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Analytic results are presented for preheating in both flat and open models of chaotic inflation, for the case of
massless inflaton decay into further inflaton quanta. It is demonstrated that preheating in both these cases
closely resembles that in Minkowski spacetime. Furthermore, quantitative differences between preheating in
spatially flat and open models of inflation remain of order 1022 for the chaotic inflation initial conditions
considered here.@S0556-2821~97!01314-3#
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I. INTRODUCTION

Recently, a new view of the post-inflationary reheating
period has been established@1,2#. In place of the original
view, in which the inflaton decayed perturbatively@3#, an
inherently nonperturbative, highly efficient resonance has
been investigated. The new theory of reheating now involves
three distinct stages: an oscillating inflaton sets up a paramet-
ric resonance in its decay to some boson species; this explo-
sive stage has been termed ‘‘preheating’’@1#. ~See also@2,4–
14#.! Next, these far-from-equilibrium decay products
themselves interact and decay, as can be studied along the
methods in@3#. And finally, the decay products thermalize,
completing the reheating process. Such explosive preheating
can radically change the thermal history of the universe fol-
lowing inflation; some nonstandard effects associated with
the new preheating picture include the possibility for non-
thermal symmetry restoration@15#, grand unified theory
~GUT! scale baryogenesis@16#, and the amplification of
gravitational radiation following the preheating period@17#.

Because preheating is a nonlinear, nonequilibrium pro-
cess, particle production in most specific models must be
analyzed numerically, and several results have been reported
for both Minkowski and spatially flat expanding spacetimes
@4,7,9,10,18#. Much of the analytical literature to date has
treated the expanding background case by means of two ap-
proximations:~1! that the oscillating zero mode of the infla-
ton oscillates as a cosine function,w0}cos(mt), with m the
mass of the inflaton, and~2! that the expansion may be ne-
glected for frequenciesm@H, whereH is the Hubble param-
eter. When these approximations are made, the equation of
motion for the quantum fluctuations~associated with particle
production! can be cast in the form of a Mathieu equation.
Solutions of the Mathieu equation generically exhibit an in-
finite hierarchy of resonance bands; for wave numbersk
within these resonance bands, the solutions grow exponen-
tially in time, driving the explosive, resonant particle produc-
tion. As discussed in@9#, however, in the context of
Minkowski spacetime, the first of these approximations can
lead to large quantitative errors when a quartic self-coupling
exists for the inflaton. In these cases, the zero mode evolves
as an elliptic function in time, and solutions for the fluctuat-

ing fields reveal only one single resonance band ink.
In this paper, we extend this analytical study to the case of

inflaton decay into inflaton bosons in an expanding
Friedmann-Robertson-Walker spacetime. For a quartic inter-
action potential and amasslessinflaton, the time evolution of
the entire system~zero mode, quantum fluctuations, and
background spacetime! can be studied consistently with ana-
lytical methods. Because in this case the observed spectrum
of cosmic microwave background anisotropies places strict
limits on the self-coupling,l;10212, we may study this
nonperturbative, nonequilibrium system by means of analytic
approximations to the full, nonlinear equations of motion. In
@9#, the large-N approximation is employed to study preheat-
ing analytically in Minkowski spacetime. Here, we rely on a
Hartree factorization to study preheating in an expanding
spacetime. As demonstrated explicitly in@19#, these two ap-
proximation schemes are closely related, and in the case of
preheating amount only to the substitutionl→3l in the
equation of motion for the fluctuating field.~See also@20#.!
Numerical results have indicated that the Hartree approxima-
tion can break down for quantitative results far from the
weak-coupling range~that is, for inflaton decay into a dis-
tinct species of boson, with coupling constantg@l) @7#.
However, for the case studied here, of inflaton decay into
other inflaton quanta, the Hartree approximation should re-
main quantitatively reliable. With this analytical framework,
it is also easy to understand numerical results@7,18# which
indicate thatno parametric resonance can occur for a mas-
sive inflaton in expanding spacetime, if its only decay chan-
nel is into inflaton quanta.

We present analytic results for preheating for both ordi-
nary chaotic inflation and for chaotic inflation within a model
of open inflation@21#. The growth of the back reaction from
the created quanta on the oscillating zero mode is calculated,
as well as the maximum number of quanta produced during
preheating. As discussed below, for preheating of a massless
inflaton into massless inflaton quanta, the Ricci curvature
scalar vanishes during preheating. Thus, the preheating dy-
namics for this model in an expanding spacetime remain
conformally equivalent to the Minkowski spacetime case; it
is not surprising, therefore, that the results presented here
share the same form as many of the Minkowski results stud-
ied in @9#. The change from large-N to Hartree methods,
however, does change some of the details of the quantitative
analysis. Also, as demonstrated below, the spectrum of pro-*Electronic address: dkaiser@fas.harvard.edu
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duced quanta in the open inflation scenario takes the same
form as that for quanta produced in an expanding, spatially
flat model; for chaotic inflation initial conditions, there are
only very small numerical deviations between the two situa-
tions.

In Sec. II, we present the specific model to be analyzed
here, discuss the approximation scheme to track the quantum
back reaction, and choose an appropriate initial vacuum state
with reference to which we can measure the resonant particle
production. Section III includes analysis of the background
spacetime dynamics during the preheating phase. In Sec. IV,
we solve consistently for both the oscillating zero mode of
the inflaton field and the coupled quantum fluctuations, for
both the flat and open universe cases. In Sec. V, we compare
numerically the preheating spectra for flat and open inflation,
and provide further consistency checks on some of the ap-
proximations made throughout the analysis. Concluding re-
marks follow in Sec. VI.

II. DYNAMICS OF THE MODEL

We only consider the case of inflaton decay into inflaton
bosons, due to a nonlinear self-coupling. The Lagrangian
density thus may be written

L5A2gF 1

16pG
R2

1

2
gmn]mf]nf2V~f!G ,

V~f!5
1

2
m2f21

l

4
f4. ~1!

We will consider the case of an additional nonminimal cou-
pling between the inflaton andR(t), the Ricci curvature sca-
lar, in Sec. III. The line element for a general Friedmann-
Robertson-Walker~FRW! spacetime may be written

ds252dt21a2~ t !hi j dx
idxj , ~2!

with

hi j dx
idxj5dx2 ~K50!

5dr21sinh2r ~du21sin2udf2! ~K521!, ~3!

andK50 for a flat universe,K521 for an open universe.
@Naturally, the angular coordinatef should not be confused
with the inflaton fieldf(t,x).# In this metric, the equations
of motion follow:

H21
K

a2
5
8pG

3 F12ḟ21V~f!G ,
f̈13Hḟ2

1

a2
¹2f1

dV

df
50, ~4!

whereH[ȧ/a is the Hubble parameter,¹2 is the comoving
Laplacian operator, and dots represent derivatives with re-
spect to cosmic time,t.

Making the familiar decomposition between the ‘‘classi-
cal’’ and fluctuating portions of the inflaton field,

f~ t,x!5w~ t !1df~ t,x!, ~5!

we see that the potential of Eq.~1! contains a coupling be-
tweenw and df. It is this coupling which, under certain
conditions, will allow for a highly efficient transfer of energy
from the ‘‘classical’’ to the fluctuating portions of the infla-
ton field; this transfer of energy is manifested as a rapid
production of out-of-equilibrium inflaton quanta. Because
the self-coupling strengthl is constrained to be very weak
for this model (l;10212), based on the observed anisotro-
pies in the cosmic microwave background radiation, we may
employ the Hartree factorization to study the nonequilibrium
dynamics of these coupled systems@22#. This factorization
amounts to making a particular choice of vacuum state~as
discussed below!, and making the substitutions

~df!3→3^~df!2&~df!,

~df!4→6^~df!2&~df!223^~df2!&2, ~6!

where quantities in angular brackets indicate expectation val-
ues of the associated quantum operators~to be defined ex-
plicitly below!; the tadpole condition further requires
^(df)&50.

In an open universe, there exists a physical curvature
length scalea(t)/uKu, with K521. The corresponding co-
moving curvature scale is thus simply11. As usual, scalar
fields may be expanded in eigenfunctions of the comoving
Laplacian. Writing¹2f P(x)52P2f P(x), then in an open
universe, modes with eigenvalueP2>1 vary on scales
shorter than the comoving curvature scale, and hence may be
labeled ‘‘subcurvature’’ modes, whereas modes with
0<P2,1 correspond to ‘‘supercurvature’’ modes@23,24#.
As first noted in@25#, and as demonstrated below in Sec. V,
preheating in an open universe willonly populate subcurva-
ture modes for potentials of the form in Eq.~1!. For this
reason, we may expand the fluctuating fielddf as follows:

df~ t,x!5E dm̃~k!dfk jm~ t !Zk jm~x!, ~7!

where the eigenfunctions of the Laplacian obey

¹2Zk jm~x!52~k22K !Zk jm~x!. ~8!

Here k is the comovingsubcurvaturewave number, with
0<k2,`; it is related to the eigenvalueP2 above by
k25P21K, and only applies forP2>1. The measure for the
wave number integral is@23,24,26#

E dm̃~k!5E
0

`

dkk2 ~K50!

5E
0

`

dk(
j50

`

(
m52 j

j

~K521!. ~9!

With these definitions, the eigenfunctions of the Laplacian
may be written
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Zk jm~x!5~2p!23/2eik•x ~K50!,

Zk jm~r ,u,f!5A2

p)
s50

j

~s21k2!21/2Yjm~u,f!

3~sinhr ! j S 21

sinhr

d

dr D
j11

cos~kr !

~K521!, ~10!

with Yjm(u,f) the usual spherical harmonics@24,26,27#.
To study particle production during the preheating epoch,

we may now promote the fielddf to a Heisenberg operator:

d̂f~ t,x!5E dm̃~k!@dfk~ t !âk jmZk jm~x!

1dfk* ~ t !âk jm
† Zk jm* ~x!#, ~11!

with âk jm and âk jm
† the canonical time-independent annihila-

tion and creation operators, respectively. These are defined
with respect to the initial Fock vacuum. With this, the expec-
tation value^d̂f2& becomes, for bothK50 andK521,

^d̂f2&5E
0

`dkk2

2p2 udfk~ t !u2, ~12!

where translational invariance allows^d̂f2& to depend only
on time; we will therefore write this quantity as^d̂f2(t)&.
Defining the constant

C2[^d̂f2~ t0!&, ~13!

where t0 is the beginning of the preheating epoch, and
switching to conformal time,dh[a21dt, we may introduce
the dimensionless variables

t5Ch, l 5k/C, M5m/C,

w~ t !5
C

Al

c~t!

a~t!
, dfk~ t !5

1

AC
x l ~t!

a~t!
,

S~t!5@^x2~t!&2^x2~t0!&#. ~14!

Then ^d̂f2(t)&5C2a22(t)^x2(t)&, and using the factoriza-
tion of Eq.~6!, the equations of motion for thec andx fields
may be written

F d2dt2
1a2~t!M22

a9

a
1c2~t!13la2~t0!13lS~t!Gc~t!50,

F d2dt2
1l 22K1a2~t!M22

a9

a
13c2~t!13la2~t0!13lS~t!Gx l ~t!50, ~15!

where primes denote derivatives with respect tot, and
K[C22K. It is convenient to define the frequenciesWl (t)
andv l (t) as

Wl
2 ~t![l 22K1a2~t!M22

a9

a
,

v l
2 ~t![Wl

2 ~t!13c2~t!13la2~t0!13lS~t!. ~16!

The quantityS(t) measures the back reaction of created
quanta on the evolution of the oscillating zero mode,c(t),
andS(t0)50. We will study solutions of the coupled equa-
tions of Eq.~15! in Sec. IV, for early times whenlS(t) may
be neglected. We will also determine self-consistently in that
section the time at which the approximationlS(t)→0
breaks down.

It remains in this section to derive an expression for the
particle number operator appropriate for the nonequilibrium
dynamics. In terms of the rescaled fieldx, the quantum fluc-
tuation operatord̂f may be written

1

AC
d̂f~ t,x!5E dm̃~ l !

1

a~t!
@x l ~t!âl jmZl jm~x!

1x l* ~t!âl jm
† Zl jm* ~x!#, ~17!

and, from the Lagrangian density in Eq.~1!, the Heisenberg
operator for the conjugate field may be written:

ACP̂~ t,x!5E dm̃~ l !a~t!Ah~x!

3$@x l8 ~t!2H~t!x l ~t!#

3âl jmZl jm~x!1H.c.%, ~18!

with H(t)[a8/a, and ‘‘H.c.’’ denoting a Hermitian conju-
gate. Canonical quantization then gives the normalization
condition for the mode functionsx l (t):

x l x l* 82x l8 x l*5 i . ~19!

This normalization comes from quantizing the fieldsd̂f and

P̂ on a Cauchy surface. Yet for models of open inflation, the
interior of the nucleated bubble isnot a Cauchy surface for
the entire de Sitter space. It has been demonstrated, however,
that for scalar fields expanded only in subcurvature modes,
quantizingas if the interior of the nucleated bubble were a
proper Cauchy surface reproduces exactly the same result as
when the fields are quantized on a proper Cauchy surface and
analytically continued inside the bubble@28#. For this reason,
we may use the normalization in Eq.~19! for both the flat
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and open inflation cases. In the context of preheating, this
makes sense physically, since we are quantizing these fields
after the volume of the interior of the bubble has expanded
by a factor of;(e65)3 ~according to any ‘‘observers’’ on the
interior of the bubble!, so that all causal properties of these
fields should be specifiable with reference to the interior of
the bubble alone.

To calculate the particle number per mode, it is conve-
nient to write

d̂f~ t,x!5E dm̃~ l !d̂f l jm~ t !Zl jm~x!,

P̂~ t,x!5E dm̃~ l !P̂ l jm~ t,x!Zl jm~x!. ~20!

For K50, we may thus write

1

AC
d̂f l jm~ t !5

1

a~t!
@x l âlW 1x l* â2lW

†
#,

ACP̂ l jm~ t,x!5a~t!Ah~x!@~x l8 2Hx l !âlW

1~x l* 82Hx l* !â
2lW
†

#. ~21!

As pointed out in@24# for theK521 case, we may use the
purely real representation of theYjm(u,f)’s, which makes
the eigenfunctionsZl jm(x) purely real for subcurvature
modes. Thus, forK521 we also may write expressions as
in Eq. ~21!, but with the arguments of the creation and anni-
hilation operators changed toâlW→âl jm and â

2lW
† →âl jm

† .

Care must be taken when studying preheating in an ex-
panding universe to choose an appropriate vacuum state with
respect to which we can measure particle production. There
are two independent concerns: first, preheating is a nonequi-
librium process among interacting fields, so defining ‘‘par-
ticle’’ states is ambiguous even in Minkowski spacetime@9#;
in addition, we have the usual ambiguity in defining ‘‘free
particle’’ states in any non-Minkowskian spacetime@26#. At
t→2` ~where we take the bubble nucleation to have oc-
curred att52`), the spacetime inside the nucleated bubble
is a de Sitter spacetime, so in the absence of interactions, the
vacuum state for thedf field should be the Bunch-Davies
vacuum. If the transition from pure de Sitter expansion to the
different rate of expansion at the time of preheating occurs
adiabatically, then at the onset of preheating thex l modes
should obey the initial conditionsx l (t0)5@2Wl (t0)#

21/2

and x l8 (t0)52 i @Wl (t0)/2#1/2 in the absence of interac-
tions. These modes would represent the free-particle ‘‘adia-
batic’’ states@26#. Furthermore, if we consider the interac-
tion strength to be turned on adiabatically beginning some
time beforet0, then these initial conditions should be re-
placed by

x l ~t0!5
1

A2v l ~t0!
, S dx l

dt D U
t5t0

52 iAv l ~t0!

2
.

~22!

Equation~22! gives the initial conditions for the ‘‘adiabatic’’
particle states for the nonequilibrium dynamics at the onset
of preheating. We may, therefore, define adiabatic creation
and annihilation operatorsâ l jm(t) andâ l jm

† (t) through the
relations

1

AC
d̂f l jm~t![

1

a~t!

1

A2v l ~t!
F â l jm~t!expS 2 i E v l ~t!dt D1â l jm

† ~t!expS i E v l ~t!dt D G ,

ACP̂ l jm~t,x![2 iAv l ~t!

2
a~t!Ah~x!F S 12 i

H~t!

v l ~t! D â l jm~t!expS 2 i E v l ~t!dt D1H.c.G . ~23!

The â l jm(t) annihilates the time-dependent adiabatic
vacuum stateâ l jm(t)u0(t)&50 for all l , j , andm. These
adiabatic creation and annihilation operators can be related
to the time-independent operatorsâl jm and âl jm

† by means
of a Bogolyubov transformation. As above, we replace the
arguments of these operators asâ l jm→â lW and
â l jm
† →â

2lW
† in Eq. ~23! for the K50 case. Note that these

expansions are only valid when the frequencyv l (t) is
purely real; as demonstrated in Sec. III, this will always be
the case for the scenarios considered here.

From the expansions in Eqs.~21! and~23!, we may solve
for the adiabatic particle number per mode. The result is the
same for both theK50 andK521 cases:

Nl
ad~t!5^â l jm

† ~t!â l jm~t!&

5
v l ~t!

2 F ux l ~t!u21
1

v l
2 ~t!

ux l8 ~t!u2G2
1

2
. ~24!

This yields the number of ‘‘adiabatic’’-state quanta produced
relative to the initial Fock vacuum,u0&5u0(t0)&. With this
choice of vacuum state and initial conditions, the particle
number for inflaton quanta does indeed vanish at the onset of
preheating. As discussed in Sec. III, for the models of inter-
est here, the background spacetime will evolve as if it were
radiation dominated for the entire period of preheating, so
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that there will be no further Bogolyubov transformations
needed to relate the particle number at the beginning to that
at the end of preheating.

With the choice of initial conditions for thex field, Eq.

~22!, the quantityC25^d̂f2(t0)& is formally quadratically
divergent, and would have to be renormalized with some
regularization scheme.~This is essentially the zero-point en-
ergy divergence.! For here, we will simply note that to re-
main consistent, we require the energy density of the ‘‘clas-
sical’’ portion of the inflaton field to exceed that of the
quantum fluctuation portion at the beginning of preheating;

that is,w2(t0)@^d̂f2(t0)&. This is equivalent to the require-
ment

c2~t0!@la2~t0!, ~25!

using the definition ofc(t) in Eq. ~14!. We will make use of
this relation below.

III. EVOLUTION OF THE BACKGROUND SPACETIME

In this section we study the background spacetime dy-
namics during the period of preheating. Up until the time
t0, the fluctuations of the fielddf are in their vacuum state,
and we need only consider the energy density from the
‘‘classical’’ part of the inflaton field,w. In terms of cosmic
time t, this may be written

rw~ t !5 1
2 ẇ21 1

2 m
2w21 1

4 lw4. ~26!

In terms of dimensionless conformal timet and the rescaled
field c, the energy density is, thus,

rw~t!5
C4

2la4~t!F12c41c821a2M2c21Hc~Hc22c8!G .
~27!

At the onset of preheating, the fieldc begins to oscillate~as
treated explicitly in Sec. IV!, so that averaging over a period
of its oscillations, bothc2 andc82 will remain nearly con-
stant. For the chaotic inflation scenario we consider here,
then, when the massm vanishes, the energy density at the
onset of preheating will be dominated by thea24 terms.
Note that by working in terms of conformal time, we do not
have to make any assumptions about the magnitude or rate of
change of the Hubble parameterH(t), as we would if we
worked in terms of cosmic time,t. Instead, we only need to
use the chaotic inflation initial conditions,c4(t0)@c2(t0).
We will confirm in Sec. V that whenm50, these initial
conditions ensure thatH!c during preheating.

Thus, whenm50 ~and only then!, we may approximate
the time evolution of the background spacetime as that of a
radiation-dominated FRW metric at the very onset of pre-
heating.~This point is also noted in@14#.! Furthermore, for
the case of inflaton decay into inflaton bosons, the produced
quanta will also be massless whenm50, so that over the
entire preheating period we may keep the approximation
r(t)}a24(t). Note that this behavior of the energy density
holds even though the quanta are far from thermal equilib-
rium when produced.

Using the Friedmann equation@see Eq.~4!#, and writing
r(h)5r0@a(h)/a0#

24g, we may solve for the behavior of
the scale factor in terms of conformal timeh for both the
K50 andK521 cases. For a flat universe, the scale factor
evolves as

a~h!5a0S h

h0
D 1/~2g21!

, gÞ
1

2
, ~28!

and forK521,

a~h!5a0sinh
dS h

udu
1XD , d[

2

4g22
, gÞ

1

2
. ~29!

In this case, by defininga05a(h0), the Friedmann equation
further implies the relationH0

252/a0
2. In terms of the dimen-

sionless conformal timet, settingg51 ~for m50) yields
the very simple result forK50,1:

a9

a
52K. ~30!

This result, valid only form50, means that the addition of a
nonminimal coupling between the inflaton and the Ricci cur-
vature scalar of the form12jRf2 would not affect any of the
preheating dynamics. To see this, consider the Ricci curva-
ture scalar in terms of cosmic time,t:

R~ t !5
6

a2~ t !
@ äa1ȧ21K#. ~31!

Rewriting this in terms of the dimensionless conformal time
t,

R~t!5
6C2

a2~t!Fa9

a
1KG , ~32!

we see from Eq.~30! that a consistent solution of the modi-
fied Friedmann equation would includeR50 for both
K50 andK521 whenm50. Thus, for the massless case,
a nonminimal coupling would not affect the preheating dy-
namics.

Using Eq.~30!, we may further confirm that the frequency
v l (t) will always remain real@see Eq.~16!#, which allows
us to employ the adiabatic creation and annihilation opera-
tors of Eq.~23!. In fact, whenm50, this frequency is the
same for both theK50 andK521 cases:

v l
2 ~t!5l 213c2~t!13la2~t0!13lS~t!. ~33!

The condition of Eq.~25! further allows us to neglect the
3la2(t0) term relative to the 3c2 term during preheating.
With these expressions for the evolution of the background
spacetime, we may now study the dynamics of thec andx
fields during preheating.

IV. EVOLUTION OF THE FIELDS DURING PREHEATING

Using Eqs.~25! and~30!, we may rewrite the equation of
motion for thec field in Eq. ~15! as
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F d2dt2
1c2~t!1K13lS~t!Gc~t!50. ~34!

In this section, we will shift the time of the onset of preheat-
ing to t050. With the initial conditions,c(0)5c0 and
(dc/dt) ut5050, the equation of motion forc(t) may be
solved in terms of a Jacobian elliptic cosine function for
early times, when the back reaction 3lS(t) is negligible. In
general, the Jacobian cosine function cn(u, k̄ ) obeys the dif-
ferential equation@29#:

F d2du2
1~122 k̄ 212 k̄ 2c2!Gc50, ~35!

where we have used the abbreviationc[cn(u, k̄ ). For early
times, then, thec field oscillates as

c~t!5c0cnS Ac0
21Kt,

c0

A2~c0
21K!

D , ~36!

for c0
2>22K, appropriate for a chaotic inflation scenario.

In terms of the timelike variableu5Ac0
21Kt, the equa-

tion of motion for the fluctuations becomes

Fg2
d2

du2
1l 213c2~u!Gx l ~u!50, ~37!

for early times, when we may neglectlS(t). Here we have
defined the constantg2[c0

21K. We may rewrite the Jaco-
bian cosine function in terms of the doubly periodic Weier-
strass function`(z) by noting both that cn2(u, k̄ )1
sn2(u, k̄ )51, and that

sn2~u, k̄ !5
1

k̄ 2~e12e3!
F`S u1 iK 8~ k̄ !

Ae12e3
D 2e3G , ~38!

whereK8( k̄ ) is the complementary complete elliptic integral
of the first kind, and theei are the three constants associated
with the Weierstrass functioǹ (z) @29#. These constants
sum to zero:e11e21e350; in terms of them, the modulus
k̄ may be written k̄ 25(e22e3)/(e12e3). The function
`(z) is periodic with respect to the two periods, 2v and
2v8, as follows@29,30#:

`~z12Mv12Nv8!5`~z!,

v5
K~ k̄ !

Ae12e3
, v85 i

K8~ k̄ !

Ae12e3
, ~39!

for integersM and N. We may set (e12e3)51, which
yields

e15
3g21K
6g2 , e252

K
3g2 , e352

3g22K
6g2 . ~40!

With these substitutions, Eq.~37! becomes

F d2du2
1p226`~u1v8!Gxp~u!50,

p2~k![
l 222K

g2 . ~41!

This is now in the form of a Lame´ equation. We may solve it
explicitly by introducing two dimensionless constantsa and
b by means of the transcendental relations

3`~a!13`~b!52p2,

`8~a!52`8~b!, ~42!

where primes in this section will denote derivatives with
respect toz[u/Ae12e35u. Using the differential equation
@29,30#

`82~z!54`3~z!2g2`~z!2g3 ,

g2[2~e1
21e2

21e3
2!, g3[4e1e2e3 , ~43!

the relations in Eq.~42! imply

`~b!52
1

6
p21

1

2
A11

K2

3g4 2
1

3
p4,

`82~b!5
4

27
p62

1

3S 11
K2

3g4D p22 K
3g2S 12

K2

9g4D . ~44!

With these relations, solutions of Eq.~41! may be written

Up~u!5
s~u1v81a!s~u1v81b!s2~v8!

s2~u1v8!s~v81a!s~v81b!

3exp$2u@z~a!1z~b!#%, ~45!

wheres(z) andz(z) are the quasiperiodic Weierstrass func-
tions, defined by the relations@29,30# z8(z)[2`(z) and
s8(z)/s(z)[z(z). The solutionUp(u) is normalized as
Up(0)51, and the linearly independent solution is
Up(2u). Using the initial conditions of Eq.~22!, the fluc-
tuationsx l (t) can be written as a linear combination of
Up(u) andUp(2u):

x l ~u!5
1

2A2v l ~0!
F S 11 i

v l ~0!

gUp8~0! DUp~2u!

1S 12 i
v l ~0!

gUp8~0! DUp~u!G , ~46!

where the primes here denoted/du5g21d/dt. From the
form of the number operator, Eq.~24!, solutionsUp(6u)
which grow in time will contribute to particle production.

In general, solutions to second-order differential equa-
tions with periodic coefficients will obey Floquet’s theorem
@31#; that is, for a periodic ‘‘potential’’ with period 2v @as is
the case for Eq.~41!#, solutions behave as

Up~u12v!5Up~u!eiF ~p!, ~47!
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where the Floquet indexF(p) is independent of time. The
solutions Up(2u) have the Floquet index2F(p). The
quasiperiodicity of thes(z) functions@30#,

s~z12v!52s~z!exp@2z~v!~z1v!#, ~48!

yields, for the solutions in Eq.~45!,

F~p!52i $v@z~a!1z~b!#2~a1b!z~v!%. ~49!

The solutionsUp(u) will reveal exponential instabilities,
then, wheneverF(p) has a nonzero imaginary component.
Equations~24! and ~46! reveal that it is these instabilities
which are responsible for the highly efficient, resonant par-
ticle production during preheating. As is clear from the rela-
tions of Eq. ~42!, together with series expansions of
`(z),`8(z), andz(z) ~see@30#!, such instabilities will occur
only whenboth`(b) and`8(b) are real. From Eq.~44!, we
see that for the physical wave numbers 0<k2,`, there ex-
ists only one band in which these exponential instabilities
may occur:

3

2
A11

K2

3g4<p2<A31
K2

g4, ~50!

or, in terms ofc0 and the dimensionless wave numberl :

3

2
Ac0

412Kc0
21

4

3
K212K<l 2

<A3c0
416Kc0

214K212K.
~51!

The existence of only one single resonance band for physical
wave numbers in this case matches the results found for
Minkowski spacetime in@9#. This resonance band is in terms
of comovingwave numberk; because we have neglected
interactions amongst the final-state bosons, the only way a
mode x l (t) will slide out of the resonance band in this
system is when the back reactionlS(t) grows so large that
it damps the oscillations of the zero mode, halting the para-
metric resonance. We will demonstrate in Sec. V that for
preheating in an expanding open FRW universe, this range
only includes subcurvature modes.

In order to evaluate quantitatively values of the solutions
Up(6u) in this resonance band, it is helpful to rewrite the
solutions in terms of the quasiperiodic Jacobianq functions,
which possess very rapidly converging series expansions.
Using the relations@29#

s~z!52v
q1~v !

q18~0!
expFz~v!z2

2v G ,
q1S v1

v8

2v D5 iq4~v !expF2 ipS v1
v8

4v D G , ~52!

the solutionsUp(u) may be written

Up~6v !5
q4~v1a!q4~v1b!q4

2~0!

q4
2~v !q4~a!q4~b!

exp@6 ivF~p!#,

~53!

where we have used 2vv[u,2va[a, and 2vb[b. The
relation @29#

z~z!5
z~v!

v
z1

1

2v

q18~v !

q1~v !
~54!

further allows us to rewrite the Floquet indexF(p) as

F~p!5 i Fq18~a!

q1~a!
1

q18~b!

q1~b!
G . ~55!

With the constraints ona and b in Eq. ~42!, the Floquet
index will reach a maximum in the resonance band for
a→b. We may evaluate the Floquet index at this maximum
by means of the series expansion forq1(v) @29#:

q18~v !

q1~v !
5pcot~pv !14p (

n51

`
q2n

~12q2n!
sin~2npv !,

5pcot~pv !14pq2sin~2pv !1O~q4!, ~56!

where the elliptic nomeq[exp@2iK8( k̄)/K( k̄)# satisfies
0<q<0.0432. WritingF(p).2i @q18(bmax)/q1(bmax)# near
its maximum in the resonance band yields

ReS q18~bmax!

q1~bmax!
D 54pq1O~q3!,

ReS ]2

]v2S q18~v !

q1~v !
DU

bmax
D 5216p3q1O~q3!, ~57!

where the maximum of the resonance occurs atbmax. From
the relations in Eqs.~42! and ~44!, bmax corresponds to the
wave number

pmax
2 →A31

K2

g4. ~58!

In other words, the maximum resonance will occur for
quanta with wave numbers near the top of the resonance
band. This behavior also matches that found for Minkowski
spacetime in@9#.

With these expressions, we may determine the growth of
the back reaction due to created quanta, as well as the num-
ber of quanta produced during the preheating epoch. From
the sign of F(p) at its maximum, it is clear that the
Up(2u) modes will grow exponentially in time for modes
within the resonance band, while the resonantUp(u) modes
will decrease exponentially. Keeping only the growing
modes, then, we may approximate

ux l ~t!u2.
1

8v l ~0!
uUp~2u!u2F11

v l
2 ~0!

g2Up8
2~0!G ~59!

and
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S~t!.E
0

`dl l 2

2p2 ux l ~t!u2

.E
0

` dl l 2

16p2v l ~0!
uAp~u!u2F11

v l
2 ~0!

g2Up8
2~0!G

3expF uvRe@F~p!#G ~60!

inside the resonance band. Here we have written the combi-
nation of oscillatingq functions as the single function,
Ap(u). We will evaluate this integral by means of a saddle-
point approximation. Using Eq.~41!, we may substitute

dl l 25g3dppAp22
2K
g2 , ~61!

and using Eq.~57! we may set

Re@F~p!#.8pq216p3q~p2pmax!
21O~q3!. ~62!

Furthermore, the integral will reach its maximum value when
the oscillating termAp(u)51. This yields

S~t!.Fg3pAp222K/g2

128p3v l ~0! S 11
v l
2 ~0!

g2Up8
2~0!

D GU
pmax

3
1

Aqgt/v
expF8pgq

v
t1O~q3!G . ~63!

Following @9#, we may then write the back reaction in the
form

S~t![
g3/2

N~K!At
exp@B~K!gt#. ~64!

In this form, we may solve for the timet when the back
reaction 3lS(t) grows to be of the same magnitude as the
tree-level terms. In our case, this occurs when
3lS(t).3c2(t).

For the entire range22K<c0
2<`, the average of the

square of the zero mode over a period of its oscillations
gives, to a good approximation@9#,

3c2~t!.
3

2
c0
25

3

2
~g22K!. ~65!

Setting the back reaction equal to this quantity yields

tend.
1

B~K̃!g
lnS N~K̃!~123K̃!

2lAB~K̃!
D , ~66!

where we have definedK̃[K/(3g2). Once the back reaction
grows to equal the magnitude of the tree-level terms, the
parametric amplification of the fluctuation modes ends. This
is the end of the preheating epoch, and hence we label the
time at which this occurstend.

In order to evaluateS(t), we must calculateUp8
2(0) at

pmax. Using the relations@30#

z~z11z2!5z~z1!1z~z2!1
1

2

`8~z1!2`8~z2!

`~z1!2`~z2!
,

`8~v8!50, `~v8!5e3 , ~67!

then Eqs.~40! and ~45! yield

Up8
2~0!upmax.

`82~bmax!

@`~bmax!2e3#
2

5
2~319K̃2!3/2218K̃~12K̃2!

@62~323K̃!A319K̃229K̃~12K̃!#
.

~68!

Similarly, the quantity

v l max

2 ~0!5l max
2 13c0

25g2@31A319K̃223K̃#. ~69!

The back reaction may thus be written

S~t!5
3g3/2

256p3G
1/2~K̃!J~K̃!AK~ k̄ !

q

1

At

3expF8pgq

K~ k̄ !
t1O~q3!G , ~70!

where we have defined

G~K̃![
319K̃226K̃A319K̃2

31A319K̃223K̃
,

J~K̃![
31A319K̃2~113K̃16K̃2!23K̃~623K̃22K̃2!

~319K̃2!3/229K̃~12K̃2!
.

~71!

WhenK50, this reduces to the more simple form

S~t!uK505
c0
3/2

256p3A31A3AK~1/A2!

qmax

1

At

3expF8pc0qmax

K~1/A2!
tG . ~72!

The numerical valuesK(1/A2)51.854, qmax50.0432, and
l510212 yield, for the quantities in Eq.~64!,

N~0!5
256p3

A31A3
A qmax

K~1/A2!
5556.995,

B~0!5
8pqmax

K~1/A2!
50.586,

tend~0!5
1

B~0!c0
lnS N~0!

2lAB~0!
D 5

57.266

c0
. ~73!
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The quantitiesN(K̃), B(K̃), andtend(K̃) will all approach
these values in the limitc0→`. We will calculate the maxi-
mum quantitative deviation from the flat-space results in Sec.
V.

Using the same saddle-point approximation, we may
solve for the total number of particles produced during pre-
heating. Within the resonance band, we will approximate

dx l
dt

.F2 ig

2v
F~p!Gx l ~t!, ~74!

so that near the center of the resonance band@see Eq.~24!#,

Nl
ad~t!.

v l ~t!

2
ux l ~t!u2F11

16p2q2g2

v2v l
2 ~t! G . ~75!

The total number of particles is

Ntotal
ad ~t!5E dl l 2

2p2 Nl
ad~t!. ~76!

From Eq.~60!, using 3lS(tend).3c0
2/2, and approximating

v l (tend).v l (0), this may be written

Ntotal
ad ~tend!.

g3~123K̃!

4l
@31A319K̃223K̃#1/2

3F11
16p2q2

K2~ k̄ !~31A319K̃223K̃!
G .

~77!

Equation~77! confirms that at the end of the preheating ep-
och, the number of particles produced is nonperturbatively
large, Ntotal}l21. Thus, for a massless inflaton decaying
strictly into massless inflaton quanta, resonant preheating in
an expanding FRW metric closely resembles the situation for
Minkowski spacetime.

V. COMPARISON OF OPEN AND FLAT CASES

In this section, we will demonstrate that two key approxi-
mations made above are consistent for the case of preheating
with a massless inflaton, and then compare the numerical
results for theK521 andK50 cases. First consider the
approximation made in Sec. III thatH!c during preheating.
TakingH(0)50, we may write the average of this Hubble
parameter over the duration of preheating. ForK50,

H̄5
1

2
H~tend!5

1

2tend
.1022c0 , ~78!

where the last step comes from using Eq.~73!. As demon-
strated below, for theK521 case,tend remains greater than
or equal to its numerical value in theK50 case, so that

H̄5 1
2 coth~tend!,c0 ~79!

for all c0
2.22K, as long asC2&10 after renormalization.

Over the course of preheating, then, it remains a good ap-
proximation to neglect theH2c2 term relative to thec4 term

in the energy density of the zero mode, Eq.~27!; when this is
done, the energy density remains proportional toa24 when
m50.

The other main assumption to check concerns the expan-
sion of the fluctuating fieldx in subcurvature modes only,
whenK521. For the decay process to be resonant, we re-
quire that the period of the Floquet solutions remain less than
the Hubble time. In terms of the timelike variableu, this
period is 2v52K( k̄ ); in terms of conformal timeh, then,
this requirement becomes

a0
2K~ k̄ !

gC ,H0
21 . ~80!

WhenK521, a05A2H0
21, so this requirement becomes

gC.2A2K~ k̄ !. ~81!

The modulusk̄ is related tog as @see Eq.~36!#

k̄ 25
g2C22K

2g2C2 . ~82!

Equation~81! is therefore satisfied forgC>5.3. From Eqs.
~41! and ~50!, and usingk5Cl , this means that

kmin
2 5

3

2
Ag4C41

K2C2

3
12K>

3

2
~5.3!222540.1

or kmin>6.3. ~83!

Thus, over the entire range of allowable initial conditions for
c0, preheating withK521 will only populate subcurvature
modes, withkmin.1.

With this restriction on the combinationgC, we may fur-
ther calculate the quantitative deviation forK521 in the
growth of the back reaction and total number of particles
produced from theK50 case. Numerical differences from
the K50 case arise both from the dependence ofk̄ @and
hence ofK( k̄ ) and q# on K, as well as from the explicit
factors of K̃5K/(3g2C2) in such quantities asN, B, tend,
andNtotal

ad . At the minimum allowable value ofgC55.3, we

have k̄50.72 ~near the flat case ofk̄50.707), or
q50.0396~near the flat case ofq50.0432). With the con-
stants at these values,

uK̃u<
1

3g2C2 51.231022. ~84!

From the definition ofg2, we also have the relation

g

c0
5~123K̃!21/2. ~85!

This means that the deviation from theK50 case remains on
the order of 1022. For example, comparing Eqs.~71! and
~73!,
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Gmax~K̃!5G~0!12.131022,

Jmax~K̃!5J~0!11.031022,

Nmax~K̃!

N~0!
50.93,

Bmax~K̃!

B~0!
50.89. ~86!

With these values, we see that the duration of preheating also
remains nearly the same in theK521 andK50 cases:

tend~K̃!

tend~0!
51.14. ~87!

Finally, the total number of particles produced in the two
cases obeys

Ntotal
ad ~K̃!

Ntotal
ad ~0!

50.98. ~88!

For gC.(gC)min55.3,k̄→1/A2 andK̃→0, so all numerical
quantities further approach their flat-space values.

Thus, the requirement that the period of the Floquet solu-
tions, 2v, remain less than one Hubble time greatly restricts
the numerical deviations between quantities in theK521
andK50 cases, when we consider chaotic inflation initial
conditions. For all dynamically consistent initial values of
c0 in the open inflation case, the total number of particles
produced during preheating remains within 2% of the flat-
space results.

VI. CONCLUSIONS

For a massless inflaton decaying resonantly into massless
inflaton quanta, preheating in expanding FRW spacetimes
closely resembles the Minkowski spacetime case. With cha-
otic inflation initial conditions, furthermore, quantitative dif-
ferences in the spectra of produced particles remain small
when comparing spatially flat with open models of inflation.
In both cases, a single narrow resonance band for comoving
wave numberk exists. Preheating ends attend, when the
back reactionlS(t) due to produced quanta damps the os-
cillations of the zero mode. Because the Hartree factorization
employed here neglects interactions amongst the final-state
bosons, such as rescatterings between each other and with
the zero mode, the quantitative values for the spectra derived
here likely represent an overestimate of their true magni-
tudes, though withl;10212, such rescatterings should re-

main subdominant effects. Furthermore, analytic study of the
dynamics is useful for comparing preheating in theK50 and
K521 cases.

The analytic study also clearly reveals the limits for pre-
heating with a massive inflaton, when the expansion of the
Universe is taken into account. From the form of the equa-
tions of motion in terms of the rescaled fields and conformal
time, it becomes easy to understand why numerical studies
of preheating in an expanding flat-FRW spacetime reveal a
lack of resonant decays for massive inflatons and quanta, for
many values of their couplings@7,18#. A nonzero mass for
either the inflaton or the quanta would break conformal in-
variance. For chaotic inflation initial conditions as consid-
ered here, solutions for the zero mode of a massive inflaton
would no longer be simply periodic or elliptic functions. Fur-
thermore, if the mass of the zero mode were zero but that of
the decay products nonzero, then the equation of motion for
the fluctuating field would include the nonperiodic term,
a2(h)m2. Either of these situations would mean that the
‘‘potential’’ for the fluctuating field would no longer be pe-
riodic. Yet the existence of Floquet solutions, with one or
more bands of exponential instabilities, depends upon a pe-
riodic potential in the equation of motion of the fluctuating
field. Only in the limitgw0

2@a2(h)m2, wherem is the mass
of the produced quanta andg is the coupling strength be-
tween the inflaton and fluctuating field, will the potential
approximate a periodic form. For the case of inflaton decay
into inflaton bosons, as studied here, limits both onl and on
mw from observed cosmic microwave background anisotro-
pies make it impossible to satisfy this limit, andno preheat-
ing may occur whenmwÞ0 for eitherK50 or K521, at
least for chaotic inflation initial conditions.

Finally, as demonstrated here, theK50 and K521
cases agree in the limitc0@uKu, which is not surprising
considering the equations of motion in Eqs.~34! and ~41!.
For this reason, it would be interesting to compare the pre-
heating scenario for a symmetry-breaking potential with new
inflation initial conditions,c0→0, for both theK50 and
K521 cases. The question of a nonthermal restoration of
symmetry with such a potential and initial conditions has
been raised for preheating in both Minkowski and flat-FRW
spacetimes@15# ~though see also@9,10#!. Because the pre-
heating dynamics for such a model in an expanding open
universe differ from those in both of these spatially flat
cases, such a scenario warrants attention. This is the subject
of further research.
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