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Abstract

In this work, we consider data association problems involving multi-object tracking
(MOT). In particular, we address the challenges arising from object occlusions. We
propose a framework called approximate dynamic programming track (ADPTrack),
which applies dynamic programming principles to improve an existing method
called the base heuristic. Given a set of tracks and the next target frame, the
base heuristic extends the tracks by matching them to the objects of this target
frame directly. In contrast, ADPTrack first processes a few subsequent frames and
applies the base heuristic starting from the next target frame to obtain tentative
tracks. It then leverages the tentative tracks to match the objects of the target
frame. This tends to reduce the occlusion-based errors and leads to an improvement
over the base heuristic. When tested on the MOT17 video dataset, the proposed
method demonstrates a 0.7% improvement in the association accuracy (IDF1
metric) over a state-of-the-art method that is used as the base heuristic. It also
obtains improvements with respect to all the other standard metrics. Empirically,
we found that the improvements are particularly pronounced in scenarios where
the video data is obtained by fixed-position cameras.

1 Introduction

In this work, we consider the problem of multi-object tracking (MOT), which can be viewed as a
special case of the multidimensional assignment (MDA) problem [17]. It involves the assignment of
track identifiers to objects in motion over a sequence of image frames. In general, ensuring consistent
identifiers over long sequences of frames is a formidable challenge, especially when the assignments
are computed in real-time. To strike a good balance of performance and computational expedience,
the so-called online tracking methods have been researched in the literature [7, 64, 1, 58]. Given a set
of tracks and a new image frame, referred to as a target frame, the online tracking methods extend
the given tracks by assigning objects in the target frame to the tracks. During this process, they rely
exclusively on the information of objects’ movement and/or appearance in the tracks and the target
frame. This makes them prone to errors in cases where objects become partially/fully occluded over
one or more contiguous frames.

To overcome the occlusion challenge, we propose a method based on approximate dynamic pro-
gramming (also known as reinforcement learning) techniques, which we call approximate dynamic
programming track (ADPTrack for short). It relies on an arbitrary given online tracking method
and improves upon it. In particular, given a set of tracks and a target frame, ADPTrack collects a
few additional subsequent frames beyond the target frame and applies the online tracking method to
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construct tentative tracks starting from the target frame. It then relies on the information in the given
tracks and the tentative tracks for assigning objects in the target frame to the given tracks. Since
future information beyond the target frame is needed, our scheme can be viewed as a near-online
method. Despite the additional computation compared with the online methods, the proposed method
offers a systematic approach to address mismatches due to occlusion.

Some existing near-online methods [13, 20] share similarities with our proposed framework. In
particular, given a set of tracks, a target frame, and a few subsequent frames beyond it, they construct
tentative tracks of objects in the target frame and the subsequent frames. These tentative tracks either
directly extend the given tracks to the objects in the target frame, or provide information that is useful
for computing weights on arcs connecting these two. Despite the similarity, these schemes have been
designed based on heuristic grounds and/or require specific neural networks. In contrast, ADPTrack
is a general framework that is built on the connection between MOT and dynamic programming (DP).
The process of constructing tentative tracks is viewed as performing near-online simulation. These
tracks are used to approximate the optimal value function in the context of DP. As a result, ADPTrack
is flexible and can leverage arbitrary online tracking methods.

To evaluate the performance of the ADPTrack framework, we apply as the base heuristic the BoT-
SORT method [1], one of the state-of-the-art open-source online MOT algorithms at the time of
writing. We addressed the problems in the MOT17 dataset [37] and obtained an overall relative
improvement of 0.7% in the IDF1 score over BoT-SORT with a minor improvement in accuracy
(MOTA, HOTA metrics). This implies ADPTrack is useful for reducing false positives, false negatives,
ID switches, and fragmentation with respect to the ground truth, and is flexible to leverage any given
online tracking method. Fig. 1 provides a frame-by-frame comparison of BoT-SORT and ADPTrack
with BoT-SORT as base heuristic for a fixed video example and illustrates characteristic occlusion
scenarios where ADPTrack outperforms BoT-SORT.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Frame-by-frame comparison of BoT-SORT (a-d) versus ADPTrack with BoT-SORT as
the base heuristic (e-h) in an example. Using BoT-SORT directly, person (4) in (a) is erroneously
assigned to another person’s identifier (14) in (c)-(d) after occluded by the person (6) in (b). When
applying ADPTrack with BoT-SORT as the base heuristic, the same person (4) is assigned with the
same identifier in (a) and (c)-(d) despite being occluded by the person (16) [the person (6) in (b)].

2 Related Work

Multi-Object Tracking: We provide a brief discussion of online and near-online tracking methods
that are closely related to ADPTrack. Online tracking methods perform frame-by-frame association
based on the information contained in the given tracks and the target frame. They often involve
motion [1, 40, 10, 16] and/or appearance models [1, 56, 53, 66, 32, 15, 11, 2, 62]. A motion model
estimates the position and size of an object in the next frame using the object’s velocity. Typically, the
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motion model is a Kalman filter with the assumption that the object moves at a constant velocity [7,
64, 1, 56] or at a linear combination of recent frames’ velocities [58]. An appearance model extracts
the visual information of an object to compute similarity scores for performing the assignment.
One obtains similarity scores between objects either via deep neural networks directly [30, 52, 61,
50, 60] or using a distance metric between deep appearance features [1, 56, 12, 54, 65]. Several
studies [19, 43, 57, 48, 21, 27, 67, 49, 14, 23, 36, 34, 9, 44, 39] directly leverage aggregated
appearance information of given tracks for assignment, indicating the importance of past information.

Near-online tracking methods perform frame-by-frame association similar to online tracking, whilst
leveraging a limited number of subsequent frames [13, 25, 41, 18, 63]. This effectively introduces a
delay for the benefit of more accurate assignments. In [20], the authors generate tentative tracks by
visual comparison and generate assignment weights using three different neural networks. In [59],
the authors compartmentalize the problem locally around a time window and perform assignments
for the target frame using flow-based optimization techniques. In contrast, ADPTrack builds upon
existing online tracking methods and therefore does not rely on additional offline training.

Approximation in Value Space: Approximation in value space [4] is a broad class of reinforce-
ment learning methods, which have been essential in some high-profile success stories, such as
AlphaGo [46], AlphaZero [47, 45], and TD-Gammon [51]. The key idea in approximation in value
space is to obtain approximations of the optimal value function in the context of DP. One repre-
sentative method is called the rollout algorithm, which improves upon a given base heuristic via
real-time simulation and has been applied in a variety of applications, e.g., [6, 5, 26, 8, 55, 31]. While
our approach is not mathematically equivalent to the rollout algorithm, it uses several rollout ideas,
including the simulation of a base heuristic to perform approximation in value space.

3 Preliminaries and Mathematical Model

In this section, we first present an overview of the MDA problem as a generalization of MOT, its DP
formulation, and its exact solution method via DP. Then we provide a mathematical description of a
typical online tracking method using the DP formulation introduced earlier.

3.1 Multi-Object Tracking as Multi-Dimensional Assignment

An instance of the N -dimensional assignment problem is represented by an (N + 1)-partite graph
arranged in layers N0,N1, . . . ,NN , each of which contains exactly m nodes. The arcs of the graph
take the form (i, j), where i is a node in layerNk and j is a node in layerNk+1, k = 0, 1, . . . , N − 1.
We refer to a subset of N + 1 nodes i0, i1, . . . , iN , where ik ∈ Nk for all k, and their corresponding
arcs (i0, i1), (i1, i2), . . . , (iN−1, iN ) as a grouping. Each grouping has an associated value. A
feasible solution to an instance of the N -dimensional assignment problem is a set of m node-disjoint
groupings. A solution is optimal if the sum of all grouping values is maximized. When N = 1, the
problem is called bipartite matching and can be solved exactly in polynomial time. We focus on
the case of the MDA problem where N > 1, which is NP-hard [38], and hence only approximate
solutions are known.

When modeling MOT as an MDA, each of the N + 1 layers represents a frame of m objects. A
grouping represents an association of a single object over multiple frames and can be viewed as a
(complete) track. A given track with a length smaller than N +1 is viewed as a partial grouping. The
value of a grouping should be large if the object associated with each frame is consistent according to
some ground truth. In particular, the optimal solution assigns each object to the groupings as given
by the ground truth.1

3.2 Dynamic Programming for Multidimensional Assignment Problems

Let us now formulate the MDA problem as a deterministic DP problem. The exact solution to this
DP problem is intractable. On the other hand, the DP formulation brings to bear approximation in

1Note that for real-world data association problems, the number of objects in a frame need not be fixed, as
objects may appear and disappear. Our theoretical model can be extended to account for these situations. For
the convenience of presentation, we make the simplifying assumption that there are m objects in each frame
throughout our discussion. On the other hand, the implementation of our solution handles the cases where the
numbers of objects vary over frames.
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value space, a major approach for approximate DP and reinforcement learning, which forms the basis
of our proposed algorithm in Section 4.

Generally, deterministic DP is used to solve a problem of sequential decision-making over N stages,
by breaking it down into a sequence of simpler single-stage problems. It aims to find a sequence of
decisions or actions u0, . . . , uN−1 by generating a corresponding sequence of optimal value functions
J∗
1 , . . . , J

∗
N−1. The algorithm uses a known value function J∗

N to compute the next value function
J∗
N−1, by solving a single-stage decision problem whose optimization variable is uN−1. It then

uses J∗
N−1 to compute J∗

N−2, and proceeds similarly to compute all the remaining value functions
J∗
N−3, . . . , J

∗
1 .

More specifically, a deterministic DP problem involves a discrete-time dynamic system of the form
xk+1 = fk(xk, uk), k = 0, . . . , N − 1, where k is a time index, xk is called the state of the system
at time k, which belongs to a set Xk, and uk is the control, to be selected at time k from a given set
Uk. The function fk describes the mechanism by which the state is updated from k to k + 1 under
the influence of a control. Given an initial state x0, in our DP problem we aim to maximize the value
of a given terminal function G, i.e., to select the sequence of controls (u0, . . . , uN−1) such that the
value of G(xN ) is maximized.

To model the MDA problem as a DP problem, we define the set Uk as the collection of all bipartite
matchings between Nk and Nk+1, i.e., each of its element uk is a set of arcs {(in, jn) | n =
1, . . . ,m} that forms a legitimate assignment between nodes in Nk and Nk+1. The state evolution is
given by f0(x0, u0) = u0, and fk(xk, uk) = (xk, uk) for k = 1, . . . , N − 1, and x0 is an artificial
state. In particular, the state xk = (u0, . . . , uk−1) is the set of m partial groupings with objects the
first k + 1 layers. The value that we aim to maximize is G(xN ) = G(u0, . . . , uN−1). Here xN

represents a feasible set of m groupings (as defined in Section 3.1), and G(xN ) represents the sum of
the values of these m groupings.

The exact DP algorithm involves computing a sequence of optimal value functions J∗
k , k = 1, . . . , N .

It first sets
J∗
N (xN ) = G(xN ) = G(u0, . . . , uN−1),

and then computes backwards

J∗
k (xk) = max

uk∈Uk

J∗
k+1(xk, uk), for all xk, k = 1, . . . , N − 1. (1)

Having completed this calculation, it then computes the optimal controls (u∗
0, . . . , u

∗
N−1) via

u∗
k ∈ arg max

uk∈Uk

J∗
k+1(x

∗
k, uk), k = 0, . . . , N − 1, (2)

where x∗
0 is the artificial state, and x∗

k+1 = fk(x
∗
k, u

∗
k). Although theoretically appealing, this exact

method cannot be used to solve MOT due to reasons discussed later.

3.3 Online Tracking Methods

Let us now provide a mathematical description of a typical online tracking method using the DP
terminology introduced earlier, which we will use as a base heuristic. Given the kth frame, we denote
by Ijk the information associated with the jth object in this frame that is useful for matching. In
particular, we assume that Ijk = (vjk, p

j
k), where vjk is the visual information associated with the jth

object in the kth frame, and pjk is the position and size information associated with the same object.
They are used in the appearance models and motion models discussed in Section 2. Suppose that m
tracks have been formed for objects contained in the 0th to kth frames via xk = (u0, . . . , uk−1). We
denote by T i(xk) the information associated with the ith track, so that

T i(xk) = (vi0, v
i
1, . . . , v

i
k, p

i
0, p

i
1, . . . , p

i
k).

Note that here the indices of the objects have been assigned according to the indices of the tracks that
they belong to, which depends on xk = (u0, . . . , uk−1). Given a track T i(xk) and the information
vector associated with the jth object in the (k + 1)th frame, the base heuristic computes a weight
wij

k+1(xk) by some function H , i.e.,

wij
k+1(xk) = H

(
T i(xk), I

j
k+1

)
. (3)

4



Once the weights wij
k+1(xk) are computed for all track-object pairs (i, j), a standard bipartite

matching is performed to extend the tracks from T i(xk) to T i(xk+1). From the perspective of MOT,
the weights wij

k+1(xk) measure the “similarity" between the first k+1 objects in grouping i specified
by xk, and the object j in the (k+1)th frame. This can be viewed as an approximation to the grouping
values and leads to errors in the assignment. As we will show shortly, our proposed framework
improves upon the online tracking methods by constructing better grouping value approximations.

4 Approximate Dynamic Programming Track

The exact and approximate methods discussed in Section 3 have their respective drawbacks when used
for MOT. The DP method faces two major challenges. The first applies specifically to MOT, namely
that evaluating the quality of a matching sequence is difficult and thus the function G is not known.
Secondly, even if G were known, computing J∗

k+1 is still intractable as the size of Xk+1 grows
exponentially with k. The online tracking methods use approximate grouping values wij

k+1(xk) to
approximate G [cf.(3)]. They allow real-time computation but also introduce assignment errors due to
the simplifications introduced by the weights. This is particularly true when the objects are occluded
in the target frame. In contrast, the proposed ADPTrack framework leverages the DP formulation and
improves the quality of approximation used in online tracking methods by considering the information
contained in the subsequent frames, thus addressing the challenges posed by occlusion. In what
follows, we describe the ADPTrack as a form of approximation in value space, provide the procedure
through which the approximation to the optimal value function is computed, and provide details on
the implementation with BoT-SORT as the base heuristic.

4.1 Approximation in Value Space for Multidimensional Assignment

The approximation in value space method introduces various approximations to the components
in the maximization from Equation (2). One such approximation replaces value functions J∗

k+1,
k = 0, . . . , N − 1, in (2) with value function approximations J̃k+1 that can be computed efficiently.
To facilitate the corresponding maximization calculation, we consider functions J̃k+1 of the form

J̃k+1(xk, uk) =
∑

(i,j)∈uk

cijk+1(xk) (4)

where each (i, j) ∈ uk is an arc from the valid perfect matching specified by control uk, and cijk+1(xk)
represents the weight for arc (i, j) where i ∈ Nk and j ∈ Nk+1. As a result, given the current state
xk = (ũ0, . . . , ũk−1), the control is selected via the maximization

ũk ∈ arg max
uk∈Uk

J̃k+1(xk, uk), (5)

which is equivalent to solving a bipartite matching problem, with weights on arcs (i, j) specified
by cijk+1(xk). Compared with the weight wij

k+1(xk) used in online methods, the weight cijk+1(xk)
represents the “similarity" between the first k+1 objects (contained in 0th to kth frames) in grouping
i assigned by xk, and the tentative track starting from the object j in the (k + 1)th frame. Here the
tentative track involves ℓ + 1 objects starting from the (k + 1)th frame, with ℓ being a truncated
horizon in DP terminology. Thus we refer to cijk+1(xk) as similarity scores between tracks. An
illustration of the key components involved in computing J̃k+1 is shown in Fig. 2a. Intuitively, these
scores contain more information than wij

k+1(xk), which tends to improve the assignment quality, as
we discuss next.

4.2 Value Function Approximation via the Base Heuristic

The computation of similarity scores relies on tentative tracks, which are obtained by solving an
MOT problem starting from the (k + 1)th frame and ending at (k + ℓ+ 1)th frame. We refer to the
process of solving this problem as the near-online simulation; see Fig. 2b. For objects contained in
the (k + 1)th frame to (k + ℓ+ 1)th frame, we treat the (k + 1)th frame as if it is the first frame, and
set T j(x̄0) = Ijk+1, where x̄k+1

0 is an artificial initial state starting at (k + 1)th frame, j is the index
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associated with objects in the (k+1)th frame. We apply the online tracking method to solve the MOT
problem starting from the (k + 1)th frame and ending with (k + ℓ+ 1)th frame. The information
associated with the tentative track that starts from the jth object in (k + 1)th frame is denoted by
T j(x̄k+1

ℓ ), where x̄k+1
ℓ = (ūk+1, . . . , ūk+ℓ+1). The information contained in T j(x̄k+1

ℓ ) includes the
information Ijk+1, and will be used to compute the weights associated with the object j, as we discuss
next. This is the key to overcome the challenges associated with occlusion. Intuitively, if some object
is partially occluded in the target frame, matching based on its visual information in the target frame
may lead to error. In contrast, ADPTrack corrects this error by incorporating information in the
subsequent frames, where the object may no longer be occluded. Moreover, ADPTrack provides a
flexible platform for constructing tentative tracks by using arbitrary existing online tracking methods
and through online simulation. This is an essential idea in many approximate DP algorithms and sets
apart ADPTrack from existing near-online methods that often require additional off-line training.

Suppose that m tracks have been formed for objects contained in 0th to kth frames according to the
matching xk. The information associated with each track i is denoted by T i(xk). For the tentative
tracks formed according to x̄k+1

ℓ via the base heuristic starting from the jth object in (k+1)th frame,
the information associated with it is T j(x̄k+1

ℓ ). The weight term cijk+1(xk) is given by

cijk+1 = (1− α)wij
k+1(xk) + αzijk+1(xk), (6)

where α is a tuning parameter, and wij
k+1(xk) is given by the base heuristic via (3), as a similarity

measure between objects in ith track and jth object in the target frame. The term zijk+1(xk) reflects the
similarity between objects with the information T i(xk) and T j(x̄k+1

ℓ ), and therefore is a similarity
measure between given and tentative tracks; see Fig. 2c. In particular, it is defined as

zijk+1(xk) = F
(
T i(xk), T

j(x̄k+1
ℓ )

)
, (7)

where F is a user-defined function, which may depend on the base heuristic. It is used to describe the
‘similarity’ of objects contained in the ith given track and the tentative track that starts from object j
in (k + 1)th frame. Intuitively, this helps to overcome the difficulty due to occlusion, as discussed
earlier, and a particular implementation is given in Section 4.3. Note that x̄k+1

ℓ is independent of
xk. Once all track-object pairs are computed, we compute the cost function approximation J̃k+1

according to (4), and perform the maximization calculation accordingly. A pseudocode description
of ADPTrack for matching one frame is given as Algorithm 1.

Algorithm 1 ADPTrack with a Base Heuristic

Input: Tracks T i(xk), i = 1, . . . ,m; target frameNk+1, subsequent framesNk+2, . . . ,Nk+ℓ+1.
Output: Tracks T i(xk+1), i = 1, 2, . . . ,m.

1: Set wij
k+1(xk)← H

(
T i(xk), I

j
k+1

)
according to (3) for all i = 1, . . . ,m and j ∈ Nk+1.

2: Compute T j(x̄k+1
ℓ ) via simulation the base heuristic on Nk+1, . . . ,Nk+ℓ+1, for all j ∈ Nk+1.

3: Set zijk+1(xk)← F
(
T i(xk), T

j(x̄k+1
ℓ )

)
, for all i = 1, . . . ,m and j ∈ Nk+1.

4: Set cijk+1 ← αwij
k+1(xk) + (1− α)zijk+1(xk), for all (i, j).

5: Compute maximum weight bipartite matching ũk with weights given by cijk+1(xk); cf. (5).
6: Set xk+1 ← (xk, ũk), compute T i(xk+1) for i = 1, . . . ,m.

4.3 ADPTrack with BoT-SORT as Base Heuristic

As an example implementation, we describe ADPTrack with BoT-SORT [1] as a base heuristic. The
testing results of this implementation are reported in Section 5. BoT-SORT is an online tracking
method that uses a Kalman filter [29] as a motion model and a reidentification neural network [24] as
an appearance model. We apply BoT-SORT directly to generate the tentative tracks in the near-online
simulation. Once we obtain the tentative tracks, we compute zijk+1(xk) according to (7). For our
numerical studies, F performs an object-to-object visual comparison using the appearance model
used in BoT-SORT and computes an average of all the pairwise visual similarity scores to obtain an
overall score. In particular, cosine-similarity (CS) is used in BoT-SORT to extract a visual similarity
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Figure 2: (a) Overview of key components involved in ADPTrack for MDA (MOT). Red layers and
respective arcs represent objects formed in partial groupings (given tracks) up to frame k. Blue layer
k + 1 represents the target frame. Green arcs between k and k + 1 layers represent all pairwise arcs
between Nk and Nk+1. Dashed blue matching indicates a selected control uk. Orange layers and
arcs represent subsequent frames. (b) Visualization of near-online simulation in ADPTrack. The base
heuristic is applied to simulate the solution of the MOT problem starting at frame k + 1 and ending
at frame k + ℓ+ 1. The obtained tentative tracks are shown by the orange solid lines. (c) Illustration
of computation of similarity scores cijk+1(xk). For example, the weight c12k+1(xk) is assigned to the
bold blue dashed arc, which is dependent on the given track (bold red) and the tentative track (bold
orange) that the arc connects.
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score between objects, where CS takes as inputs a visual information pair (via, v̄
j
b) and returns a high

value if they appear ‘alike’ and low otherwise. Roughly speaking, we define the function F as

F
(
T i(xk), T

j(x̄k+1
ℓ )

)
=

1

s · ℓ
∑

vi
a∈V̄ i(xk)

∑
v̄j
b∈V j(x̄k+1

ℓ )

CS(via, v̄
j
b), (8)

where V̄ i(xk) = (viq−s+1, v
i
q−s+2, . . . , v

i
q) represents the high quality visual information of ith given

track where q ≤ k, s is a tuning parameter, and V j(x̄k+1
ℓ ) = (v̄jk+1, v̄

j
k+2, . . . , v̄

j
k+ℓ+1) represents

the entire visual information associated with the tentative track starting from the object j in Nk+1.
Further details on F , the calculation of q, and the choice of s are provided in the appendix.

5 Experimental Study

In this section, we describe the results of our benchmark evaluation that compares ADPTrack using
BoT-SORT as a base heuristic, with BoT-SORT itself. We apply visual modules from BoT-SORT
without modification for our experiments. In particular, we use a Yolox model [22] trained by [64]
for object detection and FastReid’s SBS-50 model [24] fine-tuned by [1] as an appearance model, as
has been done for BoT-SORT. We ran all our experiments on a V100 20-core GPU.

Dataset and Metrics: We used the MOT17 [37] dataset under the private-detection protocol for
evaluating our algorithms. We perform our experiments on the second half of the training dataset of
the MOT17 dataset, which we refer to as the validation dataset. This is because the first half of the
training dataset has been used by the base heuristic to train the re-identification network [1] (i.e. the
appearance model). Note that our solution does not require any additional training. We perform our
benchmark evaluation on the testing set of the MOT17 dataset. The videos in the MOT17 dataset
consist of many instances where people are temporarily occluded and reappear afterward.

We adopt clear metrics [3] (among others) to evaluate ADPTrack with respect to the baseline and
other state-of-the-art methods. More specifically, we describe our results with respect to the following
metrics: IDF1 [42], multi-object tracking accuracy (MOTA) [3], higher-order tracking accuracy
(HOTA) [33], ID-switches (IDSW), fragmentations (Frag), false positives (FP), and false negatives
(FN). The IDF1 score mainly assesses association accuracy, and MOTA mainly assesses detection
accuracy. IDSW measures the number of incorrect ID switches and Frag measures the number of
times a track is missing detections in its trajectory. We use Trackeval [28] to generate the scores
according to clear metrics. As the focus of ADPTrack is handling temporarily occluded objects, we
hypothesize a greater improvement in IDF1 and IDSW metrics.

Results: Table 1 shows the overall scores of both tracking methods over the validation dataset, and
Table 2 shows the overall scores achieved by both of tracking methods over the benchmark dataset.
We present the video-wise improvement scores (i.e., the scores obtained for specific videos) of
ADPTrack as compared to the BoT-SORT algorithm for videos in the MOT17 dataset in Table 3. In
all tables, the arrow ↑ (↓) in the first row indicates an increase (resp. decrease) in the corresponding
score is more desirable. We provide the video-wise scores of all other metrics of ADPTrack relative
to BoT-SORT on the MOT17 dataset (including graphical illustrations) in the Appendix. Moreover,
we performed ablation studies over various components of ADPTrack. We also performed parameter
variation studies for the tuning parameter, the number of subsequent frames, etc. We present these
results in the Appendix.

Table 1: Comparison of the proposed algorithm with the base heuristic over the validation dataset.
Algorithm IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
BoT-SORT 83.277 80.718 70.607 9312 21432 429 675
ADPTrack 85.355 81.011 71.749 9252 21090 357 657

Over the validation dataset in Table 1, we see an overall improvement of 2.1% in the IDF1 metric,
0.4% in the MOTA metric, 1.1% in the HOTA metric, and a considerable reduction in the FP, FN,
IDSW, and Frag metrics. In the benchmark evaluation (on the test dataset) in Table 2, we see an
overall improvement of 0.7% in the IDF1 metric, 0.2% in the MOTA metric, 0.4% in the HOTA
metrics, and a considerable reduction in FP, FN, IDSW, and Frag metrics. Our algorithm also
outperforms (or is comparable to) several other state-of-the-art tracking methods (see Appendix).
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Table 2: Comparison of the proposed algorithm with the base heuristic over the test dataset.
Algorithm IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
BoT-SORT 80.2 80.5 65.0 22521 86037 1212 1803
ADPTrack 80.9 80.7 65.4 22287 85446 1086 1770

Table 3: Video-wise improvement of ADPTrack over BoT-SORT for the videos in the MOT17 dataset.
Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-01 5.8 0.399 2.9 -7 -9 -6 -1
MOT17-02 4.923 0.677 3.191 -13 -49 -5 -1
MOT17-03 0 0.100 0 -41 -92 -1 1
MOT17-04 0.141 -0.012 -0.156 22 -18 -1 2
MOT17-05 1.087 1.012 1.146 -21 -10 -3 1
MOT17-06 -0.89 0.300 -0.299 43 -63 -9 4
MOT17-07 6.400 0.80 3.8 -88 -36 -15 -16
MOT17-08 1.6 0 0.799 -10 22 -17 -7
MOT17-09 6.736 1.633 4.804 -4 -37 -6 -4
MOT17-10 5.433 -0.253 3.538 17 5 -7 -2
MOT17-11 1.899 -0.132 0.965 0 8 -2 -1
MOT17-12 -2 -0.5 -0.70 29 8 3 4
MOT17-13 0.220 1.077 0.201 -21 -13 0 -1
MOT17-14 -0.900 0.10 -0.5 -4 -27 3 4

With respect to specific video examples in Table 3, we would like to emphasize the significant
improvement of the IDF1 scores in MOT17-01 (5.8%), MOT17-02 (4.923%), MOT17-05 (1.08%),
MOT17-07 (6.4%), MOT17-08 (1.6%), MOT17-09 (6.736%), MOT17-10 (5.433%), and MOT17-
11 (1.9%) videos, which contain many instances of temporary occlusions. In the MOT17-03 and
MOT17-04 videos, we maintain the accuracy attained by the base heuristic. In MOT17-06, 12, and
14, we see a slight reduction in the IDF1 metric (also reflected in the slight increase in IDSW for
MOT17-12 and 14). This increase in error can be attributed to fast-moving cameras. Therefore,
the appearance information of the subsequent frames can vary significantly from those that came
previously. ADPTrack with BoT-SORT as the base heuristic achieves an FPS (frames processed
per second) rate of 0.8 compared to BoT-SORT which has 4.5. This is because ADPTrack involves
near-online simulations and pairwise comparisons of objects from given and tentative tracks.

6 Conclusions

We have presented an approximate DP framework for rendering existing MOT solution methods more
effective and more robust to object occlusions. The performance of our method on the validation
and the test datasets is eminently promising and points to the potential of approximate DP ideas for
addressing complex data association problems. Moreover, the representation of the base heuristic
in our model is very general, suggesting that virtually any online tracking method with motion and
appearance models can be adapted to improve performance against occlusion.

With respect to limitations, our solution is more computationally expensive than the base heuristic
and introduces delay. Consequently, there may be practical disadvantages associated with moving
from the online to the near-online setting. These limitations highlight a tradeoff between introducing
delays/increasing time complexity and improving the quality of assignments. On the other hand,
there is an opportunity for parallelization in computing the similarity scores since the computations
necessary for each arc are independent. Moreover, there are other potential optimizations that we
have not implemented, such as storing the appearance similarity scores instead of recomputing them
in some cases.

Regarding future work, we hypothesize that generating tentative tracks from frames k + 2 or beyond
may be useful for reducing error, particularly when the object is occluded in frame k + 1. This is
because an occluded object may negatively influence similarity scores. Lastly, an interesting avenue
for future research is the idea of using ADPTrack with a specified base heuristic as a base heuristic
itself.
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A Appendix

A.1 Supplemental Results

We illustrate the IDF1 and IDSW scores of BoT-SORT and ADPTrack with BoT-SORT as the base
heuristic for all the videos of the MOT17 dataset in Figs. 3 and 4, respectively. Figs. 5 and 6
illustrate the percentage improvement of ADPTrack over the base heuristic BoT-SORT across all
the metrics over the validation and test dataset, respectively. We present the video-wise scores of
base heuristic and ADPTrack over the validation and test datasets in Tables 4 and 5, respectively. In
Table 6, we compare the overall scores of some state-of-the-art tracking methods with ADPTrack
using BoT-SORT as the base heuristic. Upon acceptance, we will provide a link to the official scores
on the MOT17 Challenge Website.
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Figure 3: Video-wise IDF1(↑) scores of BoT-SORT and ADPTrack with BoT-SORT as the base
heuristic when applied to videos of the MOT17 dataset.
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Table 4: Video-wise scores of BoT-SORT when applied to the MOT17 dataset.
Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-01 65.4 63.4 54.4 461 1883 16 31
MOT17-02 62.743 60.152 52.711 1007 2859 71 92
MOT17-03 90.7 92.6 73.1 3942 3789 58 119
MOT17-04 91.44 91.008 79.886 894 1258 22 31
MOT17-05 85.08 82.306 67.458 221 360 13 14
MOT17-06 70.1 66.6 56.9 959 2933 40 73
MOT17-07 65.6 74.6 53.9 550 3674 69 106
MOT17-08 54.9 65.9 48.5 1059 5977 165 184
MOT17-09 77.036 86.662 65.876 26 345 13 11
MOT17-10 79.753 74.911 59.841 240 1230 16 57
MOT17-11 82.733 71.773 70.984 611 657 7 14
MOT17-12 79.8 72.2 64.2 291 2104 18 34
MOT17-13 90.171 82.858 71.038 105 435 1 6
MOT17-14 66.4 53.5 48.3 245 8319 38 54

15



Table 5: Video-wise scores of ADPTrack with BoT-SORT as a base heuristic when applied to the
MOT17 dataset.

Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-01 71.2 63.8 57.3 454 1874 10 30
MOT17-02 67.666 60.83 55.902 994 2810 66 91
MOT17-03 90.7 92.7 73.1 3901 3697 57 120
MOT17-04 91.581 90.996 79.729 916 1240 21 33
MOT17-05 86.167 83.318 68.604 200 350 10 15
MOT17-06 69.2 66.9 56.6 1002 2870 31 77
MOT17-07 72.0 75.4 57.7 462 3638 54 90
MOT17-08 56.5 65.9 49.3 1049 5999 148 177
MOT17-09 83.772 88.295 70.681 22 308 7 7
MOT17-10 85.186 74.658 63.379 257 1235 9 55
MOT17-11 84.633 71.64 71.949 611 665 5 13
MOT17-12 77.8 71.7 63.5 320 2112 21 38
MOT17-13 90.392 83.935 71.24 84 422 1 5
MOT17-14 65.5 53.6 47.8 241 8292 41 58

Table 6: Overall scores of ADPTrack with BoT-SORT as a base heuristic, BoT-SORT itself, and other
state-of-the-art tracking methods on the MOT17 test dataset.

Method IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
OCSORT [10] 77.5 78.0 63.2 15129 107055 1950 2040
Deep-OCSORT [35] 80.6 79.4 64.9 16572 98796 1023 2196
StrongSORT++ [16] 79.5 79.6 64.4 27876 86205 1194 1866
ByteTrack [64] 77.3 80.3 63.1 25491 83721 2196 2277
MotionTrack [40] 80.1 81.1 65.1 23802 81660 1140 1605
UTM [11] 78.7 81.8 64.0 25077 76298 1431 1889
BoT-SORT [1] 80.2 80.5 65.0 22521 86037 1212 1803
ADPTrack 80.9 80.7 65.4 22287 85446 1086 1770

A.2 Ablation Studies

This subsection describes several ablation studies performed for all the components we introduced in
the ADPTrack framework. We list the experimental studies for several components and compare their
results to the chosen setup for our algorithm presented in Section 4. In the first experiment, we use a
simplified base heuristic with only the motion model and no appearance model. In this experiment,
we test the importance of the appearance model in our framework. In the second experiment, we
consider the standalone base heuristic and compare the visual information of the target frame objects
with all the matched objects of the given tracks without our near-online simulation approach. This
experiment tests the importance of using tentative tracks in our framework. In the third experiment,
we use ADPTrack with a base heuristic that has both the motion and appearance models, but we
use a modified similarity score [cf. (7)]. In this experiment, we test the importance of using
visual information of previously matched objects directly instead of using overall averaged visual
information for a given track i while comparing it with a tentative track j. In the fourth experiment,
we present additional implementation details related to the main algorithm 1. Every experiment
includes a parameter sweep.

A.2.1 Experiment 1

The first experiment tests as the base heuristic the BoT-SORT method without its appearance model.
Since it relies solely on the motion model, we refer to it as the BoT-SORT-motion. In particular, we
apply the concept of intersection-over-union overlap (IOU overlap for short) used by BoT-SORT to
compute similarity scores. While performing assignments between the given tracks and the objects
of the target frame, BoT-SORT uses a motion model to predict the position and size of the object of a
given track in the next frame. It then computes an IOU overlap between the predicted position and
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size of the object and the objects of the target frame based on the position and size of the objects. The
IOU overlap scores are used to perform the assignment between the given tracks and the target frame.

In this ablation study, each of the tentative track’s objects is sequentially compared to the given
track’s object in the subsequent frames using IOU overlap to obtain a sequence of IOU overlap scores.
We calculate zijk+1(xk) by taking an average of ℓ IOU overlap scores associated with the ℓ objects
in tentative track j obtained previously. Note that we maintain m copies of a given track’s motion
model to generate m different zijk+1(xk) similarity scores for a single track i.

More specifically, we use a motion model, which predicts the position and size of the object based on
historical information. Given the position and size information (pi0, p

i
1, . . . , p

i
k) associated with the

ith track, we predict the position and size information p̃ik+1,

p̃ib+1 = MOTION(pi0, p
i
1, . . . , p

i
b), b = 1, . . . , k. (9)

In our case, MOTION represents the calculation related to the Kalman filter. Therefore, the informa-
tion p̃ik+1 can be used to represent the size and position of the object at k + 1 the frame based on the
information associated with track i. To compute the similarity score of given track i and tentative
track starting from j without appearance information, we then compute a sequence of information
p̃ijk , p̃

ij
k+1, . . . , p̃

ij
k+ℓ via

p̃ijb+1 = MOTION(pi0, p
i
1, . . . , p

i
k, p̄

j
k+1, . . . , p̄

j
b), b = k + 1, . . . , k + ℓ+ 1, (10)

In addtion, we define p̃ijk+1 = p̃ik+1. Based on the obtained sequence p̃ijk+1, . . . , p̃
ij
k+ℓ, p̃

ij
k+ℓ+1, we

compute the similarity score for this ablation study and refer to it as F1. It is given by

F1

(
T i(xk), T

j(x̄k+1
ℓ )

)
=

1

ℓ

k+ℓ+1∑
b=k+1

IOU(p̃ijb , p̄
j
b), (11)

where (p̄jk+1, p̄
j
k+2, . . . , p̄

j
k+ℓ+1) represents all the position information associated with the tentative

track starting from the object j. The function IOU takes two position and size information p̃ijb , p̄
j
b

and returns a big value if ‘the overlap’ of objects represented by p̃ijb , p̄
j
b is large.

As the base heuristic for this experiment is BoT-SORT-motion, we apply BoT-SORT-motion as
a baseline for comparison. Table 7 and 8 show the video-wise results of BoT-SORT-motion and
ADPTrack with BoT-SORT-motion as the base heuristic for all the videos of the validation dataset.
The overall scores for BoT-SORT-motion and ADPTrack with BoT-SORT-motion as the base heuristic
are mentioned in Table 9.

We see a significant improvement in the IDF1 metric for MOT17-02 (4.04%), MOT17-04 (0.78%),
MOT17-05 (1.948%), and MOT17-11 (4.093%). In fact, out of all the experiments, we see the best
score for the MOT17-04 video in this experiment, which is 92.236%. However, we see a reduction in
IDF1 accuracies for MOT17-09, MOT17-10, and MOT17-13 which may be because of a moving
camera. We believe that this kind of tracker is suitable for videos in which the motion of the object
can be more helpful, such as MOT17-04 with an overhead static camera. Across all the videos, we
see an overall improvement of 1.35% in the IDF1 metric, 0.5% in the HOTA metric, and better IDSW,
FP, FN, and Frag scores at a slightly better MOTA metric. We believe that this is quite promising,
given that it is only using a motion model, which can be quite inexpensive.

Table 7: Video-wise scores of BoT-SORT-motion when applied to the validation dataset.
Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-02 60.09 59.615 51.484 1060 2867 63 84
MOT17-04 91.448 90.893 80.002 949 1236 17 30
MOT17-05 81.218 82.038 65.948 223 367 13 16
MOT17-09 83.407 86.419 70.049 23 357 11 10
MOT17-10 77.879 75.063 58.677 239 1222 16 55
MOT17-11 80.53 71.596 69.233 614 660 9 14
MOT17-13 90.689 83.08 71.354 90 441 3 6
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Table 8: Video-wise scores of ADPTrack as per experiment 1 over the validation dataset.
Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-02 64.132 59.919 53.049 1118 2784 58 86
MOT17-04 92.236 90.847 80.272 940 1256 17 31
MOT17-05 83.076 82.335 65.993 235 343 15 20
MOT17-09 82.522 86.732 69.962 27 344 11 10
MOT17-10 77.093 75.131 58.459 240 1216 17 56
MOT17-11 84.623 71.618 71.861 612 665 5 13
MOT17-13 90.369 83.112 71.236 89 441 3 6

Table 9: Comparison of overall scores’ of BoT-SORT-motion, and ADPTrack with BoT-SORT-motion
as the base heuristic as per experiment 1 over the validation dataset.

Algorithm IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
BoT-SORT-motion 82.55 80.553 70.346 9594 21450 396 645
Experiment 1 83.908 80.635 70.878 9783 21147 378 666

A.2.2 Parameter Study for Experiment 1

The number of subsequent frames ℓ for near-online simulation and the tuning parameter α of (6)
are varied in two ablation studies and the experimentation results are presented in Tables 10 and 11,
respectively. We observe that the performance of ADPTrack increases as we reach a certain number
of subsequent frames, and then decreases as we go further.

Table 10: An ablation study over the number of subsequent frames; ADPTrack with BoT-SORT-
motion as the base heuristic as per experiment 1 over the validation dataset; ℓ: number of subsequent
frames for near-online simulation.

ℓ IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
1 83.449 80.49 70.567 9864 21285 393 672
2 83.566 80.403 70.677 9879 21417 387 663
3 83.627 80.494 70.775 9906 21246 384 666
4 83.782 80.64 70.771 9786 21132 381 666
5 83.738 80.598 70.742 9786 21204 378 660
6 83.878 80.59 70.851 9783 21219 378 663
7 83.908 80.635 70.878 9783 21147 378 666
8 83.861 80.596 70.797 9738 21249 384 672
9 83.861 80.594 70.796 9741 21249 384 672
10 83.82 80.551 70.824 9768 21291 384 666
11 83.796 80.51 70.825 9765 21363 381 660
12 83.781 80.501 70.82 9741 21396 387 666
13 83.78 80.512 70.827 9741 21378 387 663
14 83.649 80.503 70.754 9750 21381 390 663
15 83.657 80.572 70.748 9759 21261 390 669
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Table 11: An ablation study over the tuning parameter α; ADPTrack with BoT-SORT-motion as a
base-heuristic as per experiment 1 over the validation dataset; ℓ: number of subsequent frames for
near-online simulation.

ℓ α IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
6 0.05 83.214 80.549 70.671 9600 21447 399 648
6 0.1 83.694 80.685 70.879 9525 21330 372 648
6 0.15 83.878 80.59 70.851 9783 21219 378 663
6 0.2 83.361 80.215 70.511 10023 21513 450 702
7 0.05 83.214 80.549 70.671 9600 21447 399 648
7 0.1 83.718 80.698 70.893 9525 21312 369 645
7 0.15 83.908 80.635 70.878 9783 21147 378 666
7 0.2 83.599 80.282 70.648 9918 21528 432 699
8 0.05 83.215 80.551 70.67 9597 21447 399 648
8 0.1 83.718 80.698 70.893 9525 21312 369 645
8 0.15 83.861 80.596 70.797 9738 21249 384 672
8 0.2 83.513 80.154 70.562 10080 21546 459 702
9 0.05 83.215 80.551 70.671 9597 21447 399 648
9 0.1 83.726 80.679 70.928 9534 21330 372 648
9 0.15 83.861 80.594 70.796 9741 21249 384 672
9 0.2 83.094 80.109 70.531 10161 21552 444 705
10 0.05 83.215 80.551 70.671 9597 21447 399 648
10 0.1 83.74 80.649 70.933 9531 21378 375 648
10 0.15 83.82 80.551 70.824 9768 21291 384 666
10 0.2 82.433 80.174 70.114 9990 21615 447 714

A.2.3 Experiment 2

In experiment 2, we neither perform the near-online simulation nor generate the tentative tracks. We
consider BoT-SORT with both the motion and appearance models and exploit the visual information
of previously matched objects of given tracks. For a given track i, we maintain an appearance
quality vector where each value indicates the visual quality of a previously matched object. We
generate the appearance quality vector by extending it every time an object is assigned to the
given track i. Based on the appearance quality vector and a particular threshold referred to as the
quality threshold β, we iterate backward starting at frame k and find the object at frame q with the
appearance quality value greater than the quality threshold β. Then we select the visual information
of objects from frame q − s + 1 to frame q assigned to track i, which is denoted by V̄ i(xk), i.e.,
V̄ i(xk) = (viq−s+1, v

i
q−s+2, . . . , v

i
q). The high-quality visual information V̄ i(xk) is then used to

compute the similarity score.

To compute zijk+1(xk), we compare the visual information via contained in V̄ i(xk) with v̄jk+1 to
generate a sequence of visual similarity scores between given track i and object j. We then calculate
the average of those visual similarity scores. In particular, we use a modified similarity score F for
this ablation study and refer to it as F2. It is given by

F2

(
T i(xk), T

j(x̄k+1
ℓ )

)
=

1

s

∑
vi
a∈V̄ i(xk)

CS(via, v̄
j
k+1). (12)

The number s of previously matched objects from consecutive frames of given tracks to be used for
comparison is flexible and the ablation study for this parameter is shown in Table 12. We set the value
of the quality threshold β as 0.15 based on empirical results. The video-wise results for BoT-SORT
and the modified BoT-SORT as per experiment 2 are presented in Tables 4 and 13, respectively. The
overall scores for BoT-SORT and experiment 2 are listed in Table 17.
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Table 12: An ablation study over the number of previously matched objects (#s) as per experiment 2.
#s IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
1 84.59 80.956 71.321 9321 21099 369 645
2 84.567 80.95 71.312 9324 21102 372 651
3 84.43 80.87 71.213 9402 21144 381 660
4 84.43 80.87 71.213 9402 21144 381 660
5 84.43 80.87 71.213 9402 21144 381 660
6 84.43 80.87 71.213 9402 21144 381 660
7 84.43 80.87 71.213 9402 21144 381 660
8 84.43 80.87 71.213 9402 21144 381 660
9 84.436 80.891 71.219 9378 21144 372 660
10 84.436 80.891 71.219 9378 21144 372 660
11 84.436 80.891 71.219 9378 21144 372 660
12 84.436 80.891 71.219 9378 21144 372 660
13 84.436 80.891 71.219 9378 21144 372 660
14 84.436 80.891 71.219 9378 21144 372 660
15 84.436 80.891 71.219 9378 21144 372 660

Table 13: Video-wise scores for modified BoT-SORT (experiment 2) over the validation dataset.
Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-02 64.803 60.992 54.481 995 2793 66 90
MOT17-04 91.586 91.054 79.746 908 1235 20 32
MOT17-05 85.015 82.306 67.338 224 358 12 14
MOT17-09 81.787 87.669 68.861 26 321 8 6
MOT17-10 84.241 74.726 62.828 258 1228 11 55
MOT17-11 84.62 71.618 71.872 611 666 5 13
MOT17-13 90.528 83.587 71.289 85 432 1 5

A.2.4 Experiment 3

In this experiment, we use BoT-SORT with both the motion and appearance models as the base
heuristic. BoT-SORT maintains representative visual information associated with every given track.
For a given track i, the representative visual information is updated whenever an object from a
target frame is assigned to the given track i. It is updated by averaging the assigned object’s visual
information with the given track’s representative visual information through an exponential moving
average. While performing assignments between the given tracks and the objects of the target frame
with respect to the appearance model, BoT-SORT compares the representative visual information of a
given track i to the visual information of every object of the target frame.

In this ablation study, to calculate a similarity score between a given track i and a tentative track j, we
compare the representative visual information of the given track i and the visual information of objects
of tentative track j. As there are ℓ objects in tentative track j, this comparison generates a sequence of
ℓ visual similarity scores. We also calculate IOU overlap scores as explained in experiment 1. Similar
to BoT-SORT, we consider a minimum of the visual similarity score and IOU overlap score to obtain
a similarity score for every object in the tentative track and generate a sequence of similarity scores
corresponding to all the objects of the tentative track j. Note that we do not update the representative
information of given track i with any of the objects of tentative track j, unlike experiment 1.

To compute zijk+1(xk), we calculate the average of all the previously calculated similarity scores. We
present a modified F for this ablation study and refer to it as F3. It is given by

F3

(
T i(xk), T

j(x̄k+1
ℓ )

)
=

1

ℓ

k+ℓ+1∑
b=k+1

min
{

IOU(p̃ijb , p̄
j
b), CS(ṽik, v̄

j
b)
}
, (13)

where p̃ijk+1, . . . , p̃
ij
k+ℓ, , p̃

ij
k+ℓ+1 are computed via (9) and (10), as in experiment 1. The information

ṽik represents the representative visual information of a given track i, which can be viewed as a
moving average of the sequence vi0, v

i
1, . . . , v

i
k. This is different from experiment 2 and experiment
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4 where we compare individual visual information of previously matched objects of a given track
i. Therefore, given a given track i and tentative track j, this experiment tests how important it is to
compare the visual information of previously matched objects of given track i and objects of tentative
track j directly.

The video-wise results for BoT-SORT and ADPTrack with BoT-SORT as the base heuristic are
presented in Tables 4 and 14, respectively. The overall results are mentioned in Table 17. We
see a significant improvement in the IDF1 scores of the following videos: MOT17-09 (7.313%),
MOT17-10 (4.76%), MOT17-02 (1.1%), MOT17-11(1.89%). We see a small improvement for some
videos (MOT17-04 and MOT17-13) and a drop in the IDF1 metric for the other videos (MOT17-05).
Overall, we see an improvement of 1.16% in the IDF1 metric, 0.4% in the MOTA metrics, and 0.8%
in the HOTA metrics accompanied by a reduction in IDSW, FP, and FN metrics.

Table 14: Video-wise scores of ADPTrack with BoT-SORT as a base-heuristic as per experiment 3
over the validation dataset.

Video Name IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
MOT17-02 63.844 61.326 54.267 961 2793 67 95
MOT17-04 91.887 91.033 79.969 908 1240 20 33
MOT17-05 80.743 82.246 65.415 214 364 18 21
MOT17-09 84.349 88.017 70.839 22 317 6 5
MOT17-10 84.515 74.911 63.025 259 1217 10 55
MOT17-11 84.623 71.618 71.861 612 665 5 13
MOT17-13 90.193 83.587 71.156 85 432 1 5

A.2.5 Parameter Study for Experiment 3

The number of frames ℓ for near-online simulation and the tuning parameter α used in (6) are varied
in two ablation studies and the experimentation results are presented in Tables 15 and 16, respectively.
We observe that the performance of the ADPTrack increases as we increase both the number of
frames and then plateaus as we go further.

Table 15: An ablation study over the number of subsequent frames ℓ; ADPTrack with BoT-SORT as
a base-heuristic as per experiment 3 over the validation dataset;

ℓ IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
1 84.004 81.047 71.074 9204 21066 372 663
2 83.925 80.982 71.027 9276 21087 384 675
3 83.925 80.982 71.027 9276 21087 384 675
4 83.925 80.982 71.027 9276 21087 384 675
5 83.929 80.995 71.03 9258 21084 384 675
6 83.945 81.035 71.08 9180 21093 387 681
7 84.309 81.024 71.303 9195 21096 387 684
8 84.309 81.024 71.303 9195 21096 387 684
9 84.309 81.024 71.303 9195 21096 387 684
10 84.309 81.024 71.303 9195 21096 387 684
11 84.444 81.043 71.403 9183 21084 381 681
12 84.444 81.043 71.403 9183 21084 381 681
13 84.444 81.043 71.403 9183 21084 381 681
14 84.444 81.043 71.403 9183 21084 381 681
15 84.413 81.021 71.385 9183 21120 381 684
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Table 16: An ablation study over the tuning parameter α. ADPTrack with BoT-SORT as a base
heuristic as per experiment 3 over the validation dataset; ℓ: number of subsequent frames for near-
online simulation.

ℓ α IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
9 0.05 84.214 80.92 71.145 9285 21168 393 669
9 0.1 84.309 81.024 71.303 9195 21096 387 684
9 0.15 83.837 81.05 71.034 9231 21015 390 687
9 0.2 83.501 81.024 70.891 9120 21138 420 702
10 0.05 84.214 80.92 71.144 9285 21168 393 669
10 0.1 84.309 81.024 71.303 9195 21096 387 684
10 0.15 83.837 81.05 71.034 9231 21015 390 687
10 0.2 83.533 81.06 70.942 9072 21132 417 702
11 0.05 84.214 80.92 71.144 9285 21168 393 669
11 0.1 84.444 81.043 71.403 9183 21084 381 681
11 0.15 83.839 81.054 71.036 9228 21012 390 687
11 0.2 83.533 81.06 70.942 9072 21132 417 702
12 0.05 84.214 80.92 71.144 9285 21168 393 669
12 0.1 84.444 81.043 71.403 9183 21084 381 681
12 0.15 83.837 81.041 71.037 9219 21042 390 687
12 0.2 83.533 81.06 70.942 9072 21132 417 702
13 0.05 84.214 80.92 71.144 9285 21168 393 669
13 0.1 84.444 81.043 71.403 9183 21084 381 681
13 0.15 83.837 81.041 71.037 9219 21042 390 687
13 0.2 83.533 81.06 70.942 9072 21132 417 702

A.2.6 Experiment 4

We refer to the combination of experiments 1,2 and 3 presented in Algorithm 1 as Experiment 4. We
present the overall scores of all the experiments in Table 17.

We observe that objects that are either mostly occluded or distant from the given track may not need
to be considered in the evaluation of F defined in (8). To address this, we introduce a heuristic that
will discard certain objects from consideration for each tentative track j with respect to a given track
i. We shortlist objects from the tentative track T j(x̄k+1

ℓ ) and refer to them as candidates. These
candidate objects will be used to calculate zijk+1 in (8). An object in a tentative track becomes a
candidate for computations in (8) if the following holds: (i) The IOU overlap score of the object with
the given track’s estimated next state is sufficiently large, and (ii) The visual similarity between the
object and the given track’s representative visual information is sufficiently high. The number of
candidate objects may be different for each tentative track T j(x̄k+1

ℓ ) and given track i, and this value
should replace ℓ in the denominator in (8) to produce a legitimate average value.

We observed that our algorithm may experience difficulty in the presence of objects that are con-
tinuously occluded, as their visual information does not capture consistent visual information of a
single object, rather they may be a noisy mix of several intercepting objects. Therefore we propose a
crowd-detection heuristic where we check if the objects have been occluded for an extended period
with respect to their overall life and decide whether to use the proposed algorithm for performing
associations for those tracks. In cases such as these, the motion model alone may itself be a better
estimator of the association scores.

This framework renders the computation of similarity scores between the given tracks and tentative
tracks suitable for parallelization. We have adopted multi-processing where a particular process
computes the similarity score between a given track and a tentative track. This parallelization can be
further extended to object-to-object similarity score computations.
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Table 17: Comparison of proposed algorithms over the validation dataset.
Algorithm IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
BoT-SORT 83.277 80.718 70.607 9312 21432 429 675
Experiment 2 84.436 80.891 71.219 9378 21144 372 660
Experiment 3 84.444 81.043 71.403 9183 21084 381 681
Experiment 4 85.355 81.011 71.749 9252 21090 357 657

A.2.7 Parameter Study for Experiment 4

In this section, we present ablation studies for various parameters present in Experiment 4 (Algorithm
1). Table 18 presents an ablation study performed over the number of subsequent frames considered.
The ablation study over the tuning parameter (α) parameter is mentioned in Tables 19 and 20. For
generalization and application to the test dataset, we select the tuning parameter as 0.25. We consider
15 and 5 for the number of subsequent frames (ℓ) and the number of previously matched objects (s)
from given tracks, respectively.

Table 18: An ablation study over the number of subsequent frames ℓ as per experiment 4.
ℓ IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
1 84.768 80.842 71.286 9453 21135 384 672
2 84.38 80.976 71.125 9396 20976 384 663
3 84.599 80.987 71.237 9363 21012 363 657
4 84.641 80.974 71.31 9330 21054 375 672
5 84.451 80.941 71.285 9342 21096 375 675
6 84.904 80.946 71.434 9315 21123 366 660
7 85.289 80.941 71.631 9300 21150 363 657
8 85.147 80.995 71.721 9282 21090 354 654
9 85.345 80.98 71.743 9294 21102 354 645
10 85.148 81.037 71.721 9246 21057 354 660
11 85.148 81.037 71.722 9246 21057 354 660
12 85.341 81.045 71.746 9249 21042 354 651
13 85.341 81.048 71.746 9249 21036 354 657
14 85.355 81.011 71.749 9252 21090 357 657
15 85.334 81.008 71.747 9255 21093 357 660
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Table 19: An ablation study over the tuning parameter (α) as per experiment 4. ℓ: number of
subsequent frames for near-online simulation. The value of ℓ varies between 6 and 10.

ℓ α IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
6 0.15 84.936 81.143 71.628 9141 21003 342 642
6 0.2 84.858 81.058 71.477 9141 21126 357 651
6 0.25 84.904 80.946 71.434 9315 21123 366 660
6 0.3 84.565 80.841 71.207 9396 21195 384 675
6 0.35 84.278 80.67 71.038 9474 21360 417 681
7 0.15 84.937 81.139 71.629 9144 21009 339 642
7 0.2 84.912 81.073 71.59 9159 21096 345 645
7 0.25 85.289 80.941 71.631 9300 21150 363 657
7 0.3 84.51 80.848 71.193 9387 21189 387 681
7 0.35 84.475 80.781 71.125 9351 21315 405 678
8 0.15 84.937 81.139 71.629 9144 21009 339 642
8 0.2 84.924 81.119 71.594 9150 21030 345 651
8 0.25 85.147 80.995 71.721 9282 21090 354 654
8 0.3 84.528 80.842 71.192 9360 21228 384 678
8 0.35 84.488 80.813 71.131 9324 21294 402 675
9 0.15 84.937 81.139 71.629 9144 21009 339 642
9 0.2 84.924 81.11 71.627 9177 21021 342 651
9 0.25 85.345 80.98 71.743 9294 21102 354 645
9 0.3 84.621 80.922 71.383 9288 21189 366 666
9 0.35 84.972 80.889 71.489 9207 21300 390 669
10 0.15 84.935 81.141 71.629 9147 21003 339 645
10 0.2 84.928 81.121 71.629 9153 21027 342 651
10 0.25 85.148 81.037 71.721 9246 21057 354 660
10 0.3 84.597 80.941 71.373 9252 21192 369 663
10 0.35 85.099 80.837 71.556 9249 21327 405 681
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Table 20: Experiment 4: An ablation study over the tuning parameter (α) as per experiment 4. ℓ:
number of subsequent frames for near-online simulation. The value of ℓ varies between 11 and 15.

ℓ α IDF1(↑) MOTA(↑) HOTA(↑) FP(↓) FN(↓) IDSW(↓) Frag(↓)
11 0.15 84.959 81.102 71.591 9135 21072 345 645
11 0.2 84.922 81.119 71.593 9153 21027 345 651
11 0.25 85.148 81.037 71.722 9246 21057 354 660
11 0.3 84.595 80.941 71.372 9255 21186 372 663
11 0.35 85.044 80.859 71.501 9246 21297 402 675
12 0.15 84.943 81.119 71.631 9150 21036 339 642
12 0.2 84.922 81.119 71.592 9153 21027 345 651
12 0.25 85.341 81.045 71.746 9249 21042 354 651
12 0.3 84.849 80.915 71.502 9336 21159 360 666
12 0.35 85.022 80.816 71.486 9318 21291 405 678
13 0.15 84.943 81.119 71.631 9150 21036 339 642
13 0.2 84.922 81.119 71.592 9153 21027 345 651
13 0.25 85.341 81.048 71.746 9249 21036 354 657
13 0.3 84.813 80.82 71.473 9417 21228 363 666
13 0.35 84.671 80.811 71.339 9345 21279 399 678
14 0.15 84.937 81.117 71.594 9150 21036 342 642
14 0.2 84.922 81.119 71.592 9153 21027 345 651
14 0.25 85.355 81.011 71.749 9252 21090 357 657
14 0.3 85.367 80.842 71.706 9381 21225 366 660
14 0.35 85.059 80.811 71.524 9312 21306 405 678
15 0.15 84.938 81.119 71.595 9147 21036 342 642
15 0.2 84.918 81.11 71.59 9162 21033 345 654
15 0.25 85.334 81.008 71.747 9255 21093 357 660
15 0.3 85.367 80.842 71.705 9381 21225 366 660
15 0.35 84.636 80.815 71.332 9333 21279 405 672
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