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Larger domains from resonant decay of disoriented chiral condensates

David I. Kaiser
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 17 November 1998; revised manuscript received 27 January 1999; published 5 May 1999!

The decay of disoriented chiral condensates into soft pions is considered within the context of a linear sigma
model. Unlike earlier analytic studies, which focused on the production of pions as the sigma field rolled down
toward its new equilibrium value, here we focus on the amplification of long-wavelength pion modes due to
parametric resonance as the sigma field oscillates around the minimum of its potential. This process can create
larger domains of pion fluctuations than the usual spinodal decomposition process, and hence may provide a
viable experimental signature for chiral symmetry breaking in relativistic heavy ion collisions; it may also
better explain physically the large growth of domains found in several numerical simulations.
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Experiments at the Relativistic Heavy Ion Collider
Brookhaven and at the Large Hadron Collider at CERN m
soon be able to probe many questions in strong-interac
physics which have until now been studied only on pape
simulated on a lattice. One major area of study concerns
QCD chiral phase transition. In relativistic heavy ion col
sions, it is possible that non-equilibrium dynamics could p
duce ‘‘disoriented chiral condensates’’~DCCs!, domains in
which a particular direction of the pion field develops a no
zero expectation value@1–3#. These domains would then de
cay to the usual QCD vacuum by radiating soft pions. P
liminary searches for DCCs by the MiniMax Collaboratio
in pp̄ collisions at Fermilab have thus far not found eviden
for the production and decay of DCCs@4#, though they are
far more likely to be created in upcoming heavy ion co
sions. Thus, understanding their possible formation
likely decay signatures in anticipation of further experime
tal work is of key importance.

If these domains grow to sufficient size~on the order of
3–7 fm!, such an experimental event would be marked b
particular clustering pattern: some regions within the det
tor would measure a large number of charged pions but
neutral pions, while other regions of the detector would m
sure predominantly neutral pions with few charged pions@2#.
Defining R to be the ratio of neutral pions to total pion
R[npo /(npo1np11np2), it has been demonstrated th
the probability for measuring various ratiosR in DCC events
obeysP(R)5(4R)21/2, which, especially for small-R, may
be easily distinguished from the isospin-invariant result
P(R)→d(R21/3) @2#. ~Detecting the decay of such DCC
could be improved by measuring the two-pion correlat
functions@5#, and from enhanced dilepton and photoprodu
tion @6#, in addition to studying the fraction of neutral pion
produced.! The production and subsequent relaxation of su
DCCs may also explain the so-called ‘‘Centauro’’ hig
energy cosmic ray events, in which very large numbers
charged pions are detected with only very few neutral pi
@2,7#.

However, as emphasized in@8,9#, if the disoriented do-
mains do not grow to such large scales within heavy
collisions, such experimental signatures become less and
easy to distinguish from the isospin-invariant case. Eve
DCCs are produced following a heavy ion collision, if th
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domains do not grow to be ‘‘large’’~that is, several fm!, then
the detector would sample so many of these discrete dom
within a given event, each of which with the pion fie
aligned along some random direction, that the clustering
fects would be washed out. A crucial question, then,
whether or not sufficiently large domains might grow in t
nonequilibrium aftermath of a heavy ion collision.

Several authors have considered the amplification of lo
wavelength pion modes from the decay of DCCs in the c
text of a linear sigma model@2,6,8,9#. The relevant degree
of freedom are modeled by the scalar fieldss andpW , which
may be grouped together asF5(s,pW ). Above the critical
temperature, the quark degrees of freedom are effectiv
massless, and̂F&50 to a good approximation. To model
strongly-nonequilibrium situation, Rajagopal and Wilcz
considered a quench: as the quark-gluon plasma in the in
action region between the colliding nuclei expands a
cools, the effective temperature may fall quickly toT!Tc .
Because the zero-temperature potential is not chira
symmetric, domains form, and it takes some time for
fields to evolve from^s&5^pW &50 to the new equilibrium
values,̂ s&Þ0, ^pW &50. Following the quench, the fields re
lax to these new equilibrium values according to the eff
tive potential,V(F)5 (l/4) (F22v2)22Hs; that is, thes
field ‘‘rolls down’’ from s;0 to s;v.

Numerical simulations@2,3# reveal a large amplification
of soft pion modes from the relaxation of the nonequilibriu
plasma. Previous authors have attempted to explain th
numerical results analytically in terms of spinodal decomp
sition: during the time thats rolls down towardv, pion
modes with wavelengths satisfyingk2<l(v22^F2&) will
grow exponentially. However, under the usual quench s
nario, the time it takes fors to roll to v, and hence the
maximum domain size for the DCCs, remains too small
produce clear experimental signatures. Under this scen
domains typically remain pion-sized,;1.4 fm. ~See, e.g.,
@8,9#.! This physical mechanism alone therefore remains
capable of explaining the large domains found in numeri
simulations.

Building on earlier work in@10#, we consider here a
physically distinct process which could produce larger d
mains of DCC, and hence might better explain the signific
©1999 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 59 117901
clustering observed in numerical simulations. Rather th
amplification of pion modes whiles rolls down its potential
hill, we focus on the parametric amplification of pion mod
ass oscillates around the minimum of its potential. Becau
this is a distinct process, the growth of domains due to pa
metric resonance, unlike the growth of domains due to sp
odal decomposition, may reach scales on the order of
fm.

This means of DCC decay is similar to cosmological po
inflation reheating. An early attempt was made to apply
reheating formalism of@11# to the decay of DCCs due t
parametric resonance in@10#. However, the analytic tools fo
studying the nonequilibrium, nonperturbative dynamics
such resonant decays have improved since this early wor
reheating, and the earlier approximations, while at tim
qualitatively informative, prove quantitatively unreliabl
Most important, this earlier study@10# approximateds ’s os-
cillations as purely periodic, in which case the equation
motion for the pionic fluctuations reduces to the well-know
Mathieu equation. Ignoring the nonlinear, anharmonic ter
~such asls4) in the evolution ofs then yields the prediction
of an infinite hierarchy of resonance bands, with decreas
characteristic exponents. Yet given the nonlinear equa
for s, the equation of motion for the pions reduces instead
a Laméequation, which, in the cases of interest, has only o
single resonance band, with a different value for the am
fied modes’ characteristic exponent. As emphasized in@12#,
these two differences combined can change dramatically
predicted spectra from parametric resonance; to be usef
making contact with experiments, these nonlinearities m
be attended to, as in the present study.~Furthermore, the
authors of@10# did not consider the size of domains creat
by the parametric resonance, as considered here.! Instead, we
draw on the more recent studies of reheating in@12–15# to
consider the question of DCCs and their resonant decay

Following @2#, we consider a quench scenario: the te
perature of the plasma drops quickly from above the criti
temperature~with ^F&50) to near zero. The effective La
grangian density following the quench is given by

L52 1
2 ~]mF!22~l/4!~F22v2!21Hs. ~1!

HereH is an external field which breaks the chiral symme
and picks out thes direction as the true minimum. The pio
mass is proportional toH. The true vacuum is characterize
by ^F&5( f p ,0W ), where f p592.5 MeV is the pion decay
constant. In the limit asH→0, f p→v. In the following, we
neglectH in the resulting equations of motion, but add b
hand a pion massmp5135 MeV; we also setl520.0 and
v587.4 MeV, which yieldms5(2l f p

2 1mp
2 )1/25600 MeV.

These standard values for the parameters are chosen,
@2,8–10#, to fit low-energy pion dynamics.

As a first approximation, we neglect effects due to t
expansion of the plasma. Obviously the expansion of
plasma plays a crucial role, at least for early times followi
the collision, in dropping the temperature below the critic
temperature.~Some work has been done to incorporate a
lytically the effects of cosmological expansion in the res
nant decay of a massive inflaton@14#, which may be useful
11790
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in improving future analytic studies of DCCs and their d
cay.! We also ignore noise and other medium-related effe
on the resonance; as demonstrated in the context of p
inflation reheating, such effects do not destroy the parame
resonance, but rather enhance it. Indeed, because nois
creases the quasi-exponential growth of the unstable mo
and removes all stable bands~so that all modesk experience
non-adiabatic amplification! @16#, its neglect here results in
systematicunderestimateof the pion domains’ growth.

We study the nonequilibrium, nonperturbative dynam
by means of a Hartree approximation, by writings(t,x)
5s0(t)1ds(t,x), and replacingpW 3→3^pW 2&pW and pW 2

→^pW 2&. The vacuum expectation value may be written
terms of the field’s associated~Fourier-transformed! mode
functions aŝ pW 2&5*d3kupW ku2/(2p)3. Because theds fluc-
tuations decouple from the pion modes in this approxim
tion, we will focus below on the pionic fluctuations. Numer
cal simulations of post-inflation reheating have demonstra
that late-time rescattering, which is completely neglected
the Hartree approximation, in factincreasesthe growth of
fluctuations@17#. Neglecting such rescatterings here, mu
like neglecting noise ins ’s oscillations, yields a lower limit
to the pion domains’ actual growth.

Within a given DCC domain, the pion field will be
aligned along some particular direction,n̂p , in isospin space.
We will therefore writepW 5xn̂p . In terms of the dimension-
less variablest[Alv2t and k[k/Alv2, and the scaled
field w(t)[s0(t)/v, the coupled equations of motion tak
the form

w91~w2211Sp!w.0, xk91~p21w21Sp!xk.0, ~2!

where primes denoted/dt, and we have defined

M[mp /Alv2, p2[k21M221, Sp[^pW 2&/v2. ~3!

Note that with the values of the parameters assumed h
Alv25390.9 MeV, andM250.12. These equations of mo
tion are conformally equivalent to those for massless field
an expanding, spatially-open universe, and hence we
apply the techniques of@15# to study their solutions.

We are interested in the growth ofpW modes ass0 oscil-
lates aroundv. Having begun, following the quench, nea
s0;0, s0 will roll down its potential hill towardv. The
rolling field will at first overshoot the minimum atv, and
then begin oscillating aroundv. The amplitude of these os
cillations will eventually be damped by the transfer of ener
from this oscillating zero mode into thepW fluctuations. For
early times after these oscillations have begun, however,
amplitude ofs0 will remain nearly constant. In this strongly
coupled system, unlike in the weakly-coupled inflationa
case, thes field will execute only a few oscillations befor
settling in to its minimum. Yet, as we see below, even the
few oscillations could prove significant, since most partic
production via parametric resonance occurs in highly n
adiabatic bursts, when the velocity of the oscillating fie
passes through zero@11#. Furthermore, because the syste
has been quenched from its initial, chirally-symmetric sta
1-2



no

illa
on
in
e

h
e

.

r

e

t

d

-

it

on

m

a

th
lu

gl

t-

d

ns
-

o-
en

and.

tion
n-

and

ric

o-

d

BRIEF REPORTS PHYSICAL REVIEW D 59 117901
we assume thatSp is small at the beginning ofs0’s oscilla-
tions. ~The fact that spinodal decomposition alone can
produce large DCC domains is equivalent toSp remaining
small while s rolls down its potential hill.! Then we may
solve the coupled equations for early times after the osc
tions have begun, and study the growth of the fluctuati
pW k . Becauses0 begins oscillating quasi-periodically, certa
pion modes will be amplified due to parametric resonanc

The resonance will fade once the backreaction term,Sp ,
grows to be of the same order as the tree-level terms, suc
w2. To study the behavior of the pionic fluctuations, w
solve the coupled equations of~2! for early times after the
beginning ofs0’s oscillations, whenSp may be neglected
This lasts up to the timetend, determined bySp(tend)
5w2(t), where an overline denotes time-averaging ove
period ofw ’s oscillations.

Assuming thats0’s oscillations begin onces0 reaches its
inflection point,s infl5v/A3, it will roll past the minimum
and up to the point at whichV(s)5V(s infl), before rolling
back down throughv. This setsw05A5/3. Because this
definition of the initial amplitude is somewhat arbitrary, w
study the resonance effects forw0 in the range 1<w0

<A2. In the range 1<w0<A2, w(t) oscillates as@12#

w~t!5w0dn~gt,n!, ~4!

where dn(u,n) is the third Jacobian elliptic function,g
[w0 /A2, and n[A2(12w0

22). Equation ~4! holds for t
<tend. The dn-function oscillates between a maximum a
and a minimum at (12n2)1/2, with a period of 2K(n)/g,
whereK(n) is the complete elliptic integral of the first kin
@18#.

With w(t) oscillating as in Eq.~4!, the equation of mo-
tion for xk becomes the Lame´ equation of order one. A so
lution for the pion modesxk(t) may thus be written in the
form @12,13,15,19#:

Uk
(6)~t!5A~t!exp„6mk~n!gt…. ~5!

Here A(t) is a periodic function, normalized to have un
amplitude, andmk(n) is the characteristic exponent~also
known as the Floquet index!. The form of mk depends on
both k andn. Clearly, whenever Re@mk(n)#Þ0, the coupled
modes will be exponentially amplified. The exact relati
between theUk modes andxk ~and hencepW ) depends on the
assumed initial conditions following the nonequilibriu
quench. If we make the usual assumption, thatxk(t0)
51/A2vp(t0) andxk8(t0)52 iAvp(t0)/2, with vp

2(t)[p2

1w2(t) @12,20#, then thexk modes may be written as
linear combination ofUk

(6) as in @12,13,15#.
In @15#, these coupled equations were studied for

rangew0>A2. Proceeding in exactly the same way, so
tions may be found for the case 1<w0<A2. The character-
istic exponent has non-zero real parts only within a sin
resonance band, given by

~ 1
2 2M2!2 1

2 A12w0
2~22w0

2!

<k2<~ 1
2 2M2!1 1

2 A12w0
2~22w0

2!. ~6!
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The resonance band includes modes withk<mp for all val-
ues ofw0>1.23, that is, even for amplitudes of the oscilla
ing field smaller thanw05A5/3. As in @15#, mk(n) may be
written in terms of a complete elliptic integral of the thir
kind. The real part ofmk(n) is plotted in Fig. 1. Near the
center of the resonance band for a given value ofw0 ,
Re@mk#;0.1– 0.3. Note that as in the numerical simulatio
of @2,3#, the strongest amplification~indicating greatest par
ticle production! occurs fork<mp . The maximum values of
Re@mk# fall in the k→0 limit.

Given Re@mk#, one can determinetend, based on the
growth of Sp . If tend is large enough, then observable d
mains of DCC could be formed and detected. Within a giv
domain, Sp(t) is given as an integral overuxk(t)u2. To
evaluatetend, we solve numerically the equation

Sp~tend!5E
res. band

~dkk2/2p2!uxk~tend!u25w2, ~7!

where the integral extends over the single resonance b
The time-average of the~dimensionless! oscillating s field,
w 2̄, may be written in terms ofE(n), the complete elliptic
integral of the second kind, using the integral of dn2(u,n)
over a period of its oscillations~see@18#!. Equation~7! then
yields tend;5 fm/c over most of the range 1<w0<A2. This
should be compared with the usual spinodal decomposi
scenario, in which the pionic fluctuations would be expone
tially amplified only for the brief periodtspinodal.A2/ms

.0.47 fm/c. As noted above, because we neglect noise
rescattering, 5 fm/c is actually a lower bound for the time
during which the pion modes will grow due to paramet
resonance.

FIG. 1. Re@mk(n)# as a function of both the dimensionless m
mentum,k, and the dimensionless initial amplitude ofs0’s oscil-
lations, w0 . In these units,mp50.35; the largest exponents, an
hence the strongest resonance, occur fork<mp .
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 59 117901
In order to find the characteristic sizes to which DC
domains may grow before the parametric resonance
damped, we may follow@21# and evaluate the two-point cor
relation function:

D~ t,r ![^pW ~ t,r !pW ~ t,0!&5E ~d3k/~2p!3!eik–rupW ku2

5~lv2!23/2E ~dkk2/2p2! j 0~kx!uxk~t!u2, ~8!

with the dimensionless length defined byx[Alv2r . We
have also usedpW k(t)5xk(t)n̂p within a given domain. We
may solve this integral in the saddle-point approximatio
making use of Eq.~11.4.29! of @18#, with the result that

D~ t,r !}Sp~ t !exp„2r 2/jD
2 ~ t !…,

jD
2 ~ t ![4guRe„]2mk~n!/]k2

…ukmax
~ t/Alv2!. ~9!

Equation~9! reveals that the domain size grows ast1/2. The
maximum correlation length,jD(tend), is plotted in Fig. 2.
Over much of the range 1<w0<A2, jD(tend) lies between
3–5 fm. The usual spinodal decomposition process, in
absence of the ‘‘annealing’’ studied in@9#, on the other hand
can only create domains of order 1.4 fm.@8#. If ‘‘annealing’’
is effective, domains from spinodal decomposition may gr
to 3 – 4 fm; yet independent of the dynamics ass rolls down
its potential hill, it still must end its evolution by oscillatin
aroundv, and the resonant production of pions would follo
as studied here.

Parametric resonance offers a promising means of
ducing observable signals from the production and deca
11790
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disoriented chiral condensates in the aftermath of relativi
heavy ion collisions. Unlike spinodal decomposition alon
this physical process may explain the significant growth
DCCs found in numerical simulations. Future analytic stu
ies should better include effects from the expansion of
plasma, from noise in thes field’s oscillations, and from
ds2pW and pW 2pW scatterings, which are neglected here
the Hartree approximation; the latter two effects, at least,
expected toincreasethe pion domain growth found here
This study indicates, therefore, that the resonant decay
DCCs should produce low-momentum pions with a distrib
tion observably distinct from the isospin-invariant case.

It is a pleasure to thank Krishna Rajagopal, Dan Bo
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FIG. 2. Maximum domain size for DCCs,jD(tend), as a function
of w0 , in units of fm.
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