
1

Parallel Shortest Paths Methods for Globally Optimal Trajectories

�

D.P. Bertsekas

a

, F. Guerriero

b

and R. Musmanno

b

a

Laboratory for Information and Decision Systems, M.I.T.,

Cambridge, MA, 02139, U.S.A.

b

Dipartimento di Elettronica, Informatica e Sistemistica,

Universita' della Calabria, 87036 Rende, Italy

In this paper we consider a special type of trajectory optimization problem that can be

viewed as a continuous-space analog of the classical shortest path problem. This problem

is approached by space discretization and solution of a discretized version of the associ-

ated Hamilton-Jacobi equation. It was recently shown by Tsitsiklis [1] that some of the

ideas of classical shortest path methods, such as those underlying Dijkstra's algorithm,

can be applied to solve the discretized Hamilton-Jacobi equation. In more recent work,

Polymenakos, Bertsekas, and Tsitsiklis [2] have carried this analogy further to show that

some e�cient label correcting methods for shortest path problems, the SLF and SLF/LLL

methods of [3] and [4], can be fruitfully adapted to solve the discretized Hamilton-Jacobi

equation. In this paper we discuss parallel asynchronous implementations of these meth-

ods on a shared memory multiprocessor, the Alliant FX/80. Our results show that these

methods are well suited for parallelization and achieve excellent speedup.

1. INTRODUCTION

We consider a trajectory optimization problem that arises in a variety of contexts

involving the planning of a motion within a, perhaps irregular, region of two-dimensional

or three-dimensional space. A vehicle starts at an initial point x

0

located in some region

G of <

m

and follows a trajectory x(t) such that

dx=dt = u(t); (1)

where u(t) 2 <

m

is a control vector that must satisfy the constraint ku(t)k � 1 for all t.

After a certain time T the vehicle arrives at the boundary @G of G where a cost q(x(T))

is incurred. There is also a traveling cost

R

T

0

r(x(t))dt that depends on the trajectory

followed by the vehicle. The objective is to �nd a trajectory x(t) that starts at the given

initial point x(0), ends at the boundary @G of G, and minimizes

q(x(T)) +

Z

T

0

r(x(t))dt; (2)

�

Research supported by National Science Foundation under Grants 9108058-CCR, 9221293-INT, and

9300494-DMI

2

subject to the constraint ku(t)k � 1 for all t.

We assume that inf

x2G

r(x) > 0, which forces the vehicle to reach the boundary of

G in �nite time. Note that this problem formulation includes the case where we want

to reach a given destination point x

f

with minimum traveling cost

R

T

0

r(x(t))dt; we may

just take G = <

m

� fx

f

g and q(x

f

) = 0. More generally, we can use the terminal cost

q(x) to provide a preference for reaching some portions of the boundary of G over others.

In particular, points of the boundary of G with a very high value of q(x) are essentially

\forbidden". This allows the introduction of \obstacles" that the vehicle must avoid.

Note that when r(x(t)) is identically equal to 1, when G contains several obstacles, and

when there is a �xed destination x

f

, the problem becomes the shortest path problem of

�nding a minimum length trajectory that starts at x

0

ends at x

f

and avoids the obstacles.

This problem has been extensively studied in the robotics and theoretical computer science

literature. More generally, the integral cost

R

T

0

r(x(t))dt may be viewed as a \generalized

length" of the trajectory, and the problem may be viewed as a continuous-space shortest

path problem.

Our problem can be approached by classical continuous-time optimal control techniques.

However, when the region G contains many \obstacles" that the vehicle must avoid,

and/or the cost functions q(x) and r(x) are nonconvex, the problem may be essentially

combinatorial and may have multiple local minima. In this case, solution methods based

on dynamic programming and discretization of the associated Hamilton-Jacobi equation,

which provide globally optimal solutions, are typically preferable.

There is an interesting general method to address the discretization issues of continuous-

time optimal control. The main idea in this method is to discretize, in addition to time,

the state space <

m

using some kind of grid, and then to approximate the cost-to-go V (x)

of nongrid states by linear interpolation of the cost-to-go values of the nearby grid states.

By this we mean that if a nongrid state x is expressed as

x =

m

X

i=1

�

i

x

i

(3)

in terms of the grid states x

1

; : : : ; x

m

, where the positive weights �

i

add to 1, then the

cost-to-go of x is approximated by

m

X

i=1

�

i

V (x

i

); (4)

where V (x

i

) is the cost-to-go of x

i

. When this idea is worked out, one ends up with a

stochastic optimal control problem having as states the �nite number of grid states, and

transition probabilities that are determined from the weights �

i

above. If the original

continuous-time optimal control problem has �xed terminal time, the resulting stochastic

control approximation has �nite horizon. If the terminal time of the original problem

is free and subject to optimization, as in the problem of this paper, the stochastic con-

trol approximation becomes a Markovian Decision Problem, known as a �rst passage or

stochastic shortest path problem (see [5] and [6] for a discussion of such problems). We

refer to the monograph [7], the papers [8] and [9], and the survey [10] for a description

and analysis of continuous-time optimal control discretization issues.

3

Tsitsiklis [1] showed that the problem of this paper, when appropriately discretized,

maintains much of the structure of the classical shortest path problem on directed graphs.

In particular, a �nitely terminating adaptation of the Dijkstra shortest path algorithm was

developed in [1]. In [2], other shortest path methods were adapted to the problem of this

paper. These adaptations are extensions to the SLF label correcting method of [3] and the

SLF/LLL method of [4]. Computational results given in [3] show that these adaptations

vastly outperform (by orders of magnitude) the classical dynamic programming methods,

which are based on Jacobi and Gauss-Seidel value iterations.

In the present paper we focus on the e�cient parallelization of the Dijkstra, and

SLF/LLL methods of [3] and [4] on a shared memory machine. We draw motivation

from our earlier work on parallel asynchronous label correcting methods, where we found

that the SLF and SLF/LLL approaches lend themselves well to parallel computation, and

result in very e�cient shortest path solution methods. We concentrate on asynchronous

algorithms. Generally, dynamic programming iterations, which contain label correcting

methods as a special case, can be executed in a totally asynchronous fashion, as shown in

[16]. The textbook [6] contains an extensive discussion and analysis of asynchronous algo-

rithms, including theory that establishes the validity of the asynchronous implementations

of the present paper.

Our computational results suggest that the Dijkstra and SLF/LLL approaches are

well suited for parallel solution of the problem, and result in excellent speedup. The

SLF/LLL method is faster for the problems that we tried, both in a serial and in a

parallel environment. This is consistent with the serial computational results of [2]. Since

the solution of the problem of this paper is very computationally intensive, we conclude

that the gains from parallelization can be signi�cant.

The remainder of the paper is organized as follows. In Section 2 we formulate the

trajectory optimization problem, and we describe the discretized version of the Hamilton-

Jacobi equation. In Section 3 we describe the Dijkstra method and the SLF/LLL method.

In Section 4 we present parallel asynchronous implementations of these methods and

computational results.

2. PROBLEM FORMULATION

A trajectory starting at x

0

2 G is a continuous function x : [0; T] 2 <

m

, where T is

some positive scalar, such that x(t) 2 G, for all t 2 [0; T) and x(T) 2 @G. The trajectory

is said to be admissible if there exists a function u : [0; T]! <

m

such that:

x(t) = x(0) +

Z

t

0

u(s)ds; (5)

and

ku(t)k � 1; 8 t 2 [0; T]: (6)

Let G a bounded connected open subset of <

m

and let @G be its boundary. Let also

r : G ! (0;1) and q : @G ! (0;1) be two positive-valued cost functions. The cost of

an admissible trajectory is given by

q(x(T)) +

Z

T

0

r(x(t))dt: (7)

4

The optimal cost-to-go function V

�

: G [@G ! < is de�ned as follows. If x 2 @G,

we let V

�

(x) = q(x), otherwise, if x 2 G, we let V

�

(x) be the in�mum of the costs of all

admissible trajectories starting at x.

The cost-to-go function V

�

, under appropriate conditions [11], satis�es the Hamilton-

Jacobi equation

V

�

(x) = min

u2<

m

; kuk�1

r(x) + u

0

rV

�

(x); x 2 G: (8)

A discretized version of this equation was given and analyzed in [1]. We follow closely

the framework of that reference.

Let h > 0 some discretization step. Let S and B be discretizations of the sets G and

@G, whose elements are of the form (ih; jh), where i and j are integers. For each point

x 2 S, we denote by N(x) the set of neighbors of x de�ned by

N(x) = fx+ h�

i

e

i

2 S [B j i 2 f1; :::; mg; �

i

2 f�1; 1gg; (9)

where e

i

is the i-th unit vector of <

m

.

We assume that we have two functions g : S ! (0;1) and f : B ! (0;1), which

represent the discretizations of the traveling and terminal cost functions r and q, resopec-

tively. The function g can usually be de�ned by g(x) = r(x) for every x 2 S. The choice

of f may depend on the nature of �G because B can be disjoint from �G even if B is a

good approximation to �G. We also introduce a function V : S[B ! <, which represents

an approximation of the optimal cost-to-go function V

�

.

The discretized Hamilton-Jacobi equation (8) is given by

V (x) = min

�2f�1;1g

m

min

�2�

"

hg(x)k�k+

m

X

i=1

�

i

V (x+ h�

i

e

i

)

#

; x 2 S; (10)

V (x) = f(x); x 2 B; (11)

where:

k�k =

v

u

u

t

m

X

i=1

�

2

i

; � 2 �; (12)

and � is the unit simplex in <

m

,

� =

(

� 2 <

m

j

m

X

i=1

�

i

= 1; �

i

� 0

)

: (13)

The manner in which Eqs. (10) and (11) approximate the Hamilton-Jacobi equation is

explained in [1]. In particular, consider a vehicle that starts at some point x 2 S and

moves with a unit speed along a direction d, until the point x + h

P

m

i=1

�

i

�

i

e

i

is reached.

The direction d is determined by �, which speci�es the quadrant within which d lies, and

by the choice of �, which speci�es the direction of motion within that quadrant. The total

time required to reach the �nal point is hk�k. The traveling cost is hg(x)k�k, since g(x)

5

is the traveling cost per unit time. With these approximations, it is seen that the optimal

cost-to-go function V

�

(x) satis�es

V

�

(x) � min

�2f�1;1g

m

min

�2�

"

hg(x)k�k+ V

�

x + h

m

X

i=1

�

i

�

i

e

i

!#

: (14)

Now if in the above equation we use the approximation

V

�

x+ h

m

X

i=1

�

i

�

i

e

i

!

�

m

X

i=1

�

i

V

�

(x+ h�

i

e

i

); (15)

we obtain Eq. (10).

The equations (10) and (11) represent a special case of discretization based on �nite

elements. In [7], these equations are viewed as Dynamic Programming Equations for a

Markov Decision Problem, which can be solved by using methods like value or policy

iteration. For a more detailed description of these methods see [7] and [9]. However, as

remarked in [1] and [2], these methods do not exploit the special structure of our problem

and are relatively slow. In the next section we discuss methods that are much more

e�cient.

3. LABEL CORRECTING METHODS

The analysis and methodology of [1] and [2] rests on the following fundamental lemma:

Lemma 3.1 Let x 2 S, and let � 2 f�1; 1g

m

, � 2 �, be such that V (x) = hg(x)k�k +

P

m

i=1

V (x+ h�

i

e

i

). Then, V (x + �

i

e

i

) < V (x), for all i such that �

i

> 0.

This lemma, which is proved in [1], can be used to show that the prototype label

correcting algorithm to be described shortly terminates in a �nite number of iterations

(see [2]). This algorithm maintains a vector V (x) of labels, where x 2 S, and a candidate

list L of states. At the start of the algorithm, the list L contains just an element x

1

of B

at which f(x) is minimized, that is:

V (x

1

) � V (x); 8 x 2 S [B: (16)

Also the initial labels are given by

�

V (x) =

�

V (x) 8x 2 L [B,

1 otherwise.

(17)

The algorithm terminates when L is empty and upon termination the optimal cost-to-

go of x is given by

�

V (x). Assuming L nonempty at a typical iteration, the vector of labels

and the candidate list are updated as follows:

1. Let y be a state in L.

Remove y from L;

6

2. For each x 2 N(y), where

N(y) = fy + h�

i

e

i

j i 2 f1; :::; mg; �

i

2 f�1; 1gg, compute

^

V (x) = min

�

min

�

h

hg(x)k�k+

P

m

i=1

�

i

�

V (x+ h�

i

e

i

)

i

:

If

^

V (x) <

�

V (x), set

�

V (x) =

^

V (x),

and add x to L if x does not already belong to L.

The analog of Dijkstra's method is obtained when the state y exiting L is the state with

the minimum value of

�

V . Reference [1] proves the remarkable fact that in this method,

each state will enter and exit L at most once. An e�cient way to implement Dijkstra's

algorithm is to maintain the list L partially ordered in a binary heap.

If the state exiting the candidate list at each iteration is not a state with minimum

label, the required number of iterations can be shown to be �nite under our assumptions

(see [2]), but some states many enter and exit the candidate list more than once. However,

such a method avoids the overhead associated with �niding the node of minimum label. A

particularly e�ective strategy for selecting the state to exit the candidate list was proposed

in [3] in the context of the classical shortest path problem. This strategy, called Small

Label First method (SLF for short), maintains the candidate list in a double-ended queue

Q and inserts a node to the bottom or to the top of Q depending on whether the label

of the node is larger than the label of the top node of Q or not. In [2], this method was

adapted to the trajectory optimization problem as follows:

1. Let x be a state that enters Q.

Let y be the top state of Q.

2. If

�

V (x) �

�

V (y) then insert x at the top of Q,

else insert x at the bottom of Q.

The state removed from L at each iteration is always the top state of Q. In [4], a more

sophisticated state removal strategy, called Large Label Last strategy (LLL for short), is

proposed for the classical shortest path problem. In this strategy, the top state of Q is

repositioned to the bottom whenever its label is larger than the average node label in Q.

In [2], this method was adapted to the trajectory optimization problem as follows:

1. Let s =

P

x2Q

�

V (x)

kQk

.

Let y be the top state of Q.

2. If

�

V (y) > s then move y at the bottom of Q.

Repeat until a state y such that

�

V (y) � s is found and is removed from Q.

The SLF and LLL strategies have also been combined to solve the trajectory optimiza-

tion problem in [2]. The serial implementations of the methods of the present section,

given in [2], have served as the starting point for the parallel implementations described

in the next section.

7

4. PARALLELIZATION

In this section, we discuss our parallelization of the Dijkstra, SLF, and combined

SLF/LLL methods described in the preceding section. Our implementations are simi-

lar to the corresponding ones described in [4] for the classical shortest path problem.

The prototype label correcting method of the preceding section can be easily parallelized

at least for shared memory machines. The basic idea is that several states can be si-

multaneously extracted from the candidate list and the labels of adjacent states can be

updated in parallel. On a shared memory multiprocessor, the label of each state is stored

in a unique memory location, shared among all processors. This means that when more

processors try to modify simultaneously the label of the same state, they must lock the

corresponding memory location to guarantee that only one processor at a time modi�es

the label of that state. We assume the availability of p processors. For the SLF/LLL

method, we have p queues shared among the processors. Each processor i uses only the

i-th queue when the LLL state removal strategy is applied and one of the p queues when a

state has to be inserted according to the SLF state insertion strategy. In particular, each

processor extracts the state x from the top of its queue (or moves it to the bottom of the

queue, following the LLL procedure), updates the labels for the adjacent states, and uses

a heuristic procedure for choosing the queue to insert a state that enters L. This queue

is chosen on the basis of the minimum current value for the sum of states assigned to the

queues. As remarked in [4], this heuristic is very easy to implement and ensures a good

load balancing among the processors.

In order to parallelize the Dijkstra version of the label correcting method, we maintain

a separate binary heap for each processor. Each processor extracts the state at the top of

its own binary heap, and whenever a state must be inserted in L, the appropriate binary

heap is chosen according to the same heuristic procedure used for the SLF/LLL method.

Furthermore, when a processor updates the label of a state already present in L, the same

processor reorganizes the corresponding binary heap, in order to keep it ordered.

Even though all the p binary heaps are ordered, the entire list L is not fully sorted.

This means that in our parallel implementation of Dijkstra's method a state may exit

and reenter L several times in the course of the algorithm. Nonetheless, we refer to this

parallel method as the parallel Dijkstra's method, even though the corresponding parallel

version is not trully a label setting algorithm. It is worth observing that the overhead for

inserting and deleting a state in a binary heap strongly depends on the number of states

in the binary heap. This means that by using multiple binary heaps in the parallelization

scheme, this overhead is substantially reduced.

In our parallel implementations, both Dijkstra's and the SLF/LLL methods are exe-

cuted asynchronously, in the sense that a new state may be removed from the list L by

some processor while other processors are still updating the labels of other states. For

a more detailed discussion on parallel asynchronous iterative methods see [6]. More for-

mally, let

�

V (x; t), t = 0; 1; : : : be the value of the label of state x at time t. This is the

value of

�

V (x) which is kept in the shared memory location. The label

�

V (x; t) is updated

at a subset of times T (x) � f0; 1; :::g by some processor by using the following formula:

�

V (x; t+ 1) = min

�

min

�

h

hg(x)k�k+

P

m

i=1

�

i

�

V (x + h�

i

e

i

; �

i

(x; t))

i

; if t 2 T (x); (18)

8

�

V (x; t+ 1) =

�

V (x; t); otherwise: (19)

In this formula �

i

(x; t)) represents the time at which the label

�

V (x + h�

i

e

i

) has been

read from shared memory by the processor updating

�

V (x) at time t. The asynchronism is

due to the fact that we may have �

i

(x; t) < t and

�

V (x+ h�

i

e

i

; �

i

(x; t)) 6=

�

V (x+ h�

i

e

i

; t).

The convergence of the algorithms can be shown under very weak assumptions. The

proof closely resembles the proofs given in [6], Section 6.4, and it will not be given here.

Dijkstra's and the SLF/LLL methods and its parallel asynchronous versions have been

implemented and tested on an Alliant FX/80, a vector-parallel computer with 8 proces-

sors, each with 23 M
ops of peak performance, having a core memory of 32 MBytes. All

the codes are written in Fortran and compiled with the FX/Fortran 4.2 compiler.

We have considered two di�erent sets of randomly generated test problems, which are

2-D and 3-D grids obtained from discretization of a square and of a cube with sides

of length that is a multiple of the discretization step h. This ensures that the distance

between any two adjacent states in the same direction is always h. We have used a similar

approach for generating our test problem to that used in [2]. G is the set of the interior

points of the square or the cube, whereas @G is the set of the points on the border. S and

B are the states on the grids. The values of g in all points in S are randomly generated,

according to a uniform distribution in the range [1,1000]. The cost f of all border states

is assumed to be in�nity, except for two adjacent states in a corner of the square or of the

cube. In order to consider test problems that are more realistic, we add some obstacles,

that is, we assume that g(x) = 1 for some x 2 S. It is easy to show that these types

of problems allow the use of Dijkstra's and the SLF/LLL methods to �nd the optimal

cost-to-go from all interior points to a point on the border B.

The full list of all test problems is reported in Table 1. The percentage of obstacles

listed in this table is the fraction of the number of states x in S for which g(x) =1.

9

Table 1. List of test problems

Problem states Percentage of Obstacles

2-D.1 500x500 0

2-D.2 500x500 0.05

2-D.3 500x500 0.10

2-D.4 500x500 0.15

2-D.5 500x500 0.20

2-D.6 750x750 0

2-D.7 750x750 0.05

2-D.8 750x750 0.10

2-D.9 750x750 0.15

2-D.10 750x750 0.20

2-D.11 1000x1000 0

2-D.12 1000x1000 0.05

2-D.13 1000x1000 0.10

2-D.14 1000x1000 0.15

2-D.15 1000x1000 0.20

3-D.1 25x25x25 0

3-D.2 25x25x25 0.05

3-D.3 25x25x25 0.10

3-D.4 25x25x25 0.15

3-D.5 25x25x25 0.20

3-D.6 50x50x50 0

3-D.7 50x50x50 0.05

3-D.8 50x50x50 0.10

3-D.9 50x50x50 0.15

3-D.10 50x50x50 0.20

3-D.11 75x75x75 0

3-D.12 75x75x75 0.05

3-D.13 75x75x75 0.10

3-D.14 75x75x75 0.15

3-D.15 75x75x75 0.20

The numerical results are collected in 4 di�erent tables, reported below, one for each

algorithm and category of test problems (2-D or 3-D grid problems). In these tables, time

in secs, and number of iterations required to solve the test problems is reported for each

algorithm. For the parallel methods we report also the speed-up values, de�ned by the

ratio between the sequential and parallel execution time.

10

Table 2. Results of Dijkstra's method for 2-D grid problems

Problem Sequential Parallel Speed-up

2-D.1 248004 / 97.03 254300 / 18.79 5.16

2-D.2 235603 / 88.08 243308 / 17.45 5.05

2-D.3 223169 / 79.68 226118 / 19.76 4.03

2-D.4 210649 / 71.53 213609 / 18.09 3.95

2-D.5 197959 / 63.75 200781 / 16.42 3.88

2-D.6 559504 / 225.71 565726 / 61.08 3.70

2-D.7 531524 / 205.08 537100 / 50.42 4.07

2-D.8 223169 / 79.55 234376 / 16.29 4.88

2-D.9 475314 / 166.91 480871 / 42.65 3.91

2-D.10 446669 / 149.23 451594 / 39.06 3.82

2-D.11 996004 / 410.33 1011577 / 80.56 5.09

2-D.12 946201 / 372.91 966309 / 75.67 4.93

2-D.13 896302 / 337.44 917883 / 69.55 4.85

2-D.14 846122 / 304.09 873970 / 65.07 4.67

2-D.15 795138 / 272.09 876824 / 62.13 4.38

Table 3. Results of SLF/LLL method for 2-D grid problems

Problem Sequential Parallel Speed-up

2-D.1 283062 / 71.59 273319 / 14.35 4.99

2-D.2 266881 / 63.37 259438 / 13.12 4.83

2-D.3 249373 / 55.52 244863 / 15.24 3.64

2-D.4 232731 / 48.50 213609 / 13.81 3.51

2-D.5 216077 / 42.01 213939 / 12.47 3.37

2-D.6 640159 / 162.43 617794 / 32.63 4.98

2-D.7 601712 / 143.15 584866 / 37.87 3.78

2-D.8 249373 / 55.40 245057 / 11.88 4.66

2-D.9 526395 / 109.89 537960 / 26.44 4.16

2-D.10 489954 / 95.70 483180 / 29.79 3.21

2-D.11 1144104 / 291.05 1102015 / 62.95 4.62

2-D.12 1072272 / 255.82 1045384 / 58.12 4.40

2-D.13 1004776 / 224.80 985675 / 54.12 4.15

2-D.14 936121 / 196.13 946082 / 53.09 3.69

2-D.15 869957 / 170.54 861412 / 44.82 3.80

11

Table 4. Results of Dijkstra's method for 3-D grid problems

Problem Sequential Parallel Speed-up

3-D.1 12168 / 119.92 14664 / 17.64 6.80

3-D.2 11560 / 108.26 14086 / 16.00 6.77

3-D.3 10951 / 92.56 13224 / 13.13 7.05

3-D.4 10342 / 76.58 12604 / 11.67 6.56

3-D.5 9733 / 64.37 11672 / 9.38 6.86

3-D.6 110593 / 1186.40 130801 / 167.56 7.08

3-D.7 105063 / 1003.41 124102 / 149.17 6.73

3-D.8 99534 / 874.61 118458 / 122.81 7.12

3-D.9 94002 / 725.35 111061 / 102.86 7.05

3-D.10 88464 / 626.08 104073 / 85.33 7.34

3-D.11 389018 / 4283.12 445048 / 590.98 7.25

3-D.12 369567 / 3649.76 420662 / 506.28 7.21

3-D.13 350116 / 3121.77 393070 / 437.26 7.14

3-D.14 330657 / 2619.21 386584 / 371.81 7.04

3-D.15 311176 / 2201.13 357460 / 307.05 7.17

Table 5. Results of SLF/LLL method for 3-D grid problems

Problem Sequential Parallel Speed-up

3-D.1 20007 / 232.70 18635 / 19.87 11.71

3-D.2 18654 / 204.66 18390 / 17.16 11.93

3-D.3 17929 / 178.14 16881 / 13.76 12.95

3-D.4 17219 / 154.58 16132 / 9.94 15.55

3-D.5 14714 / 115.20 14673 / 9.58 12.02

3-D.6 180871 / 2194.08 173213 / 159.84 13.73

3-D.7 173189 / 1930.34 159966 / 138.56 13.93

3-D.8 152481 / 1505.92 151203 / 123.76 12.17

3-D.9 143647 / 1278.71 141053 / 89.55 14.28

3-D.10 130514 / 1030.12 126106 / 93.76 10.99

3-D.11 630325 / 7852.97 551956 / 624.99 12.56

3-D.12 592540 / 6639.18 528597 / 523.56 12.68

3-D.13 525829 / 5265.43 503412 / 473.25 11.13

3-D.14 499068 / 4513.38 497054 / 303.18 14.86

3-D.15 444179 / 3506.93 457312 / 292.57 11.99

12

In Tables 6 and 7 we aim to summarize the performance of the various methods. In

particular, we compare the methods following an approach that is similar to the one

proposed in [15], by giving to each method and for each test problem, a score that is

equal to the ratio of the execution time of this method over the execution time of the

fastest method for the given problem. Thus, for each method, we obtain an average score,

which is the ratio of the sum of the scores of the method over the number of test problem.

This average score, given in Tables 6 and 7, indicates how much a particular method has

been slower on the average than the most successful method.

Table 6. Ranking on 2-D grid problems

Algorithm Number of Processors Performance Index

DIJKSTRA 1 6.02

8 1.37

SLF/LLL 1 4.12

8 1.00

Table 7. Ranking on 3-D grid problems

Algorithm Number of Processors Performance Index

DIJKSTRA 1 7.34

8 1.05

SLF/LLL 1 13.26

8 1.04

Note that for 2-dimensional problems, the SLF/LLL method is faster than Dijkstra's

method in a sequential environment, despite the smaller number of iterations of Dijk-

stra's method. This is due to the extra overhead for �nding a state with minimal label

in Dijkstra's method. For 3-dimensional problems, however, each iteration is much more

costly than for 2-dimensional problems, and as a result the sequential Dijkstra's method is

faster than the sequential SLF/LLL method. Nonetheless the parallel versions of the two

methods are competitive for 3-dimensional problems because the SLF/LLL method ex-

hibits greater speedup in our experiments. Furthermore, the parallel version of Dijkstra's

method requires substantially more iterations than its serial counterpart. The superlinear

speedup of the parallel SLF/LLL method is somewhat unexpected. It is due to the fact

that the computation of the cost-to-go function in the 3-dimensional case often simpli�es

to a 2-dimensional computation. We have experimentally observed that this simpli�ca-

tion occurs much more frequently in the parallel SLF/LLL method than in its sequential

version.

13

REFERENCES

1. J. N. Tsitsiklis, E�cient Algorithms for Globally Optimal Trajectories, Tech. Rep.

LIDS-P-2210, Laboratory for Information and Decision Systems, M.I.T., October

1993.

2. L. C. Polymenakos, D. P. Bertsekas, and J. N. Tsitsiklis, Extensions and Implemen-

tations of E�cient Algorithms for Globally Optimal Trajectories, unpublished report,

Laboratory for Information and Decision Systems, M.I.T., Cambridge, Ma, U.S.A.,

1994.

3. D. P. Bertsekas, A Simple and Fast Label Correcting Algorithm for Shortest Paths,

Networks, 23, 703-709, 1993.

4. D. P. Bertsekas, F. Guerriero, and R. Musmanno, Parallel Asynchronous Label Cor-

recting Methods for Shortest Paths, Journal of Optimization Theory and Applications,

1995 (toappear).

5. D. P. Bertsekas, and J. N. Tsitsiklis, An Analysis of Stochastic Shortest Path Algo-

rithms, Math. Operations Res., Vol. 16, pp. 580-595, 1991.

6. D. P. Bertsekas, and J. N. Tsitsiklis, Parallel and Distributed Computation: Numer-

ical Methods, Prentice-Hall, Englewood Cli�s, N.J., 1989.

7. H. J. Kushner, and P. G. Dupuis, Numerical Methods for Stochastic Control Problems

in Continuous Time, Springer-Verlag, New-York, 1992.

8. M. Falcone, Numerical approach to the in�nite horizon problem of deterministic con-

trol theory, Applied Mathematics and Optimization, Vol. 15 (1), pp. 1-13, 1987.

9. R. Gonzales, and E. Rofman, On Deterministic Control Problems: an Approximation

Procedure for the Optimal Cost, I, Stationary Problem, SIAM Journal on Control

and Optimization, 23, pp. 242-266, 1985.

10. H. J. Kushner, Numerical methods for stochastic control problems in continuous time,

SIAM Journal on Control and Optimization, Vol. 28 (5), pp. 999-1048, 1990.

11. W. Fleming, and R. Rishel, Deterministic and Stochastic Optimal Control, Springer-

Verlag, New York, 1975.

12. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, N.J.,

1957.

13. F. Glover, R. Glover, and D. Klingman, The Threshold Shortest Path Algorithm,

Networks, 14, 1986.

14. U. Pape, Implementation and E�ciency of Moore-Algorithms for the Shortest Path

Problem, Mathematical Programming, 7, 212-222, 1974.

15. A. A. Brown, and M. C. Bartholomew-Biggs, Some E�ective Methods for Uncon-

strained Optimization Based on the Solution of Systems of Ordinary Di�erential

Equations, Tech. Rep. 178, Numerical Optimization Centre, The Hat�eld Polytechnic,

Hat�eld, UK, 1987.

16. D. P. Bertsekas, Distributed Dynamic Programming, IEEE Transactions on Aut. Con-

trol, Vol. AC-27, pp. 610-616, 1982.

