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Post-inflation reheating in an expanding universe 
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An analytic means of studying the resonant decay of the inflaton field is developed for the case of 
background expansion H # 0. It is shown that the parametric resonance in the in0aton’s decay need 
not disappear when the expansion of the universe is taken into account, although the total number 
of particles produced is fewer than that in the H Y 0 case. 

PACS number(s): 98.6O.Cq 
I. INTRODUCTION 

Soon after the tist models of inflation were published 
in 1981 and 1982 [l, 21, several papers were written to 
study how the universe would reheat following the su- 
percooled in&tionary state [3]. The process appeared to 
be straightforward: in models such as new inflation (and 
chaotic inilation [4]), which incorporate a second order 
phase transition to end inflation, the in&ton field would 
wind up oscillating around the minimum of its potential 
near the end of inilation. These oscillations would pro- 
duce a sea of relativistic particles, if one added (by hand) 
interaction terms between the inflaton and these lighter 
species. The decay rates l?+,x,~ could then be calcu- 
lated, where 4 is the (decaying) inflaton field, x is some 
light boson field, and II, is some light fermion field. From 
these decay rates, the energy density (pp) of the produced 
particles could be calculated, and related to the final re- 
heat temperature (Tr,,): pp N ?r2Nti T&/30, where Ne 
counts the effective number of massless spin degrees of 
freedom. This method was thought to estimate %I, to 
within an order of magnitude. 

Recently, much attention has been focused on an 
overlooked but dramatic feature of the production-via- 
oscillation model: the in&ton’s oscillations should be un- 
&a& and should exhibit parametric waonance. Certain 
modes X& within small bands e < k should grow ezpponen- 
tially, swamping the production in other modes. This ef- 
fect has been studied by Kofman, Linde, and Starobinsky, 
in [5] for both the broad and narrow resonance regimes, 
and, following different methods, by Shtanov, Traschen, 
and Brandenberger [6] for the narrow resonance regime. 
The importance of “induced amplification” in the in&- 
ton’s decay has been addressed recently with still differ- 
ent methods by Boyanovsky et al. in [7,8]. (See also [9, 
lo]). Earlier work on some of these questions may be 
found in [11,12]. The crucial feature of the new re- 
heating scenario is that the equation of motion for the 
light boson field will not obey the simple harmonic os- 
cillator equation. Instead, for an interaction of the form 
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cc = -$gz@x2, the mode functions of the boson field 
will obey 

where overdots denote derivatives with respect to cos- 
mic time t, a(t) is the scale factor for the (assumed) flat 
Friedmann-Robertson-Walker spacetime, and H q iLla 
is the Hubble parameter. Since the inflaton field [$(t)] is 
rapidly oscillating, for frequencies WI >> H the 3H& 
term may be neglected and a(t) treated ‘as constant. 
Then tbis equation for the boson field mode functions will 
look like the well-known Mathieu equation (see, e.g., [13, 

141) 

~k+W~(l+hcoswrt)X~=O. (2) 

As demonstrated in [5, 6, 111 and treated below, for 
WI = 2wk + e, with d < wk, solutions grow like 
xk(t) o( exp(f&), instead of like xh(t) o( cm(&). 
This means that the number of x bosom produced goes 
like NT 0: exp(Zp+t), so that the decay rate for 4 -+ 2x 
is much larger than originally calculated: r&? >> rx. 
(Note that this parametric resonance is only effective for 
in&ton decay into bosons; the exponential increase in 
fermion modes is forbidden because of Fermi-Dirw statis- 
tics.) Tbis large decay rate increases pp, ultimately giv- 
ing T,Fr >> Trh. 

In this paper, we develop an analytic means of study- 
ing the b&ton’s decay into other particles for the case 
of H # 0. We find that the total number of particles pro- 
duced from the oarametric resonance effect when H # 0 
is fewer than t&t in the H N 0 case, but can still’be 
exponentially greater than that when the resonance is 
neglected altogether. Rather than expansion of the uni- 
verse, then, the true threat to resonant ix&ton decays 
appears to be back reaction of the produced particles on 
the amplitude of the decaying inflaton field. While we do 
not study this back-reaction effect in detail here, sotie 
approximate schemes for including some of its effects are 
discussed in the Appendix. 

We concentrate on the case of the inflaton field 
6 decaying into further in&ton bosom, via the self- 
interaction potential V(4). We restrict attention to the 
small-amplitude, narrow-resonance regime, as the in&a- 
ton field oscillates near the minimum of its potential, 
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similar to that studied in [6]. In. Sec. II, the number 
of particles produced per mode k, Nk, is calculated for 
nonzero expansion, assuming that the decay is not reso- 
nant. Section III presents the calculation of NT when 
the expansimi of the universe is neglected. In Sec. IV we 
calculate NY, taking into account the expansion of the 
universe, and demonstrate that the parametric resonance 
need not vanish. These values of Nk correspond to parti- 
cle production during the narrow-resonance regime of the 
“preheating” epoch discussed in [5,15]. Final reheating 
temperatures can then be calculated, as discussed in [5], 
using the methods developed in [3], where these meth- 
ods should now be applied to the produced particles of 
the preheating epoch; this will not be included here. For 
more on the question of thermalization and the final re- 
heat temperature, see [8]. Concluding remarks follow in 
Sec. v. 

II. NONRESONANT INFLATON DECAY 
IN AN EXPANDING BACKGROUND 

We will study a very simple model of inflation: chaotic 
inflation with the potential V(4) 7 $,I@. We will as- 
sume that the metric may be written in the form of a 
flat Eriedmann-Robertson-Walker line element, ds2 = 
gPvdx’dxy = -dt2 + a’(t)dF?. Then, given the La- 
grangian density 

cc&y 
[ 
&R - ;4; ,.Q’ - V(4)] > (3) 

‘the equations:of motion take the familiar form 

iT2=+++q, 

. 1 dV 
4+3H4-$7=4+G=0. (4) 

Next we decompose the inflaton field into the sum of 
a classical background field and a quantum fluctuation: 
4(&t) = p(t) + 64(&t). (We will neglect the metric 
fluctuations which couple to these inflaton fluctuations 
for the present analysis; for more on these metric fluctua- 
tions, see, e.g., [16,17].) In order to study the production 
of +4 particles when the inflaton field is oscillating near 
the minimum of its potential, we will need to calculate 
mode solutions for the quantum fluctuations S$ before 
and after the phase transition, matching the solutions by 
means of a Bogolyubov transformation. 

We will first concentrate on the modes for the fluctua- 
tions near the end of the inflationary period. In terms of 
conformal time, dq = a-‘dt, the fluctuations are gum- 
tized as follows: 

@(4 = J & 
[ 

&&(7j) i,- P 

+&b;(q) 8; e--ig.2‘ 1 ( (5) 
where carets denote quantum operators, and the creation 
and annihilation operators obey the canonical commuta- 
tion relations 

[a,,“~=[“~,“;]=O, 

[kc, ~$1 = @(k’- 4 , with 6~10 >= 0. (6) 

EYoom Eq. (4), and denoting d/d7 by a prime, the equa- 
tion of motion for the mode functions 6&(l)) becomes 

S& + 2$: + (k” +3X@) &bk = 0. (7) 

Next we introduce a “conformal field,” ?J z a&$, whose 
mode functions obey the equation of motion 

Near the end of inflation, the scale factor a(t) will not 
in general retain its de Sitter (exponential) form. In- 
stead, we may write a(t) cx tP, with l/2 5 p < co, 
where p = l/2 corresponds to the radiation-dominated 
epoch, and p + co recovers the de Sitter epoch. This 
scale factor corresponds to a conformal-time scale factor 
of a(v) 0: T@(~-P). Because we are ignoring the para- 
metric resonance from the classical q-field’s oscillations 
in this section, we may’simply amme that near the min- 
imum of its potential, ‘p2 < k’. If we lastly define a new 
field x t 1)-‘/‘$, and define a new variable z e kV, then 
Eq. (8) becomes 

d=xk 
~+~~+(l-~[~I:~:])XhNO. (9) 

This is now in the form of Bessel’s equation. Mode func- 
tions for the original field &j may then be written in 
terms of Hake1 functions: 

~4k(??) = $ [Ad+‘(h) + Bd@(kd] > 

3p - 1 
y=2@--1). (10) 

We asmme that during in&ion, the in&ton field is in 
its vacuum state (see Sec. 5.2 of [19] for further discus- 
sion of tbis point). The coefficients Al, and Bk thus may 
be fixed by choosing an appropriate quantum vacuum 
state The Bunch-Davies, 01 “adiabatic,” vacuum re- 
quires that the flucttiations &(v) behave as Minkowski- 
spacetime mode functions far inside the horizon, that is, 
+k + (2k)-‘/2exp(--ikl)) for kq >> 1 [17,18,20]. From 
the asymptotic properties of the Hake1 functions, this 
gives 

+=o, Bk=~exp[-i;(u+;)]. (11) 

For the problem of (nonresonant) reheating, we will be 
interested in the opposite asymptotic limit: kq <( 1, cm- 
responding to long-wavelength modes. In tbis limit, the 
fluctuations @k(q) take the form 



1778 DAVID I. KAISER 53 
02) 

In order to calculate the number (Nk) of 4 particles 
produced per mode k, we match this solution to long- 
wavelength mode solutions following the phase transition 
into the radiation-dominated era. 

To do tbis, we make use of a Bogolyubov transforma- 
tion (see, e.g., [U]). For long-wavelength modes, we may 
approximate the phase transition as instantaneous, oc- 
curring at some time 7, [21]: 

q < ‘I. : a(q) = (aoq)p’(‘-p), 

11>1)*:4ll)=C(l)--il), (13) 

where 15 = Q-(&.)-~. It is convenient to set ~(9.) = 1, 
which sets q* = a,‘, and thus ?j = 0 and C = ao. (Note 
that in the limit p + 03, the reference scale a, becomes 
-Ho, where H, is the Hubble constant of the de Sitter 
spacetime.) Next we perform a Bogolyubov transforma- 
tion to match the long-wavelength mode solutions in the 
radiation-dominated era: 

d4h7fl>v*)= l -Jz$ [CQe-ik’) + .e+y (14) 

The Bogolyubov coefficients a& and flk may be deter- 
mined by requiring that both $J& and @! be conti&ous 

at 17 = Q. Then, using Nk = /@&1’, this gives 

(15) 

Equation (15) is the main result of this section, and it 
can now be compared with the Casey in which the effects 
of the inflaton’s parametric resonance are included. 

III. PARTICLE CREATION FROM 
PARAMETRIC RESONANCE, 

WITHHctO 

We return to Eq. (8) for the fluctuations&(q). Rather 
than neglect the 3X9p2(~)a2(~) term in this section, how- 
ever, we study the effects of this term as the ir&ton 
field ‘p oscillates near the minimum of its potential. If 
the frequency of these oscillations is large enough, then 
we may expand the fields (o(o) and ~‘(7) in conformal- 
time harmonics, analogous to the cosmic-time harmonic 
decomposition adopted in [6]. Keeping the lowest term, 
we may write 

where 7 is a slowly decreasing amplitude. This 
qua&periodic approximation for @(q) may be compared 
with the numerical results (for Minkowski spacetime) cal- 

culated in [i’]. For tbis section, we will assume that (p” N 
constant. (As emphasized in [5,8], the chief contributor 

to the decrease of 2 over time is the back reaction from 
the created particles, and will be further discussed in the 
Appendix.) Substituting this ansatz into Eq. (8) yields 
Note that by working in terms of conformal time and the 
“co&rmaI field” $, the frequency wk equals the (con- 
stant) comoving wave number k, and does not redshift 
with increasing a(q). All of the effects of expansion are 
included in the explicit factors of a(q) and a”(v). When 
expansion is neglected ( i.e., when we set a = l), Eq. (17) 
reduces to the Mathieu equation, the solutions of which 
are exponentially unstable when g < 1 and 7 = 2wk + 6, 
with E < wk. To see this, we may proceed as follows. 
Our treatment follows the methods outlined in [14], and 
substantially reproduces the results from the alternative 
approach adopted in [S]. 

We introduce the trial solution 

(19) 
Here we have introduced the “scaling” function f(a) to 
absorb effects from the expansion of the universe. We as- 
sume that the coefficients c(q) and d(q) are slowly varying 
with time, as compared with the frequency 7/2, although 
we make no such assumptions about the behavior of f(a). 
Then it is self-consistent to put c’, d’ = O(c), and to ne- 
glect higher derivatives. In general, resonant solutions 
can be found for frequencies n-(/2 N wk, but each inte- 
ger n 2 1 corresponds to keeping terms of O(gn) in the 
perturbation expansion [14]. Since we are only going to 
keep terms to O(g), we may make the approximations 

COS(7V/2) 47~) = 4 COs(7?1/2) + + cos(37q/2) 

= 4 C~S(777/2), (20) 

sin(7q/2) cos(7~) = -+ siu(77/2) + a sin(3yq/2) 

- -i sin(yv/2). - 

Then the equation of motion (17) applied to the trial 
solution of Eq. (19), yields 

W&I) sin(-m/2) +43(q) d-~r1/2) + 0 (e”, 9’) = 0, 

(21) 

with the coefficients A and B given by 

A = -2c’f - cf’ + ; (2d’f’ + df”) 

-df ;gw&W$$ 

For Eq. (21) to be satisfied, we require that both of 
the coefficients (A, B) of the trigonometric terms vanish 
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identically. This gives a pair of coupled differential equa- 
tions involving the coefficients c(q), d(v), and f(a). 

For the remainder of tbis section we will neglect all 
expansion of the universe, and set f(a) = a = 1. Then, 
if we set c(q) = Cexp(sq) and d(v) = Dexp(sl)), Eqs. 
(21) and (22) yield 

sc + +(;gwk + a)D = 0, 

SD+ ;(+gwk -c)C=O. (23) 

These equations may be solved with 

s=i$ (24) 

Thus there exists a growing solution and a decaying so- 
lution: 

(25) 

This normalization was chosen, following [ll], so that 
?,q’$b; -I&‘+: = -1. 

From Eqs. (24) and (25), it is clear that the solu- 
tions l()k will be exponentially unstable whenever s is real. 
Thus, the parametric resonance will occur only within a 
small frequency band: 

ICI < &7Wk. (26) 

It will be convenient to introduce the variable e as 

(27) 

so that resonance occurs when -1 < ! < 1. In terms of 
e, s and yk may be rewritten 

Note that yk + 1 as e + 0, near the center of the res- 
onance band. We further introduce the function S*(q) 
as 

S+(v) = mK COS(YJ/~) 7 sin(7d% (2% 

so that near the center of the resonance band, as e + 0, 

MdI -+ 1 F W7d, (30) 

or, averaging over a few oscillations near e N 0, 

W+h)l”) + 1. (31) 

Near the center of the resonance band, then, the solutions 
1/1:(q) become 
where the irrelevant phase from the S* term has been 
dropped. 

We can now make use of a Bogolyubov transformation 
to solve for the number of particles per mode, NY, pro- 
duced by the decaying in&ton field during its resonant 
oscillations. In Sec. II, we made the approximation of 
an instantaneous phase transition at some time II*, which 
can only be appropriate for long-wavelength modes. In 
the present case, however, the resonant modes cannot 
have arbitrarily long wavelengths: from Eqs. (18) and 
(26), we require k 2 21cl/g. Instead, use may be made 
of the more elaborate time-dependent Bogolyubov trans- 
formation developed in Appendix B of [6], the results of 
which are 

Nk = IP.8 = & sinh2 (3~). (33) 

As explained in [6], when s is not exactly constant in 
time, but changes adiabatically (such that Is’1 < s’), 
then tbis equation for & may be modified to 

(34) 

where the integral extends over the resonance band [Eq. 
(26)]. Following [6], the (divergent) coefficient (1 -e2)-’ 
has been dropped, because near Itl N 1, the exponent s 
no longer’changes adiabatically. 

Equation (34), with s given by Eq. (24), is the main 
result of this section. Clearly, if Jsdq is large enough 
within the resonance band, then the number of particles 
produced will be exponentially greater than the number 
produced from the nonresonant decay studied in Sec. II, 
given by Eq. (15). There is an important difference, 
however, between our result for Nk in Eq. (34) and the 
corresponding expression in [6]. The analysis in [6] was 
carried out in terms of cosmic time t and the fluctua- 
tions 6&; the equations of motion thus resemble Eqs. 
(1) and (2) above, with wk N k/a, and with the assump- 
tion wk > H. As studied in IS], then, the resonant modes 
exit the resonance band due both to the redshift of the 
physical wave numbers k/a, as well as to the back reac- 
tion from produced particles. This is to be contrasted 
with the foregoing analysis: In our case, by working in 
terms of conformal time and the “conformal field” l/)k, 
the only time dependence of the exponent s comes from 
the slow time dependence of the decaying amplitude p”. 
That is, in our case, it is g which is slowly changing with 
time, and not wk; and it is this change of g which causes 
nrious modes &’ to slide outside of the resonance band. 
The time dependence of g is further addressed in the Ap 
pendix. Meanwhile, we will assume for the remainder of 
this paper that F(q), and hence g(q) and s(q), may be 
treated as slowly varying with time. With this assump- 
tion, we may now study what happens to the resonant 
modes when the expansion of the universe is included. 

IV. RESONANT INFLATON DECAY IN 
AN EXPANDING BACKGROUND 

We return to the full equation of motion for the fluctu- 
ations $k, Eq. (17), with wk and g as defined in Eq. (18). 
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We introduce the same trial solution, Eq. (19), and keep 
terms to O(e, g). Tbis leads to Eq. (21), with the full 
coefficients A(Q) and B(q) given by Eq. (22). We saw in 
Sec. III that a consistent resonant solution may be found 
when j(a) and a are both set equal to unity. In this sec- 
tion, we keep these terms explicit and general, and show 
that consistent resonant solutions may be found when 
the expansion of the universe is included: 

We split the coefficients A and B into twe terms each: 
A = A1 + AZ, and B = BI + Bz, with 

A1 = -2c’j - dj($gwk + E), 

B,=2d’j+cj(;gwk-e), 

(35) 

In order for Eq. (21) to be satisfied, we again require 
that the coefficients vanish: A = B = 0. Because we 
are interested in resonant behavior, we will further look 
for solutions when we set each of the terms Al, AZ, BI, 
and Bz separately equal to zero. Then the coefficients 
A1 and BI reduce to the same pair of linear differential 
equations as in Eq. (23), which may be solved with the 
same yk and s as given in Eq. (24). The task now is to 
use the equations 

-d ;gw+I)+;$ 
( > 

=o, 

d(s) (2+;)+$[zc’(;)+C($)] 

> 
= 0, (36) 

to find a solution for the expansion factor, j[a(~)]., 
The first step is to notice that several terms in Eq. 

(36) may be combined: 

[2d’(;)+d($)]=&$(&‘), (37) 

and similarly for the corresponding cf term in the second 
line of Eq. (36). Then, because the coefficients c(q) and 
d(q) are determined by Eq. (23), the two equations in 
(36) may be combined to give 
= a+- [ 
a” 1 (YE - 1) 

2 (y; + 1) P4 P - adI 
I 
e2”“f(o) 

= a(p)1)-2 
1 + ;se4 [l - &d]] ezaqf(?l) 

5 E2(7))2’~ j(q). (38) 

In the second line, ye have used the definitions of mK in 
Eq. (24) and tJ in Eq. (27), and have introduced the 
coefficient a(p). For a cosmic-time scale factor a(t) o( 
tp, or, equivalently, a conformal-time scale factor a(q) = 
(a,,q)P/@-P), the coefficient a(p) is defined as 

a” -zz 
a 

P(2P - 1) q-2 ~ a(p) q-2 

CP - v 
(39) 

Note that a(p) 2 0 for p 2 l/2, and that for de Sitter 
expansion, a(c0) = 2. 

From Eq. (38), we may write the second-order differ- 
ential equation for j: 

j” + 2s j’ - P(q) f = 0. (46) 

If we now use the fact that s = O(g, e), and that g K 1, 
then we may approximate1 E2(q) N a(p) T-~, and 

j” - a(p) pj N 0. (41) 

This equation may be solved with the ansatz j(q) = 
p + 3, with 

kL1,2=+&T@+ (42) 

The two possible solutions for p, labeled by subscript 1 
and 2, correspond to the choice of f in Eq. (42); the 
choice of whether ~1 or ~2 is appropriate will be deter- 
mined below. With this solution for j(q), the resonant 
solutions & may be written: 

+:(q) = f(v) exdfvl S*($ 
%I% ) (43) 

with S+(q) given by Eq. (29). 
We may now choose the appropriate exponent p1,z 

for the function j by matching the q dependence of this 
resonant solutmn for $2 with the nonresonant solutions 
found in Sec. II. For fixed q, the (nonresonant) long- 
wavelength solutions behave as [see Eqs. (10) and (12)] 

qjk”’ o( */(l-P). (44) 

In the resonant case considered in this section, $: cx f cx 
T+~. From the definition of a(p) in Eq. (39), the two 
exponents may be written 

1 - 2p P 
fh=.l-p, fb=l-p. (45) 

‘This approximation for E*(q) is further ju&tified far from 
the edge of the resonance band, when Ill < 1. Also, we may 
assume, as in Sec. II, that the phase transition occurs near 
a(+) = 1. 
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Thus the appropriate exponent for the resonant case is 
~2. Note that f(q) has the same 7 dependence as the 
conformal-time scale factor, a(q). Because we require 
that f[a(v)] = 1 when a(l)) = 1, we may fix the normal- 
ization of f as f = a(~) = (a,~)“. In addition, given 
that a(p) 2 0 for p 2 l/Z, we will write this exponent as 

PZ = - I!.&1 = -; pm&) - 11 1 (46) 

and thus f = (a,r$l”+ 
With the “scaling” function f now determined, the full 

resonant solutions in an expanding background may be 
written 

g*(q) = exp [*wd S*(q) k t/TE ’ 
with the exponent z*(q) defined by 

z*(q) z is - !!fd h&l)). 
II 

(43) 

The s term is given by Eq. (24). As in the Sec. III, 
resonance occurs when 2161 < gwk. With the fluctuations 
q@(v) now in the form of Eq. (47), we may again use the 
result of Appendii B of [S], and solve for the number of 
$I particles produced per mode k: 

Nk N sinb’ 
(J 

z+(d dr, 
> 

(49) 
res. band 

From the form of fiz in Eq. (46), it is clear that the ex- 
pansion of the universe decreases the exponential produc- 
tion: J” r+dv over the resonance band is less than J sdq, 
corresponding to the nonexpanding case of Sec. III. Nev- 
ertheless, it is possible analytically to find self-consistent 
resonant solutions for the fluctuations @ when the ex- 
pansion of the universe is included. 

V. CONCLUSION 

We have demonstrated that the resonance effects stud- 
ied in [5-71 can indeed have dramatic consequences for 
post-inflationary reheating. In particular, it has been 
shown that solutions for the number of particles pro- 
duced &om the resonant decay of the inflaton field may be 
found given a general background expansion, a(t) o( tp. 
Although the total number of particles produced in this 
expanding case, Nk in Eq. (49), is less than the corre- 
sponding expression when H N 0 [Eq. 341, there still 
remain regions of parameter space for which this reso- 
nant production far outweighs the nonresonant produc- 
tion described in Sec. II. The potential trouble for the 
new resonant reheating scenario is therefore not expan- 
sion of the universe, but rather the decaying amplitude 
of the classical v, field. Tbis question is discussed further 
below, in the Appendix. 

As pointed out in [5], the case of in&ton decay into 
further inflatons (as studied above) may be of interest for 
dark matter searches. Following their production, the in- 
flatons would decouple from the rest of matter. If the in- 
flatons were given a tiny mass (which has been neglected 
here), then these bosom could serve as a natural candi- 
date for the missing dark matter. Furthermore, much of 
the formalism developed in this paper may be taken over, 
unchanged, for studying the case of in&ton decay into 
some distinct light species of boson, as studied in [5,6]. 
In such decays, it is again expected that the parametric 
resonance would survive a nonzero expansion of the uni- 
verse. The difference for these decays would reside solely 
in the form of T(q). 

The foregoing analysis for the simple model of a 
minimally-coupled scalar field 4 with an Einstein-Hilbert 
gravitational action can also be applied directly to many 
classes of Generalized Einstein Theory intlationary mod- 
els, such as those studied in [22]. For these models, the 
conformal-transformation factor Q(s) + 1 as the i&l&on 
field reaches the minimum of its potential. During the 4 
field’s oscillatory phase, the nonminimal @R coupling 
takes the form of the standard (lG?rG)-‘R gravitational 
action of a minimally-coupled theory. Near the epoch of 
reheating, then, the effective Lagrangian takes the form 
of Eq. (3), from which the reheating analysis may pro- 
ceed as above. It would be interesting to calculate Nk 
for the new models of open inllation [23], following the 
methods developed above, which might display qualita- 
tively different reheating scenarios. This is the subject 
of further study. 
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APPENDIX 

It is important to understand how rp”, and hence g and 
8, changes with time. A proper treatment would be to 
extend the Minkowski-spacetime approach adopted in [7, 
81, and to work out the thermal Green’s functions for the 
decaying inflaton field for the general background expan- 
sion considered here. (See also [24].) As a first approx- 
imation, we may posit the reasonable phenomenological 
ansatz, which may be compared with Fig. 1 in [7]: 

where 7 is some damping time scale, most likely to be 
determined from numerical integration. In other words, 
we will assume here that the frequency of the cos(yq) os- 
cillations may be treated as nearly constant, while the 
amplitude of the oscillations decreases. From Fig. 1 
in [7], it is clear that we may assume that 7-l < wk. 
If we then write g(q) = goexp(+/7), and keep terms 
to fist order in go, (e/w&), and (~-l/~k), we may repeat 
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the above analysis in Eqs. (17)-(25). We will restrict our 
attention to the nonexpanding case, since the expanding 
case examined in Sec. IV reveals the same dependence 

of Nk on g(v). 
We introduce the trial solution 

d&(v) = c(q)e-q’rcos(7~/2) + d(~)e-n’Tsin(~~/2). 

C-42) 

Again taking c’, d’ = O(e) leads to the coupled differen- 
tial equations 

-2~’ + 2cr-’ - de - ;dggw&‘fT = 0, 

2d’ - 2dr-1 - CE f ;cg,q-” fr = 0. 643) 

These equations may be solved approximately by writing 
c(1)) = C exp[Qq] and d(q) = D exp[0~], with 

With these solutions, the growing and decaying mode 
functions take the form 

$:(9) = expl*+J) ‘II m IYdd c479l2) 7 W79/2)]. 

(A51 

These solutions have the benefit over the corresponding 
solutions in Eq. (25) of ending the resonance in a natu- 
ral way: unlike the solutions from Sec. III, these mode 
functions do not continue to grow exponentially forever. 
Now the resonance band is explicitly time dependent: 

In addition, the slight time dependence of Y&(V) and s(q) 
still allows these mode functions to be normalized as: 
?It:?b, -ti;‘+: = -1f 0 (7-1/w&J. 

With this simple ansatz for the decaying in&ton field 
amplitude, the exponent s(q) changes in time as 

In analogy with the situation in Sec. III, we have defined 
the variable e(q) = (2c)/[g(q)wk]. In order to satisfy the 
adiabaticity requirement for s(q) (away from the edges of 
the resonance band), we must require 7-l < gawk. Note 
that this is more stringent than the original assumption, 
7-l < wk. If this new constraint may be satisfied, then 
the number of 4 particles produced may be calculated 
from 
J yes, band +I) dv = 7E J +yi? __ 
2 -1 es 

1 
t=+1

-~ - arcsin (e) 

k-1 
7rTE 

2 (A8) 

This gives Nk N sinh’(J sdq) = sinh’(nTe/2). Given the 
constraints on both 7 and E, we find Nk > 1. 

As emphasized in [5,8], the decay of the amplitude of 
the Maton might instead take the form of a power law 
in time, rather than the exponential form adopted in Eq. 
(Al). If we write 

with b > 0 a real constant, and thus 

0 

4 
s(n) = % ; 

b 
, e(q) = & ; ) 

0 
(~‘10) 0 0 

then we may again repeat the steps in Eqs. (17)-(25). 
The solutions mK and s again take the form 

(All) 

and the growing and decaying mode functions again take 
the form of Eq. (A5), with mK and s now given by Eq. 
(All). Now the exponent s(q) changes in time as 

L4W 

In order to satisfy the adiabaticity condition, we therefore 
require b < gO. Then the number of $ particles produced 
may be calculated from 

where L, = e(vO). From Eq. (AIO), we see that &, < 

e max = 1, so that given 0 < b < g0 K 1, t?O1’* B 1. This 

yields Nk - sinhz[u&“*/(2b)] >> 1. 
These two different forms for the decay of the inflaton 

field because of back reaction from produced particles, 
the exponential decay of Eq. (Al), and the power-law 
decay of Eq. (Ag), both allow a large production of par- 
ticles from the in&ton’s decay, so long as the adiabatic- 
ity requirement on s(v) may be met. It is clear, however, 
that a more extended treatment of the effects of back re- 
action on the decaying amplitude F(q) is required, and 
is the subject of further study. 
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