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Constraints on the required flatness of the scalar potential ¥ (¢) for a cousin model to extended
inflation are studied. It is shown that, unlike earlier results, induced-gravity inflation can lead to suc-
cessful inflation with a very simple Lagrangian and A~ 1075, rather than 10™!° as previously reported.
A second order phase transition further enables this model to escape the “big bubble” problem of ex-
tended inflation, while retaining the latter’s motivations based on the low-energy effective Lagrangians of

supergravity, superstring, and Kaluza-Klein theories.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

Since Guth’s first paper on inflation a decade ago [1],
there has been an explosion of effort dedicated to devel-
oping a natural theory of inflationary cosmology. These
efforts have established inflation as a ubiquitous program
of research among cosmologists and particle physicists,
but have not yet produced any particular model which
satisfies all of the practitioners. As Kolb and Turner re-
cently remarked, inflation is by now “a paradigm in
search of a model” [2]. Much of the trouble concerns the
so-called “fine-tuning” required to force the various mod-
els into agreement with measurements of the small an-
isotropy of the cosmic microwave background radiation.

Adams, Freese, and Guth [3] developed a quantitative
means of measuring the amount of “fine-tuning” neces-
sary to make inflationary models agree with observations.
They define a dimensionless parameter A as the ratio of
the change in the scalar field’s potential to the change in
the scalar field:

AEAA@ . (1)
(Ad)

In this way, A functions as a measure of the flatness of a
given potential. (Reference [3] denotes this ratio by A,
rather than A; the upper-case letter is used here to avoid
confusion with the closely related quartic self-coupling
parameter.) In [3], they evaluate this ratio for generic
inflation scenarios (without a curvature-coupled scalar
field) and for the original version of extended inflaton [4].
They show that extended inflation requires a fine-tuning
eight orders of magnitude more stringent than the general
inflation schemes: whereas they find A <107%-1078 for
the inflation potential of new inflation, they calculate that
a potential for the Brans-Dicke-like scalar field in extend-
ed inflation would require A <107 !°. Although the au-
thors of [3] are quick to point out that their method of
calculating A is highly model-dependent, others have tak-
en this result to indicate that adding a potential ¥ (¢) for
the curvature-coupled scalar in any type of extended
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inflation model necessarily entails this sort of extreme
fine-tuning (see, e.g., [5]).

This paper examines the constraints on V(¢) for a
cousin model to the original extended inflation. Building
on Zee’s early ideas [6] about uniting spontaneous sym-
metry breaking with the Brans-Dicke reformulation of
general relativity, Accetta, Zoller, and Turner [7]
developed a model of “induced-gravity inflation.” In this
model, a single scalar boson does all the work of inflation:
it couples to the scalar curvature R and drives inflation
with V(¢) (unlike ordinary extended inflation, which re-
quires one field to couple to R while a separate and unre-
lated field drives the expansion). This kind of one-boson
model can agree with observations with about the same
degree of “fine-tuning” as the generic models of inflation
examined in [3]: as will be shown below, ‘“Induced-
gravity Inflation” requires A $107%, a far cry from the
107 of Ref. [3]! Furthermore, by employing a
second-order phase transition to exit the inflationary
epoch, rather than the first-order transition of [4], the
“big bubble” or “w problem” which plagued original ex-
tended inflation [8,9] may be avoided.

In Sec. II, we calculate A for induced-gravity inflation,
and consider why earlier attempts to determine the re-
quired flatness of the potential have led to much more
constrained results. Section III examines the accuracy of
the slow-rollover solutions upon which the calculation of
A is based. And in Sec. IV, we briefly consider benefits
and difficulties of placing the inflationary epoch at such a
high energy scale.

II. CALCULATING A

We begin with the Lagrangian density'

IThe sign conventions follow those of Misner, Thorne, and
Wheeler [11], which are based upon the 1962 edition of Landau
and Lifshitz {11]. Thus, g, <0, the full Riemann tensor is
R}, =9,lL—3,I},+T5 ' —T5T%, and the Ricci tensor is
R MER,};M. The original Brans-Dicke papers followed these
sign conventions. Note that these definitions for the Riemann
and Ricci tensors are opposite in sign from those in Weinberg’s
text [11] (and thus opposite to some of the recent literature on
extended inflation).
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L=F($)R—1g""3,88,6—V($)+Ly , 2)

where the L,, term here only includes contributions from
“ordinary” matter—there is no separate Higgs sector as
in [4]. If we choose f(¢)=¢?/(8w), we find the coupled
field equations:

. )2 .
k _ 4o 20 | ¢ ¢
H 4 —==—[p+V($)]+= |~ | —2H | =
.2 3¢2[p (¢)]+3 ) b |
. . ézz 2w -1 _ _ ,
$+3H$+ =24 [(p—3p)+4V(d)—oV'(d)] .

(3)

In Eq. (3), a(t) is the cosmic scale factor of the
Robertson-Walker metric, and is related to the Hubble
parameter by H =d /a. From Eq. (2), one can see that
f($)—(16mG )", which leads to 4wd >=87G.g.
Note that we have parametrized the Lagrangian slightly
differently from the 1985 “Induced-gravity” paper: our
Brans-Dicke parameter o is inversely proportional to
their coupling strength e(w=(4¢)”!). That paper also
makes the minor approximation that (20w)/(3+2w)—1,
whereas we have kept this term explicit. During the
inflationary epoch, the k term becomes negligible; simi-
larly, since p and p now only include contributions from
ordinary matter, they too may be neglected. If we now
impose the appropriate slow-rollover approximations
[7,10]:

'gf
¢
1§l <<3H$ ,
|2 < V(d), 4)
the field equations enter a more tractable form:
_bo V()

320
20 [4V(¢)—¢V'(¢)]

312w ¢ ’
In order to calculate the required flatness (A) of the po-
tential, we must now assume a particular form for V(¢).
To achieve a second-order phase transition with a
minimum of fine-tuning, we may choose the simplest
form for the potential at the tree level:

V(aS):%[q&z(t)—vz]z, 6)

<<H ,

H2

3H$~

(5)

where A is the quartic self-coupling, and v is the vacuum
expectation value for ¢. In addition to being a qualita-
tively simple form for the desired potential, this is also
the optimal form found in [3] for the case of generic new
inflation. It also matches the potential of [7], with the
minor difference that it is parametrized with A /4 rather
than A /8.

Using this expression for V' (¢), combined with the field
equations (5), we may solve for ¢(¢) and a (¢):

A 1/2

. w

d(t)=y+ —3;/—2 v,
a) _ [0 |" | ¥ o

The factor y =(3+2w) /2 is slightly different from the ex-
ponent found in [7] [because of their earlier approxima-
tion that (20)/(3+2w)—1]. The quantities ¢, and ay
are values at the beginning of the inflationary epoch.
Note that at early times, when ¢(z) ~ @, these equations
yield the familiar power-law solution, with a (¢)=<t?. Ast
increases, the rate of expansion slows due to the
exp(¢3—¢?) term. With these analytic expressions for
¢(t) and a (), we may now calculate A.

Following [3], we begin with the two basic constraints
on the scalar potential: it must provide for sufficient
inflation to solve the flatness, horizon, and monopole den-
sity problems, and it must allow for the proper amplitude
of density perturbations to act as seeds for the evolution
of large scale structure. The first of these requirements
takes the form

1o 1

Hyay  Hpgag

) (8)

where the subscript N refers to present values (“now”),
and B refers to values at the beginning of the inflationary
epoch. Using the standard cosmological model’s assump-
tion of adiabatic expansion following the end of inflation,
we may write

Qend - Ty ’ ©)
ay Tru
where a is the value of the scale factor at the end of

end
inflation, and TRy is the reheat temperature following

thermalization of the foregoing false vacuum energy den-
sity. (Reference [3] assumes Ty =M, where M} is the
false vacuum energy density of the second boson which
drives inflation.) The Hubble parameter may then be
parametrized as

V
HIZ;:g_T" fz’
3 m}
24
2 — 8_77 B TN (10)
N 3 M[2> ’

where V is the initial value of the false vacuum energy
density; mp is the effective value of the Planck mass at
the beginning of inflation [related to the initial value of
the field ¢: ¢o=(w/27)'">’mp]; and M, is the present
value of the Planck mass, Mp~1.22X10" GeV. The
quantity S is the ratio of the energy density in matter to
the energy density in radiation today, which [3] takes to
be around 81. In the original extended inflation frame-
work, V= VfZM;i was constant, due to the energy den-
sity of the metastable state of the second boson before it
completed its first-order phase transition. In the present
model, V(¢) changes in time as ¢(¢) changes; yet even in
this new context, ¥V, is still a constant, and is simply
equal to V(¢,); its use here is thus independent of any
slow-roll approximation.
Using Egs. (8)-(10),
inflation takes the form

the condition for sufficient

1/2
Qend > Vf MP

Z . (11
ap BTyTgry mp
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Combining with Eq. (7), we get

Y 1/2
Dend _ Pend exp _L(¢2_ 2 1> Vi M,
ag b0 w2 70 e BTyTru mp '
(12)

where we have followed [7] in utilizing the explicit ana-
lytic solution for a(¢) based on the slow-roll approxima-
tion right up to a.,4; as we shall see below, this approxi-
mation is a good one: the slow-rollover solutions em-
ployed above do not break down until ¢(z)~=0.98v.

Equation (12) may be used to place a bound on the
change in the scalar field, A¢p=(d.q— o). Writing ¢,
and ¢, in the exponent in terms of their associated
masses, we find

¢end
o

Vfl/z M, 17y

BTyTry mp

>

L (mi—M2)

exp 5
TV

’

(13)

where we have followed [3] in writing M for the value of
the Planck mass at the end of inflation. In the simplest
case, ¢ would not evolve any more after the end of
inflation, so My would equal Mp; yet for the time being
the more general value M, will be used. Since
$o=(w/2m)"?mp and v=¢.4=(0/27)"*Mg, Eq. (13)
may be rewritten:

A$> Vo am vy M|
=V 2rmp m;ﬂ:‘
2
m
X exp 5 11— le ]—ll.

(14)

Taking AV =V and defining u=(m,/Mpy), the ratio A
thus becomes

e lom Ve [ v M
- w m; BTNTRH mp
—a
Xexp %(1-—#2) —1] . (15)

Incorporating the constraint that ¥, must exceed the
kinetic energy of the ¢ field’s de Sitter space fluctuations
without exceeding the effective Planck scale at the begin-
ning of inflation [3], we may bound V', by

2

mg (16)

V,<
! 8

which may then be used to eliminate the coefficient of

Vi/mp:

2 1/
a< |3 | w2 M |7
4o BTyTgry mp

Xexp %(l—uz)

—4
—1] . 17
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Thus far we have only relied upon the requirement of
sufficient inflation. The second requirement, based on the
amplitude of density perturbations, may now be used to
place a bound on the ratio Ty /V}’*. This bound can
then be used to remove nearly all mass-scale dependence
from A. The post-COBE (Cosmic Background Explorer)
parametrization of the density perturbation constraint
may be written as [12]

HZ
é

where the quantity H2/4 is to be evaluated at the time of
last horizon-crossing of the perturbations (during the
inflationary epoch), and 8 ~1.7X 107>, (Reference [3]
used 5X 107% rather than 578,.) As noted in [13], the
quantities pertaining to the time of last horizon crossing
in Eq. (18) should be evaluated in the Einstein frame;
when compared with the “naive” calculations in the Jor-
dan frame, a correction factor F(w) must be intro-
duced. Yet this factor F(w) decreases monotonically
with ®, and converges to unity rather quickly:
F(0=25)=1.052, and F(®=500)=1.002. For the par-
ticular values of @ with which we shall be concerned
below, F(w) would thus be negligible, and so we may
continue to calculate H2/¢ in the Jordan frame.? (This is
also the approach adopted in [S].) Since we want to re-
late Eq. (18) to a bound on V, we should first rewrite
é(t,) in terms of Vs, where t, is the time of horizon
crossing. From Eq. (7) we have

172

<57y , (18)

|hor

d(n= 2‘—;"2 2 Mz, (19)
and from Eq. (6) we have:
2
V,=V(gy)= 1"6“;2 ME(1—p?) . (20)

Using these expressions, we may then rewrite (the time-
independent) ¢ in terms of the constant V:
1/2

do 1 pieja—p) . @1

¢_ 372

The absolute value for the (1—pu?) term comes from tak-
ing the positive square root of M. Since mp <My, the
pole at u?=1 is excluded.

Now we need to calculate the Hubble parameter at the
time ¢, . Following [3], we may write

1 1
H(t,)a(t,) Hyay '’

(22)

which, after employing Egs. (9), (10), and (21), leads to

2Note that Eq. (18) follows the assumption, expresssed in [13],
that the magnitude of the density perturbations should be calcu-
lated as H?/¢ even for models with a Brans-Dicke, nonminimal
¢R coupling [and hence a complicated H(¢) evolution]. The
limits to the accuracy of this assumption are currently under
study by the author.
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e BT T N R T | | (1)
é(t,) 3 MPVf/ a(t,)
<S5mwby . (23)
Rewriting this as a bound on (T}y /Vfl/2 ), we get
J
P[] 48Ty T Gy |’
A< 3 N RH \/7/2/350 end
4o 56yMp mp a(t,)

We have taken the equality in Eq. (24) as a worst case for A; if (Tgy /V/}

(1—p?)
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T2 6 M2 — [ agy |77
S V3e | | a7
Vs 4B3°Tx, a(t,)
(24)
This may be substituted into Eq. (17) for A:
1/y 1 —4
exp 5(1~,u2) —1 (25)

1/2) were much less than the right-hand side of

Eq. (24), the bound on A would increase (and the resultant need for ““fine-tuning” would therefore decrease). The
remaining factor of Ty /mp may now be removed by combining Egs. (16) and (24). Following these substitutions, the

expression for A becomes

2 1/4

JE 2
A< V171075, %—

3
40 a(t,)

The time of last horizon crossing can be calculated from
Eq. (22), and from ¢, one could then find the ratio
aeq/alt,). Yet the dependence of A on a.,4/a(t,) is
very weak (being suppressed by the exponent y 1), so
some simplifying approximations may be made. In most
models of inflation, ¢, is around 60 e-folds before the end
of inflation (although some recent models have ¢, ~50 e-
folds before the end of inflation, e.g. [14]); this means that
the ratio a4 /a(t, ) is simply e (or, perhaps, ¢*). For
the calculation of A, we will assume a4 /a(t,)~e® in
this model. As Fig. 1 shows, A increases monotonically
with increasing p for a given value of w; a lowest bound
on A thus comes from taking the limit u—0 f(.e.,
mp <<Mp). When this is done, A becomes a function of
o alone. Figure 2 shows a plot of A versus o in the limit
©—0: the maximum value of A (corresponding to the
least amount of “fine-tuning” required) is 5.4X 107, for
the value w,=240. We can check the dependence of A
on a.4/a(t,) by defining a parameter o as
Genq/alt, )=e? Figure 3 shows a plot of A versus a in
the limit u—0 for a particular value of w(w=1500). The
dependence on o« is indeed weak: A evaluated at

/
/
/

8}
1

FIG. 1. Plot of A as a function of u=(mp/My), based on Eq.
(26) with @=500. The vertical scale is in units of 1073, and the
assumption that a.,q/a(ty)~e®% has been used. The intercept
atpu=0is A=3.8X107°

%ena ](1_#2)1/2

1/y

exp | = (1—p?)

1 —4
Py -1 ] . (26)

f

(a=50,0=>500) gives 4.5X 107 °, whereas A evaluated at
(a=60,0=500) gives 3.8X 107°. Similarly, for a=50
rather than 60, A(w,)=7.3X10%, instead of 5.4 X 10°.

In the original model of extended inflation, w was con-
strained to be less than 25 in order to avoid observable in-
homogeneities coming from the large range in bubble
sizes, even though present tests of Brans-Dicke gravita-
tion versus general relativity limit o to the range o = 500
(hence the “‘big bubble” or “@ problem” of old extended
inflation). Yet in the present model, the second-order
phase transition lifts this constraint on w; @ can now be
as large as necessary to meet the experimental limits. As
one can see in Fig. 2, A(w) falls off slowly from its max-
imum with increasing . It is interesting to note that
A ., Occurs within a factor of 2 of the value @ =500. Be-
cause of its agreement with present day observations, and
its proximity to @, ®=>500 appears to be a good candi-
date for the Brans-Dicke parameter.

Equation (1) may be used to relate A to the quartic
self-coupling constant A. For the form of V(¢) con-
sidered here, we find:

[N
1

T T T
500 1000 In) 1500

FIG. 2. Plot of A(w) vs w, based on Eq. (26) with u—0. The
vertical scale is in units of 107% and the assumption that
Gna/a(ty)=~e® has been used. Note that A reaches its max-
imum value of 5.4X107° at w.,=240; the value at ©=>500 is
A(500)=3.8X107°,
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T T T T

50 55 60 65
o

FIG. 3. Plot of A vs a, where a.,q/a(t,)=e? based on Eq.
(26) with u—0 and ©=500. The vertical scale is in units of
1078,

AV A (¢5—v?)

= - ) (27)
(Ag)* 4 (¢g—0)*
or, if we keep terms only up to O(u),
2
Az}” [1+0(u7)] . (28)

4 [1—4u+0(pd)]

Thus, A is of the same order of magnitude as A, which,
for the model under study, means A ~ 10™°. This value of
A is much larger than the results in [3] for the original
model of extended inflation, indicating far less of a need
for ““fine-tuning.”

We should pause here to consider why this relatively
large value for A has not been noted before. The most
important reason is because the calculation of A is highly
model-dependent. Both papers of [3], for example, as-
sumed that a separate Higgs sector would drive inflation;
this meant that their ¥;/*=M was constrained to lie at
the GUT scale, with such ratios as (Mz/v)~ 1073, Fur-
thermore, by insisting upon a first-order phase transition
in the Higgs sector, w was constrained to o <25. It is in-
teresting to note that an attempt in 1989 to unite the
original induced-gravity inflation model with extended
inflation [15] similarly relied upon a separate Higgs sec-
tor to drive inflation until it underwent a first order phase
transition.

The authors of the 1985 paper introducing induced-
gravity inflation [7] studied constraints on the quartic
self-coupling A, based also on the twin requirements of
sufficient inflation and a proper amplitude for density
perturbations. Yet their result indicated that A <107
for @ ~500. Several factors help to explain this low re-
sult. First, their pre-COBE parametrization of the ampli-
tude of density perturbations leads to an increase of an
order of magnitude for A when compared with present,
post-COBE values. Most important, however, is their ap-
proach to bounding A: they solved for A in terms of the
ratio (v/¢(t,)), where ¢(z,) is the value of the field at
the time of last horizon crossing. Their result for A,
which in their analysis is proportional to
sinh ~*[In(v /#(z, ))], is thus very sensitive to the value of
¢(t,). Because this value cannot be solved exactly (even
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in the slow-roll approximation), two extreme limiting re-
gimes were studied: ¢(z,)=v versus ¢(z,)<<v. Yet
small differences in the approximation of #(z,) lead to
order-of-magnitude differences in their estimation of A: a
difference of 0.01 in the assumed value of ¢(¢, ) leads to a
difference in A of two orders of magnitude. The method
of calculating bounds on A employed in this paper avoids
expanding in terms of the unknown ratio (v /¢(z, )); the
only mass ratios involved here are of order (¢,/v)?% and
their inclusion raises the bound on A. The information
regarding ¢(t,) is now contained in the ratio
(agq/alt,)), and we saw above that changing this ratio
from e® to e leads to a change in A by a factor of only
~1.18 (see Fig. 3). This appears to be the major reason
for the large split in values of A between this paper and
the 1985 analysis.

ITII. ACCURACY OF SLOW-ROLLOVER
APPROXIMATE SOLUTIONS

We may now check the accuracy of our slow-rollover
approximate solutions by following Steinhardt and
Turner’s “prescription” for successful slow-rollover [16].
The analysis is easiest by rewriting Eq. (2) in terms of a
Brans-Dicke field ®, where ®=f(¢)=¢>/(8»). The
“prescription” of [16] concerns finding conditions for
when the & term may be neglected. In the present model,
when ® is negligible, the ® equation becomes

=1 _1
3H (3+20)

where the prime now indicates differentiation with
respect to ®. Using this expression for ®, we may calcu-
late @, and then write the ratio ®/(3H®), which be-
comes

2V (®)— V' (®)] , (29)

o 1 1
—= V' —op”
3H® 9H? (3+2w)[ ]
1 1 dH ,
9H* (3+20) | 3P [2v—er]. Go

From Eq. (30), it is consistent to neglect the ® term
when

[V'—®V"| <<(3+2w)(9H?) ,
oH

3D 2V —oV’)

< (3+20w)9H?) . (31)

These conditions may be used to solve for when the
slow-rollover approximation breaks down; that is, solved
for values of ® for which the left-hand side of each in-
equality roughly equals the right-hand side (rather than
being much less than it). Since ®=¢/(8w), the potential

for  our particular model may be  written
V(®)=A/4(80®—v?)% which leads to
[V —®V"|—>4rwv? . (32)

After reexpressing H in terms of ® [see Eq. (5)], we find
the value of the field for which the consistency of the
slow-roll approximation breaks down (®4) to be
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If ©=500, ¢,4=0.98v. It is interesting to compare this
with the result for ¢4 based on the second condition for
slow-rollover. This condition leads to the assignment:

J— 1/2
Vv
LVl

TR (34)

Gpg =V

In other words, the second condition does not break
down until ¢ >v! Thus, the result based on the first con-
dition will be used.

We may calculate a maximum reheating temperature
for the model by finding the value of V(¢) at the point
where the field begins its damped oscillations around the
true minimum of the potential. Taking this point to be
&4 leads to

_ ot e
Vido)=—-—5 3y +1-V1+6y) . (35)
18y
If ©=500, V(gpy)=(3.2X10"H20% 0 TRy max
=V4$,q)=(0.13)A"%.  Furthermore, if A~107¢,

then TRy pnax=(4.1X 107 %). Assuming the simplest
case, that ¢ does not evolve after the end of inflation,
then v=Ve@/2uMp, which (for ©=500) leads to
TR max =4.5X10'7 GeV. We will consider possible in-
terpretations of inflation at this energy scale below.

IV. CONCLUSIONS

Induced-gravity inflation, which combines properties
from the “new inflation” schemes of 1982 [17] (such as a
slowly rolling field leading to a second-order phase transi-
tion) with characteristics from the original version of the
extended inflation [4] (including a nonminimal #R cou-
pling), can lead to successful inflation with potentially ac-
ceptable limits on ““fine-tuning.” The Lagrangian of Eq.
(2) requires only a qualitatively simple scalar potential as-
sociated with a single curvature-coupled scalar field;
there is no need for adding special phenomenologically-
inspired “extra” terms by hand to £, as in [5,10].
Induced-gravity inflation can also get all of the “work” of
inflation done with only one boson, thereby helping to
slow the proliferation of ‘“‘specialty” bosons, each of
which is invented to complete specific and unrelated tasks
in the early universe. In addition to this simplicity, the
model retains many of the motivations for extended
inflation, based on the appearance of Brans-Dicke-like
couplings in the low-energy effective theories for various
Kaluza-Klein, superstring, and supergravity theories (see
[18).

The calculations of A in this paper depends only on the
amplitude of density perturbations, 8;;,. Yet the charac-
ter of the spectrum of perturbations may also help to rule
out various inflationary schemes [10,14,19]. Ordinary ex-
tended inflation, for example, predicts a rather steep tilt
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away from a scale-invariant (Harrison-Zel’dovich) spec-
trum of density perturbations, which appears to contra-
dict COBE data. Determination of the tensor mode con-
tributions versus scalar modes in the density perturbation
spectrum of induced-gravity inflation is made more
difficult because of the deviation of Eq. (7) from a simple
power-law solution, and is the subject of further study.
At early times at least, when the evolution of a(t) is
roughly proportional to ¢7, the present model would yield
a tiny tilt away from scale-invariance: when a(z)xt?,
the spectral index goes as n =1—2/(y —1) [9], which in
this case (with ©=500) would give n =0.996. For more
on the possibility of “observing” the inflation potential
based on the contributions from tensor mode perturba-
tions, see [14,19].

One point of concern for induced-gravity inflation is
the scale at which it operates: unlike most other
inflationary schemes, which study phase transitions asso-
ciated with the breaking of a GUT symmetry (at an ener-
gy of around 10" to 10'® GeV), induced-gravity inflation
is associated with the Planck scale. This could lead to
conflict with the value of V' (¢) at the time of last horizon
crossing. References [12,14] show that present COBE
data appear to limit V!/%(z,)~(3-4)X10'® GeV, which,
for the present model (with =500 and A~ 10"°), would
require ¢(z, ) to be very close to v. Yet, as pointed out in
[14], uncertainties in the data lead to an entire order of
magnitude range in the value for ¥'!74(¢, ), so the present
model cannot be ruled out by these COBE results. For
more on constraints on the energy scale of inflation, see
[20].

A theoretical difficulty for induced-gravity inflation
stemming from its high energy scale is how to combine it
with a ‘“realistic” particle physics sector. (Recent work
with extended technicolor as a means of achieving
Planck-scale unification of gauge couplings [21] might
offer a means of connecting an induced-gravity inflation
model with realizable particle physics models.) Yet what
it might lose on the particle side, it gains on the gravita-
tional side: it should be much easier to relate the present
model to a specific higher-energy gravitational theory.
Or the model might be useful as part of a “double-
inflation” scheme, in which the induced-gravity phase
transition (which, as we have seen above, could solve the
flatness and horizon problems rather easily, and lead to
an acceptable amplitude of density perturbations) is fol-
lowed by a related GUT transition at a lower energy
(which would then only need to solve the monopole den-
sity problem, so the requirements for this second epoch
of inflation would be greatly relaxed). (For earlier at-
tempts to use the original model of extended inflation in a
double-inflation scenario, see [22].) Although these de-
tails have yet to be worked out, the prospect of a well-
motivated inflationary scenario which requires A~10"°
rather than ~ 10~ !° remains an encouraging result.
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