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Preface of the First Edition

This book aims at a unified and economical development of the core the-
ory and algorithms of total cost sequential decision problems, based on
the strong connections of the subject with fixed point theory. The analy-
sis focuses on the abstract mapping that underlies dynamic programming
(DP for short) and defines the mathematical character of the associated
problem. Our discussion centers on two fundamental properties that this
mapping may have: monotonicity and (weighted sup-norm) contraction. It
turns out that the nature of the analytical and algorithmic DP theory is
determined primarily by the presence or absence of these two properties,
and the rest of the problem’s structure is largely inconsequential.

In this book, with some minor exceptions, we will assume that mono-
tonicity holds. Consequently, we organize our treatment around the con-
traction property, and we focus on four main classes of models:

(a) Contractive models, discussed in Chapter 2, which have the richest
and strongest theory, and are the benchmark against which the the-
ory of other models is compared. Prominent among these models are
discounted stochastic optimal control problems. The development of
these models is quite thorough and includes the analysis of recent ap-
proximation algorithms for large-scale problems (neuro-dynamic pro-
gramming, reinforcement learning).

(b) Semicontractive models, discussed in Chapter 3 and parts of Chap-
ter 4. The term “semicontractive” is used qualitatively here, to refer
to a variety of models where some policies have a regularity/contrac-
tion-like property but others do not. A prominent example is stochas-
tic shortest path problems, where one aims to drive the state of
a Markov chain to a termination state at minimum expected cost.
These models also have a strong theory under certain conditions, of-
ten nearly as strong as those of the contractive models.

(c) Noncontractive models, discussed in Chapter 4, which rely on just
monotonicity. These models are more complex than the preceding
ones and much of the theory of the contractive models generalizes in
weaker form, if at all. For example, in general the associated Bell-
man equation need not have a unique solution, the value iteration
method may work starting with some functions but not with others,
and the policy iteration method may not work at all. Infinite hori-
zon examples of these models are the classical positive and negative
DP problems, first analyzed by Dubins and Savage, Blackwell, and

ix
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Strauch, which are discussed in various sources. Some new semicon-
tractive models are also discussed in this chapter, further bridging
the gap between contractive and noncontractive models.

(d) Restricted policies and Borel space models, which are discussed
in Chapter 5. These models are motivated in part by the complex
measurability questions that arise in mathematically rigorous theories
of stochastic optimal control involving continuous probability spaces.
Within this context, the admissible policies and DP mapping are
restricted to have certain measurability properties, and the analysis
of the preceding chapters requires modifications. Restricted policy
models are also useful when there is a special class of policies with
favorable structure, which is “closed” with respect to the standard DP
operations, in the sense that analysis and algorithms can be confined
within this class.

We do not consider average cost DP problems, whose character bears
a much closer connection to stochastic processes than to total cost prob-
lems. We also do not address specific stochastic characteristics underlying
the problem, such as for example a Markovian structure. Thus our re-
sults apply equally well to Markovian decision problems and to sequential
minimax problems. While this makes our development general and a con-
venient starting point for the further analysis of a variety of different types
of problems, it also ignores some of the interesting characteristics of special
types of DP problems that require an intricate probabilistic analysis.

Let us describe the research content of the book in summary, de-
ferring a more detailed discussion to the end-of-chapter notes. A large
portion of our analysis has been known for a long time, but in a somewhat
fragmentary form. In particular, the contractive theory, first developed by
Denardo [Den67], has been known for the case of the unweighted sup-norm,
but does not cover the important special case of stochastic shortest path
problems where all policies are proper. Chapter 2 transcribes this theory
to the weighted sup-norm contraction case. Moreover, Chapter 2 develops
extensions of the theory to approximate DP, and includes material on asyn-
chronous value iteration (based on the author’s work [Ber82], [Ber83]), and
asynchronous policy iteration algorithms (based on the author’s joint work
with Huizhen (Janey) Yu [BeY10a], [BeY10b], [YuB11a]). Most of this
material is relatively new, having been presented in the author’s recent
book [Ber12a] and survey paper [Ber12b], with detailed references given
there. The analysis of infinite horizon noncontractive models in Chapter 4
was first given in the author’s paper [Ber77], and was also presented in the
book by Bertsekas and Shreve [BeS78], which in addition contains much
of the material on finite horizon problems, restricted policies models, and
Borel space models. These were the starting point and main sources for
our development.

The new research presented in this book is primarily on the semi-
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contractive models of Chapter 3 and parts of Chapter 4. Traditionally,
the theory of total cost infinite horizon DP has been bordered by two ex-
tremes: discounted models, which have a contractive nature, and positive
and negative models, which do not have a contractive nature, but rely
on an enhanced monotonicity structure (monotone increase and monotone
decrease models, or in classical DP terms, positive and negative models).
Between these two extremes lies a gray area of problems that are not con-
tractive, and either do not fit into the categories of positive and negative
models, or possess additional structure that is not exploited by the theory
of these models. Included are stochastic shortest path problems, search
problems, linear-quadratic problems, a host of queueing problems, multi-
plicative and exponential cost models, and others. Together these problems
represent an important part of the infinite horizon total cost DP landscape.
They possess important theoretical characteristics, not generally available
for positive and negative models, such as the uniqueness of solution of Bell-
man’s equation within a subset of interest, and the validity of useful forms
of value and policy iteration algorithms.

Our semicontractive models aim to provide a unifying abstract DP
structure for problems in this gray area between contractive and noncon-
tractive models. The analysis is motivated in part by stochastic shortest
path problems, where there are two types of policies: proper , which are
the ones that lead to the termination state with probability one from all
starting states, and improper , which are the ones that are not proper.
Proper and improper policies can also be characterized through their Bell-
man equation mapping: for the former this mapping is a contraction, while
for the latter it is not. In our more general semicontractive models, policies
are also characterized in terms of their Bellman equation mapping, through
a notion of regularity, which generalizes the notion of a proper policy and
is related to classical notions of asymptotic stability from control theory.

In our development a policy is regular within a certain set if its cost
function is the unique asymptotically stable equilibrium (fixed point) of
the associated DP mapping within that set. We assume that some policies
are regular while others are not , and impose various assumptions to ensure
that attention can be focused on the regular policies. From an analytical
point of view, this brings to bear the theory of fixed points of monotone
mappings. From the practical point of view, this allows application to a
diverse collection of interesting problems, ranging from stochastic short-
est path problems of various kinds, where the regular policies include the
proper policies, to linear-quadratic problems, where the regular policies
include the stabilizing linear feedback controllers.

The definition of regularity is introduced in Chapter 3, and its theoret-
ical ramifications are explored through extensions of the classical stochastic
shortest path and search problems. In Chapter 4, semicontractive models
are discussed in the presence of additional monotonicity structure, which
brings to bear the properties of positive and negative DP models. With the
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aid of this structure, the theory of semicontractive models can be strength-
ened and can be applied to several additional problems, including risk-
sensitive/exponential cost problems.

The book has a theoretical research monograph character, but re-
quires a modest mathematical background for all chapters except the last
one, essentially a first course in analysis. Of course, prior exposure to DP
will definitely be very helpful to provide orientation and context. A few
exercises have been included, either to illustrate the theory with exam-
ples and counterexamples, or to provide applications and extensions of the
theory. Solutions of all the exercises can be found in Appendix D, at the
book’s internet site

http://www.athenasc.com/abstractdp.html

and at the author’s web site

http://web.mit.edu/dimitrib/www/home.html

Additional exercises and other related material may be added to these sites
over time.

I would like to express my appreciation to a few colleagues for inter-
actions, recent and old, which have helped shape the form of the book. My
collaboration with Steven Shreve on our 1978 book provided the motivation
and the background for the material on models with restricted policies and
associated measurability questions. My collaboration with John Tsitsiklis
on stochastic shortest path problems provided inspiration for the work on
semicontractive models. My collaboration with Janey (Huizhen) Yu played
an important role in the book’s development, and is reflected in our joint
work on asynchronous policy iteration, on perturbation models, and on
risk-sensitive models. Moreover Janey contributed significantly to the ma-
terial on semicontractive models with many insightful suggestions. Finally,
I am thankful to Mengdi Wang, who went through portions of the book
with care, and gave several helpful comments.

Dimitri P. Bertsekas

Spring 2013
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Preface to the Second Edition

The second edition aims primarily to amplify the presentation of the semi-
contractive models of Chapter 3 and Chapter 4, and to supplement it with
a broad spectrum of research results that I obtained and published in jour-
nals and reports since the first edition was written. As a result, the size
of this material more than doubled, and the size of the book increased by
about 40%.

In particular, I have thoroughly rewritten Chapter 3, which deals with
semicontractive models where stationary regular policies are sufficient. I
expanded and streamlined the theoretical framework, and I provided new
analyses of a number of shortest path-type applications (deterministic,
stochastic, affine monotonic, exponential cost, and robust/minimax), as
well as several types of optimal control problems with continuous state
space (including linear-quadratic, regulation, and planning problems).

In Chapter 4, I have extended the notion of regularity to nonstation-
ary policies (Section 4.4), aiming to explore the structure of the solution set
of Bellman’s equation, and the connection of optimality with other struc-
tural properties of optimal control problems. As an application, I have
discussed in Section 4.5 the relation of optimality with classical notions
of stability and controllability in continuous-spaces deterministic optimal
control. In Section 4.6, I have similarly extended the notion of a proper
policy to continuous-spaces stochastic shortest path problems.

I have also revised Chapter 1 a little (mainly with the addition of
Section 1.2.5 on the relation between proximal algorithms and temporal
difference methods), added to Chapter 2 some analysis relating to λ-policy
iteration and randomized policy iteration algorithms (Section 2.5.3), and I
have also added several new exercises (with complete solutions) to Chapters
1-4. Additional material relating to various applications can be found in
some of my journal papers, reports, and video lectures on semicontractive
models, which are posted at my web site.

In addition to the changes in Chapters 1-4, I have also eliminated from
the second edition the analysis that deals with restricted policies (Chap-
ter 5 and Appendix C of the first edition). This analysis is motivated in
part by the complex measurability questions that arise in mathematically
rigorous theories of stochastic optimal control with Borel state and control
spaces. This material is covered in Chapter 6 of the monograph by Bert-
sekas and Shreve [BeS78], and followup research on the subject has been
limited. Thus, I decided to just post Chapter 5 and Appendix C of the first
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edition at the book’s web site (40 pages), and omit them from the second
edition. As a result of this choice, the entire book now requires only a
modest mathematical background, essentially a first course in analysis and
in elementary probability.

The range of applications of dynamic programming has grown enor-
mously in the last 25 years, thanks to the use of approximate simulation-
based methods for large and challenging problems. Because approximations
are often tied to special characteristics of specific models, their coverage in
this book is limited to general discussions in Chapter 1 and to error bounds
given in Chapter 2. However, much of the work on approximation methods
so far has focused on finite-state discounted, and relatively simple deter-
ministic and stochastic shortest path problems, for which there is solid and
robust analytical and algorithmic theory (part of Chapters 2 and 3 in this
monograph). As the range of applications becomes broader, I expect that
the level of mathematical understanding projected in this book will become
essential for the development of effective and reliable solution methods. In
particular, much of the new material in this edition deals with infinite-state
and/or complex shortest path type-problems, whose approximate solution
will require new methodologies that transcend the current state of the art.

Dimitri P. Bertsekas

January 2018
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Preface to the Third Edition

The third edition is based on the same theoretical framework as the sec-
ond edition, but contains two major additions. The first is to highlight
the central role of abstract DP methods in the conceptualization of re-
inforcement learning and approximate DP methods, as described in the
author’s recent book “Lessons from AlphaZero for Optimal, Model Predic-
tive, and Adaptive Control,” Athena Scientific, 2022. The main idea here
is that approximation in value space with one-step lookahead amounts to
a step of Newton’s method for solving the abstract Bellman’s equation.
This material is included in summary form in view of its strong reliance on
abstract DP visualization. Our presentation relies primarily on geometric
illustrations rather than mathematical analysis, and is given in Section 1.3.

The second addition is a new Chapter 5 on abstract DP methods for
minimax and zero sum game problems, which is based on the author’s re-
cent paper [Ber21c]. A primary motivation here is the resolution of some
long-standing convergence difficulties of the “natural” policy iteration algo-
rithm, which have been known since the Pollatschek and Avi-Itzhak method
[PoA69] for finite-state Markov games. Mathematically, this “natural” al-
gorithm is a form of Newton’s method for solving the corresponding Bell-
man’s equation, but Newton’s method, contrary to the case of single-player
DP problems, is not globally convergent in the case of a minimax problem,
because the Bellman operator may have components that are neither con-
vex nor concave. Our approach in Chapter 5 has been to introduce a special
type of abstract Bellman operator for minimax problems, and modify the
standard PI algorithm along the lines of the asynchronous optimistic PI al-
gorithm of Section 2.6.3, which involves a parametric contraction mapping
with a uniform fixed point.

The third edition also contains a number of small corrections and
editorial changes. The author wishes to thank the contributions of several
colleagues in this regard, and particularly Yuchao Li, who proofread with
care large portions of the book.

Dimitri P. Bertsekas

February 2022
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2 Introduction Chap. 1

1.1 STRUCTURE OF DYNAMIC PROGRAMMINGPROBLEMS

Dynamic programming (DP for short) is the principal method for analysis
of a large and diverse class of sequential decision problems. Examples are
deterministic and stochastic optimal control problems with a continuous
state space, Markov and semi-Markov decision problems with a discrete
state space, minimax problems, and sequential zero-sum games. While the
nature of these problems may vary widely, their underlying structures turn
out to be very similar. In all cases there is an underlying mapping that
depends on an associated controlled dynamic system and corresponding
cost per stage. This mapping, the DP (or Bellman) operator, provides a
compact “mathematical signature” of the problem. It defines the cost func-
tion of policies and the optimal cost function, and it provides a convenient
shorthand notation for algorithmic description and analysis.

More importantly, the structure of the DP operator defines the math-
ematical character of the associated problem. The purpose of this book is to
provide an analysis of this structure, centering on two fundamental prop-
erties: monotonicity and (weighted sup-norm) contraction. It turns out
that the nature of the analytical and algorithmic DP theory is determined
primarily by the presence or absence of one or both of these two properties,
and the rest of the problem’s structure is largely inconsequential.

A Deterministic Optimal Control Example

To illustrate our viewpoint, let us consider a discrete-time deterministic
optimal control problem described by a system equation

xk+1 = f(xk, uk), k = 0, 1, . . . . (1.1)

Here xk is the state of the system taking values in a set X (the state space),
and uk is the control taking values in a set U (the control space). † At stage
k, there is a cost

αkg(xk, uk)

incurred when uk is applied at state xk, where α is a scalar in (0, 1] that has
the interpretation of a discount factor when α < 1. The controls are chosen
as a function of the current state, subject to a constraint that depends on
that state. In particular, at state x the control is constrained to take values
in a given set U(x) ⊂ U . Thus we are interested in optimization over the
set of (nonstationary) policies

Π =
{

{µ0, µ1, . . .} | µk ∈ M, k = 0, 1, . . .
}

,

† Our discussion of this section is somewhat informal, without strict adher-

ence to mathematical notation and rigor. We will introduce a rigorous mathe-
matical framework later.
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where M is the set of functions µ : X #→ U defined by

M =
{

µ | µ(x) ∈ U(x), ∀ x ∈ X
}

.

The total cost of a policy π = {µ0, µ1, . . .} over an infinite number of
stages (an infinite horizon) and starting at an initial state x0 is the limit
superior of the N -step costs

Jπ(x0) = lim sup
N→∞

N−1
∑

k=0

αkg
(

xk, µk(xk)
)

, (1.2)

where the state sequence {xk} is generated by the deterministic system
(1.1) under the policy π:

xk+1 = f
(

xk, µk(xk)
)

, k = 0, 1, . . . .

(We use limit superior rather than limit to cover the case where the limit
does not exist.) The optimal cost function is

J*(x) = inf
π∈Π

Jπ(x), x ∈ X.

For any policy π = {µ0, µ1, . . .}, consider the policy π1 = {µ1, µ2, . . .}
and write by using Eq. (1.2),

Jπ(x) = g
(

x, µ0(x)
)

+ αJπ1

(

f(x, µ0(x))
)

.

We have for all x ∈ X

J*(x) = inf
π={µ0,π1}∈Π

{

g
(

x, µ0(x)
)

+ αJπ1

(

f(x, µ0(x))
)

}

= inf
µ0∈M

{

g
(

x, µ0(x)
)

+ α inf
π1∈Π

Jπ1

(

f(x, µ0(x))
)

}

= inf
µ0∈M

{

g
(

x, µ0(x)
)

+ αJ*
(

f(x, µ0(x))
)

}

.

The minimization over µ0 ∈ M can be written as minimization over all
u ∈ U(x), so we can write the preceding equation as

J*(x) = inf
u∈U(x)

{

g(x, u) + αJ*
(

f(x, u)
)

}

, ∀ x ∈ X. (1.3)

This equation is an example of Bellman’s equation, which plays a
central role in DP analysis and algorithms. If it can be solved for J*,
an optimal stationary policy {µ∗, µ∗, . . .} may typically be obtained by
minimization of the right-hand side for each x, i.e.,

µ∗(x) ∈ arg min
u∈U(x)

{

g(x, u) + αJ*
(

f(x, u)
)

}

, ∀ x ∈ X. (1.4)
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We now note that both Eqs. (1.3) and (1.4) can be stated in terms of
the expression

H(x, u, J) = g(x, u) + αJ
(

f(x, u)
)

, x ∈ X, u ∈ U(x).

Defining
(TµJ)(x) = H

(

x, µ(x), J
)

, x ∈ X,

and
(TJ)(x) = inf

u∈U(x)
H(x, u, J), x ∈ X,

we see that Bellman’s equation (1.3) can be written compactly as

J* = TJ*,

i.e., J* is the fixed point of T , viewed as a mapping from the set of functions
onX into itself. Moreover, it can be similarly seen that Jµ, the cost function
of the stationary policy {µ, µ, . . .}, is a fixed point of Tµ. In addition, the
optimality condition (1.4) can be stated compactly as

Tµ∗J* = TJ*.

We will see later that additional properties, as well as a variety of algorithms
for finding J* can be stated and analyzed using the mappings T and Tµ.

The mappings Tµ can also be used in the context of DP problems
with a finite number of stages (a finite horizon). In particular, for a given
policy π = {µ0, µ1, . . .} and a terminal cost αN J̄(xN ) for the state xN at
the end of N stages, consider the N -stage cost function

Jπ,N(x0) = αN J̄(xN ) +
N−1
∑

k=0

αkg
(

xk, µk(xk)
)

. (1.5)

Then it can be verified by induction that for all initial states x0, we have

Jπ,N (x0) = (Tµ0Tµ1 · · ·TµN−1 J̄)(x0). (1.6)

Here Tµ0Tµ1 · · ·TµN−1 is the composition of the mappings Tµ0 , Tµ1 , . . . TµN−1 ,
i.e., for all J ,

(Tµ0Tµ1J)(x) =
(

Tµ0(Tµ1J)
)

(x), x ∈ X,

and more generally

(Tµ0Tµ1 · · ·TµN−1J)(x) =
(

Tµ0(Tµ1(· · · (TµN−1J)))
)

(x), x ∈ X,

(our notational conventions are summarized in Appendix A). Thus the
finite horizon cost functions Jπ,N of π can be defined in terms of the map-
pings Tµ [cf. Eq. (1.6)], and so can the infinite horizon cost function Jπ:

Jπ(x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X, (1.7)

where J̄ is the zero function, J̄(x) = 0 for all x ∈ X .
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Connection with Fixed Point Methodology

The Bellman equation (1.3) and the optimality condition (1.4), stated in
terms of the mappings Tµ and T , highlight a central theme of this book,
which is that DP theory is intimately connected with the theory of abstract
mappings and their fixed points. Analogs of the Bellman equation, J* =
TJ*, optimality conditions, and other results and computational methods
hold for a great variety of DP models, and can be stated compactly as
described above in terms of the corresponding mappings Tµ and T . The
gain from this abstraction is greater generality and mathematical insight,
as well as a more unified, economical, and streamlined analysis.

1.2 ABSTRACT DYNAMIC PROGRAMMING MODELS

In this section we formally introduce and illustrate with examples an ab-
stract DP model, which embodies the ideas just discussed in Section 1.1.

1.2.1 Problem Formulation

Let X and U be two sets, which we loosely refer to as a set of “states”
and a set of “controls,” respectively. For each x ∈ X , let U(x) ⊂ U be a
nonempty subset of controls that are feasible at state x. We denote by M
the set of all functions µ : X #→ U with µ(x) ∈ U(x), for all x ∈ X .

In analogy with DP, we refer to sequences π = {µ0, µ1, . . .}, with
µk ∈ M for all k, as “nonstationary policies,” and we refer to a sequence
{µ, µ, . . .}, with µ ∈ M, as a “stationary policy.” In our development,
stationary policies will play a dominant role, and with slight abuse of ter-
minology, we will also refer to any µ ∈ M as a “policy” when confusion
cannot arise.

Let R(X) be the set of real-valued functions J : X #→ &, and let
H : X ×U ×R(X) #→ & be a given mapping. † For each policy µ ∈ M, we
consider the mapping Tµ : R(X) #→ R(X) defined by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X, J ∈ R(X),

and we also consider the mapping T defined by ‡

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ R(X).

† Our notation and mathematical conventions are outlined in Appendix A.

In particular, we denote by ! the set of real numbers, and by !n the space of
n-dimensional vectors with real components.

‡ We assume that H , TµJ , and TJ are real-valued for J ∈ R(X) in the

present chapter and in Chapter 2. In Chapters 3 and 4 we will allow H(x, u, J),
and hence also (TµJ)(x) and (TJ)(x), to take the values ∞ and −∞.
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We will generally refer to T and Tµ as the (abstract) DP mappings or DP
operators or Bellman operators (the latter name is common in the artificial
intelligence and reinforcement learning literature).

Similar to the deterministic optimal control problem of the preceding
section, the mappings Tµ and T serve to define a multistage optimization
problem and a DP-like methodology for its solution. In particular, for some
function J̄ ∈ R(X), and nonstationary policy π = {µ0, µ1, . . .}, we define
for each integer N ≥ 1 the functions

Jπ,N (x) = (Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

where Tµ0Tµ1 · · ·TµN−1 denotes the composition of the mappings Tµ0 , Tµ1 ,
. . . , TµN−1 , i.e.,

Tµ0Tµ1 · · ·TµN−1J =
(

Tµ0(Tµ1(· · · (TµN−2(TµN−1J))) · · ·)
)

, J ∈ R(X).

We view Jπ,N as the “N -stage cost function” of π [cf. Eq. (1.5)]. Consider
also the function

Jπ(x) = lim sup
N→∞

Jπ,N (x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

which we view as the “infinite horizon cost function” of π [cf. Eq. (1.7); we
use lim sup for generality, since we are not assured that the limit exists].
We want to minimize Jπ over π, i.e., to find

J*(x) = inf
π

Jπ(x), x ∈ X,

and a policy π∗ that attains the infimum, if one exists.
The key connection with fixed point methodology is that J* “typi-

cally” (under mild assumptions) can be shown to satisfy

J*(x) = inf
u∈U(x)

H(x, u, J*), ∀ x ∈ X,

i.e., it is a fixed point of T . We refer to this as Bellman’s equation [cf. Eq.
(1.3)]. Another fact is that if an optimal policy π∗ exists, it “typically” can
be selected to be stationary, π∗ = {µ∗, µ∗, . . .}, with µ∗ ∈ M satisfying an
optimality condition, such as for example

(Tµ∗J*)(x) = (TJ*)(x), x ∈ X,

[cf. Eq. (1.4)]. Several other results of an analytical or algorithmic nature
also hold under appropriate conditions, which will be discussed in detail
later.

However, Bellman’s equation and other related results may not hold
without Tµ and T having some special structural properties. Prominent
among these are a monotonicity assumption that typically holds in DP
problems, and a contraction assumption that holds for some important
classes of problems. We describe these assumptions next.
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1.2.2 Monotonicity and Contraction Properties

Let us now formalize the monotonicity and contraction assumptions. We
will require that both of these assumptions hold for most of the next chap-
ter, and we will gradually relax the contraction assumption in Chapters 3
and 4. Recall also our assumption that Tµ and T map R(X) (the space
of real-valued functions over X) into R(X). In Chapters 3 and 4 we will
relax this assumption as well.

Assumption 1.2.1: (Monotonicity) If J, J ′ ∈ R(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

Note that by taking infimum over u ∈ U(x), we have

J(x) ≤ J ′(x), ∀ x ∈ X ⇒ inf
u∈U(x)

H(x, u, J) ≤ inf
u∈U(x)

H(x, u, J ′), ∀ x ∈ X,

or equivalently, †

J ≤ J ′ ⇒ TJ ≤ TJ ′.

Another way to arrive at this relation, is to note that the monotonicity
assumption is equivalent to

J ≤ J ′ ⇒ TµJ ≤ TµJ ′, ∀ µ ∈ M,

and to use the simple but important fact

inf
u∈U(x)

H(x, u, J) = inf
µ∈M

(TµJ)(x), ∀ x ∈ X, J ∈ R(X),

i.e., for a fixed x ∈ X , infimum over u is equivalent to infimum over µ.
This is true because for any µ, there is no coupling constraint between the
controls µ(x) and µ(x′) that correspond to two different states x and x′, i.e.,
the set M =

{

µ | µ(x) ∈ U(x), ∀ x ∈ X
}

can be viewed as the Cartesian
product Πx∈XU(x). We will be writing this relation as TJ = infµ∈M TµJ .

For the contraction assumption, we introduce a function v : X #→ &
with

v(x) > 0, ∀ x ∈ X.

† Unless otherwise stated, in this book, inequalities involving functions, min-

ima and infima of a collection of functions, and limits of function sequences are
meant to be pointwise; see Appendix A for our notational conventions.
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J TJ

= 0 TµJ

= 0
J TJ

= 0 TµJ

= 0 ) Jµ

Figure 1.2.1. Illustration of the monotonicity and the contraction assumptions in
one dimension. The mapping Tµ on the left is monotone but is not a contraction.
The mapping Tµ on the right is both monotone and a contraction. It has a unique
fixed point at Jµ.

Let us denote by B(X) the space of real-valued functions J on X such
that J(x)/v(x) is bounded as x ranges over X , and consider the weighted
sup-norm

‖J‖ = sup
x∈X

∣

∣J(x)
∣

∣

v(x)

on B(X). The properties of B(X) and some of the associated fixed point
theory are discussed in Appendix B. In particular, as shown there, B(X)
is a complete normed space, so any mapping from B(X) to B(X) that is a
contraction or an m-stage contraction for some integer m > 1, with respect
to ‖ · ‖, has a unique fixed point (cf. Props. B.1 and B.2).

Assumption 1.2.2: (Contraction) For all J ∈ B(X) and µ ∈ M,
the functions TµJ and TJ belong to B(X). Furthermore, for some
α ∈ (0, 1), we have

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖, ∀ J, J ′ ∈ B(X), µ ∈ M. (1.8)

Figure 1.2.1 illustrates the monotonicity and the contraction assump-
tions. It can be shown that the contraction condition (1.8) implies that

‖TJ − TJ ′‖ ≤ α‖J − J ′‖, ∀ J, J ′ ∈ B(X), (1.9)

so that T is also a contraction with modulus α. To see this we use Eq.
(1.8) to write

(TµJ)(x) ≤ (TµJ ′)(x) + α‖J − J ′‖ v(x), ∀ x ∈ X,
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from which, by taking infimum of both sides over µ ∈ M, we have

(TJ)(x)− (TJ ′)(x)

v(x)
≤ α‖J − J ′‖, ∀ x ∈ X.

Reversing the roles of J and J ′, we also have

(TJ ′)(x) − (TJ)(x)

v(x)
≤ α‖J − J ′‖, ∀ x ∈ X,

and combining the preceding two relations, and taking the supremum of
the left side over x ∈ X , we obtain Eq. (1.9).

Nearly all mappings related to DP satisfy the monotonicity assump-
tion, and many important ones satisfy the weighted sup-norm contraction
assumption as well. When both assumptions hold, the most powerful an-
alytical and computational results can be obtained, as we will show in
Chapter 2. These are:

(a) Bellman’s equation has a unique solution, i.e., T and Tµ have unique
fixed points, which are the optimal cost function J* and the cost
functions Jµ of the stationary policies {µ, µ, . . .}, respectively [cf. Eq.
(1.3)].

(b) A stationary policy {µ∗, µ∗, . . .} is optimal if and only if

Tµ∗J* = TJ*,

[cf. Eq. (1.4)].

(c) J* and Jµ can be computed by the value iteration method,

J* = lim
k→∞

T kJ, Jµ = lim
k→∞

T k
µJ,

starting with any J ∈ B(X).

(d) J* can be computed by the policy iteration method, whereby we gen-
erate a sequence of stationary policies via

Tµk+1Jµk = TJµk ,

starting from some initial policy µ0 [here Jµk is obtained as the fixed
point of Tµk by several possible methods, including value iteration as
in (c) above].

These are the most favorable types of results one can hope for in
the DP context, and they are supplemented by a host of other results,
involving approximate and/or asynchronous implementations of the value
and policy iteration methods, and other related methods that combine
features of both. As the contraction property is relaxed and is replaced
by various weaker assumptions, some of the preceding results may hold
in weaker form. For example J* turns out to be a solution of Bellman’s
equation in most of the models to be discussed, but it may not be the
unique solution. The interplay between the monotonicity and contraction-
like properties, and the associated results of the form (a)-(d) described
above is a recurring analytical theme in this book.
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1.2.3 Some Examples

In what follows in this section, we describe a few special cases, which indi-
cate the connections of appropriate forms of the mapping H with the most
popular total cost DP models. In all these models the monotonicity As-
sumption 1.2.1 (or some closely related version) holds, but the contraction
Assumption 1.2.2 may not hold, as we will indicate later. Our descriptions
are by necessity brief, and the reader is referred to the relevant textbook
literature for more detailed discussion.

Example 1.2.1 (Stochastic Optimal Control - Markovian
Decision Problems)

Consider the stationary discrete-time dynamic system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1.10)

where for all k, the state xk is an element of a space X, the control uk is
an element of a space U , and wk is a random “disturbance,” an element of a
space W . We consider problems with infinite state and control spaces, as well
as problems with discrete (finite or countable) state space (in which case the
underlying system is a Markov chain). However, for technical reasons that
relate to measure-theoretic issues, we assume that W is a countable set .

The control uk is constrained to take values in a given nonempty subset
U(xk) of U , which depends on the current state xk [uk ∈ U(xk), for all
xk ∈ X]. The random disturbances wk, k = 0, 1, . . ., are characterized by
probability distributions P (· | xk, uk) that are identical for all k, where P (wk |
xk, uk) is the probability of occurrence of wk, when the current state and
control are xk and uk, respectively. Thus the probability of wk may depend
explicitly on xk and uk, but not on values of prior disturbances wk−1, . . . , w0.

Given an initial state x0, we want to find a policy π = {µ0, µ1, . . .},
where µk : X (→ U , µk(xk) ∈ U(xk), for all xk ∈ X, k = 0, 1, . . ., that
minimizes the cost function

Jπ(x0) = lim sup
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

, (1.11)

where α ∈ (0, 1] is a discount factor, subject to the system equation constraint

xk+1 = f
(

xk, µk(xk), wk

)

, k = 0, 1, . . . .

This is a classical problem, which is discussed extensively in various sources,
including the author’s text [Ber12a]. It is usually referred to as the stochastic
optimal control problem or the Markovian Decision Problem (MDP for short).

Note that the expected value of the N-stage cost of π,

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

,
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is defined as a (possibly countably infinite) sum, since the disturbances wk,
k = 0, 1, . . ., take values in a countable set. Indeed, the reader may verify
that all the subsequent mathematical expressions that involve an expected
value can be written as summations over a finite or a countable set, so they
make sense without resort to measure-theoretic integration concepts. †

In what follows we will often impose appropriate assumptions on the
cost per stage g and the scalar α, which guarantee that the infinite horizon
cost Jπ(x0) is defined as a limit (rather than as a lim sup):

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

.

In particular, it can be shown that the limit exists if α < 1 and the expected
value of |g| is uniformly bounded, i.e., for some B > 0,

E
{
∣

∣g(x, u,w)
∣

∣

}

≤ B, ∀ x ∈ X, u ∈ U(x). (1.12)

In this case, we obtain the classical discounted infinite horizon DP prob-
lem, which generally has the most favorable structure of all infinite horizon
stochastic DP models (see [Ber12a], Chapters 1 and 2).

To make the connection with abstract DP, let us define

H(x, u, J) = E
{

g(x, u,w) + αJ
(

f(x, u, w)
)}

,

so that

(TµJ)(x) = E
{

g
(

x,µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

,

and
(TJ)(x) = inf

u∈U(x)
E
{

g(x, u,w) + αJ
(

f(x, u,w)
)}

.

Similar to the deterministic optimal control problem of Section 1.1, the N-
stage cost of π, can be expressed in terms of Tµ:

(Tµ0 · · · TµN−1 J̄)(x0) = E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

,

† As noted in Appendix A, the formula for the expected value of a random
variable w defined over a space Ω is

E{w} = E{w+}+ E{w−},

where w+ and w− are the positive and negative parts of w,

w+(ω) = max
{

0, w(ω)
}

, w−(ω) = min
{

0, w(ω)
}

, ∀ ω ∈ Ω.

In this way, taking also into account the rule∞−∞ = ∞ (see Appendix A),E{w}
is well-defined as an extended real number if Ω is finite or countably infinite.
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where J̄ is the zero function, J̄(x) = 0 for all x ∈ X. The same is true for
the infinite-stage cost [cf. Eq. (1.11)]:

Jπ(x0) = lim sup
N→∞

(Tµ0 · · ·TµN−1 J̄)(x0).

It can be seen that the mappings Tµ and T are monotone, and it is
well-known that if α < 1 and the boundedness condition (1.12) holds, they
are contractive as well (under the unweighted sup-norm); see e.g., [Ber12a],
Chapter 1. In this case, the model has the powerful analytical and algorith-
mic properties (a)-(d) mentioned at the end of the preceding subsection. In
particular, the optimal cost function J∗ [i.e., J∗(x) = infπ Jπ(x) for all x ∈ X]
can be shown to be the unique solution of the fixed point equation J∗ = TJ∗,
also known as Bellman’s equation, which has the form

J∗(x) = inf
u∈U(x)

E
{

g(x, u,w) + αJ∗
(

f(x, u,w)
)}

, x ∈ X,

and parallels the one given for deterministic optimal control problems [cf. Eq.
(1.3)].

These properties can be expressed and analyzed in an abstract setting
by using just the mappings Tµ and T , both when Tµ and T are contractive
(see Chapter 2), and when they are only monotone and not contractive while
either g ≥ 0 or g ≤ 0 (see Chapter 4). Moreover, under some conditions, it is
possible to analyze these properties in cases where Tµ is contractive for some
but not all µ (see Chapter 3, and Section 4.4).

Example 1.2.2 (Finite-State Discounted Markovian Decision
Problems)

In the special case of the preceding example where the number of states is
finite, the system equation (1.10) may be defined in terms of the transition
probabilities

pxy(u) = Prob
(

y = f(x, u, w) | x
)

, x, y ∈ X, u ∈ U(x),

so H takes the form

H(x, u, J) =
∑

y∈X

pxy(u)
(

g(x, u, y) + αJ(y)
)

.

When α < 1 and the boundedness condition
∣

∣g(x, u, y)
∣

∣ ≤ B, ∀ x, y ∈ X, u ∈ U(x),

[cf. Eq. (1.12)] holds (or more simply, when U is a finite set), the mappings Tµ

and T are contraction mappings with respect to the standard (unweighted)
sup-norm. This is a classical model, referred to as discounted finite-state
MDP , which has a favorable theory and has found extensive applications (cf.
[Ber12a], Chapters 1 and 2). The model is additionally important, because it
is often used for computational solution of continuous state space problems
via discretization.
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Example 1.2.3 (Discounted Semi-Markov Problems)

With x, y, and u as in Example 1.2.2, consider a mapping of the form

H(x, u, J) = G(x, u) +
∑

y∈X

mxy(u)J(y),

where G is some function representing expected cost per stage, and mxy(u)
are nonnegative scalars with

∑

y∈X

mxy(u) < 1, ∀ x ∈ X, u ∈ U(x).

The equation J∗ = TJ∗ is Bellman’s equation for a finite-state continuous-
time semi-Markov decision problem, after it is converted into an equivalent
discrete-time problem (cf. [Ber12a], Section 1.4). Again, the mappings Tµ and
T are monotone and can be shown to be contraction mappings with respect
to the unweighted sup-norm.

Example 1.2.4 (Discounted Zero-Sum Dynamic Games)

Let us consider a zero-sum game analog of the finite-state MDP Example
1.2.2. Here there are two players that choose actions at each stage: the
first (called the minimizer) may choose a move i out of n moves and the
second (called the maximizer) may choose a move j out of m moves. Then
the minimizer gives a specified amount aij to the maximizer, called a payoff .
The minimizer wishes to minimize aij , and the maximizer wishes to maximize
aij .

The players use mixed strategies, whereby the minimizer selects a prob-
ability distribution u = (u1, . . . , un) over his n possible moves and the max-
imizer selects a probability distribution v = (v1, . . . , vm) over his m possible
moves. Thus the probability of selecting i and j is uivj , and the expected
payoff for this stage is

∑

i,j
aijuivj or u′Av, where A is the n × m matrix

with components aij .
In a single-stage version of the game, the minimizer must minimize

maxv∈V u′Av and the maximizer must maximize minu∈U u′Av, where U and
V are the sets of probability distributions over {1, . . . , n} and {1, . . . , m},
respectively. A fundamental result (which will not be proved here) is that
these two values are equal:

min
u∈U

max
v∈V

u′Av = max
v∈V

min
u∈U

u′Av. (1.13)

Let us consider the situation where a separate game of the type just
described is played at each stage. The game played at a given stage is repre-
sented by a “state” x that takes values in a finite set X. The state evolves
according to transition probabilities qxy(i, j) where i and j are the moves
selected by the minimizer and the maximizer, respectively (here y represents
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the next game to be played after moves i and j are chosen at the game rep-
resented by x). When the state is x, under u ∈ U and v ∈ V , the one-stage
expected payoff is u′A(x)v, where A(x) is the n ×m payoff matrix, and the
state transition probabilities are

pxy(u, v) =

n
∑

i=1

m
∑

j=1

uivjqxy(i, j) = u′Qxyv,

where Qxy is the n × m matrix that has components qxy(i, j). Payoffs are
discounted by α ∈ (0, 1), and the objectives of the minimizer and maximizer,
roughly speaking, are to minimize and to maximize the total discounted ex-
pected payoff. This requires selections of u and v to strike a balance between
obtaining favorable current stage payoffs and playing favorable games in fu-
ture stages.

We now introduce an abstract DP framework related to the sequential
move selection process just described. We consider the mapping G given by

G(x, u, v, J) = u′A(x)v + α
∑

y∈X

pxy(u, v)J(y)

= u′

(

A(x) + α
∑

y∈X

QxyJ(y)

)

v,

(1.14)

where α ∈ (0, 1) is discount factor, and the mapping H given by

H(x, u, J) = max
v∈V

G(x, u, v, J).

The corresponding mappings Tµ and T are

(TµJ)(x) = max
v∈V

G
(

x, µ(x), v, J
)

, x ∈ X,

and
(TJ)(x) = min

u∈U
max
v∈V

G(x, u, v, J).

It can be shown that Tµ and T are monotone and (unweighted) sup-norm
contractions. Moreover, the unique fixed point J∗ of T satisfies

J∗(x) = min
u∈U

max
v∈V

G(x, u, v, J∗), ∀ x ∈ X,

(see [Ber12a], Section 1.6.2).
We now note that since

A(x) + α
∑

y∈X

QxyJ(y)

[cf. Eq. (1.14)] is a matrix that is independent of u and v, we may view J∗(x)
as the value of a static game (which depends on the state x). In particular,
from the fundamental minimax equality (1.13), we have

min
u∈U

max
v∈V

G(x, u, v, J∗) = max
v∈V

min
u∈U

G(x, u, v, J∗), ∀ x ∈ X.
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This implies that J∗ is also the unique fixed point of the mapping

(TJ)(x) = max
v∈V

H(x, v, J),

where
H(x, v, J) = min

u∈U
G(x, u, v, J),

i.e., J∗ is the fixed point regardless of the order in which minimizer and
maximizer select mixed strategies at each stage.

In the preceding development, we have introduced J∗ as the unique
fixed point of the mappings T and T . However, J∗ also has an interpretation
in game theoretic terms. In particular, it can be shown that J∗(x) is the value
of a dynamic game, whereby at state x the two opponents choose multistage
(possibly nonstationary) policies that consist of functions of the current state,
and continue to select moves using these policies over an infinite horizon. For
further discussion of this interpretation, we refer to [Ber12a] and to books on
dynamic games such as [FiV96]; see also [PaB99] and [Yu14] for an analysis
of the undiscounted case (α = 1) where there is a termination state, as in
the stochastic shortest path problems of the subsequent Example 1.2.6. An
alternative and more general formulation of sequential zero-sum games, which
allows for an infinite state space, will be given in Chapter 5.

Example 1.2.5 (Minimax Problems)

Consider a minimax version of Example 1.2.1, where w is not random but is
rather chosen from within a set W (x, u) by an antagonistic opponent. Let

H(x, u, J) = sup
w∈W (x,u)

[

g(x, u, w) + αJ
(

f(x, u,w)
)

]

.

Then the equation J∗ = TJ∗ is Bellman’s equation for an infinite horizon
minimax DP problem. A special case of this mapping arises in zero-sum
dynamic games (cf. Example 1.2.4). We will also discuss alternative and
more general abstract DP formulations of minimax problems in Chapter 5.

Example 1.2.6 (Stochastic Shortest Path Problems)

The stochastic shortest path (SSP for short) problem is the special case of
the stochastic optimal control Example 1.2.1 where:

(a) There is no discounting (α = 1).

(b) The state space is X = {t, 1, . . . , n} and we are given transition proba-
bilities, denoted by

pxy(u) = P (xk+1 = y | xk = x, uk = u), x, y ∈ X, u ∈ U(x).

(c) The control constraint set U(x) is finite for all x ∈ X.
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(d) A cost g(x, u) is incurred when control u ∈ U(x) is selected at state x.

(e) State t is a special termination state, which is cost-free and absorbing,
i.e., for all u ∈ U(t),

g(t, u) = 0, ptt(u) = 1.

To simplify the notation, we have assumed that the cost per stage does not
depend on the successor state, which amounts to using expected cost per
stage in all calculations.

Since the termination state t is cost-free, the cost starting from t is zero
for every policy. Accordingly, for all cost functions, we ignore the component
that corresponds to t, and define

H(x, u, J) = g(x, u) +

n
∑

y=1

pxy(u)J(y), x = 1, . . . , n, u ∈ U(x), J ∈ !n.

The mappings Tµ and T are defined by

(TµJ)(x) = g
(

x, µ(x)
)

+

n
∑

y=1

pxy
(

µ(x)
)

J(y), x = 1, . . . , n,

(TJ)(x) = min
u∈U(x)

[

g(x, u) +

n
∑

y=1

pxy(u)J(y)

]

, x = 1, . . . , n.

Note that the matrix that has components pxy(u), x, y = 1, . . . , n, is sub-
stochastic (some of its row sums may be less than 1) because there may be
a positive transition probability from a state x to the termination state t.
Consequently Tµ may be a contraction for some µ, but not necessarily for all
µ ∈ M.

The SSP problem has been discussed in many sources, including the
books [Pal67], [Der70], [Whi82], [Ber87], [BeT89], [HeL99], [Ber12a], and
[Ber17a], where it is sometimes referred to by earlier names such as “first
passage problem” and “transient programming problem.” In the framework
that is most relevant to our purposes, given in the paper by Bertsekas and
Tsitsiklis [BeT91], there is a classification of stationary policies for SSP into
proper and improper . We say that µ ∈ M is proper if, when using µ, there is
positive probability that termination will be reached after at most n stages,
regardless of the initial state; i.e., if

ρµ = max
x=1,...,n

P{xn ,= 0 | x0 = x, µ} < 1.

Otherwise, we say that µ is improper. It can be seen that µ is proper if and
only if in the Markov chain corresponding to µ, each state x is connected to
the termination state with a path of positive probability transitions.

For a proper policy µ, it can be shown that Tµ is a weighted sup-norm
contraction, as well as an n-stage contraction with respect to the unweighted
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sup-norm. For an improper policy µ, Tµ is not a contraction with respect to
any norm. Moreover, T also need not be a contraction with respect to any
norm (think of the case where there is only one policy, which is improper).
However, T is a weighted sup-norm contraction in the important special case
where all policies are proper (see [BeT96], Prop. 2.2, or [Ber12a], Chapter 3).

Nonetheless, even in the case where there are improper policies and T
is not a contraction, results comparable to the case of discounted finite-state
MDP are available for SSP problems assuming that:

(a) There exists at least one proper policy.

(b) For every improper policy there is an initial state that has infinite cost
under this policy.

Under the preceding two assumptions, referred to as the strong SSP conditions
in Section 3.5.1, it was shown in [BeT91] that T has a unique fixed point J∗,
the optimal cost function of the SSP problem. Moreover, a policy {µ∗, µ∗, . . .}
is optimal if and only if

Tµ∗J
∗ = TJ∗.

In addition, J∗ and Jµ can be computed by value iteration,

J∗ = lim
k→∞

T kJ, Jµ = lim
k→∞

T k
µJ,

starting with any J ∈ !n (see [Ber12a], Chapter 3, for a textbook account).
These properties are in analogy with the desirable properties (a)-(c), given at
the end of the preceding subsection in connection with contractive models.

Regarding policy iteration, it works in its strongest form when there are
no improper policies, in which case the mappings Tµ and T are weighted sup-
norm contractions. When there are improper policies, modifications to the
policy iteration method are needed; see [Ber12a], [YuB13a], and also Section
3.6.2, where these modifications will be discussed in an abstract setting.

In Section 3.5.1 we will also consider SSP problems where the strong
SSP conditions (a) and (b) above are not satisfied. Then we will see that
unusual phenomena can occur, including that J∗ may not be a solution of
Bellman’s equation. Still our line of analysis of Chapter 3 will apply to such
problems.

Example 1.2.7 (Deterministic Shortest Path Problems)

The special case of the SSP problem where the state transitions are determin-
istic is the classical shortest path problem. Here, we have a graph of n nodes
x = 1, . . . , n, plus a destination t, and an arc length axy for each directed arc
(x, y). At state/node x, a policy µ chooses an outgoing arc from x. Thus the
controls available at x can be identified with the outgoing neighbors of x [the
nodes u such that (x, u) is an arc]. The corresponding mapping H is

H(x, u, J) =
{

axu + J(u) if u ,= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines a graph whose arcs are
(

x, µ(x)
)

, x =
1, . . . , n. The policy µ is proper if and only if this graph is acyclic (it consists of
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a tree of directed paths leading from each node to the destination). Thus there
exists a proper policy if and only if each node is connected to the destination
with a directed path. Furthermore, an improper policy has finite cost starting
from every initial state if and only if all the cycles of the corresponding graph
have nonnegative cycle cost. It follows that the favorable analytical and
algorithmic results described for SSP in the preceding example hold if the
given graph is connected and the costs of all its cycles are positive. We will
see later that significant complications result if the cycle costs are allowed to
be zero, even though the shortest path problem is still well posed in the sense
that shortest paths exist if the given graph is connected (see Section 3.1).

Example 1.2.8 (Multiplicative and Risk-Sensitive Models)

With x, y, u, and transition probabilities pxy(u), as in the finite-state MDP
of Example 1.2.2, consider the mapping

H(x, u, J) =
∑

y∈X

pxy(u)g(x, u, y)J(y) = E
{

g(x, u, y)J(y) | x, u
}

, (1.15)

where g is a scalar function satisfying g(x,u, y) ≥ 0 for all x, y, u (this is
necessary for H to be monotone). This mapping corresponds to the multi-
plicative model of minimizing over all π = {µ0, µ1, . . .} the cost

Jπ(x0) = lim sup
N→∞

E
{

g
(

x0, µ0(x0), x1

)

g
(

x1, µ1(x1), x2

)

· · ·

g
(

xN−1, µN−1(xN−1), xN

)
∣

∣ x0

}

,

(1.16)

where the state sequence {x0, x1, . . .} is generated using the transition prob-
abilities pxkxk+1

(

µk(xk)
)

.
To see that the mappingH of Eq. (1.15) corresponds to the cost function

(1.16), let us consider the unit function

J̄(x) ≡ 1, x ∈ X,

and verify that for all x0 ∈ X, we have

(Tµ0Tµ1 · · ·TµN−1 J̄)(x0) = E
{

g
(

x0, µ0(x0), x1

)

g
(

x1, µ1(x1), x2

)

· · ·

g
(

xN−1, µN−1(xN−1), xN

)
∣

∣ x0

}

,
(1.17)

so that

Jπ(x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X.

Indeed, taking into account that J̄(x) ≡ 1, we have

(TµN−1 J̄)(xN−1) = E
{

g
(

xN−1, µN−1(xN−1), xN

)

J̄(xN) | xN−1

}

= E
{

g
(

xN−1, µN−1(xN−1), xN

)

| xN−1

}

,
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(TµN−2TµN−1 J̄)(xN−2) =
(

(TµN−2(TµN−1 J̄)
)

(xN−2)

= E
{

g
(

xN−2, µN−2(xN−2), xN−1

)

·E
{

g
(

xN−1, µN−1(xN−1), xN

)

| xN−1} | xN−2

}

,

and continuing similarly,

(Tµ0Tµ1 · · ·TµN−1 J̄)(x0) = E
{

g
(

x0, µ0(x0), x1

)

E
{

g
(

x1, µ1(x1), x2

)

· · ·

E
{

g
(

xN−1, µN−1(xN−1), xN

)

| xN−1

}

| xN−2

}

· · ·
}

| x0

}

,

which by using the iterated expectations formula (see e.g., [BeT08]) proves
the expression (1.17).

An important special case of a multiplicative model is when g has the
form

g(x, u, y) = eh(x,u,y)

for some one-stage cost function h. We then obtain a finite-state MDP with
an exponential cost function,

Jπ(x0) = lim sup
N→∞

E
{

e

(

h(x0,µ0(x0),x1)+···+h(xN−1,µN−1(xN−1),xN )
)

}

,

which is often used to introduce risk aversion in the choice of policy through
the convexity of the exponential.

There is also a multiplicative version of the infinite state space stochas-
tic optimal control problem of Example 1.2.1. The mapping H takes the
form

H(x, u, J) = E
{

g(x, u, w)J
(

f(x, u,w)
)}

,

where xk+1 = f(xk, uk, wk) is the underlying discrete-time dynamic system;
cf. Eq. (1.10).

Multiplicative models and related risk-sensitive models are discussed
extensively in the literature, mostly for the exponential cost case and under
different assumptions than ours; see e.g., [HoM72], [Jac73], [Rot84], [ChS87],
[Whi90], [JBE94], [FlM95], [HeM96], [FeM97], [BoM99], [CoM99], [BoM02],
[BBB08], [Ber16a]. The works of references [DeR79], [Pat01], and [Pat07]
relate to the stochastic shortest path problems of Example 1.2.6, and are the
closest to the semicontractive models discussed in Chapters 3 and 4, based
on the author’s paper [Ber16a]; see the next example and Section 3.5.2.

Example 1.2.9 (Affine Monotonic Models)

Consider a finite state space X = {1, . . . , n} and a (possibly infinite) control
constraint set U(x) for each state x. For each policy µ, let the mapping Tµ

be given by
TµJ = bµ + AµJ, (1.18)

where bµ is a vector of !n with components b
(

x, µ(x)
)

, x = 1, . . . , n, and Aµ

is an n× n matrix with components Axy

(

µ(x)
)

, x, y = 1, . . . , n. We assume
that b(x, u) and Axy(u) are nonnegative,

b(x, u) ≥ 0, Axy(u) ≥ 0, ∀ x, y = 1, . . . , n, u ∈ U(x).
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Thus Tµ and T map nonnegative functions to nonnegative functions J : X (→
[0,∞].

This model was introduced in the first edition of this book, and was elab-
orated on in the author’s paper [Ber16a]. Special cases of the model include
the finite-state Markov and semi-Markov problems of Examples 1.2.1-1.2.3,
and the stochastic shortest path problem of Example 1.2.6, with Aµ being the
transition probability matrix of µ (perhaps appropriately discounted), and bµ
being the cost per stage vector of µ, which is assumed nonnegative. An in-
teresting affine monotonic model of a different type is the multiplicative cost
model of the preceding example, where the initial function is J̄(x) ≡ 1 and
the cost accumulates multiplicatively up to reaching a termination state t. In
the exponential case of this model, the cost of a generated path starting from
some initial state accumulates additively as in the SSP case, up to reaching
t. However, the cost of the model is the expected value of the exponentiated
cost of the path up to reaching t. It can be shown then that the mapping Tµ

has the form

(TµJ)(x) = pxt
(

µ(x)
)

exp
(

g(x,µ(x), t)
)

+

n
∑

y=1

pxy(µ(x))exp
(

g(x,µ(x), y)
)

J(y), x ∈ X,

where pxy(u) is the probability of transition from x to y under u, and g(x, u, y)
is the cost of the transition; see Section 3.5.2 for a detailed derivation. Clearly
Tµ has the affine monotonic form (1.18).

Example 1.2.10 (Aggregation)

Aggregation is an approximation approach that replaces a large DP problem
with a simpler problem obtained by “combining” many of its states together
into aggregate states. This results in an “aggregate” problem with fewer
states, which may be solvable by exact DP methods. The optimal cost-to-go
function of this problem is then used to approximate the optimal cost function
of the original problem.

Consider an n-state Markovian decision problem with transition prob-
abilities pij(u). To construct an aggregation framework, we introduce a finite
set A of aggregate states. We generically denote the aggregate states by let-
ters such as x and y, and the original system states by letters such as i and j.
The approximation framework is specified by combining in various ways the
aggregate states and the original system states to form a larger system (see
Fig. 1.2.2). To specify the probabilistic structure of this system, we introduce
two (somewhat arbitrary) choices of probability distributions, which relate
the original system states with the aggregate states:

(1) For each aggregate state x and original system state i, we specify the
disaggregation probability dxi. We assume that dxi ≥ 0 and

n
∑

i=1

dxi = 1, ∀ x ∈ A.
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according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregate System

Original System

Figure 1.2.2 Illustration of the relation between aggregate and original sys-
tem states.

Roughly, dxi may be interpreted as the “degree to which x is represented
by i.”

(2) For each aggregate state y and original system state j, we specify the
aggregation probability φjy . We assume that φjy ≥ 0 and

∑

y∈A

φjy = 1, ∀ j = 1, . . . , n.

Roughly, φjy may be interpreted as the “degree of membership of j in
the aggregate state y.”

The aggregation and disaggregation probabilities specify a dynamic sys-
tem involving both aggregate and original system states (cf. Fig. 1.2.2). In
this system:

(i) From aggregate state x, we generate original system state i according
to dxi.

(ii) We generate transitions from original system state i to original system
state j according to pij(u), with cost g(i, u, j).

(iii) From original system state j, we generate aggregate state y according
to φjy.

Illustrative examples of aggregation frameworks are given in the books
[Ber12a] and [Ber17a]. One possibility is hard aggregation, where aggregate
states are identified with the sets of a partition of the state space. For another
type of common scheme, think of the case where the original system states
form a fine grid in some space, which is “aggregated” into a much coarser grid.
In particular let us choose a collection of “representative” original system
states, and associate each one of them with an aggregate state. Thus, each
aggregate state x is associated with a unique representative state ix, and the
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x j1 j2j2 j3

x j1

j3 y1 1 y2

y2 y3

y3 Original State Space

Representative/Aggregate States

x = i p

i pij1(u)

φj1y1

1
φj1y2

2
φj1y3

Figure 1.2.3 Aggregation based on a small subset of representative states
(these are shown with larger dark circles, while the other (nonrepresentative)
states are shown with smaller dark circles). In this figure, from representa-
tive state x = i, there are three possible transitions, to states j1, j2, and
j3, according to pij1 (u), pij2 (u), pij3 (u), and each of these states is associ-
ated with a convex combination of representative states using the aggregation
probabilities. For example, j1 is associated with φj1y1y1+φj1y2y2 +φj1y3y3.

disaggregation probabilities are

dxi =
{

1 if i = ix,
0 if i ,= ix.

(1.19)

The aggregation probabilities are chosen to represent each original system
state j with a convex combination of aggregate/representative states; see
Fig. 1.2.3. It is also natural to assume that the aggregation probabilities map
representative states to themselves, i.e.,

φjy =
{

1 if j = jy ,
0 if j ,= jy .

This scheme makes intuitive geometrical sense as an interpolation scheme in
the special case where both the original and the aggregate states are asso-
ciated with points in a Euclidean space. The scheme may also be extended
to problems with a continuous state space. In this case, the state space is
discretized with a finite grid, and the states of the grid are viewed as the ag-
gregate states. The disaggregation probabilities are still given by Eq. (1.19),
while the aggregation probabilities may be arbitrarily chosen to represent each
original system state with a convex combination of representative states.

As an extension of the preceding schemes, suppose that through some
special insight into the problem’s structure or some preliminary calculation,
we know some features of the system’s state that can “predict well” its cost.
Then it seems reasonable to form the aggregate states by grouping together
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states with “similar features,” or to form aggregate states by using “represen-
tative features” instead of representative states. This is called “feature-based
aggregation;” see the books [BeT96] (Section 3.1) and [Ber12a] (Section 6.5)
for a description and analysis.

Given aggregation and disaggregation probabilities, one may define an
aggregate problem whose states are the aggregate states. This problem in-
volves an aggregate discrete-time system, which we will describe shortly. We
require that the control is applied with knowledge of the current aggregate
state only (rather than the original system state).† To this end, we assume
that the control constraint set U(i) is independent of the state i, and we de-
note it by U . Then, by adding the probabilities of all the relevant paths in
Fig. 1.2.2, it can be seen that the transition probability from aggregate state
x to aggregate state y under control u ∈ U is

p̂xy(u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)φjy .

The corresponding expected transition cost is given by

ĝ(x, u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem.
We may compute the optimal costs-to-go Ĵ(x), x ∈ A, of this problem

by using some exact DP method. Then, the costs-to-go of each state j of the
original problem are usually approximated by

J̃(j) =
∑

y∈A

φjy Ĵ(y).

Example 1.2.11 (Distributed Aggregation)

The abstract DP framework is useful not only in modeling DP problems,
but also in modeling algorithms arising in DP and even other contexts. We
illustrate this with an example from Bertsekas and Yu [BeY10] that relates
to the distributed solution of large-scale discounted finite-state MDP using
cost function approximation based on aggregation. ‡ It involves a partition of
the n states into m subsets for the purposes of distributed computation, and
yields a corresponding approximation (V1, . . . , Vm) to the cost vector J∗.

In particular, we have a discounted n-state MDP (cf. Example 1.2.2),
and we introduce aggregate states S1, . . . , Sm, which are disjoint subsets of

† An alternative form of aggregate problem, where the control may depend
on the original system state is discussed in Section 6.5.2 of the book [Ber12a].

‡ See [Ber12a], Section 6.5.2, for a more detailed discussion. Other examples
of algorithmic mappings that come under our framework arise in asynchronous
policy iteration (see Sections 2.6.3, 3.6.2, and [BeY10], [BeY12], [YuB13a]), and
in constrained forms of policy iteration (see [Ber11c], or [Ber12a], Exercise 2.7).
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the original state space with S1∪· · ·∪Sn = {1, . . . , n}. We envision a network
of processors & = 1, . . . ,m, each assigned to the computation of a local cost
function V", defined on the corresponding aggregate state/subset S":

V" = {V"y | y ∈ S"}.

Processor & also maintains a scalar aggregate cost R" for its aggregate state,
which is a weighted average of the detailed cost values V"x within S":

R" =
∑

x∈S"

d"xV"x,

where d"x are given probabilities with d"x ≥ 0 and
∑

x∈S"
d"x = 1. The aggre-

gate costs R" are communicated between processors and are used to perform
the computation of the local cost functions V" (we will discuss computation
models of this type in Section 2.6).

We denote J = (V1, . . . , Vm, R1, . . . , Rm). We introduce the mapping
H(x, u, J) defined for each of the n states x by

H(x, u, J) = W"(x, u, V", R1, . . . , Rm), if x ∈ S",

where for x ∈ S"

W"(x, u, V", R1, . . . , Rm) =

n
∑

y=1

pxy(u)g(x,u, y) + α
∑

y∈S"

pxy(u)V"y

+ α
∑

y/∈S"

pxy(u)Rs(y),

and for each original system state y, we denote by s(y) the index of the subset
to which y belongs [i.e., y ∈ Ss(y)].

We may view H as an abstract mapping on the space of J , and aim to
find its fixed point J∗ = (V ∗

1 , . . . , V ∗
m, R∗

1 , . . . , R
∗
m). Then, for & = 1, . . . , m, we

may view V ∗
" as an approximation to the optimal cost vector of the original

MDP starting at states x ∈ S", and we may view R∗
" as a form of aggregate

cost for S". The advantage of this formulation is that it involves significant
decomposition and parallelization of the computations among the processors,
when performing various DP algorithms. In particular, the computation of
W"(x, u, V", R1, . . . , Rm) depends on just the local vector V", whose dimension
may be potentially much smaller than n.

1.2.4 Approximation Models - Projected and Aggregation
Bellman Equations

Given an abstract DP model described by a mapping H , we may be in-
terested in fixed points of related mappings other than T and Tµ. Such
mappings may arise in various contexts, such as for example distributed
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asynchronous aggregation in Example 1.2.11. An important context is sub-
space approximation, whereby Tµ and T are restricted onto a subspace of
functions for the purpose of approximating their fixed points. Much of the
theory of approximate DP, neuro-dynamic programming, and reinforce-
ment learning relies on such approximations (there are quite a few books,
which collectively contain extensive accounts these subjects, such as Bert-
sekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98], Gosavi [Gos03],
Cao [Cao07], Chang, Fu, Hu, and Marcus [CFH07], Meyn [Mey07], Powell
[Pow07], Borkar [Bor08], Haykin [Hay08], Busoniu, Babuska, De Schutter,
and Ernst [BBD10], Szepesvari [Sze10], Bertsekas [Ber12a], [Ber17a], and
Vrabie, Vamvoudakis, and Lewis [VVL13]).

For an illustration, consider the approximate evaluation of the cost
vector of a discrete-time Markov chain with states i = 1, . . . , n. We assume
that state transitions (i, j) occur at time k according to given transition
probabilities pij , and generate a cost αkg(i, j), where α ∈ (0, 1) is a discount
factor. The cost function over an infinite number of stages can be shown to
be the unique fixed point of the Bellman equation mapping T : &n #→ &n

whose components are given by

(TJ)(i) =
n
∑

j=1

pij(u)
(

g(i, j) + αJ(j)
)

, i = 1, . . . , n, J ∈ &n.

This is the same as the mapping T in the discounted finite-state MDP
Example 1.2.2, except that we restrict attention to a single policy. Find-
ing the cost function of a fixed policy is the important policy evaluation
subproblem that arises prominently within the context of policy iteration.
It also arises in the context of a simplified form of policy iteration, the
rollout algorithm; see e.g., [BeT96], [Ber12a], [Ber17a]. In some artificial
intelligence contexts, policy iteration is referred to as self-learning, and in
these contexts the policy evaluation is almost always done approximately,
sometimes with the use of neural networks.

A prominent approach for approximation of the fixed point of T is
based on the solution of lower-dimensional equations defined on the sub-
space {Φr | r ∈ &s} that is spanned by the columns of a given n×s matrix
Φ. Two such approximating equations have been studied extensively (see
[Ber12a], Chapter 6, for a detailed account and references; also [BeY07],
[BeY09], [YuB10], [Ber11a] for extensions to abstract contexts beyond ap-
proximate DP). These are:

(a) The projected equation

Φr = ΠξT (Φr), (1.20)

where Πξ denotes projection onto S with respect to a weighted Eu-
clidean norm

‖J‖ξ =

√

√

√

√

n
∑

i=1

ξi
(

J(i)
)2

(1.21)
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with ξ = (ξ1, . . . , ξn) being a probability distribution with positive
components (sometimes a seminorm projection is used, whereby some
of the components ξi may be zero; see Yu and Bertsekas [YuB12]).

(b) The aggregation equation

Φr = ΦDT (Φr), (1.22)

with D being an s× n matrix whose rows are restricted to be proba-
bility distributions; these are the disaggregation probabilities of Ex-
ample 1.2.10. Also, in this approach, the rows of Φ are restricted to
be probability distributions; these are the aggregation probabilities
of Example 1.2.10.

We now see that solving the projected equation (1.20) and the aggre-
gation equation (1.22) amounts to finding a fixed point of the mappings
ΠξT and ΦDT , respectively. These mappings derive their structure from
the DP operator T , so they have some DP-like properties, which can be
exploited for analysis and computation.

An important fact is that the aggregation mapping ΦDT preserves
the monotonicity and the sup-norm contraction property of T , while the
projected equation mapping ΠξT generally does not. The reason for preser-
vation of monotonicity is the nonnegativity of the components of the ma-
trices Φ and D (see the author’s survey paper [Ber11c] for a discussion of
the importance of preservation of monotonicity in various DP operations).
The reason for preservation of sup-norm contraction is that the matrices
Φ and D are sup-norm nonexpansive, because their rows are probability
distributions. In fact, it can be verified that the solution r of Eq. (1.22)
can be viewed as the exact DP solution of the “aggregate” DP problem
that represents a lower-dimensional approximation of the original (see Ex-
ample 1.2.10). The preceding observations are important for our purposes,
as they indicate that much of the theory developed in this book applies to
approximation-related mappings based on aggregation.

By contrast, the projected equation mapping ΠξT need not be mono-
tone, because the components of Πξ need not be nonnegative. Moreover
while the projection Πξ is nonexpansive with respect to the projection norm
‖·‖ξ, it need not be nonexpansive with respect to the sup-norm. As a result
the projected equation mapping ΠξT need not be a sup-norm contraction.
These facts play a significant role in approximate DP methodology.

1.2.5 Multistep Models - Temporal Difference and
Proximal Algorithms

An important possibility for finding a fixed point of T is to replace T
with another mapping, say F , such that F and T have the same fixed
points. For example, F may offer some advantages in terms of algorithmic
convenience or quality of approximation when used in conjunction with
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projection or aggregation [cf. Eqs. (1.20) and (1.22)]. Alternatively, F may
be the mapping of some iterative method xk+1 = F (xk) that is suitable for
computing fixed points of T .

In this book we will not consider in much detail the possibility of using
an alternative mapping F to find a fixed point of a mapping T . We will just
mention here some multistep versions of T , which have been used widely
for approximations, particularly in connection with the projected equation
approach. An important example is the mapping T (λ) : &n #→ &n, defined
for a given λ ∈ (0, 1) as follows: T (λ) transforms a vector J ∈ &n to the
vector T (λ)J ∈ &n, whose n components are given by

(

T (λ)J
)

(i) = (1− λ)
∞
∑

$=0

λ$(T $+1J)(i), i = 1, . . . , n, J ∈ &n,

for λ ∈ (0, 1), where T $ is the %-fold composition of T with itself % times.
Here there should be conditions that guarantee the convergence of the
infinite series in the preceding definition. The multistep analog of the
projected Eq. (1.20) is

Φr = ΠξT (λ)(Φr).

The popular temporal difference methods, such as TD(λ), LSTD(λ), and
LSPE(λ), aim to solve this equation (see the book references on approx-
imate DP, neuro-dynamic programming, and reinforcement learning cited
earlier). The mapping T (λ) also forms the basis for the λ-policy iteration
method to be discussed in Sections 2.5, 3.2.4, and 4.3.3.

The multistep analog of the aggregation Eq. (1.22) is

Φr = ΦDT (λ)(Φr),

and methods that are similar to the temporal difference methods can be
used for its solution. In particular, a multistep method based on the map-
ping T (λ) is the, so-called, λ-aggregation method (see [Ber12a], Chapter
6), as well as other forms of aggregation (see [Ber12a], [YuB12]).

In the case where T is a linear mapping of the form

TJ = AJ + b,

where b is a vector in &n, and A is an n × n matrix with eigenvalues
strictly within the unit circle, there is an interesting connection between
the multistep mapping T (λ) and another mapping of major importance in
numerical convex optimization. This is the proximal mapping, associated
with T and a scalar c > 0, and denoted by P (c). In particular, for a given
J ∈ &n, the vector P (c)J is defined as the unique vector Y ∈ &n that solves
the equation

Y −AY − b =
1

c
(J − Y ).
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Equivalently,

P (c)J =

(

c+ 1

c
I −A

)−1(

b+
1

c
J

)

, (1.23)

where I is the identity matrix. Then it can be shown (see Exercise 1.2 or
the papers [Ber16b], [Ber18c]) that if

c =
λ

1− λ
,

we have
T (λ) = T · P (c) = P (c) · T.

Moreover, the vectors J , P (c)J , and T (λ)J are colinear and satisfy

T (λ)J = J +
c+ 1

c

(

P (c)J − J
)

.

The preceding formulas show that T (λ) and P (c) are closely related, and
that iterating with T (λ) is “faster” than iterating with P (c), since the eigen-
values of A are within the unit circle, so that T is a contraction. In addition,
methods such as TD(λ), LSTD(λ), LSPE(λ), and their projected versions,
which are based on T (λ), can be adapted to be used with P (c).

A more general form of multistep approach, introduced and studied
in the paper [YuB12], replaces T (λ) with a mapping T (w) : &n #→ &n that
has components

(

T (w)J
)

(i) =
∞
∑

$=1

wi$(T $J)(i), i = 1, . . . , n, J ∈ &n,

where w is a vector sequence whose ith component, (wi1, wi2, . . .), is a prob-
ability distribution over the positive integers. Then the multistep analog
of the projected equation (1.20) is

Φr = ΠξT (w)(Φr), (1.24)

while the multistep analog of the aggregation equation (1.22) is

Φr = ΦDT (w)(Φr). (1.25)

The mapping T (λ) is obtained for wi$ = (1 − λ)λ$−1, independently of
the state i. A more general version, where λ depends on the state i, is
obtained for wi$ = (1 − λi)λ

$−1
i . The solution of Eqs. (1.24) and (1.25)

by simulation-based methods is discussed in the paper [YuB12]; see also
Exercise 1.3.

Let us also note that there is a connection between projected equa-
tions of the form (1.24) and aggregation equations of the form (1.25). This
connection is based on the use of a seminorm [this is given by the same
expression as the norm ‖ · ‖ξ of Eq. (1.21), with some of the components
of ξ allowed to be 0]. In particular, the most prominent cases of aggrega-
tion equations can be viewed as seminorm projected equations because, for
these cases, ΦD is a seminorm projection (see [Ber12a], p. 639, [YuB12],
Section 4). Moreover, they can also be viewed as projected equations where
the projection is oblique (see [Ber12a], Section 7.3.6).
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1.3 ABSTRACT VISUALIZATIONS - NEWTON’S METHOD

In this section we will use geometric illustrations to obtain insight into
Bellman’s equation, and the algorithms of value iteration (VI) and policy
iteration (PI). We will also discuss some reinforcement learning methods,
such as approximation in value space together with some of the properties
of the associated one-step or multistep lookahead policies. To this end,
we will focus on the stochastic optimal control problem of Example 1.2.1,
where

(TJ)(x) = inf
u∈U(x)

E
{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x, (1.26)

and

(TµJ)(x) = E
{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x. (1.27)

Our geometric illustrations will make use of some special properties
of the operators T and Tµ. These are:

(a) T and Tµ are monotone, i.e., they satisfy Assumption 1.2.1.

(b) Tµ is linear, in the sense that it has the form TµJ = G+AµJ , where
G ∈ R(X) is some function and Aµ : R(X) #→ R(X) is an operator
such that for any functions J1, J2, and scalars γ1, γ2, we have

Aµ(γ1J1 + γ2J2) = γ1AµJ1 + γ2AµJ2.

This is true because of the linearity of the expected value operation
in Eq. (1.27).

(c) We have
(TJ)(x) = min

µ∈M
(TµJ)(x), for all x, (1.28)

where M is the set of stationary policies. This is true because for
any policy µ, there is no coupling constraint between the controls
µ(x) and µ(x′) that correspond to two different states x and x′.

(d) (TJ)(x) is a concave function of J for every x, which follows from the
linearity of Tµ and the alternative definition of T given by Eq. (1.28).

We illustrate these properties graphically with an example.

Example 1.3.1 (A Two-State and Two-Control Example)

Assume that there are two states 1 and 2, and two controls u and v. Consider
the policy µ that applies control u at state 1 and control v at state 2. Then
the operator Tµ takes the form

(TµJ)(1) =

2
∑

y=1

p1j(u)
(

g(1, u, y) + αJ(y)
)

, (1.29)
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(TµJ)(2) =

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

, (1.30)

where pxy(u) and pxy(v) are the probabilities that the next state will be y,
when the current state is x, and the control is u or v, respectively. Clearly,
(TµJ)(1) and (TµJ)(2) are linear functions of J . Also the operator T of the
Bellman equation J = TJ takes the form

(TJ)(1) = min

[

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

,

2
∑

y=1

p1y(v)
(

g(1, v, y) + αJ(y)
)

]

,

(1.31)

(TJ)(2) = min

[

2
∑

y=1

p2y(u)
(

g(2, u, y) + αJ(y)
)

,

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

]

.

(1.32)

Thus, (TJ)(1) and (TJ)(2) are concave and piecewise linear as functions of
the two-dimensional vector J (with two pieces; more generally, as many linear
pieces as the number of controls). This concavity property holds in general
since (TJ)(x) is the minimum of a collection of linear functions of J , one for
each u ∈ U(x). Figure 1.3.1 illustrates (TµJ)(1) for the cases where µ(1) = u
and µ(1) = v, (TµJ)(2) for the cases where µ(2) = u and µ(2) = v, (TJ)(1),
and (TJ)(2), as functions of J =

(

J(1), J(2)
)

.

Mathematically the concavity property of T manifests itself in that
the set

C =
{

(J, ξ) ∈ R(X)×R(X) | (TJ)(x) ≥ ξ(x), for all x ∈ X
}

(1.33)

is convex as a subset of R(X)×R(X), where R(X) is the set of real-valued
functions over the state space X . This convexity property is verified by
showing that given (J1, ξ1) and (J2, ξ2) in C, and γ ∈ [0, 1], we have

(

γJ1 + (1 − γ)J2, γξ1 + (1− γ)ξ2
)

∈ C.

The proof of this is straightforward by using the concavity of (TJ)(x) for
each x.

Critical properties from the DP point of view are whether T and Tµ

have fixed points; equivalently, whether the Bellman equations J = TJ
and J = TµJ have solutions within the class of real-valued functions, and
whether the set of solutions includes J* and Jµ, respectively. It may thus
be important to verify that T or Tµ are contraction mappings. This is true



Sec. 1.3 Abstract Visualizations - Newton’s Method 31

State 1 State 2
State 1 State 2

One-step lookahead J∗

∗ J∗(1)

(2) (TJ∗)(1) = J∗(1) (

One-step lookahead J∗

(1) J∗(2)

(1) (TJ∗)(2) = J∗(2)

Figure 1.3.1 Geometric illustrations of the Bellman operators Tµ and T for
states 1 and 2 in Example 1.3.1; cf. Eqs. (1.29)-(1.32). The problem’s transition
probabilities are: p11(u) = 0.3, p12(u) = 0.7, p21(u) = 0.4, p22(u) = 0.6, p11(v) =
0.6, p12(v) = 0.4, p21(v) = 0.9, p22(v) = 0.1. The stage costs are g(1, u, 1) =
3, g(1, u, 2) = 10, g(2, u, 1) = 0, g(2, u, 2) = 6, g(1, v, 1) = 7, g(1, v, 2) = 5,
g(2, v, 1) = 3, g(2, v, 2) = 12. The discount factor is α = 0.9, and the optimal
costs are J∗(1) = 50.59 and J∗(2) = 47.41. The optimal policy is µ∗(1) = v

and µ∗(2) = u. The figure also shows the one-dimensional “slices” of T that pass
through J∗.



32 Introduction Chap. 1

for example in the benign case of discounted problems with bounded cost
per stage. However, for undiscounted problems, asserting the contraction
property of T or Tµ may be more complicated, and even impossible. In
this book we will deal extensively with such questions and related issues
regarding the solution set of the Bellman equations.

Geometrical Interpretations

We will now interpret the Bellman operators geometrically, starting with
Tµ, which is linear as noted earlier. Figure 1.3.2 illustrates its form. Note
here that the functions J and TµJ are multidimensional. They have as
many scalar components J(x) and (TµJ)(x), respectively, as there are
states x, but they can only be shown projected onto one dimension. The
cost function Jµ satisfies Jµ = TµJµ, so it is obtained from the intersec-
tion of the graph of TµJ and the 45 degree line, when Jµ is real-valued.
We interpret the situation where Jµ is not real-valued with lack of system
stability under µ [so µ will be viewed as unstable if we have Jµ(x) = ∞
for some initial states x]. For further discussion of stability issues, see the
book [Ber22].

The form of the Bellman operator T is illustrated in Fig. 1.3.3. Again
the functions J , J*, TJ , TµJ , etc, are multidimensional, but they are shown
projected onto one dimension. The Bellman equation J = TJ may have
one or many real-valued solutions. It may also have no real-valued solution
in exceptional situations, as we will discuss later. The figure assumes that
the Bellman equations J = TJ and J = TµJ have a unique real-valued
solution, which is true if T and Tµ are contraction mappings, as is the case
for discounted problems with bounded cost per stage. Otherwise, these
equations may have no solution or multiple solutions within the class of
real-valued functions. The equation J = TJ typically has J* as a solution,
but may have more than one solution in cases where either α = 1 or α < 1,
and the cost per stage is unbounded.

Example 1.3.2 (A Two-State and Infinite Controls Problem)

Let us consider the mapping T for a problem that involves two states, 1 and
2, but an infinite number of controls. In particular, the control space at both
states is the unit interval, U(1) = U(2) = [0, 1]. Here (TJ)(1) and (TJ)(2)
are given by

(TJ)(1) = min
u∈[0,1]

{

g1 + r11u
2 + r12(1− u)2 + αuJ(1) + α(1− u)J(2)

}

,

(TJ)(2) = min
u∈[0,1]

{

g2 + r21u
2 + r22(1− u)2 + αuJ(1) + α(1− u)J(2)

}

.

The control u at each state x = 1, 2 has the meaning of a probability that
we must select at that state. In particular, we control the probabilities u and
(1−u) of moving to states y = 1 and y = 2, at a control cost that is quadratic
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1 J J

1 J J

45◦Line

TµJ

Cost of µ

Player/Policy Jµ = TµJµ

(1) = 0

Generic stable policy
Generic stable policy µJ Generic unstable policy

Generic unstable policy µ′

Tµ′J

Figure 1.3.2 Geometric interpretation of the linear Bellman operator Tµ and
the corresponding Bellman equation. The graph of Tµ is a plane in the space
R(X) × R(X), and when projected on a one-dimensional plane that corresponds
to a single state and passes through Jµ, it becomes a line. Then there are three
cases:

(a) The line has slope less than 45 degrees, so it intersects the 45-degree line at
a unique point, which is equal to Jµ, the solution of the Bellman equation
J = TµJ . This is true if Tµ is a contraction mapping, as is the case for
discounted problems with bounded cost per stage.

(b) The line has slope less than 45 degrees. Then it intersects the 45-degree line
at a unique point, which is a solution of the Bellman equation J = TµJ ,
but is not equal to Jµ. Then Jµ is not real-valued; we consider such µ to
be unstable under µ.

(c) The line has slope exactly equal to 45 degrees. This is an exceptional case
where the Bellman equation J = TµJ has an infinite number of real-valued
solutions or no real-valued solution at all; we will provide examples where
this occurs later.

in u and (1− u), respectively. For this problem (TJ)(1) and (TJ)(2) can be
calculated in closed form, so they are easy to plot and understand. They are
piecewise quadratic, unlike the corresponding plots of Fig. 1.3.1, which are
piecewise linear; see Fig. 1.3.4.
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J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

45◦Line

TµJ

Cost of µ

TJ = minµ TµJ

Final Features Optimal Policy
Final Features Optimal Policy

J̃

Position Evaluation Policy µ̃ withON-LINE PLAY Lookahead Tree States

Tµ̃J̃ = T J̃

One-step lookahead

One-step lookahead Generic policy µ

= 4 Model minµ TµJ̃

Player/Policy Jµ = TµJµ

(1) = 0

Tµ̃J

ective Cost Approximation Value Space Approximation
Cost of µ̃
Jµ̃ = Tµ̃Jµ̃

Figure 1.3.3 Geometric interpretation of the Bellman operator T , and the cor-
responding Bellman equation. For a fixed x, the function (TJ)(x) can be written
as minµ(TµJ)(x), so it is concave as a function of J . The optimal cost function
J∗ satisfies J∗ = TJ∗, so it is obtained from the intersection of the graph of TJ

and the 45 degree line shown, assuming J∗ is real-valued.
Note that the graph of T lies below the graph of every operator Tµ, and

is in fact obtained as the lower envelope of the graphs of Tµ as µ ranges over
the set of policies M. In particular, for any given function J̃ , for every x, the
value (T J̃)(x) is obtained by finding a support hyperplane/subgradient of the
graph of the concave function (T J)(x) at J̃ , as shown in the figure. This support
hyperplane is defined by the control µ(x) of a policy µ̃ that attains the minimum
of (TµJ̃)(x) over µ:

µ̃(x) ∈ arg min
µ∈M

(TµJ̃)(x)

(there may be multiple policies attaining this minimum, defining multiple support
hyperplanes). This construction also shows how the minimization

(T J̃)(x) = min
µ∈M

(TµJ̃)(x)

corresponds to a linearization of the mapping T at the point J̃ .

Visualization of Value Iteration

The operator notation simplifies algorithmic descriptions, derivations, and
proofs related to DP. For example, the value iteration (VI) algorithm can
be written in the compact form

Jk+1 = TJk, k = 0, 1, . . . ,
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State 1 State 2

One-step lookahead J∗ One-step lookahead J∗

∗ J∗(1) (1) J∗(2)

(2) (TJ∗)(1) = J∗(1) ( (1) (TJ∗)(2) = J∗(2)

Figure 1.3.4 Illustration of the Bellman operator T for states 1 and 2 in Example
1.3.2. The parameter values are g1 = 5, g2 = 3, r11 = 3, r12 = 15, r21 = 9,
r22 = 1, and the discount factor is α = 0.9. The optimal costs are J∗(1) = 49.7
and J∗(2) = 40.0, and the optimal policy is µ∗(1) = 0.59 and µ∗(2) = 0. The
figure also shows the one-dimensional slices of the operators at J(1) = 15 and
J(2) = 30, together with the corresponding 45-degree lines.

as illustrated in Fig. 1.3.5. Moreover, the VI algorithm for a given policy
µ can be written as

Jk+1 = TµJk, k = 0, 1, . . . ,

and it can be similarly interpreted, except that the graph of the function
TµJ is linear. Also we will see shortly that there is a similarly compact
description for the policy iteration algorithm.

1.3.1 Approximation in Value Space and Newton’s Method

Let us now interpret a major approximate DP approach, known as approx-
imation in value space, in terms of abstract geometric constructions. Here
we approximate J* with some function J̃ , and we obtain by minimization a
corresponding policy, called a one-step lookahead policy. In particular, for
a given J̃ , a one-step lookahead policy µ̃ is characterized by the equation

Tµ̃J̃ = T J̃,

as in Fig. 1.3.6. This equation implies that the graph of Tµ̃J just touches
the graph of TJ at J̃ , as shown in the figure. In mathematical terms, the
set

Cµ̃ =
{

(J, ξ) | Tµ̃J ≥ ξ
}

,
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J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

J0 J1

J1

J2

J2

Optimal cost Cost of rollout policy ˜

TJ

45◦Line

provement Bellman Equation Value Iterations

Stability Region 0

Figure 1.3.5 Geometric interpretation of the VI algorithm Jk+1 = TJk, start-
ing from some initial function J0. Successive iterates are obtained through the
staircase construction shown in the figure. The VI algorithm Jk+1 = TµJk for a
given policy µ can be similarly interpreted, except that the graph of the function
TµJ is linear.

contains the convex set C of Eq. (1.33) (since TJ ≥ ξ implies that Tµ̃J ≥ ξ),
and has a common point (J̃ , Tµ̃J̃) with C. Moreover, for each state x ∈ X
the hyperplane Hµ̃(x)

Hµ̃(x) =
{

(

J(x), ξ(x)
)

| (Tµ̃J)(x) ≥ ξ(x)
}

,

supports from above the convex set

{

(

J(x), ξ(x)
)

| (TJ)(x) ≥ ξ(x)
}

at the point
(

J̃(x), (T J̃)(x)
)

and defines a subgradient of (TJ)(x) at J̃ .
Note that the one-step lookahead policy µ̃ need not be unique, since T
need not be differentiable.

Thus, the equation
J = Tµ̃J

is a pointwise (for each x) linearization of the equation

J = TJ
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J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l
One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost
One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0 J̃

Cost Approximation Value Space Approximation

Newton step from J̃

J̃ for solving J = TJ

Approximations Result ofalso Newton Step

Figure 1.3.6 Geometric interpretation of approximation in value space and the
one-step lookahead policy µ̃ as a step of Newton’s method. Given J̃ , we find a
policy µ̃ that attains the minimum in the relation

T J̃ = min
µ

TµJ̃ .

This policy satisfies T J̃ = Tµ̃J̃ , so the graph of TJ and Tµ̃J touch at J̃ , as shown.
It may not be unique. Because TJ has concave components, the equation

J = Tµ̃J

is the linearization of the equation J = TJ at J̃ . The linearized equation is solved
at the typical step of Newton’s method to provide the next iterate, which is just
Jµ̃.

at J̃ , and its solution, Jµ̃, can be viewed as the result of a Newton iteration
at the point J̃ . In summary, the Newton iterate at J̃ is Jµ̃, the solution of
the linearized equation J = Tµ̃J .†

We may also consider approximation in value space with !-step looka-

† The classical Newton’s method for solving a fixed point problem of the form
y = T (y), where y is an n-dimensional vector, operates as follows: At the current
iterate yk, we linearize T and find the solution yk+1 of the corresponding linear
fixed point problem. Assuming T is differentiable, the linearization is obtained
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head using J̃ . This is the same as approximation in value space with one-
step lookahead using the (% − 1)-fold operation of T on J̃ , T $−1J̃ . Thus
it can be interpreted as a Newton step starting from T $−1J̃ , the result of
%− 1 value iterations applied to J̃ . This is illustrated in Fig. 1.3.7.†

1.3.2 Policy Iteration and Newton’s Method

Another major class of infinite horizon algorithms is based on policy it-
eration (PI for short). We will discuss several abstract versions of PI in
subsequent chapters, under a variety of assumptions. Generally, each iter-
ation of the PI algorithm starts with a policy (which we call current or base
policy), and generates another policy (which we call new or rollout policy,
respectively). As an example, for the stochastic optimal control problem

by using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n × n Jacobian matrix of T evaluated at the vector
yk. The most commonly given convergence rate property of Newton’s method is
quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ · ‖ is the Euclidean norm, and holds assuming the Jacobian matrix ex-
ists and is Lipschitz continuous (see [Ber16], Section 1.4). There are extensions
of Newton’s method that are based on solving a linearized system at the cur-
rent iterate, but relax the differentiability requirement to piecewise differentiabil-
ity, and/or component concavity, while maintaining the superlinear convergence
property of the method.

The structure of the Bellman operators (1.26) and (1.27), with their mono-

tonicity and concavity properties, tends to enhance the convergence and rate of

convergence properties of Newton’s method, even in the absence of differentiabil-
ity, as evidenced by the convergence analysis of PI, and the extensive favorable

experience with rollout, PI, and MPC. In this connection, it is worth noting that

in the case of Markov games, where the concavity property does not hold, the
PI method may oscillate, as shown by Pollatschek and Avi-Itzhak [PoA69], and

needs to be modified to restore its global convergence; see the author’s paper
[Ber21c]. We will discuss abstract versions of game and minimax contexts n

Chapter 5.

† Variants of Newton’s method that involve combinations of first order it-
erative methods, such as the Gauss-Seidel and Jacobi algorithms, and New-

ton’s method, and they belong to the general family of Newton-SOR methods

(SOR stands for “successive over-relaxation”); see the classic book by Ortega
and Rheinboldt [OrR70] (Section 13.4).
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J J∗ = TJ∗
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1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

J̃

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0

Multistep Lookahead Policy Cost l

Multistep Lookahead Policy Cost

Cost Approximation Value Space Approximation

Cost Approximation Value Space Approximation

Multistep Lookahead Policy Cost T 2J̃

Effective Cost Approximation Value Space Approximation

J̃ for solving J = TJ
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Linear policy parameter Optimal ! = 3

also Newton Step

Figure 1.3.7 Geometric interpretation of approximation in value space with !-
step lookahead (in this figure ! = 3). It is the same as approximation in value
space with one-step lookahead using T !−1J̃ as cost approximation. It can be
viewed as a Newton step at the point T !−1J̃ , the result of ! − 1 value iterations
applied to J̃. Note that as ! increases the cost function Jµ̃ of the !-step lookahead
policy µ̃ approaches more closely the optimal J∗, and that lim!→∞ Jµ̃ = J∗.

of Example 1.2.1, given the base policy µ, a policy iteration consists of two
phases:

(a) Policy evaluation, which computes the cost function Jµ. One possi-
bility is to solve the corresponding Bellman equation

Jµ(x) = E
{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(1.34)
However, the value Jµ(x) for any x can also be computed by Monte
Carlo simulation, by averaging over many randomly generated tra-
jectories the cost of the policy starting from x. Other possibilities
include the use of specialized simulation-based methods, based on
the projected and aggregation Bellman equations discussed in Sec-
tion 1.2.4, for which there is extensive literature (see e.g., the books
[BeT96], [SuB98], [Ber12a], [Ber19b]).

(b) Policy improvement , which computes the rollout policy µ̃ using the
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one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

E
{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

(1.35)
It is generally expected (and can be proved under mild conditions)
that the rollout policy is improved in the sense that Jµ̃(x) ≤ Jµ(x)
for all x.

Thus the PI process generates a sequence of policies {µk}, by obtain-
ing µk+1 through a policy improvement operation using Jµk in place of Jµ
in Eq. (1.35), which is obtained through policy evaluation of the preceding
policy µk using Eq. (1.34). In subsequent chapters, we will show under ap-
propriate assumptions that general forms of PI have interesting and often
solid convergence properties, which may hold even when the method is im-
plemented (with appropriate modifications) in unconventional computing
environments, involving asynchronous distributed computation.

In terms of our abstract notation, the PI algorithm can be written
in a compact form. For the generated policy sequence {µk}, the policy
evaluation phase obtains Jµk from the equation

Jµk = TµkJµk , (1.36)

while the policy improvement phase obtains µk+1 through the equation

Tµk+1Jµk = TJµk . (1.37)

As Fig. 1.3.8 illustrates, PI can be viewed as Newton’s method for solv-
ing the Bellman equation in the function space of cost functions J . In
particular, the policy improvement Eq. (1.37) is the Newton step starting
from Jµk , and yields µk+1 as the corresponding one-step lookahead/rollout
policy.

The interpretation of PI as a form of Newton’s method has a long his-
tory, for which we refer to the original works for linear quadratic problems
by Kleinman [Klei68],† and for finite-state infinite horizon discounted and
Markov game problems by Pollatschek and Avi-Itzhak [PoA69] (who also
showed that the method may oscillate in the game case; see the discussion
in Chapter 5).

† This was part of Kleinman’s Ph.D. thesis [Kle67] at M.I.T., supervised by
M. Athans. Kleinman gives credit for the one-dimensional version of his results to

Bellman and Kalaba [BeK65]. Note also that the first proposal of the PI method

was given by Bellman in his classic book [Bel57], under the name “approximation
in policy space.”
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Figure 1.3.8 Geometric interpretation of a policy iteration. Starting from the
stable current policy µk, it evaluates the corresponding cost function Jµk , and

computes the next policy µk+1 according to Tµk+1Jµk = TJµk . The correspond-
ing cost function Jµk+1 is obtained as the solution of the linearized equation
J = Tµk+1J , so it is the result of a Newton step for solving the Bellman equation
J = TJ , starting from Jµk . Note than in policy iteration, the Newton step always
starts at a function Jµ, which satisfies Jµ ≥ J∗.

1.4 ORGANIZATION OF THE BOOK

The examples of the preceding sections have illustrated how the mono-
tonicity assumption is satisfied for most DP models, while the contraction
assumption may or may not be satisfied. In particular, the contraction as-
sumption is satisfied for the mapping H in Examples 1.2.1-1.2.5, assuming
that there is discounting and that the cost per stage is bounded, but it
need not hold in the SSP Example 1.2.6, the multiplicative Example 1.2.8,
and the affine monotonic Example 1.2.9.

The main theme of this book is that the presence or absence of mono-
tonicity and contraction is the primary determinant of the analytical and al-
gorithmic theory of a typical total cost DP model. In our development, with
few exceptions, we will assume that monotonicity holds. Consequently, the
rest of the book is organized around the presence or absence of the con-
traction property. In the next three chapters we will discuss the following
three types of models.

(a) Contractive models: These models, discussed in Chapter 2, have
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the richest and strongest algorithmic theory, and are the benchmark
against which the theory of other models is compared. Prominent
among them are discounted stochastic optimal control problems (cf.
Example 1.2.1), finite-state discounted MDP (cf. Example 1.2.2), and
some special types of SSP problems (cf. Example 1.2.6).

(b) Semicontractive models: In these models Tµ is monotone but it
need not be a contraction for all µ ∈ M. Most deterministic, stochas-
tic, and minimax-type shortest path problems of practical interest are
of this type. One of the difficulties here is that under certain circum-
stances, some of the cost functions of the problem may take the values
+∞ or −∞, and the mappings Tµ and T must accordingly be allowed
to deal with such functions.

The salient characteristic of semicontractive models is that policies
are separated into those that “behave well” with respect to our op-
timization framework and those that do not. It turns out that the
notion of contraction is not sufficiently general for our purposes. We
will thus introduce a related notion of “regularity,” which is based
on the idea that a policy µ should be considered “well-behaved” if
the dynamic system defined by Tµ has Jµ as an asymptotically sta-
ble equilibrium within some domain. Our models and analysis are
patterned to a large extent after the SSP problems of Example 1.2.6
(the regular µ correspond to the proper policies). We show that the
(restricted) optimal cost function over just the regular policies may
have favorable value and policy iteration properties. By contrast, the
optimal cost function over all policies J* may not be obtainable by
these algorithms, and indeed J* may not be a solution of Bellman’s
equation, as we will show with a simple example in Section 3.1.2.

The key idea is that under certain conditions, the restricted opti-
mization (under the regular policies only) is well behaved, both an-
alytically and algorithmically. Under still stronger conditions, which
directly or indirectly guarantee that there exists an optimal regular
policy, we prove that semicontractive models have strong properties,
sometimes almost as strong as those of the contractive models.

In Chapter 3, we develop the basic theory of semicontractive models
for the case where the regular policies are stationary, while in Chapter
4 (Section 4.4), we extend the notion of regularity to nonstationary
policies. Moreover, we illustrate the theory with a variety of interest-
ing shortest path-type problems (stochastic, minimax, affine mono-
tonic, and risk sensitive/exponential cost), linear-quadratic optimal
control problems, and deterministic and stochastic optimal control
problems.

(c) Noncontractive models: These models rely on just the monotonic-
ity property of Tµ, and are more complex than the preceding ones. As
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in semicontractive models, the various cost functions of the problem
may take the values +∞ or −∞, and in fact the optimal cost function
may take the values ∞ and −∞ as a matter of course (rather than
on an exceptional basis, as in semicontractive models). The compli-
cations are considerable, and much of the theory of the contractive
models generalizes in weaker form, if at all. For example, in general
the fixed point equation J = TJ need not have a unique solution, the
value iteration method may work starting with some functions but
not with others, and the policy iteration method may not work at all.
Of course some of these weaknesses may not appear in the presence of
additional structure, and we will discuss in Sections 4.4-4.6 noncon-
tractive models that also have some semicontractive structure, and
corresponding favorable properties.

Examples of DP problems from each of the above model categories,
mostly special cases of the specific DP models discussed in Section 1.2, are
scattered throughout the book, both to illustrate the theory and its excep-
tions, and to illustrate the beneficial role of additional special structure.
In some other types of models there are restrictions to the set of policies,
so that M may be a strict subset of the set of functions µ : X #→ U with
µ(x) ∈ U(x) for all x ∈ X . Such restrictions may include measurability
(needed to establish a mathematically rigorous probabilistic framework) or
special structure that enhances the characterization of optimal policies and
facilitates their computation. These models were treated in Chapter 5 of
the first edition of this book, and also in Chapter 6 of [BeS78]. †

Algorithms

Our discussion of algorithms centers on abstract forms of value and policy
iteration, and is organized along three characteristics: exact, approximate,
and asynchronous . The exact algorithms represent idealized versions, the
approximate represent implementations that use approximations of various
kinds, and the asynchronous involve irregular computation orders, where
the costs and controls at different states are updated at different iterations
(for example the cost of a single state being iterated at a time, as in Gauss-
Seidel and other methods; see [Ber12a] for several examples of distributed
asynchronous DP algorithms).

Approximate and asynchronous implementations have been the sub-
ject of intensive investigations since the 1980s, in the context of the solution
of large-scale problems. Some of this methodology relies on the use of sim-
ulation, which is asynchronous by nature and is prominent in approximate
DP. Generally, the monotonicity and sup-norm contraction structures of

† Chapter 5 of the first edition is accessible from the author’s web site and

the book’s web page, and uses terminology and notation that are consistent with
the present edition of the book.
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many of the prominent DP models favors the use of asynchronous algo-
rithms in DP, as first shown in the author’s paper [Ber82], and discussed
at various points, starting with Section 2.6.

1.5 NOTES, SOURCES, AND EXERCISES

This monograph is written in a mathematical style that emphasizes sim-
plicity and abstraction. According to the relevant Wikipedia article:

“Abstraction in mathematics is the process of extracting the underlying
essence of a mathematical concept, removing any dependence on real world
objects with which it might originally have been connected, and generaliz-
ing it so that it has wider applications or matching among other abstract
descriptions of equivalent phenomena ... The advantages of abstraction
are:

(1) It reveals deep connections between different areas of mathematics.

(2) Known results in one area can suggest conjectures in a related area.

(3) Techniques and methods from one area can be applied to prove results
in a related area.

One disadvantage of abstraction is that highly abstract concepts can be
difficult to learn. A degree of mathematical maturity and experience may
be needed for conceptual assimilation of abstractions.”

Consistent with the preceding view of abstraction, our aim has been
to construct a minimalist framework, where the important mathematical
structures stand out, while the application context is deliberately blurred.
Of course, our development has to pass the test of relevance to applica-
tions. In this connection, we note that our presentation has integrated the
relation of our abstract DP models with the applications of Section 1.2,
and particularly discounted stochastic optimal control models (Chapter 2),
shortest path-type models (Chapters 3 and 4), undiscounted determinis-
tic and stochastic optimal control models (Chapter 4), and minimax and
zero-sum game problems (Chapter 5). We have given illustrations of the
abstract mathematical theory using these models and others throughout
the text. A much broader and accessible account of applications is given
in the author’s two-volume DP textbook.

Section 1.2: The abstract style of mathematical development has a long
history in DP. In particular, the connection between DP and fixed point the-
ory may be traced to Shapley [Sha53], who exploited contraction mapping
properties in analysis of the two-player dynamic game model of Example
1.2.4. Since that time the underlying contraction properties of discounted
DP problems with bounded cost per stage have been explicitly or implic-
itly used by most authors that have dealt with the subject. Moreover, the
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value of the abstract viewpoint as the basis for economical and insightful
analysis has been widely recognized.

An abstract DP model, based on unweighted sup-norm contraction
assumptions, was introduced in the paper by Denardo [Den67]. This model
pointed to the fundamental connections between DP and fixed point the-
ory, and provided generality and insight into the principal analytical and
algorithmic ideas underlying the discounted DP research up to that time.
Abstract DP ideas were also researched earlier, notably in the paper by
Mitten (Denardo’s Ph.D. thesis advisor) [Mit64]; see also Denardo and
Mitten [DeM67]. The properties of monotone contractions were also used
in the analysis of sequential games by Zachrisson [Zac64].

Two abstract DP models that rely only on monotonicity properties
were given by the author in the papers [Ber75], [Ber77]. They were pat-
terned after the negative cost DP problem of Blackwell [Bla65] and the
positive cost DP problem of Strauch [Str66] (see the monotone decreasing
and monotone increasing models of Section 4.3). These two abstract DP
models, together with the finite horizon models of Section 4.2, were used
extensively in the book by Bertsekas and Shreve [BeS78] for the analysis
of both discounted and undiscounted DP problems, ranging over MDP,
minimax, multiplicative, and Borel space models.

Extensions of the analysis of the author’s [Ber77] were given by Verdu
and Poor [VeP87], which considered additional structure that allows the
development of backward and forward value iterations, and in the thesis
by Szepesvari [Sze98a], [Sze98b], which introduced non-Markovian policies
into the abstract DP framework. The model of [Ber77] was also used by
Bertsekas [Ber82], and Bertsekas and Yu [BeY10], to develop asynchronous
value and policy iteration methods for abstract contractive and noncon-
tractive DP models. Another line of related research involving abstract
DP mappings that are not necessarily scalar-valued was initiated by Mit-
ten [Mit74], and was followed up by a number of authors, including Sobel
[Sob75], Morin [Mor82], and Carraway and Morin [CaM88].

Section 1.3: The central role of the abstract DP framework and Newton’s
method in the conceptualization of reinforcement learning and approximate
DP methods, was highlighted in the author’s recent book [Ber22]. It was
described in more mathematical detail in the book [Ber20].

Section 1.4: Generally, noncontractive total cost DP models with some
special structure beyond monotonicity, fall in three major categories: mono-
tone increasing models principally represented by positive cost DP, mono-
tone decreasing models principally represented by negative cost DP, and
transient models, exemplified by the SSP model of Example 1.2.6, where
the decision process terminates after a period that is random and subject
to control. Abstract DP models patterned after the first two categories
have been known since the author’s papers [Ber75], [Ber77], and are fur-
ther discussed in Section 4.3. The semicontractive models of Chapter 3 and
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Sections 4.4-4.6 (introduced and analyzed in the first edition of this book,
as well as the subsequent series of papers and reports, [Ber15], [Ber16a],
[BeY16], [Ber17b], [Ber17c], [Ber17d], [Ber19c]), are patterned after the
third category. Their analysis is based on the idea of separating poli-
cies into those that are well-behaved (these are called regular , and have
contraction-like properties) and those that are not (these are called irregu-
lar). The objective of the analysis is then to explain the detrimental effects
of the irregular policies, and to delineate the kind of model structure that
can limit these effects. As far as the author knows, this idea is new in the
context of abstract DP. One of the aims of the present monograph is to
develop this idea and to show that it leads to an important and insightful
paradigm for conceptualization and solution of major classes of practical
DP problems.

E X E R C I S E S

1.1 (Multistep Contraction Mappings)

This exercise shows how starting with an abstract mapping, we can obtain mul-
tistep mappings with the same fixed points and a stronger contraction modulus.
Consider a set of mappings Tµ : B(X) !→ B(X), µ ∈ M, satisfying the con-
traction Assumption 1.2.2, let m be a positive integer, and let Mm be the set
of m-tuples ν = (µ0, . . . , µm−1), where µk ∈ M, k = 1, . . . ,m − 1. For each
ν = (µ0, . . . , µm−1) ∈ Mm, define the mapping T ν , by

T νJ = Tµ0 · · ·Tµm−1J, ∀ J ∈ B(X).

Show the contraction properties

‖T νJ − T νJ
′‖ ≤ αm‖J − J ′‖, ∀ J, J ′ ∈ B(X), (1.38)

and
‖TJ − TJ ′‖ ≤ αm‖J − J ′‖, ∀ J, J ′ ∈ B(X), (1.39)

where T is defined by

(TJ)(x) = inf
(µ0,...,µm−1)∈Mm

(Tµ0 · · · Tµm−1J)(x), ∀ J ∈ B(X), x ∈ X.

Solution: By the contraction property of Tµ0 , . . . , Tµm−1 , we have for all J, J
′ ∈

B(X),
‖T νJ − T νJ

′‖ = ‖Tµ0 · · ·Tµm−1J − Tµ0 · · ·Tµm−1J
′‖

≤ α‖Tµ1 · · · Tµm−1J − Tµ1 · · ·Tµm−1J
′‖

≤ α2‖Tµ2 · · ·Tµm−1J − Tµ2 · · ·Tµm−1J
′‖

...

≤ αm‖J − J ′‖,
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thus showing Eq. (1.38).
We have from Eq. (1.38)

(Tµ0 · · ·Tµm−1J)(x) ≤ (Tµ0 · · ·Tµm−1J
′)(x) + αm‖J − J ′‖ v(x), ∀ x ∈ X,

and by taking infimum of both sides over (Tµ0 · · ·Tµm−1) ∈ Mm and dividing by
v(x), we obtain

(TJ)(x)− (TJ ′)(x)

v(x)
≤ αm‖J − J ′‖, ∀ x ∈ X.

Similarly
(TJ ′)(x)− (TJ)(x)

v(x)
≤ αm‖J − J ′‖, ∀ x ∈ X,

and by combining the last two relations and taking supremum over x ∈ X, Eq.
(1.39) follows.

1.2 (Relation of Multistep and Proximal Mappings [Ber16b],
[Ber18c])

Consider a linear mapping of the form

TJ = AJ + b,

where b is a vector in !n, and A is an n × n matrix with eigenvalues strictly
within the unit circle. Let λ ∈ (0, 1) and c = λ

1−λ , and consider the multistep
mapping

(

T (λ)J
)

(i) = (1− λ)

∞
∑

"=0

λ"(T "+1J)(i), i = 1, . . . , n, J ∈ !n,

and the proximal mapping

P (c)J =
(

c+ 1
c

I − A
)−1 (

b+
1
c
J
)

;

cf. Eq. (1.23) [equivalently, for a given J , P (c)J is the unique vector Y ∈ !n that
solves the equation

Y − TY =
1
c
(J − Y ),

(cf. Fig. 1.5.1)].

(a) Show that P (c) is given by

P (c) = (1− λ)

∞
∑

"=0

λ"T ",
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λ =
c

c+ 1
, c =

λ

1− λ

Ĵ = P (c)J J

Jˆ J*

Ĵ − T Ĵ = 1

c
(J − Ĵ)

T (λ)J = T Ĵ

Y

Graph of the mapping Y −TY V

δ
1

c
(J − Y )

Figure 1.5.1. Illustration of the iterates T (λ)J and P (c)J for finding the fixed
point J∗ of a linear mapping T . Given J , we find the proximal iterate Ĵ =

P (c)J and then add the amount 1
c

(

Ĵ − J
)

to obtain T (λ)J = TP (c)J . If T is a

contraction mapping, T (λ)J is closer to J∗ than P (c)J .

and can be written as

P (c)J = A
(λ)

J + b
(λ)

,

where

A
(λ)

= (1− λ)

∞
∑

"=0

λ"A", b
(λ)

=

∞
∑

"=0

λ"+1A"b.

(b) Verify that

T (λ)J = A(λ)J + b(λ),

where

A(λ) = (1− λ)

∞
∑

"=0

λ"A"+1, b(λ) =

∞
∑

"=0

λ"A"b,

and show that
T (λ) = TP (c) = P (c)T, (1.40)

and that for all J ∈ !n,

P (c)J = J + λ
(

T (λ)J − J
)

, T (λ)J = J +
c+ 1
c

(

P (c)J − J
)

. (1.41)

Thus T (λ)J is obtained by extrapolation along the line segment P (c)J −J ,
as illustrated in Fig. 1.5.1. Note that since T is a contraction mapping,
T (λ)J is closer to J∗ than P (c)J .

(c) Show that for a given J ∈ !n, the multistep and proximal iterates T (λ)J
and P (c)J are the unique fixed points of the contraction mappings WJ and
W J given by

WJY = (1− λ)TJ + λTY, W JY = (1− λ)J + λTY, Y ∈ !n,
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respectively.

(d) Show that the fixed point property of part (c) yields the following formula
for the multistep mapping T (λ):

T (λ)J = (1− λA)−1
(

b+ (1− λ)AJ
)

. (1.42)

(e) (Multistep Contraction Property for Nonexpansive A [BeY09]) Instead of
assuming that A has eigenvalues strictly within the unit circle, assume
that the matrix I − A is invertible and A is nonexpansive [i.e., has all its
eigenvalues within the unit circle (possibly on the unit circle)]. Show that
A(λ) is contractive (i.e., has eigenvalues that lie strictly within the unit
circle) and its eigenvalues have the form

θi = (1− λ)

∞
∑

"=0

λ"ζ"+1
i =

ζi(1− λ)

1− ζiλ
, i = 1, . . . , n, (1.43)

where ζi, i = 1, . . . , n, are the eigenvalues of A. Note: For an intuitive
explanation of the result, note that the eigenvalues of A(λ) can be viewed
as convex combinations of complex numbers from the unit circle at least
two of which are different from each other, since ζi ,= 1 by assumption
(the nonzero corresponding eigenvalues of A and A2 are different from each
other). As a result the eigenvalues of A(λ) lie strictly within the unit circle.

(f) (Contraction Property of Projected Multistep Mappings) Under the assump-
tions of part (e), show that limλ→1 A

(λ) = 0. Furthermore, for any n × n
matrix W , the matrix WA(λ) is contractive for λ sufficiently close to 1.
In particular the projected mapping ΠA(λ) and corresponding projected
proximal mapping (cf. Section 1.2.5) become contractions as λ → 1.

Solution: (a) The inverse in the definition of P (c) is written as

(

c+ 1
c

I − A
)−1

=
(

1
λ
I − A

)−1

= λ(I − λA)−1 = λ

∞
∑

"=0

(λA)".

Thus, using the equation 1
c = 1−λ

λ ,

P (c)J =
(

c+ 1
c

I − A
)−1 (

b+
1
c
J
)

= λ

∞
∑

"=0

(λA)"
(

b+
1− λ
λ

J
)

= (1− λ)

∞
∑

"=0

(λA)"J + λ

∞
∑

"=0

(λA)"b,

which is equal to A
(λ)

J + b
(λ)

. The formula P (c) = (1 − λ)
∑∞

"=0
λ"T " follows

from this expression.
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(b) The formula T (λ)J = A(λ)J + b(λ) is verified by straightforward calculation.
We have,

TP (c)J = A
(

A
(λ)

J + b
(λ))

+ b

= (1− λ)

∞
∑

"=0

λ"A"+1J +

∞
∑

"=0

λ"+1A"+1b+ b = A(λ)J + b(λ)

= T (λ)J,

thus proving the left side of Eq. (1.40). The right side is proved similarly. The in-
terpolation/extrapolation formula (1.41) follows by a straightforward calculation
from the definition of T (λ). As an example, to show the left side of Eq. (1.41),
we write

J + λ
(

T (λ)J − J
)

= (1− λ)J + λT (λ)J

= (1− λ)J + λ

(

(1− λ)

∞
∑

"=0

λ"A"+1J +

∞
∑

"=0

λ"A"b

)

= (1− λ)

(

J +

∞
∑

"=1

λ"A"J

)

+

∞
∑

"=0

λ"+1A"b

= A
(λ)

J + b
(λ)

= P (c)J.

(c) To show that T (λ)J is the fixed point of WJ , we must verify that

T (λ)J = WJ

(

T (λ)J
)

,

or equivalently that

T (λ)J = (1− λ)TJ + λT
(

T (λ)J) = (1− λ)TJ + λT (λ)(TJ).

The right-hand side, in view of the interpolation formula

(1− λ)J + λT (λ)J = P (c)J, ∀ x ∈ !n,

is equal to P (c)(TJ), which from the formula T (λ) = P (c)T [cf. part (b)], is equal
to T (λ)J . The proof is similar for W J .

(d) The fixed point property of part (c) states that T (λ)J is the unique solution
of the following equation in Y :

Y = (1− λ)TJ + λTY = (1− λ)(AJ + b) + λ(AY + b),

from which the desired relation follows.

(e), (f) The formula (1.43) follows from the expression for A(λ) given in part (b).
This formula can be used to show that the eigenvalues of A(λ) lie strictly within
the unit circle, using also the fact that the matrices Am, m ≥ 1, and A(λ) have
the same eigenvectors (see [BeY09] for details). Moreover, the eigenvalue formula
shows that all eigenvalues of A(λ) converge to 0 as λ → 1, so that limλ→1 A

(λ) = 0.
This also implies that WA(λ) is contractive for λ sufficiently close to 1.
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1.3 (State-Dependent Weighted Multistep Mappings [YuB12])

Consider a set of mappings Tµ : B(X) (→ B(X), µ ∈ M, satisfying the contraction

Assumption 1.2.2. Consider also the mappings T (w)
µ : B(X) (→ B(X) defined by

(T (w)
µ J)(x) =

∞
∑

"=1

w"(x)
(

T "
µJ
)

(x), x ∈ X, J ∈ B(X),

where w"(x) are nonnegative scalars such that for all x ∈ X,

∞
∑

"=1

w"(x) = 1.

Show that
∣

∣(T (w)
µ J)(x)− (T (w)

µ J ′)(x)
∣

∣

v(x)
≤

∞
∑

"=1

w"(x)α
"‖J − J ′‖, ∀ x ∈ X,

where α is the contraction modulus of Tµ, so that T (w)
µ is a contraction with

modulus

ᾱ = sup
x∈X

∞
∑

"=1

w"(x)α
" ≤ α.

Show also that for all µ ∈ M, the mappings Tµ and T (w)
µ have the same fixed

point.

Solution: By the contraction property of Tµ, we have for all J, J ′ ∈ B(X) and
x ∈ X,

∣

∣(T (w)
µ J)(x)− (T (w)

µ J ′)(x)
∣

∣

v(x)
=

∣

∣

∑∞

"=1
w"(x)(T

"
µJ)(x)−

∑∞

"=1
w"(x)(T

"
µJ

′)(x)
∣

∣

v(x)

≤

∞
∑

"=1

w"(x)‖T
"
µJ − T "

µJ
′‖

≤

(

∞
∑

"=1

w"(x)α
"

)

‖J − J ′‖,

showing the contraction property of T (w)
µ .

Let Jµ be the fixed point of Tµ. By using the relation (T "
µJµ)(x) = Jµ(x),

we have for all x ∈ X,

(T (w)
µ Jµ)(x) =

∞
∑

"=1

w"(x)
(

T "
µJµ

)

(x) =

(

∞
∑

"=1

w"(x)

)

Jµ(x) = Jµ(x),

so Jµ is the fixed point of T (w)
µ [which is unique since T (w)

µ is a contraction].
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