dynamics examples. The algorithms

have been implemented in a MATLAB module function called isoperf_2var.m.

3.1 Bivariate Isoperformance Problem

Once a viable initial design, ppom, has been found, it is important to determine the combi-
nations of values for the independent parameters p;, j = 1,2,...,np, of the system, that will
result in the same (predicted) dynamical performance J,(p;) = J; eq. A first step towards
solving the problem stated in Section 1.3 is undertaken by considering two variable parame-
ters, n, = 2 and one (scalar) performance metric J,, where n, = 1. This gives the impetus

for the following task formulation:
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Problem: Find algorithms, which are able to efficiently compute the isocontours p; —
J.(pj) = J.preq for a dynamic LTI system. Develop these algorithms for two system

parameters p = [p1 p2]? and one (scalar) performance, J,(p), first. The methodology

must be generalizable to n, > 1 performance metrics and n, > 2 parameters.

The extension to the full multivariable case in presented in Chapter 4. Formally, an
appended state space representation of the dynamics of a closed-loop or open-loop linear
time-invariant system is given as

qg= Az (pj) q+ B.q (pj) d+ By (pj) r

_ (3.1)
z2=0Cbq(pj)q+ D,q(pj) d+ Dy (pj) 7, where j =1,2

where A,  is the state transition matrix, B,4 and B,, are the disturbance and reference input
coefficient matrices, C,q is the performance output coefficient matrix, D,q and D,, are the
disturbance and reference feedthrough matrices, d contains unit-intensity white noise inputs,
r represents reference inputs, z contains system performance outputs, ¢ is the state vector

and p; is the j-th variable, independent system parameter. Additionally the functional

Jz (pj) = F (2) (3.2)

represents a definition of the (scalar) performance metric of interest. See Appendix A for a
list of typical performance specifications such as RMS or RSS. Regardless of which metric is
used, the resulting J,, will always be a scalar quantity.

We want to find solution vectors, pjso, such that the performance equality constraint
Iz (Piso) = Jzreq (3.3)
is met, assuming that the parameters p; are bounded below and above as
pjLB <pj <PjUB Vi=12 (3.4)

The isoperformance condition (3.3) has to be met subject to a numerical tolerance, 7

J, (piso) - Jz,req < T

— 3.5
J2 req — 100 (3:5)

In the case of spline approximation a functional approximation to the isoperformance
contours, t — fiso(t) = Piso, where R +— R?, may be obtained. Note that in this case the

parameter ¢ is the analog of the parameter ¢ in a parametric curve description in R? or R3. This
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would be describing the time ¢ in the curved path of a particle in three dimensional Euclidean
space. For example the position vector 7 (t) = [z(t),y(t),z(t)] of a helical trajectory is
t + [cos(t), sin(t),t]. In the isoperformance context the coordinates z,y, z correspond to the

coordinates py,p2, ..., Pn, into the parameter space B in R"».

3.2 Algorithm Development

The purpose of this section is to work out the fundamental mathematics and algorithms for
determining the isoperformance contours for the case of a single performance metric, J,, and
two parameters p;j, j = 1,2. The performance is a function of an opto-mechanical output
quantity, z, of the system. The parameters are structural, optical, disturbance or control
parameters of the system (e.g. beam moment of inertia, detector quantum efficiency, reaction
wheel static imbalance, derivative control gain). Note that physical parameters are typically
used for an isoperformance analysis, as opposed to modal parameters, since they relate more
directly to engineering design quantities of interest and are more readily and independently
alterable by the designer. On a conceptual level there are three fundamentally different

algorithms, which will be considered:
1. Exhaustive Search
2. Gradient-based Contour Following
3. Progressive Spline Approximation

There is no claim that this set is complete and that no other viable algorithms exist. Note
that a fourth approach, using Newton’s method for finding the roots of a multivariable function
numerically, is conceivable if the performance objective J,(p;) is known in closed form. This,
however, is only true for relatively simplistic low-order problems, such that the requirement:
“generalizable to the multivariable case” is not met. The next section quantitatively evaluates
and compares these three approaches by solving the single degree-of-freedom (SDOF) oscillator
problem introduced in Section 2.1.

Before developing each algorithm, it shall be noted that three quantities must be specified
apriori, regardless of the algorithm used. First, upper and lower bounds for each variable

system parameter p;, where 5 = 1,2, must be defined such that:
piLB < Pj <DPjUB (3.6)
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Here the subscripts “LB”,“UB” identify a lower bound and upper bound for the j-th parameter,
respectively. In practice these bounds are chosen not to violate physics (e.g. negative mass)
and are based on empirical experience regarding the range which is physically realizable within
the current or foreseeable state-of-the-art for a given parameter. For example a realistic lower
bound for the noise voltage RMS produced by off-the-shelf 12-bit electronics is 4 [mV].
Furthermore an allowable tolerance, 7, on the isoperformance (contour) solution must be
specified, since a digital computer with a limited floating-point accuracy is used to determine
individual solution points, p;s,. If this tolerance, 7, is expressed as a permissible + percent
deviation from the required performance, J, ¢4, one expects the k-th solution p;g, 1 + J, i to

be “on” the isoperformance contour such that
Joreq - [1 —7/100] < J, 1 < J; peq - [1 + 7/100] (3.7)

Finally, the required performance, J, .4, which corresponds to the “level” or “height” of the
isoperformance contours, needs to be defined. This is analogous to looking at the pressure
chart in Figure 1.3(b) and asking for the locus of the 1006 [mb] isobars, as an example. It is
possible that no point in the parameter space R? bounded by (3.6) will yield J, 4, i.e. the
isoperformance set is empty I=(, or that there are several closed or open contours as shown

in Figure 3.1. These contours are sometimes referred to as level curves [28].

I_ 2-dimensional Euclidian vector space parameter space I
I %) boundary B
closed \
I contours unstable |
subspace U
| \ |
| N~ © |
individual

solution
point piso

(a) J. zreq open / \

I contours

Py

L — - - _— - - _— __— __— _ 4

Figure 3.1: Theoretical instances of isoperformance contours p; — J,(pj) = J req
in R2. (a) regular boundary point on B, (b) interior solution point p;s,
in set I and (c) boundary point on the unstable subset U.
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It is also true that isoperformance contours will never cross, since a particular design
point p;, j = 1,2, will always map to a unique performance value p; — J,(p;), where j = 1, 2.
The multivariable function p; — J,(p;) is said to be unidirectionally unique. Note that the
isoperformance algorithms should be as general as possible to efficiently compute all of the
cases presented in Figure 3.1. Specifically, there can be multiple instances of open and closed
contours. Closed contours, by definition, close on themselves (non-zero curl in vector calculus)
and can be circumscribing other closed contours. Closed contours can only be tangent to the
parameter space boundary B, but never intersect it. Open contours always have a start
and end point on a parameter space boundary of B or at the absolute stability boundary
of the unstable subset U. The next three subsections develop the bivariate isoperformance

algorithms, which solve the problem posed above.

3.2.1 Algorithm I: Exhaustive Search

This method discretizes the parameter space, defined by the lower and upper bounds p; 1.5, pj B,
where j = 1,2, by overlaying a fine grid and completely evaluating all grid points. The subdi-
visions of the grid are defined by means of uniform parameter increments Ap;, Aps. The size
of the increments should be small enough to capture details of the isoperformance contours.
This is related to the smoothness of J,(p;). Small increments are desirable as this will allow
to capture a large number of points, p;s,, on the isoperformance contours. On the other hand
the computational expense grows significantly with smaller increments.

Each grid point on the grid represents a unique parameter combination py; = [ p1 5 pay 7.
The parameter values are obtained from p; , = p1, L+ (k—1)Ap1 and pa; = p2 .+ (1—1)Apo,
respectively, which leads to a linearly spaced grid. The performance (J,) ki = Jz (pk,) is eval-
uated for all parameter combinations (complete enumeration). The number of increments in

each parameter axis is obtained as':

i — [Mw and ny— [M] (3.8)
Ap: Apy

The index k on the first parameter runs from 1 to 141, the index [ runs from 1 to ny+12. Thus

a total number of (nq +1) X (ny + 1) combinations has to be evaluated. This is algorithmically

!The [ ] operator denotes the ceiling function.
2If k = n1 + 1 then p1,x = pruB and if [ = nz + 1 then py; = p2,uB.

83



achieved by means of two nested for loops. The resulting performances (.J,) k, are stored in a
(n1+1) x (n2 + 1) matrix. A representation of the parameter space B discretization is shown

in Figure 3.2(a) along with a zoomed region in Figure 3.2(b).

pzA Parameter space B
T = N Zoomed Region
AP, ( / \1\ Jz,aiym/lf ) Jz,%@)
T X T I+1
fz eq I ~< is0,n+3, -
: X - iso,n+ Diso
A \ S~ - 0,n+
I{ gr.ldt - ) 1 Tkl T
[ ] poin Tl
pZ,LB ””””” ] -1 T~~~ DiYo.
< 180 J k1,01 Sk 1)
Ap,  contour - Joreq
i’ k-1 k +
P 1p P P kel

(a) (b)

Figure 3.2: (a) Algorithm I: Discretization of B in a linearly spaced grid with incre-
ments Ap = [Apy, Apo]”. (b) Linear interpolation between neighboring
grid points. The gray shaded area is a zoomed region.

Note that the result of a particular parameter combination, py ;, does not affect the com-
putation of the next point. The algorithm will be shown to be computationally expensive,
particularly for more than two parameters and fine discretization, see Chapter 4. Once all the
parameter combinations py; have been evaluated, linear interpolation between neighboring
grid points, as shown in Figure 3.2(b), is used to find isoperformance points pjs, . The linear

interpolation algorithm uses the following equation to find the r-th isoperformance point:

Pisoy = [pl,iso,r ] _ [Pl,k ] + (Jz)k,l - Jz,req . [pl,m — Pk ] (39)

P2,iso,r b2, (JZ)k,l - (Jz)m,n P2,n — D2,

The above equation is invoked if it is found that either (J,)p; > Jyreq > (J2)mn OF
()bt < Jopeq < (J2)momn, assuming continuity of J,(p). This requires that the predicted
performance at each grid point (J;)i,; is compared to the performance of each neighboring
grid point (J;)m . Note that (J,)m,n is the performance at a neighboring point such that
melk—1,k k+1landn e[l —1,1,1+1]. The point m = k, n = [ is not tested, since it
represents the center grid point py; itself as shown in Figure 3.2(b).

This procedure is similar to the process that is used to obtain the pressure chart shown in
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Figure 1.3(b). Consider the following example: We are interested in finding the 1006 [mbar]
isobar. We know that the atmospheric pressure is 1003.3 [mbar| in Boston and 1007.2 [mbar]
in New York City at 5:00 p.m. on a given day. Since the distance between Boston and New
York is 216 miles, we expect the point, which is at a distance of 66.5 miles from New York
on the straight-line between the two cities to be on or close to the 1006 mbar isobar. This
assumes that the pressure varies linearly and that no other reporting station exists between
the two cities.

An alternate option replaces the linear interpolation step with a call to the MATLAB built-
in function contourc.m for contouring. This allows displaying a family of several performance

levels at once. The flow diagram used to implement Algorithm I is shown in Figure 3.3.

contourc.m
User Input
Performance: J, req

Piso
non-empty
?

Tolerance: T Find neighbors End
Bounds: p; P oo p
Discretization: Ap £/ mn
End

Last

Next Grid Point . .
Prpe1=Dy AP Gr}%{f’({)}mt
(kD)=(kD)+1 for T
loops
Build State Space R Pecr?:)nnr;::sce Linear Interpolation > Soﬁﬁ[:ms
Model for Pri A F(z) equation (3.9) .

Figure 3.3: Flow Diagram for Algorithm I: Exhaustive Search

The algorithm first requires the user to input a performance requirement J, ,..4, a tolerance
7 , the upper and lower bounds prp and pyp , as well as the desired discretization Ap. Next
it loops over all points in the parameter space B and builds a state space model according to
(1.1) for each combination py;. The corresponding performance (J;); is evaluated for each
combination. After evaluating all grid points (complete enumeration) the algorithm branches
into two separate options. Option I(a) calls the built-in MATLAB function contourc.m

for contouring. If the matrix of isoperformance points, p;s,, is non-zero, it is stored and the
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algorithm ends. Option I(b) searches for all closest neighboring grid points and checks whether
the isoperformance contour passes in between them. If it does, an intermediate point, p;so,, is
obtained using linear interpolation according to (3.9). The resulting points have to be sorted
with a “closest neighbor” algorithm, which is accomplished by the function find_segments.m.

In summary, the exhaustive search algorithm attempts to find contours of equal perfor-
mance by laying a fine grid over the trade space B in R? and evaluating all grid points. It

obtains an estimate of the isoperformance contours via linear interpolation.

3.2.2 Algorithm II: Gradient-based Contour Following

The exhaustive search algorithm does not exploit knowledge about previous points pjs, ) =
[Piso,1,k» piso,gyk]T found on an isoperformance contour in any way. The basic idea of the
gradient-based contour following scheme is to first find an “isopoint” p;s,1, which is known
to yield the required performance J, ,¢4, i.e. it lies on an isoperformance contour. Once such
a point is found a neighboring point p;s, 41 on the same isoperformance contour is found by
means of a direction derived from the gradient vector, V.J,(p1,p2). Thus, a prerequisite is
that J,(p;) is continuous and differentiable at all points in the parameter space p = [p1, o]l €
B. It will be shown that this step direction is colinear with the tangent vector ¢ to the isop-
erformance contour. This step-wise “contour following” is repeated until the isoperformance
contour intersects the parameter space boundary B, the absolute stability boundary U or it
closes on itself.

If several segments (i.e. separate contours as in Figure 3.1) are present, different “random”
initial trial points are necessary in order to detect all segments. This algorithm promises to
be significantly more efficient than exhaustive search, since it only computes points on the
contours and takes advantage of previously computed solutions. The derivation starts by

considering the bivariate function
p1,p2 — J.(p1,p2) , where R? — R and pj €B (3.10)

The vector of parameters can be stacked as follows:

A
p= P and Ap = 1 (3.11)
P2 Apy

Next a Taylor series expansion of the vector function J,(p) is performed around a nominal
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point, Pnom, where p,om € B, as follows:

1
J. (0) = J. (Puom) + (V)T - Ap + iApT H|, ~Ap+HO.T. (3.12)

pnom

Note that p = prom + Ap and that VJ, and H are the gradient vector and Hessian matrix,

respectively. ) ) ) )
a.J, 0?7, 0?7,
2
Vi, = | P | anam=| 9Pi OpiOp (3.13)
a7, FPI. 9PI,
| Op2 | | Op20p1 Op3

From multivariable calculus [28] we know that the cross-derivatives are equal to each other
and therefore the Hessian is symmetric: H = H”'. The parameter vector increment Ap can
be written as the product of a step size o and a step direction (vector) d. Note that d is
normalized to unit length

Ap=a-d (3.14)

The starting point of Algorithm II is an initial guess p, = [p1,0,P2,0]” , which is in the “vicinity”
of, but not necessarily exactly on the isoperformance contour. A steepest descent algorithm
[33] is used to obtain a first isopoint, i1, on the isoperformance contour. This was demon-
strated for the oscillator sample problems in sections 2.1 and 2.2.

A direction d of J,(p1,p2), where R? — R at p = p, is a descent direction if
Jz(po +a- d) < Jz(po) (3.15)

for all sufficiently small positive values of . The step size « is a scalar value and is chosen
to be positive if the initial guess p, lies “above” the isoperformance contour (e.g. yields a
larger RMS value). Conversely if the initial guess p, or any subsequent iterate is “below”
the isoperformance level, « will be a negative scalar. The next iterate is then obtained as
Potr1 = Po + Qo - Ny, Where n, is the unit-length vector of steepest descent3. Thus, one can

write the first order approximation at the point p, as:
(Do + @t - o) = J,(po) + V2 (po)! - atome (3.16)

Recall from the Cauchy-Schwartz inequality that

1)+ 9000 (o) < a4 VLG (1) 3D

3Note: “n” is chosen to indicate the “normal” vector and “¢” is chosen to designate the “tangential” vector.

This is not the same “t” used to parameterize isoperformance contours presented in Subsection 3.2.3
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for any d # 0. Thus, the steepest descent vector (step direction) at p, is obtained as

_ —VJ, (po)
"o = (nm (po>||> (3.18)

The step size, «, is found by assuming linearity from the initial guess, p,, to the first point
on the isoperformance contour p;s,1. Traditionally a line search is performed on a function
h(«) for steepest descent in order to find «. This, however, is only useful in an optimization
problem setting [33]. Here, we are merely trying to intercept the desired isoperformance

contour J; ¢ in a minimum number of iterations. From the expression

~ =V J; (po
Jz (po + Qo - do) - Jz (po) + VJz (po)T Qg <7HVJ (1() )|)|> = Jz,req (319)
—_—— —
Mo

one can solve for «, , such that

0y = <_VJZ (po)T VJ, (po)

~1
NZAD] ) e = T2 (po) (3.20)

This assumes that p, is not an extremum or a saddle point of J,(p1, p2), where ||V.J, (p,)]| = 0
would be true. Using the above equations, the algorithm generally intercepts an isoperfor-
mance contour, if it exists within B, within a few iterations. In practice an upper limit is
imposed on the step size to avoid “overshooting”, when going from a small gradient to a large
gradient area of the parameter space B.

If one assumes that the point p;s, ) lies on the isoperformance contour, one can find a
neighboring point pise k11 = Pisok + Apk such that J.(pisor + Apk) = J.(Pisok) = Jzreq BY
recalling the Taylor series expansion in Equation (3.12). One then neglects second-order and
higher terms and sets the first order term (perturbation) to zero. Specifically, if

Tz (Piso+1) = Tz (Pisos + Apk) = Tz (pisose) + (VI | Apk = Jareq (3.21)
is to be true, then

AJp= (V)" App =0 (3.22)

Diso,k

In other words, one must choose the vector Apy, such that it is in the nullspace of the trans-

posed gradient vector (V.J,)T. This condition can be written out componentwise as

0J,
dp1

01,

Ad, = 9

Aper =0 (3.23)

P2,k

Apy i+

P11k
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Geometrically this condition corresponds to following the tangential vector ¢ along the
isocontour. Figure 3.4 shows that ?; can be considered the tangential vector at point p;s. ,
which is orthogonal to the normal vector ng. It is true that the vector ny is the direction of

steepest descent and is obtained according to equation (3.18). There are two ways in which

isocontour

Figure 3.4: Algorithm II: Depiction of gradient vector V.J,, normal vector n and
tangential vector ¢ along the isoperformance contour.

tr can be obtained from VJ,(py). First one can obtain the normal vector ny from equation
(3.18) and then rotate it by 90 degrees to obtain the tangential vector t.
0 -1

t, =R -np = SNy (3.24)
1 0

The second method is more general, since it is also applicable to the case of n, > 1 perfor-
mances and n, > n, parameters. A singular value decomposition (SVD) [118] is performed

on the transpose of the gradient vector.
ULSp Vil = VIt (3.25)

In the bivariate case two singular values are obtained. The non-zero singular value, sy #
0, corresponds to the direction of steepest descent nj and the zero singular value, sy ) =
0, corresponds to the tangential direction t;. In the extension of this framework to the
multivariable case, see Chapter 4, the power of the SVD to map out this nullspace will be

discussed in detail. The vectors ng and t; are the columns of the unitary Vi-matrix, as in the
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following example:
0.0369 0.9993

Vi = [ ng tg } = (3.26)
—0.9993 0.0369
no;rrnal ta.ng:;tia.l
vector vector

Note that ny and t; are orthogonal to each other, i.e. nf -t = 0. The vector t is used as
the direction, when stepping along the isoperformance contour.

Now that the step direction ¢; has been found an appropriate step size, oy, needs to be
chosen. The step size should be variable and take into account errors incurred due to the
linearization in equation (3.16). An estimate of the linearization error incurred due to a step

of size Apy can be written as:
1
€h = 5Apf H|, Apy+H.O.T. (3.27)

Neglecting higher order terms, one solves for the step size oy , by substituting Apyr = ay, - tg

in the above equation and setting €j = 7.J; y¢q/100.

_471/2
ap = % (¢ |, -tk> 1] (3.28)
In practice it is expected that the exact computation of the Hessian matrix H |pk will be
quite expensive. Gutierrez shows in Appendix C of Reference [45] that solving for the second
order derivatives, i.e. a single entry in the Hessian, §%.J,/ 8p§f, requires the solution of four
Lyapunov equations for Hs performance metrics. However, assuming that the exact first

partial derivatives 0.J,/0p;, where j = 1,2, are known, one can approximate the Hessian

matrix H % for purposes of finding the step size ay, by finite differences as follows:

[ 1 [ 01| 0. aI.| ol 1
82Jz 82Jz Op1 k Op1 k—1 dp2 k dp2 k—1
op?  Op10p2 Pl — Plk—1 Pl — P1k—1
H| = ~ (3.29)
: AR A VA Y
9?7, d*J, Opily  Opilp_y  Op2ly  Op2l,,y
Op20p1 Op3 P2k — P2k—1 P2k — P2k—1
I 1, L i

With equations (3.26) and (3.28) the step direction t; and the step size aj have been

determined and one can find the next point on the isoperformance contour piso x4+1 = Pisok +

“Note that the step size ay has to be artificially limited in a region of small curvature, i.e. when the norm

of t7 H™'t;, becomes very small.
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ajty. At this new point the performance J,(pisor+1) is recomputed along with the gradient
vector V.J;(pisok+1). The process is repeated until the parameter boundaries of B are reached,
the solution reaches the unstable subspace U or the isoperformance contour closes on itself.
In practice a “front” is created, where new points on the isocontour are found in the positive
and negative step directions. The new points represent the “front”, pon, which is used to
find the next generation of front points. Also a “control” algorithm was implemented to check
whether the isoperformance solution points are drifting away from the J, ., “centerline”. If

the inequality
J, (piso,k—l—l) - Jz,req > T
JZ,T'eq ]-00

(3.30)

is true, a correction term in the normal direction, ny, is applied to bring the solution back
on the centerline of the isoperformance contour. In that instance the parameter step Apy is

augmented by a normal correction term as:

App =ap -ty + B -ng (3.31)
——

correction term

where [ is computed from equation (3.20).

An overview of Algorithm II is shown in the flow diagram of Figure 3.5. The first it-
eration loop on the left brings the solution from the initial guess p, to the first point on
the isoperformance contour pjs, 1. The second loop on the right hand side traces along the
isoperformance contour until the parameter space boundaries defined by the upper and lower
bounds pj .p and p; B, where j = 1,2, are intercepted, the solution becomes unstable or
the contour closes on itself. The outer loop indicated by a dashed line is relevant if several
(random) initial guesses are used to detect multiple segments within B. Finally the points,

Piso, ON the isoperformance contours are sorted and stored for further processing.

3.2.3 Algorithm ITI: Progressive Spline Approximation

The previous algorithm is an improvement over exhaustive search, since it uses information
about previously computed points along the isoperformance contours. Also the algorithm
automatically adjusts the step size Ap in “shallow” gradient areas, where |V J,|| is small. A
further efficiency increase can be obtained by exploiting a progressive spline approximation

scheme. This assumes that the isoperformance contour intersects the boundary B, i.e. that
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Figure 3.5: Flow Diagram for Algorithm II: Gradient-based Contour Following.
Note: The correction step from equation (3.31) is omitted for simplicity.

no closed loops are present. This is most often the case, when the performance function
J,(p1,p2) is monotonic in at least one of the two parameters. This condition will be referred
to as “quasi-monotonic” throughout this thesis.

The basic idea of this algorithm is to approximate the isoperformance contour with a
piecewise polynomial (pp) function. The spline mathematics and tools developed by Carl de
Boor [22] as well as the resulting MATLAB spline toolbox are leveraged for this algorithm. A

function f(z) can be approximated by a truncated Taylor series as follows:
(z—a) df (z—a)
fay = 4 522 g (3.32)
. 7! dz . 7!
1=0 a i=0
This provides a satisfactory approximation to f(z) if f is sufficiently smooth and z is suffi-
ciently close to a. The approximation interval [a,b] is then subdivided into sufficiently small

intervals [(;, (41, . ..] with

6a=0(<...<(41=0b (3.33)

On each such interval a polynomial P, of relatively low degree can provide a good approxima-

92



tion to f. The composite function (piecewise polynomial) is then:
s(z) = Pi(z) for z € [(1, G41] VI (3.34)

A smooth blending of the polynomial pieces can be achieved such that s(z) has several contin-
uous derivatives. We will call s(z) a spline, an expression that was originally created by I.J.
Schoenberg. Splines have been extensively treated by de Boor [22]. This work also resulted
in the MATLAB spline toolbox, which is used extensively throughout this thesis.

Of particular interest is the ppform of a spline, which provides a mathematical description
in terms of its break points (breaks) (1,...,{;+1 and the local polynomial coefficients ¢;; of

its pieces.
k

k—1i
P (z) = ; %Cl,i (3.35)
This form is especially convenient for evaluation, while the B-form is often used for construc-
tion of a spline approximation. The order is chosen as k = 4, which leads to cubic splines
and two continuous derivatives across the break points.

The progressive spline approximation algorithm assumes that the two endpoints a,b are
on the parameter space boundary. The knowledge of the first derivatives at these endpoints
facilitates the formulation of correct end conditions. Thus, the initial estimate of the isop-
erformance contour consists of a single piece. Instead of using the formulation in (3.34), the
isoperformance contours are parameterized with parameter ¢ from endpoint to endpoint. Thus

at endpoint ¢ we have t = 0 and at endpoint b we set ¢ = 1.0. Instead of the coordinates z

and y = f(x) as in equation (3.35) the algorithm works with vector splines such that

tes P (t) _ Piso,1 (t) _ 51 (t) = Diso (3.36)
Piso,2 (t) s2 (t)
where
t €1[0,1] = P (t) € [a,b] (3.37)

the vector components of each spline piece are approximated as piecewise polynomials in
ppform, where
5j(t) = fi(t) forj=1,2and VI (3.38)

The functional approximation for each piece is then given as
k

o (t—¢)F o
fu@®=>Y" G where t€[¢... (4] (3.39)
i=1 ’
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Note that all relevant information is contained in the break point sequence, (; ... (;+1 and
in the polynomial coefficient array c;;;. The subscript j refers to the vector component of
Piso, | refers to the piece number of the pp approximation and 7 is the index of the polynomial
degree. In practice the coefficient array c;;; is stored as a 2-dimensional matrix by stacking
the coefficient matrices of the vector components j on top of each other, along the first non-
singleton dimension. As a practical example the isoperformance contour shown in Figure 3.6

is saved in MATLAB with the following variables:

e form: ‘pp’

breaks: t € (;...¢41=[0 0.1667 0.3333 0.5000 0.6667 0.8333 I]T

e coefs: cj;;: 12x4 double precision matrix
e pieces: [ =6

order: k=4

e dim: maz(j) = 2

Next a bisection is performed at the mid-point of the first piece, (¢ = 0.5), resulting in the
point ppq1. If the true isoperformance contour is close to the cubic spline approximation,
then py,;q,1 will lie on the contour. Generally this will not be the case and py,;q,1 is then used
as the starting point for a steepest gradient search to find the closest point on the contour.
This point pjse,1 represents a new break ¢, and splits the original interval [a, b] into two pieces.
The MATLAB function csape.m is used to compute the spline coefficient matrix ¢ for the
pieces [a = (1,(2] and [(2,b = (3]. This bisection procedure is repeated until the midpoints of

all pieces lie on the contour, subject to a tolerance 7. This is graphically shown in Figure 3.6.

A flow diagram of the progressive spline algorithm is shown in Figure 3.7. The algorithm
first finds the isoperformance points, p;s,, on the boundary as well as their first derivatives.
Next a cubic spline (cs) interpolation is performed in order to obtain an initial estimate of
the shape of the isoperformance contour. This initial estimate is refined via a bisection at the
mid-point of each piece (t=0.5). Pieces, where the mid-point is not within the tolerance 7 are
bisected further until all pieces meet the tolerance. Thus, computational resources are focused
on areas where the shape of the contours varies rapidly. This algorithm requires access to the

MATLAB spline toolbox (e.g. function csape.m).
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The algorithm is expected to be the most efficient, but also the most restrictive, since it
is only able to find open segments (no closed segments), which intercept the boundary of B,

as is the case for (quasi-)monotonic functions.

3.3 Algorithm Evaluation

This section applies the three algorithms, which have been implemented in MATLAB code,
to the single DOF sample problem and quantitatively as well as qualitatively compares the
answers. The conclusions will provide guidance for applications to larger problems and the
multivariable case. The single DOF problem from Section 2.1 is used to compute and display
isoperformance contours. We choose the disturbance corner frequency, wg, and oscillator mass,

m, as the variable parameters with the parameter bounds given in Figure 2.1.

3.3.1 Quality of Isoperformance Solution

In order to assess how well the resulting isoperformance points, p;s, actually meet the isop-
erformance condition (3.3) it is necessary to define a solution “quality” metric. The “quality”
of the isoperformance solution can be quantified as follows. Let

1/2

Niso

2
100 kgl [Jz (piso,k) - Jz,req]
Yo = - (3.40)

Jz,req Niso

be a quality metric expressing the relative % error with respect to J;,¢q. In the above
equation n;s, is the total number of isopoints computed, J;(piso ) is the performance of
the k-th isopoint and J, ., is the performance requirement, i.e. the desired performance
“level”. This number can then be directly compared to the desired isoperformance contour
tolerance, 7, and should always be smaller than it. Note that this definition of solution

quality does not prevent individual solutions, p;s,, from falling outside the tolerance band
[(1 = 7/100) - J; reg, (1 +7/100) - Tz req]-
3.3.2 Results for Exhaustive Search (Algorithm I)

This subsection shows the results obtained for Algorithm I (exhaustive search). Subsection
3.2.1 specified that it is necessary to define a discretization step size Ap. This was chosen as

1/20 of the interval pyp — prp. The results for exhaustive search are shown in Figure 3.8(a).
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The isoperformance curve shows that a small increase in the disturbance filter corner frequency,
wq, below about 30 radians per second (roughly 5 Hz), which is the natural undamped fre-
quency of the oscillator, requires a large increase in mass m in order to maintain the same
RMS level. Thus, as the disturbance energy increases the disturbability of the oscillator must
be decreased by increasing the mass. Once the disturbance corner frequency, wq, exceeds the
natural undamped frequency of the oscillator any further increases in wy have only a small
effect on the RMS of z and the isoperformance curve flattens out.

The quality of the isoperformance contour is very dependent on the discretization level.
The smaller Ap, the better the contour will be interpolated but the more computation time is

required. For the exhaustive search algorithm the solution quality is shown in Figure 3.8(b).

Isoperformance contour (I) for : Jz,req = 0.0008 m
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5 Parameter Bounding Box ‘ ‘ ‘ ‘ ‘ ‘
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Figure 3.8: (a) Algorithm I (Exhaustive Search): Isoperformance contour for single
DOF problem (wg, m) with discretization Ap = (1/20)[pys —prp| and a
tolerance of 7 = 1%. (b) Quality: Contour quality according to (3.40).

The points on the isoperformance contour in Figure 3.8(a) were obtained by using the
MATLAB function contourc.m and exhaustive search. The tolerance for the isoperformance
contour was set to 7 = 1.0 %. In order to obtain this plot a total of 21x21=441 plant models
in the form of equation (1.1) had to be evaluated. This suggests that this algorithm will likely
be computationally expensive for large order models with n, > 2 variable parameters. A
comparison of the computational cost with the other algorithms is shown in Table 3.1.

Since for Algorithm I (exhaustive search), solutions are computed over the entire parameter

space B, it is possible to graphically represent the bivariate function J,(p1,p2) as shown in
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Figure 3.9(a). The best performance (lowest RMS value o) in the system is achieved for a
large mass m (small disturbability) and low disturbance corner frequency wy (low disturbance
power). Another advantage is that a family of contours can be displayed, see Figure 3.9(b),
with little additional computational expense.

Performance contours for Jz (p1,p2)
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(a) Algorithm I (Exhaustive Search): Surface plot of J,(p1, p2) for SDOF
(b) Family of isoperformance contours in 0.2 mm

Figure 3.9:

oscillator problem.
RMS increments.

The answers to the questions posed in Subsection 1.3.1 for the single DOF problem are:
(1) Yes, there are solutions within p; ;5 and p;yp, where j = 1,2, which yield the desired
performance J, ;¢,=0.8 [mm]. Since p; and p; are considered to be continuous, there is an
infinite number of combinations, which yield J; ;¢;. (2) The locus of points that yield J; ;¢4
within a 7 = 1.0 % tolerance is shown in Figure 3.8(a).

At this point one might be tempted to ask: “Why do we compute the isoperformance
contours at all, when we can achieve much better performance within the parameter bounds
B as shown in Figure 3.9 for small w, and large m 7”. In general it is expected that parameter
values that yield good performance (i.e. low J,) will also have a higher “cost” associated with
them. In this example it means that we cannot tolerate a large amount of external distur-
bance (large wy) and that a lot of mass m has to be used to reduce oscillator disturbability.
This notion of cost will be discussed in more detail in Chapters 4 and 7. Examples of other

system parameters that will improve dynamic performance at a higher “cost” are small reac-

tion wheel imbalance, stiffer secondary tower, lower detector noise, higher control bandwidth
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etc. Thus, instead of finding the best performance achievable within the parameter bounds
(=performance optimization) and perhaps over-designing the system, we want the system to
perform just “well enough”, as expressed by the J, ., curve (which includes the necessary
safety margins). Once that family of designs is found, one can determine the lowest cost

solution within this isoperformance set I.

3.3.3 Results for Gradient-Based Contour Following (Algorithm IT)

Figure 3.10(a) shows the isoperformance contour obtained with Algorithm II (gradient-based
contour following) and the associated error, Y, in Figure 3.10(b) for the single DOF sample
problem. By comparing the isoperformance contours in Figure 3.8 and 3.10, one sees that both
algorithms yield similar results. A detailed comparison of the computational effort required

for each method is shown in Table 3.1.
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Figure 3.10: (a) Algorithm II (Gradient-Based Contour Following): Isoperformance
contour for single DOF problem (wq,m) with tolerance 7 = 1%. (b)
Quality: Contour solution quality according to (3.40).

The quality of the solution in algorithm II is governed by the tolerance 7, which leads to
a variable step size. The step size also depends on the curvature of the underlying bivariate
function, J,(p1,p2) . This is a very desirable property of the algorithm, since it will use many
points to represent areas with a large change in sensitivity and few points in areas of small
sensitivity change. Note that the quality of the solution, as measured by the Y;;, metric,

see equation (3.40), is well within the tolerance mandated by 7. This precise tracking of
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the isoperformance contour was only achievable once the “control” mechanism introduced in
Subsection 3.2.2 was implemented. Previously the isoperformance solution would gradually
wander away from the “centerline” of the isoperformance contour, due to the cumulative effect
of linearization errors.

The algorithm starts by evaluating the performance J,(pnom) and the gradient vector
VJ,(Prom) for the nominal solution pyem, which was found via the performance enhance-
ment step in Section 2.1. By design this point is already on the isoperformance contour. In
general, however, the initial guess, pnom, is close to, but not exactly on the isoperformance
contour. The algorithm then tries to find an initial point on the contour, pjs, 1, using the
steepest descent algorithm from Subsection 3.2.2. This initial convergence to intercept the
desired isoperformance contour is shown for a different initial guess pnom = [wq, m, k, ¢, w,] =
[31.416,1,1449.7,0.72486,455.44]" in Figure 3.11. The isoperformance contour is intercepted

after three iterations.
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Figure 3.11: Intercept of isoperformance contour: (a) Iterates from initial point
(Pnom) to isoperformance contour (pjs,,1). (b) Convergence history.

It noteworthy that the steepest descent algorithm can overshoot the isoperformance con-
tour, when the bivariate function J,(p1,p2) transitions from an area of low curvature to an
area of higher curvature. The algorithm then gradually “climbs” back to the isoperformance
contour J, r¢q. Once the first isopoint, p;s.,1, is found, the algorithm switches to using the tan-

gential vector ¢ introduced in Subsection 3.2.2 to trace along the isocontour until a boundary
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of B or the unstable set U is intercepted or the contour closes on itself.

3.3.4 Results for Progressive Spline Approximation (Algorithm IIT)

The progressive spline approximation algorithm produces the results shown in Figure 3.12.
The predicted isoperformance contour resembles the results obtained with the previous two
methods. One difference is that far fewer isopoints (break points) need to be computed than

with the previous methods, since the ppform approximation is used.
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Figure 3.12: (a) Algorithm III Progressive Spline Approximation: Isoperformance
contour for single DOF problem (wg, m) with tolerance 7 = 1%. (b)
Quality: Contour solution quality according to (3.40).

The progress in approximating the isocontour with cubic splines can be graphically recorded.
Figure 3.6 shows the successive iterations, which are computed until all mid-points lie on the
isoperformance contour within tolerance 7. This algorithm performs very well for open con-

tours and for performance functions .J,(p), which are smooth and (quasi-)monotonic over the

interval [prB, puB|.

3.3.5 Algorithm comparison

The purpose of this subsection is to compare the three isoperformance algorithms and to derive
recommendations for their use in bivariate problems. In order to achieve a fair comparison it
was deemed necessary that all three methods yield isoperformance solutions of nearly equal

quality as expressed by the Y;s;, metric. A comparison of the three methods in terms of
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computational cost and quality is followed by a more qualitative comparison of advantages
and disadvantages.

From Table 3.1 and by comparing Figures 3.8, 3.10 and 3.12, one sees that all three
algorithms have the ability of accurately finding an isoperformance contour, if it exists within
B. There are, however, significant differences in the amount of computational resources needed
and in the scaleability to larger problems. Algorithm I is by far the most computationally
expensive®. This is due to the fact that in the SDOF case 441 points (Jz)k,l had to be
evaluated, but only 35 points form the isoperformance contour. If a multivariable scenario
is considered, say four variable parameters and one performance J,, and a discretization of
n; = 50 increments is assumed, where ¢ = 1,2, 3,4, in each parameter axis, one will have to
evaluate 50* = 6.25 - 10° points. If one solves for the output RMS of a state space system
of a realistic size, say 400 states, and if it takes 90 seconds to solve the Lyapunov equation
for the state covariance matrix, g, it would take 6510.4 days of CPU time to evaluate all

combinations (.J) k> which is clearly prohibitive.

Table 3.1: Comparison of algorithms I-III for isoperformance analysis of single
degree-of-freedom problem.

Result I: Ex. Search II: Co. Follow III: Sp. Approx.
FLOPS 2,140,897 783,761 377,196
Tolerance: T 1.0 % 1.0 % 1.0 %

Actual Error: Y5,  0.057 % 0.379 % 0.087 %
number of isopoints 35 41 7

The third approach (progressive spline approximation) is the fastest, however it only works
for open segments and assumes that there is only a single isoperformance contour which inter-
sects the boundary B. Thus, it is the most restrictive (least general) of the three algorithms.
The first algorithm (exhaustive search) is the most general. Also the quality of the solution
is strongly depended on the assumed discretization Ap.

The second algorithm (gradient-based contour following) has a computational cost which

is in between the other two methods. Multiple open or closed segments can be detected, but

5This can be different when multiple contours are desired.
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several random trial points ppm i, where ¢ = 1,2,..., #of trial points, are required to detect
multiple contours. The advantage of this method is that it uses knowledge about the previous
points pjs, 1 obtained in order to compute the next isoperformance solution p;,, x+1. Another
advantage is that the step size oy automatically adjusts according to the local curvature of
J(Piso,x) by means of a finite difference approximation of the Hessian matrix, see Equation
(3.29). The disadvantage of algorithm II is that one must recompute the gradient V.J, (pjso k)
at each new isopoint. Methods to accelerate the speed of gradient calculations are presented
in Chapter 5. The scaleability of these algorithms to the multivariable case is investigated in
Chapter 4.

A fourth algorithm uses Newton’s method, but is based on a closed form solution of the
J.(p1,p2) function and is therefore not applicable to general large order problems. Unfortu-
nately the expressions for systems with more than just a few states become intractable and
after about 8 states, closed form, published expressions for the integral of S,, (w) no longer
exist [141]. Even symbolic mathematical engines such as Maple would not be able to deal
with a state space model on the order of 10? to 10® states. For these reasons this algorithm

was abandoned early in this thesis research.

3.4 Application Examples

The purpose of this section is to demonstrate the kind of answers and insights that can be
gained by solving bivariate isoperformance problems. The problems are essentially a subset of

the sample problems introduced in Chapter 2 as well as a more realistic SIM Classic example.

3.4.1 Single DOF oscillator

Figure 3.13 shows isoperformance contours for the SDOF problem and the variable parameter
combinations [wg,w,] and [k,c]. The two plots show a tradeoff between disturbance corner
frequency wg and control “bandwidth” w,, see Figure 3.13(a). The other values m,k,c are
fixed at the nominal values for p,,,,, specified in Section 2.1.

As expected the control bandwidth, w,, needs to be increased as wy increases, since more
disturbance energy enters the system at higher frequencies. With the other parameters fixed at
the values of ppo, We cannot tolerate a disturbance corner frequency of more than roughly 35

[rad/sec]. The results also suggest that disturbance isolation (reducing wy) is more effective
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Figure 3.13: (a) SDOF isoperformance for wy versus w, with J, ., = 0.0008 [m]
and 7 =1 %. (b) SDOF isoperformance for k versus c.

than output isolation (increasing w,) on a relative (per Hz) basis. The contour in Figure
3.13(b) trades the spring stiffness & with the damping coefficient ¢. In order to maintain a
constant displacement RMS, the restoring force in the oscillator comes from a combination of a
displacement dependent force kz and velocity dependent force cz. As the spring is made softer

more damping needs to be added in order to maintain the same level of (RMS) performance.

3.4.2 ODL Design Problem

An application of the bivariate isoperformance methodology to the ODL problem is demon-
strated in this subsection. In Section 2.3 an initial design, p,, was developed, which resulted
in a RMS OPD performance of 89.6 [nm|, which meets the requirement of 100 [nm]|. There
was a suspicion that sensor noise of intensity S, was a major contributor to this error and
that better performance might be achieved with a smaller derivative gain K;. In this context
two important isoperformance contours were computed at the 100 [nm] level, see Figure 3.14.

The left isoperformance contour (a) shows the trade between the process noise and sensor
noise intensity. As the process noise increases the ODL can tolerate less sensor noise (at the
same control gain Kj) in order to maintain constant performance. The relative contribution
of each disturbance source to the total performance J, is the subject of error budgeting, which

is discussed in Chapter 7.
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Figure 3.14: (a) ODL isoperformance for Sgq versus Sy, at J, ¢ = 100 [nm] and
7 =1 %. (b) ODL isoperformance for Sg; versus K.

The isoperformance contour in Figure 3.14(b) shows the relationship between process
noise intensity Sgq and (derivative) control gain Kj. Without sensor noise and stability
considerations one expects the control gain to increase monotonically as the process noise
increases. In the presence of sensor noise, however, the relationship is more complex. The 100
[nm] contour shows that, all other parameters being constant as shown by p, in Table 2.3,
one cannot tolerate a process noise intensity Syq larger than 1.05-1075 [m/v/Hz]. For smaller
Saa there are two control gain settings K, that will yield a 100 [nm] RMS OPD performance.
At the higher setting residual sensor noise is dominant, while at the lower setting residual
process noise dominates. The stability boundary is shown as a dashed horizontal line within
the parameter bounding box B. Another way to visualize this relationship is by computing
the performance J, (RMS OPD) as a function of control gain K, from zero to the absolute
stability limit, see Figure 3.15(a).

One sees that the open loop performance (K; = 0) does not meet the requirements. The
initial design (K4 = 0.5) is satisfactory but not optimal and the absolute stability limit is at
K4 = 1.87. It is interesting to note that the performance improves very quickly as the gain
is increased from 0 to 0.2. After roughly K; = 0.4 the performance worsens with increasing
control gain due to the increased contribution of sensor noise. The optimum appears to be

where sensor noise and process noise have equal contribution around K; ~ 0.4. The absolute
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Figure 3.15: Left(a): Performance J, (RMS OPD) as a function of Kj; alone.
Right(b): Root Locus for ODL sample problem (parameter: Kjg).

stability limit is confirmed via root locus, see Figure 2.15(b). The isoperformance contours
provide engineering insight into the relationship between control gain K, as well as the process

and sensor noise intensities Syg and Sy, respectively.

3.4.3 SIM Classic (V1.0)

As an application of the bivariate isoperformance technique to a realistic spacecraft problem
the Space Interferometry Mission (SIM - Version 1.0) was chosen. This is the same model
used by Gutierrez in Reference [45] and in Chapter 5. The system considered consists of a
state space representation of reaction wheel noise (assumptions: single wheel, fundamental
harmonic only, only radial force F},), a mechanical RWA isolator and the open-loop SIM plant
dynamics. The goal is to find the combination of isolator corner frequency p; = f; in [Hz|
and static wheel imbalance py = Uj in units of [gem] that will yield a specified RMS OPD
performance J, = 0, ;4.

The Space Interferometry Mission (SIM) is a cornerstone of the ORIGINS program and
will rely on a fine-phasing capability in order to achieve 10 nm fringe-tracking on the science
interferometer (closed loop) in the astrometry mode. This requirement has to be achieved in
the presence of dynamic disturbances, such as reaction wheel noise. A picture of SIM Classic
is shown in Figure 3.16(a), along with a ray-trace/FEM of SIM in Figure 3.16(b). A block

diagram of the state space model for this isoperformance analysis is shown in Figure 3.17.
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SIM Optical Model Ray Trace

Figure 3.16: Left: (a) Artistic rendering of SIM Classic (V1.0). Right: (b) Corre-
sponding FEM with ray trace for interferometer #1 (version 1.0).

The three blocks contain the dynamics of (from left to right) the RWA noise, the isolator
transmissivity and the open loop plant dynamics. A realization of these dynamics (magnitude
only) is shown in Figure 3.18. Note that the plant dynamics up to 100 Hz have been taken

into account.

SIM - Wheel Imbalance versus Corner Frequency Isoperformance Study

>

W d a | X' = Ax+Bu W1 e = Ax+Bul "2 [x' = Ax+Bu Zz ]

y =Cx+Du y =Cx+Du y =Cx+Du
Band-Limited RwA Noise Isolator SIM Scope
White Noise (Open Loop)
rwa_time opd_time
RWA Noise Signal OPD Science Int.

Figure 3.17: SIM Classic (version 1.0) Simulink block diagram for bivariate isoper-
formance problem

In the block diagram the first block represents the magnitude of the radial force (F)
generated by a single reaction wheel due to a static imbalance Uy, which expresses itself as the
fundamental harmonic (h = 1.0) at the frequency of the wheel rotation [89, 45]. Note that the
radial force generated is related to the square of the wheel speed as Fy,(t) = Usw? - sin(wt + ¢)

according to Bialke [7]. Only the fundamental harmonic is taken into account and a state
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Figure 3.18: SIM Classic frequency response functions: (a) wheel disturbance, (b)
mechanical isolator and (¢) open-loop plant dynamics.

space representation of the wheel disturbance, in accordance with (A.11) is written as:

i 0 1 n 0
= + d
Ul —wy  —2(4wq Ui 1
~~ - N——
Ag _ By (3-41)

n
w1 = | 2wilUs 0 + [0] d

~~ n Dy
Cyq d

This representation approximates the fundamental harmonic of radial force as a lightly
damped second order system with (3 = 0.001 and a disturbance magnitude, which is pro-
portional to the second parameter po = Us. See the work by Uebelhart [136] for further
details on state-space modeling of discrete harmonic disturbances. The wheel static imbal-
ance is bounded below as U, 1,p = 0.01 [gcm] and above as Us g = 5 [gem]. These values are
reasonable within current state-of-the-art wheel manufacturing practices [7].

The second block represents the isolator transmissivity. It is approximated by a second

order low-pass-filter (LPF) and obeys the following state space representation:

3 0 1 3 0
= + w1
3 —w;  —2(wj 13 1
X ’ s (3.42)
£
=l o ||+ 0w
T f D;
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Note that for the isolator a damping ratio ¢; of 5 % was assumed. The first variable
parameter p; is equal to f; = w;/2m. The isolator corner frequency is bounded below as
fi,Lg = 0.5 [Hz] and above as f; yp = 20 [Hz].

The open-loop plant dynamics shown in the third block are kept constant throughout this

analysis. The next step consists in deciding at which wheel speed [RPM] to run the reaction

Cumulative RMS (OPD (total) science int.)

6000
OPD (total) science int.
45 ‘ ‘
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35¢
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Figure 3.19: Left:(a) PSD-based disturbance analysis for SIM Classic (1.0). (bot-
tom) PSD of OPD (total) int. # 1. (top) Cumulative RMS curve.
Right: (b) Bar chart of relative % contribution of the three most crit-
ical modes to the RMS.

wheel. It was decided to run the wheel at a speed, which corresponds to most critical mode of
the open loop plant, when driven by unit-intensity white noise. A PSD disturbance analysis,
as discussed in Appendix A, was conducted on the open loop SIM Classic plant (version 1.0)
and the result is shown in Figure 3.19(a). The bottom plot shows the output PSD (total
OPD int #1) and the upper plot shows the cumulative RMS curve. The disturbance analysis
assumes unit intensity white noise at the /, RWA input channel. From the cumulative RMS
curve one can extract the three most critical frequencies. This leads to plot 3.19(b).

Based on the relative percentage contribution of these modes it was decided to run the
reaction wheel at 738.9 RPM, which provides a worst case amplification of the 12.31 Hz
mode. The actual isoperformance analysis is entered with the wheel speed fixed at the above

speed. A required performance of J, ;g = 0,r¢¢ = 20 [nm] was specified®. The variable

SRecall that the SIM model (V1.0) is open-loop, thus we don’t expect the 10 nm phasing requirement to be
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system parameters are p; = f; the isolator corner frequency [Hz] and p, = Us, the static
wheel imbalance [gcm]. The isoperformance analysis was conducted using Algorithm II with

a tolerance of 7 = 1.0%. The resulting isoperformance contour is shown in Figure 3.20.

Isocontour for SIM Classic: OPD (total) science int.: o req=20 [nm]

—
=)

S

,_
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static wheel imbalance U [gcm]

—_
=)
o
i

5 0 15 20
isolator corner frequency fi [Hz]

Figure 3.20: SIM Classic (version 1.0): Isoperformance analysis for OPD (total)
interferometer # 1 fixed at 20 nm. Trading isolator corner frequency
fi vs. reaction wheel static imbalance Us.

It is interesting to interpret the isoperformance contour somewhat closer. Three important

insights can be gained:

e Asisolator corner frequency f; decreases we can tolerate larger values of wheel imbalance

Us below the critical 12.31 Hz mode.

e It is not advisable to choose the isolator corner frequency f; to coincide with the critical
system modes. The “dip” in the isoperformance contour results from dynamic amplifi-

cation of the isolator around the critical 12.31 Hz mode.

e The isoperformance contour is useful for subsystem requirements definition purposes. If

for example a 5 [Hz] corner frequency is specified for the isolator (achievable passively),

achievable in the absence of optical control.
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one will levy a wheel imbalance specification of Us < 0.4 [gcm] to the reaction wheel

supplier, see point B in Figure 3.20.7

The quality of the isoperformance solution in Figure 3.20 is within the specified 7 = 1.0 %
tolerance. Figure 3.21 shows the isoperformance quality plot, whereby the isoperformance

points (0, is0)k have been ordered in increasing value of the isolator corner frequency f;.

Quality of Isoperformance Solution for SIM Classic (1.0)
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Allowable Error: 1 [%]
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Figure 3.21: SIM Classic (version 1.0): Isoperformance quality plot for 7 = 1.0 %
and the isoperformance solution shown in Figure 3.20.

Upon closer inspection of this figure one notices the points at which the “control” al-
gorithm, which keeps the isoperformance solution close to the o, ,., centerline, has applied
correction steps according to equation (3.31).

The computational expense of the isoperformance solution was 6.185 - 10° floating point
operations, which required a total of 121.34 seconds of CPU-time®. In order to verify the re-
sults obtained from the isoperformance analysis a particular solution (Point A in Figure 3.20:

fi = 1.5571 [Hz] and Uy = 5.0 [gcm]) was chosen and a Simulink time simulation was con-

"This number is not unreasonable, since e.g. the current ITHACO E-Wheel TW-50E300 specification calls
for a static imbalance < 1.8 [gcm] and Bialke [7] mentions that a factor 2-5 improvement of this figure is feasible

with careful balancing.
8PC with Pentium III 500 MHz processor
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ducted. The results are shown in Figure 3.22.

Time simulation SIM Classic (1.0) fi versus U s
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Figure 3.22: SIM Classic (v1.0): Time simulation (240 seconds) for f; = 1.5571 [Hz]
and Ug = 5.0 [gem]. RMS value of z is 20.0157 [nm], which is = 0 ;¢q-

The top plot shows the sample realization of the radial reaction wheel force F, [N] (this
signal is denoted as “rwa_time” in the block diagram of Figure 3.17), whereas the bottom plot
shows the resulting OPD (total) for the science interferometer in [nm] (this signal is denoted
as “opd-time” in the block diagram of Figure 3.17). The RMS predicted for the OPD is
obtained by taking the standard deviation of the “opd_time” signal. The result is a value of
20.01 nm, which is very close to the requirement J, req = 0, ¢¢. This validates the accuracy
of the isoperformance analysis. Note that the RWA force sample realization is dominated
by the 12.3 Hz signal. There are, however, other frequency contributions, since the PSD of
the radial force was modeled as a “lightly damped 2nd order system” and not as a discrete
delta-Dirac function. This is why the sample realization “rwa_time” does not appear to be a

pure harmonic.
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3.5 Summary

This chapter attempts to find solutions to the bivariate isoperformance problem. In other
words, given a scalar performance function J,(p1,p2), we wanted to find contours of equal
performance J, = J, ;¢4 in the trade space, B. Three algorithms are developed for this purpose.
The exhaustive search algorithm attempts to find contours of equal performance by laying a
fine grid over the trade space B in R? and evaluating all grid points. It obtains an estimate of
the isoperformance contours via linear interpolation. The contour following algorithm begins
with an initial guess, p,, and intercepts an iso-contour via gradient search. Once a point, pjso,
on a contour is found, it is used as a starting point for a tangential stepping scheme along the
open or closed contour. The most efficient, but also the most restrictive algorithm, appears to
be vector spline approximation. Here an initial cubic spline approximation to the contour is
refined by doing successive bisections until a tolerance (exit criterion) is met. The algorithms
are applied to sample problem and their computational expense is compared. For a model of
SIM Classic the isolator corner frequency, f;, and the static wheel imbalance, Uy, are traded

against each other and engineering insights are gained from the results.
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Chapter 4

Multivariable Isoperformance

Methodology

This chapter generalizes the algorithms developed in the previous chapter to the mul-
tivariable case. Specifically, there can be more than two variable parameters and multiple
performances, i.e. n, > 2 and n, > 1. The condition that the number of variable parameters
always exceeds the number of performances, n, —n, > 1, has to be maintained in order for
there to be a non-zero isoperformance set, I. This condition is necessary but not sufficient.
In addition the rank of the Jacobian VJ, (containing the partial derivatives 0J, ;/0p;) must
be such that the largest dimension of V.J, minus its rank is greater than 1. In other words,
two parameters that affect the performance in the same way effectively correspond to one
parameter.

The generalization to the multivariable case is essential in order to render isoperformance
a useful technique for realistic problems. There are two main challenges in the multivariable

case:

e Computational complexity as a function of n,, (# of parameters), n,(# of performances)

and ng (# of states)

e Visualization of isoperformance set I in R"?-space

The extensions of the three core isoperformance algorithms (exhaustive search, gradient-
based contour following, progressive spline approximation) are developed in R"?-space. The

single degree-of-freedom (SDOF) problem is used for a quantitative comparison. The chap-
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ter then introduces some basic notions in complexity theory and their relationship with the
isoperformance algorithms. Issues of graphical representation of the isoperformance set, I, for
ny > 3 are discussed. Examples of multivariable isoperformance analyses for the sample prob-
lems introduced in Chapter 2 conclude the chapter. The MATLAB module, which embodies

the multivariable algorithms is designated as isoperf mvar.m.

4.1 Branch and Bound Search Algorithm

The exhaustive search algorithm (Ia) in the multivariable case (n, > 2) discretizes the param-
eters, p;, where j = 1,2,...,n,, in set B, defined by the lower and upper bounds p;p ; and
puB,j, With a fine grid and evaluates all grid points. This was presented for the case when
n, = 2 in Subsection 3.2.1. Subsequently, each grid point is tested, and if the isoperformance
condition (1.6) is met, the grid point is retained in the isoperformance set I. The exhaustive
search algorithm for the multivariable problem can be implemented as n,-nested loops as

follows:

for i1 =1:m

for ip, =1:ny,

evaluate performance: (Jz)h,...,inp =J, (pl,il, . ,pnp,inp>
end
end
where
bj,uB — Pj,LB
n;, = | =2—-—2" 4.1
e (1)

is the number of grid points along the j-th parameter axis.

The code recognizes the number of variable parameters, n,, and automatically writes and
executes the above nested loops if exhaustive search is chosen. Note that the value of the j-th

parameter in the above loops is given as

Dj,i; = Pj,LB =+ (ij — 1) . Apj where j = 1, 2, ceey Ny (4.2)
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Clearly, this is not practical even for relatively modest problems. Assume for example
that n, = 6 and that n; =ny = ... = n,, = 50, then the performance evaluation p; — J, has
to be carried out 50° = 1.56 - 100 times. If it took one second of CPU time per performance
evaluation it would take 495.5 years to evaluate the entire trade space, B, on a single computer.

A remedy is found by modifying exhaustive search as a branch-and-bound algorithm. The
branch-and-bound algorithm starts with an initial population of points (branches), which are
evenly distributed in B. It then tests if the performance at neighboring points (branches), py,

and p,,, is such that the isoperformance surface passes in between them. This test is

[Jz (pm) > Jz,req > J, (pn)] U [Jz (pm) < Jz,req <J, (pn)] (4'3)

where pp,,p, are n, x 1 vectors and J; ;¢4 is @ n, X 1 vector. If the answer is true, both
branches are retained and further refined in the next generation. If the answer is false the
point (branch) p,, is eliminated. This is graphically shown in Figure 4.1 for two dimensions.

In the multivariable case the squares shown in Figure 4.1 are actually hyper-rectangles. The

Pm Pn .
\ / generation n
\ / e Doints
° \ ) (branches) .
generation n+1
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Figure 4.1: Multivariable Isoperformance (Ib): Branch-and-Bound graphic repre-
sentation. Crossed out points are dropped in the next generation.

size of the hyper-rectangles is reduced by a factor of two (edge length) with each generation.

This refinement continues with each generation, until the exit criterion

Tiso,ng <T (4.4)
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is met, where Y, is the isoperformance error according to Equation (3.40), ng is the genera-
tion number or level in the branch-and-bound tree and 7 is a numerical tolerance as introduced
in Section 3.3.

A flow diagram of the branch-and-bound algorithm is shown in Figure 4.2. An initial
population of points is defined in terms of a coarse discretization n; = [W], where
n; is empirically chosen as a number in the range 5-20. Next the performance, J,, at these
initial points is computed and subjected to the test in Equation (4.3). The branches (points),
which do not pass the test are bounded and the algorithm enters an iterative loop. With
each subsequent generation, ng4, the remaining points better approximate the isoperformance
surface in R"» space. The branches are tested with the quality criterion (4.4), and once the

exit criterion is met the remaining branches are considered to be the solutions, p;s,, of the

isoperformance problem (1.3).

User Input
Performance: J, req
Tolerance: T
Bounds: p;p P,
iscretization Ap
initial population

v

Bound, compute
quality Yiso of
retained branches

Test acc.
to (4.3)

. Evaluate Create branches
Initial Branches in generation n
= g
L~ F@)
Sort
non-empty | Eliminate Solutions
——» Branches which Py,
do not meet (4.3)

test initial

End
branches empty

Figure 4.2: Multivariable Isoperformance (Ib): Flow Diagram for Branch-and-
Bound Algorithm.

To demonstrate this algorithm the single DOF oscillator problem from Subsection 3.3.2 is
augmented by adding a third variable parameter, w,. The variable parameters are now the
disturbance corner frequency, wgy, the mass, m, and the optical control corner frequency, w,.

The performance requirement is that the RMS of z be equal to J, = 0.0008 [m], corresponding
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to 1 [mm] of filtered RMS motion with 20% performance margin, as before. The lower and
upper bounds for the parameters are given in Figure 2.1. The results using the (multivariable)
branch-and-bound algorithm are graphically shown in Figure 4.3 and the isoperformance set,
Piso € I, in this instance is a 2-dimensional surface in 3-dimensional space. The quality of this

solution is computed with Equation (3.40) and shown in Figure 4.4.

Multivariable Isoperformance (Ib): Branch-and-Bound

Parameter 3: control corner frequency wo [rad/sec]

Figure 4.3: Multivariable Isoperformance (Ib): Branch-and-Bound results for SDOF
problem with three variable parameters: wg, m and w, and required
performance J, .y = 0.8 [mm].

From the results one can see that for a large disturbance corner frequency, wq, a high control
bandwidth, w,, and large mass, m, are required to meet the requirement, J, ,¢4. Also it is
noteworthy that if wy is low, the isoperformance surface is not very dependent on the mass m,
but strongly dependent on the control bandwidth w,. The branch-and-bound algorithm finds
a large number of isopoints p;s, (> 7000) and approximates the continuous isoperformance
surface quite well. The quality metric, T;s,, remains under the numerical tolerance, 7 = 2.5%.

It was noted that setting a tolerance tighter than 2% becomes very expensive, since in
the branch and bound approach each generation is roughly 2™ times larger than the previous
generation. An advantage of the branch-and-bound algorithm, however, is that it does not

require any sensitivity (gradient) information.
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-4 Quality of Isoperformance Solution Plot
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Figure 4.4: Multivariable Isoperformance (Ib): Quality of solution for SDOF ex-
ample. Each one of the ~ 7000 points corresponds to a point on the
performance-invariant surface in Figure 4.3.

4.2 Tangential Front Following Algorithm

The tangential front following algorithm is a generalization of the gradient-based contour
following algorithm, which was developed for the case when n, —n, = 1, see Subsection 3.2.2.
The idea is to gradually explore the isoperformance set I, starting from a random initial
point, ppem, and subsequently stepping in tangential, orthogonal directions, v;, where j =
n, +1,...,n,, which lie in the null space of the Jacobian. Thus, instead of following a single
curved line, the locus of performance invariant points, p;s,, will be an (n, — n,)-dimensional
surface in R"-space as was shown in Figure 4.3.

A first order Taylor approximation of the vector performance function J, at a point p* =

[Plf pl2c . -p’,ﬁp]T € B can be written as:
Jo (P1) = 2 (pF + Ap) = . (§*) + VIT| . Ap+ HOT. (4.5)

The Jacobian, V.J,, is the matrix of first order partial derivatives of J, with respect to p and
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is written as follows:

8Jz,1 8Jz,2 8JZ,nz
dp1 Op op1
8Jz,1 8Jz,2 8JZ,nz
VJ, = Jp2 Op2 dp2
8Jz,1 8Jz,2 8JZ,nz
L 8pnp 8pnp 8p”p .

(4.6)

A singular value decomposition (SVD) of the Jacobian is a key step. It provides a set

of orthogonal unit-length vectors, v;, as the columns of matrix, V', thus forming the column

space and null space of the Jacobian. See Reference [132] by Strang for a good introduction

to vector spaces and the SVD.
uvxvl =vJjt

The individual matrices are structured as follows:

U=l ]
Y= [ dlag( o1 On, ) =X (np—nz) ]
nz‘xrnp
V= U1 Un, Un,+1 °°° Un,
colum;lrspa.ce nullgace

(4.7)

Thus, at each point there are m, — n, directions in the null space. This can be illustrated

with the following matrices from the SDOF example from Section 2.1, evaluated at ppom =

[wg m k ¢ wo|T =[19.92 , 1.45 , 1450 , 0.725 , 455.4]7 .

U =1]
Y=1056-102 0 0 0 0

0.0511  —0.9987 0 0

(. ~

0

—-0.1361 —0.0070 —0.0004 —0.9907 —0.0031
V=1 —0.0004 —0.0000 1.0000 —0.0003 —0.0000
—0.9894 —0.0506 —0.0003 0.1363 —0.0027
—0.0031 —0.0002 —0.0000 -—0.0027 1.0000

J

vV vV
Vn Vi
column space null space

121

(4.9)



Since there is only one performance metric, J,=RMS of z(t), there will only be one non-zero
singular value, oy = 0.56 - 10~3. The corresponding vector V;, is normal to the isoperformance
surface and the vectors in V; are tangential to it and form the nullspace of the Jacobian. A
linear combination of the vectors, V4, in the nullspace is used to determine a tangential step,

Ap, in a performance invariant direction starting from an initial point such as pnpom.-

Ap=ca- (Bivp, .y + .-+ Bny-n.Vn,) = aViB (4.10)

where Ap is the performance invariant step increment in R, 8 = [By,...,,,]" is a vector
of coefficients, which determines the linear combination of directions in the nullspace, V;, and
« is a step size. Recall that in the bivariate case the step size, «, was found using a finite
difference approximation of the Hessian, see Equation (3.28). Currently, in the multivariable
case, the step size, «, is arbitrarily set by the designer. An automatic step size determination
could be added as a refinement in the future. The coefficient vector, 3, is determined as

follows

Bi =+£1,8; =0for j #1 (principal front points)

B = 1 | | | | (4.11)
fi=t—=V i=1,...,n, —n, (intermediate front points)
np — N

The principal front points, as shown in Figure 4.5, propagate in one of the positive or
negative directions given by the principal vectors, v;, in the null space. The intermediate
front points on the other hand propagate in directions which have equal contributions from
all vectors in v;. The =+ sign for each f; determines in which “quadrant” the front point
propagates.

The active points form a “front”, when connected to each other. The front grows gradually
outwards from the initial point until the boundary is intercepted. This is analogous to “moss”,
which grows from an initial seed to gradually cover the entire exposed surface of an imaginary
R"r -dimensional rock. This is shown graphically in Figure 4.5.

The main advantage of this algorithm, is that it converts the computational complexity
from a n, to a (n, — n,)-dimensional problem. This is further explored in Section 4.5. The
disadvantage of the algorithm is that a non-uniform distribution of isoperformance points can
result from the behavior of the Jacobian in different regions of the set B or at the boundary
of B. Additionally if there are several separate regions of I in B, they can only be found via

separate, random initial guesses. Nevertheless, tangential front following is a very reliable

122



Tangential Front Following Principle
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Figure 4.5: Multivariable Isoperformance (II): Tangential Front Following principle.
Note the difference between principal and intermediate front points.
Axes pi1,p2 and p3 are values of some generic parameters.

algorithm, which can also detect closed regions. Note that the performance vector, J,, and
Jacobian, VJ,, have to be recomputed at each front point. The underlying performance
function, J, (p;), has to be continuous and differentiable over the entire set B. A flow diagram
of the multivariable tangential front following algorithm is shown in Figure 4.6.

The results for the SDOF problem obtained with the tangential front following Algorithm
are shown in Figure 4.7. The same three variable (design) parameters, wgy, m and w, as before
are considered. By comparing Figures 4.3 and 4.7 one can ascertain that both algorithms
produce the same isoperformance surface, apart from slight numerical and algorithmic dif-
ferences. Tangential front following features characteristic “bands” of isoperformance points,
Diso» Which are the result of the front points propagating along the principal directions, v;, of

the null space. The density of points is mainly a function of the user-defined step size, a.
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Figure 4.6: Tangential Front Following (II) Flow Diagram.

The quality of this solution is computed with Equation (3.40) and is shown in Figure 4.8.
The ratio of the normalized error over the tolerance, Y;s,/7, is smaller for this algorithm than
for branch-and-bound. This suggests that tangential front following delivers a numerically
superior solution due to incorporation of gradient (sensitivity) information. Also the same
“control” mechanism was implemented as in the bivariate case, where a normal correction
increment is applied whenever a front point drifts outside the tolerance band defined by 7.
This does not exclude outlier solutions such as the pair seen in Figure 4.8 around solution
number 2800.

Even though the tangential front following algorithm is more efficient than branch-and-
bound, it will still be computationally expensive if the dimensionality of the isoperformance
set I, i.e. n, —n,, is large. An estimate of the computational expense of each algorithm is
given in Section 4.5. Hence, it is desirable to find an algorithm with a further increase in

efficiency.
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Multivariable Isoperformance (II): Tangential Front Following

Parameter 3: control corner wc [rad/sec]

Figure 4.7: Multivariable Isoperformance (II): Tangential Front Following results
for SDOF problem with three variable parameters: wq, m and w,.
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Figure 4.8: Multivariable Isoperformance (II): Quality of solution
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4.3 Vector Spline Approximation

An efficient algorithm is constructed by generalizing the bivariate progressive spline approxi-
mation from Subsection 3.2.3. The basic idea of vector spline approximation is to only capture
important border and interior points of the isoperformance set, I, including the cubic splines,
which connect them. A #-parameterized vector spline in R™ -dimensional space connecting

two points A and B can be written as

_ _ (t - tA)k 2 T
pi(t) P T TR
ko(t—ta)"
p; (t) > Tl G .
p(t) = =] =1 : =C-t (4.12)
k (t— tA)
L DPny (t) ] Z: ﬁ " Cnpyi
where C is the vector spline coefficient matrix
Ciu " Clg ot Clk
C — Cj,l [N cj,i S Cj,k) (413)
i Cnp,l - C’I’Lp,i - Cnp,k |

and £ is a vector, which depends on the parameter ¢
k—i k-1 1T
f:[l U et ZV &] (4.14)
(k—1)! (k —1)!
whereby ¢ € [ta,tp] if the spline connects the points A and B in R"?-space. The vector spline

approximation algorithm presented here uses cubic splines of order, ¥ = 4. One can then

write:

t(t) = [ 1 t—ty (t_;A)Z (t_GtA)3 ]T (4.15)
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and the cubic spline coefficient matrix, C, simplifies to

c1,1 €12 €13 Ci14

G G2 C3 Cja (4.16)

| Cnpl Cnp2 Cnp3 Cnpa |

The first step of the vector spline approximation algorithm is to find the border points,
Diso,borders Which meet the isoperformance condition (1.6) and lie on an edge of the parameter
bounding box B. These points are found by first computing the performance vector, J,, at all
2"» corner points and searching for boundary points, p;so porder, which lie on an edge connecting

two corner points, which meet the condition

J, (pcorner,i) < Jz,req < J, (pcorner,j) UdJ, (pcorner,i) > Jz,req > J, (pcorner,j) (417)

This is the first step in the vector spline approximation algorithm as shown on the left side of
Figure 4.9. The second step is to connect the isoperformance border points with cubic splines
along the boundary of B. This is shown in the middle of Figure 4.9 and utilizes the progressive
spline approximation method presented in Subsection 3.2.3. In this step the mid-points of
the border splines are also determined. Finally interior points of the isoperformance set I are
obtained by computing the centroid. This can be considered to be the center point of I. An
initial guess for the centroid is:
T
Peent = [ Pet v Beg ot Bem, ]
1 e (4.18)
where  pcj = - ;piso,border,i,j
and ny is the number of border points. The actual centroid, peent, is found by steepest gradient
search, see Subsection 3.2.2. Finally the cubic splines connecting the centroid and the mid-
points of the border splines are found, subject to tolerance, 7. This third step is depicted in
Figure 4.9 on the right side. The functions csape.m and fnval.m from the MATLAB spline
toolbox are used extensively for computing the coefficient matrix, C, and for spline evaluation,
respectively. Figure 4.9 shows the elements of this approach for an imaginary isoperformance
surface. The vector spline approximation algorithm is summarized in the flow diagram of

Figure 4.10.
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Multivariable Isoperformance: Vector Spline Approximation
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Figure 4.10: Multivariable Isoperformance (III): Flow Diagram
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The vector spline approximation algorithm does not provide the same large number of
isoperformance points, p;s,, and “continuous” approximation to I as branch-and-bound or
tangential front following. Rather, it only computes some key points and their connecting
splines. If the isoperformance set I were an imaginary “house” this algorithm provides the
frame, but not the panels in between. This might be acceptable, since one of the goals of the
isoperformance methodology is to find solutions which are very “different” in a design vector
sense, while still yielding the same performance vector, J,. Also it is true that, for the front
following algorithm, with a small tangential step size «, neighboring points, p;s,, will not be
dramatically different from each other. An early idea was to use Product Tensor Splines [22].
This was ultimately abandoned, since product tensor splines require gridded data.

The same three parameters, wy, m and w, are considered for the SDOF problem. The
desired performance is J, y¢q = 0.8 [mm] RMS. Results for the single DOF oscillator problem

using vector spline approximation are shown in Figure 4.11.
Multivariable Isoperformance (III): Vector Spline Approximation

R Jz’rquO..S [mm]

centroid

Parameter 3: control corner wc [rad/sec]

Figure 4.11: Multivariable Isoperformance (III): Vector Spline Approximation for
SDOF Problem and performance level J, ;¢ = 0.8 [mm)].

There are a total of five border points, which are connected via cubic splines along the
perimeter of B. The centroid connects to the mid-points of the border spline approximations.

This looks similar to Figures 4.3 and 4.7, since the outline of the isoperformance surface can
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clearly be seen.

The solution quality is plotted in Figure 4.12 for the isoperformance points. Note that
additional information is obtained in the form of a spline coefficient matrix, C, for each
segment. It is expected that this algorithm will be the “workhorse” of the isoperformance

methodology for large order problems.
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Figure 4.12: Multivariable Isoperformance (III): Quality of solution

4.4 Algorithm Comparison

A comparison of the multivariable algorithms using the single degree-of-freedom (SDOF)
problem is presented in Table 4.1. The algorithms are compared based on the CPU run time,
the number of floating-point operations required, the solution quality expressed as Y;s,, see
Equation (3.40), and the number (quantity) of isoperformance points, p;s,, found.

Even though the above numbers are obtained for a specific low-order example, the relative
trends between algorithms are likely to apply to large-order problems as well. As expected
the exhaustive search is the most expensive algorithm and requires almost 1.5 hours to run.
The vector spline approximation on the other hand completes in merely 5 seconds.

Branch-and-bound improves over exhaustive search by a factor of roughly 10 and tangen-
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Table 4.1: Comparison of multivariable algorithms for SDOF problem: (Ia) Exhaus-
tive Search, (Ib) Branch-and-Bound, (IT) Tangential Front Following and
(ITI) Vector Spline Approximation.

Metric Algorithm Ta  Algorithm Ib  Algorithm IT  Algorithm III
MFLOPS 6,163.72 891.35 106.04 1.49

CPU time [sec] 5078.19 498.56 69.59 4.45
Tolerance T 1.5 % 2.5 % 1.5 % 1.5%

Actual Error Y;s, 0.87 % 2.43 % 0.22 % 0.42 %

# of isopoints 2073 7421 4999 20

Results N/A Fig. 4.3 Fig. 4.7 Fig. 4.11

tial front following in turn improves over branch-and-bound by a factor of roughly 7. The
tangential front following algorithm results in the best numerical solution quality as mea-
sured by, T;s,. Branch-and-bound provides the largest number of isopoints (~ 7500), whereas
vector spline approximation yields “only” 20 such points. Recall, however, that the spline
approximation also provides the spline coefficient matrices, such that additional points could
be easily generated along the connecting splines. These results suggest that vector spline
approximation is the most advantageous algorithm, provided the “sparseness” of the results
is acceptable.

Vector spline approximation is the most restrictive algorithm in the sense that it requires
the underlying performance vector function, p; — J.(p;), where p; = 1,...,n,, to be continu-
ous, smooth, differentiable and quasi-monotonic in B. Thus, if I were a closed region with no
boundary points on B, the vector spline approximation would fail. Tangential front following
does not require quasi-monotony and can deal with closed regions. Here the problem is that if
I cousists of several, distinct regions in B the algorithm requires several random initial guesses,
Po, in order to find all regions. There is no guarantee of completeness with a finite number
of trial points. Distinct regions are rarely observed in practice. Finally branch-and-bound is
the most general algorithm and is very robust, as long as the initial grid is chosen reasonably

fine. Another advantage of branch-and-bound is that it does not require gradient (sensitivity)
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information. The general strategy is to first attempt an isoperformance solution with vector
spline approximation and move to the other, more expensive algorithms if a solution in B is
expected to exist but cannot be found. This algorithm switching strategy was suggested in

the thesis roadmap, see Figure 1.6.

4.5 Complexity Theory

The previous section revealed that there are large differences in the computational expense of
an isoperformance problem as a function of the selected algorithm. This has implications for
the approach to large order problems. Hence, some basic notions of complexity theory and how
it relates to isoperformance will be introduced in this section. Complexity theory, according
to Goldreich, is concerned with the study of the intrinsic complexity of computational tasks
and the relationship with limited resources [37]. One of the aims of complexity theory is
to establish concrete lower bounds on the complexity of various kinds of problems, via an
analysis of the evolution of the process of computation. This section will attempt to quantify
the complexity of the isoperformance problem. This is done by looking at the asymptotic
growth of the number of floating point operations required as a function of the number of
performances, n,, the number of disturbances, ng, the number of parameters, n,, and the
number of states, ng.

The different types of problems in complexity theory are: the search problem, i.e., finding a
feasible solution, the decision problem, i.e., determining whether a feasible solution exists, and
the verification problem, i.e. deciding whether a given solution is correct. The isoperformance
problem is essentially a search problem, where one attempts to find solutions p; to the problem

J: (pj) - Jz,req =0, where j =1,2,... y Mp-

4.5.1 Exhaustive Search

The exhaustive search approach requires the following number of performance function J, (p;)

evaluations:

ln—[ ’VpUB,] pLB,]-| (4.19)

where N..s is the number of performance function evaluations, n, is the number of variable
parameters, prp ; and pyp, j are the lower and upper bounds of the j-th parameter and Ap;

is the discretization step size of the j-th parameter. If all parameters are discretized with an
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equal number of steps, Equation (4.19) simplifies to:
PUB — PLBL"?
Ne:z;s = [Tp—|
N— —
0

(4.20)

As an approximation we can assume that the main computational cost for computing J, comes
from solving the Lyapunov equation (A.25) for the state covariance ¥,. Chapter 5 empirically
derives that this cost is roughly 50 - n3 floating point operations. Thus the expected number

of floating point operations (FLOPS) for exhaustive search is
Jews = 0™ - 50n3 (4.21)

Looking at the asymptotic growth of the algorithm can be accomplished by taking the log of
(4.21) such that
log (Jexs) = nylog(d) + 3log(ns) + const. (4.22)

Thus, exhaustive search is solvable in polynomial time as a function of ng (“size of the model”),

but it is non-polynomial (NP) in n, (“number of variable parameters”).

4.5.2 Branch-and-Bound

The complexity of branch-and-bound, as developed in Section 4.1, is more difficult to assess
than exhaustive search, since the number of branches kept at each generation is problem
dependent. One could, however, assume that the ratio, 3, of kept to discarded branches is
roughly constant at each generation. If the the initial generation has n; branches, then the
second generation will have 27 - ny - 8 branches after bounding, the third will have 22" n /32
branches and so forth. The computational cost for branch-and-bound is then approximated
as

Jpab = 2™ - ny - B9 - 50n) (4.23)
Again, taking the logarithm (base 10) provides insight into the asymptotic behavior.
log (Joap) = ng (nplog2 +logB) + 3log(ng) + const. (4.24)

Note that the number of generations, ng, is difficult to predict apriori but is strongly dependent
on the isoperformance tolerance, 7. The smaller the tolerance, 7, the more generations will
be required to meet the exit criterion (4.4). A small value for 7, say smaller than 1%, can
actually render the branch-and-bound algorithm more expensive than exhaustive search, since

each generation is roughly 2" times more expensive than the previous one.
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4.5.3 Tangential Front Following

The tangential front following computational cost can be estimated by considering that at
each point we must compute the performance, J,, and the Jacobian, VJ,. This requires
(14 n,) Lyapunov equations each costing 50n3 floating point operations. The number of
performances, n,, appears in this expression, since a separate Lagrange multiplier matrix, L;,
must be solved for each performance metric according to (A.31). The number of directions
in the nullspace is n, — n,. The distance before reaching the parameter boundary B from
a starting point such as, pnpom, can be approximated as some constant, v, which depends on
the parameter bounds, prp, prp and the step size, . The cost of tangential front following
is thus approximated as

Jipp =" (14 n,) - 500 (4.25)

The logarithmic cost is

log (Jiff) = (np — nz) logy + log(1 +n,) + 3log(ns) + const. (4.26)

4.5.4 Vector Spline Approximation

The first step in the vector spline approximation algorithm is to compute the performance
at all 2" corner points, see Section 4.3. These boundary points have to be connected with
vector splines at an additional cost. An approximate expression for the cost of vector spline

approximation, using constants where appropriate, is

Jpsa = 2 - 5003 4 (1 + n;) - 50n° (4.27)

The logarithmic cost is
log (Jysa) = nplog2 + log(1l + n,) + 3log(ns) + const. (4.28)

From Equations (4.22), (4.24), (4.26) and (4.28) one can see that the isoperformance
problem is intrinsically non-polynomial (NP) in n,. There are, however, some noticeable
differences between algorithms. The benefit of tangential front following is that it reduces
the logarithmic asymptote from n, to n, —n,. This means that solving a problem with 105
parameters and 101 performance metrics has the “same” theoretical cost as solving a problem
with 5 parameters and a single performance. The actual number of floating point operations

(FLOPS) required is problem dependent. There is no doubt that isoperformance problems
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with more than ~ 10 parameters are still quite expensive to solve. This is true despite the
contributions of Chapter 5, which deals mainly with large ng, i.e. a large number of states in

the model.

4.6 Graphical Representation of Results

The second challenge in the multivariable case is the graphical portrayal of isoperformance
results. This is an important issue, since one use of isoperformance “charts” is as a tradeoff
and negotiating tool. Graphs showing trades between “key” design parameters help to decide
design questions involving multiple design parameters, possibly “owned” by different subsys-
tem teams. The two fundamental ways of showing isoperformance results in this thesis are

contour plots and radar plots.

4.6.1 Contour Plots

Contour plots are the most common way of showing isoperformance results. These plots
can be constructed whenever n, < 3. Possible scenarios are one-dimensional contours in
2-dimensional space, see Figure 3.10, one-dimensional contours in 3-dimensional space, or
2-dimensional contours in 3-dimensional space, see Figure 4.11. A potential technique for
showing multivariable relationships is nomography, as discussed in Reference [5]. In nomog-
raphy, contour charts in multiple dimensions can be constructed by using auxiliary variables,

thus linking 2-dimensional charts together.

4.6.2 Radar Plots

Once there are more than 5-6 variable parameters, p;, where j = 1,2,...,n,, even nomograms
become impractical and it is no longer feasible to effectively graphically represent all vector
solutions, p;sy, which are members of the isoperformance set. An alternative is to select a
subset of “interesting” solutions for display to the designer. An interesting subset could be
a set of vectors, p;so, which are most different from each other. “Different” in a vector sense
is related to the notion of orthogonality. This leads naturally to the concept of a cross-

orthogonality matrix'. The cross-orthogonality matrix (COM) is defined as:

!This is similar to the matrix used for the modal assurance criterion (MAC) in structural dynamics
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COM(Z,]) o ﬁiso,i 'ﬁiso,j

= = ~ 4.29
|piso,i| . |piso,j ( )

Note that the vectors p;s,; and p;so; have been normalized to their upper bound, pyp.
A pair of performance invariant solutions 4,j which has a low COM value, possibly close to
zero, represents a pair of nearly orthogonal design vectors. Note that the COM ; ; values will
always be between 0 and 1. The COM matrix for the single DOF problem solution using

vector spline approximation (Section 4.3) is shown graphically in Figure 4.13.

Cross Orthogonality Value

Figure 4.13: Cross-orthogonality matrix (COM) for solution to SDOF problem with
Algorithm IIT (Tangential Front Following).

From the COM an arbitrary number of combinations, p;s,, corresponding to low cross-
orthogonality can be extracted. In the above example the minimum COM value is 0.4325 and
is found for ¢ = 3 and j = 11. The two vectors, pis3 and pjso 11, are both members of the

isoperformance set. The corresponding values of the design parameters are:

6.2832 21.3705 wq[rad/sec]
Piso3 = | 50000 | and piso11 = | 0.5000 mlkg] (4.30)
186.5751 628.3185 | w,[rad/sec]
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These two solutions are marked as “A” (pjs0,3) and “B” (pjso,11) in the isoperformance chart
on Figure 4.11. As can be seen, both are on the boundary of the trade space B. This is not
always the case. In Figure 3.14(b) the design solutions which are most different from each other
include the design point in the interior of B with Sy, = 1078 [m/v/Hz] and K4 = 0.4 [V/V].
The two solutions “A” and “B” are interesting, since the first one , pjs, 3, achieves the required
RMS performance mainly passively, by specifying a low disturbance environment (small wy),
large mass m and low optical control bandwidth w,. The second solution, however, could be
termed the “active” solution since it features a larger disturbance input, is light-weight and
relies mainly on a large optical control bandwidth, w,. Both solutions nominally produce the
same RMS performance of 0.008 [m]. In order to distinguish between these options further
additional objective functions have to be introduced. This is the subject of Section 4.7.

The two solutions above can be graphically shown in a so called radar plot, see Figure 4.14.

The radial spokes on the radar plot correspond to the 5 = 1,2,...,n, variable parameters of

Radar Plot for Isoperformance Points
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Figure 4.14: Radar plot for SDOF problem solutions

the problem. Each axis has been normalized by the upper and lower bounds pyp and prp
respectively, such that a parameter value at the upper bound always corresponds to a value of
1, and a lower bound value always corresponds to a value of 0.1 on the radar plot. The vector
entries for a solution are then connected to form a polygon. Thus, multiple n,-dimensional

vectors can be shown in the same graph and differences between them become apparent to
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the designer. The display of more than 10 or so design vectors at the same time renders the
radar plot cluttered and somewhat less effective. The next section applies the multivariable
theory and plotting techniques to multivariable isoperformance cases, which are based on the

sample problems introduced in Chapter 2.

4.7 Examples

This section develops and discusses results from exercising the multivariable isoperformance
methodology on the following sample problems: SDOF, 2DOF and ODL. Aside from comput-
ing the performance invariant set, I, the topic of multiobjective optimization is introduced.

This is essentially the process of obtaining a pareto set, pj,, from p;s,.

4.7.1 Single DOF oscillator

The SDOF oscillator problem was first introduced in Section 2.1. A graphical representation
of the oscillator and a block diagram are shown in Figures 2.1 and 2.2, respectively. The five
variable parameters are the disturbance corner frequency wq [rad/sec], the mass m [kg], the
linear stiffness & [N/m)], the linear damper (dashpot) with coefficient ¢ [Ns/m] and the optical
control corner frequency w, [rad/sec]. The performance requirement was set to J, ,¢q = 0.8
[mm]|, which includes a 20% margin. In Section 2.1 a disturbance, sensitivity and uncertainty
analysis was carried out for an initial design, p,, and an improved, nominal design, ppom-
Bivariate isoperformance trades for the SDOF problem were carried out in Section 3.4.1,
trading [wq,w,] and [k, c]. In this chapter the SDOF problem was used to demonstrate the
multivariable isoperformance algorithms using the parameter combination [wg, m,w¢].

The final step is to include all five parameters in a multivariable isoperformance analysis
simultaneously?. This has been done with the parameter bounds given in the Table of Fig-
ure 2.1 and the vector spline approximation algorithm presented in Section 4.3. The results
are shown in Figures 4.15 and 4.16.

Figure 4.15(a) shows the 32 corner points, which are first computed for the SDOF problem
with all five parameters, whereas Figure 4.15(b) shows the gradient search for the border

Points, Pjso porders Projected onto the plane of the first two parameters.

2For realistic opto-mechanical systems there can be hundreds of design parameters, such that a relevant

subset has to be selected.
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Figure 4.15: (a) Representation of the 32 corners (2°) of the trade space B for
the SDOF problem. (b) Border point search (piso porder) for boundary
points of SDOF isoperformance set.

The isoperformance set, I, computed for the SDOF problem with five parameters (Algo-
rithm III: Vector Spline Approximation) is shown in Figure 4.16(a). Note that the performance
invariant points, p;so, are 5 X 1 vectors and have been projected to three dimensions. The
quality of the solution, according to metric, Yo, is 0.2069% and is shown in Figure 4.16(b).
The computation with function isoperf mvar.m yields 414 isoperformance points, required
29.2 - 105 floating point operations and took 241.78 seconds of CPU time (Pentium III, 650
MHz processor).

Figure 4.16(a) shows that isoperformance solutions appear to exist over a large portion of
trade space B, at least for the displayed parameters p;, 7 = 1,2,3. Otherwise, it is difficult to
gain any insights from the plot, since trends between parameters are not easily detected. Thus,
a small subset of the 414 isoperformance solutions will subsequently be extracted from set I.
One way to do this was presented earlier, using cross-orthogonality as defined in Equation 4.29.
Another way is to introduce additional objective criteria (multiobjective optimization).

The use of a scalar or vector cost function, J., and risk function, J,, was suggested in the
thesis roadmap, see Figure 1.6. We will consider “closeness to mid-range” as a measure of
implementation cost of the system. The underlying notion is that for each variable parameter
there is a “cheap” bound and an ”expensive” bound. For example for a parameter such as

static wheel imbalance, Uy, as introduced in Subsection 3.4.3, the upper bound, pyp, is the
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Figure 4.16: (a) Vector Spline Approximation of SDOF isoperformance set, I, pro-
jected to the first three parameters,[wq, m, k]. (b) Quality of solution
plot for SDOF isoperformance set.

cheap bound and prp is the expensive bound. According to Bialke more and more expense is
incurred as one tries to improve the balancing of typical ball bearing reaction wheels [7]. For
other parameters such as detector quantum efficiency, QF, (see Chapter 7), the upper bound
will be the expensive one.

The reasoning is then that a design that meets the performance requirements, J, req,
while holding each design parameter close to its mid-range (on average), can be implemented
at reasonable cost, since the “burden” is evenly distributed in the system. Mathematically,

such a cost metric can be expressed as:

Tip . L . 2
Jc,i _ Z |:(pzso)],@ bLB,j 05 (4.31)
j=1 L PUB,j —PLB

where J.; is the “implementation cost” of the i-th isoperformance solution, pjs ;.
The risk metric, J,, used here is the “performance robustness to parametric uncertainty”
introduced in Equation (2.7) and repeated here for convenience.

100 100 &
Jri = . AJ;} (piso,i) i

bl
Jz,req

01,
dp;

- (vjpj)

Jz,req j=1 Diso,i
This metric corresponds to the “first order” approach to uncertainty analysis as discussed
by Gutierrez [45]. In effect it represents the expected +£% uncertainty around the predicted

performance level, J,(p;),7 = 1,2,...,nyp, given the sensitivities, 0J,/0p; and assumed +%
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uncertainties in the values of each parameter, p;. The assumed uncertainties, v;, for the
SDOF problem are given in Figure 2.1. The mass, m, is the least uncertain (+1%), while the
damping, ¢, and disturbance corner frequency, wg, are most uncertain (£10%).
A metric, J.., which combines cost and risk can be constructed as suggested in Equa-
tion (4.32).
Jer = 0} Qeede + (1= 1) L Qpp . (4.32)

where Q.. = 1/maz(J.)? and Q,, = 1/maz(J,)? are normalization factors and 7 is a weighting
factor between cost and risk. Thus, by sliding i from 0 to 1 the combined metric, J.,, goes
from weighting exclusively risk to weighting exclusively cost.

For the 414 SDOF isoperformance solutions shown in Figure 4.16 we evaluate the cost
function J. at n=0, 0.5 and 1.0. The three designs which minimize, J.. at these values of
7 are shown in the radar plot of Figure 4.17(a). The corresponding power spectral densities
(PSD) and cumulative RMS plots are contained in Figure 4.17(b), thus confirming that all

three solutions are performance-invariant.
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Figure 4.17: (a) Radar plot for SDOF problem pareto optimal designs. (b) PSD
and cumulative RMS plot for SDOF pareto optimal designs.

At this point we want to critically analyze the difference between the three pareto optimal
SDOF designs. The lowest cost design (7 = 1.0), which minimizes J,., shows all 5 parameters
near the mid-range as expected. The lowest risk design (n = 0.0), which minimizes J,, is
significantly different in terms of disturbance corner frequency, wy, mass m and stiffness,

k. The low risk design relies on a large mass (well known) and small stiffness to achieve
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the desired performance, which results in a low natural frequency. The large disturbance
corner frequency, wy, for the low risk design appears surprising at first, since the parametric
uncertainty is large, i.e. vs = £10%. The fact that wy ~ 10 [Hz], however, shows that the
disturbance corner frequency is roughly a decade above the natural frequency of the oscillator
and does not significantly affect the performance, J,. The compromise design (n = 0.5) lies
between the other two, as expected. Table 4.2 shows a comparison of performance, cost and

risk for the three pareto optimal SDOF designs.

Table 4.2: Comparison of pareto optimal designs for SDOF sample problem.

Design n J, Je Jr wy m k c Wo
[m] [-] (2] [rad/s] [kg] [N/m] [Ns/m] [rad/s]

Lowest Risk 0.0 | 0.8000039 0.79189 10.8853 | 62.0 435 503.3 1.12 393.07
Compromise 0.5 | 0.8000027 0.33688 12.8982 | 35.95  3.65 1153.0 1.18 380.2
Lowest Cost 1.0 | 0.8001169 0.16175 15.4779 | 30.86  2.56 1712.5 1.10 401.8

As mandated by the isoperformance condition, all three designs are equivalent in terms
of J,. This is confirmed by looking at the cumulative RMS plot in Figure 4.17(b), see upper
subplot. All three designs asymptote to the same RMS value within the numerical tolerance,
7. What is different between the designs is the frequency region over which the RMS is
accumulated. Since the SDOF problem represents a single mode system, this is only dependent
on the natural frequency of the oscillator. The “low risk” design has its natural frequency at
~ 1.5 [Hz], whereas the “low cost” design oscillates around 4 [Hz]. For more realistic problems
such as NEXUS (see Chapter 7) it is still true that all designs, p;s, € I, asymptote to the same
performance values. The cumulative RMS curves are significantly more complicated, however,
due to the dynamics of the disturbances, the opto-mechanical plant and the controller(s).

Which pareto optimal design, p,, from Table 4.2 should be implemented is not necessarily

given by the mathematics of the problem or the preference order. At this point the final

ok
1507

design, p!* | has to be chosen from the pareto set via engineering judgement and negotiation.

Therefore the isoperformance methodology is not designed to be a fully automated process,

rather it requires the designer to remain “in the decision loop”.

*k
1507

Once a final design, p!’ | is chosen the roadmap (Figure 1.6) calls for an error budgeting
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analysis. An error budgeting analysis is unnecessary for the SDOF problem, since only a
single disturbance source (random force F') is present, thus contributing 100% to the RMS of

z(t). This concludes the investigation of the SDOF problem in the context of this thesis.

4.7.2 Two DOF oscillator

The two degree-of-freedom problem (2DOF) was introduced in Section 2.2. It adds a second
performance metric, i.e. n, = 2 and additional parameters, i.e. n, = 8, compared to the
SDOF problem. Section 2.2 contains an initial performance assessment, sensitivity and un-
certainty analyses, as well as performance enhancement iterations. It was found that the first
performance, J, 1 = RMS(z2 — 1), is dominated by the second mode, while the second perfor-
mance, J, 2 = RMS(z1), is mainly a function of the first mode. This subsection demonstrates
a multivariable isoperformance analysis for the 2DOF problem.

Figure 4.18(a) shows the result of a bivariate isoperformance analysis with the disturbance
corner frequency, wy, and appendage stiffness, ko as the variable parameters. The constrained
performance is J, 1 = RMS(z2 — 21). One can see that the appendage stiffness, k2, needs to
be increased as the disturbance corner frequency, wq, increases starting from its lower bound
in order to maintain constant performance. Above wy = 3000 [rad/sec|, however, the value
of ko can remain constant, since the rolloff region of the disturbance spectrum is well above
the flexible modes of the system. This is an important finding, since in this region wy can be
changed without significant effect on J, ;. The algorithm used here is gradient-based contour
following.

When the base stiffness, k1, is added as a parameter a multivariable analysis is conducted
with three parameters. The results, using progressive spline approximation, are shown in
Figure 4.18(b). This two-dimensional isoperformance surface shows that performance J,
is not very sensitive to ki, but very sensitive to ko at low values of the disturbance corner
frequency, wy.

A full isoperformance analysis using all 8 parameters is shown in Figure 4.19. Using vector
spline approximation and constraining only J, 1 produces the results in Figure 4.19(a) with
the corresponding quality plotted in (c). The most noticeable trend is the tradeoff between
disturbance corner frequency, wg, and disturbance intensity, Sg4. Introducing and constraining
the second performance, J, 5, see Figures 4.19(b) and (d), drops the number of isoperformance

solutions, p;se, from ~ 1200 to 37. Thus, the isoperformance subset, I € B, gets substantially
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smaller the more performance metrics, n,, are introduced.
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Figure 4.19: (a) 2DOF Isoperformance analysis with all parameters (n, = 8) con-
straining a single performance , J, ;. (b) 2DOF Isoperformance anal-
ysis with all parameters (n, = 8) constraining both performances
(n, = 2). (c) Quality plot for 2DOF and n, = 1 corresponding to
(a). (d) Quality plot for 2DOF and n, = 2 corresponding to (b).
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The same cost metric, J., according to Equation (4.31), risk metric J, and combined
metric, J.,, see Equation (4.32), as in the SDOF example are used here. This allows extracting
a pareto optimal subset of solutions from the isoperformance set. For the same settings of the
weighting factor, n = 0.0,0.5, 1.0, as in the previous example we obtain a low risk, low cost
and a compromise design for the 2DOF problem. These three designs are shown in the radar
plot of Figure 4.20. The uncertainties, v;, of the parameters p; were specified in Figure 2.6.
Again masses are assumed to be most certain, while damping and disturbance magnitude are

least certain.
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Figure 4.20: Two DOF Problem: Radar plot for pareto optimal designs.

The radar plot shows that the low cost design (“closeness to mid-range”) is not, on average,
nearly as close to mid-range as the low cost solution for the SDOF problem. This is mainly
due to the fact that the 2DOF problem is more constrained. The low cost design is close
to the nominal design, ppnom, from Section 2.2 with the appendage mass, mg, pegged at its
upper limit. Note that both performances, J, ; and J, 2, simultaneously asymptote the desired
performance levels, J, ;¢4 for all solutions, p;s,. This is graphically shown in the cumulative
RMS plots of Figure 4.21. It is noteworthy that the low risk design has also the lowest natural
frequencies for both modes, as in the SDOF example. This is mainly due to the fact that the
massive designs lead to lower frequency modes and are assumed to be less uncertain. It is not

immediately clear whether this insight can be generalized to more complex flexible structures.
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Figure 4.21: Two DOF Problem: PSD and cumulative RMS comparison of pareto
optimal designs.

4.7.3 ODL Design Problem

The optical delay line (ODL) design problem was first introduced in Section 2.3. The driving
requirements are summarized in Figure 2.10. The problem deals with a total of eight inde-
pendently variable parameters, see Table 2.3. The steady-state performance requirement is
that J,; = RMS OPD = 100 [nm] and the settling time of the ODL after a step command
should be J,, = T, < 0.05 [sec]. A bivariate isoperformance analysis (only constraining
J,1) was discussed in Subsection 3.4.2. The present subsection presents insights gained from
a multivariable isoperformance analysis of the ODL design problem.

Figure 4.22 shows the isoperformance results for an analysis with the four variable param-
eters: base motion intensity Sy4, sensor noise intensity Sp;,, mass m and derivative control
gain, K;. The other values are constant at the values given for p; ,, see Table 2.3.

The isoperformance set, I, as approximated in Figure 4.22(a) is a 3-dimensional volume
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Figure 4.22: (a) ODL Problem: multivariable isoperformance with four parameters:
Sdd> Snn, m and Kg. Performance Requirement: J, 1 ¢ = 100 [nm)].
Isoperformance set, I projected onto the first three parameters. (b)
Quality of solution plot corresponding to (a) with tolerance 7 = 2.0 %.

in 4-dimensional space. One can discern the tradeoff between the noise intensities of process
noise, Syq, and sensor noise, Sp,. This means that no solution which has both of these
disturbance intensities pegged at their upper limit, see lower left corner of Figure 4.22(a), will
meet the requirements. The quality plot Figure 4.22(b) shows the existence of a few outlier
solutions which exist when the gradient search does not fully converge in the multivariable
case (isoperf mvar.m). In total there are 276 isoperformance solutions, p;s, € I, for the ODL
design problem which took 1.25 GFLOPS and 556 [sec] to solve®.

As in the previous examples we introduce additional objectives to select a small subset
of pareto-optimal designs from the 276 performance invariant solutions. We will consider the
settling time after a step input command, J, » = T ., as an additional criterion according to
Equation (2.21). The “risk” will be embodied by the gain (GM) and phase (PM) stability

margins, normalized by the required stability margins:

Jr

) GM(piso,i) +

- PM (piso,i) (4.33)

- GMreq PMreq

Also, of the 276 performance-invariant solutions, only the ones with T, < 0.05 [sec] will be
considered. Figure 4.23 shows the two pareto-optimal designs, which optimize settling time

and stability margins, respectively.

3Pentium III at 650 MHz clock speed.
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Figure 4.23: ODL Problem: Radar plot for pareto optimal designs.

All parameters, except the four variable ones, are the same for both designs. The shortest

settling time design (blue, solid line) relies on a large mass, m, and control gain, K, to achieve

the performance. The design with the largest stability margins (red, dashed line) in terms of

gain and phase margin on the other hand uses a smaller derivative gain, K4, and smaller mass,

m. Figure 4.24 compares the stability margins (Nyquist diagram) and settling time for both

designs. Both of these designs are superior to the original design in Section 2.3 and would

likely not have been found without the multivariable isoperformance technique presented here.

Table 4.3: Comparison of original design with pareto optimal designs for ODL sam-

ple problem.

Design J.1=RMSOPD J,,=T,, PM GM

Requirements 100 [nm] < 0.05 [sec] 30 [deg] 6.0 [dB]
Original Design p, 89.6 [nm] 0.0236 [sec] 39.4 [deg] 11.5 [dB]
Shortest Step Response pjgo47 | 101.24 [nm] 0.0172 [sec] 57.9 [deg] 17.1 [dB]
Largest Stab. Margins pisg6 | 98.56 [nm] 0.0217 [sec] 68.3 [deg] 21.1 [dB]

Finally both designs are contrasted to the original design, p,, in Table 4.3. This concludes
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the discussion of the ODL sample problem.
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Figure 4.24: (a) ODL Problem: Comparison of settling times for a r = 1.0 [mm]
step input command for both pareto optimal designs. (b) Nyquist
diagram showing phase margin (PM) and gain margin (GM) for both
designs.

4.8 Summary

This chapter discusses solutions to the multivariable isoperformance problem. The general-
ization of the bivariate search algorithms results in three multivariable techniques: Branch-
and-Bound, Tangential Front Following and Vector Spline Approximation. A comparison for
the SDOF problem shows that Vector Spline Approximation is most efficient for multivari-
able problems, since it only approximates the performance invariant set with border points
and some interior points. Complexity theory leads to the conclusion that the isoperformance
problem is a search problem, whose computational cost is non-polynomial in the number of
variable parameters, n,. Thus, problems with more than ~ 10 variable parameters are still ex-
pensive to solve without additional advancements (e.g. parallel computing). The application
of the multivariable isoperformance algorithms to the sample problems (SDOF, 2DOF and
ODL design) demonstrates that superior solutions can be obtained compared to performance

enhanced designs, which are based on a random initial guess.
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Chapter 5

Challenges of Large Order Systems

A key element of the isoperformance methodology is the ability to compute performances,
J,, and analytical sensitivities, V.J,, for disturbance, plant and control parameters. This
has to be done in a computationally efficient manner for large order, typically numerically
ill-conditioned systems. As was seen in the previous chapter it is likely that hundreds or even
thousands of Lyapunov equations have to be solved during a comprehensive isoperformance
analysis. This is true even when the efficient algorithms (Tangential Front Following and
Vector Spline Approximation) are selected. The solutions to the Lyapunov equation provide
either the state covariance matrix, ¥,, see Equation (5.1), or the Lagrange multiplier matrices,
L;, where i = 1,2,...,n,, according to Equation (5.2).

Empirical considerations in Section 5.1 show that the computational cost of solving a
Lyapunov equation is roughly 50 - n? floating point operations (FLOPS), where n; is the
number of states of the state space system S,;. Thus, for a realistic model with say, 500
states, the cost would be 6.25 - 10° FLOPS, which would have taken upwards of an hour to
solve on 1990 vintage computers. Even taking into account the increase in computational
capability in the last decade it is desirable to improve the computational efficiency in solving
for ¥, and L;, respectively. The first strategy is to attempt a reduction in the “3” exponent
of the cost expression with a fast Lyapunov solver for diagonalizable systems, presented in
Section 5.1. The second approach is to reduce the number of states, ng, while preserving the
essential information in the model. Performance prediction for balanced and reduced systems
in this context is the topic of Section 5.2. Finally, the sensitivity analysis has to be generalized

such that it can handle similarity transformed and reduced systems, see Section 5.3.

151



5.1 Efficient Solution of Lyapunov Equation

Lyapunov equations in isoperformance must be solved frequently for the state covariance
matrix, g, and the Lagrange multiplier matrices, L;, where : = 1,2,...,n,. For convenience

we repeat the expressions for the Lyapunov equation of the state covariance matrix

AzSq + SAzy + BBy =0 (5.1)
and the Lagrange multiplier matrix

LiA.q+ AL Li+ Cly;C.qi =0 (5.2)

for the i-th performance, respectively. Recall that A,4, B,4 and C,4 represent the (closed loop)
assembled state space matrices containing the disturbance, plant and compensator dynamics.
Note that matrix A,4 is of size ng X ng , where ng is a measure of the model order (size). This
section presents an algorithm which significantly accelerates these computations, provided that
the state space system can be transformed into the real modal (diagonal) form. The algorithm
was applied to the solution of large order gramians in the context of model conditioning by
Uebelhart [136]. The following description contains results by Uebelhart with respect to
optimizing the solution block size, m. The author’s contribution lies in recognizing the key
role the algorithm plays in isoperformance computations and in integrating the solver into the

DOCS framework via the new function newlyap.m.

5.1.1 Computational Cost of Lyapunov Solution and Balancing

In order to assess the benefits of a more efficient Lyapunov solver one first needs to obtain
an estimate of the computational cost of solving Equation (5.1). Additionally an estimate is
obtained for the cost of balancing the state space system, which is a prerequisite for model
reduction, see Section 5.2. There are computational savings that can be realized by balancing
and reducing the size of the model prior to conducting isoperformance analyses. Clearly, some
of this savings will be consumed by the balancing process. This section derives the amount
of model reduction, as a function of the original model’s size, beyond which computational
savings are realized.

The computational effort is assessed by considering the number of floating-point operations
(FLOPS) rather than CPU time, since FLOPS are machine independent. The operations

required for diagonalizing and balancing the system initially are taken into account. The basic
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assumption is that the cost of computing J, = f(¥,) is dominated by the computational cost
of solving Lyapunov Equation (5.1). For balanced (and reduced systems) the solution cost for
the balancing matrix, 7', needs to be considered as well.

Assume that the cost of solving a Lyapunov equation, Jiyqp, and for balancing the system,
Jr, can be cast as a polynomial expression of the number of states ns; with constant coefficients,

such that

Jiyap = - (ns)?

JT = B (ns)q

Since the exact operations count for solving a Lyapunov equation cannot be determined apri-

(5.3)

ori!, we will empirically determine the required FLOPS for solving the Lyapunov equation

(for ¥,) and the balancing of the system (for 7'), as a function of the number of states, ng. A
multiple degree-of-freedom spring mass system, see Subsection 5.4.2, provides the state space
system, S,4, for this analysis. The results of recording the FLOPS count as a function of ng,

while solving Equation (5.1) and solving for T' are shown in Figure 5.1 on a loglog scale.

Empirical Computational Cost Estimate

10'feer , - e

% Flops %, Lyapunov | -

O Flops T Balancing . : t
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Floating Point Operations
O\]
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Number of states ng

Figure 5.1: Computational cost of balancing (7') and solving a Lyapunov equation
for ¥, as a function of the number of states n.

!This is similar to LU-factorization, which goes as roughly (2/3)n3 FLOPS, but depends on the intricacies

of the Gaussian elimination algorithm, e.g. row swapping if a zero-pivot is encountered.
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Curve fitting with the least-squares method leads to the following results:

a=>5042~50;p=3.0412~=3
B =146.7 =~ 150 ; ¢ = 2.998 =~ 3

(5.4)

The results suggest that there is a linear relationship on the loglog-scale. Both operations
depend on the number of states, ng, to the third power. Balancing a system is roughly three
times more expensive than solving a Lyapunov equation of the same dimensions.

With this information one can compare the cost of performing a sensitivity analysis (only
taking into account balancing and the solution of Lyapunov equations) for the original system,
S,4, and a balanced-reduced system, S,;. The computational cost of the disturbance and
sensitivity analysis for the original system is the cost of solving for the state covariance matrix,
Y4, and for the Lagrange multiplier matrices, L;. Each equation has dimension ng;. The
equivalent cost for the balanced-reduced system is the upfront cost of balancing the system
(order my) - this can be regarded as a “fixed” cost component - and the subsequent Lyapunov
solutions for the reduced E_]q and L;’s of smaller order nj. The computational cost in terms

of floating-point operations can be expressed as:

Jo = a(ns)? +n, - a(ng)? (5.5)
——— ———
Sy Li
Jr =B (ns)?+ 0-a(ng)’ +n, - a(ng)? (5.6)
e — e ——
T Sy I

where ng is the number of original states, n is the number of states kept in the system and
n, is the number of performances. In Equation (5.6) we can set the cost of computing the
reduced state covariance matrix to zero, since the Hankel singular values, which are kept in

the system, are already known. Thus, one can establish an inequality such that J, < J, :
B-nl+n, a-nfp <(n,+1) -a-nf (5.7)
After substituting the coefficients from Equation (5.4) in Equations (5.5) and (5.6) and rear-

n\° n,—2
(—’“) < = (5.8)
Ng N,

The above inequality is found for the crossover point, i.e. when J, (balanced-reduced

ranging we obtain:

system cost) < J, (original system cost). It is concluded that CPU time savings are only

possible once there are 3 or more performances, i.e. n, > 2. The above inequality is useful
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since it can provide the required state reduction ratio ny/ns that will lead to a time savings,
given the number of performances n,. For n, = 4 a reduction of slightly more than 21 %
of the number of states of the original system is sufficient to speed up computations. This
percentage becomes lower as more performance metrics of interest are present in the system.
The SIM Classic model, presented in Subsection 3.4.3, for example has 15 performances of
interest. The reason for the high “upfront” cost is that the system balancing operation requires
the solution of two Lyapunov equations for the gramians, two Cholesky factorizations of the
gramians, a singular value decomposition (SVD) of the product of the Cholesky factors? and
matrix multiplications to obtain 7', T~! and the balanced system matrices. Inequality (5.8)
together with (5.65) allows a quantitative assessment of the tradeoff between computational

speed and accuracy as a function of the truncation threshold ny.

5.1.2 Fast Lyapunov Solver for Diagonalizable Systems

This subsection presents a fast Lyapunov solver for diagonalizable state space systems. The
goal is to improve on the 50n3 Lyapunov computational cost estimate when n; is large (e.g.
ns > 100). This subsection is essentially identical to Section 3.3 of Reference [136]. The

general form of the Lyapunov Equations (5.1) and (5.2) can be written as
AX +XAT +Q =X (5.9)

Assuming that only the values of the states, but not their statistics, change over time (steady-
state analysis), the temporal derivative of the state covariance matrix, X, on the right side
can be set to zero.

AX +XAT +Q=0 (5.10)

Diagonalize A using its eigenvectors®, A = SAS~!. Substitute this matrix product for A in

Equation (5.10), pre-multiply by S~! and post-multiply by S=7.

STHOSAS ™MHX +X(STAsT)+Q)s™ = 0

STESASTIXS™T + 5T XSTTASTSTE +57QSs™ = 0
N— N————’
% According to Laub’s method [78]
3Note that MATLAB uses a Schur decomposition. In practice, the eigenvalue method described may be

unstable if the matrices are ill-conditioned.
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This can be rewritten as

ASIXS T +s xS TA+S51QSs T =0 (5.11)
=X =X =Q

This is a new Lyapunov equation with the matrix definitions given above. The important

property is that A is diagonal. For a simple 2 x 2 case we obtain

A O Z11 Z12 n T T2 A0 + Qi iz =0 (5.12)

0 X To1 T2 To1 T2 0 A Go1 Qo2

A; are the diagonal values of A, and the Z;; are the scalar entries in each (i,j) element of
X. We also know that Zo1 = Z12 and that §o; = §12. By multiplying the matrices out, the

diagonal nature of A succeeds in decoupling the entire set of equations.

MZ11+ZA+211 =0 ANZ12 + T12A2 + g2 =0
A2T21 + Z21A1 +Gg21 =0

The resulting equations are decoupled, so that solving for each Z;; requires solving a simple
algebraic equation A\;Z;; + Z;j\j + g;j = 0.

qij

e (5.13)

,’Z‘ij:—

After solving for all the z;;, they can be incorporated into X, which in turn can be substituted
into the original matrix product X = SXST. This produces the Lyapunov solution X.

For systems where ngs > 2000, this one computation may take upwards of an hour to
complete and involves over 10'! floating point operations. Clearly this would preclude mean-
ingful isoperformance analyses for large order models. A potentially faster algorithm can
be constructed, which exploits the diagonal properties described above. Consider again the
Lyapunov form outlined in Equation (5.12). The diagonal nature of A permits the individual
equations to decouple for each Z;;, thus allowing independent solutions to build the entire
ng X ng matrix X. This same idea can be applied when A is block diagonal instead of diag-
onal. Using the variable A in place of A, consider the general Lyapunov form described by

Equation (5.10), but for the case where A is 2 x 2 matrix-block diagonal.
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T

A 0 X1 X2 X1 Xio A 0 Qu Q2
+ + =0 (5.14)
0 A lej? Xo9 X%; Xo9 0 A Q?Q Q22
Four matrix equations result.
) A Xy + XA+ Q=0 2) A1 X+ X124 + Q12 =0 (5.15)

3) Ao XL + XLAT +QL, =0 4) AyXop + X0 AL + Qo = 0

Notice that equations 1) and 4) in Equation (5.15) are just new Lyapunov equations. Equa-
tions 2 ) and 3) are also Lyapunov equations, though in a more general form AX +XB+C = 0.
This is sometimes called the Sylvester equation. Each of these can be solved using whichever
technique was formerly applied for the full matrix X, but because of their smaller size they
can individually take far less time than the full ns X ng system. This is due to the fact that the
Lyapunov computational cost goes with n2. Also note that Equation 3) is just the transpose
of Equation 2), so of the four equations only three must be solved.

The requirement on A is that it can be made into a block diagonal form. Luckily the
decoupled modal form resulting from a normal modes analysis can be easily written in such a
form. If the system is no longer in a modal form, the eigenvalues of most A matrices can be

written in a diagonal Jordan form [143]. This is also sometimes referred to as the real modal

—(w; /1 — (2
A = Giwi wiy/1 Cl (5.16)
—wiy /1= —(w;i

Using the 2 x 2 modal system, there are now n/2 blocks along the diagonal of A. Keeping in

form.

mind the symmetry of X, this means

Niyap = (5.17)

separate 2 X 2 Lyapunov solutions X;; must be solved. One concern may be that although the
computational time for each solution is fast, the number of computations and the inefficiencies
of the required for-loops may not yield an overall time savings. As will be seen, the time to
solve all the 2 x 2 equations is less than the time required to solve the entire ng X ng problem;

however this is not the most efficient block size, m, to use.
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There is no reason that larger blocks can not be selected, so long as the size is an even
factor of ns. Using a block size of m, a general relation for the number of Lyapunov equations

can be written.

e (s )
Niygp = 22—~ (5.18)

As an example of the efficiency that can be gained, this method was run on sample problems
with ng =600, 1000, 1500, and 2000 states by Uebelhart [136]. A modal system was created
using n4/2 logarithmically even-spaced frequencies between 1073 and 103 Hertz. A damping
ratio of 0.001 was used, and an input B,y matrix was chosen randomly. All even factors of ng
are chosen as possible block sizes m. For n = 1000, this allows m =[2 4 8 10 20 40 50 100 200
250 500 1000]. Even numbers are required since the A,; matrix is still 2 x 2 block diagonal.
Figure 5.2(a) shows the variation of CPU time in minutes versus block size, m, for each
problem of size ns. The last point on each curve represents the full ng; x ng; Lyapunov solution.
For m = ns = 2000, nearly 2.5 hours are required to obtain an answer (on a 850 MHz Pentium
IIT computer). This compares to 14 minutes for m = 2. This considerable time savings is
improved further with slightly larger block sizes. A minimum in all four curves, shown clearer
in Figure 5.2(b), indicates an optimum m between m = 20 and 40. For m = 40, the 2000

state model takes only 1.6 minutes. A summary of the results from Figure 5.2 is included in

Table 5.1.
Lyapunov computation time
Lyapunov computation time 14F% ' ' ' A ]
150 : : : : : : : —— ng=1000
— ng= 600 ng=1500
= ng=1000 121 — ng=2000
ng=1500
— ng=2000
100 g
= )
E 5]
B g
£ =
= ®
O 50r
ol
200 400 600 800 1000 1200 1400 1600 1800 2000 0 50 100 150 200 250 300
Block size 'm’ Block size 'm’

(a) (b)

Figure 5.2: (a) CPU Time in minutes to solve a Lyapunov equation of size ns using
blocks of size m. (b) Zoom in on optimal region between m = 20 — 40.

158



Table 5.1: Time improvements using diagonal Lyapunov solver

g time to solve full fastest block time to solve using time savings
ng X Ng system size m m X m blocks ratio
(minutes) (minutes) tmaz [ tmin

600 3.5 24 0.13 26.9

1000 16.1 20 0.37 43.5

1500 53.7 20 0.90 59.7

2000 145.5 40 1.65 88.2

The quality of the solution is checked by placing the answer back into the Lyapunov
Equation (5.10). This resultant matrix should equal zero. Due to numerical inaccuracies, the
maximum value of the resultant is actually on the order of 1073 for all n,. What is important
is that the resultant for each block solution is identical to the resultant for the full ng x ng
solution. The solutions suffer from no additional inaccuracies.

Another metric with which to judge the routines is the number of floating point operations,
or FLOPS. The advantage of measuring FLOPS over CPU time is that FLOPS are machine
independent. The nature of MATLAB’s lyap.m function is such that an exact FLOPS count
based on the number of required operations can not be specified. The Schur decomposition
used by MATLAB requires a Gram-Schmidt factorization A = QQR. This may require a different
number of operations depending on intricacies of the QR factorization (e.g. row swapping).
Reference [2], used for the 1lyap.m function, suggests that the number of required operations

is probably overestimated by

Nrrops < (5.5 + 40)n§

where ¢ is an average number of steps in the factorization, dependent on the matrix A. Earlier
it was empirically found that the number of FLOPS goes by 50n3, which would give a value
of 0 = 11.125. Using the fast Lyapunov method, a single 50n> operation is replaced by many
50m3 operations, with ny > m. If the number of Lyapunov equations is described by Equation

(5.18), then the estimated number of FLOPS is

Tnewtyap = 25(mn? + m*ny) (5.19)
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The total number of FLOPS to solve every problem of size ng with block sizes m is plotted
as points in Figure 5.3. The curves plotted over the points are the approximations given in
Equation (5.19) above. The approximation is shown to work very well. The fast Lyapunov
method succeeds in reducing the FLOPS count by several orders of magnitude. For the 2000
state model, the full n, x n, system requires over 4 x 10" FLOPS compared to 4.9 x 108
FLOPS when a block size of m = 2 is used. The number of FLOPS for those block sizes with

the fastest times (as given in Table 5.1) are provided in Table 5.2.

45X 1011 Flops per Lyapunov Solution
’ * ng= 600
* ng=1000
4l ng=1500
+ ng=2000

Jnewlyap FLOPS
[\ %]
[,

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Block size 'm’

Figure 5.3: Number of FLOPS for the diagonal Lyapunov solver, along with curves
showing the flop count approximation.

Table 5.2: Improvements in FLOPS using fast Lyapunov solver

ng states # flops for fastest block # flops using

full ng x ng size m m X m blocks
600 1.1 x 1019 24 2.4 x 108
1000 5.0 x 1010 20 5.6 x 108
1500 1.7 x 101" 20 1.3 x 10°
2000 4.0 x 10t 40 4.3 x 10°
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The diagonal Lyapunov solver was initially written for gramian computations as newgram.m
and has been incorporated in DOCS as a general Lyapunov solver, newlyap.m. Note that func-
tion ss2mod7.m (available from MIT Space Systems Laboratory) must be used to diagonalize
the state space system prior to using the fast Lyapunov solver. The fast diagonal Lyapunov
solver drops the highest exponent in the Lyapunov computational cost expression from “3”
to “2”, which results in a significant benefit for large order systems. This approach can be

combined with the balanced reduction discussed below.

5.2 Analyses for Similarity Transformed Systems

The second strategy for reducing the burden of computing the performance, J,, is to reduce
the number of states from ng to ng, while preserving the important dynamics in the model.
The first step in model reduction is typically a similarity transformation, such as internal
balancing. Therefore in this section the computation of the performance and sensitivity,
assuming root-mean-square (RMS) metrics, for open or closed-loop LTI systems driven by
white noise is derived for internally balanced (transformed) models.

The results are first validated with single and multi-degree-of-freedom examples. The ex-
tensions to the framework have then been incorporated in revisions of the DOCS functions
dist_analysis.m and sens_analysis.m. Finally a validation is carried out by applying the
method to internally balanced and subsequently reduced models of the Space Interferometry
Mission (SIM Classic). A number of numerical issues such as minimality have been success-
fully addressed, which allow fast and numerically robust sensitivity computations for large
order, closed-loop systems that are inherently ill-conditioned. This work contributes to higher
computational efficiency and robustness for trade and optimization studies such as the one
presented in Chapter 7 for the NEXUS spacecraft. It is assumed that the systems are all

linear and time-invariant.

5.2.1 Motivation and Scope

For realistic MIMO systems such as SIM, NGST, Nexus or TPF the models can contain several
hundred or even thousands of states, ng. Factors that tend to increase the size of the overall
state vector are a complicated disturbance spectrum and many different disturbance sources,

important structural modes over a large bandwidth and large order (= modern) compensators.
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A significant impediment for the practical use of isoperformance for these large order models
has been the fact that the state-space realization of the system* representing the appended
overall dynamics (open or closed loop) had to be preserved. This was necessary in order for
the system parameters of interest (e.g. modal parameters w, (, M, ¢;;) % to appear explicitly
in the system matrices A,q, B,q, C,q . The assumed structure of the appended A,; matrix,
which can span on the order of 100-10000 states, as stipulated by Gutierrez [45], is given as

follows:

Ay 0
A= By A, B,C, (5.20)
Cy
B.Dy, B.Cy A+ B:Dy,C.

Any kind of similarity transformation [102],[77, 78] removes the explicit dependence of the
state space matrices on the parameters of interest. In that case the matrix partial deriva-
tives 0A,q/0p;, 0B,q/0pj, 0C,q/0p; needed for determining the sensitivity of the root-mean-
square (RMS) of the i-th performance metric J, ;, with respect to the j-th parameter p; , i.e.
0J,;/0p; = 0o, /0p; cannot be easily computed. Additionally when model reduction is per-
formed on the balanced system, states which correspond to small Hankel singular values are
removed, which affects the resulting performance RMS and sensitivity values. Gutierrez [45,
p.268] recognized the need for an extension of the existing framework in his recommendations

for future work (third item):

“The numerical conditioning problem discovered during the finite-difference
computations in the SIM Classic example needs to be resolved. Balancing and
model reduction techniques might alleviate this problem; however, the sensitivity
framework currently does not support alternative system realizations. Efforts to

accommodate other state-space realizations should be made.”

This recommendation gave the impetus for the work presented in this section. The cur-
rent capabilities are extended such that RMS values and sensitivities (for modal or physical
parameters) can be computed for internally balanced and reduced systems. The equations

are validated with simple and large-order examples and useful error bounds are found.

“Defined in Equations (4.58)-(4.60) of Reference [45]
®The physical parameters appear implicit and are recovered from the modal parameters via the chain rule.
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5.2.2 Internal Balancing Transformation

The internal balancing transformation ¢ = T'q of a state space system was first described by
Moore [102] as well as Laub [77],[78] and co-workers. Gregory [39] successfully applied internal
balancing to the model reduction of lightly damped space structures. Essentially the internal
balancing operation is a similarity transformation, which does not affect the input-output
relationship of the state space system (i.e. the transfer function matrix G,4(jw)). It is true
that for a similarity transformation the transfer function matrix G,4 (s) of the original system
and the transfer matrix of the balanced system G4 (s) are equal. This can be proven by
showing that the difference between the transfer function matrices is zero, see Appendix B.1.

The goal of the operation is to obtain a (unique) state space realization in which the
transformed controllability and observability gramians W, and W, are equal to each other,
thus the term “balanced”.

W,=W,=X%y (5.21)

This allows ranking the states in decreasing order of observability/controllability. In the
context of the disturbance analysis one could also say that the states are ranked in decreasing
order of disturbability /performability. The diagonal elements of the transformed gramians

are the Hankel singular values of the system.

W, =TW.I" =W, = (T"") W, T ' =Sy = diag {o,..., 02 (5.22)

» Yng

The key question is how to compute the balancing matrix 7. The first step is always to
compute the controllability and observability gramians of the original system W,., W,. First

we solve the Lyapunov equation for the controllability gramian

AW + WAL, + B,4BL, =0 (5.23)
and then for the observability gramian

AL W, + WoAq+ CLCag =0 (5.24)

A number of different algorithms for finding 7', starting with Moore’s method [102] in 1981,
have been suggested over the years. The second method uses a singular value decomposition
(SVD) and was developed by Laub [78]. Both algorithms are presented in more detail in
Appendix B.2.
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The resulting properties of 1" are such that it is a real, square and non-singular similarity
transformation matrix. The matrix T does indeed depend on the physical and modal pa-
rameters of the system. The assumption by Gutierrez that 7 ... T is not a function of the
parameter p” [45, p.177] is not necessary as will be shown in the next section. Once T' and
its inverse are known, the internal balancing operation transforms the states of the original

system ¢ into the states of the internally balanced system g.
q=Tq (5.25)

We recover the original state vector by pre-multiplying the above equation with the inverse
of the transformation matrix 7'. (Note: Caution is advised, since sometimes in practice this

definition is reversed). The original state vector is recovered as:
¢g=T"1§ (5.26)

Substituting the above equation into the original state space system (A.13), noting that T
is independent of time and pre-multiplying with the transformation matrix 7" we obtain the

internally balanced state space system as

¢ =TAT'§+TBqd = A4G + Bad (527)
2= Col G =Crag
The tilde superscript will denote the balanced realization in the subsequent development. We

can use the S-matrix notation and write:

A,y B . TA, 7' TB
Szd _ zd zd = Szd _ zd zd (5.28)
Czd Dzd C’sz’i1 Dzd

Looking at the example of a single degree-of-freedom (SDOF') oscillator (2 states), which is
subjected to a white-noise random disturbance force, we see that the S-matrix of the original
system, see left side of Equation (5.29), is sparse. The S-matrix of the internally balanced
system, S,q, is fully populated with the exception of the zero, which corresponds to the

feedthrough term D,q.

0 1 0 —0.21318  41.403 0.13134
S=| —1714.3 —0.42857 1.1952 = S=| —41.403 —0.21539 0.13134 (5.29)
1.1952 0 0 0.13134 —0.13134 0
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Also we note that the entries of the balanced matrix are closer to each other in magnitude
and that symmetries in the entries can be seen. However, neither the A,q, nor the S matrix
are truly symmetric or skew-symmetric. The next subsection discusses the implications of

balancing (similarity transformations) on disturbance and sensitivity analyses.

5.2.3 Disturbance and Sensitivity Analysis for Similarity Transformed State

Space Systems

This subsection discusses performance and sensitivity analysis for balanced systems. The re-
sults are applicable to any similarity transformation. One assumption is that J,; = 0, ;. The
performance (RMS) is computed exactly as for the original system, except that the trans-
formed system matrices (superscript tilde) are used. Based on substitution of the matrices
from Equation (5.27) into Equation (A.26), the RMS of the i-th performance metric of the

internally balanced system is obtained as

zdy

G, = (ézd,izqéT )1/2 — (Ozd,iT*zq (T*l)TCZTd,Z.)I/2 (5.30)

Since the internal balancing operation does not change the input-output relationship, but
only transforms the internal states of the system, the RMS of the i-th performance of the
original and the transformed system are identical in theory. In practice it was observed that
the answers did not match exactly, if T" was computed for a large-order nearly unobserv-
able/uncontrollable system.

We can write:

O

i

=5, (5.31)

Thus by comparing the inner terms of Equation (5.30) with (A.26), we see that the following
identities are true:

S, =T7'5 (17", 85 =T%,T" (5.32)

Here Y; is the state covariance matrix of the internally balanced system and is obtained as a

solution to the steady-state Lyapunov equation:
A +35AL, + B,yBL, =0 (5.33)
This can be written as a function of the original system matrices as:
TA TS+ (TN ALTT + TB, BLT" =0 (5.34)
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At this point we recognize that the state covariance matriz of the internally balanced
system X has a very important and useful property. It is diagonal and contains the Hankel
singular values as diagonal elements, thus ¥; = Xy . Here the subscript “H” stands for
“Hankel” singular value matrix and not the Hermitian operator. The proof of this statement
is straightforward, since for the internally balanced system the observability and controllability
gramians W, and W, are equal to each other and equal to the Hankel singular value matrix 6,
see [102],[77]. We write

Wo=W,=3%y (5.35)

Furthermore the controllability gramian of the internally balanced system obeys the same

Lyapunov equation (5.33) as the state covariance matrix ;.

A, W, + WAL, + B,4BL, =0 (5.36)
From (5.36), (5.35) and (5.33) we conclude that
W.=%;=23%g (5.37)

This is a very useful property, since it means that the Lyapunov equation for the balanced
state covariance matrix does not have to be solved, since the entries (same as ¥ ) are already
known. The sensitivity of the i-th performance RMS with respect to the j-th parameter for
an internally balanced system is then computed as follows:

95, 1 05

6pj - 25% 6pj

(5.38)

The RMS in the denominator of the first term is directly substituted from Equation (5.30).
The second term is obtained by solving the transformed governing sensitivity equation (TGSE).
The governing sensitivity equation for a similarity transformed system (e.g. internally bal-

anced) is the most important contribution in this section and was determined to be:

052 9 (0T, .C.u
;Z_’ = trace Tleq (Tfl)T % i
N & (5.39)
i I 0 (B,4BL
trace | L TaAZdT*E,; +5 (T Y Az pr + TMTT
Op; Opj dp;

5The squares of the Hankel singular values are sometimes referred to as the "second order modes” of the

system [102].
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The TGSE (5.39) allows computing the partial derivative of the variance of the i-th per-
formance J,; = o,; with respect to the j-th parameter p; using the transformed quantities,
including the Lagrange multiplier matrices for the balanced system. The Lagrange multiplier
matrix L; for the i-th performance of the internally balanced system obeys the Lyapunov
equation

ALyLi + Lid g + ézj:j,iézd,z‘ =0 (5.40)

This can be written explicitly in terms of the original system matrices as:
_N\T = = —_ _\T —_
(771 ALT"Li+ LiT A7~ + (T71) ClyiCea T =0 (5.41)

The matrix derivatives in (5.39) may still be computed using the original (non-transformed)
system matrices, where the parameters appear in known locations. At first the simplicity of the
Governing Sensitivity Equation (5.39) is surprising, since we expect to find derivative terms
of the transformation matrix 7" in this equation. If we substitute the transformed matrices

A,q, B,q , C,q into (A.32), we will obtain non-zero derivative terms of the transformation

matrix T and in general we have:

or
Op;

The mathematical derivation of the TGSE, however, shows that all derivative terms of the

£0 (5.42)

transformation matrix, 7', are multiplied by a term which is equal to zero, which leads to
Equation (5.39). The proof for the correctness of the TGSE is contained in Appendix B.3.
The transformed governing sensitivity equation is correct regardless of whether p; is a modal or
physical parameter of the system. Finally it shall be noted that balancing does not introduce
any approximation and that the values obtained for 6., and 05, /0p; are identical to the ones

for the original system, subject to good numerical conditioning.

5.3 Disturbance and Sensitivity Analysis for Reduced Systems

This section presents the extension of the framework to reduced systems. First the process of
model reduction by truncation is explained in detail. Next the computation of the RMS and
its error bound for reduced systems is derived. Finally the sensitivity and its error bounds

are established for reduced LTI systems.
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As shown above, the balanced state covariance matrix ¥ is identical to the Hankel sin-
gular value matrix Yy for the internally balanced system. Thus states that are both highly
disturbable (= controllable) and contribute significantly to the performance (= observable)
correspond to large Hankel singular values O'ZH . This property can be invoked for model reduc-
tion in the sense that only states with large Hankel singular values are kept in the model. Once
the system has been internally balanced we can partition the state space system from Equa-

tion (5.27) into states that are going to be “kept” and states that are going to be “removed”

as follows:
_ . Ape  Ag, 7 B
G = Ay + Bogd = ~kk ~k qk n ~k d
A ATT‘ ~7" BT
rk 4 (5.43)
qk

qr

73R}
I

Here the subscript “k” indicates states that are “kept” and subscript refers to states that

are “removed”. The number of states kept, ng, and the number of states removed, n,, add
up to the original number of states, ng, in the state vector ¢ or q.
The reduced state space system can then be written as:
q= z‘_lqu + Bizdd = Apkqr + Bid (5.44)
z = C34q = Cky
Here the superscript bar refers to the reduced (= truncated and previously internally
balanced) system. The reduction operation to go from the balanced system (5.43) to the

reduced system (5.44) can also be represented by a multiplication with a selection matrix P,

defined as:

P =] Ly, Ouan, | (5.45)

Then the reduced system can be written as:

G= A,qq+ Bogd = PA, PTq+ PB,yd = PTA,,T *PTq+ PT'B,4d

_ - (5.46)
z2=Cq = CzdPTq = Csz_IPTq

where the feedthrough matrix is D,q = 0. The operator P is a rectangular matrix, which
selects the states to be kept. This truncation method is sometimes casually referred to as
“brutal” truncation. The reason for this designation is that the effect of the removed states
on the DC-gain is lost and the reduced and original system do - in general - not have matching

DC-gains.
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Static condensation is a more sophisticated reduction method, which is not treated here,
but which can achieve matching DC-gains followed by removal of the resulting D-term as
shown by Gutierrez [45, p.171]. In general, however, the disturbance and sensitivity analysis
results obtained for a truncated model are very good, since “DC” contributes only negligibly
to the RMS values and the sensitivities for zero-mean processes. By reducing the system,
the number of states is reduced from ng to ng, while keeping the essential dynamics of the
system. The effect of balancing the original system on the state transition matrix, A,4, and
the subsequent truncation operation are illustrated for the SIM Classic model (version 1.0,

closed ACS and ODL loops, open FSM loops) in Figure 5.4.

Original A, Matrix Balanced A, Matrix Reduced A, Matrix
0 w

S 2
i 3 5
£ 100 &8 100 %
=X ) S
> © A
Iy hi <
s’SZOO <13200 'g 200
o \_6/ o
S 2§

300 300 300

0 100 200 300 0 100 200 300 0 100 200 300
nz = 12090 nz = 94864 nz = 14400

Figure 5.4: Sparsity structure of (a) the original SIM-Classic A-matrix (308 states)
according to equation (5.20); note cross-coupling terms. (b) Balanced
A-matrix (308 states, fully populated) and (c) the reduced A-matrix
(120 states, fully populated).

5.3.1 RMS and Error Bound for Reduced Systems

First the RMS can be computed using the reduced system matrices directly by substituting
Equation (5.44) into Equation (A.26). The RMS performance of the i-th performance metric
is computed as:

52 = (Cogi5qCT )" (5.47)
Now we have introduced an approximation, since the matrix P selects only the n, states
that have Hankel singular values o/ above a threshold value that we have defined before the

reduction step. Thus, it is evident that o, # 0,, = G, , since states have been removed and
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so has their contribution to the resulting RMS. We are first interested in finding the error
in the RMS value, 7,,;, introduced due to the model reduction. The absolute error for the
RMS is the difference between the RMS of the original (balanced) and the reduced system.
This difference is always a positive quantity, since the variance (RMS squared) is by definition
always a positive quantity. This error term, designated as erjsg, is a function of the number of
states removed during model reduction, n,. Additionally we will develop a simple error bound,
which allows prediction of the maximum expected relative error on the RMS based only on
the singular values of the states that have been (or will be = apriori estimate) removed.
First the error on the performance RMS can be computed as the difference in the variance

of the performance as predicted by the original and reduced models :

9 _ 9 2 _ =2 2 _ A AT Ay AT
Aoz, =05 =05 = 03, — 05 = CodiZgChg; — Cra,i%igClyy

(3

k i i i d i (5.48)
= 0,4,i%¢C y; — CoaiP"2qPCly ;= Coai (B — P'S¢P) Cly

The expression in round brackets is interesting enough to be analyzed in more depth. We have

previously established that the balanced state covariance matrix Yj; is equal to the Hankel

singular value matrix ¥z. We use this fact to rewrite (5.48) as

. . . Xy 0 .
Aot =063 — 02 = Cogi (g — PT2gP) Cly i = Crai | B — ct

zd,i
Qnreng - (neans

Zk e i I

e T A& : lzn ~T

- Zd,i ZH - On o On o Czd,z — Czdyidzag 0 k‘, Unk+1’ “ e 70n5 CZd,Z
T k T T D ¥

removed singular
values

= ~zd,i2RC~’z;1,i
(5.49)

The matrix Xp is thus a diagonal matrix of the same size as the Hankel singular value matrix
Y, but with only the removed singular values retained and zeroes everywhere else as defined

in Equation (5.63). The original RMS performance can then be written as:

~ ~ 1/2
=6, = (02 + (52 = 02))""" = (0% + CoaimnCTy,) / (5.50)

O

i

This can be used to obtain a closed form expression for the RMS prediction error due to

balanced model reduction.

. _ 9 = T \Y?2
ERMS = Aozi =0, — 0y = (Uzi + Czd,iZRCzd,i> — 0 (5.51)
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The relative error for the RMS o, due to model reduction is obtained by dividing equation

(5.51) by the nominal RMS value for the i-th performance metric o,:

Ao, Aoy, o

e i (5.52)
Z; Z; —~ ~ ~ 1/2
Oz Oz; (ng + CZd,iERCz;z,z)

It is noteworthy that the reduced model performance o,, must first be computed before the
relative RMS error according to (5.52) can be obtained. It would be useful to have an upper
bound for the relative RMS error Ao, /o,, before the model reduction is actually performed.
In order to develop this error bound we first consider the algebraic quantities ¢ and b , where

we assume that a > b > 0. If we know the difference of the squares of a and b we can write
a2 —b* = (a+b)(a—0b) (5.53)

Then the following inequality is true, since a > b > 0 :

2a (a—0b) > (a+b)(a—0b) >2b(a—Db) (5.54)
a2—b2

Dividing inequality (5.54) by 2b and only focusing on the two last terms we obtain

a? —b?
2b

>a—b (5.55)

Now we substitute for a« = 7,, and b = 7,, and knowing that the inequality ¢, > 7,, > 0

holds, we get an error bound on the RMS for Ao,, = 7,, — 0,, such that

~9 ~2
0y — 0%,

> Ao, (5.56)

~2 =2
Ao, _ 0z — 03

5.57
o 202, (5.57)
At this point we will attempt to express the inequality in terms of the singular values of the
system. Substituting (5.49) in the numerator and (5.47) in the denominator of (5.57) we can

write

Ao, C.a;5rCY,; 1 C.a;5rCY,; 1 Caadiag (0'™, 0l | ... o) CL,;
Oz 2 Czd,izchi,i 2 é’zd,iPTZqPC'Z:M 2 C’zd,idiag (Ufl, e ,U%,Olmr) C'Z:M
(5.58)

171



Taking the trace operator of both sides of (5.58) is allowed, since they represent scalars. The
C matrices cannot be eliminated inside the trace operator, since they are not square matrices.

Thus a tight error bound on the relative RMS error is given by:

~ AT
Ao,  1trace |Cea;BrCly;
o, 1 [ " z] (5.59)
Oz 2 trace [Czd,iZKCZLz}

The computation of this tight error bound involves taking the trace of the expressions in
the numerator and denominator of (5.59). Note that all the information in (5.59) is available
before the RMS of the reduced system o, is actually computed. A more elegant, but also
more conservative error bound is achieved, when we realize that the magnitude of the entries
in the C’zd,i—matrix (it actually is a vector, since it only comprises the i-th row of ézd) is
decreasing in a way such that the following inequality generally holds true:

trace [ézd,izRéZi,i] trace [Yg]

— — < (5.60)
trace [Czd’iEKCZ“} trace [Xk]
A more compact error bound for the relative RMS error due to model reduction is:
n
of!
Ao, 1 ;=
LA = anl (5.61)
02 2 k -
o,
=1

This error bound is useful for determining the number of states nj; to be kept during model
reduction in order to achieve a desired accuracy of the RMS prediction. The error term egpsg

is computed as follows:

. o A ~r \Y2
erMs = Aoy, =6, — 0, = (Uzi + Czd,iZRCzd,i> — 0y (5.62)

We see that we must save the unreduced, balanced matrix C‘zd if we want to obtain an exact

value for epprs . Here the diagonal matrix Xp € R**"s contains only the removed Hankel
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singular values at the appropriate locations and zeroes everywhere else.

0

0 QPETE (PRI

ol Qrran  yean (5.63)

The relative error of the RMS performance is:

Ao, Aoy, 0z

— ?Z — 1 - B ~ -7 1/2 (564)
’ (Ugi + CZd,iZRCzd,z’)

(o

(3

The computation of the RMS error eryrs and the relative error Ao, /o, requires knowledge
of the reduced system RMS performance &,, , the balanced, unreduced system matrix C‘zd,
the Hankel singular value matrix ¥y and the truncation threshold ng. An apriori (= before
model reduction) bound on the relative error, which only necessitates knowledge of the Han-

kel singular values and the truncation threshold n; was derived above, and is given by the

inequality:
s
VD VR
e Ea = (5.65)
02 SS ol
1=1

The inequality is half the ratio of the sum of removed Hankel singular values over the
sum of kept singular values. This inequality is useful, since it can be used to determine the
number of states n; that have to be kept in the model in order to achieve a desired accuracy
on the RMS prediction. Gutierrez [45] for example has previously stated that “In actuality,
the model reduction process should be iterative in nature, and states should be removed until
performance predictions begin to deviate by a predetermined amount.” This suggests that the
model should be run several times until the correct level of reduction is found. This time
consuming procedure can be avoided by applying the error bound in (5.65) apriori. If for
example an accuracy of 1 % is desired on the RMS performance prediction, the left side of the

inequality becomes 0.01. Then the expression on the right hand side can easily be evaluated
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for all values of ny between 1 (all states except one truncated) and ng — 1 (only one state

truncated), since the Hankel singular values o/ are known’. The correct value for ny is then
the smallest number of states, which still meets the above inequality. Also the error bound is
less conservative than the model reduction bound typically used in the literature, see Equation

(5.66) from Reference [143, p. 159].

|G(s) = G(s)||,, <2 Z ol! (5.66)

i:nk+1

To illustrate this, the Hankel singular values, i.e. the diagonal elements of X, for a multi-
DOF system, as presented in Subsection 5.4.2, are shown graphically in Figure 5.5(a). For the
MDOF example an allowable RMS error < 0.5% leads to a truncation level nj = 14 (dashed
vertical line), where the original system had 42 states. Further details for this example are

shown in Subsection 5.4.2.
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Figure 5.5: (a) Hankel singular values and model truncation threshold level ny for
RMS error < 0.5 %. The original MDOF model has 42 states, of which
14 must be kept in the reduced model. (b) Validity of RMS error bound
for various truncation levels according to Inequality (5.65)

The relative RMS error (MDOF example) as a function of the truncation level, ng, is
shown in Figure 5.5(b). It can be seen that the conservative error bound from Inequality
(5.65) is valid. The conservatism ratio, defined as the ratio of error bound (5.65) over the

actual relative RMS error, was observed to decrease from 46794 with only 2 states removed to

"In practice we remove 2 states at a time, since 2 states are required to represent an open-loop structural

mode or a complex conjugate pair of poles.
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a ratio of 1.169 with only 2 states kept in the system. This means that the RMS error bound

(5.65) becomes increasingly accurate the more states are truncated.

5.3.2 Sensitivity and Error Bound for Reduced System

Having computed the RMS performance J,; ~ 7., and associated error for the balanced
reduced system, we want to obtain the sensitivity 05,,/0p; and its error. The derivation of
the sensitivity for the reduced, balanced system is straightforward with Equation (5.39) as a
starting point. This is due to the fact that the selection matrix P is not a function of any
system parameters p;, since it contains only ones and zeros. The sensitivity of a reduced,
internally balanced state space system is given as:

95, 1 05

6pj N 20, 6pj

(5.67)

Here the partial derivative with respect to the variance is obtained from the transformed gov-

erning sensitivity equation (TGSE) with the reduced system matrices from (5.44) substituted

in.
062 0 CzaiCeai o4 OAL, O (B.4B.
%% — trace Equ + trace | L; —Zqu—i— Y2+ (Bz4B24) (5.68)
Op; Op; Op; Op; Op;
After taking into account (5.39) and some matrix algebra we obtain
952 0 Cjzl"czd,i
%5 — trace | T PTS,P (Tl)TM +
Ipj Ip;
. A 0AT 9 (B.4B,
trace |4 PrO2dp1pts, sop (p 1y Paagrpr pr2BeaBe) g pr
Op; Op; Op;
(5.69)

The last Equation (5.69) shows that the sensitivity of a reduced, internally balanced
system can be calculated, if the matrix partial derivatives 0A.4/0p; , 0B,q/0p; , 0C,q/0p;
of the original system®, the balancing transformation matrix 7" and the selection matrix P
are known. This is an important result, since it was previously not possible to compute
this quantity due to the fact that the balancing transformation and model reduction removes
the explicit dependency of the parameters p; in the system matrices A,q, B,qgand C,q , as

mentioned by Gutierrez [45, p.176].

8These derivatives are identical to the ones computed in the previous framework [45].
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The Lagrange multiplier matrix for the reduced system obeys:
ALGLi + Lida + C_’,z;l,ic_'zd,i =0 (5.70)

In the case where there is only one performance metrici = 1, i.e. C,q € R!*" | the Lagrange
multiplier matrix L; , is equal to the diagonal matrix of Hankel singular values £7“"* that

are kept in the system, L; = X" where

D = - (5.71)

Consider that in this particular case the solution to the Lyapunov equation (5.70) is already
known, since there is only one performance metric. In this instance it is actually compu-
tationally cheaper to compute the sensitivity for a balanced system (reduced or unreduced)
than for an unbalanced system, provided the transformation matrix 7" is already known. A
computational benefit also exists in the general case (of several performances), since we can
now solve for the Lagrange multiplier matrices for the reduced system according to (5.70).
The more performance metrics we have, the larger we expect that benefit to be. This benefit
was quantified in Section 5.1, see Equation (5.8).

As was the case for the computation of the reduced system RMS performance o, we can
expect that the reduced system sensitivity 0o, /dp; will be in error due to the removal of
system states. A sensitivity error bound similar to the error bound for the performance RMS

(5.65) has been derived in Appendix B.4.

do, R 2 S H
A 3PZ' Z: (") 1 i—nz-l—l 7i
| <=l — 14+ (5.72)
99, ) (O'.H)2 2 i‘ ol
Op; i1 -1

The ratio involving the squared singular values on the right side is generally very close to 1,
since the Hankel singular values that are kept in the system are often larger by several orders
of magnitude than the singular values that have been removed. In practice it is then observed
that the relative error bound on the sensitivity (5.72) is nearly identical to the relative error
bound on the RMS itself according to (5.65). This bound involves the same ratio of Hankel
singular values as for the relative RMS error in addition to a ratio of the Hankel singular

values squared.
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Again the sensitivity error bound was shown to be valid for the MDOF example for all
truncation levels in Figure 5.10(b), see Subsection 5.4.2. The sensitivity error bound is
significantly less conservative than the RMS error bound and the conservatism ratio (ratio
of error bound to actual maximum sensitivity error) is independent of the truncation level.
It shall be noted that in this case the error bound is on the absolute value of the relative

sensitivity error, since the sensitivity 0a,, /dp; could be positive or negative.

5.4 Verification and Examples

In order to validate the equations for the performance (RMS) and sensitivity of internally bal-
anced and reduced systems from the previous sections, a number of problems were computed
numerically. These examples include the single degree-of-freedom oscillator, a multi-degree-

of-freedom (MDOF) system and a large-order SIM closed-loop model.

5.4.1 Single Degree of Freedom Oscillator

The single-degree-of-freedom (SDOF) oscillator is the simplest dynamic mechanical system.
It was introduced in Section 2.1. Ignoring the disturbance and control filters here, the system
consists of a discrete mass m , which is attached to a fixed boundary condition via a linear
spring of stiffness £ and a dashpot with damping constant c¢. The system is driven with a
zero-mean unit-intensity white noise disturbance force d. We want to determine the root-
mean-square (RMS) value of the displacement response x of the system and the sensitivity of
this RMS with respect to the system parameters.

We have arbitrarily chosen the nominal physical parameters m = 0.7 [kg], £ = 1200 [N/m]

and ¢ = 0.3 [Ns/m], which results in the following modal parameters:

Modal frequency : w = \/k/m = 41.4 [rad/sec] = 2nf = f =6.6 [Hz]

c
= 0.0052 [ -
2v km [-]

Modal damping : ¢ =

Modal mass : 7 = °¢p'm°¢ L L 1[-] (5:73)
mass : m = °¢" m°p = -m - =1]-

. vm vm
Mode shape : °¢p = N =1.195 [kg 1/ 2]
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The closed form expression for the RMS was found to be equal to:
1/2

1 1 | ot 1

N T\ /2
= | — G = X = = — 74
o o /| 2d (Jw)|” dw (Czd qud) 120 T (5.74)

The physical mass, m, drops out of the expression for the RMS due to the assumption of

proportional damping. Substituting the numerical values ¢ = 0.3 and k£ = 1200 in (5.74) we
obtain a RMS value of 0, = 0.037268 [m] . This result is used as a reference for the numerical
answers. Now that we have an expression for o,, we want to compute the sensitivity with
respect to the different parameters of the system. For large order systems a closed form
expression for o,, such as (5.74), cannot be obtained and the numerical method, which
employs Equation (5.39) has to be used. Next the RMS was computed for the internally
balanced SDOF system using (5.30). As expected we obtain the same answer: 6, = 0, =
0.037268 [m]. Internal balancing does not affect the performance for the SDOF oscillator
model. Subsequently the sensitivities of the RMS with respect to the physical parameters
m, ¢ and k and the modal parameters w, (, m, °¢ were computed for the balanced system
using the Transformed Governing Sensitivity Equation (5.39). The results, including a finite

difference approximation, are shown and compared to the original system in Table 5.3.

Table 5.3: Comparison of RMS sensitivities for single degree-of-freedom (SDOF)
physical parameters (top) and modal parameters (bottom), including
a 1% finite difference (fd) approximation. Normalized Sensitivities are
Snorm and Sporm for the balanced system.

Ao, (£d) 0o, 06, .
p Ap op Snorm op Snorm
m 0 0 0 —5.7-10716 0
c —0.061651 —0.062113 —0.5 —0.062113 —0.5

k. —154-1005 —1.55-10° —0.5 —1.55-10° —0.5

w —0.001334 —-0.001350 —-1.5  —0.001350 —1.5
¢ —3.5736 —3.6004 —0.5 —3.6004 —0.5
m  —0.036899 -0.037268 —-1.0 —0.037268 —1.0

°p 0.062673 0.062361 2 0.062361 2

It is difficult to directly compare the sensitivities of various parameters with each other,
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since they can vary by several orders of magnitude and are generally in different units. There-

fore normalization has been proposed by Gutierrez [45, p.112] according to:

Jdo,
s _ Prnom do, _ (Uz)nom - % change in o, (5 75)
norm (UZ)nom 8p 8p % Change ln p ’
Prnom

This quantity can be interpreted as the percent change in the performance RMS for a given
percent change in the value of the parameter p in the vicinity of the nominal parameter
value ppom - This is used in Figure 5.6 to compare the normalized sensitivities of all SDOF
oscillator parameters with each other. As expected, the normalized sensitivity with respect
to the (physical) mass m is zero. This is consistent with (5.74). The normalized sensitivities
for all other parameters are negative with exception of the mode shape (”displacement”) °¢ .
Intuitively this is satisfying. If we increase the damping ratio, (, for example, we will expect
a decrease in the displacement RMS of the mass, therefore the associated sensitivity has to
be negative. Also an increase in the spring stiffness £ or the damping coefficient ¢ will lead to

a smaller RMS value.

Sensitivities of Original System Sensitivities of Balanced System

2 02 2 a1 0 1 2
ho#‘f@%ﬁl}ap p /G xdc /9p

nom z,nom

Figure 5.6: Comparison of normalized sensitivities for SDOF system parameters
(from top to bottom). Modal parameters: ¢, mode shape, my,q =
m modal mass, ( modal damping ratio, w modal frequency. Physical
Parameters: k spring stiffness, ¢ damping coefficient and m (physical)
mass.

Figure 5.6 also shows that the normalized sensitivities in the unbalanced (left subplot) and
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balanced case (right subplot) are equal. We can conclude that the extension of the performance
prediction and sensitivity analysis framework to balanced systems as presented in Section 5.2
has been validated for single degree-of-freedom, single mode systems. The next section will
“inductively” extend the proof to multi-degree-of freedom systems. Model reduction cannot

be investigated for the SDOF case, since both states are needed to represent the resonance.

5.4.2 Multiple Degree-of-Freedom Problem

A multiple degree-of-freedom (MDOF) problem extends the verification of the balanced and
reduced sensitivity analysis. Figure 5.7 shows a structure consisting of n,, masses that are
interconnected by linear springs of stiffness k;. The stiffness of the first spring is computed
from the relationship k; = EA/Il, for the axial stiffness of a rod. Each following spring
constant is a multiple of the first one such that k; = ¢ - k1 , where ¢ € [1,n,, — 1] . Both ends
of the chain have a free boundary condition. The central mass is mpuy = m(p,, 11)/2 and is
significantly larger than the other masses, mgpm,. It is assumed that a random white-noise
disturbance force d of unit-intensity Sgg = 1 acts on the hub mass. This arrangement could

represent a simplified interferometer model.

X
(nm+1)/2
X] Xl’lm
k

(nnr1)/2 k.

kl kz nm-1

H\VVH WA= e J%Arn}nmﬂmj%/\r - A VA
my,, | m,

m my M 1y2 M t3)2
modal damping: { > d white-noise

disturbance: d

Figure 5.7: Mass-spring model of a multi-degree-of-freedom (MDOF) structure rep-
resenting an interferometer with free-free boundary conditions.

The first performance metric, J,; = RMS(z;), is the RMS of the displacement of the
hub mass itself, whereas the second performance, J, » = RM S(z2), is the optical pathlength

difference (OPD) between the left and right arm. The performance matrix, C,,, relates the
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physical degrees of freedom z to the performances z .

T
21 0O ---0--- 1 --0--- 0
a— = x(nm-l—l)/Q (576)
¥) -1 -0 - 2 0 -1
Cr
Tn,,

Note that the number of masses, n,,, is always an odd number. We arbitrarily choose
nm = 21 . The stiffness k; is computed as k; = 3.55-10* [N/m], the hub mass is chosen to be

mpuy = 120 [kg] , the appendage mass is mgrm = 10 [kg] and the modal damping ratio is set

to ¢ = 0.005 for all modes. The equations of motion are then written as:

Marm 1 -1 0

Mhub T+k- -2 . r=|1|d

Marm _(n - 1) (n - 1) 0
M K Ba
(5.77)

After solving the generalized eigenvalue problem [K — wsz } ¢; = 0 the system is written in

orthonormal second order modal form as follows:

0 I 0
dp ap + d
02 270 M- leapTp,
e P (5.78)
z = |:sz0(1) 0:|Qp
N——
Czd

where 2, 7, °®, M , Ba » C»z are the modal frequency matrix, the modal damping matrix, the
mass-normalized modeshape matrix, the mass-normalized modal mass matrix, the disturbance

influence coefficient matrix and the performance influence coefficient matrix respectively.
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The RMS performances for the system in (5.78) are computed according to (A.25). Next
the system is internally balanced according to the procedure in Section 5.2. Again the perfor-
mances are computed according to Equation (5.30). Next model reduction is performed using
the procedure outlined in Section 5.3. The error bound (5.65) is used with a tolerance of 0.5%
on the RMS for both performances. The RMS values for the reduced system are computed
according to (5.47). The resulting truncation threshold, ny, says that only 14 out of the 42
states of the original system need to be kept as shown in Figure 5.5(a). The RMS results for

the original, the balanced and the reduced system are shown in Table 5.4.

Table 5.4: Comparison of RMS results [in pm| for MDOF example.

model # of states  cond(A) o Aoy, oy, Oz, Aoy, [0,
original 42 281848.16  496.4692 0 389.9561 0
balanced 42 303.5706  496.4692 0 389.9561 0
reduced 14 68.9907  496.4682 2.125-10"% 389.9088 0.0001213

The RMS comparison shows that the RMS for the original and balanced system are equal
as expected. Removing (42-14=28 states) causes a relative RMS error of 0.0002125 % for z;
and 0.01213 % for z, which is below the 0.5% error bound. Also it can be seen that the
reduced system is much better conditioned than the original system. Figure 5.8 contains the
disturbance to performance transfer functions for both performances. The full order system
(42 states) and reduced order model (14 states) are shown. It can be seen that the RMS
of the hub displacement is mainly driven by the low-frequency (rigid body) behavior of the
system. We expect the sensitivities with respect to modal parameters to be small for z; . In
the second performance zo the rigid body mode is not observable and the flexible dynamics
of modes 2, 3 and 4 dominate the RMS response. This could be confirmed with a frequency-
domain performance analysis and cumulative RMS plots as presented by Gutierrez [45]. We
expect the modal parameter sensitivities for these critical modes to be large.

The normalized modal sensitivities for the MDOF problem were computed using Equa-
tions (5.67-5.71) for the modal frequencies w;, modal damping ¢; and modal mass 7. The
modes j = 2,3,...,10 were taken into consideration as shown in the horizontal bar charts of

Figure 5.9 for performance z;.
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G, d(jw) Hub Displacement G, d(j ) Optical Pathlength Difference

Magnitude dB [um/N]
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Figure 5.8: Disturbance to performance transfer functions for MDOF example. Left
column: z;. Right column: z9. The reduced transfer function (14 states
- solid line) is shown along with the original unreduced system (42 states
- dashed line).

Three cases are compared: (1) original full order model (42 states), (2) reduced model (14
states) and (3) a 1% finite difference approximation. The results are seen to match well up to
Mode 7. For higher modes two important phenomena are observed.

First we see that the modal sensitivities of the reduced system do not match the (correct)
sensitivities of the full order system. This is due to the fact that the states, which correspond to
the modes of interest have been truncated (7 modes = 14 states). It is thus not meaningful to
try and compute the modal sensitivities of a mode which is no longer represented in the system
dynamics. Secondly the finite difference approximation starts to break down for higher order
modes. As indicated by Gutierrez [45], it has been observed empirically that the errors of finite
difference approximations of the sensitivity increases with model order due to numerical ill-
conditioning. The normalized sensitivity comparison for the second performance 25 is shown
in Figure 5.10(a).

As expected the normalized modal sensitivities (modes j=2 to 5) for the second perfor-
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Normalized Sensitivity Comparison
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Figure 5.9: (MDOF) Normalized modal sensitivity comparison for performance 1

mance zo are larger than for z;. Subsequently the validity of the sensitivity error bound
(5.72) was verified numerically by comparing the absolute value of the relative sensitivity er-
ror |A (0o, /0pj)/(05,,/0pj)| with the conservative error bound from (5.72). Figure 5.10(b)
shows that the conservative error bound on the sensitivity from (5.72) is valid in the MDOF
case. The maximum relative sensitivity error for the modal parameters of the three dominant
modes 2, 3 and 4 is plotted and compared to the upper error bound from (5.72). It is interest-
ing to observe that the error bound (5.72) is significantly tighter than the RMS error bound
(5.65). The conservatism ratio” lies between a value of 1.75 and 6.73 and does not show the
same dependence on the truncation level, ny, as the RMS error bound did.

So far the sensitivity computations for the balanced and reduced MDOF model have
only been validated for modal parameter sensitivities. We need to verify that the physical
parameter sensitivities for the reduced model would still be accurate within the error bound
(5.72). This is presumably true since the contribution to the sensitivity is captured in the

critical modes (5 = 1,2,...,7) via the chain rule as shown in (5.79-5.81).

Ratio of sensitivity error bound (5.72) over the actual maximum sensitivity error computed with (B.58).
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Normalized Sensitivity Comparison
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Figure 5.10: (a) Normalized Sensitivity comparison for performance 2. (b) Numer-
ical validity of relative sensitivity error bound (5.72) in the MDOF
case. The maximum sensitivity error (Max SENS Error) is taken from
the set of modal parameter sensitivities for performances 7 = 1,2 and
modes j = 2,3,4

The physical parameter sensitivities in the MDOF example are computed with respect to
the mass of the hub, mjp,, the mass parameter of the arms, mg4y,, and the spring stiffness
parameter, k = k1. The physical parameter sensitivities are significantly more expensive to
compute than the modal parameter sensitivities. This is due to the fact that the physical
parameters mpyp, Marm and k do not explicitly appear in the matrix derivatives shown in
Equation (A.32). The derivatives with respect to physical parameters of the system matrices

are computed as:

N
0A.q DAL Ow;
A, A,q(Q d = s .
d = Azq (2(p)) an B jEZI ( O, 8p> (5.79)
N n
. . 9B,4 OB,q Omj ~~ [ 0Bq 0°@
Boa — Bua (M(p),°® - Loy ] _
2d — zd( (), (p)) and = E (87%- p +l§1 <8o¢ij P (5.80)
oC N 2 9C,, 0°bi
Chg = Cuq (°® (p)) and —22 = (—d : —J> 5.81
(o Catont) wma 20t =33 (S04 O 551

where N is the number of modes and n,, is the number of masses (equal to the number of
degrees-of freedom).
Inside the expressions (5.79)-(5.81) the derivatives of the modal frequency, mode shapes

and modal mass with respect to the physical parameter p are required. These derivatives have
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been computed with the methods suggested by Gutierrez [45, p.126-133], including Nelson’s
method [107] for the mode shape derivatives 0°¢;;/0p . The derivatives of the global mass
matrix OM /Op and stiffness matrix 0K /dp are required and can be easily computed since the
parameters mpyp , Merm and k appear explicitly in (5.77). The governing sensitivity equation

of the internally balanced and reduced system from (5.69) is implemented as follows:

052 N\T ,
0% = trace T*lpTzqP (Tfl)T (aCzd,z> Ozdyi + O£i80Zd’Z n
7 A A T
trace | L | PTO2sdp 1 pTs, 1 5.p (T H" (—8 Zd) TTPT 3| + (5.82)
Ipj dp;
_ B B T
trace | L; PTa 2d B!, + B.4 (8 Zd) 7' pT
Op; Op;

The physical parameter sensitivities for a balanced reduced system can be computed pro-
vided we know the matrix derivatives of the original system. The results of the physical

parameter sensitivity analysis for the MDOF case are normalized and shown in Figure 5.11.

Performance z . Performance z,

MDOF Example

w
T

Physical Parameter Sensitivities

[38)
T
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3 = finite differences (1%)
2 =reduced model 14 states
1 = original model 42 states

—_
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o 5 m 1+
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Figure 5.11: Normalized Sensitivities for physical parameters (MDOF problem), left
shows performance 1 (hub displacement RMS), right shows perfor-
mance 2 (OPD RMS) sensitivities.
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The left subplot contains the result for performance z;, whereas the right subplot shows
the results for performance zo. The results are verified with a 1 % finite difference approxima-
tion of the sensitivities. We see that the performances are most sensitive to the spring stiffness
parameter k. Increasing the mass on the extremities, i.e. increasing the parameter mg;,y, will
actually increase the resulting RMS. This is a counterintuitive result at first, since we gener-
ally expect that increasing any mass parameter will always lower the RMS of a displacement
related performance metric. This kind of insight is valuable for system optimization, isoper-
formance and uncertainty analyses. We see that in order to increase the performance of the
”interferometer” (i.e. lower the RMS values of z; and z3) in the presence of the white-noise
hub disturbance d we should increase the mass of the hub, decrease the mass in the arms and
increase the stiffness of the arms.

The results (1) are for the original system (42 states), (2) for the reduced system (14
states) and (3) for a 1% perturbation size finite difference approximation. The physical pa-
rameter sensitivity analysis for the original system cost 1.28 - 107 floating-point operations,
where it cost only 6.70 - 10° floating-point operations for the reduced system (factor 2 sav-
ings). We can also see that the answers for the three systems (1), (2) and (3) are very
close. The error bound (5.72) predicts that the absolute value of the relative sensitivity error
|A (00,,/0p;)/(05,,/0pj)| should be smaller than 0.0033. The largest relative sensitivity error
was found to be equal to 0.0024 for the sensitivity do,,/Omgrm. Thus the sensitivity error

bound (5.72) is shown to be valid for physical parameter sensitivities as well.
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5

.4.3 Application to SIM Classic (V1.0)

In order to demonstrate the usefulness for realistic models, a disturbance and modal sensitivity

analysis was conducted for a closed-loop model of SIM. The model of SIM Classic and the

disturbance analysis results for the full-order (308 states) and reduced model (110 states) are

shown in Figure 5.12.

SIM Optical Model Ray Trace

(a)

Disturbance PSD’s and cumulative RMS curves
T T

10

— RWA Fx [(Nf/HZ]
— RWA Fy [(N}/HZ]
— RWA Fz [(Nf/HZ]
— RWA Mx [(N-m)/HZ]
— RWA My [(N-m)/Hz]
RWA Mz [(N-m)7Hz]

10° 10

Frequency (Hz) Frequency [HZ]

(c) (d)

Figure 5.12: (a) SIM Classic; (b) FEM with ray trace for interferometer #1; (c)
Disturbance PSD’s for RWA disturbances; (d) Cumulative RMS plot
(top) and PSD (bottom) for the total OPD of interferometer #1, where
the dashed line is the reduced model (110 states) and the solid line is
the full order model (308 states).

The disturbance analysis (PSD-method according to [45]) was performed using a 4-wheel
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reaction wheel assembly (RWA) as disturbance input, see Figure 5.12(c). The power spectral
density (PSD) of the performance (Total OPD interferometer #1) along with its cumulative
RMS curve is shown in Figure 5.12(d). We see that a performance around 4.2 nm RMS is
predicted, which meets the 4.4 nm requirement. The cumulative RMS plot shows that 6 “crit-
ical "modes are responsible for the RMS. Subsequently a Lyapunov analysis was conducted
with the full order (308 states) and a balanced reduced model (110 states). The equations
derived above were used to compute the RMS and modal parameter sensitivities after they
were incorporated in the functions dist_analysis.m and sens_analysis.m.

The RMS results for the original and the reduced system match closely, when using the
PSD method, where the precision is mainly a function of the resolution of the frequency
vector. The RMS predicted by the Lyapunov method differs by 5.2% between the original
(308 states) and the reduced model (110 states), which is in excess of the 0.2% allowed by the
RMS error bound. This is likely due to numerical ill-conditioning as discussed below. The

results are compared in Table 5.5. The reduced system solves at 4% the CPU time of the

Table 5.5: RMS Results comparison for SIM Classic

Results Full Model Red Model

# of states 308 110
RMS (PSD) 421 nm  4.21 nm
RMS (Lyap) 4.3321 nm  4.1077 nm
CPU (Lyap) 39.567 sec  1.552 sec

original system for a 65 % reduction in the number of states. (This doesn’t include the CPU
time for the balancing and reduction process itself).

The normalized modal parameter sensitivity results for 10 modes of the system are com-
pared for the original system (308 states) and the reduced system (110 states) of SIM Classic
on the left and right of Figure 5.13(a) and (b), respectively. The results are in good agreement
with the exception of some of the less dominant modes. It is noticeable that the agreement is
better for “critical” modes of the system compared to “non-critical” modes (i.e. modes that
do not significantly contribute to the performance RMS). It took 78.2 seconds to solve for the
original system sensitivities, but only 3.3 seconds to solve for the reduced system.

Significant and persistent numerical problems were initially encountered, when trying to
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Figure 5.13: (a) SIM Classic modal parameter sensitivities for 10 modes and full-
order system (308 states, 78.2 seconds CPU time), (b) Modal sensi-
tivity results for balanced and reduced model (110 states, 3.3 seconds
CPU time).

produce these results. The reason, discussed below, has to do with observability /controllability
of the system. The results in Figure 5.13 were obtained by successfully applying Mallory’s
pre-balancing method for model reduction [85]. The key to the pre-balancing method is that
the system is brought into 2x2 block-diagonal form and each of these 2x2 blocks is balanced
individually. Then nearly uncontrollable states are removed based on a user-defined tolerance
before the overall T-matrix is computed.

Another noteworthy result is that the finite difference validation of the modal sensitivities
became possible with the balanced reduced system. Gutierrez has previously reported the in-
ability of the finite difference approximation to validate the analytical sensitivities for large
order ill-conditioned systems [45, p.124] . This is due to the fact that the state covariance
matrix solution does not vary smoothly with small changes in a system parameter due to
ill-conditioning. This ill-conditioning of the system is removed with the method presented in
this thesis. The resulting finite differences for the balanced reduced system closely match the
analytical answers as shown by the bar chart in Figure 5.14(b). The figure shows the logarithm
of the relative percent difference between the analytical sensitivities and the finite difference
approximations for the original system (left) and the balanced, reduced system (right). This
quantity was computed as log {100 - (do,/0p — Ao, /Ap) / (0o,/0p)}, where the term with

the partials comes from the analytical sensitivity calculations and the A-term comes from
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the finite difference approximation. Thus, a value of one for a horizontal bar indicates a 10%
difference between the analytical sensitivity and the finite difference approximation. A value

of two indicates a 100% difference.
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Figure 5.14: (a) Very large errors between finite difference approximation (1%) and
the analytical modal parameter sensitivities for the full order model;
(b) Good approximation with finite differences (1%) in the reduced
model case. Mode numbers correspond to modes in Figure 5.13

Some numerical conditions must be met in order to successfully apply the balanced and
reduced LTI system extensions to the DOCS framework that are presented in this chapter.
First the system must be asymptotically stable. This means that no poles (of the appended,
closed-loop system) are allowed on the jw-axis or in the right half-plane (RHP). Physically
this would mean that the system response diverges for a finite input disturbance and that the
performance RMS is not bounded. Secondly the system must be in a minimal realization.
This requirement is harder to meet since larger order models (SIM, NGST, TPF and Nexus)
invariably all feature pole-zero cancellations after initial model assembly, which are indicative
of uncontrollable or unobservable states. Even though these states do not prevent a solution
for ¥, to be found (by definition they don’t contribute to the RMS), they cause the system
to be ill-conditioned. This causes problems when we try to compute the balancing matrix 7.

Finally we want the system (and the A,4- matrix in particular) to be numerically well con-
ditioned from the start. Certain canonical realizations of the disturbances or the compensator
and the traditional 2nd-order modal form of the structural dynamics are counterproductive

in this sense. Alternate realizations such as the real modal form, see Equation (5.16), are
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recommended. All these conditions point to the need for a reliable, flexible and robust model
reduction and conditioning module in DOCS. This need has been addressed by Uebelhart
[136].

An interesting observation was made when the RMS for OPD #1 for SIM Classic (308
states) was initially computed for the original and the balanced (unreduced) system and
the answers were compared. Even though the RMS resulting from the Lyapunov approach
should be identical for both cases (similarity transformation), the answers differed by roughly
10% (4.33 nm versus 3.85 nm) even though the system was merely balanced and no states
were removed. The cause of this disturbing result was linked to the presence of unobserv-
able/uncontrollable states in the original system. The erroneous results for the modal pa-
rameter sensitivities in this case are shown in Figure 5.15(a). The correct answers are shown
in Figure 5.13. The erroneous answers in Figure 5.15(a) are produced without any warn-
ing, which suggests that numerical conditioning checks and safeguards as well as engineering

judgement are indispensable.
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Figure 5.15: (a) Erroneous modal parameter sensitivity results for SIM Classic ob-
tained when balancing matrix 7' is computed without first removing
unobservable and uncontrollable states, e.g. via pre-balancing. (b)
Hankel singular values for original closed-loop SIM Classic model.

The numerical reason for the erroneous result is that very small (very small means on the
order of eps = 2.2204 - 107'¢ the numerical floating-point accuracy of the computer) Hankel
singular values are associated with the (nearly) unobservable/uncontrollable states. These

very small numbers are inverted in the computation of T or 7!, where they become very big
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numbers, even though they correspond to insignificant states. Consider the last term in the

following equation, which inverts the Hankel singular values in Moore’s method [102]:
_1 _1
T7'=%. 200 U,8,° (5.83)

This leads to ill-conditioning of the T-matrix itself and to numerical errors in the TGSE.
Mallory’s pre-balancing method (gmxobal.m) [85] was successfully applied to solve this prob-
lem, since the pre-balancing algorithm removes the unobservable/uncontrollable states before
the inversion. This leads to a balanced, reduced, minimal and well-conditioned system and ac-
curate answers for the RMS and sensitivities. This is a key element in the accurate prediction

of isoperformance contours.

5.5 Summary

The cost of solving a Lyapunov Equation (5.1) is shown to be roughly 50 -n?. Since hundreds
or even thousands of Lyapunov equations have to be solved in a multivariable isoperformance
problem, efforts were undertaken to find a solution more efficiently. This can be achieved in
two different ways. The first way is to diagonalize the integrated state space system, (1.1),
and to apply the new, fast Lyapunov solver presented in Section 5.1. This drops the exponent
of ng in the Lyapunov solution cost from a value of three to two. The second approach is
to reduce the number of states, ng, while retaining the important information in the model.
Section 5.2 discussed improvements in performance prediction and sensitivity analysis for
similarity transformed systems, including derivation of the transformed governing sensitivity
equation (TGSE). Section 5.3 derived error bounds for performance and sensitivity analysis
for reduced systems. Using these methods analytical sensitivities can be accurately computed,
even when matrix derivatives, such as 9A,4/0p;, are only known with respect to the original
matrices in the “assembly” realization. The equations are verified with a single degree-of-
freedom example, a MDOF example and an analysis of the SIM Classic model. The sum
of these contributions enables a meaningful isoperformance analysis for realistic, large order

systems.
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Chapter 6

Experimental Validation

The goal of the experimental validation is to demonstrate the ability of the isoperformance
methodology to accurately predict performance contours for a physical laboratory testbed in
a 1-g environment. This chapter provides a testbed description, lays out the experimental
approach, presents results from the testbed characterization and discusses a comparison of

theoretical predictions with experimentally measured isoperformance contours.

6.1 Testbed Description

The DOLCE! testbed shown in Figure 6.1 was explicitly designed for this purpose. The
main feature of DOLCE is that system parameters can be varied over a large range. This is
different from the cantilever truss employed by Gutierrez [45], which was used for physical
parameter sensitivity validation via small perturbations of masses and stiffnesses. The four

variable parameters on DOLCE are shown in Table 6.1.

Table 6.1: Variable parameters of DOLCE testbed.

Symbol Parameter Range Units
Vs excitation RMS voltage 0.1-1.0  [Vrms]
my payload mass 0-200  [lbs]
ms seismic mass 30-850 [grams]
ks suspension spring stiffness 80-216  [lbs/in]

!The testbed name contains the initials of all students who worked on its design and development: Dusty

DeQuine, Olivier de Weck, Laila Elias and Cemocan Yesil.
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6.1.1 Physical Test Setup

Figure 6.1(a) shows the testbed which, starting from the top, is comprised of an uniaxial
vibration exciter (shaker), with a seismic mass, ms, driven by a band-pass filtered (0-100
Hz), random excitation voltage, Vi. Next the upper stage contains a single small bay of a
square truss and a coupling plate. The lower stage counsists of a large square truss, a weight
bed holding a payload mass, m,, and an aluminum sandwich base plate. Finally an axial
stabilization system and four (4) suspension springs of stiffness ks complete the arrangement.

The shaker disturbance force, Fy, excites the testbed mainly in the vertical (axial) direction
and simulates an on-board mechanical disturbance source. The induced axial motion is sensed
and recorded as described below. This can be thought of as representing jitter of a spacecraft,
with the soft suspension springs providing a functions similar to the attitude control system
(ACS). The lower stage is then analogous to a spacecraft bus, while the upper stage represents

the payload. The testbed is open-loop, i.e. no controller was implemented.

DOLCE FEM _—input node (40)

(IMOS V5.0)

Stage

Q4

coupling plate

Lower
Stage and
Weightbed

o

composite plate r;.é/

Ié)——l output node (17)

\ Stabilization
\ % System and Legend el
1 G ar element O orid point
base plate ! ; L grid poin
I A Suspension rigid body [ fixed boundary

plate element
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displacement
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Figure 6.1: (a) DOLCE testbed setup in laboratory. (b) Finite element model
(FEM) of DOLCE using IMOS version 5.0.
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6.1.2 Finite-Element Model

A finite element model (FEM) of the testbed was constructed using the MATLAB toolbox
IMOS (version 5.0), see Reference [62]. The model consists of 44 nodes with 188 independent
degrees-of-freedom (after Guyan reduction). A graphical rendering of the FEM is shown in
Figure 6.1(b).

The truss members are represented by beam elements, while quadrilateral plate elements
are used for the coupling plate (uplate) and the composite plate (splate). This latter plate is
actually an aluminum sandwich plate with two 1.9 [mm] thick face sheets and a 3.15 [mm] thick
core sheet. The core consists of two half inch thick hexagonal honeycomb cores. This sturdy
construction was necessary in order to accommodate a payload mass up to 200 [lbs] without
significant elastic deformation. The four suspension springs are modeled with uniaxial spring
elements (celas), while the shaker and its attachment is modeled as a rigid body (rbe2).
Concentrated masses (conm) are placed at the nodes of the truss elements, accounting for the
ball masses, as well as at the locations of the seismic mass, mg, and the payload mass, m,,,
respectively. The lower grid points of the suspension springs are assigned a fixed boundary
condition, which is representative of the attachment of the testbed to the concrete slab in the
laboratory.

The input node for the disturbance force, Fy, is #40, while the z-displacement of node
#17 is used to predict the axial motion of the testbed. The assembly of the FEM, including
solution of the generalized eigenvalue problem takes 0.82 [sec] (Pentium III, 650 MHz) and
requires 13.1 million floating point operations. The first flexible mode is a rocking mode and
occurs at a frequency of 6.28 [Hz| with m, = 100 [Ibs] and &k, = 168 [lbs/in] suspension springs.
A listing of the FEM definition file is contained in Appendix D.

6.1.3 Disturbance Model

The shaker (Model 4809 Briiel & Kjaer) generates a random axial disturbance force, F,;, whose
magnitude and frequency content depend on the excitation voltage, V;, and the seismic mass,
ms. The seismic mass, mg, was determined to be 339.75 [grams]; it is held constant in this
experiment. This device is meant to simulate the disturbances generated by vibrating on-
board machinery on a spacecraft (e.g. reaction wheel, cryocooler), albeit at a significantly

higher force level.
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A sample time realization of the measured disturbance force is shown in Figure 6.2(a). The
sensor consists of a uniaxial load cell (see Table 6.2 for specification), which is attached to the
seismic mass and measures the disturbance force, F,;. The power spectral density (PSD) of the
disturbance force, Sgq, can be seen in Figure 6.2(b). The bandpass nature of the disturbance
is evident, where the low frequency rolloff below 20 [Hz] is due to the combined amplifier,
shaker and load cell (sensor) dynamics. The high frequency rolloff was chosen at 100 [Hz].

This bandpass nature is typical from many disturbance sources, such as reaction wheels [89].

Excitation Force Fy : RMS =7.7218 [N] Exitation Force PSD : RMS = 7.8336 [N]
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Figure 6.2: (a) Shaker disturbance force, Fy(t), sample time history for shaker volt-
age, Vs = 0.5 [Vrms|. (b) Averaged disturbance PSD Sy, - 25 averages.

6.1.4 Performance Model

The performance is the root-mean-square (RMS) of the composite (base) plate displacement,

z(t):

1/2

J,=FE [sz] (6.1)

This quantity can be computed from the time history of z(¢) directly or alternatively from the

PSD, S,,. The performance J, is computed by integrating under S,, and taking the square

root.
1/2

fmax

7. = |2 / S.. () df (6.2)

fmin
The second approach was chosen here since it allows averaging of the PSD’s and a more

accurate result. Figure 6.3(a) shows a sample time history of the base plate displacement,
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z(t), as measured with the proximitor (gap sensor). The corresponding (averaged) power
spectral density function, S, in units of [um?/Hz] is shown in Figure 6.3(b). The features

of this function are discussed below.

Base Displacement z: RMS = 14.46 [um] Performance PSD : RMS = 16.52 [um]
>0 10*
25 Averages
) 10%}
g E
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=0 = 10°
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0 1 2 3 4 0 20 40 60 80 100
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Figure 6.3: (a) Sample time history of displacement, z(¢), for Vs = 0.5 [Vrms] and
myp = 160 [Ibs]. (b) Averaged performance PSD S,, - 25 averages.

This performance metric would correspond to jitter of the spacecraft bus in a real space system.
The performance signal, z(¢), is measured via an inductive proximitor, which acts as a gap
sensor (eddy current gap sensor by Bentley XL 5mm). The gap sensor is very sensitive and was
calibrated to 0.425 V/mil of displacement with a LB-11/70 Laser Displacement Sensor. Also
a Sunstrand DC accelerometer was installed in order to corroborate the gap sensor results.

The sensor specifications are summarized in Table 6.2.

Table 6.2: DOLCE Testbed sensor specifications.

Sensor Model Range Calibration

Force Sensor (LC) 208A02 0-889.6 [N]  94.87 £+ 6.67 [N/V]
DC Accelerometer QA-1400 + 15 [g] 1.0 £ 0.01 [g/V]
Laser Displacement Sensor LB-11/70 60-140 [mm] 10.28 + 0.3 [mm/V]

Proximitor (Gap Sensor) 3300-XL 5mm  10-100 [mil]  2.35 [mil/V]

The sensor suite below the sandwich plate is shown in Figure 6.4. The load cell is attached

below the seismic mass (top of testbed) and cannot be seen on this picture.
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Figure 6.4: DOLCE Testbed Sensors

6.2 Experimental Approach

The experimental approach is presented in Figure 6.5(a). First the testbed was assembled,
instrumented and calibrated. It was decided to conduct a bivariate isoperformance test, with
the performance given by Equation 6.1. The variable parameters were the excitation voltage,
Vs, ranging from 0.1-1.0 [Vrms] as well as the payload mass, m,, ranging from 0-200 [lbs] as
shown in Figure 6.5(b). A test matrix was run on the testbed and recorded with parameter
increments AVy = 0.1 [Vrms] and Am, = 10 [lbs], respectively. From this gridded data

isoperformance contours were extracted via linear interpolation, see Subsection 3.2.1.

Assemble Theoretical : my, (payload mass)
Testbed FEM spnng—(rinellss Units: [Ibs]
i mode Lower Bound: 0
Updated Upper Bound: 200
. pper Bound:
Test Matrix FEM Step Increment: 10

Vs (excitation voltage)
1 Units: [Vrms]

- Lower Bound: 0.1

—» Insights Upper Bound: 1.0
Step Increment: 0.1

Compare experimental
results and model predicitions

(a) Experimental Procedure (b) Variable Parameters

Figure 6.5: (a) DOLCE Experimental Approach. (b) Variable system parameters
m,, and V.

Independently and without knowledge of the experimental results an apriori finite element
model (FEM) was constructed (“original FEM”). This FEM was described in the previous

subsection, see Figure 6.1(b), and a complete listing of the IMOS model input deck is contained
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in Appendix D. Only assembly drawings, masses from scale measurements and catalogue
values for material properties and spring stiffnesses were used for this “original” (unupdated)
FEM. The predictions from this model would be equivalent to what could be expected from
isoperformance analyses for spacecraft in the conceptual and preliminary design phases, such
as NEXUS. For these types of early models system-level test data is usually unavailable.

A more accurate prediction is expected from an updated FEM, which has its physical
parameters tuned such that the FEM and experimental transfer function (measurement model)
from Fj to z coincide well. A tuning procedure similar to the one used by Gutierrez [45] was
used here. Finally the isoperformance contours for DOLCE are predicted with a single degree-
of-freedom (SDOF) model. This model lumps the entire testbed mass (30.585 [kg]) together
with the payload mass m, over the four suspension springs (in parallel) represented as a single
compliance. The damping ratio is assumed to be ( = 0.02. The model of the SDOF oscillator
used here was previously introduced in Section 2.1.

The goal of the experiment is to gain insights by comparing different performance contours
for the experiment with the ones predicted for the three models. In this way limitations of the
isoperformance methodology might appear, which would not be revealed by solving additional

theoretical problems.

6.3 Testbed Characterization

6.3.1 System Identification

The transfer function (FRF) from disturbance (shaker) force to base plate displacement,
G.a(s) = Z(s)/Fy(s), where s = jw, was obtained experimentally and by model prediction,
see Figure 6.6. For this system identification the load cell (Fy) and the gap sensor (z) specified
in Table 6.2 were used. The coherence function v?(f) corresponding to the experimental
transfer function Z(s)/Fy(s) is shown in Figure 6.7. It can be seen that the coherence is
close to one from roughly 15 to 75 [Hz], thus providing a good estimate of the disturbance to
performance transfer function in that region. Below 15 [Hz| the coherence drops because the
shaker dynamics prevent a lot of low frequency disturbance energy to be generated. Above

75 [Hz] the attenuation of the bandpass filter rolloff starts to take effect.
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Figure 6.6: DOLCE transfer function G4 = Z(s)/Fy(s) for m, =0, V; = 1.0
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Figure 6.7: DOLCE coherence function 2(f) corresponding to the transfer function
Goa = Z(s)/Fa(s).
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As can be seen there are two observable modes in the bandwidth up to 100 Hz. The
first mode at 10 Hz is the axial base suspension mode, where the testbed translates vertically
up and down on the 4 compression springs. The second mode at 65 Hz is the coupling plate
bending mode, which causes a vertical displacement via the center rod. Mode shapes for these

two modes are contained in Figure 6.8.

mode 3 (10.2927 Hz) mode 6 (64.4872Hz)

Figure 6.8: DOLCE Testbed Observable Modes

As expected the SDOF model can only predict the first resonance. The original FEM
overpredicts the upper plate mode by roughly 10 Hz. The agreement between the updated

FEM and the experimental transfer function is very good.

6.3.2 Performance Testing

Next the testbed response was investigated as a function of the single parameter, m,. A
waterfall plot showing the power spectral density (PSD) of z as a function of m,, is depicted
in Figure 6.9.

It can be seen that the axial suspension mode is dominant for all payload masses. As
expected the mode softens with increasing mass from about 10 Hz at m, = 0 [lbs] to 6 Hz at
my = 200 [Ibs]. The resonant plate mode at 65 Hz can also be seen, but it is much less clear
for larger m,;,. A higher frequency mode around 40Hz appears m-invariant and we suspect

some structural non-linearity.
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DOLCE Waterfall Plot: Szz(f) Forcing Level = 1.0 Vrms

[
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Figure 6.9: Waterfall Plot for 1.0 [Vrms] forcing level

6.4 Isoperformance Results and Interpretation

At each parameter combination the time histories of Fj;(¢) and z(t), where recorded and the
performance J, = J,(Vy, m,) was computed with 25 averages according to Equation (6.2).

The results from the test matrix are shown in Figure 6.10.

Results DOLCE Test Matrix

w B n D
(e} (e) (e (e}
| | | |

N
[}
|

performance J; [Um]

104

0.5 qusd

100 150 ‘ 0 «onVs
mass mp [Ibs] 200 e$c\\a\\o

50

Figure 6.10: DOLCE Experimental Test Matrix (Vs, my).

The peak displacement RMS value of 57.6 [pm] is obtained for the maximum excitation

level (V; = 1.0 [Vrms]) with an empty weight bed (m, = 0 [lbs]). This is intuitively satisfac-
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tory, since at this point the maximum disturbance energy enters the system (about 14.86 [N]
of force RMS), while the disturbability of the system is at a maximum. Recall that the plant
transfer function for such a system has a 1/m term in the numerator. Conversely the lowest
response (“best performance”) is found for V, = 0.1 and m, = 200.

This information is used to obtain isoperformance contours at the 7.5, 15 and 30 [pm]
levels (Figure 6.11). The basis for obtaining the experimental isoperformance contours is the
test matrix with Vs and m, shown in Figure 6.10 and the linear interpolation scheme from

Subsection 3.2.1.

Experimental vs. theoretical contours Jz [pm]
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Comparlson' of Experimental | " SDOF Model
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Contours for DOLCE Testbed | ._._. - FEM Updated

Figure 6.11: DOLCE Testbed: Comparison of experimental versus theoretical isop-
erformance contours at the levels: J, =7.5, 15 and 30 [pm] with
p1 = myp and py = V.

Similar contours are predicted for the SDOF model and the FEM’s (original and updated).
This suggests that the axial suspension mode is dominant in most of the trade space. Excellent
correlation between experiment and theory is found at low forcing levels, see the 7.5 um
contour. Deviations are found for larger forcing levels (15 and 30 pum contours), even though

the general trends are still predicted correctly by the isoperformance models.
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The cause for this deviation is difficult to determine, but is likely due to non-linear effects
in the structural plant as the shaker amplitude increases. To illustrate this statement the
performance PSD’s, S,,, have been plotted for the experimental data (blue - solid line) and the
FEM prediction (red - dashed line) at two different points in the trade space, see Figure 6.12.
Subplot (a) shows the PSD’s for point “A” in Figure 6.11 with m, = 0 [lbs] and Vi = 0.1
[Vrms|. Here good agreement between theory and experiment is found. Subplot (b) on the
other hand represents Point “B” in Figure 6.11 which experiences the maximum disturbance
level. Figure 6.12(b) shows that the discrepancy in performance prediction is manly due to
the second mode (coupling plate bending). This mode is not visible in the test data and does
not contribute to the experimental cumulative RMS. This is due to a non-linear effect, which

has not been investigated in greater detail.
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Figure 6.12: (a) Comparison of PSD S, (bottom) and cumulative RMS plot (top)
between experiment and FEM prediction for configuration: m, = 0
[Ibs], Vs = 0.1 [Ibs]. Good Agreement. (b) Comparison of PSD S,
(bottom) and cumulative RMS plot (top) between experiment and
FEM prediction for configuration: m, = 100 [Ibs], Vi = 1.0 [Ibs]. Poor
Agreement.

In conclusion it is found that the isoperformance prediction capability is good at low
disturbance levels which are representative of the vibration environment on space based opto-
mechanical systems. Caution must be exercised if non-linearities are suspected in any part
of the system and particularly if performance predictions are to be made at high excitation

levels. Additional parameters such a k; and mg could be included in future tests.

206



6.5 Summary

The goal of the experimental validation was to demonstrate the ability of the isoperformance
methodology and toolbox to predict isoperformance contours on a real physical system. The
1-g DOLCE testbed was designed to have multiple disturbance and structural parameters,
which are variable over a large range. The testbed characterization of the transfer function
from disturbance force, Fy(t) to base displacement, z(t), shows that two modes are dominant
in the bandwidth of interest up to 100 Hz. These are the fundamental, axial suspension mode
and the first coupling plate bending mode. The fundamental mode softens from 10 to 6 [Hz]
as more payload mass is added.

A test matrix was experimentally determined with the RMS excitation voltage of the
shaker, V,, and the payload mass, m,, as independent parameters. Theoretical isoperfor-
mance contours were predicted with a SDOF spring-mass model, an un-updated FEM and an
updated (tuned) FEM. These contours were compared with experimental contours obtained
from the test matrix via linear interpolation. Good agreement was shown for the 7.5 pym
RMS displacement level, where the excitation amplitude is small. This corresponds to the
low vibration levels expected on precision opto-mechanical spacecraft. At higher disturbance
levels (15 and 30 pm contours) the agreement is not as good and deviations between the

experimental and theoretical performance are likely due to structural non-linearities.
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Chapter 7

NEXUS Spacecraft Study

The previous two chapters provide confidence that the isoperformance methodology is
applicable to large order, multivariable systems and that isoperformance predictions for real
physical systems are possible. The purpose of the NEXUS spacecraft study which is presented
in this chapter, is to demonstrate the usefulness of the isoperformance methodology on a
realistic conceptual design model of a high-performance spacecraft.

The chapter first provides a description of the NEXUS spacecraft as well as the underlying
integrated model. A disturbance analysis (= performance assessment) with time simulation
and Lyapunov analysis is carried out for an initial vector, p,, of 25 variable system parameters.
These variables represent selected disturbance, plant, optics and controls parameters of the
system. After establishing that the initial design does not meet the performance requirements
for wavefront error (RMMS WFE) and line-of-sight jitter (RSS LOS), a sensitivity analysis
is conducted in order to obtain the Jacobian, VJ,. A bivariate and multivariable isoperfor-
mance analysis is presented for NEXUS. The application of isoperformance to multiobjective

optimization and error budgeting completes the chapter.

7.1 NEXUS Description

NEXUS was planned as a technology risk-reduction experiment in space and as a precursor
to NGST with an anticipated launch date of 2004. The innovative technology areas for
this project are lightweight optical telescope assembly (OTA) fabrication and verification,
cryogenic instrument and actuator development, deployable sunshield technology and image-

based wavefront sensing and control. A graphical representation of the launch and on-orbit
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configurations of NEXUS is shown in Figure 7.1. The NEXUS project was officially canceled
in December 2000 as a part of the NGST rescoping exercise. It was nevertheless decided to
use NEXUS for this case study, since the conceptual model is well developed and many lessons
learned from previous NGST Yardstick models [24, 103, 23] were incorporated.
launch on-orbit
configuration configuration

Pro/E models
© NASA GSFC

. Y \ Instrument Sunshield
w Module
— ¢ 1 ¢
Delta I1 meters
Fairing

Figure 7.1: NEXUS Spacecraft Concept

NEXUS features a 2.8 m primary mirror, consisting of three AMSD-sized primary mirror
(PM) petals. Two of these are fixed and one is deployable as shown in Figure 7.1 on the left
side. The total mass of the spacecraft is nominally 810 [kg] at a cost of $M 105.88 (FY00),
which includes launch and mission operations. The expected power consumption is 225 [W]
and the target orbit is the Lagrange point L2 of the Sun/Earth system with a projected launch
date of 2004. The optical telescope assembly (OTA) also features a 3-legged spider, which
supports the secondary mirror (SM). The instrument module contains the optics downstream
of the tertiary mirror and the camera (detector). The sunshield is large, deployable and
accounts for the first flexible mode of the spacecraft structure around 0.2 Hz.

The challenge at a systems level is to find a design that will meet optical performance
requirements in terms of pointing and phasing of the science light. This has to be done taking
into account the flexible dynamics of the system, the control loops for attitude and pointing
as well as the on-board mechanical and electronic noise sources. The following analyses are

carried out in order to find such a well “balanced” design, using the isoperformance technique.
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7.2 Integrated Modeling

7.2.1 Finite Element Model

The integrated model for NEXUS contains a structural finite element model (FEM) in the de-
ployed configuration, see Figure 7.2. The model was initially created in FEMAP/NASTRAN
and subsequently translated to IMOS [62]. The advantage of IMOS is that it can easily ma-
nipulate the model for parametric trade studies (such as isoperformance) in MATLAB, whereas
NASTRAN is better suited for the analysis of large, high-fidelity point designs. This model
features 273 grid points, 678 independent degrees-of-freedom after Guyan reduction and is
optimized for use as a dynamics model below ~ 100 [Hz]. Figure 7.2 shows the important
locations at which disturbance and control inputs enter as well as important output nodes for
the ACS as well as the locations where optical elements are mounted.

Spacecraft bus

m_bus (84) 8 m 2 solar panel

+«—— RWA and

sunshield v 5 % < isolator ( 79-83)
_SS X ;fo x K_rISO
xR 2 fixed PM
Instrument % petals
07 A (149,169)
( ) \ wox X K_yPM
/ 7 qu & 5 x X%
X / Q;‘i‘p X S SM spider
v YA IR t_sp

Legend T e U ﬁ\;\
deployable

Design Parameters
(I/0 Nodes) PM petal ( 129) SM ( 5&2 )
K_zpet m_

Figure 7.2: NEXUS Finite Element Model. Important I/O grid points (nodes) and
variable design parameters are shown.

The primary mirror petals are rigid body elements, but the actuators are modeled as
spring elements. The sunshield is approximated as four flexible beams with the membrane
added as distributed non-structural mass (nsm). The instrument is modeled as a point mass
with inertia matrix. The secondary spider support structure is modeled with three flexible

bipods. The variable FEM parameters are shown in Table 7.1 under “plant parameters”.
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7.2.2 Optics Model

The Cassegrain optics of NEXUS consist, among others, of a three petal primary mirror with
an equivalent diameter of 2.8 [m]. Two of the petals are fixed (PM segments #2 and 3) to
the primary optical bench, while the third petal (PM segment #1) is deployable. The hinge
stiffness, K, pet, is one of the variable design parameters considered in Table 7.1. The light
from distant science targets and guide stars is then reflected from the concave primary and
directed towards the convex secondary mirror (SM). Note that the optical boresight axis in
the optics model (ZEMAX) is in the 4z direction. The back end optics consist of a fold mirror,
a focal tertiary mirror, a deformable mirror (DM), a flat fast steering mirror (FSM), several
dichroics and camera fold mirrors and, finally, the exit pupil and the detector focal plane. A ray
tracing diagram of the NEXUS optical train is shown in Figure 7.3. The optical prescription
contains a total of 20 optical elements, including the source reference plane (object) and the

detector focal plane (image).

+z B E—

Primary
Reference(1) Mirror (2-4)
/ d Detector
. Secondary Focal Plane (20)
) Mirror (5)
4
)
Fold (6) DM (8)
Secondary
Mirror (5)
Tertiary (7)
(a) NEXUS Optical Train (Side View) (b) NEXUS Optical Train (Isometric)

Figure 7.3: NEXUS Optical Train modeled with ZEMAX. (a) Side View. (b) Iso-
metric View. Selected mirror surfaces are labeled according to their
element number (iE1lt) in the NEXUS OTA prescription. Key optics
data: PM f/#=1.25, Magnification M=12, back focal length BFL=0.2
[m], SM diameter 0.27 [m], f/15 beam at Cassegrain focus, /24 telescope
at focal plane, same as NGST. Plate scale = 2.06 [masec/pm].

Ray tracing according to the method developed by Redding and Breckenridge [120] is

used to characterize the effect of perturbations in the positions and rotations of the optical
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elements. The motion of optical elements affects the image quality of NEXUS. This effect is
characterized by the dependence of the image centroid and wavefront error on the translation
and rotation of optical components. The two performance metrics of interest are the root-
mean-mean-square wavefront error, J, ; = RMMS WFE, and the root-sum-square line-of-sight
jitter, J, o = RSS LOS. The optical linear sensitivity matrices for these performances with
respect to the translations and rotations of the optical elements were computed with MACOS,
see Reference [83] for details. The wavefront error and centroid are then computed with the

following, linearized relationships:

Ndo f .
Wi =Wo;+ > ZZ/Z -Auj where i = 1,2,...,npqys
j=1 0U;
7.1
C nff 0C, A dC nio:f G, A i
= - Au; an = — - Au
S oy =TT

where W, ; is the residual design wavefront error of the i-th ray, 0W/0u, is the wavefront
sensitivity matrix, u is a vector of displacements and rotations and 9C/0u is the centroid
linear sensitivity matrix. A total of n,4ys=1340 rays are used for the analysis. The RMMS
metric averages the W;’s over the entire light bundle, while the LOS jitter metric is the

root-sum-squared (RSS) of C; and C.

7.2.3 Disturbance Sources

There are four expected disturbance sources in the NEXUS integrated model (ng = 4). The
first is broadband reaction wheel noise, assuming a 4-wheel pyramid and uniform probability
density on the wheel speed distribution, with an upper (operational) wheel speed R,,. The
disturbance forces and torques are caused by static and dynamic imbalances, Us; and Uy, as
well as higher harmonics. Figure 7.4 shows the typical “sawtooth” pattern of the broadband
disturbance PSD’s for a single wheel along with low-order state space overbounds. This allows
including the pre-whitening filters in the overall state space system, S,.

The second disturbance is due to a linear Sterling cryocooler at drive frequency f.. This
device is used to cool the IR detector and is installed in the instrument module. The third
disturbance is attitude noise, which is based on rate gyro noise and star tracker noise measured
on the Cassini mission (JPL). Finally there is guide star noise, which is very sensitive to the

guider sampling rate, Ty,, and the guide star brightness, Mg;.
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Figure 7.4: NEXUS broadband reaction wheel disturbance model. Nominal param-
eters: R, = 3000 [RPM], Uy = 0.7160 [gem] and Uy = 29.536 [gem?].

7.2.4 Appended Dynamics and Controls

The appended dynamics of this system are shown in the block diagram of Figure 7.5. These

dynamics have also been cast in an equivalent state space form as shown in Equation 7.2. Note

that the subscripts refer to the respective subsystem dynamics: dw reaction wheel disturbance,

dc cryocooler disturbance, ds ACS sensor noise, dg guide star noise, p structural plant, ca ACS

controller and cf for the FSM controller.
[ Agw 0 0 0
0 Age 0 0
0 0 Ags 0
God = 0 0 0 Adg
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Figure 7.5: NEXUS block diagram with 4 disturbance sources (RWA, Cryo, ACS
noise, GS noise) and 2 performances (RMMS WFE, RSS LOS). Simu-
lation implemented in Simulink as well as state space.

In summary the appended dynamics, S,4, of this system contain 320 states (ns = 320),
two performance metrics (n, = 2), four disturbance sources (ny = 4) and 25 variable design
parameters (n, = 25). To the author’s knowledge this is the first occurrence in the literature
were variable disturbance, structural, optics and control parameters are considered simultane-
ously. Mostly one finds subsets such as controls/structures, but with the assumption of fixed

noise sources. Table 7.1 summarizes the variable design parameters in the NEXUS case study.

7.3 Disturbance Analysis

A disturbance analysis of the science target observation mode was carried out with the initial
parameters, p,, given in Table 7.1. Results for LOS jitter are contained in Figure 7.6. The
bottom plot shows a sample time realization for 5 seconds and the centroid X location. The
middle plot shows the PSD of LOS jitter (RSS LOS) for a frequency domain and time domain
calculation. The top plot is the cumulative RMS of LOS jitter as a function of frequency.
One can see that a mode at 23 [Hz| contributes significantly to LOS jitter (secondary tower
bending). The group of highly damped modes in the region from 3-10 [Hz] represents the
RWA isolator dynamics.
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Table 7.1: NEXUS Variable Design Parameters p;, j =1,...,25.

Number Symbol Nominal Description Units
disturbance parameters

1 Ru 3000 Upper operational wheel speed [RPM]

2 Us 1.8 Static wheel imbalance [gem]

3 Ud 60 Dynamic wheel imbalance [gem?]

4 fc 30 Cryocooler drive frequency [Hz|

5 Qc 0.005 Cryocooler attenuation factor — [-]

6 T'st 20 Star tracker update rate [sec]

7 Srg Je-14 Rate gyro noise intensity [rad?/s]

8 Sst 2 Star tracker one sigma [arcsec]

9 Tygs 0.04 Guider integration time [sec]
plant parameter

10 ms 2.49 mass of secondary mirror [kg]

11 KyPM 0.8e6 Primary mirror bipod stiffness [N/m]

12 K,ISO 3000 RWA Isolator joint stiffness [Nm/rad]

13 Mpys 0.3e3 Spacecraft bus mass [kg]

14 Kzpet  0.9e8 PM petal hinge stiffness [N/m]

15 top 0.003 Spider wall thickness [m]

16 I 0.8e-8 Sunshield bending inertia [m?]

17 Ipropt  5.11 Propulsion system inertia [kgm?]

18 0.005 modal damping ratio [-]
optics parameters

19 A le-6 Centerline optical wavelength  [m]

20 Ro 0.98 Optical surface reflectivity [-]

21 QFE 0.80 CCD quantum efficiency [-]

22 Mgs 15.0 Magnitude of guide star [mag]
controls parameters

23 fea 0.01 ACS control bandwidth [Hz]

24 Kc 0.0 FSM/ACS coupling gain [0-1]

25 Kcf 2000 FSM controller gain [-]
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Another way to look at performance J, 2 is to plot the time histories from the motions of
centroid X and Y versus each other. This has been done in Figure 7.7. The predicted RSS
LOS is 14.97 pm, versus a requirement of 5 um!. Note that the RSS of the centroid jitter is
larger than the size of a single pixel (25 x 25 [pm]), which is undesirable.
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Figure 7.6: LOS Jitter initial disturbance analysis

The wavefront error performance is omitted here for simplicity. Table 7.2 shows an

overview of the predicted performance, using the initial parameters p,. The wavefront error

!This requirement comes from the assumption of 25 pm pixel pitch and a desire to maintain LOS jitter

below 1/5 of a pixel.
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Figure 7.7: RSS LOS Centroid Jitter Plot on Focal Plane (NEXUS).

requirement (A/50) is nearly met, but the pointing performance has to improve by a factor of
roughly 3. This is not atypical for many isoperformance analyses with multiple performances

(ny > 1), where only a subset of performance requirements is initially close to being met.

Table 7.2: Initial Performance Analysis Results

Performance Lyap Time Req Units
J,1 RMMS WFE 25.61 19.51 20 [nm)]
J,2 RSS LOS 15.51 1497 5 [ m]

The next step is to conduct a comprehensive sensitivity analysis using the relationships
presented in Appendix A and the enhancements developed in Chapter 5 for large order sys-
tems.

7.4 Sensitivity Analysis

This section shows the results of a comprehensive sensitivity analysis for the 25 variable design

parameters of NEXUS which are shown in Table 7.1. The sensitivity produces the normalized
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Jacobian matrix (25 x 2 matrix) evaluated at p,

0J,1

OR,
po DY
Jz,o (9J271

0K.;

0J, 2
OR,

0J,
0K.,

(7.3)

which is graphically shown in Figure 7.8. Note that parameters Ru through T'gs are distur-

bance parameters, mgys through zeta are structural plant parameters, lambda through Mgs

are optical parameters and fca through Kc¢f are control parameters.
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Figure 7.8: NEXUS normalized sensitivity analysis results at p°.

The RMMS WFE is most sensitive to the upper operational wheel speed, Ru, the RWA
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isolator stiffness, K,ISO, and the deployable petal hinge stiffness, K,pet. The RSS LOS
is most sensitive to the dynamic wheel imbalance, Ud, the RWA isolator stiffness, KIS0,
structural damping, zeta, the guide star magnitude, Mgs and the FSM (fine pointing loop)
control gain, Kcf. Interpreting these results one would expect for example that a 1.0 %
decrease in the isolator stiffness, K,ISO should lead to roughly a 1.5 % decrease in LOS
jitter. The sensitivity analysis can be used to select a subset of interesting parameters for

further analysis.

7.5 Bivariate Isoperformance

7.5.1 Imbalance versus Isolation

A bivariate isoperformance analysis is conducted for NEXUS using J,; = RSS LOS as the
performance and the two most sensitive parameters from Figure 7.8, right column, as the pa-
rameters. Hence, dynamic wheel imbalance, Ud, is traded versus RWA isolator joint stiffness,
K, 150, while constraining the performance to the requirement, J, 2 ,¢q = 5[pwm]. A graphical
representation of these two variable parameters in the context of the NEXUS spacecraft bus

design is shown in Figure 7.9.

NEXUS Spacecraft Bus Concept

Design Parameter py:
Hexapod Isolator Joint Stiffness

Design Parameter pq:
Dynamic Wheel Imbalance

Ug=mrd
[gem?]

K_rISO
[Nm/rad]

isolator
strut

- —

ITHACO
E-Type Reaction Wheel

JPL
Soft 6-axis Vibration Isolator

Figure 7.9: NEXUS Bus design with a 4-wheel symmetric pyramid of ITHACO E-
wheels (39.3 [cm] diameter, 16.6 [cm] height, 10.6 [kg] mass each). See
Reference [130] for 6-axis Active Vibration Isolator design.
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The isoperformance contours (Figure 7.10) were obtained using the exhaustive search
algorithm developed in Subsection 3.2.1. This analysis required 1506.2 [sec] of CPU time
(Pentium ITI, 650 MHz processor) and a total of 2.51- 10! FLOPS. This is significantly more
expensive than the analyses for the sample problems presented in Chapter 2. The use of the
fast, diagonal Lyapunov solver causes the FEM (mass and stiffness) assembly time to be the
most time consuming operation instead of the solution of the Lyapunov equation for the state

covariance matrix, Y.

Isoperformance contour for RSS LOS :Jz,req=5 um

10000
9000

- Parameter Bounding Box

60

8000
7000
6000
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4000

initial
design -

KrISO RWA isolator joint stiffness [Nm/rad]

3000 | A ST ]
2000 + _
1000 spec- - - 5 Mm A
0 L ¢ i
0 10 20 30 40 50 60 70 80 90
Ud  dynamic wheel imbalance [gem?]

Figure 7.10: NEXUS Bivariate Isoperformance analysis with p; = Uy , p2 = K, 150
and J, =RSS LOS.

The isoperformance contour at RSS LOS = 5 pm can be reached from the initial design,
p°, by keeping the same amount of imbalance in the wheels (specification value of E-wheel:
Uq = 60 [gem?]) and softening the isolator to below 1000 [Nm/rad], thus reducing the isolator
corner frequency to roughly 1.2 Hz. Alternatively the isolator can remain the same and the
imbalance could be reduced to close to its lower bound, Us;=1 [gcm?]. The isoperformance
contour passes through these two points, so a combination of the above is likely to result in
the desired effect. Note that the performance degrades significantly for stiffer isolator joints

and larger imbalances. The region in the upper right of Figure 7.10, where LOS jitter of 160
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pm is predicted, occurs, when the isolator modes coincide with other flexible modes of the

NEXUS structure.

7.6 Multivariable Isoperformance

Since solutions, p;se, in the isoperformance set I do not distinguish themselves via their per-
formance, we may satisfy some additional objectives. For the bivariate analysis in Section 7.5
for example it is not immediately clear whether it is more favorable or “expensive” to im-
prove the balancing of the reaction wheels or to build a “softer” hexapod isolator. Once the
(iso)performance requirements, J,(piso) = Jz req, are met one may consider competing cost
objectives J,. (control effort, implementation cost, system mass, dissipated power, etc.) or risk
objectives J, (stability margins, sensitivity of performance to parametric uncertainty etc.).
Which combination of J. and J, to use is application dependent. A non-linear optimization
problem, given in (1.7) may be solved, whereby Q.. and Q,, are weighting matrices among the
cost and risk objectives and 7 is used to trade between cost and risk. The result is a family of
pareto optimal solutions, pj, , which is presented to the designer. This type of multiobjective
analysis was demonstrated for the sample problems in Section 4.7.

In the NEXUS case a multivariable analysis was conducted for a subset of 10 out of the
25 design parameters from Table 7.1. The two performance objectives RMMS WFE and RSS

LOS were defined above. The cost and risk objectives are defined as follows:

e J.1 = Build-to Cost (closeness to “mid-range”), Equation (4.31)
e J.o = Smallest FSM control gain, K,

e J.1 = Percent performance uncertainty, Equation (2.7)

The three pareto optimal solutions, which each individually optimize one of the above
objectives, while meeting the isoperformance condition, are shown in the radar plot of Fig-
ure 7.11. Specifically, the isoperformance condition leads to the fact that all designs, pJ,,,
asymptote to the same value in the cumulative RMS plot, as shown for RSS LOS in Fig-
ure 7.12.
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Figure 7.11: NEXUS Multivariable Isoperformance. Radar plot of 3 pareto optimal
designs. J. is best mid-range design, J. 2 is the design with smallest
FSM gain, J; 1 is the design with smallest performance uncertainty.
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Figure 7.12: NEXUS Pareto Optimal Designs: RSS LOS power spectral densities
(bottom) and cumulative RMS curves (top).
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The results for the NEXUS pareto optimal designs are summarized in Table 7.3.

Table 7.3: NEXUS pareto optimal designs

Jz,l Jz,2

Jc,l Jc,2 Jr,l

vs]

20.0000 5.2013
20.0012  5.0253
20.0001 4.8559

0.6324 0.4668 + 143 %
0.8960 0.0017 +8.8 %
1.5627  1.0000 =+ 5.3 %

Even though these designs achieve the same WFE and LOS jitter performance, their

dominant contributors in terms of disturbance sources are likely different. This leads naturally

to the application of isoperformance for dynamics error budgeting.

7.7 Error Budgeting

Error budgeting finds a design, which balances the error contributions from all expected

sources (e.g. reaction wheel imbalances, sensor noise) and assesses the feasibility of an apriori

allocation. Table 7.4 shows the apriori allocation, ¥, and the actual disturbance contributions,

U to the variance of RSS LOS for Design “A”, which is chosen as the final design, pi

Table 7.4: NEXUS error budget Vo

150"

Error Source | variance % Budget [um] | variance % Capability [pm]
RWA 50.00 3.54 0.92 0.499
Cryocooler 25.00 2.50 0.22 0.244

ACS Noise 5.00 1.12 0.00 7E-6

GS Noise 20.00 2.24 98.8 5.172

Total 100 5.00 100 5.2013

The error budget can be expressed in terms of the fractional contribution of the j-th

disturbance source to the i-th performance as

nd
— E o 72
\Ili - \IIZ,J - Jz,req,i
=1

(7.4)

The relative contributions to the performance can be shown by plotting the fractional
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contributions of the j-th error source on a sphere (not showing ACS noise). This sphere is

called the Error Sphere, see Figure 7.13.

"capability"
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Figure 7.13: NEXUS Error Sphere for RSS LOS. Note: ACS sensor noise contribu-
tions not shown.

Error Budgeting is an obvious application of isoperformance, since an apriori error budget
will always result in the desired performance level. The advantage of using isoperformance
in this context is that a “capability” error budget, ¥**, can be found, which is theoretically

achievable since it is based on the underlying integrated model.

7.8 Summary

This chapter demonstrates the usefulness of isoperformance on a realistic conceptual design
of a space telescope. NEXUS is chosen due to its interesting, flexible dynamics and the pres-
ence of important disturbance, plant, control and optics parameters. An initial disturbance
and sensitivity analysis are conducted for an initial vector, p,, of 25 design parameters. A
bivariate isoperformance analysis trades dynamic wheel imbalance, Uy, versus isolator corner
frequency, K, 1SO. A multivariable isoperformance analysis is conducted with 10 parameters.
By applying cost and risk objectives, such as implementation cost (closeness to “mid-range”),

smallest FSM control gain (K.r) and smallest performance uncertainty a set of three pareto
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optimal designs was identified. The application of isoperformance to dynamics error bud-
geting is demonstrated by comparing an apriori allocation (“budget”) with the error source

contributions of a pareto optimal design.
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Chapter 8

Conclusions and Recommendations

8.1 Thesis Summary and Conclusions

Precision opto-mechanical systems, such as space telescopes, combine structures, optics and
controls in order to meet stringent pointing and phasing requirements. In this context a novel
approach to the design of complex, multi-disciplinary systems is presented in this thesis in the
form of a multivariable isoperformance methodology. Chapter 1 gives an introduction into
the context and previous work and a rigorous mathematical definition of the problem using
the state space formulation and set theory. Three sample problems (single degree-of-freedom
(SDOF) oscillator, 2-DOF oscillator and ODL design) are developed in Chapter 2. These
problems are used throughout the thesis to gain intuitive understanding, to verify the correct
implementation of the governing equations and to test the algorithms before they are applied
to complex, large and expensive problems.

The isoperformance approach first finds a point design within a topology, which meets the
performance requirements with sufficient margins. This is mainly based on the performance
assessment and enhancement framework developed by Gutierrez [45], which is summarized
in Appendix A. The performance outputs are then treated as equality constraints and the
non-uniqueness of the design space is exploited by trading key disturbance, plant, optics and
controls parameters with respect to each other. Reasonable upper and lower bounds have to
be specified for the design parameters.

The isoperformance problem is initially solved for only two variable parameters (n, = 2)
and a single performance (n, = 1), see Chapter 3. Three algorithms (exhaustive search,

tangential contour following and cubic spline approximation) are developed and compared
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for the SDOF problem. While exhaustive search appears to be the most expensive, it does
not require gradient information and provides multiple contours via linear interpolation. The
algorithm, which shows most promise in the multivariable case is spline approximation. It,
however, is also the most restrictive, since it requires that the underlying performance function
J2(p1,p2) is monotonic in at least one of the two parameters (no closed contours). The
bivariate isoperformance methodology is demonstrated for a number of sample problems and
for a conceptual model of SIM Classic.

The previous algorithms are generalized for the multivariable case (Chapter 4), when
np > 2. These algorithms are branch-and-bound, tangential front following and vector spline
approximation. The results are viewed as isoperformance contours, nomograms or radar-
plots. The challenges of computational complexity and graphical representation in the multi-
dimensional case are also addressed. It turns out that the isoperformance problem cannot be
solved in polynomial time as a function of the number of variable parameters, n,. However,
a meaningful analysis for a limited set of parameters (n, < 20) is reasonably achievable.

The challenges of large order models are addressed in Chapter 5 by presenting a fast
diagonal Lyapunov solver, apriori error bounds for model reduction as well as a governing
sensitivity equation for similarity transformed state space realizations. These contributions
enable sensitivity and isoperformance analyses for large order integrated models, which were
previously not possible. Proofs of the governing equations for similarity transformed systems
are contained in Appendix B.

The goal of the experimental validation (Chapter 6) is to demonstrate the ability of the
isoperformance methodology and toolbox to predict isoperformance contours on a real physi-
cal system. The 1-g DOLCE testbed was designed to have multiple disturbance and structural
parameters, which are variable over a large range. The testbed characterization of the trans-
fer function from disturbance force, Fy(t) to base displacement, z(t), shows that two modes
are dominant in the bandwidth of interest up to 100 Hz. A test matrix is experimentally
determined with the RMS excitation voltage of the shaker, Vi, and the payload mass, m,,
as independent parameters. Theoretical isoperformance contours are predicted with a SDOF
spring-mass model, an un-updated FEM and an updated (tuned) FEM. These contours are
compared with experimental contours obtained from the test matrix via linear interpola-
tion. Good agreement is shown for the 7.5 pum RMS displacement level, where the excitation

amplitude is small. This corresponds to the low vibration levels expected on precision opto-
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mechanical spacecraft. At higher disturbance levels (15 and 30 pm contours) the agreement is
not as good and deviations between the experimental and theoretical performance are likely
due to structural non-linearities.

Chapter 7 demonstrates the usefulness of isoperformance on a realistic conceptual design of
a space telescope. NEXUS is chosen due to its interesting, flexible dynamics and the presence
of important disturbance, plant, control and optics parameters. A disturbance and sensitivity
analysis is conducted for an initial vector, p,, of 25 design parameters. A bivariate isoperfor-
mance analysis trades dynamic wheel imbalance, Uy, versus isolator corner frequency, K,150.
A multivariable isoperformance analysis is conducted with 10 parameters. By applying cost
and risk objectives, such as implementation cost (closeness to “mid-range”), smallest FSM
control gain, K.r, and smallest performance uncertainty a set of three pareto optimal designs
was identified. The application of isoperformance to dynamics error budgeting is demon-
strated by comparing an apriori allocation (“budget”) with the error source contributions of
a pareto optimal design.

Isoperformance helps to avoid situations where very costly and hard-to-meet requirements
are levied onto one subsystem, while other subsystems hold substantial margins. It is sug-
gested that isoperformance is a useful concept in other fields of engineering science such as
crack growth calculations in structures, see Appendix C. The isoperformance approach en-
hances the understanding of complex opto-mechanical systems by exploiting physical param-
eter sensitivity and performance information beyond the local neighborhood of a particular
point design. All of the thesis research objectives formulated in Subsection 1.3.1 were accom-

plished.
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8.2 Contributions

This thesis develops and validates a novel approach to the design of complex multi-disciplinary

systems. The following specific thesis contributions can be identified:

1. Developed a methodology for identifying the locus of parameters that yields
constant #Hy performance levels of an LTI system (isoperformance).

2. Applied isoperformance analysis to model-based error budgeting and
multiobjective optimization for dynamic systems.

3. Extended disturbance and sensitivity analysis to handle large size models
(up to 2200 states demonstrated), transformed state space systems,
as well as disturbance, plant, optics and control parameters.

4. Produced and validated a software toolbox for conducting 2D or
multivariable isoperformance analyses, compatible with DOCS.

5. Experimental validation of isoperformance technique on a
laboratory test article in 1-g with two parameters.

6. Demonstrated applicability of isoperformance technique for a

structural fatigue problem, suggesting use in other fields.

8.3 Limitations

The limitations of the isoperformance framework are that it assumes Linear-Time-Invariant
(LTI) systems and operates on H2-performance metrics for zero-mean random processes. At
present transient performance metrics, such as the settling time presented in the ODL sample
problem (Section 2.3), can only be accommodated as additional objectives during multiob-
jective optimization but not during an isoperformance analysis. Furthermore the dynamics
are treated in continuous time (no z-domain capability). The algorithms (except exhaus-
tive search) require continuous and differentiable parameters and work within a given topol-
ogy/architecture. Finally it shall be mentioned that thermal dynamics have not been included,
since they tend to occur at much slower time scales and don’t typically couple strongly to the

flexible dynamics of a structure.
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8.4 Recommendations for Future Work

The recommendations for future work focus on removing some of the current limitations and
applying the isoperformance concept on a more holistic level in product design and system
architecture. Isoperformance meshes well with a product design philosophy called “satisfis-
ing”. In this approach not a system that optimizes the performance is sought, but rather a
system that meets identified customer performance requirements, while being designed in a

cost effective way. Specific recommendations for future research are:

e Robustify isoperformance toolbox on other projects

e Closed loop experimental validation (ORIGINS testbed)

e Extend methodology for discrete/continuous problems

e Extend methodology for non-steady-state/transients

e Investigate application to FEM updating/tuning

e Analyze effect of non-linearities on isoperformance contour predictions

e Automate step size determination for tangential front following in the multivariable case

o Investigate ways of generating simple functional approximations to the isoperformance

surfaces

e Research the relationship between isoperformance, parameter constraints and technology

roadmapping

e Link to emerging system architecture,and product design methodologies
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Appendix A

Summary of Disturbance,
Sensitivity and Uncertainty

Framework

The kernel of the current disturbance, sensitivity and uncertainty analysis framework was
originally developed by Gutierrez [45]. It is a powerful methodology for predicting the root-
mean-square (RMS)! of the performance outputs, z, recast as the performance metrics J,.
This performance prediction can occur using the time domain, PSD or Lyapunov approach.
Additionally a Lagrange multiplier approach is used to obtain the (exact) analytical sensitiv-
ities. The computation of sensitivities in the time-domain or frequency domain has not yet
been explored and remains for future work. The uncertainty analysis approach used in this
thesis is the first order approach. The purpose of this appendix is to provide a short summary
of the framework and the mathematics presented in [45], thus allowing this thesis to be self-
contained and clearly establishing the theoretical foundation upon which the isoperformance

methodology builds.

A.1 Disturbance Modeling

A disturbance analysis is required, when deterministic or stochastic disturbances w(t) are

present and it is unclear whether the performances J, will remain within a required value J, y¢q.

Yor root-sum-square (RSS), root-mean-mean-square (RMMS)
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Note that generally w and J, will be vectors. The disturbances w(t) can be undesired forces,
torques, base motion, sensor and actuator noise, among others. The correlation function of

the random process w(t) is defined as

wa (tl, t2) = E [’LU (tl) wT (tg)] (Al)

where E [ ] is the expectation operator and w(t) is a vector of stochastic random processes. If
w(t) is stationary the values of w(t) will change over time, but the statistics of w(t) will not

and Ry, is a function of the single time-lag 7.

Ruyw (1) = E [w () w? (t+ 7)) (A.2)
Assuming that all w(t) are zero-mean, the covariance matrix ¥, of the disturbance signals

is the value of the correlation matrix R, for 7 = 0.

E [w%] Elwiwy] -+ Ewiwy,]
E[wowi) E[w3] - E[wow,]
Yw = Ry (0) = } )
Elwpw] Ewpwe] --- FE [w%] (A3)
U%ul Owawi " Owiwp
| Gwaun ‘7121;2 T Owaw,
2
Ow,wi Owpwy °°° Ow,

The simplification in the covariance matrix >, can be made for zero-mean processes, since
for a typical term oy, in the covariance matrix we can write

Tww; = B [(wi — pi,) (wj — ;)] =

E [wiwj] = E [wipw;] = B [pw,wj] + B [pw, ;] = B [wiw;] = 0w, (A-4)
——— — N———

where pu,,, = E [w;] is the mean (expected value) of the i-th random process. The mean-square

values of the elements of w are simply the diagonal entries in the covariance matrix.
(Bw) = E [w] (1)] (A.5)

where w; (t) is the i-th element in w. If w is zero-mean, then the mean-square values and the

variances are identical.

o2, = E [w? (t)] — (E[w;])* = RMS? (A.6)
=0
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The (power) spectral density function Sy, (w) can be obtained by taking the Fourier transform

of equation (A.2)

+oo .

Sww (W) = F [Ryw (7)] = / Ry (1) €779 dr (A.7)
— 00

Note that the 1/27 factor is not included in the definition of the Fourier transform. Other

authors [141] place it in the Fourier transform formula. Either definition will produce the same

result in the end as long as the definition is used consistently. The inverse Fourier transform

of Sy (w) recovers the correlation function.

1 [t ;
R (1) = 7 S @) = o= [ Su () 447d (A8)
2 J_ s
Evaluating (A.8) at 7 = 0 will produce the covariance matrix of w.
1 [t
Ryw (0) =%, = o Sww (W) dw (A.9)

Equation (A.9) suggests an alternative way of calculating the mean-square values of w by

integrating under the spectral density functions, namely

=l = e [ (S )] (A.10)

2r ) o

The diagonal elements of the spectral density function matrix Sy, (w) are usually referred to
as power spectral densities (PSD’s), whereas the off-diagonal elements are the cross spectral
densities. Equation (A.10) states that the variance is equal to the area beneath the PSD
scaled by a factor of % Depending on the shape of the PSD’s representing w it is possible to
approximate the shape of the functions S, (w) by pre-whitening filters in state space form,
where the inputs to the state space system are unit intensity white noise processes d:

44 = Awdqd + Buwdd (A11)

w = Cyaqq + Dyad

Note that the feedthrough matrix D, is generally zero, since white noise will otherwise feed

through, which is not physically realizable since an ideal white noise process has infinite energy.

A.2 Integrated Modeling

The plant, optics and control loops are modeled in a continuous linear time-invariant model

as.:
Qp = Apr + Byw + By

(A.12)
2= Cpgp + Dyyw + Dyypr
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where g, is the appended state vector, r is the vector of reference inputs (commands) and z is
a vector of performance outputs, from which the actual performance metrics J, are formed.
If the disturbances are cast in state space form as suggested in (A.11), they can be appended
into (A.12). This overall state space system (A.13) then becomes the “integrated model”
of the opto-mechanical system representing the closed or open loop dynamics and is shown

in Figure A.1. In steady-state the reference commands are often » = 0 and generally the

Reference
commands I —— Opto-Mechanical
Plant Model .
Disturbance -,
d Model w R G, (@)
white G,,(®) (Closed or Open Loop)
noise

Figure A.1: General block diagram of system dynamics from white noise distur-
bances d to system performance signals z.

feedthrough matrix D, is also zero, since otherwise the white-noise input d will lead to an

infinite variance ogi of the i-th performance signal z; that is affected by the feedthrough.

¢ = A,qq + Bqd + Byr

(A.13)
z=CLqq+ D,gd + Dypr

In this thesis it is assumed that the feedthrough matrix D,y is always zero. The vector
q represents the state vector of length ng; and has to be ordered similar to the convention
defined in [45, eq.(4.5)] as ¢ = [ ¢4 gp ¢c ¢:]* , where gq are the disturbance filter states, g,
are the (structural) plant states, g. are the controller states and ¢, are performance weighting

states, if applicable.

A.3 Performance Assessment

Once an integrated model of a nominal system design is available, the next step is to assess
the performance when the model is subjected to anticipated disturbances. In this thesis we

will consider Hy performance metrics according to Zhou [143] as follows:
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N 1/2 N 1 L V2
J, = [z E [z}’zi]] = =7 / zi(t)2dt) RSS (A.14)
0

1/2 1 A
E[ziTzi]] = ﬁ-zf/zi(t)%lt RMMS

M=

Jz:[#

The RMS (root-mean-square) metric is typically used to describe the “on-average” opti-
cal pathlength difference (OPD) in an interferometer. The RSS (root-sum-squared) can be
employed to describe the line-of-sight (LOS) jitter of an observatory in xy-coordinates on the
focal plane and, for example, the RMMS (root-mean-mean squared) metric is used to describe
the “mean” wavefront error of a light bundle by averaging the phase errors of all rays mod-
eled by an optical ray tracing program. Three disturbance analysis approaches are discussed

below.

A.3.1 Time Domain Analysis
A linear time-invariant system from (colored) disturbances w to performances z is given as:

dp = Azwp (t) + Boww (t)

(A.15)
z (t) = Couwgp (t) + Dypw (1)

where g, consists of structural states and compensator states, if applicable. Equivalently, the

system can be described in the frequency-domain by the transfer function matrix
Gow (W) = Cow [jwI — Asw] ™ Bow + Doy (A.16)

The disturbances, w, are the inputs to the system, while the performances, z, are the outputs
of interest. When measured time histories of the disturbances w (t) exist?, they can be used
for time integration of the state space equations (A.15). Once the initial condition on the state
vector, g, (0), is specified, numerical integration of (A.15) can then be performed to obtain

estimates of the performance time histories z (t). The standard difference method technique

2These can be obtained from spinup tests of reaction wheels, vibration testing of cryocoolers or noise floor

measurements on sensors, among others.
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approximates the continuous first-order equation (A.15) with a difference equation such as

(9p)y 1 — (@),
At
Zn = Lzw (Qp)n + Dzywn

= Ao (), + B (A.17)

The state vector (qP)n+1 at the n + 1-th time step can be found by the forward Euler method

as

(@p)p 1 = [AtAzw + 1] (gp),, + AtBeywy (A.18)

This integration method is simple but can diverge easily when At > At.i;. For time integra-
tions in this thesis it was found that the results obtained with the ode45.m solver according
to Dormand and Prince [26] gave the best results. An advantage of the time-domain dis-
turbance analysis is that transient effects can be observed, the compliance with time-domain
performance specifications can be examined and threshold crossings can be determined from
the time simulation. Generally the time domain analysis is computationally more expensive
than the other methods. Other disadvantages are the dependency of the answers on the initial
conditions of the state vector g, (0) and on the seed used for the white noise random number

generators.

A.3.2 Frequency Domain Analysis

For linear systems in the time domain, the output can be expressed as a convolution of the
input with the impulse-response function of the system. In the frequency domain (i.e. Laplace
domain), the output is equal to the input multiplied by the transfer function (matrix). The
disturbance spectral density matrix Sy, (w) can be measured experimentally or obtained
from a shaping (pre-whitening) filter as Sy (w) = G4 (w) G¥ (w). The performance spectral

density matrix S,, can be obtained from [141]
S.2 (W) = Gop (W) Sy (W) G (w) (A.19)

where Sy, is the disturbance spectral density matrix discussed above and G, is the open or
closed loop plant transfer function matrix from (A.16). Sy (w) can be a continuous function
of frequency, or for the case of disturbances consisting of a series of discrete harmonics, it
can contain impulses at the frequencies of the harmonics. In the latter case, S,, (w) will also

contain a series of impulses. S, (w) provides information on the frequency content of the
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performances. The covariance matrix of the performances ¥, (for zero-mean processes) is

obtained as

1 —+00 —+00

5. () duw = / S.. (f)df (A.20)

—o0

)

The variance of the i-th performance is therefore given by

2 L[t
Oz = [Ez]z’,i

2q

[z (W)]; 1dw =

:ﬁ .

JE2 08 (N))iadf =2 [ [See ()] sdlf

(A.21)

Taking the square root of afi produces the root-mean-square (RMS) value. It is important to
specify whether a PSD is one or two sided and given in Hz or rad/sec [141]. In practice the
upper and lower frequency integration limits are fy,;, and fpez, respectively.

fmax
o? 2 / See ()], (A.22)

fmin
It is important to ensure that the frequency range that contributes most to the RMS value is
sufficiently captured within these limits. One way to verify this is by computing the cumulative

RMS function o, . (f,) as

1
2

O (fo) = [2 /f " 15 (Pl df] (A.23)

where f, € [fmin - - - fmaz]- If most of the energy lies in this range, then o, ¢ (fmae) should be
very close to the true value of o,;. Generally, the frequency-domain approach is more efficient
than a time-domain analysis. The method however requires high frequency resolution near
lightly damped modes in order to arrive at correct RMS values. Also the frequency domain

method is not well suited to assess the transient performance of a linear time-invariant system.

A.3.3 Lyapunov Analysis

The third type of disturbance analysis can be conducted if the disturbances w are modeled as
the outputs of a shaping filter in the form of equation (A.11). In order to keep the disturbance
w from having infinite energy, there should be no feedthrough matrix D,,4. The state space
system (A.11) containing the disturbance dynamics is appended to the plant model (A.12)
resulting in the overall system model (A.13). If the system is asymptotically stable, the state

covariance matrix obeys the Lyapunov equation [35].
AzqSq + SgAly + B.aBly =3 (A.24)
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In order to do time integration of the above dynamics, the initial state covariance, ¥, , would
have to be specified. Since the white noise disturbance processes d are assumed to be stationary
and the reference commands r have been set to zero, the statistics of the state vector are also
stationary and i]q = 0. This is not true for transient processes. One may then solve the

steady-state Lyapunov equation of order n, for the state covariance matrix 3, of the system

(A.13).

A +32,AL + BuBL, =0 (A.25)
For ¢ = 1,2,...,n, one solves for each RMS value by extracting the i-th row from the C,q4

matrix, pre- and post-multiplying 3, and by taking the square root. The RMS of the i-th

performance metric is then given as:
T \1/2
0., = (Ceai®yCL) (A.26)

where C,4; is the vector formed by the i-th row of the C,4 matrix and X, is the state co-
variance matrix of the state space system that obeys the steady-state Lyapunov equation in
(A.25). Alternatively one can pre- and post-multiply with the entire C,4 matrix to obtain the

performance covariance matrix >,.

S,=F [zzT] =F [CquqTCZl] =C,4F [qu] Cjzl = Cszqui (A.27)

z

The variances of the individual performances (RMS squared) are then contained on the diag-

onal of X, where X, is of the form

2
Oz  Ozizo """ Ozizg
Ozpz1  Ozy " Ozpzy
mo=| 7 7 . (A.28)
2
Oznzy Ozpza 7" Op,

and n is the total number of elements in the performance vector z. Thus, the Lyapunov
method provides a relatively direct way of arriving at the RMS estimates (in the sense of
statistical steady state) by solving one matrix equation (A.25) and computing a matrix triple
product (A.27).

One problem is that the computational cost of solving (A.25) increases as ~ n3, where ng
is the number of states. Chapter 5 addresses potential solutions for large order systems, which
arise from modeling of complex systems such as precision opto-mechanical systems. It is true

that often only a subset of the states in ¢ will contribute significantly to the large entries in
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the state covariance matrix ;. If the performance metric of interest is a weighted sum of the
performance outputs z and the z; in (A.28) represent these weighted outputs, then the scalar

performance cost J, can be defined as

J, =trace[S,] = 02 + 0%, + -+ 02 (A.29)

Zn

The percent contribution of the i-th weighted output to the overall performance cost J, is

then
2

o5
% contribution = le x 100% (A.30)

z

The main drawback of the Lyapunov approach is that it does not provide insight into the fre-
quency content of the outputs. The main advantage is that the answers provided are immune
to the frequency resolution and time step, At, problems associated with the frequency-domain
and time-domain approaches, respectively. Also, analytical sensitivities can be calculated as

presented in the next section.

A.4 Sensitivity Analysis

Determining the sensitivity of certain outputs (e.g. performance metrics) of a system with
respect to model parameters can provide useful information. This information can be used for
model-to-test-data correlation, performance enhancement, uncertainty analysis and - the main
topic of this thesis - isoperformance analysis. Gutierrez [45] proposes a Lagrangian approach
for obtaining the sensitivities do,/dp or 0.J,/0p based on earlier work by Jacques [56]. Note
that p can be a vector of modal or physical parameters of the system. The first step, for each
performance metric z;, ¢ = 1,2,...,n, , is to solve for the corresponding Lagrange multiplier

matrix L;. Again a steady state Lyapunov equation of order ng has to be solved.
LiAq+ AL Li+ Cly;Ceai =0 (A.31)

Next the governing sensitivity equation (GSE) is solved by substituting the results from Equa-
tions (A.25) and (A.31). Additionally the matrix derivatives with respect to the parameters
of interest p; , 7 = 1,2,...,np, need to be computed. The result is the partial derivative of

the variance of the i-th performance z; with respect to the j-th parameter p;.

o 2. 0 CTy-Czd,' AT 0 (B BT
b —< i Z> ttrace | 1; 4 22y 1w O (BaB.4) (A.32)

L = trace | 2
Op; T Op; ap; ' T Op; Ip;
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Here L; is the Lagrange multiplier matrix for the i-th performance. The Lagrange multiplier
matrix obeys the dual Lyapunov equation given in (A.31). Consult References [45] and [56]
for a detailed derivation of the GSE. The above equation gives the sensitivity of the variance
agi, but usually the sensitivity with respect to the RMS is desired. The results from (A.26)
and (A.32) are substituted in

do, 1 902

= . d A.33
dp; 20,, Op; ( )

in order to obtain the desired sensitivity. Normalization with a factor p;nom/02; nom is op-

tional. This normalization allows comparing sensitivities with respect to parameters of differ-

ent units:
0o, Ao,
Pnom 00 . (Uzi)nom (Uzi)nom % change in Oy
= ~ ~ - (A.34)
(02) nom 0P dp Ap % change in p
Pnom Pnom

The matrix partial derivatives such as 0A,4/0p; in (A.32) represent the main difficulty in
finding the sensitivities for large order systems. Initial work on sensitivities for modal param-
eters (frequencies, damping ratio, modal mass) and physical parameter (masses, stiffnesses)

is presented by Gutierrez [45]. Progress in this area is reported in Chapter 5.

A.5 Uncertainty Analysis

Disturbance analyses during early design stages of aerospace systems are typically conducted
on simplified models of nominal point designs. The models attempt to capture the behav-
ior of interest, and although they are generally suitable for judging relative merits between
competing designs in a trade study, the validity of their use in making absolute performance
predictions is not as clear. An uncertainty analysis is one way to account for uncertainties in
an immature design model, thus establishing error bounds on the predicted performances.

If it is found that performance requirements are met even under worst-case model un-
certainties, then confidence in design margins can be increased. In the isoperformance con-
text an uncertainty analysis is beneficial, since it allows comparing designs which have the
same nominal performance, but exhibit different performance sensitivity to parametric uncer-
tainty. Optimization for minimum sensitivity to uncertain parameters has been investigated
by Pritchard, Adelman and Sobieszczanski-Sobieski [119]. In the most general sense, a model

uncertainty represents an unknown error in a model of a physical system. Model uncertainty
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is typically divided into parametric and non-parametric uncertainties. Focusing on parametric
uncertainty an estimate of the effect of parametric uncertainty on the system performances can
be obtained via the first-order approach. The first-order approach expresses the performance

RMS values as a Taylor series approximation about the nominal values.

Jdo,
02 = Oznom + 8—;0 (p — Prnom) + H.O.T. (A.35)

where o, is a vector containing the RMS values for each performance output z. The vector p
contains all of the uncertain parameters, and do,/0p is referred to as the sensitivity matrix (or
Jacobian). Neglecting the higher order terms and making the substitutions Ao, = 0, — 0, nom
and Ap = p — ppom results in

99: pp (A.36)
Op

Ao, ~

The parameter uncertainty is captured by Ap, and it is assumed that Ap is specified based
on empirical experience with similar systems or a best guess. For example, if all parameters
are uncertain to within + 1 % of the nominal values, then for the j-th parameter, Ap; €
[—0.01 +0.01] - pjnom- It is desirable to find the worst-case Ao, for Ap within the specified
bounds. When several performance metrics with different units are present, first define a
normalization vector r. For instance, r could contain the performance RMS requirements as
follows

1 1
T (A.37)

Oz1,req O z2n,req

where n, is the number of performance metrics. The maximum uncertainty “cost” J, can be

defined as
Ao, Ao,

J,=rTAo, = g — 2 (A.38)
O—Zhreq Uznz req
Expanding (A.36) yields,
do, do do
Ao, = LA A e LA
021 Ip1 P11+ s D2 + + 6pnp Pny
: (A.39)
0o, do, do,
A = nz A nz A S __‘nz A
O2n, 1 p1 + s D2 + + O Pn,

P
where n, denotes the total number of uncertain parameters. Computing the uncertainty

“cost” results in the following expression.
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1 Qo 1 Oo
Jr:< ZIEL ﬁ)Apl_'_...
Oz1,req 8101 Ozn, ,req 8101
=a1
1 OJo 1 Oo (A.40)
+< T ﬁ) Apnp:alApl—i----wLanpApnp
Oz1,req 8pnp Ozn, ,req 8pnp
:;’,np

The vector Ap that maximizes J, is therefore given by

Apj,LB y if sgn (aj) =-1
Apj = ApijB R if sgn (aj) =+1 (A-41)
undefined , if a; =0
This assumes that the Ap’s can occur independently. Substituting the worst-case Ap into

(A.36) produces an estimate of the increase in RMS values due to the parametric uncertainties.
Note that other approaches such as “bad corner” evaluation, constrained optimization or ro-
bust control methods have been suggested [45]. The first order approach is used in Chapters 4

and 7 to distinguish between designs that have the same nominal performance J,.
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Appendix B

Derivations for Large Order

Systems

B.1 Proof of Similarity Transformation

It is true that for a similarity transformation the transfer function matrix G,4(s) of the
original system and the transfer matrix of the balanced system G 4 (s) are equal. This can be

proven by showing that the difference between the transfer function matrices is zero.

Gd (3) - ézd (3) =Ca [SI - Azd]il Bia+ Dya — CzalT_1 [SI - TAsz_l] - TBua+ Dy =
C ([sI A =T [sT =T AT T) B, =0
(B.1)

This is true if the inner term in round brackets can be shown to vanish, since we assume that

C,q #0 and B,4 # 0 . Thus we have to show that
[sT— Ay L =T ' [sT—TAT '] ' T (B.2)
We first pre-multiply both sides by T'
T[s] — Ay ™t = [sT —TAT 7T (B.3)

and then take the inverse of both sides, which leads to

[sT — Ag) T~ =T [sT —TA T (B.4)
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Next we post-multiply both sides with 7" and show that the right hand side of (B.4) is equal
to the left-hand side

RHS =T ' [sI - TA, T '\T=sT '"IT-T 'TA,qT 'T=sI—-A,y=LHS (B.5)
I I I

g.e.d.

B.2 Computation of Balancing Transformation

The goal of the internal balancing operation is to find a transformation matrix 7', such that
the observability and controllability gramians of the transformed system are diagonal and
equal to each other. A number of different algorithms for finding T, starting with Moore’s
method [102] in 1981, have been suggested over the years. This method is implemented in the
MATLAB function xobalreal.m. First the gramians are each computed as the solution of a

Lyapunov equation.

Controllability Gramian W,:

A gWe + WALy + B.aBl; =0 (B.6)
Observability Gramian W, :

Al W, + WA+ CLCly=0 (B.7)

Moore then proposed directly performing a singular value decomposition (SVD) on W,:

W, =Ux3.Ur (B.8)

The elements of the diagonal matrix ¥, are the sorted controllability singular values of the

unbalanced system such that:

Y. =diag{of,05,...,0%} (B.9)
Similarly, a singular value decomposition is used on the matrix product

11
Ux2w,n2ul = uxiul (B.10)

where the diagonal elements of the diagonal matrix ¥y are the Hankel singular values of the

system and O'ZH > O'JH for 4 > j. The square transformation matrix 7" is then formed as:
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1 1
T =X2ULU %2 (B.11)

and the inverse can be directly computed as:

1 1
Tt =% 20U,%,> (B.12)

The second algorithm presented here was developed by Laub and coworkers [77],[78] and
it is also the one implemented in the MATLAB function balreal.m. Laub (1987) first com-
putes the controllability and observability gramians W,, W, according to (B.6) and (B.7)

respectively. Next a Cholesky factorization of the gramians is performed such that:

W.=R'R, and W, = RIR, (B.13)

The next step consists in performing a singular value decomposition of the mixed product of

the Cholesky factors from (B.13) such that:

Usy VT = R,RT (B.14)

Of these matrices the matrix Xz is of importance, since it contains the Hankel singular values

on the diagonal.

Yy = diag (UfI,UQH,... O'H) (B.15)

? Y Ng

The resulting singular values, eigenvector matrices U and V' as well as the Cholesky factors

are used to determine 7" and its inverse T 1 as follows:

T =3,"*UTR, and T-' = RTVx '/? (B.16)

The balancing matrix 7" can then be used to obtain the transformed gramians.

W, = TW,T" and W, = (T~")" W, (B.17)

It can be shown that the transformed gramians are equal to each other and equal to the

Hankel singular value matrix.

W. =W, =Xy and thus 3, = TW,W,T (B.18)
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The original state space system can be written in terms of the § matrix, which is trans-

formed into an internally balanced realization S :

Azd Bzd jl’élzdjji1 TBzd
=
Czd Dzd Csz_l Dzd

U
Il

S = (B.19)

It is true that the matrices R,,R.,Xy,U,V all depend on the system parameters p; and so
does T'. This knowledge is however not necessary in order to compute the performance RMS
and sensitivity of the system as will be shown later. A prerequisite however is that the system
be stable and minimal. Especially the last requirement is often not met for large order systems
without prior model conditioning (e.g. pre-balancing according to [85]). Further details are

available from Mallory [86] and Uebelhart [136].

Benefits of Balancing: A remarkable and desirable effect of the balancing transformation is
the reduction of the condition number of the A-matrix. The condition number is the ratio of
the largest to the smallest singular value of A. For the SDOF example in (5.29) the condition
number is reduced from 1714 for the original system (left) to 1.001 for the balanced system
(right). Also balancing is often used as a precursor operation for model reduction, since it

ranks the states in descending order of disturbability /performability.

Drawbacks of Balancing: Since the balanced matrices are fully populated the parameters of
interest do not appear explicitly anymore. This complicates the computation of the matrix
derivatives in the sensitivity analysis, see Appendix A. The original realization can however
be recovered by inverse transformation. For systems that are uncontrollable or unobservable
the traditional computation of T fails. Also internal balancing is a computationally expensive

and its computational cost was estimated to be roughly 150 - n? floating point operations.

B.3 Derivation of Transformed Governing Sensitivity Equa-

tion (TGSE)

The purpose of this section is to derive the governing sensitivity equation for a transformed
system. This is done assuming that the similarity transformation is internal balancing. At no
point is any property of balancing used, except for similarity, such that the results are valid

for any similarity transformation, e.g. into Jordan form, 2nd order modal form, real modal
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form, controller or observer realization etc. The first step is to recognize that the sensitivity

of a balanced system is given as:

05, 1 953

6pj - 25% 6pj

(B.20)

where the RMS of the balanced system &, is computed using equation (5.30). The derivative
of the variance 62 with respect to parameter p; can be computed as follows. The first step is to
substitute the transformed system matrices Ay , B,4 and C,4 into the governing sensitivity

equation (A.32):

962 0 (C1:Cua) Y pir, 0 (B.uBY)
Pz trace ZQL + trace | L; zd Mg+ 24 zd | :
Op; Op; Op; Op; dp;

(B.21)

whereby Y; is the balanced state covariance matrix and L; is the balanced Lagrange multi-
plier matrix. These matrices are computed solving the Lyapunov equations (5.33) and (5.40),
respectively. The difficulty lies in computing the partial derivatives of the system matrices
/Izd =TA,, T, Bzd = TB,; and ézd,i = C’Zd,iT*1 with respect to the j-th parameter p;.
It shall be noted that p; could be a modal or physical parameter of the system. The gov-
erning sensitivity equation can be rewritten in terms of the original system matrices and the

balancing transformation matrix 7":

952 o (@) ofCair )
% = trace | g Ip;
o (B.22)
o (rao o((r)"ALIT) o (TB.uBTTT)
+trace |L; { ———=3; + X5 +
9p; Ip; Ip;

Invoking the product rule of matrix calculus [143, p.24], which states that the derivative of
the product of two matrices A (), B («) is given as:
d(AB) dA dB

do = %B + A% (B.23)

we can rewrite the above equation to yield
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o(T-1)" 0 (C1,Ca)
(9pj

(9pj

v N J/

_ I\T
C’g:i,iCzdyiT Y +trace X (T 1) +

term1

[ or—! - T
trace | g (Tl)TngliCzd,i—] +trace [Li—AszIZq] +
’ 8pj apj

NG - g NG g

term3 term4 o
8(;;1);(1T_1§]q] +trace [iiTAzd%Eq] +trace [EiZqMAZTdTT
ferms term6 o term7
trace -f}iEq (Tﬁl)T %TT] + trace [iiZq (Tﬁl)

term8 term9
[ 0 (B,4BT

trace Li—BdeZ:iTT] + trace M
L Op; Ipj

term10 term11 term12

trace l~}iT

T

oT

L;,T "

T 8TT]

/

+trace [I:iTBde

/

(B.24)
The above expression makes use of the fact that the trace of the sum of two matrices is

equal to the sum of the traces of each individual matrix, i.e.

trace [A 4+ B] = trace [A] + trace [B] (B.25)

Then equation (B.24) can be reordered such that terms 2, 5, 8 and 11 appear first. We
recognize that these terms correspond exactly to the governing sensitivity equation (A.32).
The sum of the remaining terms are called residual. In order to prove that (A.32) is correct

we must then show that the residual always vanishes. We rewrite (B.24) as

052 0 (01:1,~Czd,i>
P _ trace | X (Tﬁl)T NN +
Ipj Ip;
term? (B.26)
- 0A 0AT 0 (B.4BT
trace | Li { TS24 15, 4 5, (771! 22247 4 TMTT +residual
9p; 9p; Ip;
termsg;8+11

The residual can be written as:
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o(T ! T ]
residual =trace | X (8 ) Cg;l’iczd,inl-i—Zq (Tﬁl)TC’g:i,iczdyiT +
L p'] p'j |
terrr:sr1+3
[~ oT 1 = or ! - OT el
trace Lza—p]Asz Eq+LlTAZd8—p726+Ll8—Z’)JBZdBZdT ] + (B27)
term4:6+10T
. T oy 0T (T71) . or”
¢ Liy; (T4 Al — 4+ Ly, ———— AT 1" + ,TB,;BT, ——
race ? ‘I( ) zd 8])] + L q 8])] zd + L zdP zd 8])]
term9:7+12

At this point we make use of two important properties of the trace operator. First it is
true that the trace of the transpose of the product of two matrices is equal to the trace of the

product of the two matrices:

trace [ABT] = trace [(ABT)T] = trace [BAT] (B.28)

This is obviously true, since the trace is the sum of the diagonal elements, which are not
affected by the transpose operator. Secondly it is true that we can cycle the matrices inside
the trace operator, without affecting the result, provided that the matrices are square, which

they are in equation (B.27).

trace [ABC| = trace [CAB] = trace [BC A] (B.29)

Invoking (B.28) for terms 3,9,7 and 12 and reordering according to (B.29), we realize that
terms 1 and 3, 4 and 9, 6 and 7 as well as 10 and 12 are equal to each other. This will be

illustrated for terms 4 and 9 and applied to the other terms.

B or” . v 0T\
trace |Lixg (T AL, =—| =+t Lisg (179" ALZ—) | =
\TCLCG i 124G ( ) 2d 8pj :|l race [( 1444 ( ) 2d 8pj

~ te;%l})

orT N oT N

trace (—) Asz_lilngT = trace [—Asz_quLi] = (B.30)

|\ 9p; Op;

[~ oT - 0T
trace Li—Aszlﬁq] = trace [Li—Aszlﬁq]

- 8p'] ~ 8p'] _

te;rrn4
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Note that we have made use of some additional facts in order to arrive at equation (B.30).
The state covariance matrix and the Lagrange multiplier matrix are each symmetric, since
they are the solution of a steady state Lyapunov equation, i.e.

S =37 and L; = L] (B.31)

This has been used to arrive from the third to the fourth step in equation (B.30). Addi-
tionally we know from matrix calculus that the transpose operator and the (partial) derivative

of a matrix are interchangeable, i.e.

(%)T _ [d%'r _ [daji] _d(47) (B.32)

da da da
This has been used on the balancing transformation matrix to arrive from step three to
step four in equation (B.30). Applying the same operations as shown above to terms 1, 7 and

12 we have only four distinct terms. Thus we can factor out a factor 2 and obtain:

oTr—!
residual = 2 - trace [Zq (T_I)T C’ZT(“C’Zdyi—] +
; ,a P ; (B.33)
- oT ~ T- -~ OT
2.t Li— A, T 'S; + LiTA,q——%; + Li—B,4BLTT
Tace|: zapj 2d g+ L 2d 8pj gt zapj 2dP 54

The difficulty with equation (B.33) is that there are mixed terms with partial derivatives
of the transformation matrix 7" and it inverse. This can be resolved by recalling from matrix

calculus that

dA™! dA
=-A1—4a" B.34
da da ( )
Thus equation (B.33) is rewritten as:
. -N\T ~T 0T
residual = 2 - trace | -4 (T ) ClgiCoil™ —T | +
- (i) Op; , (B.35)
~ 0T _ ~ 0T ___ ~ 0T
2 -trace |:Lla—pJAsz 12,; — LZTAZdT I%T lzq + Lla—p]BZde:iTT]

Next we can factor out the derivative term of 7" and the inverse of T and rearrange the

remaining terms.

252



residual =

z

or - - N
2 - trace |:(9—T_1 (—Eq (T_I)T Ci:jyiczd,iT_l + TAsz_IEqLZ’ — ZqLiTAsz_l + TBdeZdTTLz>:|

P;
(B.36)

We know that the state covariance matrix ¥ obeys the Lyapunov Equation (5.34), from

which we can isolate the term containing the B,; matrix, which results in

TB,qBLTT = ~TAT7'%; — %; (T*l)T AT TT (B.37)

This expression (B.37) is then substituted into (B.36), which cancels the second term in
the round brackets of (B.36). An additional term —¥; can then be factored out which leads

to

residual =

B.38
or, ., -N\T ~T -1 -N\T 41 TF 7 -1 ( )
2 trace |~ 1'% ((T )1 L Coag T+ (7Y AT Ly + LT ALy T )
J
We recognize that the matrices inside the round brackets are the transformed system

matrices and that their sum contains all the elements of the left side of the Lyapunov Equation

(5.40). After rewriting we obtain:

T e~ - - - -
residual = 2 - trace —g—T_qu (AZdLi + LiA,q+ C’ZMC’zd,i) =0 (B.39)
Dj Q ’ ,

~~

0

Thus the residual is zero due to the fact that the term in round brackets obeys the Lya-
punov equation for the Lagrange multiplier matrix L; and is always equal to zero. Hence it
does not matter that the partial derivative of the transformation matrix 7" with respect to
parameter p; is non-zero, since it does not enter into the final expression for the sensitivity of
an internally balanced system. We have thus shown that the expression for the sensitivity of a
balanced system according to Equation (5.39) is correct. It shall also be noted that at no point
in this derivation was it necessary to stipulate that 7" is an internal balancing transformation.
Equation (5.39) is thus valid for other kinds of similarity transformations such as input or

output normalization [102].
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Note: A simpler proof can be carried out by invoking the similarity transformation property.
By substituting the inverse transformation of the balanced state covariance matrix (5.32) into

the original GSE (A.32), the TGSE (5.39) can be obtained directly.

B.4 Computation of Sensitivity Error Bound due to Model
Reduction
The goal of this appendix is to derive the error in the RMS sensitivity prediction 0, /dp;

due to balanced model reduction. The RMS value for the i-th performance metric z; of a

balanced, reduced system is computed as:

5. = (CoaiTeChy)" " = (Czd,inlPTzqP (T 1" T, )1/2 (B.40)

zdy

The sensitivity of a reduced, internally balanced state space system is given as:

05, 1 00z,

= B.41
6pj 25% 6pj ( )
Here the partial derivative with respect to the variance is obtained as:
T
da2 0 (C d,-Czd,i>
%5 — trace [T Py (1) AL T
Ipj Ip;
. 0A 0AT 0 (B.4B!,
trace | L;{ PT==47=1pTs, + x,p (177" Z=47TpT 4 pr2WBibia) pir pr
Ip; Ip; Ip;
(B.42)
The Lagrange multiplier matrix for the reduced system obeys:
ALyLi + LiAzq + C'sz,iC'zd,z‘ =0 (B.43)

As was the case for the computation of the reduced system RMS performance o,, , we can
expect that the reduced system sensitivity 0o, /0p; is in error due to the removal of system

states. The quantity we are trying to determine is:

06,, 00y

1 952 1 0o
dp;j  Op;

26, Op; 20, Op;

ERMS —

sens ‘

(B.44)

With the following substitutions we can derive an expression for £33/ more easily:
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062 062
= Uzl,b: Uzl,C:(Tzi,dZ&z.:azi—l-AO'Zi:C-i—AC (B.45)
Op; dp;

We can then rewrite (B.44) as:

a

g3, = ib—ia :‘71 b—ia =
RMS 194" 2c 2(c+Ac)  2c (B.46)
c-b—(c+Ac)a| |c(b—a)—Ac-a

2(c+Ac)e | | 2(c2+Ac-c)

Substituting in the original variables we obtain an expression for the absolute error on the

sensitivity 0o,,/0p; due to balanced model reduction.

_ (052 052 052
Uz ) i [ _ A Uz . 1
¢ 6p 5 (9pj ¢ 6p 5

2 (62 + Ao, - 5,)

96, 06,

dp; Op;

sens __

RMS = (B.47)

Of the quantities in equation (B.47), we can obtain 7,, from equation (5.47), the RMS error
Ao, from equation (5.62) and the partial derivative of the variance 862 / Opj from equation

(B.42). An expression for the difference of partial derivatives of the variances is derived below.

962 952 0 (CTiCua)
% _ 775 — grgce T '%; (Tfl)T# +
te;r,nl
~ 0A 0AT 9(B..BT
trace | L; { T—= T*126 + % (Tfl)T edpT TMTT
Op; p;j ap;
— te;rrn2
9 (07:1 'Czd,i>
—trace T_IPTZqP (T_I)T _\ T
8pj
_ te;rrnb'
I A oA, 8 (B,aB"
—trace | L; PTMTAPTZ(I +%,P (Tfl)T 2dpT pT PTMTTPT
i 8pj 8pj 8pj
te;rrn4

(B.48)

Terms 1 and 3 correspond to each other and the result of their subtraction is:
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terml — term3 =
7 0(ChiCua)
Op;

0 (€1 ,Cuai)
trace | 7715 (I'™) —trace |THPTSP (171 =22 | =
p;

0 (C1,Cua)

trace | (1714 (1) =171 PTs,P (1)) 5
J

(B.49)

since

Y5 = Sy and 5q = PSP (B.50)

we can rewrite (B.49) as

terml — term3 =

0 (CT, C.u,
trace (T—IEH (T_I)T—T_IPTPEHPTP (T—l)T> <Zad+]z) — (B51)

1 0(ChiCua)

trace | T~ 'Sp (T_l) o
J

The difference of terms 2 and 4 from equation (B.48) is computed as
term2 — term4 =

trace

~ 0A.d,.—1 AV 8ATd T 9 (Bdesz) T
L, {T—=—=T "%:;:+ % (T —zert 4 rT— - =T

—trace

Op; Opj Op;

- A OAT 9 (B.4BL,
L; {PT AP pTs, 4 5,P (T71) T Z22d7T Pl PTMTTPT}

trace

~ AT 0 (B,4BY
Li T%T*le + EH (T*I)T 9 szT +T ( d zd) TT
Op; Ip; Op;

L A 9A?, 0 (B.4B”.
L; {PTuTlPTPEHPT +PeyPTP (T )" a—ZdTT P+ pTw

trace
Ipj P; Ip;

(B.52)

The Lagrange multiplier matrix for the i-th performance metric in the balanced and the
reduced case are related to each other as follows

L, = PL;P" (B.53)
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This relationship is invoked to rewrite (B.52) as

term2 — term4 =

- 0A - OA o9(B..BT
trace | L;T ZdT’li]H_;_LiZH (T )T ZdTT-FLTMTT
Op; p;j Bp;
A . 9AT
trace [PL PTPTaa “p1pTpyy, PT + PL,PT PR PTP (T1)" aszTPT (B.54)
Pj D,
~ 0(B,4B
PLiPTPTwTTPT _
6pj
~ 0A OAT 9(B..BT
trace |Li | T224T 'Sg + 35 (T71)" —=4TT 4 I TMTT

Combining corresponding terms and rearranging allows expressing the difference in terms

of the matrices X and Iy as defined in (5.63) and (B.55) respectively.

QTR (PRI
Ip = (B.55)

Qnreng - [nreny

Then the difference of the partial derivatives of the variances can be written using (B.54)

and (B.51) as follows.

062 052 o 0(C5Cua)
L % =trace |T 'S (T') ——— | +
dp;  Op; Op; (B.56)
7 0 (B,yB”
trace | L; T% SR+ 2R ( )T 8AzalTT + IxT ( zd zd) 7T
6p] 6py (9pj

Where Y is the matrix containing the Hankel singular values corresponding to the re-
moved states, as defined in (5.63) and Iy is the identity matrix with ones as diagonal entries
corresponding to the removed states and zeros everywhere else. The computation of the sen-
sitivity error e3¢ according to (B.47) requires many terms. Especially the computation of
the Lagrange multiplier matrix of the balanced, unreduced system L; as shown in equation
(5.40) is undesirable. What is needed is therefore an (upper) error bound for the sensitivity
error similar to the bound for the RMS performance error shown in (5.65). Such a bound can

be found by first computing the relative sensitivity error. This is done by dividing equation

(B.47) with the reduced model sensitivity 0o, /0p; such that
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N00u | [06n _05u| |, (852 9ot > o, 2%
Opj | _ | 9p;  Opy | _| "\  Op; % (B.57)
9oo | | dom | 2%(52+Aa,-5—,) |
p; p; op; * & oA

Substituting in (5.67) for 05,,/0p; in the denominator and rearranging yields

o, _ (062 0o A 952, _ (062 [ 052 DA
A—= Oz - — R0z Oz - — R0y
Op; “\op Y oop | |\ 9ps /) Op ’ (B58)

86zi da2 N 6—21
6p J 6pj

Even though the above expression is valid, it does not yet represent the simple error
bound we are trying to find. A first simplification is introduced by replacing ¢,, with ,, in
the denominator. Since 6,, > 7,, we obtain an inequality. We also keep the absolute value of
both sides, since the relative sensitivity error from (B.47) can be positive or negative and we

are only interested in the magnitude of the relative sensitivity error. This results in:

A do, 95?2,
6pj 6pj AUZ,
< -1 —-— B.
Ipj Op;

We recognize that the second term on the right side of (B.59) corresponds to the expression
for the relative RMS error according to (5.65). Since we have an upper bound for the relative
RMS error we flip the negative sign in (B.59), which preserves the inequality. The ratio of

partial derivatives of the variances is approximated as follows:

66’21 Ds H\2

dp; _ trace[Ng] S () (B.60)
952 " trace (22] &, g2 '
—= > (Ui )

dp; i=1
Finally we arrive at an upper error bound for the sensitivity error by substituting (B.60)

and (5.65) into (B.59).

A%z | S8 (o) ol

O | = : Cqgl i (B.61)
S Y |
Ip; = ="
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B.5 Summary

This appendix contains derivations in support of Chapter 5. These include a proof for sim-
ilarity transformations, the derivation of the Transformed Governing Sensitivity Equation

(TGSE) and the derivation of error bounds for reduced state space systems.
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Appendix C

Application of Isoperformance to

other Fields of Engineering

The focus of this thesis has been on applying the isoperformance methodology to dynamics
and controls problems. The kernel isoperformance algorithms developed in Chapters 3 and 4
are, however, applicable to a wide range of engineering problems. The purpose of this appendix
is to demonstrate the versatility of the isoperformance technique. The application to crack

growth in a metallic structure is presented by means of a cracked panel sample problem.

C.1 Crack Growth in Metallic Structures

Consider the problem shown in Figure C.1, where a flat, infinitely long metallic panel of width,

w, is subjected to a longitudinal stress loading, Ao = 0pee — Tmin-

Cyclical stress loading of amplitude Ac

b —»
4— Center v EE
AC 1 Cracked - g AC
<4—  Panel A 2aq () 231 Kt EE
<__ .

Figure C.1: Crack growth sample problem: Center cracked infinitely long panel.

The stress varies sinusoidally as a function of time with a stress range Ao, whereby R =

Omin/Omaz = 0. The amplitude Ao /2 is assumed constant. Any thermal effects which might
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come into play above a cycling frequency of about 5 [Hz| are ignored. Since this is a crack
growth calculation, an initial transverse crack of length, 2a,, is assumed to exist at the center
of the panel. The crack will subsequently propagate to length, 2a, until it reaches the critical
crack length, 2a.. This is due to stress concentration at the crack tip, giving rise to a stress
intensity AK, see Reference [134]:

AK = Aov/ma - [sec (%a) = Aov/ma - [cos (W—a)} e (C.1)

w

The rate of crack growth as a function of the stress intensity, AK, is given by the Paris Law
as:
da

where C' and m are material dependent crack growth parameters. The goal of the calculation
is to determine the critical number of load cycles, N,, from initial to critical crack length,

ao — a.. The critical number of load cycles can be computed by integrating from a, to a.:

m
2

Qc Qc
da \ m m
N, = / (d_]‘\t[> da:/c*lAKmda :Clvr7Aam/ cos (32)] Fa Bda (C3)

Unfortunately Equation (C.3) is transcendental, such that a solution can only be found numer-
ically. The solution, N, is quite sensitive to the integration step, Aa. If Aa is chosen smaller

and smaller the solution will asymptote to the correct value. This is shown in Figure C.2(b).

Critical Load Number of Cycles N¢: 35668 2 )(4104 Critical load cycles vs. integration step size
Critical Crack a¢ LE
2.5t : 3.5t
= 3
=
£ : =
< : 5
= L 1
£,1.5 ! —g 2.5}
3 : 2
I -
0.5 ' < L5
| 2
ag ‘ ‘ ‘ ‘ ‘ ‘ 3} = q : :
05 1 1.5 2 25 3 35 4 ;;;: 10-3 10—2 101 100
Load cycles N x 104 Crack length integration step Aa [inch]

(a) (b)

Figure C.2: (a) Nominal crack growth curve from a, to a. with integration step
Aa = 0.01". (b) Dependence of predicted critical number of load cycles,
N, on crack length integration step size, Aa.
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The nominal case assumes a stress range, Ac = 0par — Omin = 12 [ksi], R = 0, an initial
crack length a, = 0.1” [inch], a critical crack length a, = 2.8” as well as material coefficients
C =4-10"? and m = 3.5. The panel width is w = 6” as shown in Figure C.1. The crack
propagation from a, to a. for this nominal case is plotted in Figure C.2(a). It can be seen
that the crack grows slowly at first and that the rate of growth increases until the crack goes
unstable at a. = 2.8”, causing the panel to fail. The dependence of the answer on the crack
length increment, da ~ Aa, is depicted in Figure C.2(b). One can see that the number of
critical load cycles, N, is underpredicted for large step sizes. Below Aa =~ 0.01” the number
of load cycles asymptotes to a value of N, = 35,668. This is why this step size is used.

Applying the isoperformance technique to this problem, we may consider the critical num-
ber of load cycles to be the “performance” of the system, i.e. J, = N.. Assume that a
performance of J, ;e = Neyreg = 25,000 load cycles to failure is required for safety and de-
sign life considerations. For a bivariate problem we consider the initial crack length, a,, and
the stress range, Ao, to be the variable design parameters. The intervals over which the

parameters can vary are [0.017,0.5”] and [8 ksi,20 ksi], respectively.

. . . 4 i i
Iterations for First IsoPoint: J,=N.=25000 x 10 Co‘nvergen‘ce Hlsto‘ry for 1s‘ocontou‘r

o
[\
—
N

Nc=25,000 isocontour

=]
—_
)]

0.5
g 0.45 Parameter Bounding Box
£ 04
&g
= 0.35 )
203 E
3 s,
E - - Tolerance 1=0.5%
£
O
=
=

. 1L
0.1
0.05 Initial Point= 35,668 0.5¢
0 : : : : : 0 i i i i i
8 10 12 14 16 18 20 1 2 3 4 5
Stress Range AG [ksi] Iteration #

(a) (b)

Figure C.3: (a) Crack growth problem: Gradient search for J, = 25,000 isoperfor-
mance contour. (b) Iterations to intercept.

Figure C.3(a) shows the gradient search from the initial guess (a, = 0.1”,Ac = 12 [ksi])
until the N, = 25,000 isoperformance contour is intercepted. Since the first order derivatives

of the integral in Equation (C.3) cannot be obtained analytically, we approximate the gradient
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vector V.J, = [ON,/0Ac, ON,/da,)" via finite differences'. The isocontour (=“curve of equal
crack growth life”) is found in five iterations, given a numerical tolerance of 7 = 0.5%, see
Figure C.3(b).

Once the isoperformance contour is intercepted we apply the Gradient-Based Contour
Following Algorithm which was developed in Subsection 3.2.2. The performance-invariant
curve is computed until the parameter bounding box, B, is intercepted. The result is shown
in Figure C.4(a). Every combination along this curve will (theoretically) produce a crack
growth life of N. = 25,000. A total of 72 isoperformance points, p;s,, are obtained. This
required 1.79 million floating point operations and 15.87 seconds of CPU time (Pentium III,
650 MHz computer).

Isoperformance Curve: J,=N=25,000 cycles

‘ ‘ ‘ <10 4 Quality of Isoperformance Solution Plot
—05 Parameter Bounding Box ‘ ‘ ‘ ‘ ‘ ‘
5 2,71
g 265 Tolerance 1: 0.5 [%]
£04L ’ZB 2 p I Actual Error: 0.25853 [%]
5 i
B0 Isoperformance 'ﬁN2 55
=) 550
303 Contour Ne¢=25;000 8 S
> S 2.5 ey T T et oo o B T
Q
S 0.2 E 2.45¢
= E 2.4}
BOdp | ‘ 2.35
[ 23
|
0% 10 12 14 16 18 20 22% 10 20 30 40 30 60 70
Stress Range AG [ksi] Isoperformance Point Number

(a) (b)

Figure C.4: (a) Crack growth problem: Isoperformance contour for N, = 25,000

and variable parameters Ao and a,. (b) Quality of solution plot for
tolerance 7 = 0.5%.

As expected, the isoperformance curve shows that as the initial crack length, a,, increases
the stress range, Ao, must be decreased in order to achieve the same performance. This is
a non-linear relationship and assumes that the critical crack length, a., is the same for all
configurations and does not depend on the maximum stress g,,q;. The “quality of solution”,
using the metric, Y5, from Equation (3.40), is shown in Figure C.4(b). It can be seen that
the computed isoperformance curve is within the required numerical tolerance, 7.

The curve in Figure C.4(a) could support important design decisions. Assume for example

1A 1% perturbation size is used.
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that the detectable crack length at manufacture is 0.1” or larger and that the panel could not
be inspected during operations; this would then restrict the stress range to 13 [ksi] or smaller.
A multivariable analysis involving the other parameters (a., w, C and m) could be conducted
using the multivariable algorithms from Chapter 4. In this way tradeoffs between loading
conditions, material properties and geometry could be made, while holding the performance
in terms of crack growth life (fixed by a “customer” requirement) constant. This demonstrates

the applicability of isoperformance to problems other than dynamics and controls.
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Appendix D

DOLCE Finite Element Model

This listing is for the DOLCE testbed finite element model and is compatible with IMOS
version 5.0 [62].

% dolce_fem

% Simple FEM of the DOLCE testbed

% see lab notebook page 46 and following
% dWo, 6/30/2001

flops(0) tic;
% constants
diagnostics=0;
1bs2kg=0.45;
mp=0*1bs2kg;

%grid locations [m]

xyz=[...
1 -0.25 -0.25 0.0
2 0.25 -0.25 0.0
3 0.25 0.25 0.0
4 -0.25 0.25 0.0
5 -0.25 -0.25 0.5
6 0.25 -0.25 0.5
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10
11
12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38

0.25
-0.25
-0.125

0.125

0.125
-0.125
-0.125

0.125

0.125
-0.125

.25

-0.25
-0.125

.125
.25

0

0

0
0.25
0.25
0.125
0
-0.125
-0.25
-0.25
-0.25

0.125

0.25

0.25
-0.125
-0.125
0.125
0.125
-0.125
-0.125
.125
.125

-0.25
0.25

-0.25
-0.25
-0.25
-0.125

.125
.25

.25

0

0

0
0.25
0
0.125
0

-0.1256

-0.125

0.125

O O O O O o o o o o

.75
.75
.75
.75

o O

~
o

O O O O O O O O O O O O o O O o o o o o o o

o oo oo o0 o0 oo oo o1 o1 ;1 ;1 o1 o1 o0 o1 O O O O
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0.0 0.5

-0.125

39

0.868

0.0

0.0

40

-0.1

-0.25

-0.25

101

-0.1

-0.25

0.25

102

1

0.25

0.25

103

-0.1 1;

0.25

-0.25

104

% connectivity beam elements

...

nibar

10

11

12

13

14

15

10

16

11

10

17

12

11

18

12

19

13

20

14

10

21

15

11

22

16

12

23
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24 13 14 0 2 0 0 1 1 1
25 14 15 0 2 0 0 1 1 1
26 15 16 0 2 0 0 1 1 1
27 16 13 0 2 0 0 1 1 1
28 9 11 0 2 0 0 1 1 1
29 9 16 0 2 0 0 1 1 1
30 16 11 0 2 0 0 1 1 1
31 11 14 0 2 0 0 1 1 1
32 9 14 0 2 0 0 1 1 1
33 13 15 0 2 0 0 1 1 1
34 17 18 0 3 0 0 1 1 11;

% Create bar element property matrix
Alarge=((0.02212/2)"2)*pi-(((0.02212/2)-0.001016) ~2)*pi;
Asmall=((0.009398/2)~2)*pi-(((0.009398/2)-0.001524) "2)*pi;
Iblarge=(pi*(0.02212/2)~4/4)-(pi*((0.02212/2)-0.001016)"4/4);
Ibsmall=(pi*(0.009398/2)~4/4)-(pi*((0.009398/2)-0.001524)"4/4);
Jlarge=2xIblarge; %approximation

Jsmall=2xIbsmall; %approximation

propbar=[ ...
% pid mid A 122 I33 J
1 1 Alarge Iblarge Iblarge Jlarge
2 1 Asmall Ibsmall Ibsmall Jsmall
3 1 0.005"2*pi pi*0.00574/12 pix0.005"4/12 pi*0.00574/6
1;

% connectivity plate elements

hsandwich
nisplate=[...

35 1 20 17 23 4
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36 20 2 21 17 4
37 17 21 3 22 4
38 23 17 22 4 4];
htop Al Plate
niuplate=[...
39 5 24 9 35
40 24 25 36 9
41 25 26 10 36
42 26 6 27 10
43 35 9 39 34
44 9 36 18 39
45 36 10 37 18
46 10 27 28 37
47 34 39 12 33
48 39 18 38 12
49 18 37 11 38
50 37 28 29 11
51 33 12 32 8
52 12 38 31 32

oo oo oo o0 o0 o1 o1 o1 o0 OO0 o1 O O O O

53 38 11 30 31
54 11 29 7 30 5];
tface=0.0019; tcore=0.03146; tplate=0.004572;
msp=6.751; % mass of sandwich plate
propsplate=[...
4 1 tface 1 tcore msp/0.25];
propuplate=[...
5 1 tplate 0];

% springs
1bs2kg=0.45; in2m=0.0254; lbspin2Npm=1bs2kg*9.81/in2m;
k_green=168; Ycatalogue value lbs/in

k_spring=k_green*lbspin2Npm;
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nicelas2=[...

556, 1 1 101 1 1e3*k_spring O

56 1 2 101 2 le3*k_spring O
57 1 3 101 3 k_spring O

58 1 4 101 4 0.1xk_spring O
59 1 5 101 5 0.1xk_spring O
60 1 6 101 6 le-3*k_spring O
61 2 1 102 1 1e3*k_spring O
62 2 2 102 2 le3*k_spring O
63 2 3 102 3 k_spring O

64 2 4 102 4 0.1xk_spring O
65 2 5 102 5 0.1xk_spring O
66 2 6 102 6 le-3*k_spring O
67 3 1 103 1 1e3*k_spring O
68 3 2 103 2 1e3*k_spring O
69 3 3 103 3 k_spring O

70 3 4 103 4 0.1xk_spring O
71 3 5 103 5 0.1xk_spring O
72 3 6 103 6 le-3*k_spring O
73 4 1 104 1 1e3*k_spring O
74 4 2 104 2 1le3*k_spring O
75 4 3 104 3 k_spring O

76 4 4 104 4 0.1xk_spring O
77 4 5 104 5 0.1xk_spring O
78 4 6 104 6 le-3xk_spring 0];

hconcentrated masses

m_bn=0.2281; m_sn=0.03475; mshk=11.921+0.33975;

niconm2= [ ...
79 17 1bs2kg*mp 0.0E+00 O0.0E+00 O0.0E+00 O OO 00O
80 1 mbn O0.0E+00 O0.0E+00 O0.0E+00 O 0O O0O0OO
81 2 m_bn 0.0E+00 O0.0E+00 O0.0E+00 O OO O0OO
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82 3 mbn O0.0E+00 O0.0E+00 O0.0E+00 O 0O 00O
83 4 mbn O0.0E+00 O.OE+00 O.0E+00 O OO 00O
84 5 m_bn 0.0E+00 O0.0E+00 O.0E+00 O OO 0O0O0OO
85 6 mbn O0.0E+00 O0.0E+00 O0.0E+00 O OO 00O
86 7 m_bn O0.0E+00 O0.0E+00 O0.0E+00 O OO 00O
87 8 m_bn 0.0E+00 O0.0E+00 O.0E+00 O OO 0O0O0OO
88 9 m_sn 0.0E+00 O0.0E+00 O.0E+00 O OO O0OO
89 10 m_sn 0.0E+00 O0.OE+00 O.O0E+00 O OO 00O
90 11 m_sn 0.0E+00 O0.0OE+00 O0.0E+00 O OO 00O
91 12 m_sn 0.0E+00 O0.0OE+00 O0.0E+00 O OO 00O
92 13 m_sn 0.0E+00 O0.OE+00 O.O0E+00 O OO 00O
93 14 m_sn 0.0E+00 O0.0OE+00 O0.0E+00 O OO 00O
94 15 m_sn 0.0E+00 O0.0OE+00 O0.0E+00 O OO 00O
95 16 m_sn 0.0E+00 O.OE+00 O.O0E+00 O OO 00O
96 19 mshk 0.0E+00 O0.0E+00 O0.0E+00 0 0 O O 0 0];

% material Al 2219-T851

mat=0; mid= 1; E=  72e9; nu= 0.31000E+00; rho= 2.8be3;

alpha= 22.1e-6; Tref= 20.00000E+00;

mat=matl(mid,E,nu,rho,alpha,Tref ,mat) ;

% boundary conditions - initialize m and k
% Create initial boundary condition matrix
% (0= constrain, 1= free)
bci=ones(size(xyz,1),6);
% fix nodes 101-104 to concrete foundation (ground)
bci(size(bci,1)-3:end, :)=zeros(4,6);
% fix z-rotation for plate nodes
bci([17:18 20:39],6)=zeros(22,1);
% Compute the number of dofs and dof numbers, initialize k and m

[bc,ndof]=bcond(bci); nset=[1:ndof]; k=sparse(ndof,ndof); m=k;
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g=k;

% assemble m and k
if diagnostics
disp(’Assembling m for conm2s’)
end
m=conm2 (niconm2,bc,m,xyz) ;
if diagnostics
disp(’Assembling k and m for beams’)
end
[k ,m]=beam_lump(nibar,xyz,propbar,mat,bc,k,m);
if diagnostics
disp(’Assembling k and m for plates’)
end
[k,m] = uplate(niuplate,xyz,propuplate,mat,bc,k,m);
[k,m]= splate(nisplate,xyz,propsplate,mat,bc,k,m);
if diagnostics
disp( ’Assembling k for spring elements’)
end

[k,gl=celas2(nicelas2,xyz,bc,k,g);

% mass properties

[xyzcgl=cg_calc(m,xyz,bc); mass=wtcg(bc,xyz,m,xyzcg) ;

% process rigid body elements
rg=[0];
mset=[0] ;
if diagnostics
disp(’Processing RBE2 rigid body elements’)
end
gn=[40]; cm=[ ...
1
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_w N

a1

1;
gm=[ ...
13
14
15
16
19
1;
[nset,mset,rgl=rbe2(bc,xyz,nset,mset,rg,gn,cm,gm) ;
rg=sparse(rg) ;
if diagnostics
disp(’Reducing k and m to independent dofs’)
end
[gm,k,m]=mcel(nset,mset,rg,k,m);
bc=bcnset (bc,nset,mset) ;
fset=nset;
% solve eigenproblem
[phi,omegl=eigfem(k,m); omeg=abs(omeg); phi=real(phi);
phi=normphi (phi,m); % mass normalize
phi=mce_dis(nset,mset,rg,phi);
phi_full=zeros(prod(size(bci)),size(phi,2));
phi_full(find(bci’),:)=phi; phi=phi_full;

% select modes for analysis

nm=20; % number of modes in FEM

omeg=omeg (1:nm) ; phi=phi(:,1:nm);
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%» (1) build state space model using mode2ss2
% define input dofs

% input node: 40 direction 3

ig=[ 40 001000 1];

% ig= input vector 1- shaker Force Fc

str_in= str2mat(’1 Fc’);

% define displacement output dofs

% output nodes: 17 in 3 direction

dg=[ 17 00 10 0 0];

str_out=str2mat(’1 z’);

za=0.005*ones (1,nm) ; % flexible prop damping

za(1:3)=0.025*ones(1,3); % Suspension modes have higher damping (refine later)

nrbm=0;

vg=[1;

% compute state space model

[Ap,Bp,Cp,Dp,1b,1c] =

mode2ss2(xyz,bc,nm,ig,dg,vg,nrbm,za,phi,omeg) ;

sysp=ss(Ap,Bp,1e6*Cp,Dp); if O
f=logspace(-1,2,1000) ;
[mag_fem,phs_fem]=bode(sysp,f*2*pi);
mag_fem=squeeze (mag_fem) ;
figure
semilogy (f ,mag_fem)

end

toc flops
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