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Pedagogy, Practice, and the Reconstitution
of General Relativity, 19421975
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1. Introduction: Problems and the Training of ‘Renaissance Relativists’

No one expects a guitarist to learn to play by going to concerts in Central Park or
by spending hours reading transcriptions of Jimi Hendrix solos. Guitarists
practice. Guitarists play the guitar unti] their fingertips are calloused. Similarly,
physicists solve problems. And hopefully, physicists practice solving problems until
doing so seems easy. (Then they find harder problems.)’

When Albert Einstein penned a foreword for his friend and Princeton-neighbour
Peter Bergmann’s 1942 textbook, Introduction to the Theory of Relativity, he
exhorted its readers: ‘I believe that more time and effort might well be devoted to
the systematic teaching of the theory of relativity than is usual at present at most
universities.”> Bergmann himself similarly remarkad that in the 1940s: ‘You only
had to know what your six best friends were doing, and you would know what
was happening in general relativity.”? Einstein’s elegant theory of gravitation,
completed in 1915-1916, had by the 1940s nearly disappeared from the training
of American graduate students in physics.

A quick survey of the course offerings at several universities confirms the
dearth of attention to general relativity noted by Einstein, Bergmann and others.
At Princeton, home of these gravitational physicists, general relativity was
taught in the mathematics department until 1954, when Math 570 became
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' This is the colourful opening declaration to the recently published compilation of physics
problems, Princeton Problems in Physics, with Solutions (Newbury er al., 1991, p. xv).

2 Albert Einstein, ‘Foreword’, in Bergmann (1942, p. v).

3 Bergmann is quoted in Will (1993 [1986], p. 11). Similar remarks were made by Robert Dicke in
his 1964 Les Houches lectures (Dicke, 1965, pp. 1-3), and in Fis interview in Lightman and Brawer
(1990, p. 204).
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Physics 570, taught by the physicist John Wheeler. At Harvard, the
mathematician Birkhoff taught his idiosyncratic approach to general relativity
in the mathematics department through the 1940s, but no physicist taught the
subject until Sidney Coleman began to teach “The Theory of Relativity’ (Physics
210) in 1967. Sounds of ‘gee-mu-nu’ were hardly echoing through the halls of
MIT’s ‘infinite corridor” not a single physics or mathematics course at MIT
focussed on general relativity throughout the 1950s.* Similarly, in 1961, neither
Columbia University nor the University of California at Berkeley required or
recommended coursework in general relativity for their physics graduate
students.® Even when coursework was offered to physics graduate students, as at
Princeton in the late 1950s, no questions on the theory of general relativity were
posed on the graduate student general examinations.®

And yet, like so many changes during the tumultuous 1960s, general relativity
experienced a ‘revolution’. The physicist Clifford Will has termed the changes
during this decade ‘the renaissance of general relativity’. On Will’s reading,
a number of discoveries {quasars, pulsars, cosmic microwave background
radiation) throughout the 1960s thrust the study of general relativity and
gravitational fields into a new spotlight.” By the late 1960s, ‘gravity groups’ of
physicists and graduate students could be found at places like Princeton and
Caltech, working actively in experimental and theoretical problems in general
relativity. After ‘begging’ for names and addresses of physicists specialising in
general relativity in 1961, the Swiss-based International Society for General
Relativity and Gravitation could count over 220 members in its ranks by 1974;
and over 800 participants crowded into the conference halls for the Ninth Texas
Symposium on Relativistic Astrophysics, held in December 1978.% From very

* The information on course offerings is taken from each of the university’s course catalogues,
deposited in the various university archives. General relativity was listed as one topic among several to
be covered in some applied mathematics courses during this period, but was not the subject of its
own course in the physics department. This matches the general pattern noted by Eisenstaedt (1989).
* See Appendix 15 in the unpublished report by W. C. Kelly, ‘Survey of Education in Physics in
Universities of the United States’, dated 1 December 1962. Copies of his report may be found in the
American Institute of Physics, ‘Education and Manpower Division®, Records, 1951-1973, Box 9;
deposited in the American Institute of Physics Archives, Niels Bohr Library, College Park, Maryland.
® Interview of Professor Robert H. Dicke with the author, 10 March 1995. The 1961 qualifying
examinations and general examinations from Columbia, Berkeley, and MIT, included in Appendix
19 of the Kelly Report, contain no questions on general relativity or gravitation. Harvard physics
graduate students had to pass an oral, rather than a written, qualifying examination, a list of
‘suitable topics’ for which, drafted in 1962, similarly revealed the absence of gravational physics. This
memorandum may be found in the AIP’s unpublished “Institutional Histories” Harvard University,
catalogue number 1H95, Niels Bohr Library.

7 See Will (1993 [1986], especially Chapter 1, pp. 3-18). Cf. *Introduction to Modern Cosmology’ in
Lightman and Brawer (1990, pp. 1-49).

8 See the form letter from Professor André Mercier addressed ‘To Scientists throughout the World
active in the field of Theories of Relativity and Gravitation’, dated January 1961. A decade later, in
July 1971, Mercier and others had established the International Society for General Relativity and
Gravitation. A list of its membership from 1974 includes 221 names and addresses, organised by
country. Seventy-one of these members were working in the United States. These papers are
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humble beginnings, a community of physicists dedicated to the study of general
relativity had been formed.

Throughout this period of explosive growth in the numbers of practitioners,
however, the theory of ‘general relativity’ did not remain a constant, static
physical theory. Instead, it was reworked, and its methods of calculation
reconsidered. Readers of the colossal 1973 textbook by Charles Misner, Kip
Thorne, and John Wheeler, entitied simply Gravitation experienced a theory
which looked different from what had passed under the same title in Bergmann’s
1942 text. In the process, differences in the practice of gravitational physics
emerged at every level: conceptually, ontologically, calculationally, pedago-
gically, and sociologically.

By studying how various textbooks presented the subject of general relativity,
and what kinds of problems these texts asked students to calculate, we can
follow a transition from a predominantly geometrical conception of gravitation
to a more dynamical one. The geometrical conception, as typified by
Bergmann’s text, focussed on the mathematical properties of the non-Euclidean
nature of spacetime, as described by the Riemann curvature tensor and its
contractions. Here the tools and approach came from mathematicians’
differential geometry and tensor calculus. The latter form of general relativity
shifted attention to a more field-theoretic approach, emphasising Lagrangian
techniques for formulating, approaching, and sclving problems in gravitation.
On this view, gravitation arose as other forces did, from the exchange of
a dynamical field propagating through the flat spacetime of special relativity.®
During the 1960s, strains of both of these approaches to general relativity could
be found, although with increasing influence felt from the Lagrangian-toting
field theorists. In this brief paper, [ will limit attention to the contrast between
Einstein’s and Bergmann's pedagogical route to general relativity with that of
the particle theorists Richard Feynman and Sidney Coleman.'®

8 (continued)

deposited in the “International Society for General Relativity and Gravitation', Records, 1967 1982,
held in the American Institute of Physics Archives, Niels Bohr Library. On the Ninth Texas
Symposium, see Will {1993 [1986], p. 15).

? This is not to suggest that there was a clear, uniform transition from a geometrical to a dynamical
view. The novelty of the 1973 Misner, Thorne, and Wheeler textbook, Graritation. for example, lay in
its new-found geometrical emphases, now pursued with more modern mathematical representations
of tensors. Their new approach famously made gravitation synonymous with ‘geometrodynamics'.
See Misner et al. (1973).

' This paper is part of a larger project on changes in the practice of gravitational physics during the
middle decades of this century. The more complete study aims to relate these pedagogical changes
(in textbooks, lecture notes, syllabi, problem sets, and gencral examinations) to changes in the
published research articles within gravitational physics. OF course there are limits in studying
published textbooks apart from other elements of the ‘pedagogical apparatus’--for one, such a focus
tends to downplay the uctive nature of teaching and reading viithin a classraom setting, in favour of
assuming some transparent, single meaning carried by the texr itself. It is not my intention to restrict
attention to this level, though in this brief paper the texts themselves may be read and compared
profitably to begin to tease out specific changes in the kinds of caleulational tools and practices
emphasised within various pedagogical traditions.
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This study of changes in the practice of general relativity thus proceeds with the
understanding that the history of physical theories cannot be formulated as
a problem of ‘conception’ and ‘reception’. Instead, as emphasised by Andrew
Warwick’s study of British responses to Einstein’s 1905 paper on special relativity,
I will treat physical theories as collections of practices—calculational approaches
and techniques.'’ As we will see, Feynman denied any role to Einstein’s beloved
geometry, while proclaiming all the while that he was teaching students to do
gravitational physics. Thus, rather than telling this story as one of a passive
reception of a more or less ‘correct’ understanding of Einstein’s equivalence
principle, I see the episode instead as an active encounter and deployment, on
many of the field theorists® part, of specifically field-theoretic practices. Every
step in the process of teaching and studying gravitational physics, from the
initial foundation and derivation of the governing equations, to the later
calculation of specific problems, proceeded along distinct directions, calling on
the manipulation of distinct mathematical quantities, in analogy to other, quite
distinct mathematical and physical theories.

This theme of different approaches to the practice of theory encourages
a focus on pedagogy; after all, theory as ‘practice’ is something which must be
practised. The burgeoning membership in general relativity associations and
conferences during the 1970s required intense efforts to train students in the
calculational specificities of gravitational physics. A careful attention to lectures,
textbooks, and their rewriting during this period, and to the problems assigned
to graduate students as an integral part of their training, provides a means with
which to trace the reconstitution of general relativity during the middle decades
of this century.

2. Einstein, Bergmann and the Geometrical Foundations of Gravitation

Einstein’s own route to finding the field equations governing his theory of
general relativity between 1911-1915 was notoriously convoluted.'? Though
flirting briefly in the fall of 1914 with a derivation based on an action principle
and variational techniques, his final derivation in November 1915 eschewed this
approach.'? Later, Einstein consistently chose to rely on a simplified version of

' See Warwick (1992, 1993). Much of the motivation for this kind of approach stems from Thomas
Kuhn’s brief discussion of exemplars and the community-building function of problem-solving in his
1969 postscript to The Structure of Scientific Revolutions (Kuhn, 1970 [1962], pp. 187-204). A similar
move has been made by philosophers Nancy Cartwright and Ronald Giere; see Cartwright (1983),
especially Chapters 6-7; and Giere (1988), Chapter 3.

2 See Norton (1984) and Stachel (1979). See also Eisenstaedt and Kox (1992); Pais (1982, pp.
177-265); and Cao (1997, pp. 45-103). Einstein himself provided some recollections on this process in
‘Notes on the Origin of the General Theory of Relativity’, originally published in Mein Welthild
(1934), and translated and reprinted in Einstein (1982 [1934], pp. 285-290).

'3 Einstein’s post-Grossmann attempt to formulate his theory by means of an action principle may
be found in his paper, Einstein (1914). Cf. Norton (1984, pp. 293-298).
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his own more geometrical derivation when presenting his theory in pedagogical
settings. This strong emphasis on geometrical foundations carried over to nearly
all of the prominent textbooks and popular accounts of Einstein’s famous theory
through the 1950s.'* And it was this means of derivation which his friend and
former student, Peter Bergmann, chose to highlight in his 1942 textbook.

A clear example of Einstein’s pedagogical means of deriving his field
equations comes from his May, 1921 Stafford Little Lectures at Princeton
University. In brief, Einstein ‘derived’ his famous theory of gravitation by
beginning with the principle of equivalence, which united inertial and gravi-
tational mass. Einstein explained that this foundational principle necessitated
a shift from the Euclidean flat space of Newtor’s gravitational theory, and a
shift from the Minkowski flat spacetime of special relativity, to curved spacetime.
To describe this spacetime mathematically, Einstein introduced the notion
of a metric tensor for the four-dimensional spacetime, g,,, and the
Riemann-Christoffel curvature tensor, R%,. This curvature tensor, Einstein
continued, contained combinations of g, and its first two derivatives. If the
components of the metric tensor were interpreted as gravitational potentials,
then the curvature tensor might play the analogue of A¢, the Laplacian of the
Newtonian potential. From here, working in explicit analogy to the Poisson
equation governing Newtonian gravity, Einstein worked out the single possible
candidate for his field equations: they had to be linear in the second derivatives
of the g,, and have a vanishing divergence. Putting all this together, and fixing
the constant of proportionality between the left-hand (geometrical curvature)
side and the right-hand (energy—momentum) side by means of the Poisson
equation, Einstein presented for his eager listeners his new theory of gravitation:

R, — %guvR =—kKT,. (1
Gravity, in Einstein’s hands, was merely the local curvature of spacetime in
response to a source of energy density. To study gravity, ‘all’ one needed to
master was the geometrical description of non-Euclidean spaces, exemplified by
the Riemann—Christoffel curvature tensor.

Following Einstein’s lead, Bergmann sought to equip students of physics and
mathematics with just this ‘specialized mathematical apparatus’, including
‘tensor calculus and Ricci calculus’ (Bergmann, 1942, p. vii).}> Part 11 of his

'* Prominent textbooks from this period include Weyl (1952 [1918]); Pauli (1958 [1921]); Edding-
ton (1930 [1923]); Tolman (1934); Landau and Lifshitz (1951 [1941)); Maller (1952); and McVittie
(1956). Popularisations of general relativity, many of which wzre read by students who would later
pursue the topic in graduate school, similarly stressed its geometrical core: sec Einstein (1961
[1916]): Eddington (1920); and Gamow (1965 [1947]). In this sense, Bergmann’s text was a well-
known example of a well-established tradition.

'3 The presence of such close similarities between Bergmann's and Einstein’s pedagogical presenta-
tions should not be surprising: Einstein noted in his foreword 10 Bergmann'’s textbook that ‘[m]Juch
effort has gone into making this book logically and pedagogically satisfactory, and Dr. Bergmann
has spent many hours with me which were devoted to this end’ (p. v).
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textbook, treating the general theory of relativity, proceeded along the same
series of steps as had Einstein’s Stafford Lectures. Chapter X, “The Principle of
Equivalence’, provided nine pages of text (with almost no equations) to motivate
to students that the equivalence of inertial and gravitational mass led necessarily
to the notion of curved spacetime. In order to be able, eventually, to study the
physical consequences of the equivalence principle, students of Bergmann’s text
next had to master Chapter XI, “The Riemann—Christoffel Curvature Tensor’.
Here, in fifteen pages, Bergmann expanded upon Einstein’s brief introduction to
the mathematics of Riemannian spaces. The metric tensor g;;, was introduced,
and the Christoffel symbols {ik, I} were defined as convenient combinations of
gu and its first derivatives. Next the Riemann—Christoffel curvature tensor, now
written as R, was defined and shown to be equivalent to a ‘commutation law
for covariant differentiation’. Six more pages spelled out, line by line, the
detailed symmetry properties of the curvature tensor and its contractions (ibid.,
pp. 161-174; quotation on p. 166).

In the next chapter, Bergmann swiftly proceeded to use precisely the same
series of analogies to Poisson’s equation as had Einstein in order to arrive at the
gravitational field equations. It was a matter of pure geometry to find an
appropriate divergenceless tensor consisting of no higher than the second
derivatives of the g,,, which might be proportional to T,,. With this, he wrote
down the gravitational field equations as Einstein had. Much like his mentor,
Bergmann conducted his students directly from the mathematical geometry of
curved spacetime to the governing equations of gravitation. Equipped now with
Einstein’s field equations, Bergmann proceeded posthaste to study the equations
in their ‘linearized’ form, calculating the non-vanishing Christoffel symbols in
this perturbative approximation, and arriving (ten pages later) at the geodesic
equation for point-particle motion.

It was only at this point, after the reader had studied fifteen pages on the
curvature tensor and another sixteen pages on the geometrical derivation of the
field equations, that Bergmann offered a contrasting means of deriving Einstein’s
famous equations. In fewer than four pages, Bergmann outlined what had
essentially been David Hilbert's 1915 derivation of the field equations, based on
the variation of an action integral with respect to a variation of the metric, dg,,.

Tellingly, Bergmann noted in this section merely that ‘the relativistic field
equations [(1)] can be represented as the Euler-Lagrange equations of a Hamil-
tonian principle’ (ibid., p. 100; emphasis added). Unlike his original derivation, in
which each step was at least motivated by physical considerations (and more
often than not calculated at length explicitly), here he simply posited the
particular action integral to be manipulated:

I= f R/ — gdildeddzast, 81 =0. (2)

Bergmann quickly noted that ‘straightforward’ (though tacit) computation
reveals that the variation of the Ricci tensor, dR,,, was in fact the covariant
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divergence of a vector. One term, then, became the integral of an ordinary
divergence, which vanished due to Gauss’ theorem. In a similarly terse way,

Bergmann continued (ibid., p. 193) : '6(\/ — g ¢"") is simply

[

N ”— ; S MV 1 v o
o —99") =+ —y (09‘ ~ 5 9009" 09’ ) (3)
After multiplying through by R,,, the variation of I became
5[@/ —gd = jcu‘,agﬂw’iZ dé. (4)

Without fanfare, Bergmann concluded this section with the single sentence: ‘ The
equations [(1)] are the Euler—Lagrange equations of the Hamiltonian principle
[2)] (ibid).""

This quick demonstration was the only point throughout Bergmann’s entire
presentation of general relativity in which any attention was drawn to varia-
tional techniques. The following chapter, ‘Rigorous Solutions of the Field
Equations of the General Theory of Relativity’, presented the Schwarzschild
metric and its variants. These solutions were found by postulating a general list
of terms for the line element ds’, and then removing or evaluating their
coeflicients based on geometrical constraints (such as spherical symmetry) and
the field equations. The next two chapters, surveying the famous experimental
tests of Einstein’s general relativity and the equations of motion for test particles
in the theory, proceeded in a similar way, often exploiting features like spherical
symmetry within a linearised expansion of the field equations (ibid., pp.
198--242).

Readers of Bergmann’s 1942 textbook, Introduction to the Theory of Relativ-
ity, much like auditors of Einstein’s 1922 Stafford Lectures, thus were presented
with a very particular view of what it mean to do gravitational physics. Building
on a careful study of the mathematical properties of the curvature tensor, and
proceeding in close analogy with Poisson’s equation for Newtonian gravity,
students could grasp Einstein’s hard-won field equations for general relativity.
With these governing equations in hand, specific problems could be formulated,
such as the notorious perihelion shift in the orbit of Mercury around the Sun. In
order to calculate this shift as predicted by general relativity, students were led
to expand carefully the full geometrical metric tensor in a perturbative expan-
sion, calculate first and second derivatives, and arrange these terms within
Christoffel symbols and Riemann-Christoffel curvature tensors. Contracting
these and applying the field equations produced a series of non-linear differen-
tial equations. And so it went.

'* Equations (2) to {4) lead to the field equations in the absencs of sources. G, = 0. Bergmann next
spent two and a half pages (pp. 195-198) amending this Hamiitonian derivation to include the case
of a non-vanishing T,,,, although he never explicitly completed this derivation by arriving at the full
field equations (1).
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How are we to interpret Bergmann’s fleeting side-thoughts on the alternative
derivation of Einstein’s field equations, by means of variational techniques?
Clearly Professor Bergmann himself was adept at calculating in this manner.
His own skills might account for his swift progression from the variation éR,, to

the covariant derivative of a vector, or from the quantity &/ — gg"")
to equation (3). Yet what remained ‘simply’ an equivalence for Bergmann
received fourteen lines of explicit derivation and explanation in the 1975
Problem Book in Relativity and Gravitation (Lightman et al., 1975, p. 575).
Reading Introduction to the Theory of Relativity as a pedagogical text, then, we
are steered toward an alternate interpretation: Bergmann’s brief, clipped
presentation of the field equations as the Euler—Lagrange equations of an action
integral indicates that these were not the kinds of mathematical skills which
students of general relativity were to cultivate. When the four pages of this
section are compared with Bergmann’s methodical, protracted and explicit
derivation of the Bianchi identities and the contracted Bianchi identities within
his chapter on the curvature tensor, it becomes all the more clear what kinds of
skills students of Bergmann’s text were to develop (cf. Bergmann, 1942,
pp. 169-172).17

In choosing this pedagogical path, Bergmann followed more than only
his friend Einstein. His treatment retraced a pattern set by Arthur Eddington,
Richard Tolman and several others, who similarly included very brief
sections on the derivation of the field equations from the variation of an
action only after the full machinery of tensor calculus and non-Euclidean
geometry had been brought to bear on questions of gravitation, Eddington
further nullified the Lagrangian approach in his famous 1923 textbook,
immediately following its fleeting introduction, remarking in ‘retrospect’ that
the use of Least Action ‘does not appear at present to admit of any very general
application. In any case it seems better adapted to give neat mathematical
formulae than to give physical insight’ (Eddington, 1930 [1923], p. 147).18 This
last phrase nearly constituted a kiss of death for Lagrangian methods in the
study of gravitation, ushered as it was from the pen of so influential a relativist.
For Bergmann, as for Einstein and these others, general relativity rested upon
geometrical foundations. To master it, students had to work hard to acquire
speaking knowledge of a very particular kind of mathematical language and
practice.

17 For this reason, it does not seem that Bergmann's terseness with respect to the variational
techniques belies any confidence on his part that students would not need a fuller explanation.

'8 The only textbooks from this period to present the primary derivation of the gravitational field
equations by means of varying an action integral were those by Weyl and Pauli; yet even with these
texts, the overwhelming bulk focussed on the mathematical tools of tensor calculus and Riemannian
geometry. Unlike later field theorists, neither denied or downplayed the fundamental role of
non-Euclidean geometry in the study of gravitation. Furthermore, Pauli’s text, first published in
a German encyclopaedia, was only first translated into English in 1958.
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3. Particle Theorists and the World of Gravitation: Feynman and Coleman

In his very first lecture on gravitation for his 1962-1963 course at Caltech,
Richard Feynman made explicit his intended kreak from carhier pedagogical
approaches to general relativity: “The usual course in gravitation [ ... ] starts by
stating the laws just as Einstein did. This procedure is, however, unnecessary,
and for pedagogical reasons we shall here take a different approach to the
subject’. Feynman explained his reason for change: “Today, physics students
know about quantum theory and mesons and the fundamental particles, which
were unknown in Einstein’s day (Feynman, [1962-1963] p. 1).!° Taking into
account the skills and interests of his students, Feynman hoped to craft an
approach to general relativity which would be the most natural for those
students who had been trained in the tradition of interacting, dynamical quan-
tum fields.

A few moments later, Feynman mused for his listeners about a possible
second route to general relativity. Suppose, he began, that scientists on Venus
had developed the same knowledge of nucleons and mesons as had Feynman
and his colleagues, but had not learned about gravity. ‘And suddenly, an
amazing new experiment is performed [ by the Veautians], which shows that two
large neutral masses attract each other with a very, very tiny force. Now, what
would the Venutians do with such an amazing extra experimental fact to be
explained? They would probably try to interpret it in terms of the field theories
which are familiar to them’ (ibid., p. 2). Much like Feynman’'s imaginary
Venutian physicists, most students in Feynman’s class were likely to have been
versed in the skills and practices of particle physics and quantum field theory, as
Feynman himself made clear:

Our pedagogical approach [to gravitation] is more suited to meson theorists who
have gotten used to the idea of fields, so that it is not hard for them to conceive that
the universe is made up of twenty-nine or thirty-one other fields all in one grand
equation; the phenomena of gravitation add another such field to the pot, it is a
new field which was left out of previous considerations, and it is only one of the
thirty or so; explaining gravitation therefore amounts to explaining three percent
of the total number of known fields (ibid.).

With this background and training, Feynman and his students would therefore
study gravitation by deploying the full range in their arsenal of field theory
techniques.

In his second lecture, Feynman demonstrated that many phenomenological
aspects of gravity could be reproduced in a particle model in which the force of

'? From the first lecture of Richard P. Feynman’s ‘Lectures cn Gravitation’, delivered at Caltech in
1962-1963, p. 1. These typed notes were prepared for distribution to the class members by Fernando
B. Morinigo and William G. Wagner. They have recently bezn published as Feynman (1995). Few
changes have been made between the unpublished typescript and the new published version; all
references below are to the original typescript.
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gravity arose from the exchange of one or two massless neutrinos. The third
lecture focussed more attention on such a particle-exchange model of gravi-
tation, noting that (unlike his toy neutrino models) the spin of the ‘graviton’
would have to be 2 (ibid., pp. 26--28). Again Feynman paused to note the
difference between the course he was charting and the canonical one: ‘Our
program is now to construct a spin 2 theory in analogy to the other field theories
that we have. We could at this point switch to Finstein’s viewpoint on gravi-
tation, since he obtained the correct theory, but it will be instructive and possibly
easier for us to learn if we maintain the fiction of the Venutian scientists in order
to guess at the properties of the correct theory’ (ibid., pp. 32-34, quotation on
p. 34; emphasis added).

In the remainder of Lecture 3, Feynman developed a scattering theory for
a spin-2 symmetric tensor potential, h,,. Proceeding ‘by simple analogy to
[quantum] electrodynamics’, he first developed amplitudes for the exchange of
a graviton, deriving along the way an expression for the graviton’s propagator.
Soon he turned to a Lagrangian formulation of the emerging theory. Thus, as
had long been the standard procedure in quantum field theory, Feynman’s
theory of gravity relied on the specification of a Lagrangian and the derivation
of Euler-Lagrange equations of motion for the dynamical field h. Feynman
raised this particle-theorist approach to what he called ‘a rule of thumb about
theories of physics: Theories not coming from some kind of variational principle,
such as Least-Action, may be expected to eventually lead to trouble and
inconsistencies’. He and his students would thus ‘insist that our equations be
deducible from a variational principle such as Least Action’ (ibid., pp. 74;
emphasis added).

Feynman next studied how combinations of the dynamical field /1, and its
derivatives behaved under infinitesimal transformations (again in direct analogy
to quantum field theorists’ practice of studying local gauge transformations).
From these algebraic transformations, Feynman proceeded in several steps to
derive the only scalar-invariant action containing at least two derivatives of the
field h,,, arriving at:

F= - %Jg“”R;W — Detg,, dr. (5)
With this, Feynman signalled the completion of his task: “The function F which
we have just deduced results in a Venutian theory of gravitation which is
identical to that developed by Einstein. [ ... ] We may say therefore that our
Venutian viewpoint has succeeded in its aim to construct a self-consistent theory
of gravitation by means of successive logical steps guessed at by analogy’ to
other field theories (ibid., pp. 80-85, quotation p. 85).

As Feynman confirmed later in his lectures, this approach was entirely un-
geometrical. The theory was based on the assumption that ‘space is describable
as the space of Special Relativity’ (ibid., p. 108). The tensor g,,, rather than
serving as a metric tensor to define a curved Riemannian manifold, was simply
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a convenient combination of the Kronecker delta, d,,, and the fundamental
gravitational field, h,,. Similarly, the Christoffel symbols and the Riemann
curvature tensor (neither being explicitly named such during the derivations)
were merely convenient algebraic combinations of the i and their derivatives.
Feynman had thus made a complete break with the geometrical conception of
gravitation: just like the exchange of photons in quantum electrodynamics,
gravitation was due to the exchange of spin-2 gravitons. There was no need to
interpret the various symbols ({uv, s} and R) as anything more than the
necessary algebraic apparatus of a non-linear field theory.?® Feynman con-
cluded rather succinctly: “The geometric interpretation is not really necessary or
essential to physics’ (ibid., p. 110).%'

Feynman’s particle-theorist approach was not alone. Beginning in 1967,
Sidney Coleman began teaching his course on relativity at Harvard, and many
of the problem sets and examination questions he assigned to his students were
similarly based on treating gravitation as a Minkowski-space theory of non-
linearly coupled dynamical fields. Foremost in nearly every assigned problem
were Lagrangians and specific variational-principle techniques.

Consider, for example, a problem on the final examination for Coleman’s
course from 1970. For this problem, students were asked to ‘investigate a Min-
kowski-space theory of gravity, as a possible alternative to general relativity’.
Like Feynman, Coleman led his students through the steps of constructing
a field theory of gravitation which eschewed the geometrical interpretations of
older treatments. Again following Feynman, the problem began by specifying an
action: 2? “In this theory, the gravitational field is a scalar field ¢, and the action
integral is of the form

1
| =

= ( d*xC00,08" + 1, 6)

o

The action integral for matter, I,, was to be obtained by defining a new
tensor in terms of the Minkowski spacetime metric, ¢,,, and the gravitational

29 In Lecture 8, Feynman discussed gravity as a (non-linear) Yang-Mills field, corresponding to
a gauge invariance with respect to spacelime-dependent displacement transformations (pp.
110--111). After deriving his gravitational action, equation (5), and the Euler-Lagrange equations
arsing from it, Feynman did spend portions of the next three lectures describing a more ‘Ein-
steinian’, geometrical interpretation of such terms as the metric and curvature tensors, concluding,
however, that such a parallel, geometrical description was ‘not really necessary or essential to
physics’. And in Lecture 10, Feynman returned to a strictly field-theoretic approach, constructing
possible actions for scalar and spinor fields in his gravitational theory, including cases of direct
coupling between the two fields. ¢ and f (via a ¢” R non-minimal coupling in the Lagrangian; see pp.
137 -143). He used explicit Feynman diagrams to aid in the calculation of the ‘quantum mechanical
amplitudes” of the multiple ¢-h vertices.

2! Note that the delta function d8,, was not exactly the standard Kronecker delta function; instead, it
was what others would have called the Minkowski metric: 80 = — 1.3; = + 1, all other terms
vanishing.

% Problem 3 of the Final Examination for Physics 210, dated January 1970.
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scalar field, ¢:

Guw = Ol + 1/ G + c,Go* + ...). (7
u 2

In this problem, Coleman had his students develop a scalar field theory of
gravitation much as Feynman had constructed a rank-two tensor theory of
gravitation, each time defining the tensor g,,, as a convenient combination of the
Minkowski metric and the dynamical field. With this action and definition of
. the assignment began: derive the field equations resulting from this action,
and show that they agree with Newtonian gravity when particular choices for
the constants ¢, and ¢, are made.

When treating general relativity, Coleman’s students were required to practise
the tools of calculation in ways which readers of Bergmann’s text had not been.
On homework problem 13, students had to retrace, on their own, the many
complicated steps involved in manipulating the variation of the Lagrangian
density R,/ — g: ‘Show, by integrating by parts and discarding surface terms,
that the quantity which occurs in the action integral for the gravitational field,
Jd*xR\/ — g, is equivalent to an integral of a quadratic function of the
Christoffel symbols (times ./ — g). Find this function explicitly’** Here the
students had to produce on their own the steps which had been hidden under
Bergmann’s phrase ‘straightforward computation’.

Meanwhile, not one problem from the course, either assigned as homework or
on an examination, encouraged the students to practise manipulating the
geometrical curvature tensor, establish its symmetry and antisymmetry proper-
ties, or construct the Bianchi identities, all of which Bergmann had belaboured
in his text.

Perhaps the starkest evidence that Physics 210 trained graduate students to
approach gravitation with a ‘bag of tricks’ derived from field theory comes from
other assignments within this same course. On a final examination question
from 1969-1970, students were asked to consider a problem which contained no
gravitational physics, sandwiched between two problems on general relativity.
Here the students were to study an interacting field theory which contained two
scalar fields and two vector fields. Given the Lagrangian density, students were
asked to demonstrate that the Lagrangian remained invariant under particular
transformations of the fields ¢’ and V?. From the invariance of the Lagrangian
under these symmetries, students next had to derive the conserved currents, and
to calculate the energy-momentum tensor for the system. Similarly, homework
problem 8 contained no gravitational physics, but instead provided a lesson in
relativistic quantum field theory. Given a Lagrangian density for a free scalar
field, students found general solutions to the equation of motion in terms of
as-yet unspecified ‘coefficients’ a, and aj¥. Next they calculated the four compo-
nents of the energy-momentum four-vector as integrals over the unknown

23 This problem set is dated Thursday, April 20 [1970].
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coeflicients. As Coleman prompted his students: ‘Once you have the answer, you
may understand why, in quantum field theory, aff q; is called the number density
of particles in momentum space’. Remember, these problems appeared in
a course entitled ‘The Theory of Relativity’!

During the late 1960s, Coleman’s Physics 210 course was the only
physics course at Harvard teaching general relativity. And in this course,
much as in Feynman’s 1962-1963 course at Caltech, graduate students learned
to formulate and discuss gravitation in the same Lagrangian-based terms as
they treated problems in quantum field theory. Students in these courses
practised a mathematical language and developed a set of calculational
techniques which could not have been further removed from Bergmann’s 1942
treatment.**

A useful gauge to measure how these explicitly quantum field theoretic
approaches to gravitation affected the practice of general relativity comes
from the 1975 compendium of problems and solutions, Problem Book
in Relativity and Gravitation (Lightman er al, 1975). The book’s four
authors had recently emerged from Kip Thorne’s late-1960s Caltech ‘gravity
group’. As laid out in their compendium, the tools required in the study
of gravitation, to be developed and practised by students in working out the
five hundred problems included in the Problem Book, often now included
an explicit admixture of calculations from particle physics and general
relativity.

In Feynman-like style, the first section of the Problem Book to focus on
‘gravitation generally” asked students to consider gravity as a theory of spin-2
particle exchange (Lightman et al., p. 74). In the section on the gravitational field
equations, students were asked to consider possible quantum field theoretic
origins of a cosmological constant (ibid., p. 77). Similarly, much as Feynman had
done in his Lecture 10, students had to study non-minimally coupled scalar
fields, with @R terms in the action, and to determine whether or not the resulting
field equations violated the strong equivalence principle (ibid., pp. 84-85).

To ensure that graduate students were well-versed in the Lagrangian-based
methods of field theory, the authors of the Problem Book included a final section
focussed exclusively on variational techniques. The first problem asked students
to derive the identity quoted, without proof, in Bergmann’s text (see equation (2)
above). The next two problems practised the derivation of Euler-Lagrange
equations from an action, when no gravitational effects were included. Problem
21.4 then applied these techniques to the usual gravitational action, asking

24 Steven Weinberg was another particle theorist teaching gravitation in this period: his textbook,
Gravitation and Cosmology (Weinberg, 1972), included much explicit discussion of the use of
Lagrangians in gravitational physics; and like Feynman and Coleman, he similarly downplayed the
role of geometry in the practice of general relativity. His ‘dissatisfaction’ with ‘the usual approach to
the subject’ stemmed from the fact that 'in most textbooks geometric ideas were given a starring
role’, and that ‘the geometrical approach has driven a wedge between gencral relativity and the
theory of clementary particles’ (pp. vi—viii).
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students to practise deriving the field equations in two distinct ways:
Problem 21.4. Consider the action

S =(16m) 'f(—¢)"*Rd*x + [ L,( —g)'?d*x. [ ...] (a) Treat the ¢'s and the I'’s
as independent field variables (“Palatini method”), and show that 4§ = 0 leads to
the Einstein field equations and the usual formula for the I''s in terms of the ¢'s.
[...71(b) Now assume I'’s are Christoffel symbols used to define covariant deriva-
tives in the usual way. Show that 3§ = 0 (where now oI}, is not independent of
3g*") leads to the Einstein field equations.

After having completed each of these derivations of Einstein’s field equations
from the action S, students were now prepared to tackle some alternative
theories of gravitation, such as the Brans—Dicke theory. Problem 21.7 presented
Brans and Dicke’s Lagrangian, instructing the students to ‘[d]erive the
field equations from & L( — g)'*d*x =0 by varying g,; and ¢’ (ibid., pp.
125-127).%3

Thus, although Feynman’s and Coleman’s overtly field-theoretic approaches
to gravitation did not edge out the more traditional pedagogical routes, distinct
signs of their particular emphases had indeed entered the emerging mainstream
studies of general relativity and gravitation by the mid-1970s. Between the
endpoints of Bergmann’s 1942 Introduction to the Theory of Relativity and the
1975 Problem Book in Relativity and Gravitation, the language and practice of
general relativity had changed dramatically.

4. Conclusions

If you want to find out anything from the theoretical physicists about the methods
they use, I advise you to stick closely to one principle: don’t listen to their words, fix
your attention on their deeds (Einstein, 1982 [1933], p. 270).

The practice of general relativity changed from what had been geometrical
foundations and approaches in the 1940s, to an incorporation of quantum field
theory techniques by the 1970s.”® This transition is illuminated most clearly by
watching how physicists chose, pedagogically, to derive Einstein’s field equa-
tions for gravitation—either from a non-Euclidean generalisation of Poisson’s

2% The solutions for these problems were quite detailed, occupying pp. 575-584. The Brans-Dicke
theory had first been published in Brans and Dicke (1961).

%% This should not be understood as equating Lagrangian techniques exclusively with elementary
particle physics or quantum field theory; as we saw above, Einstein himself published papers in
which he derived his own field equations from an action principle. However, in the period
1942-1975, those practitioners who pressed their students to learn and to practise the Lagrangian
techniques did so as ficld theorists, usually with a strong particle physics background. Lagrangians,
though in principle a general tool in theoretical physics, became emblematic of a certain kind of
physics practice.
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equation, or from the variation of an action integral.?” For Einstein and
Bergmann, there simply was no gravitational theory separate from the charac-
terisation of geometrically-curved spacetimes; for Feynman, there simply was no
gravitational theory separate from Lagrangians and equations of motion for
dynamical fields (hence his ‘rule of thumb’).

These differing visions of general relativity emerged on many levels at once.
Ontologically, where Einstein and Bergmann described gravitation as the ben-
ding and twisting of an elastic, four-dimensional curved manifold, Feynman and
Coleman lectured instead of the exchange of non-linearly coupled quanta on
a flat spacetime. Calculationally, where Einstein and Bergmann tackled
gravitation as a problem of non-Euclidean geometry requiring the ‘specialized
mathematical apparatus’ of tensor calculus, Feynman and Coleman taught their
students that gravitation was really just one of thirty other fields racing around
the universe, to be studied as any other Lagrangian field theory would be.
Pedagogically, where Einstein and Bergmann led their readers to expand the
geometrical quantities like the metric tensor and the curvature tensor pertur-
batively, Feynman and Coleman drilled their students to derive Euler-Lagrange
equations from foundational Lagrangians and to construct conserved quantities
under gauge-like transformations. Sociologically, where Einstein and Bergmann
struggled to expand the circle of dedicated relativists beyond their ‘six best
friends’, Feynman and Coleman instructed roomfuls of meson theorists to
approach general relativity in their own terms.

In the eyes of at least some more traditionally-trained relativists, the changing
background of physicists engaged in gravitational questions, and their new
means of approaching these questions, signalled an unwelcome intrusion. Roger
Penrose, for one, has recently described the influx of particle physicists into
gravitational studies in terms of a descent of ‘locusts’, who proceeded in ways
‘very foreign to my way of thinking  -very ungeometrical’.*® Penrose’s com-
ments serve to remind us that the transition in the practice of general relativity
did not always entail a smooth cooperation between physicists of different
training. From the examples of changing textbooks and problem sets, then, we
can learn as much about the reconstitution of the community practicing general
relativity as we can about the reconstitution of the theory itself—indeed, we can
even question how distinct ‘general relativity” ever has been from any given
community pursuing its study.

27 As noted in the introduction, the various examples discussed here should not be read as
a unilateral ‘'march of the Lagrangians’ into the domain of general relativity. Some of the most
influential texts, such as Misner, Thorne and Wheeler's 1973 Gravitation, resist such depictions,
cmphasising instead a more thorough-going geometrisation than even the Einstein and Bergmann
examples. Cf. Robert Wald, General Relativity (Chicago: University of Chicago Press, 1984). The
quantum field theoretic turns within the practice of general relativity represented only one of the
most obvious changes in gravitational physics.

28 Interview of Roger Penrose by Alan Lightman. in Lightman and Brawer (1990, pp. 415 434);
quotation on p. 429.
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This study can thus serve to broaden the historiographical sense of the
term ‘community’. Unlike Andrew Warwick’s study of the exceedingly local
Cambridge reactions to Einstein’s spectal relativity, the case we have outlined
above reveals the possibility of continuities in language use and approach to
physical theories beyond narrowly geographical groups of physicists. If we
rightly hesitate to label such textbooks as Bergmann’s Introduction to the Theory
of Relativity as Latourian ‘immutable mobiles’, the books and their methods
were at least stable enough to be carried under one’s arm when moving from one
institution to another.2® Thus, students of John Wheeler’s at Princeton, such as
Kip Thorne, could establish their own ‘centres of calculation’ at Caltech, in turn
training such phuysicists as Bill Press, who would make their way back to the
East Coast, there to train still more students.’® Or, from the more
particle-oriented crew, Sidney Coleman could venture from Feynman’s Caltech
to Harvard’s Lyman Laboratory, and there continue to teach graduate students
in their shared field-theory way.

The story of general relativity in the middle decades of this century, then,
highlights several issues for the historian’s study of physical theories. ‘General
relativity’ became a playing field upon which many different physicists, speaking
different kinds of mathematical languages, could renegotiate what it meant to do
gravitational physics. These negotiations, at times friendly and at times agonis-
tic, were carried out in the lecture hall and by means of the problem set. The
crafting of a field-theoretic general relativity, and the training of graduate
students to learn and to practise this new set of calculations and techniques,
bespoke the reconstitution of general relativity between 1942 and 1975.
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