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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• The Role of Convexity in Optimization

• Duality Theory

• Algorithms and Duality

• Course Organization



HISTORY AND PREHISTORY

• Prehistory: Early 1900s - 1949.

− Caratheodory, Minkowski, Steinitz, Farkas.

− Properties of convex sets and functions.

• Fenchel - Rockafellar era: 1949 - mid 1980s.

− Duality theory.

− Minimax/game theory (von Neumann).

− (Sub)differentiability, optimality conditions,
sensitivity.

• Modern era - Paradigm shift: Mid 1980s - present.

− Nonsmooth analysis (a theoretical/esoteric
direction).

− Algorithms (a practical/high impact direc-
tion).

− A change in the assumptions underlying the
field.



OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)

subject to x ∈ C

Cost function f : ℜn 7→ ℜ, constraint set C, e.g.,

C = X ∩
{

x | h1(x) = 0, . . . , hm(x) = 0
}

∩
{

x | g1(x) ≤ 0, . . . , gr(x) ≤ 0
}

• Continuous vs discrete problem distinction

• Convex programming problems are those for
which f and C are convex

− They are continuous problems

− They are nice, and have beautiful and intu-
itive structure

• However, convexity permeates all of optimiza-
tion, including discrete problems

• Principal vehicle for continuous-discrete con-
nection is duality:

− The dual of a discrete problem is continu-
ous/convex

− The dual provides info for the solution of the
discrete primal (e.g., lower bounds, etc)



WHY IS CONVEXITY SO SPECIAL?

• A convex function has no local minima that are
not global

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• A convex set has nice “shape”:

− Nonempty relative interior

− Connected

− Has feasible directions at any point

• A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are
self-dual with respect to conjugacy

• Many important problems are convex!!



DUALITY

• Two different views of the same object.

• Example: Dual description of signals.

A union of points An intersection of hyperplanes

Time domain Frequency domainTime domain Frequency domain

• Dual description of closed convex sets

A union of points An intersection of hyperplanes

Time domain Frequency domain

A union of its points An intersection of halfspaces
Abstract Min-Common/Max-Crossing Theorems



DUAL DESCRIPTION OF CONVEX FUNCTIONS

• Define a closed convex function by its epigraph.

• Describe the epigraph by hyperplanes.

• Associate hyperplanes with crossing points (the
conjugate function).
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FENCHEL PRIMAL AND DUAL PROBLEMS
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• Primal problem:

min
x

{

f1(x) + f2(x)
}

• Dual problem:

max
y

{

− f∗1 (y)− f∗2 (−y)
}

where f∗1 and f∗2 are the conjugates



FENCHEL DUALITY
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• Under favorable conditions (convexity):

− The optimal primal and dual values are equal

− The optimal primal and dual solutions are
related



A MORE ABSTRACT VIEW OF DUALITY

• Despite its elegance, the Fenchel framework is
somewhat indirect.

• From duality of set descriptions, to

− duality of functional descriptions, to

− duality of problem descriptions.

• A more direct approach:

− Start with a set, then

− Define two simple prototype problems dual
to each other.

• Skip the functional descriptions

− A simpler, less constrained framework



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

• The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



ABSTRACT/GENERAL DUALITY ANALYSIS

Abstract Min-Common/Max-Crossing Theorems
Minimax Duality (minmax=maxmin)
Constrained Optimization Duality

Constrained Optimization Duality

Theorems of the Alternative etcConstrained Optimization Duality

Theorems of the Alternative etc

Abstract Min-Common/Max-Crossing Theorems
Minimax Duality (minmax=maxmin)Abstract Min-Common/Max-Crossing Theorems

Minimax Duality (minmax=maxmin)

Constrained Optimization Duality

Theorems of the Alternative etc

Time domain Frequency domainTheorems of the Alternative etc

Time domain Frequency domain

Minimax Duality ( MinMax = MaxMin )

Abstract Geometric Framework

Special choices of

Special choices of M

Abstract Geometric Framework (Set M)



EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (if it is not polyhedral).

− Also the vector sum of two closed convex sets
need not be closed.

x1

x2

C1 =
{

(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1
}

C2 =
{

(x1, x2) | x1 = 0
}

,

• This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



MODERN VIEW OF CONVEX OPTIMIZATION

• Traditional view: Pre 1990s

− LPs are solved by simplex method

− NLPs are solved by gradient/Newton meth-
ods

− Convex programs are special cases of NLPs

LP CONVEX NLP LP CONVEX NLPLP CONVEX NLP

Duality Gradient/NewtonSimplex

• Modern view: Post 1990s

− LPs are often solved by nonsimplex/convex
methods

− Convex problems are often solved by the same
methods as LPs

− “Key distinction is not Linear-Nonlinear but
Convex-Nonconvex” (Rockafellar)

LP CONVEX NLPLP CONVEX NLPLP CONVEX NLP

Simplex
Gradient/NewtonDuality

Subgradient Cutting plane Interior point

Subgradient Cutting plane Interior point

Subgradient Cutting plane Interior point Subgradient



THE RISE OF THE ALGORITHMIC ERA

• Convex programs and LPs connect around

− Duality

− Large-scale piecewise linear problems

• Synergy of:

− Duality

− Algorithms

− Applications

• New problem paradigms with rich applications

• Duality-based decomposition

− Large-scale resource allocation

− Lagrangian relaxation, discrete optimization

− Stochastic programming

• Conic programming

− Robust optimization

− Semidefinite programming

• Machine learning

− Support vector machines

− l1 regularization/Robust regression/Compressed
sensing



METHODOLOGICAL TRENDS

• New methods, renewed interest in old methods.

− Subgradient/incremental methods

− Polyhedral approximation/cutting plane meth-
ods

− Regularization/proximal methods

− Interior point methods

− Incremental methods

• Renewed emphasis on complexity analysis

− Nesterov, Nemirovski, and others ...

− “Optimal algorithms” (e.g., extrapolated gra-
dient methods)

• Emphasis on interesting (often duality-related)
large-scale special structures

− Separable problems

− Cost functions consisting of a large number
of additive components

− Many constraints



COURSE OUTLINE

• We will follow closely the textbooks

− Bertsekas, “Convex Optimization Theory,”
Athena Scientific, 2009

− Bertsekas, “Convex Optimization Algorithms,”
Athena Scientific, 2014 (in press)

• Additional book references:

− Rockafellar, “Convex Analysis,” 1970.

− Boyd and Vanderbergue, “Convex Optimiza-
tion,” Cambridge U. Press, 2004. (On-line)

− Bertsekas, Nedic, and Ozdaglar, “Convex Anal-
ysis and Optimization,” Ath. Scientific, 2003.

• Topics :

− Basic Convexity: Ch. 1 (Theory book).

− Convexity and Optimization: Ch. 3.

− Geometric Duality Framework: Ch. 4.

− Duality, Opt. Conditions: Sect. 5.1-5.3.

− Overview of Problem Structures and
Algorithms: Ch. 1 (Alg. Book).

− Subgradient Methods: Ch. 2.

− Polyhedral Approx. Methods: Ch. 3.

− Proximal Methods: Ch. 4.

− Additional Methods/Variants: Ch. 5.



WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework (50%); term paper
on mutually agreed subject (50%). (Midterm ?)

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat with mathematical rigor an impor-
tant branch of methodological research, and
to provide an account of the state of the art
in the field

− To get an understanding of the merits, limi-
tations, and characteristics of the rich set of
available algorithms

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

• Applications:

− They are many and pervasive ... but don’t
expect much in this course.

− You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance un-
derstanding of ideas, not to express them precisely

• The omitted proofs and a fuller discussion can
be found in the textbooks and supplementary ma-
terial

• One further note: The present set of slides dif-
fers from slides for this class from earlier years in
that it has a considerably stronger focus on algo-
rithms.



LECTURE 2

LECTURE OUTLINE

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions

Reading: Section 1.1



SOME MATH CONVENTIONS

• All of our work is done in ℜn: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “′” denotes transpose, so we use x′ to denote a
row vector

• x′y is the inner product
∑n

i=1 xiyi of vectors x
and y

• ‖x‖ =
√
x′x is the (Euclidean) norm of x. We

use this norm almost exclusively

• See Appendix A of the textbook for an overview
of the linear algebra and real analysis background
that we will use. Particularly the following:

− Definition of sup and inf of a set of real num-
bers

− Convergence of sequences (definitions of lim inf,
lim sup of a sequence of real numbers, and
definition of lim of a sequence of vectors)

− Open, closed, and compact sets and their
properties

− Definition and properties of differentiation



CONVEX SETS

αx + (1 − α)y, 0 ≤ α ≤ 1
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x y
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• A subset C of ℜn is called convex if

αx+ (1− α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]

• Operations that preserve convexity

− Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

• Special convex sets:

− Polyhedral sets: Nonempty sets of the form

{x | a′jx ≤ bj , j = 1, . . . , r}
(always convex, closed, not always bounded)

− Cones: Sets C such that λx ∈ C for all λ > 0
and x ∈ C (not always convex or closed)



CONVEX FUNCTIONS

a f(x) + (1 - a )f(y)

x y

C

f(a x + (1 - a )y)

a x + (1 - a )y

f(x)

f(y)

αx + (1− α)y

y C

x x y

f(x)

) f(y)

) αf(x) + (1− α)f(y)

f
(

αx + (1 − α)y
)

• Let C be a convex subset of ℜn. A function
f : C 7→ ℜ is called convex if for all α ∈ [0, 1]

f
(

αx+(1−α)y
)

≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C

If the inequality is strict whenever a ∈ (0, 1) and
x 6= y, then f is called strictly convex over C.

• If f is a convex function, then all its level sets
{x ∈ C | f(x) ≤ γ} and {x ∈ C | f(x) < γ},
where γ is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

f(x)

x

Convex function

f(x)

x

Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• The epigraph of a function f : X 7→ [−∞,∞]
is the subset of ℜn+1 given by

epi(f) =
{

(x,w) | x ∈ X, w ∈ ℜ, f(x) ≤ w
}

• The effective domain of f is the set

dom(f) =
{

x ∈ X | f(x) <∞
}

• We say that f is convex if epi(f) is a convex
set. If f(x) ∈ ℜ for all x ∈ X and X is convex,
the definition “coincides” with the earlier one.

• We say that f is closed if epi(f) is a closed set.

• We say that f is lower semicontinuous at a
vector x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every
sequence {xk} ⊂ X with xk → x.



CLOSEDNESS AND SEMICONTINUITY I

• Proposition: For a function f : ℜn 7→ [−∞,∞],
the following are equivalent:

(i) Vγ = {x | f(x) ≤ γ} is closed for all γ ∈ ℜ.
(ii) f is lower semicontinuous at all x ∈ ℜn.

(iii) f is closed.

f(x)

X x
{

x | f(x) ≤ γ
}

γ

epi(f)

• (ii) ⇒ (iii): Let
{

(xk, wk)
}

⊂ epi(f) with
(xk, wk) → (x,w). Then f(xk) ≤ wk, and

f(x) ≤ lim inf
k→∞

f(xk) ≤ w so (x,w) ∈ epi(f)

• (iii) ⇒ (i): Let {xk} ⊂ Vγ and xk → x. Then
(xk, γ) ∈ epi(f) and (xk, γ) → (x, γ), so (x, γ) ∈
epi(f), and x ∈ Vγ .

• (i)⇒ (ii): If xk → x and f(x) > γ > lim infk→∞ f(xk)
consider subsequence {xk}K → x with f(xk) ≤ γ
- contradicts closedness of Vγ .



CLOSEDNESS AND SEMICONTINUITY II

• Lower semicontinuity of a function is a “domain-
specific” property, but closeness is not:

− If we change the domain of the function with-
out changing its epigraph, its lower semicon-
tinuity properties may be affected.

− Example: Define f : (0, 1) → [−∞,∞] and

f̂ : [0, 1] → [−∞,∞] by

f(x) = 0, ∀ x ∈ (0, 1),

f̂(x) =
{

0 if x ∈ (0, 1),
∞ if x = 0 or x = 1.

Then f and f̂ have the same epigraph, and
both are not closed. But f is lower-semicon-
tinuous at all x of its domain while f̂ is not.

• Note that:

− If f is lower semicontinuous at all x ∈ dom(f),
it is not necessarily closed

− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X 7→ [−∞,∞] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ∈ dom(f), then f is closed.



PROPER AND IMPROPER CONVEX FUNCTIONS

• We say that f is proper if f(x) <∞ for at least
one x ∈ X and f(x) > −∞ for all x ∈ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

f(x) f(x)

x

dom(f) dom(f)
x

Closed Improper Function Not Closed Improper FunctionClosed Improper Function Not Closed Improper Function

) epi(f) ) epi(f)

• An improper closed convex function is very pe-
culiar: it takes an infinite value (∞ or −∞) at
every point.



RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: (a) The function g : ℜn 7→ (−∞,∞]
given by

g(x) = λ1f1(x) + · · ·+ λmfm(x), λi > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).

(b) The function g : ℜn 7→ (−∞,∞] given by

g(x) = f(Ax)

where A is an m× n matrix is convex (or closed)
if f is convex (respectively, closed).

(c) Consider fi : ℜn 7→ (−∞,∞], i ∈ I, where I
is any index set. The function g : ℜn 7→ (−∞,∞]
given by

g(x) = sup
i∈I

fi(x)

is convex (or closed) if the fi are convex (respec-
tively, closed).



LECTURE 3

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and Affine Hulls

• Caratheodory’s Theorem

Reading: Sections 1.1, 1.2



DIFFERENTIABLE FUNCTIONS

• Let f : ℜn 7→ ℜ be some function. We define
ith partial derivative of f at x ∈ ℜn, by

∂f

∂xi
(x) = lim

α→0

f(x+ αei)− f(x)

α
,

where ei is the ith unit vector (assuming the limit
exists).

• The gradient of f at x is the column vector

∇f(x) =







∂f(x)
∂x1

...
∂f(x)
∂xn







• f is called differentiable at x if ∇f(x) exists
and satisfies for all d ∈ ℜn

f(x+ αd) = f(x) + α∇f(x)′d+ o(|α|), ∀ α ∈ ℜ

• o(·) Notation: o(‖y‖) is a function h : ℜm 7→ ℜ
s.t. for all {yk} ⊂ ℜm with yk → 0 and yk 6= 0 for
all k,

lim
k→∞

h(yk)

‖yk‖
= 0



DIFFERENTIABLE CONVEX FUNCTIONS

• Basic Characterization: Linear approximation
based on ∇f(x) underestimates f

• Proposition: Let C ⊂ ℜn be a convex set and
let f : ℜn 7→ ℜ be differentiable over ℜn.

(a) The function f is convex over C iff

f(z) ≥ f(x) +∇f(x)′(z− x), ∀ x, z ∈ C

(gradient inequality for convex functions)

(b) If the inequality is strict whenever x 6= z,
then f is strictly convex over C.



PROOF IDEAS

Proof that

f(z) ≥ f(x)+∇f(x)′(z−x), ∀ x, z ⇒ f is convex

Proof that

f is convex ⇒ f(z) ≥ f(x)+∇f(x)′(z−x), ∀ x, z



OPTIMALITY CONDITION

• Let C be a nonempty convex subset of ℜn

and let f : ℜn 7→ ℜ be convex and differentiable.
Then:

x∗ ∈ argmin
x∈C

f(x) ⇔ ∇f(x∗)′(x−x∗) ≥ 0, ∀ x ∈ C

Proof: Let the condition on the right hold. Then

f(x) ≥ f(x∗)+∇f(x∗)′(x−x∗) ≥ f(x∗), ∀ x ∈ C,

so x∗ minimizes f over C.
Converse: Assume the contrary, i.e., x∗ min-

imizes f over C and ∇f(x∗)′(x−x∗) < 0 for some
x ∈ C. By differentiation, we have

lim
α↓0

f
(

x∗ + α(x− x∗)
)

− f(x∗)

α
= ∇f(x∗)′(x−x∗) < 0

so f
(

x∗ + α(x − x∗)
)

decreases strictly for suffi-
ciently small α > 0, contradicting the optimality
of x∗. Q.E.D.



PROJECTION THEOREM

• Let C be a nonempty closed convex set in ℜn.

(a) For every z ∈ ℜn, there exists a unique min-
imum of

f(x) = ‖z − x‖2

over all x ∈ C (called the projection of z on
C).

(b) x∗ is the projection of z if and only if

(x− x∗)′(z − x∗) ≤ 0, ∀ x ∈ C

Proof: (a) f is strictly convex and has compact
level sets.

(b) This is just the necessary and sufficient opti-
mality condition

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ C.



TWICE DIFFERENTIABLE CONVEX FNS

• Let C be a convex subset of ℜn and let f :
ℜn 7→ ℜ be twice continuously differentiable.

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ∈ C.

Proof: (a) By mean value theorem, for x, y ∈ C

f(y) = f(x)+∇f(x)′(y−x)+ 1
2
(y−x)′∇2f

(

x+α(y−x)
)

(y−x)

for some α ∈ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) +∇f(x)′(y − x), ∀ x, y ∈ C

This is the gradient inequality, so f is convex.

(b) Similar to (a), f(y) > f(x)+∇f(x)′(y−x) for
all x, y ∈ C with x 6= y, and we use the gradient
inequality result.

(c) By contradiction ... similar.



CONVEX AND AFFINE HULLS

• Given a set X ⊂ ℜn:

• A convex combination of elements of X is a
vector of the form

∑m
i=1 αixi, where xi ∈ X, αi ≥

0, and
∑m

i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X. (Can
be shown to be equal to the set of all convex com-
binations from X).

• The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space).

• A nonnegative combination of elements of X is
a vector of the form

∑m
i=1 αixi, where xi ∈ X and

αi ≥ 0 for all i.

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:

− It is a convex cone containing the origin.

− It need not be closed!

− If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM

x

x

x

z x1

z x1

x2

x2

x3

x4

conv(X)

cone(X)

X

(a) ) (b)

x

0

• Let X be a nonempty subset of ℜn.

(a) Every x 6= 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm
from X that are linearly independent (so
m ≤ n).

(b) Every x ∈ conv(X) can be represented as
a convex combination of vectors x1, . . . , xm
from X with m ≤ n+ 1.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x 6= 0 belong to cone(X), and let m be the
smallest integer such that x =

∑m
i=1 αixi, where

αi > 0 and xi ∈ X, i = 1, . . . ,m.
If the xi were linearly dependent, there would

exist λ1, . . . , λm, with
m
∑

i=1

λixi = 0

and at least one of the λi is positive. We have

x =
m
∑

i=1

(αi − γλi)xi,

where γ is the largest γ such that αi−γλi ≥ 0 for
all i. This represents x as a positive combination
of fewer than m vectors of X – a contradiction.
Therefore, x1, . . . , xm, are linearly independent.

(b) Apply part (a) to Y =
{

(x, 1) | x ∈ X
}

.

Y

x

X

0

1

(x, 1)

n



AN APPLICATION OF CARATHEODORY

• The convex hull of a closed set need not be
closed! But ...

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can

be expressed as
{

∑n+1
i=1 α

k
i x

k
i

}

, where for all k and

i, αk
i ≥ 0, xki ∈ X, and

∑n+1
i=1 α

k
i = 1. Since the

sequence

{

(αk
1 , . . . , α

k
n+1, x

k
1 , . . . , x

k
n+1)

}

is bounded, it has a limit point

{

(α1, . . . , αn+1, x1, . . . , xn+1)
}

,

which must satisfy
∑n+1

i=1 αi = 1, and αi ≥ 0,
xi ∈ X for all i.

The vector
∑n+1

i=1 αixi belongs to conv(X)

and is a limit point of
{

∑n+1
i=1 α

k
i x

k
i

}

, showing

that conv(X) is compact. Q.E.D.



LECTURE 4

LECTURE OUTLINE

• Relative interior and closure

• Algebra of relative interiors and closures

• Directions of recession

Reading: Section 1.3.1 and Section 1.4 up to (but
not including) Section 1.4.1
—————————————————————

Two key facts about convex sets:

• A convex set has nonempty interior (when viewed
relative to its affine hull)

• A convex set has nice behavior “at ∞”: If a
closed convex set contains a half line that starts
at one of its points, it contains every translation
that starts at another one of its points



RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ∈ ri(C) and x ∈ cl(C), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

x

C xα = αx+(1−α)x

x

x S

Sα
α ǫ

0 αǫ

• Proof of case where x ∈ C: See the figure.

• Proof of case where x /∈ C: Take sequence
{xk} ⊂ C with xk → x. Argue as in the figure.



ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) Prolongation Lemma: x ∈ ri(C) if and only
if every line segment in C having x as one
endpoint can be prolonged beyond x without
leaving C.

z2

C

X

z z1

z1 and z2 are linearly

independent, belong to

C and span aff(C)

0

Proof: (a) Assume 0 ∈ C. Choose m linearly
independent vectors z1, . . . , zm ∈ C, where m =
dimension(aff(C)). Prove that X ⊂ ri(C), where

X =

{

m
∑

i=1

αizi

∣

∣

∣

m
∑

i=1

αi < 1, αi > 0, i = 1, . . . ,m

}

(b) => is clear by the def. of rel. interior. Reverse:
take any x ∈ ri(C); use Line Segment Principle.



OPTIMIZATION APPLICATION

• A concave function f : ℜn 7→ ℜ that attains its
minimum over a convex set X at an x∗ ∈ ri(X)
must be constant over X.

Proof: (By contradiction) Let x ∈ X be such
that f(x) > f(x∗). Prolong beyond x∗ the line
segment x-to-x∗ to a point x ∈ X. By concavity
of f , we have for some α ∈ (0, 1)

f(x∗) ≥ αf(x) + (1− α)f(x),

and since f(x) > f(x∗), we must have f(x∗) >
f(x) - a contradiction. Q.E.D.

• Corollary: A linear function f(x) = c′x, c 6= 0,
cannot attain a minimum at an interior point of a
convex set.



CALCULUS OF REL. INTERIORS: SUMMARY

• The ri(C) and cl(C) of a convex set C “differ
very little.”

− ri(C) = ri
(

cl(C)
)

, cl(C) = cl
(

ri(C)
)

− Any point in cl(C) can be approximated ar-
bitrarily closely by a point in ri(C).

• Relative interior and closure commute with
Cartesian product.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither relative interior nor closure commute
with set intersection.

• “Good” operations: Cartesian product for both,
and image for relative interior.

• “Bad” operations: Set intersection for both, and
image for closure (need additional assumptions for
equality).



CLOSURE VS RELATIVE INTERIOR

• Proposition:

(a) We have cl(C) = cl
(

ri(C)
)

and ri(C) = ri
(

cl(C)
)

.

(b) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(

ri(C)
)

⊂
cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C).
By the Line Segment Principle, we have

αx+ (1− α)x ∈ ri(C), ∀ α ∈ (0, 1].

Thus, x is the limit of a sequence that lies in ri(C),
so x ∈ cl

(

ri(C)
)

.

x

x
C

The proof of ri(C) = ri
(

cl(C)
)

is similar.



LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of ℜn and
let A be an m× n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A · C (relative to the affine
hull).

(b) We have A·cl(C) ⊂ cl(A·C), since if a sequence
{xk} ⊂ C converges to some x ∈ cl(C) then the
sequence {Axk}, which belongs to A ·C, converges
to Ax, implying that Ax ∈ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ∈ cl(A · C). Then, there
exists {xk} ⊂ C such that Axk → z. Since C is
bounded, {xk} has a subsequence that converges
to some x ∈ cl(C), and we must have Ax = z. It
follows that z ∈ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) 6= int(A · C), A · cl(C) 6= cl(A · C)



VECTOR SUMS AND INTERSECTIONS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⊂ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) We have

ri(C1)∩ri(C2) ⊂ ri(C1∩C2), cl(C1∩C2) ⊂ cl(C1)∩cl(C2)

If ri(C1) ∩ ri(C2) 6= Ø, then

ri(C1∩C2) = ri(C1)∩ri(C2), cl(C1∩C2) = cl(C1)∩cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) 7→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0}

C1 = {x | x < 0}, C2 = {x | x > 0}



RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C to points outside C:

x+ αd ∈ C, ∀ x ∈ C, ∀ α ≥ 0

x

C

0

d

x + αd

Recession Cone RC

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.



RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector d belongs to RC if and only if there
exists some vector x ∈ C such that x+αd ∈
C for all α ≥ 0.

(c) C is compact if and only if RC = {0}.
(d) If D is another closed convex set such that

C ∩D 6= Ø, we have

RC∩D = RC ∩RD

More generally, for any collection of closed
convex sets Ci, i ∈ I, where I is an arbitrary
index set and ∩i∈ICi is nonempty, we have

R∩i∈ICi
= ∩i∈IRCi

• Note an important fact: A nonempty intersec-
tion of closed sets ∩i∈ICi is compact if and only
if ∩i∈IRCi

= {0}.



PROOF OF PART (B)

x

C

z1 = x + d

d z2

z3

x

x + d

d x + d1

x + d2

x + d3

• Let d 6= 0 be such that there exists a vector
x ∈ C with x + αd ∈ C for all α ≥ 0. We fix
x ∈ C and α > 0, and we show that x + αd ∈ C.
By scaling d, it is enough to show that x+ d ∈ C.

For k = 1, 2, . . ., let

zk = x+ kd, dk =
(zk − x)

‖zk − x‖‖d‖

We have

dk

‖d‖
=

‖zk − x‖

‖zk − x‖

d

‖d‖
+

x− x

‖zk − x‖
,

‖zk − x‖

‖zk − x‖
→ 1,

x− x

‖zk − x‖
→ 0,

so dk → d and x+ dk → x+ d. Use the convexity
and closedness of C to conclude that x+ d ∈ C.



APPLICATION: CLOSURE OF A · C

• Let C be a nonempty closed convex, and let
A be a matrix with nullspace N(A). Then AC is
closed if RC ∩N(A) = {0}.
Proof: Let {yk} ⊂ AC with yk → y. Define the
nested sequence Ck = C ∩Nk, where

Nk = {x | Ax ∈Wk}, Wk =
{

z | ‖z−y‖ ≤ ‖yk−y‖
}

We have RNk
= N(A), RCk

= RC ∩ N(A) =
{0}, so Ck is compact, and {Ck} has nonempty
intersection. Q.E.D.

x

Nk

AC

C

k y C yk+1 yk

y Ck

• A special case: C1 + C2 is closed if C1, C2

are closed and one of the two is compact. [Write
C1+C2 = A(C1×C2), where A(x1, x2) = x1+x2.]

• Related theorem: A · C is closed if C is poly-
hedral. Can be shown by a more refined method
(see the text), or by other methods.



LECTURE 5

LECTURE OUTLINE

• Directions of recession of convex functions

• Local and global minima

• Existence of optimal solutions

Reading: Sections 1.4.1, 3.1, 3.2



DIRECTIONS OF RECESSION OF A FN

• We aim to characterize directions of monotonic
decrease of convex functions.

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− All the nonempty level sets
{

x | f(x) ≤ γ
}

are unbounded along these same directions.

− f is monotonically nonincreasing along these
directions.

• These are the directions of recession of f .

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS

• Proposition: Let f : ℜn 7→ (−∞,∞] be a closed
proper convex function and consider the level sets
Vγ =

{

x | f(x) ≤ γ
}

, where γ is a scalar. Then:

(a) All the nonempty level sets Vγ have the same
recession cone, denoted Rf , and called the
recession cone of f :

RVγ = Rf =
{

d | (d, 0) ∈ Repi(f)

}

(b) If one nonempty level set Vγ is compact, then
all level sets are compact.

Proof: (a) Just translate to math the fact that

RVγ = the “horizontal” directions of recession of epi(f)

(b) This is the case where RVγ
= {(0, 0)} for all γ

such that Vγ is nonempty.



RECESSION FUNCTION

• Recession fn of closed proper convex f : Func-
tion rf : ℜn 7→ (−∞,∞] whose epigraph isRepi(f).

f(x)

) rf (d)
Constraint Perturbed Constraint

d x,d) d x,1 0

epi(f)

f(x)
) rf (d)

Constraint Perturbed Constraint
d x,d) d x,

1 0

epi(f)

) epi(rf ) = Repi(f)

=

) epi(rf ) = Repi(f)

=

• We have

Rf = {d | (d, 0) ∈ Repi(f)} =
{

d | rf (d) ≤ 0
}

This is the set of all directions along which f does
not increase.



RECESSION FUNCTION & ASYMPTOTIC SLOPES

• It can be seen that for all x ∈ dom(f), d ∈ ℜn,

rf (d) = sup
α>0

f(x+ αd)− f(x)

α
= lim

α→∞

f(x+ αd)− f(x)

α

rf (d) is the “asymptotic slope” of f along d

f(x)

1 0
α γ α γ

Slope =
f(x+αd)−f(x)

α

) Slope = rf (d)

α γ f(x+ γd)

) f(x+ αd)

View from x

x along direction d

• f differentiable: rf (d) = limα→∞ ∇f(x+αd)′d

f(x)

1 0 α γ α γ

) Slope = rf (d)

α γ f(x+ γd)

) Slope = ∇f(x+αd)′d

View from x

x along direction d

• Calculus of recession functions:

rf1+···+fm(d) = rf1(d) + · · ·+ rfm(d),

rsupi∈I fi(d) = sup
i∈I

rfi(d)



DESCENT BEHAVIOR OF A CONVEX FN

f(x + a y)

a

f(x)

(a)

f(x + a y)

a

f(x)

(b)

f(x + a y)

a

f(x)

(c)

f(x + a y)

a

f(x)

(d)

f(x + a y)

a

f(x)

(e)

f(x + a y)

a

f(x)

(f)

α α

αα

α α

x, f(x)

x, f(x)

x, f(x)

x, f(x)

x, f(x)

x, f(x)

f(x + αd)

f(x + αd) f(x + αd)

f(x + αd)

f(x + αd)f(x + αd)

rf (d) = 0

rf (d) = 0 rf (d) = 0

rf (d) < 0

rf (d) > 0 rf (d) > 0

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ∈ dom(f).



EXAMPLE: POS. SEMIDEFINITE FUNCTIONS

• Consider

f(x) = x′Qx+ a′x+ b

whereQ: positive semidefinite symmetric, a ∈ ℜn,
b ∈ ℜ.
• Recession cone:

Rf = {d | Qd = 0, a′d ≤ 0}

• Constancy space (set of directions along which
f is constant):

Lf = (Rf ) ∩ (−Rf ) = {d | Qd = 0, a′d = 0}

• Recession function:

rf (d) =

{

a′d if d ∈ N(Q),
∞ if d /∈ N(Q).

• Rf = Lf = {0} if and only if Q is positive
definite.



LOCAL AND GLOBAL MINIMA

• Consider minimizing f : ℜn 7→ (−∞,∞] over a
set X ⊂ ℜn.

• x is feasible if x ∈ X ∩ dom(f).

• x∗ is a (global) minimum of f over X if x∗ is
feasible and f(x∗) = infx∈X f(x).

• x∗ is a local minimum of f over X if x∗ is a
minimum of f over a set X ∩ {x | ‖x− x∗‖ ≤ ǫ}.
Proposition: If X is convex and f is convex, then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.



EXISTENCE OF OPTIMAL SOLUTIONS

• The set of minima of a proper f : ℜn 7→
(−∞,∞] is the intersection of its nonempty level
sets.

• The set of minima of f is nonempty and com-
pact if all the level sets of f are compact.

• (An Extension of the) Weierstrass’ Theorem:
The set of minima of f over X is nonempty and
compact if X is closed, f is lower semicontinuous
over X, and one of the following conditions holds:

(1) X is bounded.

(2) Some set
{

x ∈ X | f(x) ≤ γ
}

is nonempty
and bounded.

(3) If {xk} ⊂ X and ‖xk‖ → ∞, then

lim
k→∞

f(xk) = ∞.

Proof: The function f̂ given by

f̂(x) =

{

f(x) if x ∈ X,
∞ if x /∈ X,

is closed and has compact level sets under any of
(1)-(3). Q.E.D.



EXISTENCE OF SOLUTIONS - CONVEX CASE

• Weierstrass’ Theorem specialized to convex func-
tions: Let X be a closed convex subset of ℜn,
and let f : ℜn 7→ (−∞,∞] be closed convex with
X ∩ dom(f) 6= Ø. The set of minima of f over X
is nonempty and compact if and only if X and f
have no common nonzero direction of recession.

Proof: Let f∗ = infx∈X f(x) and note that f∗ <
∞ since X ∩ dom(f) 6= Ø. Let {γk} be a scalar
sequence with γk ↓ f∗, and consider the sets

Vk =
{

x | f(x) ≤ γk
}

.

Then the set of minima of f over X is

X∗ = ∩∞
k=1(X ∩ Vk).

The sets X ∩ Vk are nonempty and have RX ∩Rf

as their common recession cone, which is also the
recession cone of X∗, when X∗ 6= Ø. It follows
that X∗ is nonempty and compact if and only if
RX ∩Rf = {0}. Q.E.D.



EXISTENCE OF SOLUTION, SUM OF FNS

• Let fi : ℜn 7→ (−∞,∞], i = 1, . . . ,m, be closed
proper convex such that the function

f = f1 + · · ·+ fm

is proper. Assume that a single fi satisfies rfi(d) =
∞ for all d 6= 0. Then the set of minima of f is
nonempty and compact.

• Proof: We have rf (d) = ∞ for all d 6= 0 since
rf (d) =

∑m
i=1 rfi(d). Hence f has no nonzero di-

rections of recession. Q.E.D.

• Example of application: If one of the fi is pos-
itive definite quadratic.

− The set of minima of f = f1 + · · · + fm is
nonempty and compact.

− f has a unique minimum because the posi-
tive definite quadratic is strictly convex, which
makes f strictly convex.

• The conclusion also holds for f = max{f1, . . . , fm}.



LECTURE 6

LECTURE OUTLINE

• Hyperplanes

• Supporting and Separating Hyperplane Theo-
rems

• Strict Separation

• Proper Separation

• Nonvertical Hyperplanes

Reading: Section 1.5



HYPERPLANES

x

Negative Halfspace

Positive Halfspace

e {x | a′x ≥ b}

e {x | a′x ≤ b}

Hyperplane

{x | a′x = b} = {x | a′x = a′x}

a

• A hyperplane is a set of the form {x | a′x = b},
where a is nonzero vector in ℜn and b is a scalar.

• We say that two sets C1 and C2 are separated
by a hyperplane H = {x | a′x = b} if each lies in a
different closed halfspace associated with H , i.e.,

either a′x1 ≤ b ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

or a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.



VISUALIZATION

• Separating and supporting hyperplanes:

a

(a)

C1 y C2

x

a

) (b)

C

• A separating {x | a′x = b} that is disjoint from
C1 and C2 is called strictly separating:

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2

(a)

C1 y C2

x

a

) (b)

C1

y C2

d x1

1 x2



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

a

C

x

x0

x1

x2

x3

x̂0

x̂1

1 x̂2

x̂3

a0

a1

a2
a3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ∈
cl(C)

a′kx ≥ a′kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,

where ak = (x̂k − xk)/‖x̂k − xk‖. Let a be a limit
point of {ak}, and take limit as k → ∞. Q.E.D.



SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of ℜn. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a 6= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a 6= 0 such
that

0 ≤ a′x, ∀ x ∈ C1 − C2,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2 be
two disjoint nonempty convex sets. If C1 is closed,
and C2 is compact, there exists a hyperplane that
strictly separates them.

(a)

C1 y C2

x

a

a) (b)

C1

y C2

d x1

1 x2

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1−C2 is closed.
Since C1 ∩ C2 = Ø, 0 /∈ C1 − C2. Let x1 − x2
be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.



ADDITIONAL THEOREMS

• Fundamental Characterization: The closure of
the convex hull of a set C ⊂ ℜn is the intersection
of the closed halfspaces that contain C. (Proof
uses the strict separation theorem.)

• We say that a hyperplane properly separates
C1 and C2 if it separates C1 and C2 and does not
fully contain both C1 and C2.

(a)

C1 y C2

a

C1 y C2

a

) (b)

a

C1 y C2

b) (c)

• Proper Separation Theorem: Let C1 and C2 be
two nonempty convex subsets of ℜn. There exists
a hyperplane that properly separates C1 and C2

if and only if

ri(C1) ∩ ri(C2) = Ø



PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ∩ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ∩ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of ℜn+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist µ ∈ ℜn,
β ∈ ℜ with β 6= 0, and γ ∈ ℜ such that
µ′u+ βw ≥ γ for all (u,w) ∈ C.

(b) If (u,w) /∈ cl(C), there exists a nonvertical
hyperplane strictly separating (u,w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u,w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ǫ-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).



LECTURE 7

LECTURE OUTLINE

• Convex conjugate functions

• Conjugacy theorem

• Support functions and polar cones

• Examples

Reading: Section 1.6



CONJUGATE CONVEX FUNCTIONS

• Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi(f)

7→ Crossing points of vertical axis

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn.

y x

) Slope = y

x 0

(−y, 1)

f(x)

inf
x∈ℜn

{f(x)− x′y} = −f⋆(y),

• For any f : ℜn 7→ [−∞,∞], its conjugate con-
vex function is defined by

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn



EXAMPLES

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

y x

y x

y x

= y

= y

= yβ/α

β

β α

α −1 1 1

) Slope = α

x 0

x 0

x 0x 0

x 0

x 0

f⋆(y) =

{

β if y = α

∞ if y "= α

{

f⋆(y) =

{

0 if |y| ≤ 1
∞ if |y| > 1

f⋆(y) = (1/2c)y2



CONJUGATE OF CONJUGATE

• From the definition

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn,

note that f⋆ is convex and closed.

• Reason: epi(f⋆) is the intersection of the epigraphs
of the linear functions of y

x′y − f(x)

as x ranges over ℜn.

• Consider the conjugate of the conjugate:

f⋆⋆(x) = sup
y∈ℜn

{

y′x− f⋆(y)
}

, x ∈ ℜn.

• f⋆⋆ is convex and closed.

• Important fact/Conjugacy theorem: If f is
closed proper convex, then f⋆⋆ = f .



CONJUGACY THEOREM - VISUALIZATION

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f⋆⋆(x) = sup
y∈ℜn

{

y′x− f⋆(y)
}

, x ∈ ℜn

• If f is closed convex proper, then f⋆⋆ = f .

y x

) Slope = y

x 0

f(x)
(−y, 1)

inf
x∈ℜn

{f(x)− x′y} = −f⋆(y),
{

y′x− f⋆(y)
}

f⋆⋆(x) = sup
y∈ℜn

{

y′x− f⋆(y)
}

{

Hyperplane H =
{

(x, w) | w − x′y = −f⋆(y)
}

Hyperplane



CONJUGACY THEOREM

• Let f : ℜn 7→ (−∞,∞] be a function, let čl f be
its convex closure, let f⋆ be its convex conjugate,
and consider the conjugate of f⋆,

f⋆⋆(x) = sup
y∈ℜn

{

y′x− f⋆(y)
}

, x ∈ ℜn

(a) We have

f(x) ≥ f⋆⋆(x), ∀ x ∈ ℜn

(b) If f is closed proper and convex, then

f(x) = f⋆⋆(x), ∀ x ∈ ℜn

(c) If f is convex, then properness of any one
of f , f⋆, and f⋆⋆ implies properness of the
other two.

(d) If čl f(x) > −∞ for all x ∈ ℜn, then

čl f(x) = f⋆⋆(x), ∀ x ∈ ℜn



PROOF OF CONJUGACY THEOREM (A), (B)

• (a) For all x, y, we have f⋆(y) ≥ y′x − f(x),
implying that f(x) ≥ supy{y′x−f⋆(y)} = f⋆⋆(x).

• (b) By contradiction. Assume there is (x, γ) ∈
epi(f⋆⋆) with (x, γ) /∈ epi(f). There exists a non-
vertical hyperplane with normal (y,−1) that strictly
separates (x, γ) and epi(f). (The vertical compo-
nent of the normal vector is normalized to -1.)
Thus we have for some c ∈ ℜ

y′z − w < c < y′x− γ, ∀ (z, w) ∈ epi(f)

Since γ ≥ f⋆⋆(x) and
(

z, f(z)
)

∈ epi(f),

y′z − f(z) < c < y′x− f⋆⋆(x), ∀ z ∈ dom(f).

Hence

f⋆(y) = sup
z∈ℜn

{

y′z − f(z)
}

≤ c < y′x− f⋆⋆(x),

contradicting the fact f⋆⋆(x) = supy∈ℜn

{

y′x −
f⋆(y)

}

. Thus, epi(f⋆⋆) ⊂ epi(f), which implies
that f(x) ≤ f⋆⋆(x) for all x ∈ ℜn. This, together
with part (a), shows that f⋆⋆(x) = f(x) for all x.



A COUNTEREXAMPLE

• A counterexample (with closed convex but im-
proper f) showing the need to assume properness
in order for f = f⋆⋆:

f(x) =

{

∞ if x > 0,
−∞ if x ≤ 0.

We have

f⋆(y) = ∞, ∀ y ∈ ℜn,

f⋆⋆(x) = −∞, ∀ x ∈ ℜn.

But
čl f = f,

so čl f 6= f⋆⋆.



A FEW EXAMPLES

• lp and lq norm conjugacy, where 1
p + 1

q = 1

f(x) =
1

p

n
∑

i=1

|xi|p, f⋆(y) =
1

q

n
∑

i=1

|yi|q

• Conjugate of a strictly convex quadratic

f(x) =
1

2
x′Qx+ a′x+ b,

f⋆(y) =
1

2
(y − a)′Q−1(y − a)− b.

• Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) = p
(

A(x− c)
)

+ a′x+ b,

f⋆(y) = q
(

(A′)−1(y − a)
)

+ c′y + d,

where q is the conjugate of p and d = −(c′a+ b).



LECTURE 8

LECTURE OUTLINE

• Review of conjugate convex functions

• Polar cones and Farkas’ Lemma

• Min common/max crossing duality

• Weak duality

• Special cases

Reading: Sections 1.6, 4.1, 4.2



CONJUGACY THEOREM

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f⋆⋆(x) = sup
y∈ℜn

{

y′x− f⋆(y)
}

, x ∈ ℜn

• If f is closed convex proper, then f⋆⋆ = f .

• More generally, epi(f⋆⋆) = cl
(

conv(epi(f))
)

.

y x

) Slope = y

x 0

f(x)
(−y, 1)

inf
x∈ℜn

{f(x)− x′y} = −f⋆(y),
{

y′x− f⋆(y)
}

f⋆⋆(x) = sup
y∈ℜn

{

y′x− f⋆(y)
}

{

Hyperplane H =
{

(x, w) | w − x′y = −f⋆(y)
}

Hyperplane



SUPPORT FUNCTIONS

• Conjugate of indicator function δX of set X

σX(y) = sup
x∈X

y′x

is called the support function of X.

• To determine σX(y) for a given vector y, we
project the set X on the line determined by y,
we find x̂, the extreme point of projection in the
direction y, and we scale by setting

σX(y) = ‖x̂‖ · ‖y‖

0

y

X

σX(y)/‖y‖

x̂

• epi(σX) is a closed convex cone.

• X, conv(X), cl(X), and cl
(

conv(X)
)

have the
same support function (by the conjugacy theo-
rem).



SUPPORT FN OF A CONE - POLAR CONE

• If C is a cone,

σC(y) = sup
x∈C

y′x =
{

0 if y′x ≤ 0, ∀ x ∈ C,
∞ otherwise

i.e., σC is the indicator function δC∗ of the polar
cone of C, given by

C∗ = {y | y′x ≤ 0, ∀ x ∈ C}

• By the Conjugacy Theorem the polar cone of C∗

is cl
(

conv(C)
)

. This is the Polar Cone Theorem.
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C C∗
C C∗

= 0} = 0}

{y | y′a1 ≤ 0}

{y | y′a2 ≤ 0}

(a) ) (b)

0 a1

0 a1

1 a2

1 a2



POLYHEDRAL CONES - FARKAS’ LEMMA

• Polyhedral Cone Duality: Let a1, . . . , ar be vec-
tors in ℜn. Then C = cone

(

{a1, . . . , ar}
)

is a
closed convex cone, so we have (C∗)∗ = C, where

C∗ = {x | A′x ≥ 0}, C = {Aµ | µ ≥ 0} (∗)
and A is the n× r matrix A = [a1 · · · ar].
Proof: C is obtained by applying A to the non-
negative orthant, and Prop. 1.4.13 of the text shows
as a special case that linearly transformed poly-
hedral sets are closed, implying that C is closed.
For other proofs that C is closed, see the internet-
posted Ch. 1 and Ch. 2 exercises.

• Farkas’ Lemma deals with existence of solutions
of systems of linear equations and inequalities.

• Farkas’ Lemma (pure inequality case): Let A
be an r × n matrix and c ∈ ℜr. We have

c′x ≤ 0, ∀ x such that A′x ≤ 0

if and only if there exists µ ≥ 0 such that Aµ = c.

Proof: Let C and C∗ be as in (*). The first asser-
tion can be written as c ∈ (C∗)∗, while the second
assertion can be written as c ∈ C. Use the Polar
Cone Theorem equation (C∗)∗ = C. Q.E.D.



LAGRANGE MULTIPLIERS

• Consider the problem
min

a′

j
x≤bj , j=1,...,r

f(x)

where f : ℜn 7→ ℜ is convex and differentiable.
A feasible vector x∗ is an optimal solution if and
only if there exist scalars µ1, . . . , µr ≥ 0 such that

∇f(x∗)+
r
∑

j=1

µjaj = 0, µj(a
′
jx

∗−bj) = 0, ∀ j (∗)

Proof: If x∗ is optimal, then

∇f(x∗)′(x− x∗) ≥ 0, for all feasible x
from which

∇f(x∗)′y ≥ 0 for all y with a′jy ≤ 0, ∀ j ∈ J(x∗),

where J(x∗) = {j | a′jx∗ = bj}. Applying Farkas’
Lemma, we have that −∇f(x∗) =

∑

j∈J(x∗) µjaj
for some µj ≥ 0, j ∈ J(x∗). Letting µj = 0 for
j /∈ J(x∗), we obtain (*).

Conversely, if (*) holds, x∗ minimizes f(x)+
∑r

j=1 µj(a′jx− bj), so for all feasible x,

f(x∗) ≤ f(x) +

r
∑

j=1

µj(a′jx− bj) ≤ f(x)



EXTENDING DUALITY CONCEPTS

• From dual descriptions of closed convex sets

A union of points An intersection of hyperplanes

Time domain Frequency domain

A union of its points An intersection of halfspaces
Abstract Min-Common/Max-Crossing Theorems

• To dual descriptions of closed convex functions
(applying set duality to epigraphs)

y x

) Slope = y

x 0

(−y, 1)

f(x)

inf
x∈ℜn

{f(x)− x′y} = −f⋆(y),

• We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of ℜn+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.

00

(a)

Min Common Point w*

Max Crossing Point q*

M

0

(b)
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_
M

Max Crossing Point q*

Min Common Point w*
w w

u

0

(c)
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M
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Max Crossing Point q*

Min Common Point w*

w

u

u0 0

0

u u

u

u w u w

u w

M
M

M

x M

x M

Min Common

n Point w∗

Min Common

n Point w∗

Min Common

n Point w∗

Max Crossing
g Point q∗

Max Crossing
g Point q∗

Max Crossing
g Point q∗

(a) ) (b)

b) (c)



MATHEMATICAL FORMULATIONS

• Optimal value of min common problem:
w∗ = inf

(0,w)∈M
w

• Math formulation of max crossing problem:
Focus on hyperplanes with normals (µ, 1) whose
crossing point ξ satisfies

ξ ≤ w + µ′u, ∀ (u,w) ∈M

Max crossing problem is to maximize ξ subject to
ξ ≤ inf(u,w)∈M{w + µ′u}, µ ∈ ℜn, or

maximize q(µ)
△
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ ℜn



GENERIC PROPERTIES – WEAK DUALITY

• Min common problem

inf
(0,w)∈M

w

• Max crossing problem

maximize q(µ)
△
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ ℜn

• Note that q is concave and upper-semicontinuous
(inf of linear functions).

• Weak Duality: For all µ ∈ ℜn

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

so maximizing over µ ∈ ℜn, we obtain q∗ ≤ w∗.

• We say that strong duality holds if q∗ = w∗.



CONNECTION TO CONJUGACY

• An important special case:

M = epi(p)

where p : ℜn 7→ [−∞,∞]. Then w∗ = p(0), and

q(µ) = inf
(u,w)∈epi(p)

{w+µ′u} = inf
{(u,w)|p(u)≤w}

{w+µ′u},

and finally
q(µ) = inf

u∈ℜm

{

p(u) + µ′u
}

• Thus, q(µ) = −p⋆(−µ) and

q∗ = sup
µ∈ℜn

q(µ) = sup
µ∈ℜn

{

0·(−µ)−p⋆(−µ)
}

= p⋆⋆(0)

so q∗ = w∗ if p is closed, proper, convex.



GENERAL OPTIMIZATION DUALITY

• Consider minimizing a function f : ℜn 7→ [−∞,∞].

• Let F : ℜn+r 7→ [−∞,∞] be a function with

f(x) = F (x, 0), ∀ x ∈ ℜn

• Consider the perturbation function

p(u) = inf
x∈ℜn

F (x, u)

and the MC/MC framework with M = epi(p)

• The min common value w∗ is

w∗ = p(0) = inf
x∈ℜn

F (x, 0) = inf
x∈ℜn

f(x)

• The dual function is

q(µ) = inf
u∈ℜr

{

p(u)+µ′u
}

= inf
(x,u)∈ℜn+r

{

F (x, u)+µ′u
}

so q(µ) = −F ⋆(0,−µ), where F ⋆ is the conjugate
of F , viewed as a function of (x, u).

• We have

q∗ = sup
µ∈ℜr

q(µ) = − inf
µ∈ℜr

F ⋆(0,−µ) = − inf
µ∈ℜr

F ⋆(0, µ),

w∗ = inf
x∈ℜn

F (x, 0)



LECTURE 9

LECTURE OUTLINE

• Min Common/Max Crossing duality for con-
strained optimization

• Min Common/Max Crossing duality for mini-
max and zero-sum games

• Min Common/Max Crossing duality theorems

• Strong duality conditions and existence of dual
optimal solutions

Reading: Sections 4.1, 4.2
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Min Common

n Point w∗

Min Common

n Point w∗

Max Crossing
g Point q∗

Max Crossing
g Point q∗

Max Crossing
g Point q∗

(a) ) (b)

b) (c)



REVIEW OF THE MC/MC FRAMEWORK

• Given set M ⊂ ℜn+1,

w∗ = inf
(0,w)∈M

w, q∗ = sup
µ∈ℜn

q(µ)
△
= inf

(u,w)∈M
{w+µ′u}

• Weak Duality: q∗ ≤ w∗ (always holds)

• Strong Duality: q∗ = w∗ (requires that M
have some convexity structure, among other con-
ditions)

• Important special case: M = epi(p). Then
w∗ = p(0), q∗ = p⋆⋆(0), so we have w∗ = q∗ if p
is closed, proper, convex.

• Some applications:

− Constrained optimization: minx∈X, g(x)≤0 f(x),
with p(u) = infx∈X, g(x)≤u f(x)

− Other optimization problems: Fenchel and
conic optimization

− Minimax problems, 0-sum games

− Subgradient theory

− Useful theorems related to optimization: Farkas’
lemma, theorems of the alternative



CONSTRAINED OPTIMIZATION

• Minimize f : ℜn 7→ ℜ over the set

C =
{

x ∈ X | g(x) ≤ 0
}

,

where X ⊂ ℜn and g : ℜn 7→ ℜr.

• Introduce a “perturbed constraint set”

Cu =
{

x ∈ X | g(x) ≤ u
}

, u ∈ ℜr,

and the function

F (x, u) =

{

f(x) if x ∈ Cu,
∞ otherwise,

which satisfies F (x, 0) = f(x) for all x ∈ C.

• Consider the perturbation function

p(u) = inf
x∈ℜn

F (x, u) = inf
x∈X, g(x)≤u

f(x),

and the MC/MC framework with M = epi(p).



CONSTR. OPT. - PRIMAL AND DUAL FNS

• Perturbation function (or primal function)

p(u) = inf
x∈X, g(x)≤u

f(x),

• Let L(x, µ) = f(x) + µ′g(x) be the Lagrangian
function. Then

q(µ) = inf
u∈ℜr

{

p(u) + µ′u
}

= inf
u∈ℜr

{

inf
x∈X, g(x)≤u

f(x) + µ′u

}

= inf
u∈ℜr , x∈X, g(x)≤u

{

f(x) + µ′u
}

= inf
x∈X

{

f(x) + µ′g(x)
}

=
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise



LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c′x

subject to a′jx ≥ bj , j = 1, . . . , r,

where c ∈ ℜn, aj ∈ ℜn, and bj ∈ ℜ, j = 1, . . . , r.

• For µ ≥ 0, the dual function has the form

q(µ) = inf
x∈ℜn

L(x, µ)

= inf
x∈ℜn







c′x+
r
∑

j=1

µj(bj − a′jx)







=

{

b′µ if
∑r

j=1 ajµj = c,
−∞ otherwise

• Thus the dual problem is

maximize b′µ

subject to
r
∑

j=1

ajµj = c, µ ≥ 0



MINIMAX PROBLEMS

Given φ : X × Z 7→ ℜ, where X ⊂ ℜn, Z ⊂ ℜm

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

or
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z

• Some important contexts:

− Constrained optimization duality theory

− Zero sum game theory

• We always have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

• Key question: When does equality hold?



RELATION TO CONSTRAINED OPTIMIZATION

• For the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0

introduce the Lagrangian function

L(x, µ) = f(x) + µ′g(x)

• Write the primal problem as

min
x∈X

sup
µ≥0

L(x, µ) =

{

f(x) if g(x) ≤ 0,

∞ otherwise

• Write the dual problem as

max
µ≥0

inf
x∈X

L(x, µ)

• Key duality question: Is it true that

inf
x∈ℜn

sup
µ≥0

L(x, µ) = w∗ ?

=
q∗ = sup

µ≥0
inf

x∈ℜn
L(x, µ)



ZERO SUM GAMES

• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd
chooses j ∈ {1, . . . ,m}.
• If i and j are selected, the 1st player gives aij
to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible choices.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x′Az =
∑

i,j

aijxizj

where A is the n×m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So

− 1st player minimizes maxz x′Az

− 2nd player maximizes minx x′Az



MINIMAX MC/MC FRAMEWORK - SUMMARY

• Introduce perturbation fn p : ℜm 7→ [−∞,∞]

p(u) = inf
x∈X

sup
z∈Z

{

φ(x, z)− u′z
}

, u ∈ ℜm

• We have

w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z)

• Assume that Z is convex, and −φ(x, ·) : Z 7→ ℜ
is closed and convex, viewed as a function of z ∈ Z
for every fixed x ∈ X.

• The dual function can be shown to be

q(µ) = inf
x∈X

φ(x, µ), ∀ µ ∈ ℜm,

so

w∗ = inf
x∈X

sup
z∈Z

φ(x, z), q∗ = sup
z∈Z

inf
x∈X

φ(x, z)

• Apply the MC/MC framework withM = epi(p).
We have infx∈X supz∈Z φ(x, z) = supz∈Z infx∈X φ(x, z)
if p is convex, closed, and proper.



DUALITY THEOREMS

• Assume that w∗ <∞ and that the set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

• Min Common/Max Crossing Theorem I: We
have q∗ = w∗ if and only if for every sequence
{

(uk, wk)
}

⊂M with uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk.

• Corollary: If M = epi(p) where p is closed
proper convex and p(0) <∞, then q∗ = w∗.



DUALITY THEOREMS (CONTINUED)

• Min Common/Max Crossing Theorem II: As-
sume in addition that −∞ < w∗ and that

D =
{

u | there exists w ∈ ℜ with (u,w) ∈M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists µ such that q(µ) = q∗.

• Furthermore, the set {µ | q(µ) = q∗} is nonempty
and compact if and only if D contains the origin
in its interior.

• Min Common/Max Crossing Theorem III: This
is a more refined version of Theorem II and in-
volves polyhedral assumptions; see the text.
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LECTURE OUTLINE

• Strong duality for MC/MC

• Existence of dual optimal solutions
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REVIEW OF THE MC/MC FRAMEWORK

• Given a set M ⊂ ℜn+1,

w∗ = inf
(0,w)∈M

w

q∗ = sup
µ∈ℜn

q(µ)
△
= inf

(u,w)∈M
{w + µ′u}

• Weak Duality: q∗ ≤ w∗ (always holds)

• Strong Duality: q∗ = w∗

• Duality theorems deal with conditions under
which:

− q∗ = w∗

− The dual problem or the primal problem have
an optimal solution

− Necessary and sufficient conditions under which
a pair of primal and dual variables are op-
timal for the primal and dual problems, re-
spectively.

• We will address the first two questions in the
general MC/MC setting.

• We will address the third question in specific
settings, such as constrained optimization duality,
Fenchel duality, conic duality, etc.



DUALITY THEOREM I

• Assume that w∗ <∞ and that the set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

• Min Common/Max Crossing Theorem I: We
have q∗ = w∗ if and only if for every sequence
{

(uk, wk)
}

⊂M with uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk.



PROOF OF THEOREM I

• Assume that q∗ = w∗. Let
{

(uk, wk)
}

⊂ M be
such that uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w+µ′u} ≤ wk+µ′uk, ∀ k, ∀ µ ∈ ℜn

Taking the limit as k → ∞, we obtain q(µ) ≤
lim infk→∞ wk, for all µ ∈ ℜn, implying that

w∗ = q∗ = sup
µ∈ℜn

q(µ) ≤ lim inf
k→∞

wk

Conversely, assume that for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there holds w∗ ≤
lim infk→∞ wk. If w∗ = −∞, then q∗ = −∞, by
weak duality, so assume that −∞ < w∗. Steps:

• Step 1: (0, w∗ − ǫ) /∈ cl(M) for any ǫ > 0.



PROOF OF THEOREM I (CONTINUED)

• Step 2: M does not contain any vertical lines.
If this were not so, (0,−1) would be a direction
of recession of cl(M). Because (0, w∗) ∈ cl(M),
the entire halfline

{

(0, w∗ − ǫ) | ǫ ≥ 0
}

belongs to

cl(M), contradicting Step 1.

• Step 3: For any ǫ > 0, since (0, w∗−ǫ) /∈ cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w∗− ǫ) and M . This hyperplane crosses
the (n+ 1)st axis at a vector (0, ξ) with w∗ − ǫ ≤
ξ ≤ w∗, so w∗ − ǫ ≤ q∗ ≤ w∗. Since ǫ can be
arbitrarily small, it follows that q∗ = w∗.



DUALITY THEOREM II

• Min Common/Max Crossing Theorem II: As-
sume in addition that −∞ < w∗ and that

D =
{

u | there exists w ∈ ℜ with (u,w) ∈M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists µ such that q(µ) = q∗.

• Furthermore, the set {µ | q(µ) = q∗} is nonempty
and compact if and only if D contains the origin
in its interior.



PROOF OF THEOREM II

• Hyperplane Separation Argument: Note that
(0, w∗) is not a relative interior point ofM . There-
fore, by the Proper Separation Theorem, there is a
hyperplane that passes through (0, w∗), contains
M in one of its closed halfspaces, but does not
fully contain M , i.e., for some (µ, β) 6= (0, 0)

βw∗ ≤ µ′u+ βw, ∀ (u,w) ∈M, (∗)
βw∗ < sup

(u,w)∈M

{µ′u+ βw} (∗∗)

We will show that the hyperplane is nonvertical.

• Since for any (u,w) ∈M , the setM contains the
halfline

{

(u,w) | w ≤ w
}

, it follows that β ≥ 0. If
β = 0, then from (*), 0 ≤ µ′u for all u ∈ D. Since
0 ∈ ri(D) by assumption, we must have µ′u =
0 for all u ∈ D (by Prop. 1.3.4 of the text) a
contradiction of (**). Therefore, β > 0, and we
can assume that β = 1. It follows from (*) that

w∗ ≤ inf
(u,w)∈M

{µ′u+ w} = q(µ) ≤ q∗

Since the inequality q∗ ≤ w∗ holds always, we
must have q(µ) = q∗ = w∗.



NONLINEAR FARKAS’ LEMMA

• Let X ⊂ ℜn, f : X 7→ ℜ, and gj : X 7→ ℜ,
j = 1, . . . , r, be convex. Assume that

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0

Assume there exists a vector x ∈ X such that
gj(x) < 0 for all j = 1, . . . , r. Then there exists
µ ≥ 0 such that

f(x) + µ′g(x) ≥ 0, ∀ x ∈ X

= 0}
w (µ, 1)

) (b)

= 0}= 0}

) (c)

= 0}
w (µ, 1)

(a)

{

(g(x), f(x)) | x ∈ X
} {

(g(x), f(x)) | x ∈ X
}

{

(g(x), f(x)) | x ∈ X
}

• The lemma asserts the existence of a nonverti-
cal hyperplane in ℜr+1, with normal (µ, 1), that
passes through the origin and contains the set

{(

g(x), f(x)
)

| x ∈ X
}

in its positive halfspace.



PROOF OF NONLINEAR FARKAS’ LEMMA

• Apply MC/MC to

M =
{

(u,w) | there is x ∈ X s. t. g(x) ≤ u, f(x) ≤ w
}

w (µ, 1)

0
u

w

(0, w∗)

D

C such that g(x) ≤ u, f(x) ≤ w
}

{

(g(x), f(x)) | x ∈ X
}

{ }

M =
{

(u, w) | there exists x ∈ X

• M is equal to M and is the union of positive
orthants translated to points

(

g(x), f(x)
)

, x ∈ X.

• Since X, f , and gj are convex, M is convex
(requires a proof).

• MC/MC Theorem II applies: we have

D =
{

u | there exists w ∈ ℜ with (u,w) ∈M
}

and 0 ∈ int(D), because
(

g(x), f(x)
)

∈M .



CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X ⊂ ℜn is convex, and f : X 7→ ℜ and
gj : X 7→ ℜ are convex. Assume f∗: finite.

• Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

p(u) = inf
x∈X, g(x)≤u

f(x)

• Consider the Lagrangian function

L(x, µ) = f(x) + µ′g(x),

the dual function

q(µ) =

{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise

and the dual problem of maximizing infx∈X L(x, µ)
over µ ≥ 0.



STRONG DUALITY TH. - SLATER CONDITION

• Assume that f∗ is finite, and there exists x ∈ X
such that g(x) < 0. Then q∗ = f∗ and the set of
optimal solutions of the dual problem is nonempty
and compact.

Proof: Replace f(x) by f(x)− f∗ so that f(x)−
f∗ ≥ 0 for all x ∈ X w/ g(x) ≤ 0. Apply Non-
linear Farkas’ Lemma. Then, there exist µ∗

j ≥ 0,
s.t.

f∗ ≤ f(x) +
r
∑

j=1

µ∗
jgj(x), ∀ x ∈ X

• It follows that

f∗ ≤ inf
x∈X

{

f(x)+µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

f(x) = f∗.

Thus equality holds throughout, and we have

f∗ = inf
x∈X







f(x) +
r
∑

j=1

µ∗
jgj(x)







= q(µ∗)



NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

• Let X ⊂ ℜn be convex, and f : X 7→ ℜ and gj :
ℜn 7→ ℜ, j = 1, . . . , r, be linear so g(x) = Ax − b
for some A and b. Assume that

f(x) ≥ 0, ∀ x ∈ X with Ax− b ≤ 0

and that there exists a vector x ∈ ri(X) such that
Ax− b ≤ 0. Then there exists µ ≥ 0 such that

f(x) + µ′(Ax− b) ≥ 0, ∀ x ∈ X

Proof: This is an application of MC/MC The-
orem III (next slide), which involves polyhedral
assumptions; see the text for proof and analysis.



MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume
that −∞ < w∗ and:

(1) M is a “horizontal translation” of M̃ by −P ,

M = M̃ −
{

(u, 0) | u ∈ P
}

,

where P : polyhedral and M̃ : convex.

= 0} u

M̃

) w

u= 0}

w
∗

Θ θ

) w

w (µ, 1)

) q(µ)

u= 0}

) w

M = M̃ −

{

(u, 0) | u ∈ P
}

}

P

(2) We have ri(D̃) ∩ P 6= Ø, where

D̃ =
{

u | there exists w ∈ ℜ with (u,w) ∈ M̃}
Then q∗ = w∗, there is a max crossing solution,
and all max crossing solutions µ satisfy µ′d ≤ 0
for all d ∈ RP .

• Compare with Th. II: Since D = D̃ − P , the
condition 0 ∈ ri(D) of Th. II is ri(D̃)∩ ri(P ) 6= Ø.
Proof is similar, but uses the polyhedral proper
separation theorem.



STRONG DUALITY - POLYHEDRAL CONSTR.

• Assume that f∗ is finite, the functions gj , j =
1, . . . , r, are affine, and one of the following two
conditions holds:

(1) X is polyhedral.

(2) There exists x ∈ ri(X) such that g(x) ≤ 0.

Then q∗ = f∗ and the set of optimal solutions of
the dual problem is nonempty.

Proof: Replace f(x) by f(x)− f∗ so that f(x)−
f∗ ≥ 0 for all x ∈ X w/ g(x) ≤ 0. Apply Nonlin-
ear Farkas’ Lemma for polyhedral assumptions.

• Note: For the special case where:

(a) There exists an optimal primal solution x∗

(b) X = ℜn

we have already proved that there exists a La-
grange multiplier vector (a dual optimal solution)
using the Polar Cone Theorem, which is the same
as the linear version of Farkas’ Lemma.

The sharper version given here shows that
strong duality holds even if there is no optimal
primal solution, and X is nonpolyhedral.
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• Optimality Conditions

• Fenchel Duality

Reading: Sections 5.3.1, 5.3.2, 5.3.3, 5.3.5



CONVEX PROGRAMMING DUALITY REVIEW

Strong Duality Theorem: Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X ⊂ ℜn is convex, and f : X 7→ ℜ and
gj : X 7→ ℜ are convex.

• Assume that f∗ is finite, and that one of the
following two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are affine, and
there exists x ∈ ri(X) such that g(x) ≤ 0.

Then q∗ = f∗ and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

• Important remaining questions:

− Optimality conditions for (x∗, µ∗) to be an
optimal primal and dual solution pair.

− Extensions to the case of mixed (linear) equal-
ity constraints, and mixture of linear and
convex inequality constraints.

− Extension to the Fenchel duality framework.



COUNTEREXAMPLE I

• Strong Duality Counterexample: Consider

minimize f(x) = e−
√
x1x2

subject to x1 ≤ 0, x ∈ X = {x | x ≥ 0}

Here f∗ = 1 and f is convex (its Hessian is > 0 in
the interior of X). The dual function is

q(µ) = inf
x≥0

{

e−
√
x1x2 + µx1

}

=

{

0 if µ ≥ 0,
−∞ otherwise,

(when µ ≥ 0, the expression in braces is nonneg-
ative for x ≥ 0 and can approach zero by taking
x1 → 0 and x1x2 → ∞). Thus q∗ = 0.

• The relative interior assumption is violated.

• As predicted by the corresponding MC/MC
framework, the perturbation function

p(u) = inf
x1≤u, x≥0

e−
√
x1x2 =

{

0 if u > 0,
1 if u = 0,
∞ if u < 0,

is not lower semicontinuous at u = 0.



COUNTEREXAMPLE I VISUALIZATION
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2 x1 = u

p(u) = inf
x1≤u, x≥0

e−
√
x1x2 =

{

0 if u > 0
1 if u = 0
∞ if u < 0

• Connection with counterexample for preserva-
tion of closedness under partial minimization.



COUNTEREXAMPLE II

• Existence of Dual Solutions Counterexample:
Let X = ℜ, f(x) = x, g(x) = x2. Then x∗ = 0 is
the only feasible/optimal solution, and we have

q(µ) = inf
x∈ℜ

{x+ µx2} = − 1

4µ
, ∀ µ > 0,

and q(µ) = −∞ for µ ≤ 0, so that q∗ = f∗ = 0.
However, there is no µ∗ ≥ 0 such that q(µ∗) =
q∗ = 0, and the dual problem has no optimal so-
lution.

• Here the perturbation function is

p(u) = inf
x2≤u

x =

{

−√
u if u ≥ 0,

∞ if u < 0.

u

) p(u)

1 0

) epi(p)



QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

minimize 1
2
x′Qx+ c′x

subject to Ax ≤ b,

where Q is positive definite.

• If f∗ is finite, then f∗ = q∗ and there exist
both primal and dual optimal solutions, since the
constraints are linear.

• Calculation of dual function:

q(µ) = inf
x∈ℜn

{ 1
2
x′Qx+ c′x+ µ′(Ax− b)}

The infimum is attained for x = −Q−1(c + A′µ),
and, after substitution and calculation,

q(µ) = − 1
2
µ′AQ−1A′µ−µ′(b+AQ−1c)− 1

2
c′Q−1c

• The dual problem, after a sign change, is

minimize 1
2
µ′Pµ+ t′µ

subject to µ ≥ 0,

where P = AQ−1A′ and t = b+AQ−1c.



OPTIMALITY CONDITIONS - VISUALIZATION

• Suppose we have dual optimal µ∗ and no duality
gap

q(µ∗) = q∗ = f∗

• How do we find primal optimal x∗?

0 u

w

{

(g(x), f(x)) | x ∈ X
}

Corresponds to optimal x∗

x
∗ Primal feasibility violated

Complementary slackness violated

(µ∗, 1) Slope =

Optimal crossing hyperplane

Complementary slackness violated (0, f∗)

• We look for x that correspond to points on the
max crossing hyperplane, i.e., x such that

L(x, µ∗) = inf
x∈X

L(x, µ∗) = q(µ∗) = q∗ = f∗



OPTIMALITY CONDITIONS

• We have q∗ = f∗, and the vectors x∗ and µ∗ are
optimal solutions of the primal and dual problems,
respectively, iff x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ argmin
x∈X

L(x, µ∗), µ∗
jgj(x

∗) = 0, ∀ j.
(∗)

Proof: If q∗ = f∗, and x∗, µ∗ are optimal, then

f∗ = q∗ = q(µ∗) = inf
x∈X

L(x, µ∗) ≤ L(x∗, µ∗)

= f(x∗) +
r
∑

j=1

µ∗
jgj(x

∗) ≤ f(x∗),

where the last inequality follows from µ∗
j ≥ 0 and

gj(x∗) ≤ 0 for all j. Hence equality holds through-
out above, and (*) holds.

Conversely, if x∗, µ∗ are feasible, and (*) holds,

q(µ∗) = inf
x∈X

L(x, µ∗) = L(x∗, µ∗)

= f(x∗) +
r
∑

j=1

µ∗
jgj(x

∗) = f(x∗),

so q∗ = f∗, and x∗, µ∗ are optimal. Q.E.D.



QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program

minimize 1
2
x′Qx+ c′x

subject to Ax ≤ b,

where Q is positive definite, (x∗, µ∗) is a primal
and dual optimal solution pair if and only if:

• Primal and dual feasibility holds:

Ax∗ ≤ b, µ∗ ≥ 0

• Lagrangian optimality holds [x∗ minimizes L(x, µ∗)
over x ∈ ℜn]. This yields

x∗ = −Q−1(c+A′µ∗)

• Complementary slackness holds [(Ax∗−b)′µ∗ =
0]. It can be written as

µ∗
j > 0 ⇒ a′jx

∗ = bj , ∀ j = 1, . . . , r,

where a′j is the jth row of A, and bj is the jth
component of b.



LINEAR EQUALITY CONSTRAINTS

• The problem is

minimize f(x)

subject to x ∈ X, g(x) ≤ 0, Ax = b,

where X is convex, g(x) =
(

g1(x), . . . , gr(x)
)′
, f :

X 7→ ℜ and gj : X 7→ ℜ, j = 1, . . . , r, are convex.

• Convert the constraint Ax = b to Ax ≤ b
and −Ax ≤ −b, with corresponding dual variables
λ+ ≥ 0 and λ− ≥ 0.

• The Lagrangian function is

f(x) + µ′g(x) + (λ+ − λ−)′(Ax− b),

and by introducing a dual variable λ = λ+ − λ−,
with no sign restriction, it can be written as

L(x, µ, λ) = f(x) + µ′g(x) + λ′(Ax− b).

• The dual problem is

maximize q(µ, λ) ≡ inf
x∈X

L(x, µ, λ)

subject to µ ≥ 0, λ ∈ ℜm.



DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f∗: finite and there exists x ∈
ri(X) such that Ax = b. Then f∗ = q∗ and
there exists a dual optimal solution.

(b) f∗ = q∗, and (x∗, λ∗) are a primal and dual
optimal solution pair if and only if x∗ is fea-
sible, and

x∗ ∈ argmin
x∈X

L(x, λ∗)

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f∗: finite, that there exists x ∈ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ∈ ri(X) such that Ax̃ = b.
Then q∗ = f∗ and there exists a dual optimal
solution.

(b) f∗ = q∗, and (x∗, µ∗, λ∗) are a primal and
dual optimal solution pair if and only if x∗

is feasible, µ∗ ≥ 0, and

x∗ ∈ argmin
x∈X

L(x, µ∗, λ∗), µ∗
jgj(x

∗) = 0, ∀ j



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) + f2(x)

subject to x ∈ ℜn,

where f1 : ℜn 7→ (−∞,∞] and f2 : ℜn 7→ (−∞,∞]
are closed proper convex functions.

• Convert to the equivalent problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2)

• The dual function is

q(λ) = inf
x1∈dom(f1), x2∈dom(f2)

{

f1(x1) + f2(x2) + λ′(x2 − x1)
}

= inf
x1∈ℜn

{

f1(x1)− λ′x1
}

+ inf
x2∈ℜn

{

f2(x2) + λ′x2
}

• Dual problem: maxλ{−f⋆1 (λ) − f⋆2 (−λ)} =
−minλ{−q(λ)} or

minimize f⋆1 (λ) + f⋆2 (−λ)
subject to λ ∈ ℜn,

where f⋆1 and f⋆2 are the conjugates.



FENCHEL DUALITY THEOREM

• Consider the Fenchel problem minx∈ℜn f1(x) +
f2(x):

(a) If f∗ is finite and ri
(

dom(f1)
)

∩ri
(

dom(f2)
)

6=
Ø, then f∗ = q∗ and there exists at least one
dual optimal solution.

(b) There holds f∗ = q∗, and (x∗, λ∗) is a primal
and dual optimal solution pair if and only if

x∗ ∈ arg min
x∈ℜn

{

f1(x)−x′λ∗
}

, x∗ ∈ arg min
x∈ℜn

{

f2(x)+x
′λ∗
}

Proof: For strong duality use the equality con-
strained problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2)

and the fact

ri
(

dom(f1)×dom(f2)
)

= ri
(

dom(f1)
)

×
(

dom(f2)
)

to satisfy the relative interior condition.
For part (b), apply the optimality conditions

(primal and dual feasibility, and Lagrangian opti-
mality).



GEOMETRIC INTERPRETATION

(c) Slope λ S

λ Slope λ∗

) x∗ some x

∗ f1(x)

) −f2(x)

) q(λ)

∗ f∗ = q∗

−f⋆

1
(λ)

f⋆

2
(−λ)

• When dom(f1) = dom(f2) = ℜn, and f1 and
f2 are differentiable, the optimality condition is
equivalent to

λ∗ = ∇f1(x∗) = −∇f2(x∗)

• By reversing the roles of the (symmetric) primal
and dual problems, we obtain alternative criteria
for strong duality: if q∗ is finite and ri

(

dom(f⋆1 )
)

∩
ri
(

−dom(f⋆2 )
)

6= Ø, then f∗ = q∗ and there exists
at least one primal optimal solution.



CONIC DUALITY

• Consider minimizing f(x) over x ∈ C, where f :
ℜn 7→ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in ℜn.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
∞ if x /∈ C.

The conjugates are

f⋆
1 (λ) = sup

x∈ℜn

{

λ′x−f(x)
}

, f⋆
2 (λ) = sup

x∈C

λ′x =

{

0 if λ ∈ C∗,

∞ if λ /∈ C∗,

where C∗ = {λ | λ′x ≤ 0, ∀ x ∈ C}.
• The dual problem is

minimize f⋆(λ)

subject to λ ∈ Ĉ,

where f⋆ is the conjugate of f and

Ĉ = {λ | λ′x ≥ 0, ∀ x ∈ C}.

Ĉ is called the dual cone. (−Ĉ is the polar cone.)



CONIC DUALITY THEOREM

• Assume that the optimal value of the primal
conic problem is finite, and that

ri
(

dom(f)
)

∩ ri(C) 6= Ø.

Then, there is no duality gap and the dual problem
has an optimal solution.

• Using the symmetry of the primal and dual
problems, we also obtain that there is no duality
gap and the primal problem has an optimal solu-
tion if the optimal value of the dual conic problem
is finite, and

ri
(

dom(f⋆)
)

∩ ri(Ĉ) 6= Ø.



LECTURE 12

LECTURE OUTLINE

• We transition from theory to algorithms

• The next two lectures provide:

− An overview of interesting/challenging large-
scale convex problem structures

− An overview of fundamental algorithmic ideas
for large-scale convex programming

• Problem Structures

− Separable problems

− Integer/discrete problems – Branch-and-bound

− Large sum problems

− Problems with many constraints

• Conic Programming

− Second Order Cone Programming

− Semidefinite Programming



SEPARABLE PROBLEMS

• Consider the problem

minimize
m
∑

i=1

fi(xi)

s. t.
m
∑

i=1

gji(xi) ≤ 0, j = 1, . . . , r, xi ∈ Xi, ∀ i

where fi : ℜni 7→ ℜ and gji : ℜni 7→ ℜ are given
functions, and Xi are given subsets of ℜni .

• Form the dual problem

maximize

m
∑

i=1

qi(µ) ≡
m
∑

i=1

inf
xi∈Xi

{

fi(xi) +

r
∑

j=1

µjgji(xi)

}

subject to µ ≥ 0

• Important point: The calculation of the dual
function has been decomposed intom simpler min-
imizations.

• Another important point: If Xi is a discrete
set (e.g., Xi = {0, 1}), the dual optimal value is
a lower bound to the optimal primal value. It is
still useful in a branch-and-bound scheme.



LARGE SUM PROBLEMS

• Consider cost function of the form

f(x) =
m
∑

i=1

fi(x), m is very large

• Dual cost of a separable problem.

• Data analysis/machine learning. x is parameter
vector of a model; each fi corresponds to error
between data and output of the model.

− Least squares problems (fi quadratic).

− ℓ1-regularization (least squares plus ℓ1 penalty):

min
x

m
∑

j=1

(a′jx− bj)2 + γ
n
∑

i=1

|xi|

The nondifferentiable penalty tends to set a
large number of components of x to 0.

− Maximum likelihood estimation.

• Min of an expected value E
{

F (x,w)
}

, where w
is a random variable taking a finite but very large
number of values wi, i = 1, . . . ,m, with corre-
sponding probabilities πi. A special case: Stochas-
tic programming.

• Special type of algorithms, called incremental
apply (they operate on a single fi at a time).



PROBLEMS WITH MANY CONSTRAINTS

• Problems of the form

minimize f(x)

subject to a′jx ≤ bj , j = 1, . . . , r,

where r: very large.

• One possibility is a penalty function approach:
Replace problem with

min
x∈ℜn

f(x) + c

r
∑

j=1

P (a′jx− bj)

where P (·) is a scalar penalty function satisfying
P (t) = 0 if t ≤ 0, and P (t) > 0 if t > 0, and c is a
positive penalty parameter.

• Examples:

− The quadratic penalty P (t) =
(

max{0, t}
)2
.

− The nondifferentiable penalty P (t) = max{0, t}.
• Another possibility: Initially discard some of
the constraints, solve a less constrained problem,
and later reintroduce constraints that seem to be
violated at the optimum (outer approximation).

• Also inner approximation of the constraint set.



CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : ℜn 7→ (−∞,∞] subject to a cone con-
straint.

• The most useful/popular special cases:

− Linear-conic programming

− Second order cone programming

− Semidefinite programming

involve minimization of linear function c′x over
intersection of an affine set b+ S and a cone C.

x
∗

X y 0

c b

c Affine set b+ S x

Cone C

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.



PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

• Linear and (convex) quadratic programming.

− Favorable special cases (e.g., network flows).

• Second order cone programming.

• Semidefinite programming.

• Convex programming.

− Favorable special cases (e.g., network flows,
monotropic programming, geometric program-
ming).

• Nonlinear/nonconvex/continuous programming.

− Favorable special cases (e.g., twice differen-
tiable, quasi-convex programming).

− Unconstrained.

− Constrained.

• Discrete optimization/Integer programming.

− Favorable special cases.



CONIC DUALITY

• Consider minimizing f(x) over x ∈ C, where f :
ℜn 7→ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in ℜn.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
∞ if x /∈ C.

The conjugates are

f⋆
1 (λ) = sup

x∈ℜn

{

λ′x−f(x)
}

, f⋆
2 (λ) = sup

x∈C

λ′x =

{

0 if λ ∈ C∗,

∞ if λ /∈ C∗,

where C∗ = {λ | λ′x ≤ 0, ∀ x ∈ C} is the polar
cone of C.

• The dual problem is minλ
{

f⋆1 (λ)+f
⋆
2 (−λ)

}

, or

minimize f⋆(λ)

subject to λ ∈ Ĉ,

where f⋆ is the conjugate of f and Ĉ is the dual
cone (= −C∗, negative polar cone)

Ĉ = {λ | λ′x ≥ 0, ∀ x ∈ C}



LINEAR-CONIC PROBLEMS

• Let f be affine, f(x) = c′x, with dom(f) be-
ing an affine set, dom(f) = b + S, where S is a
subspace.

• The primal problem is

minimize c′x

subject to x− b ∈ S, x ∈ C.

• The conjugate is

f⋆(λ) = sup
x−b∈S

(λ− c)′x = sup
y∈S

(λ− c)′(y + b)

=

{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S⊥,

so the dual problem can be written as

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.



SPECIAL LINEAR-CONIC FORMS

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ,

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

where x ∈ ℜn, λ ∈ ℜm, c ∈ ℜn, b ∈ ℜm, A : m×n.
• Proof of first relation: Let x be such that Ax =
b, and write the problem on the left as

minimize c′x

subject to x− x ∈ N(A), x ∈ C

• The dual conic problem is

minimize x′µ

subject to µ− c ∈ N(A)⊥, µ ∈ Ĉ

• Using N(A)⊥ = Ra(A′), write the constraints
as c− µ ∈ −Ra(A′) = Ra(A′), µ ∈ Ĉ, or

c− µ = A′λ, µ ∈ Ĉ, for some λ ∈ ℜm

• Change variables µ = c−A′λ, write the dual as

minimize x′(c−A′λ)

subject to c−A′λ ∈ Ĉ

discard the constant x′c, use the fact Ax = b, and
change from min to max.



SOME EXAMPLES

• Nonnegative Orthant: C = {x | x ≥ 0}
• The Second Order Cone: Let

C =

{

(x1, . . . , xn) | xn ≥
√

x21 + · · ·+ x2n−1

}

x1

x2

x3

• The Positive Semidefinite Cone: Consider the
space of symmetric n× n matrices, viewed as the
space ℜn2

with the inner product

< X,Y >= trace(XY ) =
n
∑

i=1

n
∑

j=1

xijyij

Let C be the cone of matrices that are positive
semidefinite.

• All these are self-dual, i.e., C = −C∗ = Ĉ.



SECOND ORDER CONE PROGRAMMING

• Second order cone programming is the linear-
conic problem

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in ℜni , and

Ci : the second order cone of ℜni

• The cone here is

C = C1 × · · · × Cm

and the constraints Aix − bi ∈ Ci, i = 1, . . . ,m,
can be lumped into a single constraint

Ax− b ∈ C



SECOND ORDER CONE DUALITY

• Using the generic duality form

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

and self duality of C, the dual problem is

maximize

m
∑

i=1

b′iλi

subject to
m
∑

i=1

A′
iλi = c, λi ∈ Ci, i = 1, . . . ,m,

where λ = (λ1, . . . , λm).

• The duality theory is no more favorable than
the one for linear-conic problems.

• There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones Ci.

• Generally, 2nd order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

• There are many applications.



EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c′x

subject to a′jx ≤ bj , ∀ (aj , bj) ∈ Tj , j = 1, . . . , r,

where c ∈ ℜn, and Tj is a given subset of ℜn+1.

• We convert the problem to the equivalent form

minimize c′x

subject to gj(x) ≤ 0, j = 1, . . . , r,

where gj(x) = sup(aj ,bj)∈Tj
{a′jx− bj}.

• For the special choice where Tj is an ellipsoid,

Tj =
{

(aj+Pjuj , bj+q′juj) | ‖uj‖ ≤ 1, uj ∈ ℜnj

}

we can express gj(x) ≤ 0 in terms of a SOC:

gj(x) = sup
‖uj‖≤1

{

(aj + Pjuj)′x− (bj + q′juj)
}

= sup
‖uj‖≤1

(P ′
jx− qj)′uj + a′jx− bj ,

= ‖P ′
jx− qj‖+ a′jx− bj .

Thus, gj(x) ≤ 0 iff (P ′
jx−qj , bj−a′jx) ∈ Cj , where

Cj is the SOC of ℜnj+1.



LECTURE 13

LECTURE OUTLINE

• A taxonomy of algorithms for convex optimiza-
tion

− Iterative descent

− Approximation

• A brief overview of approximation algorithms

• Focus on cost function descent

− Gradient and subgradient methods

− Gradient projection

− Newton’s method

• Incremental methods



APPROXIMATION

• Problem: Minimize convex f : ℜn 7→ ℜ over a
closed convex set X.

• Approximation approach: Generate {xk} by

xk+1 ∈ arg min
x∈Xk

Fk(x),
where:

Fk is a function that approximates f

Xk is a set that approximates X

• Fk and Xk may depend on the prior iterates
x0, . . . , xk, and other parameters.

• Key ideas:

− Minimization of Fk over Xk should be easier
than minimization of f over X

− xk should be a good starting point for ob-
taining xk+1

− Approximation of f by Fk and/or X by Xk

should improve as k increases

• Major types of approximation algorithms:

− Polyhedral approximation

− Penalty, proximal, interior point methods

− Smoothing



ITERATIVE DESCENT

• Generate {xk} such that

φ(xk+1) < φ(xk) iff xk is not optimal

• φ is a merit function (also called Lyapounov
function)

− Measures progress towards optimality

− Is minimized only at optimal points, i.e.,

arg min
x∈X

φ(x) = arg min
x∈X

f(x)

• Examples:

φ(x) = f(x), φ(x) = inf
x∗:optimal

‖x− x∗‖

• In some cases, iterative descent may be the pri-
mary idea, but modifications or approximations
are introduced:

− To make the method tolerant of random or
nonrandom errors.

− To make the method suitable for distributed
asynchronous computation.



FOCUS ON COST FUNCTION DESCENT

• Consider the unconstrained problem: Minimize
f : ℜn 7→ ℜ over x ∈ ℜn.

• Generate {xk} by

xk+1 = xk + αkdk, k = 0, 1, . . .

where dk is a descent direction at xk, i.e.,

f(xk + αdk) < f(xk), ∀α ∈ (0, ᾱ]

• Many ways to choose the stepsize αk.

• Sometimes a descent direction is used but the
descent condition f(xk + αkdk) < f(xk) may not
be strictly enforced in all iterations.

• Cost function descent is used primarily for

differentiable f , with

dk = −Sk∇f(xk)

where Sk is positive definite (scaling) matrix.

• Encounters serious theoretical difficulties for
nondifferentiable f .



DIRECTIONAL DERIVATIVES

• Directional derivative of a proper convex f :

f ′(x; d) = lim
α↓0

f(x+ αd)− f(x)

α
, x ∈ dom(f), d ∈ ℜn

α

Slope: f ′(x; d)

1
α0

f(x + αd)

Slope: f(x+αd)−f(x)
α

f(x)

• The ratio f(x+αd)−f(x)
α is monotonically nonin-

creasing as α ↓ 0 and converges to f ′(x; d).

• d is a descent direction at x, i.e.,

f(x+αd) < f(x), for all α > 0 sufficiently small

iff f ′(x; d) < 0.

• If f is differentiable, f ′(x; d) = ∇f(x)′d, so if
S is positive definite, d = −S∇f(x) is a descent
direction.



MANY ALGORITHMS BASED ON GRADIENT

• Consider unconstrained minimization of differ-
entiable f : ℜn 7→ ℜ by

xk+1 = xk − αkSk∇f(xk), k = 0, 1, . . .

• Gradient or steepest descent method: Sk = I.

• Newton’s method (fast local convergence):

Sk =
(

∇2f(xk)
)−1

assuming ∇2f(xk) is positive definite (otherwise
modifications are needed).

• Many algorithms try to emulate Newton’s method
with less overhead (quasi-Newton, Gauss-Newton
method, limited memory, conjugate direction, etc).

• Diagonal scaling: Choose Sk diagonal with
inverse 2nd derivatives of f along the diagonal.

• Common stepsize rules:

− Constant: αk ≡ α

− Diminishing:
∑∞

k=0 αk = ∞, αk ↓ 0

− Minimization: αk ∈ argminα>0 f(x+ αd)



FAILURE FOR NONDIFFERENTIABLE COST

• Start with any x0 ∈ ℜn.

• Calculate dk as the steepest descent direction
at xk

dk = arg min
‖d‖=1

f ′(xk; d)

and set
xk+1 = xk + αkdk

• Serious difficulties:

− Computing dk is nontrivial at points xk where
f is nondifferentiable.

− Serious convergence issues due to disconti-
nuity of steepest descent direction.

• Example with αk determined by minimization
along dk: {xk} converges to nonoptimal point.
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CONSTRAINED CASE: GRADIENT PROJECTION

• Problem: Minimization of differentiable f :
ℜn 7→ ℜ over a closed convex set X.

• Cost function descent

xk+1 = xk + αkdk

where dk is a feasible descent direction at xk: xk+
αdk must belong to X for small enough a > 0.

• The gradient projection method:

xk+1 = PX

(

xk − αk∇f(xk)
)

where αk > 0 is a stepsize and PX(·) denotes pro-
jection on X.

xk

xk+1

X x

X xk − α∇f(xk)

• Projection may be costly. Scaling is tricky.



SUBGRADIENT PROJECTION

• Problem: Minimization of nondifferentiable con-
vex f : ℜn 7→ ℜ over a closed convex set X.

• Key notion: A subgradient of a convex function
f : ℜn 7→ ℜ at a point x is a vector g such that

f(z) ≥ f(x) + g′(z − x), ∀ z ∈ ℜn.

At points x where f is differentiable, ∇f(x) is the
unique subgradient.

• Subgradient projection method:

xk+1 = PX(xk − αkgk)

where gk is an arbitrary subgradient at xk.

• Does not attain cost function descent ... but
has another descent property: at any nonoptimal
point xk, it satisfies for ak > 0 small enough,

dist(xk+1, X∗) < dist(xk, X∗)

where X∗ is the optimal solution set.

• Typically, a diminishing stepsize αk is needed.



INCREMENTAL GRADIENT METHOD

• Problem: Minimization of f(x) =
∑m

i=1 fi(x)
over a closed convex set X (fi differentiable).

• Operates in cycles: If xk is the vector obtained
after k cycles, the vector xk+1 obtained after one
more cycle is xk+1 = ψm,k, where ψ0,k = xk, and

ψi,k = PX

(

ψi−1,k−αk∇fi,k(ψi−1,k)
)

, i = 1, . . . ,m

• Example: The Kazcmarz method

ψi,k = ψi−1,k−
1

‖ci‖2
(c′iψi−1,k−bi)ci, i = 1, . . . ,m,

for the case fi(x) =
1

2‖ci‖2 (c′ix− bi)2

x
∗

1 x0

x1

x2

Hyperplanes c′
i
x = bi



COMPARE W/ NONINCREMENTAL GRADIENT

• Two complementary performance issues:

− Progress when far from convergence. Here
the incremental method can be much faster.

− Progress when close to convergence. Here
the incremental method can be inferior.

• Example: Scalar case

fi(x) = 1
2
(cix− bi)2, x ∈ ℜ

(a ix - bi)
2

a
mini

i

bi

a
max i

i

b i

x*

xR

REGION OF CONFUSION FAROUT REGIONFAROUT REGION

min
i

ci

bi
max

i

ci

bi

(cix− bi)2

• A diminishing stepsize is necessary for conver-
gence (otherwise the method ends up oscillating
within the region of confusion).

• Randomization of selection of component fi is
possible.



OTHER INCREMENTAL METHODS

• Aggregated gradient method:

xk+1 = PX

(

xk − αk

m−1
∑

ℓ=0

∇fik−ℓ(xk−ℓ)

)

• Gradient method with momentum (heavy ball
method):

xk+1 = xk − αk∇fik(xk) + βk(xk − xk−1)

• Stochastic gradient method for f(x) = E
{

F (x,w)
}

where w is a random variable, and F (·, w) is a con-
vex function for each value of w:

xk+1 = PX

(

xk − αk∇F (xk, wk)
)

where ∇F (xk, wk) is a “sampled” gradient.

• Incremental Newton method.

• Incremental Gauss-Newton method for least
squares (extended Kalman filter).
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LECTURE OUTLINE

• Subgradients of convex functions

• Sugradients of real-valued convex functions

• Properties of subgradients

• Computation of subgradients

• Reading:

− Section 5.4 of Convex Optimization Theory
(focus on extended real-valued convex func-
tions)

− Section 2.1 of Convex Optimization Algo-
rithms (focus on real-valued convex functions)



SUBGRADIENTS

0

(−g, 1)

f(z)

(

x, f(x)
)

z

Epigraph of f

Translated

• Let f : ℜn 7→ (−∞,∞] be a convex function.
A vector g ∈ ℜn is a subgradient of f at a point
x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g, ∀ z ∈ ℜn

• Support Hyperplane Interpretation: g is a sub-
gradient if and only if

f(z)− z′g ≥ f(x)− x′g, ∀ z ∈ ℜn

so g is a subgradient at x if and only if the hyper-
plane in ℜn+1 that has normal (−g, 1) and passes
through

(

x, f(x)
)

supports the epigraph of f .

• The set of all subgradients at x is the subdif-
ferential of f at x, denoted ∂f(x).

• x∗ minimizes f if and only if 0 ∈ ∂f(x∗).



EXAMPLES OF SUBDIFFERENTIALS

• Some examples:

!"#$%&%'#' !"#$%&%()#*+,%"-./$"#/%0%-$1

+ + -0%- #

!!"#$ !!"#$

+ + -0%-

-

0%-

# #

#

!"#$%&%'#' !"#$%&%()#*+,%"-./$"#/%0%-$1

+ + -0%- #

!!"#$ !!"#$

+ + -0%-

-

0%-

# #

#

f(x) = max
{

0, (1/2)(x2
− 1)

}

f(x) = |x|

Y x

Y x Y x

Y x

X y 0 X y 0

X y 0X y 0 | 1

| 1

| 1

−1

−1

−1

1 ∂f(x) 1 ∂f(x)

• If f is differentiable, then ∂f(x) = {∇f(x)}.
Proof: Clearly ∇f(x) ∈ ∂f(x). Conversely, if
g ∈ ∂f(x), then for all α ∈ ℜ and d ∈ ℜn,

αg′d ≤ f(x+ αd)− f(x) = α∇f(x)′d+ o(|α|).

Let d = ∇f(x)− g to obtain

‖∇f(x)− g‖2 ≤ −o(|α|)/α, ∀ α < 0

Take α ↑ 0 to obtain g = ∇f(x).



EXISTENCE OF SUBGRADIENTS

• Let f : ℜn 7→ (−∞,∞] be proper convex.

• Consider MC/MC with

M = epi(fx), fx(z) = f(x+ z)− f(x)

0

(−g, 1)

f(z)

(

x, f(x)
)

z

0

z

(−g, 1)

Epigraph of f

Translated

Epigraph of f

Translated

Translated

fx(z)

• By 2nd MC/MC Duality Theorem, ∂f(x) is
nonempty if x ∈ ri

(

dom(f)
)

.

• If f is real-valued, ∂f(x) is nonempty for all x

• For x /∈ ri
(

dom(f)
)

, ∂f(x) may be empty.



SUBGRADIENTS OF REAL-VALUED FUNCTIONS

• Let f : ℜn 7→ ℜ be a real-valued convex func-
tion, and let X ⊂ ℜn be compact.

(a) The set ∪x∈X∂f(x) is bounded.

(b) f is Lipschitz over X, i.e., for all x, z ∈ X,

∣

∣f(x)− f(z)
∣

∣ ≤ L ‖x− z‖, L = sup
g∈∪x∈X∂f(x)

‖g‖.

Proof: (a) Assume the contrary, so there exist
{xk} ⊂ X, and unbounded {gk} with

gk ∈ ∂f(xk), 0 < ‖gk‖ < ‖gk+1‖, k = 0, 1, . . . .

Let dk = gk/‖gk‖. Since gk ∈ ∂f(xk), we have

f(xk + dk)− f(xk) ≥ g′kdk = ‖gk‖

Since {xk} and {dk} are bounded, we assume they
converge to some vectors. By continuity of f , the
left-hand side is bounded, contradicting the un-
boundedness of {gk}.
(b) If g ∈ ∂f(x), then for all x, z ∈ X,

f(x)−f(z) ≤ g′(x−z) ≤ ‖g‖ ·‖x−z‖ ≤ L ‖x−z‖



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and δC be its indicator
function.

• For x ∈ C, we have g ∈ ∂δC(x) iff

δC(x) + g′(z − x) ≤ δC(z), ∀ z ∈ C,

or equivalently g′(z − x) ≤ 0 for all z ∈ C. Thus
∂δC(x) is the normal cone of C at x:

NC(x) =
{

g | g′(z − x) ≤ 0, ∀ z ∈ C
}

.

}

f C

NC(x)

x
x

}

f C

NC(x)



CALCULUS OF SUBDIFFERENTIALS

• Chain Rule: Let f : ℜm 7→ (−∞,∞] be convex,
and A be a matrix. Consider F (x) = f(Ax) and
assume that F is proper. If

Range(A) ∩ ri(dom(f)) 6= Ø,
then

∂F (x) = A′∂f(Ax), ∀ x ∈ ℜn.

• Subdifferential of a Sum: Let fi : ℜn 7→ (−∞,∞],
i = 1, . . . ,m, be proper convex functions, and let

F = f1 + · · ·+ fm.

Assume that ∩m
1=1ri

(

dom(fi)
)

6= Ø. Then

∂F (x) = ∂f1(x) + · · ·+ ∂fm(x), ∀ x ∈ ℜn.

• Relative interior condition is needed as simple
examples show.

• The relative interior conditions are automati-
cally satisfied if the functions are real-valued.

• The relative interior conditions are unnecessary
if the functions are polyhedral.



CONSTRAINED OPTIMALITY CONDITION

• Let f : ℜn 7→ ℜ and X ⊂ ℜn be convex. Then,
a vector x∗ minimizes f over X iff there exists
g ∈ ∂f(x∗) such that −g belongs to the normal
cone NX(x∗), i.e.,

g′(x− x∗) ≥ 0, ∀ x ∈ X.

Proof: x∗ minimizes

F (x) = f(x) + δX(x)

if and only if 0 ∈ ∂F (x∗). Use the formula for
subdifferential of sum to write

0 ∈ ∂F (x∗) = ∂f(x∗) +NX(x∗)

Q.E.D.



ILLUSTRATION OF OPTIMALITY CONDITION

Level Sets of f

) ∇f(x∗)

x) x
∗

Level Sets of f

x) x
∗

y) ∂f(x∗)
− g

X N X N

X NX(x∗) Complementary slackness violatedX NX(x∗) Complementary slackness violated

• In the figure on the left, f is differentiable and
the optimality condition is

−∇f(x∗) ∈ NX(x∗),

which is equivalent to

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ X.

• In the figure on the right, f is nondifferentiable,
and the optimality condition is

−g ∈ NX(x∗) for some g ∈ ∂f(x∗).



DANSKIN’S THEOREM FOR MAX FUNCTIONS

• Let
f(x) = max

z∈Z
φ(x, z),

where x ∈ ℜn, z ∈ ℜm, φ : ℜn × ℜm 7→ ℜ is
a function, Z is a compact subset of ℜm, φ(·, z)
is convex and differentiable for each z ∈ Z, and
∇xφ(x, ·) is continuous on Z for each x. Then

∂f(x) = conv
{

∇xφ(x, z) | z ∈ Z(x)
}

, x ∈ ℜn,

where Z(x) is the set of maximizing points

Z(x) =

{

z
∣

∣

∣ φ(x, z) = max
z∈Z

φ(x, z)

}

• Special case: f(x) = max
{

φ1(x), . . . , φm(x)
}

where φi are differentiable convex. Then

∂f(x) = conv
{

∇φi(x) | i ∈ I(x)
}

,

where
I(x) =

{

i | φi(x) = f(x)
}



IMPORTANT ALGORITHMIC POINT

• Computing a single subgradient is often much
easier than computing the entire subdifferential.

• Special case of dual functions: Consider

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,

where f : ℜn 7→ ℜ, g : ℜn 7→ ℜr, X ⊂ ℜn. Con-
sider the dual problem maxµ≥0 q(µ), where

q(µ) = inf
x∈X

{

f(x) + µ′g(x)
}

.

For a given µ ≥ 0, suppose that xµ minimizes the
Lagrangian over x ∈ X,

xµ ∈ arg min
x∈X

{

f(x) + µ′g(x)
}

.

Then −g(xµ) is a subgradient of the negative of
the dual function −q at µ.

• Verification: For all ν ∈ ℜr,

q(ν) = inf
x∈X

{

f(x) + ν′g(x)
}

≤ f(xµ) + ν′g(xµ)

= f(xµ) + µ′g(xµ) + (ν − µ)′g(xµ) = q(µ) + (ν − µ)′g(xµ)



LECTURE 15

LECTURE OUTLINE

• Overview of properties of subgradients

• Subgradient methods

• Convergence analysis

• Reading: Section 2.2 of Convex Optimization
Algorithms



SUBGRADIENTS - REAL-VALUED FUNCTIONS

0

(−g, 1)

f(z)

(

x, f(x)
)

z

Epigraph of f

Translated

• Let f : ℜn 7→ (−∞,∞] be a convex function.
A vector g ∈ ℜn is a subgradient of f at a point
x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g, ∀ z ∈ ℜn

The set of subgradients at x is the subdifferential
∂f(x).

• If f is real-valued, ∂f(x) is nonempty, convex,
and compact for all x.

• ∪x∈X∂f(x) is bounded if X is bounded.

• A single subgradient g ∈ ∂f(x) is much easier to
calculate than ∂f(x) for many contexts involving
dual functions and minimax.



MOTIVATION

• Consider minimization of convex f .

• Steepest descent at a point requires knowledge
of the entire subdifferential at a point.

• Convergence failure of steepest descent

z
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x1
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• Subgradient methods abandon the idea of com-
puting the full subdifferential to effect cost func-
tion descent ...

• Move instead along the direction of an arbitrary
subgradient



THE BASIC SUBGRADIENT METHOD

• Problem: Minimize convex function f : ℜn 7→ ℜ
over a closed convex set X.

• Subgradient method:

xk+1 = PX(xk − αkgk),

where gk is any subgradient of f at xk, αk is a
positive stepsize, and PX(·) is projection on X.

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)

• Key geometric fact: By subgradient inequality

g′k(y − xk) < 0, ∀ y such that f(y) < f(xk),

including all optimal y.



KEY PROPERTIES OF SUBGRADIENT METHOD

• For a small enough stepsize αk, it reduces the
Euclidean distance to the optimum.

• Nonexpansiveness of projection: For all x, y,

‖PX(x)− PX(y)‖ ≤ ‖x− y‖

M

mk

mk + s kgk

mk+1 =PM
 (mk + s kgk)

m*

< 90
o

Level sets of qLevel sets of f X

xk

x∗

xk+1 = PX(xk − αkgk)

xk − αkgk

< 90◦

• Proposition: Let {xk} be generated by the sub-
gradient method. Then, for all y ∈ X and k:

‖xk+1−y‖2 ≤ ‖xk−y‖2−2αk

(

f(xk)−f(y)
)

+α2
k‖gk‖2

and if f(y) < f(xk),

‖xk+1 − y‖ < ‖xk − y‖,

for all αk such that 0 < αk <
2
(

f(xk)−f(y)
)

‖gk‖2 .



PROOF

• Proof of nonexpansive property: From the pro-
jection theorem

(

z − PX(x)
)′(
x− PX(x)

)

≤ 0, ∀ z ∈ X,

from which
(

PX(y) − PX(x)
)′(
x − PX(x)

)

≤ 0.

Similarly,
(

PX(x)− PX(y)
)′(
y − PX(y)

)

≤ 0.

Adding and using the Schwarz inequality,

∥

∥PX (y)− PX (x)
∥

∥

2
≤
(

PX(y)− PX (x)
)′
(y − x)

≤
∥

∥PX (y)− PX(x)
∥

∥ · ‖y − x‖

Q.E.D.

• Proof of proposition: Since projection is non-
expansive, we obtain for all y ∈ X and k,

‖xk+1 − y‖2 =
∥

∥PX (xk − αkgk)− y
∥

∥

2

≤ ‖xk − αkgk − y‖2
= ‖xk − y‖2 − 2αkg′k(xk − y) + α2

k‖gk‖2
≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
k‖gk‖2,

where the last inequality follows from the subgra-
dient inequality. Q.E.D.



CONVERGENCE MECHANISM

• Assume constant stepsize: αk ≡ α

• Assume that ‖gk‖ ≤ c for some c and all k.
Then for all optimal x∗

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2α
(

f(xk)−f(x∗)
)

+α2c2

Thus the distance to the optimum decreases if

0 < α <
2
(

f(xk)− f(x∗)
)

c2

or equivalently, if xk does not belong to the level
set

{

x
∣

∣

∣
f(x) < f(x∗) +

αc2

2

}

Optimal Solution

Set

Level Set {! | q(!) ! q* - sC2/2}

!"

Level set
t

{

x | f(x) ≤ f∗ + αc2/2
}

Optimal solution set

t x0



STEPSIZE RULES

• Constant Stepsize: αk ≡ α.

• Diminishing Stepsize: αk → 0,
∑

k αk = ∞
• Dynamic Stepsize:

αk =
f(xk)− fk

c2

where fk is an estimate of f∗:

− If fk = f∗, makes progress at every iteration.
If fk < f∗ it tends to oscillate around the
optimum. If fk > f∗ it tends towards the
level set {x | f(x) ≤ fk}.

− fk can be adjusted based on the progress of
the method.

• Example of dynamic stepsize rule:

fk = min
0≤j≤k

f(xj)− δk,

and δk (the “aspiration level of cost reduction”) is
updated according to

δk+1 =

{

ρδk if f(xk+1) ≤ fk,
max

{

βδk, δ
}

if f(xk+1) > fk,

where δ > 0, β < 1, and ρ ≥ 1 are fixed constants.



SAMPLE CONVERGENCE RESULTS

• Let f = infk≥0 f(xk), and assume that for some
c, we have

c ≥ sup
{

‖g‖ | g ∈ ∂f(xk), k ≥ 0
}

• Proposition: Assume that αk is fixed at some
positive scalar α. Then:

(a) If f∗ = −∞, then f = f∗.

(b) If f∗ > −∞, then

f ≤ f∗ +
αc2

2
.

• Proposition: If αk satisfies

lim
k→∞

αk = 0,
∞
∑

k=0

αk = ∞,

then f = f∗.

• Similar propositions for dynamic stepsize rules.

• Many variants ...



CONVERGENCE METHODOLOGY I

• Classical Contraction Mapping Theorem: Con-
sider iteration xk+1 = G(xk), where G : ℜn 7→ ℜn

is a contraction, i.e., for some ρ < 1

∥

∥G(x)−G(y)
∥

∥ ≤ ρ‖x− y‖, ∀ x, y ∈ ℜn

where ‖·‖ is any norm. It converges to the unique
fixed point of G.

• Can be used for gradient iterations with con-
stant stepsize, but not subgradient iterations.

• Consider time varying contraction iteration xk+1 =
Gk(xk), where

∥

∥Gk(x)−Gk(y)
∥

∥ ≤ (1−ρk)‖x−y‖, ∀ x, y ∈ ℜn,

the Gk have a common fixed point, and

ρk ∈ (0, 1],
∞
∑

k=0

ρk = ∞
It converges to the unique common fixed point of
Gk.

• Can be used for some time-varying gradient
iterations, but not subgradient iterations.



CONVERGENCE METHODOLOGY II

• Supermartingale convergence (deterministic case):
Let {Yk}, {Zk}, {Wk}, and {Vk} be four nonneg-
ative scalar sequences such that

Yk+1 ≤ (1 + Vk)Yk − Zk +Wk, ∀ k,

and ∞
∑

k=0

Wk <∞,

∞
∑

k=0

Vk <∞

Then {Yk} converges and
∑∞

k=0 Zk <∞.

• Supermartingale convergence (stochastic case):
Let {Yk}, {Zk}, {Wk}, and {Vk} be four nonneg-
ative sequences of random variables, and let Fk,
k = 0, 1, . . ., be sets of random variables such that
Fk ⊂ Fk+1 for all k. Assume that

(1) For each k, Yk, Zk,Wk, and Vk are functions
of the random variables in Fk.

(2) E
{

Yk+1 | Fk

}

≤ (1 + Vk)Yk − Zk +Wk ∀ k
(3) There holds,

∑∞
k=0Wk <∞,

∑∞
k=0 Vk <∞

Then {Yk} converges to some random variable Y ,
and

∑∞
k=0 Zk <∞, with probability 1.



CONVERGENCE FOR DIMINISHING STEPSIZE

• Proposition: Assume that the optimal solution
set X∗ is nonempty, and that for some c and all
k,

c2
(

1 + min
x∗∈X∗

‖xk − x∗‖2
)

≥ sup
{

‖g‖2 | g ∈ ∂f(xk)
}

and αk satisfies

∞
∑

k=0

αk = ∞,

∞
∑

k=0

α2
k <∞.

Then {xk} converges to an optimal solution.

Proof: Write for any optimal x∗

‖xk+1 − x∗‖2 ≤ (1 + α2
kc

2)‖xk − x∗‖2
− 2αk

(

f(xk)− f(x∗)
)

+ α2
kc

2

Use the supermartingale convergence theorem.



LECTURE 16

LECTURE OUTLINE

• Approximation approach for convex optimiza-
tion algorithms:

• Cutting plane method

• Simplicial decomposition

• Reading: Section 6.4 of on-line Chapter 6 on
algorithms



CUTTING PLANE METHOD

• Problem: Minimize f : ℜn 7→ ℜ subject to
x ∈ X, where f is convex, and X is closed convex.

• Method: Start with any x0 ∈ X. For k ≥ 0, set

xk+1 ∈ arg min
x∈X

Fk(x),

where

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk
}

and gi is a subgradient of f at xi.

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x∗



CONVERGENCE OF CUTTING PLANE METHOD

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk
}

Fk(xk+1) ≤ Fk(x) ≤ f(x), ∀ x

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x∗

• Fk(xk) increases monotonically with k, and all
limit points of {xk} are optimal.

Proof: (Abbreviated) If xk → x then Fk(xk) →
f(x), [otherwise there would exist a hyperplane
strictly separating epi(f) and (x, limk→∞ Fk(xk))].
This implies that

f(x) ≤ lim
k→∞

Fk(x) ≤ f(x), ∀ x ∈ X

Q.E.D.



TERMINATION

• We have for all k

Fk(xk+1) ≤ f∗ ≤ min
i≤k

f(xi)

• Termination when mini≤k f(xi)−Fk(xk+1) comes
to within some small tolerance.

• For f polyhedral, we have finite termination
with an exactly optimal solution.

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x∗

• Instability problem: The method can make
large moves that deteriorate the value of f .

• Starting from the exact minimum it typically
moves away from that minimum.



VARIANTS

• Variant I: Simultaneously with f , construct
polyhedral approximations to X.

X x

X , using intersections of finite
epi(f)

• Variant II: Central cutting plane methods

x0 0 x1x2

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x∗

f̃2

al pa
2 2

Central pair (x2, w2)

Set S1

F1(x)



SIMPLICIAL DECOMPOSITION IDEAS

• Minimize a differentiable convex f : ℜn 7→ ℜ
over bounded polyhedral constraint set X.

• Approximate X with a simpler inner approxi-
mating polyhedral set.

Level sets of f

2 ∇f(x0)
) ∇f(x1)

) ∇f(x2)

) ∇f(x3)

X

x0

0 x1

1 x2

2 x3

3 x4 = x
∗

x̃1

x̃2

x̃3

x̃4

• Approximating problem (min over a simplex):

minimize f





k
∑

j=1

αj x̃j





subject to
k
∑

j=1

αj = 1, αj ≥ 0

• Construct a more refined problem by solving a
linear minimization over the original constraint.



SIMPLICIAL DECOMPOSITION METHOD

Level sets of f

2 ∇f(x0)
) ∇f(x1)

) ∇f(x2)

) ∇f(x3)

X

x0

0 x1

1 x2

2 x3

3 x4 = x
∗

x̃1

x̃2

x̃3

x̃4

• Given current iterate xk, and finite set Xk ⊂ X
(initially x0 ∈ X, X0 = {x0}).
• Let x̃k+1 be extreme point of X that solves

minimize ∇f(xk)′(x− xk)

subject to x ∈ X

and add x̃k+1 to Xk: Xk+1 = {x̃k+1} ∪Xk.

• Generate xk+1 as optimal solution of

minimize f(x)

subject to x ∈ conv(Xk+1).



CONVERGENCE

• There are two possibilities for x̃k+1:

(a) We have

0 ≤ ∇f(xk)′(x̃k+1−xk) = min
x∈X

∇f(xk)′(x−xk)

Then xk minimizes f over X (satisfies the
optimality condition)

(b) We have

0 > ∇f(xk)′(x̃k+1 − xk)

Then x̃k+1 /∈ conv(Xk), since xk minimizes
f over x ∈ conv(Xk), so that

∇f(xk)′(x− xk) ≥ 0, ∀ x ∈ conv(Xk)

• Case (b) cannot occur an infinite number of
times (x̃k+1 /∈ Xk and X has finitely many ex-
treme points), so case (a) must eventually occur.

• The method will find a minimizer of f over X
in a finite number of iterations.



COMMENTS ON SIMPLICIAL DECOMP.

Level sets of f

2 ∇f(x0)
) ∇f(x1)

) ∇f(x2)

) ∇f(x3)

X

x0

0 x1

1 x2

2 x3

3 x4 = x
∗

x̃1

x̃2

x̃3

x̃4

• The method is appealing under two conditions:

− Minimizing f over the convex hull of a rela-
tive small number of extreme points is much
simpler than minimizing f over X.

− Minimizing a linear function over X is much
simpler than minimizing f over X.

• Important specialized applications relating to
routing problems in data networks and transporta-
tion.



VARIANTS OF SIMPLICIAL DECOMP.

• Variant to remove the boundedness assumption
on X (impose artificial constraints).

• Variant to enhance efficiency: Discard some of
the extreme points that seem unlikely to “partici-
pate” in the optimal solution, i.e., all x̃ such that

∇f(xk+1)′(x̃− xk+1) > 0

• Additional methodological enhancements:

− Extension to X nonpolyhedral (method re-
mains unchanged, but convergence proof is
more complex)

− Extension to f nondifferentiable (requires use
of subgradients in place of gradients, and
more sophistication)

− Duality relation with cutting plane methods
based on Fenchel duality.

• We will derive, justify, and extend these by
showing that cutting plane and simplicial decom-
position are special cases of two polyhedral ap-
proximation methods that are dual to each other
(next lecture).



GENERALIZED SIMPLICIAL DECOMPOSITION

• Consider minimization of f(x) + c(x), over x ∈
ℜn, where f and c are closed proper convex

• Case where f is differentiable

) xk x+1 xk+1

x) Slope: −∇f(xk)

) c(x) Const.

) Const.−f(x)

x Ck+1(x)

) Ck(x)

4 x̃k+1

• Form Ck: inner linearization of c [epi(Ck) is the
convex hull of the halflines

{

(x̃j , w) | w ≥ f(x̃j)
}

,
j = 1, . . . , k]. Find

xk ∈ arg min
x∈ℜn

{

f(x) + Ck(x)
}

• Obtain x̃k+1 such that

−∇f(xk) ∈ ∂c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}



NONDIFFERENTIABLE CASE

• Given Ck: inner linearization of c, obtain

xk ∈ arg min
x∈ℜn

{

f(x) + Ck(x)
}

• Obtain a subgradient gk ∈ ∂f(xk) such that

−gk ∈ ∂Ck(xk)

• Obtain x̃k+1 such that

−gk ∈ ∂c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}
• Example: c is the indicator function of a poly-
hedral set

gk

Level sets of f

x0

conv(Xk)

x
∗

e: x̃k+1

) X
Primal feasibility violated gk

gk+1
+1 xk

k xk+1



LECTURE 18

LECTURE OUTLINE

• Proximal algorithm

• Convergence

• Rate of convergence

• Extensions

********************************************

Consider minimization of closed proper convex f :
ℜn 7→ (−∞,+∞] using a different type of approx-
imation:

• Regularization in place of linearization

• Add a quadratic term to f to make it strictly
convex and “well-behaved”

• Refine the approximation at each iteration by
changing the quadratic term



PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

− f : ℜn 7→ (−∞,∞] is closed proper convex

− ck is a positive scalar parameter

− x0 is arbitrary starting point

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• xk+1 exists because of the quadratic.

• Note it does not have the instability problem of
cutting plane method

• If xk is optimal, xk+1 = xk.

• Main Convergence Theorem: If
∑

k ck = ∞,
f(xk) → f∗. Moreover {xk} converges to an opti-
mal solution if one exists.



CONVERGENCE: SOME BASIC PROPERTIES

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• Note the connection with Fenchel framework

• From subdifferential of sum formula (or Fenchel
duality theorem)

(xk − xk+1)/ck ∈ ∂f(xk+1)

Note the similarity with the subgradient method
(xk − xk+1)/ck ∈ ∂f(xk)

• Cost improves:

f(xk+1) +
1

2ck
‖xk+1 − xk‖2 ≤ f(xk)

• Distance to the optimum improves:

‖xk+1 − y‖2 ≤ ‖xk − y‖2
− 2ck

(

f(xk+1)− f(y)
)

− ‖xk − xk+1‖2

for all k and y ∈ ℜn.



CONVERGENCE PROOF I

• Main Convergence Theorem: If
∑

k ck = ∞,
f(xk) ↓ f∗. Moreover {xk} converges to an opti-
mal solution if one exists.
Proof: Have f(xk) ↓ f∞ ≥ f∗. For all y and k,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2ck
(

f(xk+1)− f(y)
)

By adding over k = 0, . . . , N ,

‖xN+1−y‖2+2
N
∑

k=0

ck
(

f(xk+1)−f(y)
)

≤ ‖x0−y‖2,

so taking the limit as N → ∞,

2

∞
∑

k=0

ck
(

f(xk+1)− f(y)
)

≤ ‖x0 − y‖2 (∗)

• Argue by contradiction: Assume f∞ > f∗, and
let ŷ be such that f∞ > f(ŷ) > f∗. Then

f(xk+1)− f(ŷ) ≥ f∞ − f(ŷ) > 0.

Since
∑∞

k=0 ck = ∞, (*) leads to a contradiction.
Thus f∞ = f∗.



CONVERGENCE PROOF II

• Assume X∗ 6= Ø. We will show convergence to
some x∗ ∈ X∗. Applying

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2ck
(

f(xk+1)− f(y)
)

with y = x∗ ∈ X∗,

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2ck
(

f(xk+1)−f(x∗)
)

,
(∗∗)

Thus ‖xk − x∗‖2 is monotonically nonincreasing,
so {xk} is bounded.

• If {xk}K → z, the limit point z must belong to
X∗, since f(xk) ↓ f∗, and f is closed, so

f(z) ≤ lim inf
k→∞, k∈K

f(xk) = f∗

• By (**), the distance of xk to each limit point
is monotonically nonincreasing, so {xk} must con-
verge to a unique limit, which must be an element
of X∗. Q.E.D.



RATE OF CONVERGENCE I

• Role of penalty parameter ck:

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X x
xk+1

xk x
∗xk+2

• Role of growth properties of f near optimal
solution set:

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X xxk+1
xk x

∗

xk+2



RATE OF CONVERGENCE II

• Assume growth of order α from optimal solution
setX∗, i.e., that for some β > 0, δ > 0, and α ≥ 1,

f∗ + β
(

d(x)
)α ≤ f(x), ∀ x ∈ ℜn with d(x) ≤ δ

where d(x) = minx∗∈X∗ ‖x− x∗‖
• Key property: For all k sufficiently large,

d(xk+1) + βck
(

d(xk+1)
)α−1 ≤ d(xk)

X x
X∗

f∗ xk+1 xk

βd(x)α)
f(x)

Slope =
xk − xk+1

ck

) δk+1

f(xk+1)

• We have (in one dimension)

β
(

d(xk+1)
)α ≤ f(xk+1)− f∗

=
xk − xk+1

ck
· (xk+1 − δk+1)

≤ d(xk)− d(xk+1)

ck
· d(xk+1)



LINEAR AND SUPERLINEAR CONVERGENCE

• Use the key relation

d(xk+1) + βck
(

d(xk+1)
)α−1 ≤ d(xk)

for various values of order of growth α ≥ 1.

• If α = 2 and limk→∞ ck = c̄, then

lim sup
k→∞

d(xk+1)

d(xk)
≤ 1

1 + βc̄

linear convergence.

• If 1 < α < 2, then

lim sup
k→∞

d(xk+1)
(

d(xk)
)1/(α−1)

<∞

superlinear convergence.



FINITE CONVERGENCE

• Assume growth order α = 1:

f∗ + βd(x) ≤ f(x), ∀ x ∈ ℜn

Can be shown to hold if f is polyhedral.

f(x)

X x
X∗

f∗

f∗ + βd(x)

Slope βSlope β

• Method converges finitely (in a single step for
c0 sufficiently large).

f(x)

X x

f(x)

X xx
∗

x0x0 x1 x2 = x
∗



EXTENSIONS

• Combine with polyhedral approximation of f ,
to take advantage of finite convergence property.

− Leads to bundle methods, which involve a
mechanism to prevent the inherent instabil-
ity of cutting plane method.

• Extension to more general problems:

− Application to variational inequalities and
games.

− Application to finding a zero of a “maximally
monotone multi-valued” mapping.

− Allow nonconvex f (the theory is not clean
and complete).

• Replace quadratic regularization by more gen-
eral proximal term.

f(x)

X xxk+1xk x
∗

xk+2

γk −Dk(x, xk)

γk+1 −Dk+1(x, xk+1)

γk

γk+1



LECTURE 19

LECTURE OUTLINE

• Review of proximal algorithm

• Dual proximal algorithm

• Augmented Lagrangian methods

• Proximal cutting plane algorithm

• Bundle methods

*****************************************
Start with proximal algorithm and generate other
methods via:

− Fenchel duality

− Outer/inner linearization

Proximal Cutting Plane Bundle Versions
Proximal Cutting Plane Bundle Versions

Proximal Cutting Plane Bundle Versions
Proximal Cutting Plane Bundle Versions

Proximal Cutting Plane Bundle Versions
Proximal Simplicial Decomposition Bundle Versions

Proximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel Duality

Dual Proximal Point Algorithm Inner Linearization
Dual Proximal Point Algorithm Inner Linearization

Proximal Point Algorithm Outer Linearization
Dual Proximal Point Algorithm Inner Linearization

Proximal Algorithm Dual Proximal Algorithm

Proximal Point Algorithm Outer LinearizationProximal Algorithm Dual Proximal Algorithm
Augmented Lagrangian Method Proximal Algorithm Dual Proximal



RECALL PROXIMAL ALGORITHM

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• Minimizes closed convex proper f :

xk+1 = arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

where x0 is an arbitrary starting point, and {ck}
is a positive parameter sequence.

• We have f(xk) → f∗. Also xk → some mini-
mizer of f , provided one exists.

• Finite convergence for polyhedral f .

• Each iteration can be viewed in terms of Fenchel
duality.



REVIEW OF FENCHEL DUALITY

• Consider the problem

minimize f1(x) + f2(x)

subject to x ∈ ℜn,

where f1 and f2 are closed proper convex.

• Fenchel Duality Theorem:

(a) If f∗ is finite and ri
(

dom(f1)
)

∩ri
(

dom(f2)
)

6=
Ø, then strong duality holds and there exists
at least one dual optimal solution.

(b) Strong duality holds, and (x∗, λ∗) is a primal
and dual optimal solution pair if and only if

x∗ ∈ arg min
x∈ℜn

{

f1(x)−x′λ∗
}

, x∗ ∈ arg min
x∈ℜn

{

f2(x)+x
′λ∗
}

• By conjugate subgradient theorem, the last con-
dition is equivalent to

λ∗ ∈ ∂f1(x∗) [or equivalently x∗ ∈ ∂f⋆1 (λ
∗)]

and

−λ∗ ∈ ∂f2(x∗) [or equivalently x∗ ∈ ∂f⋆2 (−λ∗)]



GEOMETRIC INTERPRETATION

(c) Slope λ S

λ Slope λ∗

) x
∗ some x

∗ f1(x)

) −f2(x)

) q(λ)

∗ f∗ = q∗

−f⋆

1
(λ)

f⋆

2
(−λ)

• The optimality condition is equivalent to

λ∗ ∈ ∂f1(x∗) and λ∗ ∈ −∂f2(x∗); or

x∗ ∈ ∂f⋆1 (λ
∗) and x∗ ∈ ∂f⋆2 (−λ∗)

• More generally: Once we obtain one of x∗ or
λ∗, we can obtain the other by “differentiation”

λ ∈ ∂f(x)

) x ∈ ∂f⋆(λ) ) λ ∈ arg min
z∈ℜn

{

f⋆(z)− z′x
}

x ∈ arg min
z∈ℜn

{

f(z)− z′λ
}

Conjugate Subgradient Theorem

x̃ x̃ x̃ x̃ x̃



DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the
Fenchel form: minx{f1(x) + f2(x)} with

f1(x) = f(x), f2(x) =
1

2ck
‖x− xk‖2

• The Fenchel dual is

minimize f⋆1 (λ) + f⋆2 (−λ)
subject to λ ∈ ℜn

• We have f⋆2 (−λ) = −x′kλ+ ck
2 ‖λ‖2, so the dual

problem is

minimize f⋆(λ)− x′kλ+
ck
2
‖λ‖2

subject to λ ∈ ℜn

where f⋆ is the conjugate of f .

• f2 is real-valued, so no duality gap.

• Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.



DUAL IMPLEMENTATION

• We can solve the Fenchel-dual problem instead
of the primal at each iteration:

λk+1 = arg min
λ∈ℜn

{

f⋆(λ)− x′kλ+
ck
2
‖λ‖2

}

• Primal-dual optimal pair (xk+1, λk+1) are re-
lated by the “differentiation” condition:

λk+1 =
xk − xk+1

ck

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

Slope λk+1

Optimal Primal Solution Optimal dual solution

Optimal primal proximal solution
Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution



DUAL PROXIMAL ALGORITHM

• Obtain λk+1 and xk+1 from

λk+1 = arg min
λ∈ℜn

{

f⋆(λ)− x′kλ+
ck
2
‖λ‖2

}

xk+1 = xk − ckλk+1

• As xk converges to x∗, the dual sequence λk
converges to 0 (a subgradient of f at x∗).

γk

γk −
1

2ck

‖x − xk‖2
f(x)

X xxk+1xk x
∗

x h(λ)
Slope = xk

Slope = xk+1

λk+1

Slope = x
∗

δk

δk + x
′

k
λ −

ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f⋆(λ)

Optimal

Optimal
λ Slope = λk+1 Slope = 0

• The primal and dual algorithms generate iden-
tical sequences {xk, λk}. Which one is preferable
depends on whether f or its conjugate f⋆ has more
convenient structure.

• Special case: The augmented Lagrangian method.



AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

minimize f(x)

subject to x ∈ X, Ax = b

• Primal and dual functions:

p(u) = inf
x∈X

Ax−b=u

f(x), q(λ) = inf
x∈X

{

f(x)+λ′(Ax−b)
}

• Assume p: closed, so (q, p) are “conjugate” pair.

• Primal and dual prox. algorithms for maxλ q(λ):

λk+1 = arg max
λ∈ℜm

{

q(λ)− 1

2ck
‖λ− λk‖2

}

uk+1 = arg min
u∈ℜm

{

p(u) + λ′ku+
ck
2
‖u‖2

}

Dual update: λk+1 = λk + ckuk+1

• Implementation:

uk+1 = Axk+1 − b, xk+1 ∈ argmin
x∈X

Lck(x, λk)

where Lc is the Augmented Lagrangian function

Lc(x, λ) = f(x) + λ′(Ax− b) +
c

2
‖Ax− b‖2



GRADIENT INTERPRETATION

• Back to the dual proximal algorithm and the
dual update λk+1 = xk−xk+1

ck

• Proposition: λk+1 can be viewed as a gradient,

λk+1 =
xk − xk+1

ck
= ∇φck(xk),

where

φc(z) = inf
x∈ℜn

{

f(x) +
1

2c
‖x− z‖2

}

f(x)

X xx
∗

f(z)

φc(z)

xc(z)
z

z

φc(z) −
1

2c

‖x − z‖2

Slope ∇φc(z)

• So the dual update xk+1 = xk − ckλk+1 can
be viewed as a gradient iteration for minimizing
φc(z) (which has the same minima as f).

• The gradient is calculated by the dual prox-
imal minimization. Possibilities for faster meth-
ods (e.g., Newton, Quasi-Newton). Useful in aug-
mented Lagrangian methods.



PROXIMAL CUTTING PLANE METHODS

• Same as proximal algorithm, but f is replaced
by a cutting plane approximation Fk:

xk+1 ∈ argmin
x∈X

{

Fk(x) +
1

2ck
‖x− xk‖2

}

where

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk
}

f(x)

X xxk+1

Fk(x)

f(xk+1) + (x− xk+1)′gk+1

) = xk−

• Main objective is to reduce instability ... but
there are issues to contend with.



DRAWBACKS

• Stability issue:

− For large enough ck and polyhedral X, xk+1

is the exact minimum of Fk overX in a single
minimization, so it is identical to the ordi-
nary cutting plane method.

f(x)

X xxk+1x
∗

Fk(x)

) = xk−

− For small ck convergence is slow.

• The number of subgradients used in Fk may
become very large; the quadratic program may
become very time-consuming.

• These drawbacks motivate algorithmic variants,
called bundle methods.



BUNDLE METHODS I

• Replace f with a cutting plane approx. and
change quadratic regularization more conservatively.

• A general form:

xk+1 ∈ argmin
x∈X

{

Fk(x) + pk(x)
}

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk
}

pk(x) =
1

2ck
‖x− yk‖2

where ck is a positive scalar parameter.

• We refer to pk(x) as the proximal term, and to
its center yk as the proximal center.

f(x)

X x
xk+1 x

∗
) yk

Fk(x)

f(xk+1) + (x− xk+1)′gk+1

Change yk in different ways => different methods.



BUNDLE METHODS II

• Allow a proximal center yk 6= xk:

xk+1 ∈ argmin
x∈X

{

Fk(x) + pk(x)
}

Fk(x) = max
{

f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk
}

pk(x) =
1

2ck
‖x− yk‖2

• Null/Serious test for changing yk

• Compare true cost f and proximal cost Fk + pk
reduction in moving from yk to xk+1, i.e., for some
fixed β ∈ (0, 1)

yk+1 =

{

xk+1 if f(yk)− f(xk+1) ≥ βδk,
yk if f(yk)− f(xk+1) < βδk,

δk = f(yk)−
(

Fk(xk+1) + pk(xk+1)
)

> 0

Serious Step

δk

f(yk)− f(xk+1)

X x) yk yk+1 = xk+1

f(x)
δk

Fk(x)

f(yk)− f(xk+1)

X x) yk yk+1 = xk+1

Null Step

f(x)

δk

Fk(x)

f(yk)− f(xk+1)

X xxk+1x) yk = yk+1



PROXIMAL LINEAR APPROXIMATION

• Convex problem: Min f : ℜn 7→ ℜ over X.

• Proximal cutting plane method: Same as proxi-
mal algorithm, but f is replaced by a cutting plane
approximation Fk:

xk+1 ∈ arg min
x∈ℜn

{

Fk(x) +
1

2ck
‖x− xk‖2

}

λk+1 =
xk − xk+1

ck

where gi ∈ ∂f(xi) for i ≤ k and

Fk(x) = max
{

f(x0)+(x−x0)
′g0, . . . , f(xk)+(x−xk)

′gk
}

+δX(x)

• Proximal simplicial decomposition method (dual
proximal implementation): Let F ⋆

k be the conju-
gate of Fk. Set

λk+1 ∈ arg min
λ∈ℜn

{

F ⋆
k (λ)− x′kλ+

ck
2
‖λ‖2

}

xk+1 = xk − ckλk+1

Obtain gk+1 ∈ ∂f(xk+1), either directly or via

gk+1 ∈ arg max
λ∈ℜn

{

x′k+1λ− f⋆(λ)
}

• Add gk+1 to the outer linearization, or xk+1 to
the inner linearization, and continue.



PROXIMAL SIMPLICIAL DECOMPOSITION

• It is a mathematical equivalent dual to the prox-
imal cutting plane method.

x h(λ)
Slope = xk

x h(λ) h (λ)
Slope = xk+1

) gk+1

Optimal F ⋆

k
(λ) ) f⋆(λ)

) λSlope = λk+1

• Here we use the conjugacy relation between
outer and inner linearization.

• Versions of these methods where the proximal
center is changed only after some “algorithmic
progress” is made:

− The outer linearization version is the (stan-
dard) bundle method.

− The inner linearization version is an inner
approximation version of a bundle method.



LECTURE 20

LECTURE OUTLINE

• Review of proximal and augmented Lagrangians

• Alternating direction methods of multipliers
(ADMM)

• Applications of ADMM

• Extensions of proximal algorithm
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RECALL PROXIMAL ALGORITHM

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• Minimizes closed convex proper f :

xk+1 = arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

where x0 is an arbitrary starting point, and {ck}
is a positive parameter sequence.

• We have f(xk) → f∗. Also xk → some minimizer
of f , provided one exists.

• When applied with f = −q, where q is the dual
function of a constrained optimization problem,
we obtain the augmented Lagrangian method.



AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

minimize f(x)

subject to x ∈ X, Ax = b

• Primal and dual functions:

p(u) = inf
x∈X

Ax−b=u

f(x), q(λ) = inf
x∈X

{

f(x)+λ′(Ax−b)
}

• Augmented Lagrangian function:

Lc(x, λ) = f(x) + λ′(Ax− b) +
c

2
‖Ax− b‖2

• Augmented Lagrangian algorithm: Find

xk+1 ∈ argmin
x∈X

Lck (x, λk)

and then set

λk+1 = λk + ck(Axk+1 − b)



A DIFFICULTY WITH AUGM. LAGRANGIANS

• Consider the (Fenchel format) problem

minimize f1(x) + f2(z)

subject to x ∈ ℜn, z ∈ ℜm, Ax = z,

and its augmented Lagrangian function

Lc(x, z, λ) = f1(x)+f2(z)+λ
′(Ax− z)+ c

2
‖Ax− z‖2.

• The problem is separable in x and z, but ‖Ax−
z‖2 couples x and x inconveniently.

• We may consider minimization by a block co-
ordinate descent method:

− Minimize Lc(x, z, λ) over x, with z and λ held
fixed.

− Minimize Lc(x, z, λ) over z, with x and λ held
fixed.

− Repeat many times, then update the multi-
pliers, then repeat again.

• The ADMM does one minimization in x, then
one minimization in z, before updating λ.



ADMM

• Start with some λ0 and c > 0:

xk+1 ∈ arg min
x∈ℜn

Lc(x, zk, λk),

zk+1 ∈ arg min
z∈ℜm

Lc(xk+1, z, λk),

λk+1 = λk + c(Axk+1 − zk+1).

• The penalty parameter c is kept constant in the
ADMM (no compelling reason to change it).

• Strong convergence properties: {λk} converges
to optimal dual solution, and if A′A is invertible,
{xk, zk} also converge to optimal primal solution.

• Big advantages:

− x and z are decoupled in the minimization of
Lc(x, z, λ).

− Very convenient for problems with special
structures.

− Has gained a lot of popularity for signal pro-
cessing and machine learning problems.

• Not necessarily faster than augmented Lagrangian
methods (many more iterations in λ are needed).



FAVORABLY STRUCTURED PROBLEMS I

• Additive cost problems:

minimize
m
∑

i=1

fi(x)

subject to x ∈ ∩m
i=1Xi,

where fi : ℜn 7→ ℜ are convex functions and Xi are
closed, convex sets.

• Feasibility problem: Given m closed convex sets
X1, X2, . . . , Xm in ℜn, find a point in ∩m

i=1Xi.

• Problems involving ℓ1 norms: A key fact is that
proximal works well with ℓ1. For any α > 0 and
w = (w1, . . . , wm) ∈ ℜm,

S(α,w) ∈ arg min
z∈ℜm

{

‖z‖1 +
1

2α
‖z − w‖2

}

,

is easily computed by the shrinkage operation:

Si(α,w) =

{

wi − α if wi > α,
0 if |wi| ≤ α,
wi + α if wi < −α,

i = 1, . . . ,m.



FAVORABLY STRUCTURED PROBLEMS II

• Basis pursuit:

minimize ‖x‖1
subject to Cx = b,

where ‖·‖1 is the ℓ1 norm in ℜn, C is a given m×n
matrix and b is a vector in ℜm. Use f1 = indicator
fn of {x | Cx = b}, and f2(z) = ‖z‖1.
• ℓ1 Regularization:

minimize f(x) + γ‖x‖1
subject to x ∈ ℜn,

where f : ℜn 7→ (−∞,∞] is a closed proper convex
function and γ is a positive scalar. Use f1 = f ,
and f2(z) = γ‖z‖1.
• Least Absolute Deviations Problem:

minimize ‖Cx− b‖1
subject to x ∈ ℜn,

where C is an m×n matrix, and b ∈ ℜm is a given
vector. Use f1 = 0, and f2(z) = ‖z‖1.



SEPARABLE PROBLEMS I

• Consider a convex separable problem of the form

minimize
m
∑

i=1

fi(x
i)

subject to
m
∑

i=1

Aix
i = b, xi ∈ Xi, i = 1, . . . ,m,

• A plausible idea is the ADMM-like iteration

xik+1 ∈ arg min
xi∈Xi

Lc(x
1
k+1, . . . , x

i−1
k+1, x

i, xi+1
k , . . . , xmk , λk),

λk+1 = λk + c

(

m
∑

i=1

Aix
i
k+1 − b

)

• Form = 1 it becomes the augmented Lagrangian
method, for m = 2 it becomes the ADMM, and for
m > 2 it maintains the attractive variable decou-
pling property of ADMM

• Unfortunately, it may not work for m > 2 (it
does work but under restrictive assumptions)

• We will derive a similar but reliable version (a
special case of ADMM for m = 2, from Bertsekas
and Tsitsiklis 1989, Section 3.4).



SEPARABLE PROBLEMS II

• We reformulate the convex separable problem
so it can be addressed by ADMM

minimize
m
∑

i=1

fi(x
i)

subject to Aix
i = zi, xi ∈ Xi, i = 1, . . . ,m,

m
∑

i=1

zi = b,

• The ADMM is given by

xik+1 ∈ arg min
xi∈Xi

{

fi(x
i) + (Aix

i − zik)
′pik +

c

2
‖Aix

i − zik‖2
}

,

zk+1 ∈ arg min
∑

m

i=1
zi=b

{

m
∑

i=1

(Aix
i
k+1 − zi)′pik +

c

2
‖Aix

i
k+1 − zi‖

pik+1 = pik + c(Aix
i
k+1 − zik+1),

where pik is the multiplier of Aix
i = zi.

• A key fact is that all pik, i = 1, . . . ,m, can be
shown to be equal to a single vector λk, the mul-
tiplier of the constraint

∑m

i=1
zi = b.

• This simplifies the algorithm.



PROXIMAL AS FIXED POINT ALGORITHM I

• Back to the proximal algorithm for minimizing
closed convex f : ℜn 7→ (−∞,∞].

• Proximal operator corresponding to c and f :

Pc,f (z) = arg min
x∈ℜn

{

f(x) +
1

2c
‖x− z‖2

}

, z ∈ ℜn

• The set of fixed points of Pc,f coincides with the
set of minima of f , and the proximal algorithm,
written as

xk+1 = Pck,f (xk),

may be viewed as a fixed point iteration.

• Decomposition:

z = Pc,f (z) iff z = z−cv for some v ∈ ∂f(z)

x
∗

z

c v

) ∂f(x) 0 slope

x
∗

z) ∂f(x) 0 slope

c v xkk xk+1+1 xk+2d z x d z x)Nc,f(z)

Slope = 1/c /c Slope = −1/c

z = Pc,f (z)

• Important mapping Nc,f (z) = 2Pc,f (z)− z



PROXIMAL AS FIXED POINT ALGORITHM II

• The mapping Nc,f : ℜn 7→ ℜn given by

Nc,f (z) = 2Pc,f (z)− z, z ∈ ℜn,

is nonexpansive:

∥

∥Nc,f (z1)−Nc,f (z2)
∥

∥ ≤ ‖z1 − z2‖, ∀ z1, z2 ∈ ℜn.

x
∗

d z x

Pc,f (x)

) X∗

) Pc,f(x) − x∗

∗
x− x

∗

Nc,f(x)

) Nc,f(x) − x∗

• The interpolated iteration

xk+1 = (1− αk)xk + αkNc,f (xk),

where αk ∈ [ǫ, 1−ǫ] for some scalar ǫ > 0, converges
to a fixed point of Nc,f , provided Nc,f has at least
one fixed point.

• Extrapolation is more favorable

• ADMM and proximal belong to the same family
of fixed point algorithms for finding a zero of a
multivalued monotone operator (see refs).



LECTURE 21

LECTURE OUTLINE

• We enter a series of lectures on advanced topics

− Gradient projection

− Variants of gradient projection

− Variants of proximal and combinations

− Incremental subgradient and proximal meth-
ods

− Coordinate descent methods

− Interior point methods, etc

• Today’s lecture on gradient projection

• Application to differentiable problems

• Iteration complexity issues

******************************************

• Reference: The on-line chapter of the textbook



GRADIENT PROJECTION METHOD

• Let f be continuously differentiable, and X be
closed convex.

• Gradient projection method:

xk+1 = PX

(

xk − αk∇f(xk)
)

xk

xk+1

X x

X xk − α∇f(xk)

• A specialization of subgradient method, but cost
function descent comes into play

• xk+1 − xk is a feasible descent direction (by the
projection theorem)

• f(xk+1) < f(xk) if αk: sufficiently small (unless
xk is optimal)

• αk may be constant or chosen by cost descent-
based stepsize rules



CONNECTION TO THE PROXIMAL ALGORITHM

• Linear approximation of f based on ∇f(x):

ℓ(y;x) = f(x) +∇f(x)′(y − x), ∀ x, y ∈ ℜn

• For all x ∈ X and α > 0, we have

1

2α

∥

∥y−
(

x−α∇f(x)
)∥

∥

2
= ℓ(y;x)+

1

2α
‖y−x‖2+constant

so
PX

(

x− α∇f(x)
)

∈ argmin
y∈X

{

ℓ(y;x) +
1

2α
‖y − x‖2

}

γk

f(x)

X xxk+1xk

f(xk)

ℓ(x;xk)
) γk −

1

2αk

‖x− xk‖2

X

• Three-term inequality holds: For all y ∈ ℜn,

‖xk+1−y‖2 ≤ ‖xk−y‖2−2αk

(

ℓ(xk+1;xk)−ℓ(y;xk)
)

−‖xk−xk+1‖2



CONSTANT STEPSIZE - DESCENT LEMMA

• Consider constant αk: xk+1 = PX

(

xk−α∇f(xk)
)

• We need the gradient Lipschitz assumption

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ X

• Descent Lemma: For all x, y ∈ X,

f(y) ≤ ℓ(y;x) +
L

2
‖y − x‖2

f(x)

X x ) y f

f(y)

) ℓ(y;x) +
L

2
‖y − x‖2

ℓ(y;x) +

X x−
1

L
∇f(x)

• Proof idea: The Lipschitz constant L serves
as an upper bound to the “curvature” of f along
directions, so L

2
‖y−x‖2 is an upper bound to f(y)−

ℓ(y;x).



CONSTANT STEPSIZE - CONVERGENCE RESULT

• Assume the gradient Lipschitz condition, and
α ∈ (0, 2/L) (no convexity of f). Then f(xk) ↓ f∗

and every limit point of {xk} is optimal.

Proof: From the projection theorem, we have

(

xk −α∇f(xk)− xk+1

)′
(x− xk+1) ≤ 0, ∀ x ∈ X,

so by setting x = xk,

∇f(xk)′(xk+1 − xk) ≤ − 1

α

∥

∥xk+1 − xk
∥

∥

2

• Using this relation and the descent lemma,

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2

= f(xk) +∇f(xk)′(xk+1 − xk) +
L

2
‖xk+1 − xk‖2

≤ f(xk)−
(

1

α
− L

2

)

‖xk+1 − xk‖2

so α ∈ (0, 2/L) reduces the cost function value.

• If α ∈
(

0, 2/L
)

and x is the limit of a subsequence
{xk}K, then f(xk) ↓ f(x), so ‖xk+1 −xk‖ → 0. This
implies PX

(

x− α∇f(x)
)

= x. Q.E.D.



STEPSIZE RULES

• Eventually constant stepsize. Deals with the
case of an unknown Lipschitz constant L. Start
with some α > 0, and keep using α as long as

f(xk+1) ≤ ℓ(xk+1;xk) +
1

2α
‖xk+1 − xk‖2

is satisfied (this guarantees cost descent). When
this condition is violated at some iteration, we re-
duce α by a certain factor, and repeat. (Satisfied
once α ≤ 1/L, by the descent lemma.)

• A diminishing stepsize αk, satisfying

lim
k→∞

αk = 0,

∞
∑

k=0

αk = ∞,

∞
∑

k=0

α2
k <∞.

Does not require Lipschitz condition or differen-
tiability of f , only convexity of f .

• Stepsize reduction and line search rules - Armijo
rules. These rules are based on cost function de-
scent, and ensure that through some form of line
search, we find αk such that f(xk+1) < f(xk), un-
less xk is optimal. Do not require Lipschitz con-
dition, only differentiability of f .



ARMIJO STEPSIZE RULES

• Search along the projection arc: αk = βmks,
where s > 0 and β ∈ (0, 1) are fixed scalars, and
mk is the first integer m such that

f(xk)− f
(

xk(β
ms)
)

≥ σ∇f(xk)′
(

xk − xk(β
ms)
)

,

with σ ∈ (0, 1) being some small constant, and

xk(α) = PX

(

xk − α∇f(xk)
)

x 0 Projection arc Slope α ℓ

) σ∇f(xk)′
(

xk(α)−xk

)

f
(

xk(α)
)

−f(xk)

Set of acceptable stepsizes Projection arc Slope

) skβskαk = β2
sk

• Similar rule searches along the feasible direction



CONVERGENCE RATE - αK ≡ 1/L

• Assume f : convex, the Lipschitz condition,
X∗ 6= Ø, and the eventually constant stepsize rule.
Denote d(xk) = minx∗∈X∗ ‖xk − x∗‖. Then

lim
k→∞

d(xk) = 0, f(xk)− f∗ ≤ Ld(x0)
2

2k

Proof: Let x∗ ∈ X∗ be such that ‖x0 − x∗‖ =
d(x0). Using the descent lemma and the three-
term inequality,

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2

≤ ℓ(x∗;xk) +
L

2
‖x∗ − xk‖2 −

L

2
‖x∗ − xk+1‖2

≤ f(x∗) +
L

2
‖x∗ − xk‖2 −

L

2
‖x∗ − xk+1‖2

Let ek = f(xk)− f(x∗) and note that ek ↓ . Then

L

2
‖x∗ − xk+1‖2 ≤ L

2
‖x∗ − xk‖2 − ek+1

Use this relation with k = k− 1, k− 2, . . ., and add

0 ≤ L

2
‖x∗ − xk+1‖2 ≤ L

2
d(x0)

2 − (k + 1)ek+1



GENERALIZATION - EVENTUALLY CONST. αK

• Assume f : convex, the Lipschitz condition,
X∗ 6= Ø, and any stepsize rule such that

αk ↓ α,

for some α > 0, and for all k,

f(xk+1) ≤ ℓ(xk+1;xk) +
1

2αk

‖xk+1 − xk‖2.

Denote d(xk) = minx∗∈X∗ ‖xk − x∗‖. Then

lim
k→∞

d(xk) = 0, f(xk)− f∗ ≤
(

d(x0)
2

2αk

)

Proof: Show that

f(xk+1) ≤ f(xk)−
1

2αk

‖xk+1 − xk‖2,

and generalize the preceding proof. Q.E.D.

• Applies to eventually constant stepsize rule.

• Error complexity O(1/k), (k iterations produce

O(1/k) cost error), i.e., minℓ≤k f(xℓ) ≤ f∗ + const
k

• Iteration complexity O(1/ǫ), (O(1/ǫ) iterations
produce ǫ cost error), i.e., min

k≤const
ǫ

f(xk) ≤ f∗+

ǫ



SHARPNESS OF COMPLEXITY ESTIMATE

f(x)

x0 ǫǫ − ǫ

Slope cǫ

• Unconstrained minimization of

f(x) =

{

c
2
|x|2 if |x| ≤ ǫ,

cǫ|x| − cǫ2

2
if |x| > ǫ

• With stepsize α = 1/L = 1/c and any xk > ǫ,

xk+1 = xk − 1

L
∇f(xk) = xk − 1

c
c ǫ = xk − ǫ

• The number of iterations to get within an ǫ-
neighborhood of x∗ = 0 is |x0|/ǫ.
• The number of iterations to get to within ǫ of
f∗ = 0 is proportional to 1/ǫ for large x0.



LECTURE 22

LECTURE OUTLINE

• Gradient projection method

• Iteration complexity issues

• Gradient projection with extrapolation

• Proximal gradient method

******************************************
References:

• The on-line chapter of the textbook

• Beck, A., and Teboulle, M., 2010. “Gradient-
Based Algorithms with Applications to Signal Re-
covery Problems, in Convex Optimization in Sig-
nal Processing and Communications (Y. Eldar and
D. Palomar, eds.), Cambridge University Press,
pp. 42-88.

• J. Lee, Y. Sun, M. Saunders, “Proximal Newton-
Type Methods for Convex Optimization,” NIPS,
2012.



REVIEW OF GRADIENT PROJECTION METHOD

• Let f be continuously differentiable, and X be
closed convex.

• Gradient projection method:

xk+1 = PX

(

xk − αk∇f(xk)
)

xk

xk+1

X x

X xk − α∇f(xk)

• αk may be constant or chosen by cost descent-
based stepsize rules

• Under gradient Lipschitz assumption

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ X

iteration complexity O(1/ǫ), (O(1/ǫ) iterations for
ǫ cost error), i.e., min

k≤const
ǫ

f(xk) ≤ f∗ + ǫ



SHARPNESS OF COMPLEXITY ESTIMATE

f(x)

x0 ǫǫ − ǫ

Slope cǫ

• Unconstrained minimization of

f(x) =

{

1
2
|x|2 if |x| ≤ ǫ,

ǫ|x| − ǫ2

2
if |x| > ǫ

• With stepsize α = 1/L = 1 and any xk > ǫ,

xk+1 = xk − 1

L
∇f(xk) = xk − ǫ

• The number of iterations to get within an ǫ-
neighborhood of x∗ = 0 is |x0|/ǫ.
• The number of iterations to get to within ǫ of
f∗ = 0 is proportional to 1/ǫ for large x0.



EXTRAPOLATION VARIANTS

• An old method for unconstrained optimiza-
tion, known as the heavy-ball method or gradient
method with momentum:

xk+1 = xk − α∇f(xk) + β(xk − xk−1),

where x−1 = x0 and β is a scalar with 0 < β < 1.

• A variant for constrained problems separates
the extrapolation and the gradient steps:

yk = xk + β(xk − xk−1), (extrapolation step),

xk+1 = PX

(

yk − α∇f(yk)
)

, (grad. projection step).

• When applied to the preceding example, the
method converges to the optimum, and reaches a
neighborhood of the optimum more quickly

• However, the method still has an O(1/k) error
complexity, since for x0 >> 1, we have

xk+1 − xk = β(xk − xk−1)− ǫ

so xk+1 − xk ≈ ǫ/(1− β), and the number of itera-
tions needed to obtain xk < ǫ is O

(

(1− β)/ǫ
)

.



OPTIMAL COMPLEXITY ALGORITHM

• Surprisingly with a proper more vigorous ex-
trapolation βk → 1 in the extrapolation scheme

yk = xk + βk(xk − xk−1), (extrapolation step),

xk+1 = PX

(

yk − 1

L
∇f(yk)

)

, (grad. projection step),

the method has iteration complexity O
(√

L/ǫ
)

.
(Also with ”eventually constant” rule for α.)

• Choices that work

βk =
θk(1− θk−1)

θk−1

where {θk} satisfies θ0 = θ1 ∈ (0, 1], and

1− θk+1

θ2k+1

≤ 1

θ2k
, θk ≤ 2

k + 2

• One possible choice is

βk =

{

0 if k = 0,
k−1
k+2

if k ≥ 1,
θk =

{

1 if k = −1,
2

k+2
if k ≥ 0.

• Highly unintuitive. Good practical performance
reported.



EXTENSION TO NONDIFFERENTIABLE CASE

• Consider the nondifferentiable problem of min-
imizing convex function f : ℜn 7→ ℜ over a closed
convex set X.

• “Smooth” f , i.e., approximate it with a differen-
tiable function fǫ with Lipschitz constant O(1/ǫ)
by using a proximal minimization scheme.

• The smoothed function satisfies

fǫ(x) ≤ f(x) ≤ fǫ(x) +O(ǫ)

• Apply optimal complexity gradient projection
method with extrapolation. Then an O(1/ǫ) com-
plexity algorithm is obtained.

• Can be shown that this complexity bound is
sharp.

• Improves on the subgradient complexity bound
by an ǫ factor.

• Limited practical experience with such meth-
ods.



CRITIQUE OF THE OPTIMAL ALGORITHM

• Requires gradient Lipschitz assumption

• Chooses the stepsize αk in the basis of the
worst possible curvature information (same Lip-
schitz constant assumed in all directions).

• Compares well relative to competitors for some
difficult problems (singular Hessian, but under Lip-
schitz gradient assumption).

• Not so well for other difficult problems (Lips-
chitz gradient assumption not holding) or easier
problems (nonsingular Hessian) for which it has
to compete with conjugate gradient and quasi-
Newton methods

• A weak point: Cannot take advantage of special
structure, e.g., there are no incremental versions.

• A strong point: Its favorable complexity esti-
mate carries over to combinations with proximal
algorithms.



PROXIMAL GRADIENT METHOD

• Minimize f(x) + h(x) over x ∈ X, where X:
closed convex, f , h: convex, f is differentiable.

• Proximal gradient method:

xk+1 ∈ arg min
x∈X

{

ℓ(x;xk) + h(x) +
1

2α
‖x− xk‖2

}

where ℓ(x;xk) = f(xk) +∇f(xk)′(x− xk)

• Equivalent definition of proximal gradient:

zk = xk − α∇f(xk)

xk+1 ∈ arg min
x∈X

{

h(x) +
1

2α
‖x− zk‖2

}

• Simplifies the implementation of proximal, by
using gradient iteration to deal with the case of
an inconvenient component f

• Important example: h is the ℓ1 norm - use the
shrinkage operation to simplify the proximal

• The gradient projection and extrapolated vari-
ant analysis carries through, with the same itera-
tion complexity



PROXIMAL GRADIENT METHOD ANALYSIS

• Recall descent lemma: For all x, y ∈ X

f(y) ≤ ℓ(y;x) +
L

2
‖y − x‖2

where

ℓ(y;x) = f(x) +∇f(x)′(y − x), ∀ x, y ∈ ℜn

• Recall three-term inequality: For all y ∈ ℜn,

‖xk+1 − y‖2 ≤ ‖xk − y‖2

− 2αk

(

ℓ(xk+1;xk) + h(xk+1)− ℓ(y;xk)− h(y)
)

− ‖xk − xk+1‖2

• Eventually constant stepsize rule: Keep using
same α, as long as

f(xk+1) ≤ ℓ(xk+1;xk) +
1

2α
‖xk+1 − xk‖2 (1)

• As soon as this condition is violated, reduce
α by a certain factor, and repeat the iteration as
many times as is necessary for Eq. (1) to hold.



RATE OF CONVERGENCE RESULT

• Assume ∇f satisfies the Lipschitz condition and
the set of minima X∗ of f over X is nonempty.
If {xk} is a sequence generated by the proximal
gradient method using any stepsize rule such that

αk ↓ α,

for some α > 0, and for all k,

f(xk+1) ≤ ℓ(xk+1;xk) +
1

2αk

‖xk+1 − xk‖2,

then limk→∞ d(xk) = 0, and

f(xk)+h(xk)−min
x∈X

{

f(x)+h(x)
}

≤ αd(x0)
2

2k
, ∀ k,

where

d(x) = min
x∗∈X∗

‖x− x∗‖, x ∈ ℜn



SCALED PROXIMAL GRADIENT METHODS

• Idea: Instead of gradient, use scaled gradient,
quasi-Newton, or Newton:

xk+1 ∈ argmin
x∈X

{

ℓ(x;xk)+h(x)+ 1
2
(x−xk)′Hk(x−xk)

}

,

where Hk is a positive definite symmetric matrix.

• Can use Hk = ∇2f(xk) (fast convergence) but
the proximal minimization may become compli-
cated.

• Lots of room for new methods ...



LECTURE 23

LECTURE OUTLINE

• Incremental methods

• Review of large sum problems

• Review of incremental gradient methods

• Incremental subgradient-proximal methods

• Convergence analysis

• Cyclic and randomized component selection
***************************************************

• References:

(1) D. P. Bertsekas, “Incremental Gradient, Sub-
gradient, and Proximal Methods for Convex
Optimization: A Survey”, Lab. for Informa-
tion and Decision Systems Report LIDS-P-
2848, MIT, August 2010.

(2) Published versions in Math. Programming
J., and the edited volume “Optimization for
Machine Learning,” by S. Sra, S. Nowozin,
and S. J. Wright, MIT Press, Cambridge,
MA, 2012.



LARGE SUM PROBLEMS

• Minimize over X ⊂ ℜn

f(x) =

m
∑

i=1

fi(x), m is very large,

where X, fi are convex. Some examples:

• Dual cost of a separable problem - Lagrangian
relaxation, integer programming.

• Data analysis/machine learning: x is parameter
vector of a model; each fi corresponds to error
between data and output of the model.

− ℓ1-regularization (least squares plus ℓ1 penalty):

min
x

γ

n
∑

j=1

|xj |+
m
∑

i=1

(c′ix− di)
2

− Classification (logistic regression, support vec-
tor machines)

− Max-likelihood

• Min of an expected value minx E
{

F (x,w)
}

-
stochastic programming:

min
x

[

F1(x) + Ew

{

min
y
F2(x, y, w)

}]

• More (many constraint problems, etc ...)



INCREMENTAL GRADIENT METHOD

• Problem: Minimization of f(x) =
∑m

i=1
fi(x)

over a closed convex set X (fi differentiable).

• Operates in cycles: If xk is the vector obtained
after k cycles, the vector xk+1 obtained after one
more cycle is xk+1 = ψm,k, where ψ0,k = xk, and

ψi,k = PX

(

ψi−1,k−αk∇fi,k(ψi−1,k)
)

, i = 1, . . . ,m

• Does NOT compute the (expensive) gradient of
f , which is

∑

i
∇fi.

• Interesting issues of ordering the processing of
components.

• Randomization of selection of component fi
is possible. Connection with stochastic gradient
method.

• Diminishing stepsize needed for convergence.

• Example: Consider

min
x∈ℜ

1

2

{

(1− x)2 + (1 + x)2
}

For a constant stepsize the incremental gradient
method oscillates.



COMPARE W/ NONINCREMENTAL GRADIENT

• Two complementary performance issues:

− Progress when far from convergence. Here
the incremental method can be much faster.

− Progress when close to convergence. Here
the incremental method can be inferior.

• Example: Scalar case

fi(x) = 1
2
(cix− bi)

2, x ∈ ℜ

(a ix - bi)
2

a
mini

i

bi

a
max i

i

b i

x*

xR

REGION OF CONFUSION FAROUT REGIONFAROUT REGION

min
i

ci

bi
max

i

ci

bi

(cix− bi)2

• Interesting issues of batching/shaping the re-
gion of confusion.

• Hybrids between incremental and nonincremen-
tal gradient methods. Aggregated gradient method.



INCREMENTAL SUBGRADIENT METHODS

• Problem: Minimize

f(x) =

m
∑

i=1

fi(x)

over a closed convex set X, where fi : ℜn 7→ ℜ are
convex, and possibly nondifferentiable.

• We first consider incremental subgradient meth-
ods which move x along a subgradient ∇̃fi of a
component function fi.

• At iteration k select a component ik and set

xk+1 = PX

(

xk − αk∇̃fik (xk)
)

,

with ∇̃fik (xk) being a subgradient of fik at xk.

• Motivation is faster convergence. A cycle can
make much more progress than a subgradient it-
eration with essentially the same computation.



CONVERGENCE: CYCLIC ORDER

• Algorithm

xk+1 = PX

(

xk − αk∇̃fik(xk)
)

• Assume all subgradients generated by the algo-
rithm are bounded: ‖∇̃fik (xk)‖ ≤ c for all k

• Assume components are chosen for iteration
in cyclic order, and stepsize is constant within a
cycle of iterations (for all k with ik = 1 we have
αk = αk+1 = · · · = αk+m−1)

• Key inequality: For all y ∈ X and all k that
mark the beginning of a cycle

‖xk+m−y‖2 ≤ ‖xk−y‖2−2αk

(

f(xk)−f(y)
)

+α2
km

2c2

Progress if −2αk

(

f(xk)− f(y)
)

+ α2
km

2c2 < 0.

• Result for a constant stepsize αk ≡ α:

lim inf
k→∞

f(xk) ≤ f∗ + α
m2c2

2

• Convergence for αk ↓ 0 with
∑∞

k=0
αk = ∞.



CONVERGENCE: RANDOMIZED ORDER

• Algorithm

xk+1 = PX

(

xk − αk∇̃fik(xk)
)

• Assume component ik chosen for iteration in
randomized order (independently with equal prob-
ability).

• Assume all subgradients generated by the algo-
rithm are bounded: ‖∇̃fik (xk)‖ ≤ c for all k.

• Result for a constant stepsize αk ≡ α:

lim inf
k→∞

f(xk) ≤ f∗ + α
mc2

2

(with probability 1) - improvement by a factor m
over the cyclic order case.

• Convergence for αk ↓ 0 with
∑∞

k=0
αk = ∞.

(with probability 1). Use of the supermartingale
convergence theorem.

• In practice, randomized stepsize and variations
(such as randomization of the order within a cycle
at the start of a cycle) often work much faster.



SUBGRADIENT-PROXIMAL CONNECTION

• Key Connection: The proximal iteration

xk+1 = argmin
x∈X

{

f(x) +
1

2αk

‖x− xk‖2
}

can be written as

xk+1 = PX

(

xk − αk∇̃f(xk+1)
)

where ∇̃f(xk+1) is some subgradient of f at xk+1.

• Consider an incremental proximal iteration for
minx∈X

∑m

i=1
fi(x)

xk+1 = argmin
x∈X

{

fik (x) +
1

2αk

‖x− xk‖2
}

• Motivation: Proximal methods are more “sta-
ble” than subgradient methods.

• Drawback: Proximal methods require special
structure to avoid large overhead.

• This motivates a combination of incremental
subgradient and proximal (split iteration, similar
to proximal gradient).



INCR. SUBGRADIENT-PROXIMAL METHODS

• Consider the problem

min
x∈X

F (x)
def
=

m
∑

i=1

Fi(x)

where for all i,

Fi(x) = fi(x) + hi(x)

X, fi and hi are convex.

• Consider a combination of subgradient and prox-
imal incremental iterations

zk = argmin
x∈X

{

fik (x) +
1

2αk

‖x− xk‖2
}

xk+1 = PX

(

zk − αk∇̃hik (zk)
)

• Idea: Handle “favorable” components fi with
the more stable proximal iteration; handle other
components hi with subgradient iteration.

• Variations:

− Min. over ℜn (rather than X) in proximal

− Do the subgradient without projection first
and then the proximal.



CONVERGENCE: CYCLIC ORDER

• Assume all subgradients generated by the algo-
rithm are bounded: ‖∇̃fik (xk)‖ ≤ c, ‖∇̃hik (xk)‖ ≤
c for all k, plus mild additional conditions.

• Assume components are chosen for iteration in
cyclic order, and stepsize is constant within a cycle
of iterations.

• Key inequality: For all y ∈ X and all k that
mark the beginning of a cycle:

‖xk+m−y‖2 ≤ ‖xk−y‖2−2αk

(

F (xk)−F (y)
)

+βα2
km

2c2

where β is the constant β = 1/m+ 4.

• Result for a constant stepsize αk ≡ α:

lim inf
k→∞

f(xk) ≤ f∗ + αβ
m2c2

2

• Convergence for αk ↓ 0 with
∑∞

k=0
αk = ∞.



CONVERGENCE: RANDOMIZED ORDER

• Convergence and convergence rate results are
qualitatively similar to incremental subgradient
case.

• Result for a constant stepsize αk ≡ α:

lim inf
k→∞

f(xk) ≤ f∗ + αβ
mc2

2

(with probability 1).

• Faster convergence for randomized stepsize rule
- improvement by a factor m over the cyclic order
case.

• Convergence for αk ↓ 0 with
∑∞

k=0
αk = ∞.

(with probability 1). Use of the supermartingale
convergence theorem.



EXAMPLE I

• ℓ1-Regularization for least squares

min
x∈ℜn

{

γ ‖x‖1 +
1

2

m
∑

i=1

(c′ix− di)
2

}

• Use incremental gradient or proximal on the
quadratic terms.

• Use proximal on the ‖x‖1 term:

zk = arg min
x∈ℜn

{

γ ‖x‖1 +
1

2αk

‖x− xk‖2
}

• Decomposes into the n one-dimensional mini-
mizations

zjk = arg min
xj∈ℜ

{

γ |xj |+ 1

2αk

|xj − xjk|
2
}

,

and can be done with the shrinkage operation

zjk =

{

xjk − γαk if γαk ≤ xjk,
0 if −γαk < xjk < γαk,
xjk + γαk if xjk ≤ −γαk.

• Note that “small” coordinates xjk are set to 0.



EXAMPLE II

• Incremental constraint projection methods for

minimize

m
∑

i=1

fi(x)

subject to x ∈ ∩m
i=1Xi,

(1)

• Convert to the problem

minimize

m
∑

i=1

fi(x) + c

m
∑

i=1

dist(x;Xi)

subject to x ∈ ℜn,

(2)

where c is a positive penalty parameter.

• Then for f Lipschitz continuous and c suffi-
ciently large, problems (1) and (2) are equivalent
(their minima coincide).

• Apply incremental subgradient-proximal:

yk = xk − αk∇̃fik (xk),

xk+1 ∈ arg min
x∈ℜn

{

cdist(x;Xjk ) +
1

2αk

‖x− yk‖2
}

.

The second iteration can be implemented in “closed
form,” using projection on Xjk .
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LECTURE OUTLINE

• Extensions of proximal and projection ideas

• Nonquadratic proximal algorithms

• Entropy minimization algorithm

• Exponential augmented Lagrangian method

• Entropic descent algorithm

**************************************
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GENERALIZED PROXIMAL-RELATED ALGS

• Introduce a general regularization term Dk:

xk+1 ∈ arg min
x∈X

{

f(x) +Dk(x, xk)
}

• All the ideas extend to the nonquadratic case
(although the analysis may not be trivial).

• In particular we have generalizations as follows:

− Dual proximal algorithms (based on Fenchel
duality)

− Augmented Lagrangian methods with non-
quadratic penalty functions

− Combinations with polyhedral approximations
(bundle-type methods)

− Proximal gradient method

− Incremental subgradient-proximal methods

− Gradient projection algorithms with “non-
quadratic metric”

• We may look also at what happens when f is
not convex.



SPECIAL CASE: ENTROPY REGULARIZATION

Dk(x, y) =

{

1
ck

∑n

i=1
xi
(

ln
(

xi

yi

)

− 1
)

if x > 0, y > 0,

∞ otherwise

• Also written as

Dk(x, y) =
1

ck

n
∑

i=1

yiφi

(

xi

yi

)

,

where

φ(x) =

{

x
(

ln(x)− 1
)

if x > 0,
0 if x = 0,
∞ if x < 0.

• Proximal algorithm:

f(x)

X xxk+1xk x
∗

xk+2

γk −Dk(x, xk)

γk+1 −Dk+1(x, xk+1)

x 0



GENERALIZED PROXIMAL ALGORITHM

• Introduce a general regularization term Dk :
ℜ2n 7→ (−∞,∞]:

xk+1 ∈ arg min
x∈ℜn

{

f(x) +Dk(x, xk)
}

• Consider a general cost function f

f(x)

X xxk+1xk x
∗

xk+2

γk −Dk(x, xk)

γk+1 −Dk+1(x, xk+1)

γk

γk+1

• Assume attainment of min (but this is not au-
tomatically guaranteed)

• Complex/unreliable behavior when f is noncon-
vex



SOME GUARANTEES ON GOOD BEHAVIOR

• Assume “stabilization property”

Dk(x, xk) ≥ Dk(xk, xk), ∀ x ∈ ℜn, k (1)

Then we have a cost improvement property:

f(xk+1) ≤ f(xk+1) +Dk(xk+1, xk)−Dk(xk, xk)

≤ f(xk) +Dk(xk, xk)−Dk(xk, xk)

= f(xk)

(2)

• Assume algorithm stops only when xk is in op-
timal solution set X∗, i.e.,

xk ∈ arg min
x∈ℜn

{

f(x) +Dk(x, xk)} ⇒ xk ∈ X∗

• Then strict cost improvement for xk /∈ X∗ [the
second inequality in (2) is strict].

• Guaranteed if f is convex and:

(a) Dk(·, xk) satisfies (1), and is convex and dif-
ferentiable at xk.

(b) ri
(

dom(f)
)

∩ ri
(

dom(Dk(·, xk))
)

6= Ø.



EXAMPLES

• Bregman distance function

Dk(x, y) =
1

ck

(

φ(x)− φ(y)−∇φ(y)′(x− y)
)

,

where φ : ℜn 7→ (−∞,∞] is a convex function, dif-
ferentiable within an open set containing dom(f),
and ck is a positive penalty parameter. Special
cases: quadratic and entropy functions.

• Majorization-Minimization algorithm:

Dk(x, y) =Mk(x, y)−Mk(y, y),

where M satisfies

Mk(y, y) = f(y), ∀ y ∈ ℜn, k = 0, 1,

Mk(x, xk) ≥ f(xk), ∀ x ∈ ℜn, k = 0, 1, . . .

• Example for case f(x) = R(x)+‖Ax−b‖2, where
R is a convex regularization function

M(x, y) = R(x)+ ‖Ax− b‖2 −‖Ax−Ay‖2 + ‖x− y‖2

• Expectation-Maximization (EM) algorithm (spe-
cial context in inference, f nonconvex)



DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the
Fenchel form: minx{f1(x) + f2(x)} with

f1(x) = f(x), f2(x) = Dk(x;xk)

• The Fenchel dual is

minimize f⋆(λ) +D⋆
k(λ;xk)

subject to λ ∈ ℜn

where D⋆
k(·;xk) is the conjugate of Dk(·;xk):

D⋆
k(λ;xk) = sup

x∈ℜn

{

− λ′x−Dk(x;xk)
}

• If Dk(·;xk) or D⋆
k(·;xk) is real-valued, there is

no duality gap.

• Can use the Fenchel dual for a dual proximal
implementation.



DUAL IMPLEMENTATION

• We can solve the Fenchel-dual problem instead
of the primal at each iteration:

λk+1 = arg min
λ∈ℜn

{f⋆(λ) +D⋆
k(λ;xk)}

• Primal-dual optimal pair (xk+1, λk+1) are related
by the “differentiation” condition:

λk+1 ∈ ∂Dk(xk+1;xk) or xk+1 ∈ ∂D⋆
k(λk+1;xk)

f(x)

X xxk+1xk x
∗

Slope λk+1

Optimal Primal Solution Optimal dual solution

Optimal primal proximal solution
Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution

γk

γk −Dk(x, xk)

• The primal and dual algorithms generate iden-
tical sequences {xk, λk}.
• Special cases: Augmented Lagrangian methods
with nonquadratic penalty functions.



ENTROPY/EXPONENTIAL DUALITY

• A special case involving entropy regularization:

xk+1 ∈ argmin
x∈X

{

f(x) +
1

ck

n
∑

i=1

xi
(

ln

(

xi

xik

)

− 1

)

}

where xk > 0.

• Fenchel duality⇒ Augmented Lagrangian method

• Note: The conjugate of the logarithmic

h(x) =

{

x
(

ln(x)− 1
)

if x > 0,
0 if x = 0,
∞ if x < 0,

is the exponential h⋆(y) = ey.

• The dual (augmented Lagrangian) problem is

uk+1 ∈ arg min
u∈ℜn

{

f⋆(u) +
1

ck

n
∑

i=1

xike
cku

i

}

The proximal/multiplier iteration is

xik+1 = xike
ckui

k+1 , i = 1, . . . , n



EXPONENTIAL AUGMENTED LAGRANGIAN

• A special case for the convex problem

minimize f(x)

subject to g1(x) ≤ 0, . . . , gr(x) ≤ 0, x ∈ X

• Apply proximal to the (Langrange) dual prob-
lem. It consists of unconstrained minimizations

xk ∈ arg min
x∈X

{

f(x) +
1

ck

r
∑

j=1

µj
ke

ckgj(x)

}

,

followed by the multiplier iterations

µj
k+1 = µj

ke
c
j

k
gj(xk), j = 1, . . . , r

• Note: We must have µ0 > 0, which implies
µk > 0 for all k.

• Theoretical convergence properties are similar
to the quadratic augmented Lagrangian method.

• The exponential is twice differentiable, hence
more suitable for Newton-like methods.



NONLINEAR PROJECTION ALGORITHM

• Subgradient projection with general regulariza-
tion Dk:

xk+1 ∈ argmin
x∈X

{

f(xk)+∇̃f(xk)′(x−xk)+Dk(x, xk)
}

where ∇̃f(xk) is a subgradient of f at xk. Also
called mirror descent method.

• Linearization of f simplifies the minimization.

• The use of nonquadratic linearization is useful
in problems with special structure.

• Entropic descent method: Minimize f(x) over
the unit simplex X =

{

x ≥ 0 |
∑n

i=1
xi = 1

}

.

• Method:

xk+1 ∈ argmin
x∈X

n
∑

i=1

(

xi∇̃if(xk) +
1

αk

xi
(

ln

(

xi

xik

)

− 1

))

where ∇̃if(xk) are the components of ∇̃f(xk).
• This minimization can be done in closed form:

xik+1 =
xike

−αk∇̃if(xk)

∑n

j=1
xjke

−αk∇̃jf(xk)
, i = 1, . . . , n



LECTURE 25
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• Interior point methods

• Coordinate descent methods

• Distributed asynchronous fixed point computa-
tion

**************************************
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INTERIOR POINT METHODS

• Problem: minx∈X, gj(x), j=1,...,r f(x)

• Let S = {x ∈ X | gj(x) < 0, j = 1, . . . , r} (as-
sumed nonempty). A barrier function, is defined
and is continuous on S, and goes to ∞ as any one
of the constraints gj(x) ↑ 0.

S

Boundary of S Boundary of S

e B(x)

e' B(x)

e' < e

Boundary of SBoundary of S

S ǫ
′ < ǫ

ǫB(x)

) ǫ
′B(x)

) S

• Examples:

B(x) = −
r
∑

j=1

ln
{

−gj(x)
}

, B(x) = −
r
∑

j=1

1

gj(x)
.

• Barrier method: Generates

xk = argmin
x∈S

{

f(x) + ǫkB(x)
}

, k = 0, 1, . . . ,

where ǫk ↓ 0.



BARRIER METHOD - EXAMPLE

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

minimize f(x) = 1
2

(

(x1)2 + (x2)2
)

subject to 2 ≤ x1,

with optimal solution x∗ = (2, 0).

• Logarithmic barrier: B(x) = − ln (x1 − 2)

• We have xk =
(

1 +
√
1 + ǫk , 0

)

from

xk ∈ arg min
x1>2

{

1
2

(

(x1)2 + (x2)2
)

− ǫk ln (x
1 − 2)

}

• As ǫk is decreased, the unconstrained minimum
xk approaches the constrained minimum x∗ = (2, 0).

• As ǫk → 0, computing xk becomes more difficult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).



CONVERGENCE

• Assume that X is closed convex, and f , and gj
are convex. Every limit point of a sequence {xk}
generated by a barrier method is a minimum of
the original constrained problem.

Proof: Let {x} be the limit of a subsequence {xk}k∈K .
Since xk ∈ S and X is closed, x is feasible for the
original problem.

If x is not a minimum, there exists a feasible
x∗ such that f(x∗) < f(x) and therefore (by the
Line Segment Principle) also an interior point x̃ ∈
S such that f(x̃) < f(x). By the definition of xk,

f(xk) + ǫkB(xk) ≤ f(x̃) + ǫkB(x̃), ∀ k,

so by taking limit

f(x) + lim inf
k→∞, k∈K

ǫkB(xk) ≤ f(x̃) < f(x)

Hence lim infk→∞, k∈K ǫkB(xk) < 0.
If x ∈ S, we have limk→∞, k∈K ǫkB(xk) = 0,

while if x lies on the boundary of S, we have by
assumption limk→∞, k∈K B(xk) = ∞. Thus

lim inf
k→∞

ǫkB(xk) ≥ 0, a contradiction.



SECOND ORDER CONE PROGRAMMING

• Consider the SOCP

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

where x ∈ ℜn, c is a vector in ℜn, and for i =
1, . . . ,m, Ai is an ni × n matrix, bi is a vector in
ℜni , and Ci is the second order cone of ℜni .

• We approximate this problem with

minimize c′x+ ǫk

m
∑

i=1

Bi(Aix− bi)

subject to x ∈ ℜn, Aix− bi ∈ int(Ci), i = 1, . . . ,m,

where Bi is the logarithmic barrier function:

Bi(y) = − ln
(

y2ni
− (y21 + · · ·+ y2ni−1)

)

, y ∈ int(Ci),

and ǫk ↓ 0.

• Essential to use Newton’s method to solve the
approximating problems.

• Interesting complexity analysis



SEMIDEFINITE PROGRAMMING

• Consider the dual SDP

maximize b′λ

subject to D − (λ1A1 + · · ·+ λmAm) ∈ C,

where b ∈ ℜm, D,A1, . . . , Am are symmetric ma-
trices, and C is the cone of positive semidefinite
matrices.

• The logarithmic barrier method uses approxi-
mating problems of the form

maximize b′λ+ǫk ln
(

det(D−λ1A1−· · ·−λmAm)
)

over all λ ∈ ℜm such that D− (λ1A1 + · · ·+λmAm)
is positive definite.

• Here ǫk ↓ 0.

• Furthermore, we should use a starting point
such that D − λ1A1 − · · · − λmAm is positive def-
inite, and Newton’s method should ensure that
the iterates keep D−λ1A1−· · ·−λmAm within the
positive definite cone.



COORDINATE DESCENT

• Problem

minimize f(x)

subject to x ∈ X,

where f : ℜn 7→ ℜ is a differentiable convex func-
tion, and

X = X1 ×X2 × · · · ×Xm,

where Xi is a closed convex subset ℜni .

• Partition x into “block” components

x = (x1, x2, . . . , xm),

constrained by xi ∈ Xi.

• (Block) Coordinate descent: At each iteration,
minimized the cost w.r.t. each of the block com-
ponents xik, in cyclic order

xik+1 ∈ arg min
ξ∈Xi

f(x1k+1, . . . , x
i−1
k+1, ξ, x

i+1
k , . . . , xmk )



COORDINATE DESCENT CONVERGENCE

• Proposition: Assume that f is convex and con-
tinuously differentiable. Assume also that for each
x = (x1, . . . , xm) ∈ X and i,

f(x1, . . . , xi−1, ξ, xi+1, . . . , xm)

viewed as a function of ξ, attains a unique mini-
mum over Xi. Let {xk} be the sequence generated
by the block coordinate descent method. Then,
every limit point of {xk} minimizes f over X.

• Variant to eliminate the uniqueness assumption:

xik+1 = arg min
ξ∈Xi

f(x1k+1, . . . , x
i−1
k+1, ξ, x

i+1
k , . . . , xmk )

+
1

2c
‖ξ − xik‖2,

where c is any fixed positive scalar.

• Justification: Apply the original method to min-
imization over (x, y) ∈ X ×X of

f(x) +
1

2c
‖x− y‖2



COORDINATE DESCENT EXTENSIONS

• When f is convex but nondifferentiable, the
coordinate descent approach may fail in general
(there may be nonoptimal points for which descent
along all coordinate directions is impossible).

• Favorable special case, when the nondifferen-
tiable portion of f is separable, i.e., f has the form

f(x) = F (x) +

n
∑

i=1

Gi(x
i),

where F is convex and differentiable, and each Gi :
ℜ 7→ ℜ is convex.

• A case of special interest is ℓ1-regularization:

n
∑

i=1

Gi(x
i) = γ‖x‖1

• It is possible to iterate the block components
in an irregular even randomized order instead of
a fixed cyclic order.

• Distributed asynchronous implementation.



ASYNCHRONOUS FIXED POINT ALGORITHMS

• Fixed point problem x = F (x), where x =
(x1, . . . , xm), to be solved with m processors.

• Asynchronous fixed point algorithm:

xit+1 =

{

Fi

(

x1τi1(t), . . . , x
m
τim(t)

)

if t ∈ Ri,

xit if t /∈ Ri.
(1)

Ri are the computation times of processor i and
t−τij(t) are the interprocessor communication de-
lays.

• Some processors may execute more iterations
than others, while the communication delays be-
tween processors may be unpredictable.

• Continuous Updating and Information Renewal
Assumption:

− The set of times Ri at which processor i up-
dates xi is infinite, for each i = 1, . . . ,m.

− limt→∞ τij(t) = ∞ for all i, j = 1, . . . ,m.

• This is totally asynchronous operation.

• Can show that the algorithm works when F is a
contraction with respect to a weighted sup-norm
(special case of a more general theorem).



ASYNCHRONOUS CONVERGENCE THEOREM

• Let F have a unique fixed point x∗, and as-
sume that there is a sequence of nonempty subsets
{

S(k)
}

⊂ ℜn with

S(k + 1) ⊂ S(k), k = 0, 1, . . . ,

and is such that if {yk} is any sequence with yk ∈
S(k), for all k ≥ 0, then {yk} converges to x∗. As-
sume further the following:

(1) Synchronous Convergence Condition: We have

F (x) ∈ S(k + 1), ∀ x ∈ S(k), k = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · · × Sm(k),

where Si(k) is a set of real-valued functions
on Xi, i = 1, . . . ,m.

Then for every x0 ∈ S(0), the sequence {xt} gener-
ated by the asynchronous algorithm (1) converges
to x∗.



CONVERGENCE ANALYSIS

• Interpretation of assumptions:

S(0)
(0) S(k)

) S(k + 1)

S1(0)

(0) S2(0)

) x = (x1, x2)

x∗ f F (x) =

A synchronous iteration from any x in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)
(0) S(k)

) S(k + 1) x∗ f

x
1 Iterations

Iterations x2 Iteration

Key: “Independent” component-wise improve-
ment. An asynchronous component iteration from
any x in S(k) moves into the corresponding com-
ponent portion of S(k + 1)



LECTURE 26: REVIEW/EPILOGUE

LECTURE OUTLINE

CONVEX ANALYSIS AND DUALITY

• Basic concepts of convex analysis

• Basic concepts of convex optimization

• Geometric duality framework - MC/MC

• Constrained optimization duality

• Subgradients - Optimality conditions

CONVEX OPTIMIZATION ALGORITHMS

• Special problem classes

• Subgradient methods

• Polyhedral approximation methods

• Proximal methods

• Dual proximal methods - Augmented Lagrangeans

• Optimal complexity methods

• Incremental methods

• Various combinations around proximal idea

• Interior point methods



BASIC CONCEPTS OF CONVEX ANALYSIS

• Epigraphs, level sets, closedness, semicontinuity

f(x)

x

Convex function

f(x)

x

Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

• Relative interior:

− Nonemptiness for a convex set

− Line segment principle

− Calculus of relative interiors

• Continuity of convex functions

• Nonemptiness of intersections of nested sequences
of closed sets.

• Closure operations and their calculus.

• Recession cones and their calculus.

• Preservation of closedness by linear transforma-
tions and vector sums.



HYPERPLANE SEPARATION

(a)

C1 y C2

x

a

a) (b)

C1

y C2

d x1

1 x2

• Separating/supporting hyperplane theorem.

• Strict and proper separation theorems.

• Dual representation of closed convex sets as
unions of points and intersection of halfspaces.

A union of points An intersection of hyperplanes

Time domain Frequency domain

A union of its points An intersection of halfspaces
Abstract Min-Common/Max-Crossing Theorems

• Nonvertical separating hyperplanes.



CONJUGATE FUNCTIONS

y x

) Slope = y

x 0

(−y, 1)

f(x)

inf
x∈ℜn

{f(x)− x′y} = −f⋆(y),

• Conjugacy theorem: f = f⋆⋆

• Support functions

0

y

X

σX(y)/‖y‖

x̂

• Polar cone theorem: C = C⋆⋆

− Special case: Linear Farkas’ lemma



BASIC CONCEPTS OF CONVEX OPTIMIZATION

• Weierstrass Theorem and extensions.

• Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Optimal

Solution

Level Sets of f

X

• Role of recession cone and lineality space.

• Partial Minimization Theorems: Characteri-
zation of closedness of f(x) = infz∈ℜm F (x, z) in
terms of closedness of F .

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



MIN COMMON/MAX CROSSING DUALITY
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Max Crossing
g Point q∗

Max Crossing
g Point q∗

Max Crossing
g Point q∗

(a) ) (b)

b) (c)

• Defined by a single set M ⊂ ℜn+1.

• w∗ = inf(0,w)∈M w

• q∗ = supµ∈ℜn q(µ)
△
= inf(u,w)∈M{w + µ′u}

• Weak duality: q∗ ≤ w∗

• Two key questions:

− When does strong duality q∗ = w∗ hold?

− When do there exist optimal primal and dual
solutions?



MC/MC THEOREMS (M CONVEX, W ∗ <∞)

• MC/MC Theorem I: We have q∗ = w∗ if and
only if for every sequence

{

(uk, wk)
}

⊂ M with
uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk.

• MC/MC Theorem II: Assume in addition that
−∞ < w∗ and that

D =
{

u | there exists w ∈ ℜ with (u,w) ∈M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists µ such that q(µ) = q∗.

• MC/MC Theorem III: Similar to II but involves
special polyhedral assumptions.

(1) M is a “horizontal translation” of M̃ by −P ,

M = M̃ −
{

(u, 0) | u ∈ P
}

,

where P : polyhedral and M̃ : convex.

(2) We have ri(D̃) ∩ P 6= Ø, where

D̃ =
{

u | there exists w ∈ ℜ with (u,w) ∈ M̃}



IMPORTANT SPECIAL CASE

• Constrained optimization: infx∈X, g(x)≤0 f(x)

• Perturbation function (or primal function)

p(u) = inf
x∈X, g(x)≤u

f(x),

• Introduce L(x, µ) = f(x) + µ′g(x). Then

q(µ) = inf
u∈ℜr

{

p(u) + µ′u
}

= inf
u∈ℜr , x∈X, g(x)≤u

{

f(x) + µ′u
}

=
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise.



NONLINEAR FARKAS’ LEMMA

• Let X ⊂ ℜn, f : X 7→ ℜ, and gj : X 7→ ℜ,
j = 1, . . . , r, be convex. Assume that

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0

Let

Q∗ =
{

µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ X
}

.

• Nonlinear version: Then Q∗ is nonempty and
compact if and only if there exists a vector x ∈ X
such that gj(x) < 0 for all j = 1, . . . , r.

= 0}
w (µ, 1)

) (b)

= 0}= 0}

) (c)

= 0}
w (µ, 1)

(a)

{

(g(x), f(x)) | x ∈ X
} {

(g(x), f(x)) | x ∈ X
}

{

(g(x), f(x)) | x ∈ X
}

• Polyhedral version: Q∗ is nonempty if g is linear
[g(x) = Ax− b] and there exists a vector x ∈ ri(X)
such that Ax− b ≤ 0.



CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X ⊂ ℜn, f : X 7→ ℜ and gj : X 7→ ℜ are
convex. Assume f∗: finite.

• Connection with MC/MC: M = epi(p) with
p(u) = infx∈X, g(x)≤u f(x)

• Dual function:

q(µ) =
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise

where L(x, µ) = f(x) + µ′g(x) is the Lagrangian
function.

• Dual problem of maximizing q(µ) over µ ≥ 0.

• Strong Duality Theorem: q∗ = f∗ and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj, j = 1, . . . , r, are affine, and
there exists x ∈ ri(X) such that g(x) ≤ 0.



OPTIMALITY CONDITIONS

• We have q∗ = f∗, and the vectors x∗ and µ∗ are
optimal solutions of the primal and dual problems,
respectively, iff x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈X

L(x, µ∗), µ∗
jgj(x

∗) = 0, ∀ j.

• For the linear/quadratic program

minimize 1
2
x′Qx+ c′x

subject to Ax ≤ b,

where Q is positive semidefinite, (x∗, µ∗) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:

Ax∗ ≤ b, µ∗ ≥ 0

(b) Lagrangian optimality holds [x∗ minimizes
L(x, µ∗) over x ∈ ℜn]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Ax∗ − b)′µ∗ = 0,

i.e., µ∗
j > 0 implies that the jth constraint is tight.

(Applies to inequality constraints only.)



FENCHEL DUALITY

• Primal problem:

minimize f1(x) + f2(x)

subject to x ∈ ℜn,

where f1 : ℜn 7→ (−∞,∞] and f2 : ℜn 7→ (−∞,∞]
are closed proper convex functions.

• Dual problem:

minimize f⋆
1 (λ) + f⋆

2 (−λ)
subject to λ ∈ ℜn,

where f⋆
1 and f⋆

2 are the conjugates.

(c) Slope λ S

λ Slope λ∗

) x
∗ some x

∗ f1(x)

) −f2(x)

) q(λ)

∗ f∗ = q∗

−f⋆

1
(λ)

f⋆

2
(−λ)



CONIC DUALITY

• Consider minimizing f(x) over x ∈ C, where f :
ℜn 7→ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in ℜn.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
∞ if x /∈ C.

• Linear Conic Programming:

minimize c′x

subject to x− b ∈ S, x ∈ C.

• Equivalent dual linear conic problem:

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• Special Linear-Conic Forms:

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ,

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

where x ∈ ℜn, λ ∈ ℜm, c ∈ ℜn, b ∈ ℜm, A : m× n.



SUBGRADIENTS

0

(−g, 1)

f(z)

(

x, f(x)
)

z

• ∂f(x) 6= Ø for x ∈ ri
(

dom(f)
)

.

• Conjugate Subgradient Theorem: If f is closed
proper convex, the following are equivalent for a
pair of vectors (x, y):

(i) x′y = f(x) + f⋆(y).

(ii) y ∈ ∂f(x).

(iii) x ∈ ∂f⋆(y).

• Characterization of optimal solution set X∗ =
argminx∈ℜn f(x) of closed proper convex f :

(a) X∗ = ∂f⋆(0).

(b) X∗ is nonempty if 0 ∈ ri
(

dom(f⋆)
)

.

(c) X∗ is nonempty and compact if and only if
0 ∈ int

(

dom(f⋆)
)

.



CONSTRAINED OPTIMALITY CONDITION

• Let f : ℜn 7→ (−∞,∞] be proper convex, let X
be a convex subset of ℜn, and assume that one of
the following four conditions holds:

(i) ri
(

dom(f)
)

∩ ri(X) 6= Ø.

(ii) f is polyhedral and dom(f) ∩ ri(X) 6= Ø.

(iii) X is polyhedral and ri
(

dom(f)
)

∩X 6= Ø.

(iv) f and X are polyhedral, and dom(f) ∩X 6= Ø.

Then, a vector x∗ minimizes f over X iff there ex-
ists g ∈ ∂f(x∗) such that −g belongs to the normal
cone NX(x∗), i.e.,

g′(x− x∗) ≥ 0, ∀ x ∈ X.

Level Sets of f

) ∇f(x∗)

x) x
∗

Level Sets of f

x) x
∗

y) ∂f(x∗)
− g

g C g C

∗ NC(x∗)
∗ NC(x∗)



COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

• Linear and (convex) quadratic programming.

− Favorable special cases.

• Second order cone programming.

• Semidefinite programming.

• Convex programming.

− Favorable cases, e.g., separable, large sum.

− Geometric programming.

• Nonlinear/nonconvex/continuous programming.

− Favorable special cases.

− Unconstrained.

− Constrained.

• Discrete optimization/Integer programming

− Favorable special cases.

• Caveats/questions:

− Important role of special structures.

− What is the role of “optimal algorithms”?

− Is complexity the right philosophical view to
convex optimization?



DESCENT METHODS

• Steepest descent method: Use vector of min
norm on −∂f(x); has convergence problems.
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• Subgradient method:

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)

• ǫ-subgradient method (approx. subgradient)

• Incremental (possibly randomized) variants for
minimizing large sums (can be viewed as an ap-
proximate subgradient method).



OUTER AND INNER LINEARIZATION

• Outer linearization: Cutting plane

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x∗

• Inner linearization: Simplicial decomposition

Level sets of f

2 ∇f(x0)
) ∇f(x1)

) ∇f(x2)

) ∇f(x3)

X

x0

0 x1

1 x2

2 x3

3 x4 = x
∗

x̃1

x̃2

x̃3

x̃4

• Fenchel-like duality between outer and inner
linearization.

− Extended monotropic programming



PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

− f : ℜn 7→ (−∞,∞] is closed proper convex

− ck is a positive scalar parameter

− x0 is arbitrary starting point

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

• xk+1 exists because of the quadratic.

• Strong convergence properties

• Starting point for extensions (e.g., nonquadratic
regularization) and combinations (e.g., with lin-
earization)



PROXIMAL-POLYHEDRAL METHODS

• Proximal-cutting plane method

f(x)

X xxk+1

Fk(x)

f(xk+1) + (x− xk+1)′gk+1

) = xk−

• Proximal-cutting plane-bundle methods: Re-
place f with a cutting plane approx. and/or change
quadratic regularization more conservatively.

• Dual Proximal - Augmented Lagrangian meth-
ods: Proximal method applied to the dual prob-
lem of a constrained optimization problem.

γk

γk −
1

2ck

‖x − xk‖2
f(x)

X xxk+1xk x
∗

Slope = xk

Slope = xk+1

λk+1

Slope = x
∗

δk

δk + x
′

k
λ −

ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f⋆(λ)

Optimal

Optimal
λ Slope = λk+1 Slope = 0



DUALITY VIEW OF PROXIMAL METHODS

Proximal Cutting Plane Bundle Versions
Proximal Cutting Plane Bundle Versions

Proximal Cutting Plane Bundle Versions
Proximal Cutting Plane Bundle Versions

Proximal Cutting Plane Bundle Versions
Proximal Simplicial Decomposition Bundle Versions

Proximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel Duality

Dual Proximal Point Algorithm Inner Linearization
Dual Proximal Point Algorithm Inner Linearization

Proximal Point Algorithm Outer Linearization
Dual Proximal Point Algorithm Inner Linearization

Proximal Algorithm Dual Proximal Algorithm

Proximal Point Algorithm Outer LinearizationProximal Algorithm Dual Proximal Algorithm
Augmented Lagrangian Method Proximal Algorithm Dual Proximal

• Applies also to cost functions that are sums of
convex functions

f(x) =

m
∑

i=1

fi(x)

in the context of extended monotropic program-
ming



INTERIOR POINT METHODS

• Barrier method: Let

xk = argmin
x∈S

{

f(x) + ǫkB(x)
}

, k = 0, 1, . . . ,

where S = {x | gj(x) < 0, j = 1, . . . , r} and the
parameter sequence {ǫk} satisfies 0 < ǫk+1 < ǫk for
all k and ǫk → 0.

S

Boundary of S Boundary of S
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Boundary of SBoundary of S
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ǫB(x)

) ǫ
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) S

• Ill-conditioning. Need for Newton’s method

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1



ADVANCED TOPICS

• Complexity view of first order algorithms

− Gradient-projection for differentiable prob-
lems

− Gradient-projection with extrapolation

− Optimal iteration complexity version (Nes-
terov)

− Extension to nondifferentiable problems by
smoothing

• Proximal gradient method

• Incremental subgradient-proximal methods

• Useful extensions of proximal approach. Gen-
eral (nonquadratic) regularization - Bregman dis-
tance functions

− Entropy-like regularization

− Corresponding augmented Lagrangean method
(exponential)

− Corresponding proximal gradient method

− Nonlinear gradient/subgradient projection (en-
tropic minimization methods)

• Coordinate descent methods

• Distributed totally asynchronous methods


