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Larger domains from resonant decay of disoriented chiral condensates
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The decay of disoriented chiral condensates into soft pions is considered within the context of a linear sigma
model. Unlike earlier analytic studies, which focused on the production of pions as the sigma field rolled down
toward its new equilibrium value, here we focus on the amplification of long-wavelength pion modes due to
parametric resonance as the sigma field oscillates around the minimum of its potential. This process can create
larger domains of pion fluctuations than the usual spinodal decomposition process, and hence may provide a
viable experimental signature for chiral symmetry breaking in relativistic heavy ion collisions; it may also
better explain physically the large growth of domains found in several numerical simulations.
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Experiments at the Relativistic Heavy lon Collider at domains do not grow to be “large(that is, several fip then
Brookhaven and at the Large Hadron Collider at CERN maythe detector would sample so many of these discrete domains
soon be aple to probe many questions.in strong-interactiowithin a given event, each of which with the pion field
physics which have until now been studied only on paper ogligned along some random direction, that the clustering ef-
simulated on a lattice. One major area of study concerns thiacts would be washed out. A crucial question, then, is
QCD chiral phase transition. In relativistic heavy ion colli- ywhether or not sufficiently large domains might grow in the
sions, it is possible that non-equilibrium dynamics could Pro-nonequilibrium aftermath of a heavy ion collision.
duce “disoriented chiral condensate¢DCCS, domains in Several authors have considered the amplification of long-

which a particular direction of the pion field develops a NoN-yavelength pion modes from the decay of DCCs in the con-
zero expectation valugl—3]. These domains would then de- oyt of a linear sigma modéPR,6,8,9. The relevant degrees
cay to the usual QCD vacuum by radiating soft pions. Pre-

liminary searches for DCCs by the MiniMax Collaboration of freedom are modeled by the scalar fieidand , which

in pﬁcollisions at Fermilab have thus far not found evidence "2 be grouped together d=(q, ). Above the critical

. temperature, the quark degrees of freedom are effectively
for the production and decay of DC(4], though they are B o
far more likely to be created in upcoming heavy ion colli- massless, anib) =0 to a good approximation. To model a

sions. Thus, understanding their possible formation an@gggi%lg;ggr;eq3!'rt])élrlll_rgsstlrt]ueatlSg,rkl?ijj%%oplzls rir;dinvt\ale(;?r?tker-
likely decay signatures in anticipation of further experimen—action e ionq betweén the (iollidir? nuglei expands and
tal work is of key importance. 9 9 P

If these domains grow to sufficient sizen the order of cools, the effective temperature may fal! qui_ckly'[eéT6:
3-7 fm), such an experimental event would be marked by aBecause_ the ze_ro-temperature_ potential is n_ot chirally-
particular clustering pattern: some regions within the detec§ymmetr|c, domains form, ?nd it takes some tlm? for the
tor would measure a large number of charged pions but fejelds to evolve from(c)=(m)=0 to the new equilibrium
neutral pions, while other regions of the detector would meavalues{o)#0, (7r)=0. Following the quench, the fields re-
sure predominantly neutral pions with few charged pidtjs  lax to these new equilibrium values according to the effec-
Defining R to be the ratio of neutral pions to total pions, tive potential,V(®)= (\/4) (®*>—v?)2—Ho; that is, theo
R=n o/(Njo+n_++n_-), it has been demonstrated that field “rolls down” from ¢~0 to o~v.
the probability for measuring various ratigsin DCC events Numerical simulationg2,3] reveal a large amplification
obeysP(R)=(4R) 2 which, especially for smalR, may of soft pion modes from the relaxation of the nonequilibrium
be easily distinguished from the isospin-invariant result ofplasma. Previous authors have attempted to explain these
P(R)— 6(R—1/3) [2]. (Detecting the decay of such DCCs numerical results analytically in terms of spinodal decompo-
could be improved by measuring the two-pion correlationsition: during the time thabr rolls down towardv, pion
functions[5], and from enhanced dilepton and photoproduc-modes with wavelengths satisfying?<\ (v2—(®?)) will
tion [6], in addition to studying the fraction of neutral pions grow exponentially. However, under the usual quench sce-
produced. The production and subsequent relaxation of suctnario, the time it takes for to roll to v, and hence the
DCCs may also explain the so-called “Centauro” high- maximum domain size for the DCCs, remains too small to
energy cosmic ray events, in which very large numbers oproduce clear experimental signatures. Under this scenario,
charged pions are detected with only very few neutral pionslomains typically remain pion-sized; 1.4 fm. (See, e.g.,
[2,7]. [8,9].) This physical mechanism alone therefore remains in-
However, as emphasized [8,9], if the disoriented do- capable of explaining the large domains found in numerical
mains do not grow to such large scales within heavy iorsimulations.
collisions, such experimental signatures become less and less Building on earlier work in[10], we consider here a
easy to distinguish from the isospin-invariant case. Even iphysically distinct process which could produce larger do-
DCCs are produced following a heavy ion collision, if the mains of DCC, and hence might better explain the significant
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clustering observed in numerical simulations. Rather tharmn improving future analytic studies of DCCs and their de-
amplification of pion modes while rolls down its potential cay) We also ignore noise and other medium-related effects
hill, we focus on the parametric amplification of pion modeson the resonance; as demonstrated in the context of post-
aso oscillates around the minimum of its potential. Becausenflation reheating, such effects do not destroy the parametric
this is a distinct process, the growth of domains due to pararesonance, but rather enhance it. Indeed, because noise in-
metric resonance, unlike the growth of domains due to spinereases the quasi-exponential growth of the unstable modes,
odal decomposition, may reach scales on the order of 3—&nd removes all stable ban@ that all mode& experience
fm. non-adiabatic amplificatiorf 16], its neglect here results in a
This means of DCC decay is similar to cosmological post-systematicunderestimatef the pion domains’ growth.
inflation reheating. An early attempt was made to apply the We study the nonequilibrium, nonperturbative dynamics
reheating formalism of11] to the decay of DCCs due to by means of a Hartree approximation, by writimgt,x)
parametric resonance ji0]. However, the analytic tools for = (t) + so(t,x), and replacing 7*—3(7?)7 and 72

studying the nonequilibrium, nonperturbative dynamics ofﬂ<7;z>_ The vacuum expectation value may be written in

such n_asonant decays he}ve improvgd si_nce this garly W(.)rk HRrms of the field’s associatedourier-transformedmode
reheating, and the earlier approximations, while at tlme§ . -5 37 12 3
unctions ag w°)= [d°k| m|*/(27)°. Because théo fluc-

qualitatively informative, prove quantitatively unreliable. ! ; : . .
Most important, this earlier studyL0] approximatedr’s os- t_uatlons d_ecouple from the pion mpdes In th's approxima-
' fion, we will focus below on the pionic fluctuations. Numeri-

cillations as purely periodic, in which case the equation o : . : . .
motion for the pionic fluctuations reduces to the weII—knowncaI simulations of post-inflation reheating have demonstrated

Mathieu equation. Ignoring the nonlinear, anharmonic term§hat late-time resca;tering, WhiCh.iS completely neglected in
(such as\o*) in the evolution ofo then yields the prediction the Har_tree approximation, in fa«maeasesthe growth of
of an infinite hierarchy of resonance bands, with decreasinaucwa“ons_[ﬂ]' I\_Iegl_ec'tmg S.UCh. resca_ttermgs here,_m_uch
characteristic exponents. Yet given the nonlinear equatio ke neg]ectmg nq|se' Iwr's oscillations, yields a lower limit
for o, the equation of motion for the pions reduces instead td° th(_e pion doma'”s actual groyvth. . , .
a Lameequation, which, in the cases of interest, has only one .W|th|n a given DCC_ doma_m, FhAe p_lor_1 f'e'f’ will be
single resonance band, with a different value for the ampli2ligned along some particular direction, , in isospin space.
fied modes’ characteristic exponent. As emphasizdd 2, = We will therefore writer= yn .. In terms of the dimension-
these two differences combined can change dramatically thess variablesr=\\v%t and x=k/\Av?, and the scaled
predicted spectra from parametric resonance; to be useful iiield ¢(7)=0o(t)/v, the coupled equations of motion take
making contact with experiments, these nonlinearities musthe form
be attended to, as in the present stu@urthermore, the
authors of[10] did not consider the size of domains created®” + (¢?—1+3,)¢=0, xi+(pP*+@*+3 )xk=0, (2
by the parametric resonance, as considered heead, we
draw on the more recent studies of reheatingliga—15 to ~ Where primes denoté/dr, and we have defined
consider the question of DCCs and their resonant decay. R

Following [2], we consider a quench scenario: the tem-M=m_/\Xv?, p’=k?+M2-1, 3 =(7)l2. (3

perature of the plasma drops quickly from above the critical )
temperaturewith (®)=0) to near zero. The effective La- Note that with the values of the parameters assumed here,

grangian density following the quench is given by VAv?=390.9 MeV, andV?=0.12. These equations of mo-
tion are conformally equivalent to those for massless fields in
L=~3(3,P)*~(N4)(P*~v?)?*+Ho. (1) an expanding, spatially-open universe, and hence we may

apply the techniques ¢fl5] to study their solutions.

HereH is an external field which breaks the chiral symmetry ~ We are interested in the growth af modes asr, oscil-
and picks out ther direction as the true minimum. The pion lates aroundv. Having begun, following the quench, near
mass is proportional tél. The true vacuum is characterized oy~0, o will roll down its potential hill towardv. The
by (@):(fﬁ,ﬁ), where f_=92.5 MeV is the pion decay rolling field will at first overshoot the minimum at, and
constant. In the limit a$1—0, f_—uv. In the following, we  then begin oscillating around. The amplitude of these os-
neglectH in the resulting equations of motion, but add by cillations will eventually be damped by the transfer of energy
hand a pion masm,=135 MeV; we also sex=20.0 and  from this oscillating zero mode into the fluctuations. For
v=87.4 MeV, which yieldm,= (2\f2+m2)¥2=600 MeV. early times after these oscillations have begun, however, the
These standard values for the parameters are chosen, asamplitude ofo, will remain nearly constant. In this strongly-
[2,8-1(, to fit low-energy pion dynamics. coupled system, unlike in the weakly-coupled inflationary
As a first approximation, we neglect effects due to thecase, thes field will execute only a few oscillations before
expansion of the plasma. Obviously the expansion of theettling in to its minimum. Yet, as we see below, even these
plasma plays a crucial role, at least for early times followingfew oscillations could prove significant, since most particle
the collision, in dropping the temperature below the criticalproduction via parametric resonance occurs in highly non-
temperature(Some work has been done to incorporate anaadiabatic bursts, when the velocity of the oscillating field
lytically the effects of cosmological expansion in the reso-passes through zefd1]. Furthermore, because the system
nant decay of a massive inflatph4], which may be useful has been quenched from its initial, chirally-symmetric state,
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we assume thal . is small at the beginning afy’s oscilla- phi

tions. (The fact that spinodal decomposition alone cannot 1.4
produce large DCC domains is equivalent}q remaining
small while ¢ rolls down its potential hil). Then we may
solve the coupled equations for early times after the oscilla-
tions have begun, and study the growth of the fluctuations

Frk. Becausery begins oscillating quasi-periodically, certain
pion modes will be amplified due to parametric resonance.

The resonance will fade once the backreaction t&m,
grows to be of the same order as the tree-level terms, such ¢
®2. To study the behavior of the pionic fluctuations, We ge mu
solve the coupled equations () for early times after the
beginning ofay’s oscillations, wher, . may be neglected.
This lasts up to the timere,q, determined by3 (7end
= ¢?(7), where an overline denotes time-averaging over a
period of ¢'s oscillations.

Assuming thairy's oscillations begin once reaches its
inflection point, o =v/+/3, it will roll past the minimum
and up to the point at whick'(o)=V(ai,), before rolling
back down throughv. This setsg,=/5/3. Because this
definition of the initial amplitude is somewhat arbitrary, we
study the resonance effects far, in the range ¢ FIG. 1. Re{u,(v)] as a function of both the dimensionless mo-
<.2. In the range ¥ ¢o=<+2, ¢(7) oscillates ag12] mentum,«, and the dimensionless initial amplitude @§’s oscil-

lations, ¢q. In these unitsm_=0.35; the largest exponents, and

4) hence the strongest resonance, occurkfem

o(7)=@odn(yT,v),

where dn(,v) is the third Jacobian elliptic functiony
=¢o/\2, andv=2(1— @52). Equation(4) holds for r  The resonance band includes modes withm,, for all val-
<7eng- The dn-function oscillates between a maximum at 1ues ofpy,=1.23, that is, even for amplitudes of the oscillat-
and a minimum at (%2 with a period of X(v)/y, ing field smaller thanpo=\/5/3. As in[15], u,.(») may be
whereK(v) is the complete elliptic integral of the first kind written in terms of a complete elliptic integral of the third
[18]. kind. The real part ofu,(v) is plotted in Fig. 1. Near the
With ¢(7) oscillating as in Eq(4), the equation of mo- center of the resonance band for a given value gt
tion for y, becomes the Lamequation of order one. A so- R u,]~0.1-0.3. Note that as in the numerical simulations
lution for the pion modes(7) may thus be written in the of [2,3], the strongest amplificatiofindicating greatest par-

form[12,13,15,1% ticle production occurs fork<m,. The maximum values of
. Re u,] fall in the k—0 limit.
UL (1) =A(n)exp(= u () y7). (5) Given Réu,], one can determine,y, based on the

) o ) ) ~growth of 3 . If 7nqis large enough, then observable do-
Here A() is a periodic function, normalized to have unit mains of DCC could be formed and detected. Within a given
amplitude, andu,(v) is the characteristic exponefialso  domain, S (7) is given as an integral ovdry,(7)|2. To

known as the Floquet indgxThe form of x, depends on  evaluater,,y, we solve numerically the equation
both k and v. Clearly, whenever Re.,(v)]#0, the coupled

modes will be exponentially amplified. The exact relation
between théJ, modes andgy, (and hencer) depends on the
assumed initial conditions following the nonequilibrium
guench. If we make the usual assumption, thafr) where the integral extends over the single resonance band.
=12wp(7o) and (7o) = —iVwy(70)/2, with wg(r)zp2 The time-average of th&dimensionlessoscillating o field,
+¢?%(7) [12,20, then they, modes may be written as a ¢2, may be written in terms oE(»), the complete elliptic
linear combination ofJ (ki) as in[12,13,14. integral of the second kind, using the integral of@nv)

In [15], these coupled equations were studied for theover a period of its oscillationgsee[18]). Equation(7) then
range ¢o= 2. Proceeding in exactly the same way, solu-yieldst.,~5 fm/c over most of the range< =< /2. This
tions may be found for the case<kp,<\2. The character- should be compared with the usual spinodal decomposition
istic exponent has non-zero real parts only within a singlescenario, in which the pionic fluctuations would be exponen-

217( Tend = fres bangdKK2/272)|Xk( 7'end)|2:?r (7)

resonance band, given by tially amplified only for the brief periodspinggar= J2/m,
=0.47 fmk. As noted above, because we neglect noise and
(3-M?)— 31— 52— ¢)) rescattering, 5 fnt/ is actually a lower bound for the time

during which the pion modes will grow due to parametric

<KkK?’<(3—-M?)+3J1-p5(2— ;). (6)  resonance.
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In order to find the characteristic sizes to which DCC

domains may grow before the parametric resonance is

damped, we may folloy21] and evaluate the two-point cor-
relation function:

D(t,r)z<%(t,r)%(t,0)>=f (d3k/(2)3) e | my|?

=(7\v2)_3/2f (drx?27)jo(kX) | xi(T)]2, (8)

with the dimensionless length defined By= yAv“r. We

have also used?k(t)zxk(r)ﬁw within a given domain. We
may solve this integral in the saddle-point approximation
making use of Eq(11.4.29 of [18], with the result that

D(t,r)oc3 (t)exp(—r2/£3(1)),
9
Equation(9) reveals that the domain size growst&8. The

maximum correlation lengthép(tend, is plotted in Fig. 2.
Over much of the range< po=<1/2, &p(tend lies between

E5(0)=4y|Re(d 1, (1)] 9xP)| . _(t/\\v?).
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FIG. 2. Maximum domain size for DCC8§p(teng, @s a function
of ¢q, in units of fm.
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disoriented chiral condensates in the aftermath of relativistic
heavy ion collisions. Unlike spinodal decomposition alone,
this physical process may explain the significant growth of
DCCs found in numerical simulations. Future analytic stud-
ies should better include effects from the expansion of the
plasma, from noise in the field’s oscillations, and from

3-5 fm. The usual spinodal decomposition process, in thg,._ ~ Jnq~— ~ scatterings, which are neglected here in

absence of the “annealing” studied [if], on the other hand,
can only create domains of order 1.4 ff8]. If “annealing”

the Hartree approximation; the latter two effects, at least, are
expected toincreasethe pion domain growth found here.

is effective, domains from spinodal decomposition may growrhijs study indicates, therefore, that the resonant decay of

to 3—4 fm; yet independent of the dynamicscasolls down

its potential hill, it still must end its evolution by oscillating
aroundv, and the resonant production of pions would follow
as studied here.

DCCs should produce low-momentum pions with a distribu-
tion observably distinct from the isospin-invariant case.
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