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Preheating in an expanding universe: Analytic results for the massless case
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Analytic results are presented for preheating in both flat and open models of chaotic inflation, for the case of
massless inflaton decay into further inflaton quanta. It is demonstrated that preheating in both these cases
closely resembles that in Minkowski spacetime. Furthermore, quantitative differences between preheating in
spatially flat and open models of inflation remain of order 4@or the chaotic inflation initial conditions
considered herd S0556-282(197)01314-3

PACS numbegps): 98.80.Cq, 04.62:v

I. INTRODUCTION ing fields reveal only one single resonance ban#.in
In this paper, we extend this analytical study to the case of
Recently, a new view of the post-inflationary reheatinginflaton decay into inflaton bosons in an expanding
period has been establishétl,2]. In place of the original Friedmann-Robertson-Walker spacetime. For a quartic inter-
view, in which the inflaton decayed perturbativdly], an  action potential and masslesénflaton, the time evolution of
inherently nonperturbative, highly efficient resonance haghe entire system(zero mode, quantum fluctuations, and
been investigated. The new theory of reheating now involvebackground spacetimean be studied consistently with ana-
three distinct stages: an oscillating inflaton sets up a paramelytical methods. Because in this case the observed spectrum
ric resonance in its decay to some boson species; this explof cosmic microwave background anisotropies places strict
sive stage has been termed “preheatind]. (See als§2,4— limits on the self-coupling\~10"'%, we may study this
14].) Next, these far-from-equilibrium decay products nonperturbative, nonequilibrium system by means of analytic
themselves interact and decay, as can be studied along thgproximations to the full, nonlinear equations of motion. In
methods in[3]. And finally, the decay products thermalize, [9], the largeN approximation is employed to study preheat-
completing the reheating process. Such explosive preheatirigg analytically in Minkowski spacetime. Here, we rely on a
can radically change the thermal history of the universe folHartree factorization to study preheating in an expanding
lowing inflation; some nonstandard effects associated witlspacetime. As demonstrated explicitly[it9], these two ap-
the new preheating picture include the possibility for non-proximation schemes are closely related, and in the case of
thermal symmetry restoratiofil5], grand unified theory preheating amount only to the substitutian-3\ in the
(GUT) scale baryogenesifl6], and the amplification of equation of motion for the fluctuating fielSee alsd20].)
gravitational radiation following the preheating peridd]. Numerical results have indicated that the Hartree approxima-
Because preheating is a nonlinear, nonequilibrium protion can break down for quantitative results far from the
cess, particle production in most specific models must b&veak-coupling rangéthat is, for inflaton decay into a dis-
analyzed numerically, and several results have been reporteict species of boson, with coupling constagi®\) [7].
for both Minkowski and spatially flat expanding spacetimesHowever, for the case studied here, of inflaton decay into
[4,7,9,10,18 Much of the analytical literature to date has other inflaton quanta, the Hartree approximation should re-
treated the expanding background case by means of two apaain quantitatively reliable. With this analytical framework,
proximations:(1) that the oscillating zero mode of the infla- it is also easy to understand numerical res[ift4 8] which
ton oscillates as a cosine functiopgecosfnt), with m the  indicate thatno parametric resonance can occur for a mas-
mass of the inflaton, an(®) that the expansion may be ne- sive inflaton in expanding spacetime, if its only decay chan-
glected for frequencies>H, whereH is the Hubble param- nel is into inflaton quanta.
eter. When these approximations are made, the equation of We present analytic results for preheating for both ordi-
motion for the quantum fluctuatiofassociated with particle nary chaotic inflation and for chaotic inflation within a model
production) can be cast in the form of a Mathieu equation. of open inflation[21]. The growth of the back reaction from
Solutions of the Mathieu equation generically exhibit an in-the created quanta on the oscillating zero mode is calculated,
finite hierarchy of resonance bands; for wave numbers as well as the maximum number of quanta produced during
within these resonance bands, the solutions grow exponempreheating. As discussed below, for preheating of a massless
tially in time, driving the explosive, resonant particle produc-inflaton into massless inflaton quanta, the Ricci curvature
tion. As discussed in[9], however, in the context of scalar vanishes during preheating. Thus, the preheating dy-
Minkowski spacetime, the first of these approximations camamics for this model in an expanding spacetime remain
lead to large quantitative errors when a quartic self-couplingonformally equivalent to the Minkowski spacetime case; it
exists for the inflaton. In these cases, the zero mode evolvds not surprising, therefore, that the results presented here
as an elliptic function in time, and solutions for the fluctuat- share the same form as many of the Minkowski results stud-
ied in [9]. The change from largh+ to Hartree methods,
however, does change some of the details of the quantitative
*Electronic address: dkaiser@fas.harvard.edu analysis. Also, as demonstrated below, the spectrum of pro-
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duced quanta in the open inflation scenario takes the samee see that the potential of E¢L) contains a coupling be-
form as that for quanta produced in an expanding, spatiallyween ¢ and 8¢. It is this coupling which, under certain
flat model; for chaotic inflation initial conditions, there are conditions, will allow for a highly efficient transfer of energy
only very small numerical deviations between the two situafrom the “classical” to the fluctuating portions of the infla-
tions. ton field; this transfer of energy is manifested as a rapid
In Sec. Il, we present the specific model to be analyzegroduction of out-of-equilibrium inflaton quanta. Because
here, discuss the approximation scheme to track the quantuthe self-coupling strength is constrained to be very weak
back reaction, and choose an appropriate initial vacuum stafer this model § ~10 9, based on the observed anisotro-
with reference to which we can measure the resonant particlgies in the cosmic microwave background radiation, we may
production. Section Il includes analysis of the backgroundemploy the Hartree factorization to study the nonequilibrium
spacetime dynamics during the preheating phase. In Sec. I\dynamics of these coupled systefi®2]. This factorization
we solve consistently for both the oscillating zero mode ofamounts to making a particular choice of vacuum state
the inflaton field and the coupled quantum fluctuations, fordiscussed beloyy and making the substitutions
both the flat and open universe cases. In Sec. V, we compare
numerically the preheating spectra for flat and open inflation,

3 2
and provide further consistency checks on some of the ap- (6¢)"—3((84)°)(5¢),

proximations made throughout the analysis. Concluding re-

marks follow in Sec. VI. (8¢)*—6((84))(8¢)>—3((54%))?, (6)

II. DYNAMICS OF THE MODEL where quantities in angular brackets indicate expectation val-

We only consider the case of inflaton decay into inflatonues of the associated quantum operaftosbe defined ex-
bosons, due to a nonlinear self-coupling. The Lagrangiari(i’“cnly below); the tadpole condition further requires

density thus may be written (6¢))=0. _ _ _
In an open universe, there exists a physical curvature

1 1 length scalea(t)/|K|, with K=—1. The corresponding co-
£=v-g RR_EQ’L Iudd,d=V()|, moving curvature scale is thus simplyl. As usual, scalar
fields may be expanded in eigenfunctions of the comoving
1 A Laplacian. Writing V2fp(x) = — P2fp(x), then in an open
V(¢)=§m2¢2+ Z¢4- (1) universe, modes with eigenvaluB>>=1 vary on scales
shorter than the comoving curvature scale, and hence may be

We will consider the case of an additional nonminimal cou-labeled “subcurvature” modes, whereas modes with

2 1 7]
pling between the inflaton arf(t), the Ricci curvature sca- 0=P°<1 correspond to “supercurvature” mod¢as,24.
lar, in Sec. IIl. The line element for a general Friedmann-AS first noted in25], and as demonstrated below in Sec. V,

Robertson-WalkefFRW) spacetime may be written preheating in an open universe wilhly populate subcurva-
ture modes for potentials of the form in E€l). For this
ds2= —dt2+a2(t)hijdx‘dxj, (2)  reason, we may expand the fluctuating fiéld as follows:
with
. 5t,x=fd“k5-tz-x, 7
hijdXIdXJdez (K=0) (1,%) w (k) ¢k]m( ) kJm( ) (7)

=dr2+sintfr(d6?+sirfed¢?) (K=-1 : : .
dri+sinfrr(d6=+simed4®) - ( ) @ where the eigenfunctions of the Laplacian obey

andK=0 for a flat universeK=—1 for an open universe.

[l\_laturally, the an_gular coordinatg _should_not be confu_sed VZZk,-m(x)z —(k2— K) Zyjm(X). (8)

with the inflaton field¢(t,x).] In this metric, the equations

of motion follow: i ) )
Here k is the comovingsubcurvaturewave number, with

, K 7G[1., 0<k?<; it is related to the eigenvalu®? above by
Ho 2= —3 (3¢ tV(9)|, k?=P?+K, and only applies foP?=1. The measure for the
wave number integral if23,24,24

; 1, o dv
$+3H— 5V ¢+ 45 =0, (4)

fdﬁ(k)zf:dkkz (K=0)

whereH=a/a is the Hubble paramete¥,? is the comoving .
Laplacian operator, and dots represent derivatives with re- B f wdkz i
spect to cosmic timet, -

Making the familiar decomposition between the “classi-
cal” and fluctuating portions of the inflaton field,

, - (K=-1). C)
0 j=0 m=—j

With these definitions, the eigenfunctions of the Laplacian
d(t,X) = @(t) + 5¢(t,x), (5  may be written
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_ - —3/2aik-x - o
Zijm(X) = (2m) "2 (K=0), (5% = L%k;mcbk(t)lz, (12

ijm(r,0,¢): \/;51_10 (SZ+ k2)*1/2ij(0’¢)

where translational invariance alloW$¢?) to depend only
on time; we will therefore write this quantity a®¢3(t)).

_ j+1
; j el Defining the constant
X (sinhr) (sinh dr) cogkr) )
C?=(3¢%(to)), (13
(K=-1), (10
where ty is the beginning of the preheating epoch, and
with Y;(6, ) the usual spherical harmonif24,26,27. switching to conformal timegd »=a~dt, we may introduce

To study particle production during the preheating epochthe dimensionless variables

we may now promote the field¢ to a Heisenberg operator:
=Cnp, /=KkIC, M=m/C,

Bb(t.x)= f dia(K)[ Sbi(t) ayjmZim(X) C win) 1 A7)
A (P(t)zﬁﬁ' 5¢k(t):7c a(r)
0 (DanZiim()], (11
(1) =[{x*(7) = (x*(70))]. (14

with ayj andaf;, the canonical time-independent annihila-
tion and creation operators, respectively. These are definephen (542(t))=C?a=2(7)(x(7)), and using the factoriza-
with respect to the initial Fock vacuum. With this, the expec-tion of Eq.(6), the equations of motion for the and y fields
tation value(S¢2) becomes, for bottlK =0 andK=—1, may be written

d? 2 2 a’ 2 2
d_7'2+a ()M —E-I—(ﬂ (7)+3Na“(19) +3NX(7) |¢(7)=0,

”

d? a
[—Tz+/2—ic+ aZ(T)M2—§+3¢2(T)+3>\a2( 7o)+ 3N2(7) [x,(7)=0, (15)

d

where primes denote derivatives with respect7oand and, from the Lagrangian density in Ed), the Heisenberg
K=C"2K. It is convenient to define the frequencidé (7) operator for the conjugate field may be written:
andw, (1) as

a ﬁﬁ(t,x)zf du()a(7)Vh(x)
Wi(n)=/2=K+aX(nM?-—,

XA A1) =H(T) x (7]
wH(1)=WE(7)+3¢2(7)+3Na%(10) + 3\ (7). (16) X3, mZm(X)+ H.CJ, (18

The quantity> (1) measures the b_aclg reaction of created,t H(r)=a'la, and “H.c.” denoting a Hermitian conju-
quanta on the evolution of the oscillating zero mog¢7),  gate. Canonical quantization then gives the normalization
a_de(ro)—O. We will study solutlor)s of the coupled equa- -gndition for the mode functiong,(7):
tions of Eq.(15) in Sec. IV, for early times wheRX (7) may
be neglected. We will also determine self-consistently in that
section the time at which the approximatio® (7)—0
breaks down. . o . .~
It remains in this section to derive an expression for thel NiS normalization comes from quantizing the fielits and
particle number operator appropriate for the nonequilibriumll on a Cauchy surface. Yet for models of open inflation, the
dynamics. In terms of the rescaled figidthe quantum fluc-  interior of the nucleated bubble et a Cauchy surface for
tuation operatod¢ may be written the entire de S|t.ter space. It has been_ demonstrated, however,
that for scalar fields expanded only in subcurvature modes,
1 1 quantizingas if the interior of the nucleated bubble were a
_3¢(t’x):f d;(/)_[X/(T)a/ij/jm(X) proper Cauchy surface reproduces exactly the same result as
NG a(7) when the fields are quantized on a proper Cauchy surface and

XX —xox;=i. (19

.y a2t o analytically continued inside the bubB@8|. For this reason,
+x7(T)asimZsim(X) ], (170 we may use the normalization in E€L9) for both the flat
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and open inflation cases. In the context of preheating, this Care must be taken when studying preheating in an ex-
makes sense physically, since we are quantizing these fielggnding universe to choose an appropriate vacuum state with
after the volume of the interior of the bubble has expandedespect to which we can measure particle production. There
by a factor of~(e<55)3 (according to any “observers” on the are two independent concerns: first, preheating is a nonequi-
interior of the bubblg so that all causal properties of these librium process among interacting fields, so defining “par-
fields should be specifiable with reference to the interior ofticle” states is ambiguous even in Minkowski spacetifag
the bubble alone. in addition, we have the usual ambiguity in defining “free
To calculate the particle number per mode, it is conveParticle” states in any non-Minkowskian spacetifi#]. At
nient to write 7— —o (where we take the bubble nucleation to have oc-
curred atr= — ), the spacetime inside the nucleated bubble
. - A is a de Sitter spacetime, so in the absence of interactions, the
5¢(t,X):f du(7) 8¢ /im(t)Z/jm(X), vacuum state for thé¢ field should be the Bunch-Davies
vacuum. If the transition from pure de Sitter expansion to the
R R different rate of expansion at the time of preheating occurs
H(t,x)=j dﬁ(/)l'[/jm(t,x)z/jm(x). (200  adiabatically, then at the onset of preheating themodes
should obey the initial conditiong (7o) =[2W,(75)] *?
and x/(7o)=—i[W,(70)/2]*? in the absence of interac-
tions. These modes would represent the free-particle “adia-
batic” states[26]. Furthermore, if we consider the interac-

For K=0, we may thus write

1. 1 ) . tion strength to be turned on adiabatically beginning some
—5¢/J-m(t)=—[)(/a;+x’;at/-], time beforery, then these initial conditions should be re-
e a(r) placed by

VCTTjm(t, ) =a( ) VA ()~ Hx )3,

1 dx, _ . |e/A7)
(0 —HxDal . (22) X/(To)—mv (F) =—i\V—%—

T=Ty
As pointed out in24] for the K=—1 case, we may use the (22)
purely real representation of thé,(6,#)’s, which makes Equation(22) gives the initial conditions for the “adiabatic”
the eigenfunctionsZ /;,(x) purely real for subcurvature particle states for the nonequilibrium dynamics at the onset
modes. Thus, foK=—1 we also may write expressions as of preheating. We may, therefore, define adiabatic creation
in Eq. (21), but with the arguments of the creation and anni-and annihilation operatos, () anda;,(7) through the
hilation operators changed &y—a,jn andai;—>a}jm. relations

1. 1 1 . -
Tcﬁd)/jm(T)Eﬁm_a/jm(r)em{—if w/(T)dT)-I-a}jm(T)eX[{if a)/(T)dT)

~ H A
JCIT (7, %) = — w/Z(T)a(T)\/h(X) (1—iw(—(TT))) a/jm(r)exp(—if w/(T)dT)+H.c.. 23)
/
|
The &/im(T)A annihilates the time-dependent adiabatic N3 T):<&;jm(7')&/jm(7)>
vacuum statexj,(7)|0(7))=0 for all /,j, andm. These
adiabatic creation and annihilation operators can be related _ /(1) 2 1 / 2| _ E
e - et = Ix A0+ ——x (7] 5 (24
to the time-independent operatas;,, anda,;, by means wy (1)

of a Bogolyubov transformation. As above, we replace the
arguments of these operators as,,—a; and

&/jm—> &T_/» in Eqg. (23) for the K=0 case. Note that these This yields the number of “adiabatic’-state quanta produced
expansions are only valid when the frequeney(r) is  relative to the initial Fock vacuump)=|0(7)). With this
purely real; as demonstrated in Sec. lll, this will always bechoice of vacuum state and initial conditions, the particle
the case for the scenarios considered here. number for inflaton quanta does indeed vanish at the onset of
From the expansions in Eg1) and(23), we may solve preheating. As discussed in Sec. lll, for the models of inter-
for the adiabatic particle number per mode. The result is thest here, the background spacetime will evolve as if it were

same for both th& =0 andK=—1 cases: radiation dominated for the entire period of preheating, so
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that there will be no further Bogolyubov transformations Using the Friedmann equatigsee Eq.(4)], and writing
needed to relate the particle number at the beginning to that(7) = po[a(#n)/as] %%, we may solve for the behavior of

at the end of preheating. the scale factor in terms of conformal timg for both the
With the choice of initial conditions for thg field, Eq. K=0 andK= —1 cases. For a flat universe, the scale factor

(22), the quantityC2=(3¢*(ry)) is formally quadratically ~evolves as
divergent, and would have to be renormalized with some

1/(2g—-1

regularization schemégThis is essentially the zero-point en- a(n)=a 1) 291 9+ 1 (28)
ergy divergence.For here, we will simply note that to re- 0 ' 2’
main consistent, we require the energy density of the “clas-
sical” portion of the inflaton field to exceed that of the and forK=—1,
guantum fluctuation portion at the beginning of preheating;
that is, p?(79) >( 8¢%(70)). This is equivalent to the require- a( ) =agsintf 7 +X|, d= L g# E (29)
ment | 49-2 2

P (1o)>Na(7g), (25) In this case, by definingy=a( 7,), the Friedmann equation

further implies the relatioi3=2/a3. In terms of the dimen-
using the definition ofy(7) in Eq. (14). We will make use of ~Ssionless conformal time:, settingg=1 (for m=0) vyields

this relation below. the very simple result foK=0,1:
n
Ill. EVOLUTION OF THE BACKGROUND SPACETIME a_ =—K. (30)
a

In this section we study the background spacetime dy-

namics during the period of preheating. Up until the timeThis result, valid only form= 0, means that the addition of a
7o, the fluctuations of the field¢ are in their vacuum state, nonminimal coupling between the inflaton and the Ricci cur-
and we need only consider the energy density from theature scalar of the formaéRé? would not affect any of the
“classical” part of the inflaton fieldg. In terms of cosmic  preheating dynamics. To see this, consider the Ricci curva-

timet, this may be written ture scalar in terms of cosmic time,
t)= 2%+ Im?p?+ L a ot 26 .
pcp( )= 3¢ PRLUNCS i \NQ (26) R(t)= a2(t) [aa+a2+ K]. (31)
In terms of dimensionless conformal timeand the rescaled
field ¢, the energy density is, thus, Rewriting this in terms of the dimensionless conformal time
T7
C4 1 4 12 2np2,7,2 ’
P(p(T)Zmzlﬁ Tyt at MYt HY(Hy—247) | 6C% [a”
R(T)Zz——'f‘lc , (32
(27) a (7‘) a

At the onset of preheating, the fiellbegins to oscillatéas  we see from Eq(30) that a consistent solution of the modi-
treated explicitly in Sec. Iy, so that averaging over a period fied Friedmann equation would includR=0 for both

of its oscillations, bothy? and ¢'2 will remain nearly con- K=0 andK=—1 whenm=0. Thus, for the massless case,
stant. For the chaotic inflation scenario we consider herea nonminimal coupling would not affect the preheating dy-
then, when the mas® vanishes, the energy density at the namics.

onset of preheating will be dominated by the* terms. Using Eq.(30), we may further confirm that the frequency
Note that by working in terms of conformal time, we do not w(7) will always remain rea[see Eq.16)], which allows
have to make any assumptions about the magnitude or rate aé to employ the adiabatic creation and annihilation opera-
change of the Hubble parametei(t), as we would if we tors of Eq.(23). In fact, whenm=0, this frequency is the
worked in terms of cosmic time, Instead, we only need to same for both th& =0 andK=—1 cases:

use the chaotic inflation initial conditiong*( 7o)> ¢?(7o).

We will confirm in Sec. V that whem=0, these initial wi(1)=/%+342(1)+3Na%(19) +3\Z(7). (33
conditions ensure that{<< ¢ during preheating.

Thus, whenm=0 (and only theli we may approximate The condition of Eq.25) further allows us to neglect the
the time evolution of the background spacetime as that of @\a?(r,) term relative to the 82 term during preheating.
radiation-dominated FRW metric at the very onset of pre-With these expressions for the evolution of the background
heating.(This point is also noted ifi14].) Furthermore, for spacetime, we may now study the dynamics of ¢hand y
the case of inflaton decay into inflaton bosons, the producefields during preheating.
quanta will also be massless whemn=0, so that over the
entire preheating period we may keep the approximationy, =voLUTION OF THE FIELDS DURING PREHEATING
p(7)ca”*(7). Note that this behavior of the energy density
holds even though the quanta are far from thermal equilib- Using Egs.(25) and(30), we may rewrite the equation of
rium when produced. motion for they field in Eqg. (15) as
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d2 d2
E2+¢2(T)+/c+:<n\2(r) Y(1)=0. (34 W+p2—6p(u+w’) xp(u)=0,
In this section, we will shift the time of the onset of preheat- ) /2-2K
ing to 7,=0. With the initial conditions,y(0)=, and p(k)= N (41)

(d¢/d7)|,=0=0, the equation of motion foy(7) may be
solved in terms of a Jacobian elliptic cosine function for This is now in the form of a Lamequation. We may solve it
early times, when the back reaction8() is negligible. In  explicitly by introducing two dimensionless constaatsnd
general, the Jacobian cosine functionier) obeys the dif- b by means of the transcendental relations
ferential equatiori29]:

3p(a)+3p(b)=—p?,

c=0, (35 p'(a)=—p'(b), (42)

d? —
W+(1—2k2+2k2c2)

where primes in this section will denote derivatives with

where we have used the abbreviatoacn(u, k). For early  regpect tz=u/\/e;— e;=u. Using the differential equation
times, then, the) field oscillates as [29,30

12 — 3 _ o
¢(7)=¢/ocn( JiR+K, o , (36 9'(2)=49>(2) — 929 (2) — 93,

V2(hot+K)

for ¢(2)2 — 2K, appropriate for a chaotic inflation scenario.
In terms of the timelike variabla= \/¢02+ICT, the equa-

g,=2(e?+e3+ed), gs=4e.eme;, (43)

the relations in Eq(42) imply

tion of motion for the fluctuations becomes 1 1 2 1
b)=—=p?+ =\/1+ 45— =p*
& ol 6P T2 3,4 3P
Vgt o+ 30U |x(u)=0, (37) , ,
4 1 K K K
"#(b)=55p°— 3 1+—) P’— 52l 1—ga|- 49
v 27 3 34 32 994/

for early times, when we may neglexk (7). Here we have

i 2: 2 i - . . . .
dgflned t_he Const_an;t_— Yot K. We may rewrlte_ th? JaC(_) With these relations, solutions of EGl1) may be written
bian cosine function in terms of the doubly periodic Weier-

strass_functionp(z) by noting both that cf(u,k)+ c(U+tw' +a)o(u+ o’ +b)d?(w’)
sr?(u,k)=1, and that UnlW) = = 2 o) o(w +a)o(w’ +D)
_ 1| (urik'(K) X exp{—u[{(a)+{(b)]}, (45)
k (91—93){ Ve€i—€3 whereo(z) and{(z) are the quasiperiodic Weierstrass func-

tions, defined by the relation®9,30 ¢'(z)=—-¢(z) and
whereK’ (k) is the complementary complete elliptic integral o'(2)/(2)={(z). The solutionU,(u) is normalized as
of the first kind, and the; are the three constants associatedUp(0)=1, and the linearly independent solution is
with the Weierstrass functiop(z) [29]. These constants Up(—u). Using the initial conditions of Eq(22), the fluc-
sum to zeroe,+e,+e3;=0; in terms of them, the modulus tuations y(7) can be written as a linear combination of
k may be written k?=(e,—e;)/(e;—es). The function Up(U) andUy(—u):
@(2) is periodic with respect to the two periodse2and

2w', as follows[29,30: 1 . 0,(0) )
X (u)= 1+i———-|Uy(—u)
2\2w,(0 yUn(0)) P
p(z+2Mw+2No’)=p(2), AN P
+(1—iw/—(0))u (u)} (46)
Kk KK @9 Yp(0)) P
w= , o' =i ,
Ne1 €3 Ve1~ €3 where the primes here denotddu=y~1d/dr. From the

_ . form of the number operator, E§¢24), solutionsU (= u)

for integersM and N. We may set ¢, —eg)=1, which \yhich grow in time will contribute to particle production.
yields In general, solutions to second-order differential equa-
tions with periodic coefficients will obey Floquet's theorem

o :372+’C oe K o — 3y*-K (40  [31]; thatis, for a periodic “potential” with period @ [as is
ey P W 3 677 ' the case for Eq(41)], solutions behave as

With these substitutions, E¢37) becomes Up(u+2w)=Uy(u)e'F®, (47
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where the Floquet indek(p) is independent of time. The where we have used«d =u,2wa=a, and 2vB=b. The
solutions U,(—u) have the Floguet index-F(p). The relation[29]
guasiperiodicity of ther(z) functions[30],

{(w) 1 9(v)

0(z+2w)=—o(z)exd 2{(0)(z+ w)], (48) g(z):—z+Zm (54)

yields, for the solutions in Eq45),
F(p)=2i{o[{(@)+{(b)]-(a+b){(w)}. (49

The solutionsU(u) will reveal exponential instabilities, F( ):i[ﬁl(a)+ 191(,3)} (55)
then, wheneveF (p) has a nonzero imaginary component. H(a)  0(B)]

Equations(24) and (46) reveal that it is these instabilities

which are responsible for the highly efficient, resonant paryyith the constraints ora and b in Eq. (42), the Floquet
ticle production during preheating. As is clear from the rela-index will reach a maximum in the resonance band for
tions of Eg. (42), together with series expansions of 3_.p. We may evaluate the Floquet index at this maximum

9(2),9'(2), and{(z) (see[30]), such instabilities will occur by means of the series expansion fby(v) [29]:
only whenboth g (b) andg’(b) are real. From Eq44), we

see that for the physical wave numbers K*<, there ex-

further allows us to rewrite the Floquet indé€Xp) as

’ «© 2n
ists only one band in which these exponential instabilities 91(v) :Wcot(wv)+4ﬂ.2 q—ZnSin(an,),
may occur: 91(v) n=1 (1—9°")
3 K2 K2 = mrcot( v ) + 4mgsin(2mv) + O(g?), (56)
E 1+ 3—74$ p2$ 3+ 7, (50

where the elliptic nomeg=exd —iK’(k)/K(k)] satisfies
or, in terms ofi, and the dimensionless wave numbér 0=<(q=0.0432. WritingF (p)=2i[ 91(Bmad! 91(Bmay ] N€Ar
its maximum in the resonance band yields

3 4
E\/l,//g,br 2K+ g2+ 2K</?

’8"
R% l(ﬁmax) :477q+0(q3),
<3+ B6KCy5+ 4%+ 2K. %1(Bmax)
51
> R ” alv) =—167°q+0(q® 5
The existence of only one single resonance band for physical 02\ 94(v) 5 T q+0(a%), (57

wave numbers in this case matches the results found for
Minkowski spacetime if9]. This resonance band is in terms
of comovingwave numberk; because we have neglected Where the maximum of the resonance occurgaiy. From
interactions amongst the final-state bosons, the only way &€ relations in Eqsi42) and (44), Bmax corresponds to the
mode x,(7) will slide out of the resonance band in this Wave number

system is when the back reactini,(7) grows so large that

it damps the oscillations of the zero mode, halting the para- 5

metric resonance. We will demonstrate in Sec. V that for Pmax— \/ 3+ - (58)
preheating in an expanding open FRW universe, this range 4

only includes subcurvature modes.

In order to evaluate quantitatively values of the solutions" other _vvords, the maximum resonance will occur for
U,(*u) in this resonance band, it is helpful to rewrite the quanta V\.”th wave nhumbers near the top of the resonance
sc?lutions in terms of the quasiperiodic Jacobfafunctions band. This behavior also matches that found for Minkowski

: ; - ; : pacetime if9].
\Gvg:ﬁg tﬁzsfgiio\%%]rapldly converging series expansions’ With these expressions, we may determine the growth of
the back reaction due to created quanta, as well as the num-
ber of quanta produced during the preheating epoch. From
, the sign of F(p) at its maximum, it is clear that the
Up(—u) modes will grow exponentially in time for modes
within the resonance band, while the resondpfu) modes

0(2)=2w

13‘1(11)6 F{((w)zz
910N 20

! !

9 v+w—)=iﬁ4(v)eX[{—iﬂ' vt 2 } (52) Wil decrease exponentially. Keeping only the growing
20 4o modes, then, we may approximate
the solutionsJ ,(u) may be written 2
P e U~ 1+ | (59
U (o) D@ DVABIO) XATT 8w, (0) P YU(0)
+u)= exd *i ,
P T 9% (0) 94(@) 94(B) vrip

(53 and
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=d/ /2 1p'(z1)—p'(2)
~ 2 - A A
E(T)_JOZ_WT|X/(T)| g(zl+22) g(zl)+£(22)+2 W(Zl)_@(zz) ’
:Jm—z—dm Ay 12O p'(0)=0, p(a)=e, (67)
o 167°w,(0) " P YU, (0) _
then Eqgs.(40) and(45) yield
u
Xex;{;Re[F(p)] (60) O~ 0" 2By
P Pmax [ (Dmay) — €3]
inside the resonance band. Here we have written the combi- _ _ _
nation of oscillatingd functions as the single function, 2(3+9K?)%2—18K(1-K?)
Ay(u). We will evaluate this integral by means of a saddle- = — = —~ —
P —(3— N 2_ _
point approximation. Using Eq41), we may substitute [6—(3=3K)V3+9K"~9K(1-K)]
(68)
. 2K
d//?=y*dpp\/p?— P (61)  Similarly, the quantity
and using Eq(57) we may set w%max(O)z/fnaXnL 3yé=1[3+V3+9K?-3K]. (69
~ _ 3 _ 2 3
REF(p)]=8mq—16m°q(P—Pmad“+O(a%). (62 The pack reaction may thus be written
Furthermore, the integral will reach its maximum value when 3 —
the oscillating termA,(u) =1. This yields S(r)= 3y GY(K)I(K) K(k)i
256> N
S (r)= VPP’ 2Kl ?(0) ”
1287°w,(0) ™" yUp%(0)] ||ppe xexd om0 0(a®) (70
K(k) ’
X . eXF{Squ T+ O(qs)}- (63)  where we have defined
vyt w
Following [9], we may then write the back reaction in the ()= 3+9K°- 6K \3+9K?
form 3+ \3+9K2— 3%
3/2
S (r)=———exdB(K) y7]. (64) IF 3+ V3+9K2(1+3K+6K?) —3K(6-3K—2K?)
NUE Vo= (3+9K2)32-9F(1-K?) |
In this form, we may solve for the time when the back (71)
reaction 3.3 (7) grows to be of the same magnitude as the B . .
tree-level terms. In our case, this occurs whenVhenK=0, this reduces to the more simple form
AN (7)=3¢(7). ao
For the entire range-2K=< ,pgsoo, the average of the 3(7)| _ %o \/3+—\/§, /K(ll\/i)i
square of the zero mode over a period of its oscillations K=0"" 25673 Omax /7
gives, to a good approximatid®],
8
3,3 eXF{MT . (72)
3yA(n)=595=5(v"~K). (65 K(112)

The numerical value¥ (1/y2)=1.854, (;a=0.0432, and

Setting the back reaction equal to this quantity yields \=10"12 yield, for the quantities in Eq(64),

1 N(K)(1-3K) (68 o562
Tend™ — = IN , Omax
B(K)y 22 VB(K N(0)= =556.995,
(k) 33 VK(IN2)
where we have defineli=k/(372). Once the back reaction
grows to equal the magnitude of the tree-level terms, the B(0)= 87 Omax —0.586
parametric amplification of the fluctuation modes ends. This (0)= K(12) TEE

is the end of the preheating epoch, and hence we label the
time at which this occurs,pg.

In order to evaluat&(7), we must calculatéJg,Z(O) at Tond 0) = 1 n
Pmax- Using the relation$30] e B(0) 4o

N(0) ) _ 57.266

oAVB(0)] %o 73
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The quantitiesN(KC), B(K), and rend ) will all approach  in the energy density of the zero mode, E2j7); when this is

these values in the limig,— . We will calculate the maxi- done, the energy density remains proportionaktd when

mum quantitative deviation from the flat-space results in Sedn=0.

V. The other main assumption to check concerns the expan-
Using the same Sadd]e_point approximation' we maﬁion of the fluctuating fIE|d( in subcurvature modes only,

solve for the total number of particles produced during preWhenK= —1. For the decay process to be resonant, we re-

heating. Within the resonance band, we will approximate quire that the period of the Floquet solutions remain less than
the Hubble time. In terms of the timelike variable this

dx, [~y period is 20=2K(Kk); in terms of conformal timey, then,
dr | 20 TP xAT), D his requirement becomes
so that near the center of the resonance Hard Eq.(24)], 2K(k_)
ao <Hgy*. (80)
@A) [ 16m%g2y? ¥
N 7)= 5 IxA(7)]% 1+ w220 | (79
/ WhenK=—1, ag=+2H, ", so this requirement becomes
The total number of particles is —
yC>22K(K). (81)
Nigial 7)= f d//ZNa"( ) (76)
ol 7= | Sz AT The modulusk is related toy as[see Eq(36)]
From Eq.(60), using 3\ (7end = 3%3/2, and approximating K
@ (Tend = w,(0), this may be written k2=W. (82
g v3(1-3K) - . . -
N2 Tend = ————[ 3+ V3+9K?-3K]Y? Equation(81) is thergfore satlsﬂe_d foyC=5.3. From Egs.
4N (41) and(50), and usingk=C/, this means that
|14 167°q" 3 [ K 3
J— — — | 2 _ - 4 ~4 _ 2_o_
K2(k)(3+ 1/3_’_91(:2_3IC) kmin_z Y C*+ —3 +2K= 2(53) 2=40.1
(77)

) _ ) or Kmin=6.3. (83
Equation(77) confirms that at the end of the preheating ep-
och, the number of particles produced is nonperturbativelyr,s over the entire range of allowable initial conditions for

large, Nioia A ~*. Thus, for a massless inflaton decaying ,, “nreheating witrk = — 1 will only populate subcurvature
strictly into massless inflaton quanta, resonant preheating ig,qdes withk > 1
) I .

an expanding FRW metric closely resembles the situation for \wjit this restriction on the combinatiopC, we may fur-

Minkowski spacetime. ther calculate the quantitative deviation fiir=—1 in the
growth of the back reaction and total number of particles
V. COMPARISON OF OPEN AND FLAT CASES produced from theK=0 case. Numerical differences from

In this section, we will demonstrate that two key approxi-the K=0 case arise both from the dependencekofand
mations made above are consistent for the case of preheatilgnce ofK(k) andq] on K, as well as from the explicit
with a massless inflaton, and then compare the numericahctors of K=K/(3y?C?) in such quantities adl, B, 7eng,
results for theK=—1 andK=0 cases. First consider the andN3d . At the minimum allowable value ofC=5.3, we
approximation made in Sec. Il thaf< ¢ during preheating.

! ! . . have k=0.72 (near the flat case ofk=0.707), or
Taking 74(0)=0, we may write the average of this Hubble g=0.0396(near the flat case afj=0.0432). With the con-
parameter over the duration of preheating. Rer 0,

stants at these values,

— 1 1
= [ — ) —2 ~ 1
F=5H(Tend 2Teng 10"%o, (78) IK|< =5 =1.2x10 2 (84)
3y°C
where the last step comes from using Ef3). As demon- o 5 )
strated below, for th& = — 1 casere,qremains greater than From the definition ofy”, we also have the relation
or equal to its numerical value in th€=0 case, so that

_ Y 1A -12
H= 10Ot 7end) < o (79 g (1T ®9

for all ¢5>—2K, as long as’?<10 after renormalization. This means that the deviation from tke=0 case remains on
Over the course of preheating, then, it remains a good aghe order of 102. For example, comparing Eqé71) and
proximation to neglect théf2y? term relative to they* term  (73),
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G K)=G(0)+2.1x 1072, main subdominant effects. Furthermore, analytic study of the
dynamics is useful for comparing preheating in ke 0 and
K=—1 cases.
The analytic study also clearly reveals the limits for pre-
heating with a massive inflaton, when the expansion of the

Jma ) =J(0)+1.0x 102,

Nima( £) =0.93 Universe is taken into account. From the form of the equa-
N(O) ’ tions of motion in terms of the rescaled fields and conformal
time, it becomes easy to understand why numerical studies

Bimax K) of preheating in an expanding flat-FRW spacetime reveal a
TBO) 0.89. (86)  Jack of resonant decays for massive inflatons and quanta, for

many values of their coupling?,18]. A nonzero mass for
With these values, we see that the duration of preheating algither the inflaton or the quanta would break conformal in-

remains nearly the same in tlle= —1 andK=0 cases: variance. For chaotic inflation initial conditions as consid-
ered here, solutions for the zero mode of a massive inflaton

Tend K) would no longer be simply periodic or elliptic functions. Fur-
7 d0) 1.14. (87)  thermore, if the mass of the zero mode were zero but that of

the decay products nonzero, then the equation of motion for
Finally, the total number of particles produced in the twothe fluctuating field would include the nonperiodic term,

cases obeys a’(n»)m?. Either of these situations would mean that the
“potential” for the fluctuating field would no longer be pe-
N2 () riodic. Yet the existence of Floquet solutions, with one or
total _ L o
N 0y 0) =0.98. (88 more bands _of _exponentlal _mstabllltle;, depends upon a pe-
total riodic potential in the equation of motion of the fluctuating

= ~ _ field. Only in the limitge2>a®( »)m?, wherem is the mass
For yC>(¥C)in=5.3,k—1/y2 andk—0, so all numerical of the produced quanta arglis the coupling strength be-

quantities further approach their flat-space values. tween the inflaton and fluctuating field, will the potential

. Thus, the requirement that the perlod_of the Floquet S‘Oluélpproximate a periodic form. For the case of inflaton decay
tions, 2w, remain less than one Hubble time greatly restrict

) o S Sinto inflaton bosons, as studied here, limits bothoand on
the numerical deviations betwee_n quantities in lhe __1_ ._.m, from observed cosmic microwave background anisotro-
andK=0 cases, when we consider chaotic inflation initial pigs make it impossible to satisfy this limit, and preheat-
conditions. For all dynamically consistent initial values of ing may occur whem, #0 for eitherk =0 ,or K=—1. at
Yo in the open inflation case, the total number of particleqeast for chaotic inflatif)n initial conditions. ’
produced during preheating remains within 2% of the flat- Finally, as demonstrated here, the=0 and K=—1

space results. cases agree in the limigy>|k|, which is not surprising
considering the equations of motion in E¢84) and (41).
VI. CONCLUSIONS For this reason, it would be interesting to compare the pre-

For a massless inflaton decaying resonantly into masslegéeating scenario for a symmetry-breaking potential with new

inflaton quanta, preheating in expanding FRW spacetimedfiation initial conditions, y—0, for both thek=0 and

closely resembles the Minkowski spacetime case. With chals = —1 cases. The question of a nonthermal restoration of

otic inflation initial conditions, furthermore, quantitative dif- SYMMmetry with such a potential and initial conditions has
ferences in the spectra of produced particles remain smafi€€n raised for preheating in both Minkowski and flat-FRW
when comparing spatially flat with open models of inflation. SPacetimed15] (though see alsg9,10). Because the pre-

In both cases, a single narrow resonance band for comovin[r;.;ef"‘t'”g dynamics for such a model in an expanding open
wave numberk exists. Preheating ends af,,, when the niverse differ from Fhose in both of.these'spatlally flqt
back reactio\3(7) due to produced quanta damps the 0s-Cases, such a scenario warrants attention. This is the subject
cillations of the zero mode. Because the Hartree factorizatiof! further research.

employed here neglects interactions amongst the final-state

bosons, such as rescatterings between each other and with ACKNOWLEDGMENTS

the zero mode, the quantitative values for the spectra derived

here likely represent an overestimate of their true magni- This research was supported in part by the National Sci-
tudes, though with\ ~10 ', such rescatterings should re- ence Foundation.

[1] L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. Lett. Abbott, E. Farhi, and M. Wisebid. 117B, 29 (1982.

73, 3195(1994. [4] D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee, and A.
[2] Y. Shtanov, J. Traschen, and R. Brandenberger, Phys. Rev. D  Singh, Phys. Rev. [b1, 4419 (1995; D. Boyanovsky, M.
51, 5438(1995. D’Attanasio, H. J. de Vega, R. Holman, D.-S. Lee, and A.

[3] A. Dolgov and A. Linde, Phys. Lettl16B, 329 (1982; L. Singh, ibid. 52, 6805(1995.



716 DAVID |. KAISER 56

[5] M. Yoshimura, Prog. Theor. Phy84, 873(1995; H. Fujisaki,

K. Kumekawa, M. Yamaguchi, and M. Yoshimura, Phys. Rev.
D 53, 6805(1996; M. Hotta, I. Joichi, S. Matsumoto, and M.
Yoshimura,ibid. 55, 4614(1997.

[6] D. Kaiser, Phys. Rev. 33, 1776(1996.

[7] S. Khlebnikov and I. Tkachev, Phys. Rev. Le#7, 219
(1996; Phys. Lett. B390 80 (1997); “Resonant decay of
Bose condensates,” Report No. hep-ph/96104(Tinpub-
lished.

[8] D. Son, Phys. Rev. 34, 3745(1996.

[9] D. Boyanovsky, H. J. de Vega, R. Holman, and J. F. J. Sal-
gado, Phys. Rev. B4, 7570(1996); “Preheating and Reheat-
ing in Inflationary Cosmology: A Pedagogical Survey,” Re-
port No. astro-ph/960900npublishedl

[10] D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman, A.
Singh, and M. Srednicki, “Preheating in FRW Universes,” ibid. 49, 2769(1994.
Report No. hep-ph/960952Einpublisheqt “Scalar Field Dy-  [23] p. H. Lyth and A. Woszczyna, Phys. Rev.52, 3338(1995.
namics in Friedmann Robertson Walker Spacetimes,” Reporf24] J. Garca-Bellido, A. R. Liddle, D. H. Lyth, and D. Wands,
No. hep-ph/970332unpublishedl Phys. Rev. D55, 4596(1997.

[11] R. Allahverdi and B. Campbell, Phys. Lett. 395 169(1997.  [25] D. Kaiser, “Supercurvature Modes from Preheating in an

[12] J. Kim and S. Kim, “Quantum Fluctuations and Particle Pro- Open Universe,” Report No. astro-ph/96080@& publishegl
duction of Coherently Oscillating Inflaton,” Report No. [26] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved
hep-ph/9611376unpublished Space(Cambridge University Press, New York, 1982

[13] W. zZimdahl, D. Pavon, and R. Maartens, Phys. Revs%)  [27] E. Lifshiftz, J. Phys(Moscow) 10, 116(1946; E. Lifshitz and
4681(1997). I. Khalatinikov, Adv. Phys12, 185(1963; M. Bander and C.

[14] L. A. Kofman, “The Origin of Matter in the Universe: Reheat- Itzykson, Rev. Mod. Phys38, 346 (1966; E. Harrison,ibid.

[17] S. Khlebnikov and I. Tkachev, “Relic gravitational waves pro-
duced after preheating,” Report No. hep-ph/97014@3pub-
lished.

[18] T. Prokopec and T. Roos, Phys. Rev5B, 3768(1997).

[19] D. Boyanovsky, D. Cormier, H. J. de Vega, and R. Holman,
Phys. Rev. Db5, 3373(1997.

[20] F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev. D
55, 6471(1997.

[21] J. Gott, Nature(London 295 304 (1982; J. Gott and T.

Statler, Phys. Lett136B, 157 (1984; M. Bucher, A. Gold-

haber, and N. Turok, Phys. Rev.92, 3314(1995; A. Linde,

Phys. Lett. B351, 99 (1995; A. Linde and A. Mezhlumian,

Phys. Rev. D62, 6789(1995; K. Yamamoto, M. Sasaki, and

T. Tanaka, Astrophys. 355 412 (1995.

[22] D. Boyanovsky, D.-S. Lee, and A. Singh, Phys. Rev4&
800 (1993; D. Boyanovsky, H. J. de Vega, and R. Holman,

ing after Inflation,” Report No. astro-ph/960515&inpub-
lished.

[15] L. Kofman, A. Linde, and A. Starobinsky, Phys. Rev. L&,
1011 (1996; I. Tkachev, Phys. Lett. B376, 35 (1996; A.

39, 862(1967); L. Parker and S. Fulling, Phys. Rev.® 341
(1974.

[28] M. Sasaki, T. Tanaka, and K. Yamamoto, Phys. RevsD

2979(1995.

Riotto and |. Tkachevibid. 385 57 (1996; E. Kolb and A.
Riotto, Phys. Rev. 15, 3313(1997).

[16] E. Kolb, A. Linde, and A. Riotto, Phys. Rev. Leff7, 4290
(1996; G. Anderson, A. Linde, and A. Riottdbid. 77, 3716 [30] M. Abramowitz and I. StegunHandbook of Mathematical
(1996; G. Dvali and A. Riotto, Phys. Lett. B88 247(1996); Functions(Dover, New York, 1965
M. Yoshimura, “Baryogenesis and thermal history after infla- [31] E. L. Ince, Ordinary Differential Equations(Dover, New
tion,” Report No. hep-ph/960524@inpublishedl York, 1956.

[29] Higher Transcendental FunctiongBateman Manuscript
Projec}, edited by A. Erdelyit al. (McGraw-Hill, New York,
1953, Vol. 2.



