Parallel Shortest Paths Methods for Globally Optimal Trajectories *
D.P. Bertsekas®, F. Guerriero® and R. Musmanno®

2Laboratory for Information and Decision Systems, M.I.T.,
Cambridge, MA, 02139, U.S.A.

PDipartimento di Elettronica, Informatica e Sistemistica,
Universita’ della Calabria, 87036 Rende, Italy

In this paper we consider a special type of trajectory optimization problem that can be
viewed as a continuous-space analog of the classical shortest path problem. This problem
is approached by space discretization and solution of a discretized version of the associ-
ated Hamilton-Jacobi equation. It was recently shown by Tsitsiklis [1] that some of the
ideas of classical shortest path methods, such as those underlying Dijkstra’s algorithm,
can be applied to solve the discretized Hamilton-Jacobi equation. In more recent work,
Polymenakos, Bertsekas, and Tsitsiklis [2] have carried this analogy further to show that
some efficient label correcting methods for shortest path problems, the SLF and SLF/LLL
methods of [3] and [4], can be fruitfully adapted to solve the discretized Hamilton-Jacobi
equation. In this paper we discuss parallel asynchronous implementations of these meth-
ods on a shared memory multiprocessor, the Alliant FX/80. Our results show that these
methods are well suited for parallelization and achieve excellent speedup.

1. INTRODUCTION

We consider a trajectory optimization problem that arises in a variety of contexts
involving the planning of a motion within a, perhaps irregular, region of two-dimensional
or three-dimensional space. A vehicle starts at an initial point xy located in some region
G of ™ and follows a trajectory z(t) such that

dx/dt = u(t), (1)

where u(t) € R™ is a control vector that must satisfy the constraint ||u(t)|| < 1 for all ¢.
After a certain time T the vehicle arrives at the boundary G of G where a cost ¢(z(T))
is incurred. There is also a traveling cost [r(x(t))dt that depends on the trajectory
followed by the vehicle. The objective is to find a trajectory x(¢) that starts at the given
initial point z(0), ends at the boundary 0G of G, and minimizes

o) + [rlat)i,)

“Research supported by National Science Foundation under Grants 9108058-CCR, 9221293-INT, and
9300494-DMT

subject to the constraint ||u(¢)|| < 1 for all ¢.

We assume that inf,ecq () > 0, which forces the vehicle to reach the boundary of
G in finite time. Note that this problem formulation includes the case where we want
to reach a given destination point z; with minimum traveling cost] r(z(t))dt; we may
just take G = R™ — {x;} and ¢(z;) = 0. More generally, we can use the terminal cost
q(z) to provide a preference for reaching some portions of the boundary of G over others.
In particular, points of the boundary of G with a very high value of ¢(z) are essentially
“forbidden”. This allows the introduction of “obstacles” that the vehicle must avoid.

Note that when r(z(t)) is identically equal to 1, when G contains several obstacles, and
when there is a fixed destination xf, the problem becomes the shortest path problem of
finding a minimum length trajectory that starts at zy ends at z and avoids the obstacles.
This problem has been extensively studied in the robotics and theoretical computer science
literature. More generally, the integral cost f] r(x(t))dt may be viewed as a “generalized
length” of the trajectory, and the problem may be viewed as a continuous-space shortest
path problem.

Our problem can be approached by classical continuous-time optimal control techniques.
However, when the region GG contains many “obstacles” that the vehicle must avoid,
and/or the cost functions ¢(z) and r(x) are nonconvex, the problem may be essentially
combinatorial and may have multiple local minima. In this case, solution methods based
on dynamic programming and discretization of the associated Hamilton-Jacobi equation,
which provide globally optimal solutions, are typically preferable.

There is an interesting general method to address the discretization issues of continuous-
time optimal control. The main idea in this method is to discretize, in addition to time,
the state space R™ using some kind of grid, and then to approximate the cost-to-go V()
of nongrid states by linear interpolation of the cost-to-go values of the nearby grid states.
By this we mean that if a nongrid state x is expressed as

m

=3 & (3)
i=1
in terms of the grid states z',..., 2™, where the positive weights £ add to 1, then the

cost-to-go of x is approximated by
> &V (), (4)
i=1

where V(z') is the cost-to-go of x'. When this idea is worked out, one ends up with a
stochastic optimal control problem having as states the finite number of grid states, and
transition probabilities that are determined from the weights & above. If the original
continuous-time optimal control problem has fixed terminal time, the resulting stochastic
control approximation has finite horizon. If the terminal time of the original problem
is free and subject to optimization, as in the problem of this paper, the stochastic con-
trol approximation becomes a Markovian Decision Problem, known as a first passage or
stochastic shortest path problem (see [5] and [6] for a discussion of such problems). We
refer to the monograph [7], the papers [8] and [9], and the survey [10] for a description
and analysis of continuous-time optimal control discretization issues.

Tsitsiklis [1] showed that the problem of this paper, when appropriately discretized,
maintains much of the structure of the classical shortest path problem on directed graphs.
In particular, a finitely terminating adaptation of the Dijkstra shortest path algorithm was
developed in [1]. In [2], other shortest path methods were adapted to the problem of this
paper. These adaptations are extensions to the SLF label correcting method of [3] and the
SLF/LLL method of [4]. Computational results given in [3] show that these adaptations
vastly outperform (by orders of magnitude) the classical dynamic programming methods,
which are based on Jacobi and Gauss-Seidel value iterations.

In the present paper we focus on the efficient parallelization of the Dijkstra, and
SLF/LLL methods of [3] and [4] on a shared memory machine. We draw motivation
from our earlier work on parallel asynchronous label correcting methods, where we found
that the SLF and SLF/LLL approaches lend themselves well to parallel computation, and
result in very efficient shortest path solution methods. We concentrate on asynchronous
algorithms. Generally, dynamic programming iterations, which contain label correcting
methods as a special case, can be executed in a totally asynchronous fashion, as shown in
[16]. The textbook [6] contains an extensive discussion and analysis of asynchronous algo-
rithms, including theory that establishes the validity of the asynchronous implementations
of the present paper.

Our computational results suggest that the Dijkstra and SLF/LLL approaches are
well suited for parallel solution of the problem, and result in excellent speedup. The
SLF/LLL method is faster for the problems that we tried, both in a serial and in a
parallel environment. This is consistent with the serial computational results of [2]. Since
the solution of the problem of this paper is very computationally intensive, we conclude
that the gains from parallelization can be significant.

The remainder of the paper is organized as follows. In Section 2 we formulate the
trajectory optimization problem, and we describe the discretized version of the Hamilton-
Jacobi equation. In Section 3 we describe the Dijkstra method and the SLF/LLL method.
In Section 4 we present parallel asynchronous implementations of these methods and
computational results.

2. PROBLEM FORMULATION

A trajectory starting at o € G is a continuous function x : [0,T] € R™, where T is
some positive scalar, such that xz(t) € G, for all t € [0,T) and x(T) € 0G. The trajectory
is said to be admissible if there exists a function w : [0, 7] — R™ such that:

z(t) = x(0) + /0lt u(s)ds, (5)
and
lu(®)[| <1, Vtel0,T]. (6)

Let G a bounded connected open subset of R™ and let G be its boundary. Let also
r:G — (0,00) and ¢ : G — (0,00) be two positive-valued cost functions. The cost of
an admissible trajectory is given by

o@(T) + [7)) @

The optimal cost-to-go function V* : G U 0G — R is defined as follows. If x € 0G,
we let V*(x) = q(x), otherwise, if x € G, we let V*(z) be the infimum of the costs of all
admissible trajectories starting at .

The cost-to-go function V*, under appropriate conditions [11], satisfies the Hamilton-
Jacobi equation

V*z)= min 7(z)+u'VV*(2), r€QG. (8)

ueR™, fJul|<1

A discretized version of this equation was given and analyzed in [1]. We follow closely
the framework of that reference.

Let h > 0 some discretization step. Let S and B be discretizations of the sets G' and
0G, whose elements are of the form (ih, jh), where i and j are integers. For each point
x € S, we denote by N(z) the set of neighbors of = defined by

N(z) ={z+hoje; € SUB |ie{l,...m}, a; € {—1,1}}, (9)

where e; is the +-th unit vector of &™.

We assume that we have two functions g : S — (0,00) and f : B — (0,00), which
represent the discretizations of the traveling and terminal cost functions r and ¢, resopec-
tively. The function g can usually be defined by g(z) = r(x) for every x € S. The choice
of f may depend on the nature of §G because B can be disjoint from #G even if B is a
good approximation to §G. We also introduce a function V' : SUB — R, which represents
an approximation of the optimal cost-to-go function V*.

The discretized Hamilton-Jacobi equation (8) is given by

Vi) = i, pin @6l + 3507 @ +hae)|. a e, (10
V(z)=f(z), =z€B, (11)

where:

1ol = >0, 0eo, (12)
=1

and O is the unit simplex in R™,

@={0€§Rm|20i=1,0i20}. (13)

i=1

The manner in which Egs. (10) and (11) approximate the Hamilton-Jacobi equation is
explained in [1]. In particular, consider a vehicle that starts at some point x € S and
moves with a unit speed along a direction d, until the point x + h > 7", 6;a;e; is reached.
The direction d is determined by «, which specifies the quadrant within which d lies, and
by the choice of #, which specifies the direction of motion within that quadrant. The total
time required to reach the final point is hl|f]|. The traveling cost is hg(x)||0||, since g(x)

is the traveling cost per unit time. With these approximations, it is seen that the optimal
cost-to-go function V*(x) satisfies

V*(z)~ min_ min [hg(x)||0|| Ly (:1: s Giaieiﬂ | (14)

ace{—-1,1}m 0cO =

Now if in the above equation we use the approximation

V* (:L’ +h Z 92'%'62) R~ Z 0:;V*(x + hoe;), (15)

i=1 i=1

we obtain Eq. (10).

The equations (10) and (11) represent a special case of discretization based on finite
elements. In [7], these equations are viewed as Dynamic Programming Equations for a
Markov Decision Problem, which can be solved by using methods like value or policy
iteration. For a more detailed description of these methods see [7] and [9]. However, as
remarked in [1] and [2], these methods do not exploit the special structure of our problem
and are relatively slow. In the next section we discuss methods that are much more
efficient.

3. LABEL CORRECTING METHODS

The analysis and methodology of [1] and [2] rests on the following fundamental lemma:

Lemma 3.1 Let x € S, and let « € {—1,1}", § € O, be such that V(z) = hg(x)||0] +
m V(x4 hase;). Then, V(x + ase;) < V(x), for all i such that 6; > 0.

This lemma, which is proved in [1], can be used to show that the prototype label
correcting algorithm to be described shortly terminates in a finite number of iterations
(see [2]). This algorithm maintains a vector V' (z) of labels, where x € S, and a candidate
list L of states. At the start of the algorithm, the list L contains just an element x; of B
at which f(x) is minimized, that is:

V(zy) < V(x), VreSUB. (16)

Also the initial labels are given by

V(z) = {V(:L’) Ve € LUB, (17)

00 otherwise.

The algorithm terminates when L is empty and upon termination the optimal cost-to-
go of x is given by V' (z). Assuming L nonempty at a typical iteration, the vector of labels
and the candidate list are updated as follows:

1. Let y be a state in L.
Remove y from L;

2. For each z € N(y), where
N(y) ={y + hage; | i € {1,....,m}, a; € {—1,1}}, compute
V(x) = min, ming [hg(x)[|0]] + Sy 6,V (z + haye;)).
If V(z) < V(z), set
V(z)=V(2),
and add = to L if x does not already belong to L.

The analog of Dijkstra’s method is obtained when the state y exiting L is the state with
the minimum value of V. Reference [1] proves the remarkable fact that in this method,
each state will enter and exit L at most once. An efficient way to implement Dijkstra’s
algorithm is to maintain the list L partially ordered in a binary heap.

If the state exiting the candidate list at each iteration is not a state with minimum
label, the required number of iterations can be shown to be finite under our assumptions
(see [2]), but some states many enter and exit the candidate list more than once. However,
such a method avoids the overhead associated with finiding the node of minimum label. A
particularly effective strategy for selecting the state to exit the candidate list was proposed
in [3] in the context of the classical shortest path problem. This strategy, called Small
Label First method (SLF for short), maintains the candidate list in a double-ended queue
() and inserts a node to the bottom or to the top of) depending on whether the label
of the node is larger than the label of the top node of @ or not. In [2], this method was
adapted to the trajectory optimization problem as follows:

1. Let = be a state that enters Q).
Let y be the top state of Q).

2. If V(z) < V(y) then insert x at the top of Q,
else insert x at the bottom of Q).

The state removed from L at each iteration is always the top state of (). In [4], a more
sophisticated state removal strategy, called Large Label Last strategy (LLL for short), is
proposed for the classical shortest path problem. In this strategy, the top state of @) is
repositioned to the bottom whenever its label is larger than the average node label in Q).
In [2], this method was adapted to the trajectory optimization problem as follows:

_ 2@V @
1. Let s = W

Let y be the top state of Q.

2. If V(y) > s then move y at the bottom of Q.
Repeat until a state y such that V(y) < s is found and is removed from Q.

The SLF and LLL strategies have also been combined to solve the trajectory optimiza-
tion problem in [2]. The serial implementations of the methods of the present section,
given in [2], have served as the starting point for the parallel implementations described
in the next section.

4. PARALLELIZATION

In this section, we discuss our parallelization of the Dijkstra, SLF, and combined
SLF/LLL methods described in the preceding section. Our implementations are simi-
lar to the corresponding ones described in [4] for the classical shortest path problem.
The prototype label correcting method of the preceding section can be easily parallelized
at least for shared memory machines. The basic idea is that several states can be si-
multaneously extracted from the candidate list and the labels of adjacent states can be
updated in parallel. On a shared memory multiprocessor, the label of each state is stored
in a unique memory location, shared among all processors. This means that when more
processors try to modify simultaneously the label of the same state, they must lock the
corresponding memory location to guarantee that only one processor at a time modifies
the label of that state. We assume the availability of p processors. For the SLF/LLL
method, we have p queues shared among the processors. Each processor i uses only the
i-th queue when the LLL state removal strategy is applied and one of the p queues when a
state has to be inserted according to the SLF state insertion strategy. In particular, each
processor extracts the state « from the top of its queue (or moves it to the bottom of the
queue, following the LLL procedure), updates the labels for the adjacent states, and uses
a heuristic procedure for choosing the queue to insert a state that enters L. This queue
is chosen on the basis of the minimum current value for the sum of states assigned to the
queues. As remarked in [4], this heuristic is very easy to implement and ensures a good
load balancing among the processors.

In order to parallelize the Dijkstra version of the label correcting method, we maintain
a separate binary heap for each processor. Each processor extracts the state at the top of
its own binary heap, and whenever a state must be inserted in L, the appropriate binary
heap is chosen according to the same heuristic procedure used for the SLF/LLL method.
Furthermore, when a processor updates the label of a state already present in L, the same
processor reorganizes the corresponding binary heap, in order to keep it ordered.

Even though all the p binary heaps are ordered, the entire list L is not fully sorted.
This means that in our parallel implementation of Dijkstra’s method a state may exit
and reenter L several times in the course of the algorithm. Nonetheless, we refer to this
parallel method as the parallel Dijkstra’s method, even though the corresponding parallel
version is not trully a label setting algorithm. It is worth observing that the overhead for
inserting and deleting a state in a binary heap strongly depends on the number of states
in the binary heap. This means that by using multiple binary heaps in the parallelization
scheme, this overhead is substantially reduced.

In our parallel implementations, both Dijkstra’s and the SLF/LLL methods are exe-
cuted asynchronously, in the sense that a new state may be removed from the list L by
some processor while other processors are still updating the labels of other states. For
a more detailed discussion on parallel asynchronous iterative methods see [6]. More for-
mally, let V(x,t), t = 0,1,... be the value of the label of state = at time ¢. This is the
value of V(z) which is kept in the shared memory location. The label V(z,t) is updated
at a subset of times T'(x) C {0,1,...} by some processor by using the following formula:

V(w,t+1) = min, ming [hg(@)|0]] + Sy 0V (z + hoses, (., 1))], if t € T(xz), (18)

V(r,t+1) = V(z,t), otherwise. (19)

In this formula 7;(x,t)) represents the time at which the label V(z + haje;) has been
read from shared memory by the processor updating V() at time ¢. The asynchronism is
due to the fact that we may have 7;(z,t) < t and V(z + haze;, 7i(z, 1)) # V(x + hage;, t).

The convergence of the algorithms can be shown under very weak assumptions. The
proof closely resembles the proofs given in [6], Section 6.4, and it will not be given here.

Dijkstra’s and the SLF/LLL methods and its parallel asynchronous versions have been
implemented and tested on an Alliant FX/80, a vector-parallel computer with 8 proces-
sors, each with 23 Mflops of peak performance, having a core memory of 32 MBytes. All
the codes are written in Fortran and compiled with the FX/Fortran 4.2 compiler.

We have considered two different sets of randomly generated test problems, which are
2-D and 3-D grids obtained from discretization of a square and of a cube with sides
of length that is a multiple of the discretization step h. This ensures that the distance
between any two adjacent states in the same direction is always h. We have used a similar
approach for generating our test problem to that used in [2]. G is the set of the interior
points of the square or the cube, whereas OG is the set of the points on the border. S and
B are the states on the grids. The values of g in all points in S are randomly generated,
according to a uniform distribution in the range [1,1000]. The cost f of all border states
is assumed to be infinity, except for two adjacent states in a corner of the square or of the
cube. In order to consider test problems that are more realistic, we add some obstacles,
that is, we assume that g(z) = oo for some z € S. It is easy to show that these types
of problems allow the use of Dijkstra’s and the SLF/LLL methods to find the optimal
cost-to-go from all interior points to a point on the border B.

The full list of all test problems is reported in Table 1. The percentage of obstacles
listed in this table is the fraction of the number of states z in S for which g(z) = oc.

Table 1. List of test problems

Problem states Percentage of Obstacles
2-D.1 500x500 0
2-D.2 500x500 0.05
2-D.3 500x500 0.10
2-D.4 500x500 0.15
2-D.5 500x500 0.20
2-D.6 750x750 0
2-D.7 750x750 0.05
2-D.8 750x750 0.10
2-D.9 750x750 0.15
2-D.10 750x750 0.20
2-D.11 | 1000x1000 0
2-D.12 | 1000x1000 0.05
2-D.13 | 1000x1000 0.10
2-D.14 | 1000x1000 0.15
2-D.15 | 1000x1000 0.20
3-D.1 25x25%25 0
3-D.2 25x25%25 0.05
3-D.3 25x25%25 0.10
3-D.4 25x25%25 0.15
3-D.5 25x25%25 0.20
3-D.6 50x50x50 0
3-D.7 50x50x50 0.05
3-D.8 50x50x50 0.10
3-D.9 50x50x50 0.15

3-D.10 | 50x50x50 0.20
3-D.11 | 75x75x75 0

3-D.12 | 75x75x75 0.05
3-D.13 | 75x75x75 0.10
3-D.14 | 75x75x75 0.15
3-D.15 | 75x75x75 0.20

The numerical results are collected in 4 different tables, reported below, one for each
algorithm and category of test problems (2-D or 3-D grid problems). In these tables, time
in secs, and number of iterations required to solve the test problems is reported for each
algorithm. For the parallel methods we report also the speed-up values, defined by the
ratio between the sequential and parallel execution time.

10

Table 2. Results of Dijkstra’s method for 2-D grid problems

Problem Sequential Parallel Speed-up
2-D.1 248004 / 97.03 | 254300 / 18.79 5.16
2-D.2 235603 / 88.08 | 243308 / 17.45 5.05
2-D.3 223169 / 79.68 | 226118 / 19.76 4.03
2-D4 210649 / 71.53 | 213609 / 18.09 3.95
2-D.5 197959 / 63.75 | 200781 / 16.42 3.88
2-D.6 | 559504 / 225.71 | 565726 / 61.08 3.70
2-D.7 | 531524 / 205.08 | 537100 / 50.42 4.07
2-D.8 223169 / 79.55 | 234376 / 16.29 4.88
2-D.9 475314 / 166.91 | 480871 / 42.65 3.91
2-D.10 | 446669 / 149.23 | 451594 / 39.06 3.82
2-D.11 | 996004 / 410.33 | 1011577 / 80.56 5.09
2-D.12 | 946201 / 372.91 | 966309 / 75.67 4.93
2-D.13 | 896302 / 337.44 | 917883 / 69.55 4.85
2-D.14 | 846122 / 304.09 | 873970 / 65.07 4.67
2-D.15 | 795138 / 272.09 | 876824 / 62.13 4.38

Table 3. Results of SLF/LLL method for 2-D grid problems

Problem

Sequential

Parallel

Speed-up

2-D.1
2-D.2
2-D.3
2-DA4
2-D.5

283062 / 71.59
266881 / 63.37
249373 / 55.52
232731 / 48.50
216077 / 42.01

273319 / 14.35
259438 / 13.12
244863 / 15.24
213609 / 13.81
213939 / 12.47

4.99
4.83
3.64
3.51
3.37

2-D.6
2-D.7
2-D.8
2-D.9
2-D.10

640159 / 162.43
601712 / 143.15
249373 / 55.40
526395 / 109.89
489954 / 95.70

617794 / 32.63
584866 / 37.87
245057 / 11.88
537960 / 26.44
483180 / 29.79

4.98
3.78
4.66
4.16
3.21

2-D.11
2-D.12
2-D.13
2-D.14
2-D.15

1144104 / 291.05
1072272 / 255.82
1004776 / 224.80
936121 / 196.13
869957 / 170.54

1102015 / 62.95
1045384 / 58.12
985675 / 54.12
946082 / 53.09
861412 / 44.82

4.62
4.40
4.15
3.69
3.80

Table 4. Results of Dijkstra’s method for 3-D grid problems

Problem Sequential Parallel Speed-up
3-D.1 12168 / 119.92 14664 / 17.64 6.80
3-D.2 11560 / 108.26 14086 / 16.00 6.77
3-D.3 10951 / 92.56 13224 / 13.13 7.05
3-D.4 10342 / 76.58 12604 / 11.67 6.56
3-D.5 9733 / 64.37 11672 / 9.38 6.86
3-D.6 | 110593 / 1186.40 | 130801 / 167.56 7.08
3-D.7 | 105063 / 1003.41 | 124102 / 149.17 6.73
3-D.8 99534 / 874.61 118458 / 122.81 7.12
3-D.9 94002 / 725.35 | 111061 / 102.86 7.05
3-D.10 88464 / 626.08 | 104073 / 85.33 7.34
3-D.11 | 389018 / 4283.12 | 445048 / 590.98 7.25
3-D.12 | 369567 / 3649.76 | 420662 / 506.28 7.21
3-D.13 | 350116 / 3121.77 | 393070 / 437.26 7.14
3-D.14 | 330657 / 2619.21 | 386584 / 371.81 7.04
3-D.15 | 311176 / 2201.13 | 357460 / 307.05 717

Table 5. Results of SLF/LLL method for 3-D grid problems

Problem Sequential Parallel Speed-up
3-D.1 20007 / 232.70 18635 / 19.87 11.71
3-D.2 18654 / 204.66 18390 / 17.16 11.93
3-D.3 17929 / 178.14 16881 / 13.76 12.95
3-D.4 17219 / 154.58 16132 / 9.94 15.55
3-D.5 14714 / 115.20 14673 / 9.58 12.02
3-D.6 | 180871 / 2194.08 | 173213 / 159.84 13.73
3-D.7 | 173189 / 1930.34 | 159966 / 138.56 13.93
3-D.8 | 152481 / 1505.92 | 151203 / 123.76 12.17
3-D.9 | 143647 / 1278.71 | 141053 / 89.55 14.28
3-D.10 | 130514 / 1030.12 | 126106 / 93.76 10.99
3-D.11 | 630325 / 7852.97 | 551956 / 624.99 12.56
3-D.12 | 592540 / 6639.18 | 528597 / 523.56 12.68
3-D.13 | 525829 / 5265.43 | 503412 / 473.25 11.13
3-D.14 | 499068 / 4513.38 | 497054 / 303.18 14.86
3-D.15 | 444179 / 3506.93 | 457312 / 292.57 11.99

11

12

In Tables 6 and 7 we aim to summarize the performance of the various methods. In
particular, we compare the methods following an approach that is similar to the one
proposed in [15], by giving to each method and for each test problem, a score that is
equal to the ratio of the execution time of this method over the execution time of the
fastest method for the given problem. Thus, for each method, we obtain an average score,
which is the ratio of the sum of the scores of the method over the number of test problem.
This average score, given in Tables 6 and 7, indicates how much a particular method has
been slower on the average than the most successful method.

Table 6. Ranking on 2-D grid problems

Algorithm | Number of Processors | Performance Index
DIJKSTRA 1 6.02
8 1.37
SLF/LLL 1 4.12
8 1.00

Table 7. Ranking on 3-D grid problems

Algorithm | Number of Processors | Performance Index
DIJKSTRA 1 7.34
8 1.05
SLF/LLL 1 13.26
8 1.04

Note that for 2-dimensional problems, the SLF/LLL method is faster than Dijkstra’s
method in a sequential environment, despite the smaller number of iterations of Dijk-
stra’s method. This is due to the extra overhead for finding a state with minimal label
in Dijkstra’s method. For 3-dimensional problems, however, each iteration is much more
costly than for 2-dimensional problems, and as a result the sequential Dijkstra’s method is
faster than the sequential SLF/LLL method. Nonetheless the parallel versions of the two
methods are competitive for 3-dimensional problems because the SLF/LLL method ex-
hibits greater speedup in our experiments. Furthermore, the parallel version of Dijkstra’s
method requires substantially more iterations than its serial counterpart. The superlinear
speedup of the parallel SLF/LLL method is somewhat unexpected. It is due to the fact
that the computation of the cost-to-go function in the 3-dimensional case often simplifies
to a 2-dimensional computation. We have experimentally observed that this simplifica-
tion occurs much more frequently in the parallel SLF/LLL method than in its sequential
version.

13

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

J. N. Tsitsiklis, Efficient Algorithms for Globally Optimal Trajectories, Tech. Rep.
LIDS-P-2210, Laboratory for Information and Decision Systems, M.LT., October
1993.

L. C. Polymenakos, D. P. Bertsekas, and J. N. Tsitsiklis, Extensions and Implemen-
tations of Efficient Algorithms for Globally Optimal Trajectories, unpublished report,
Laboratory for Information and Decision Systems, M.I.T., Cambridge, Ma, U.S.A.,
1994.

D. P. Bertsekas, A Simple and Fast Label Correcting Algorithm for Shortest Paths,
Networks, 23, 703-709, 1993.

D. P. Bertsekas, F. Guerriero, and R. Musmanno, Parallel Asynchronous Label Cor-
recting Methods for Shortest Paths, Journal of Optimization Theory and Applications,
1995 (toappear).

D. P. Bertsekas, and J. N. Tsitsiklis, An Analysis of Stochastic Shortest Path Algo-
rithms, Math. Operations Res., Vol. 16, pp. 580-595, 1991.

D. P. Bertsekas, and J. N. Tsitsiklis, Parallel and Distributed Computation: Numer-
ical Methods, Prentice-Hall, Englewood Cliffs, N.J., 1989.

H. J. Kushner, and P. G. Dupuis, Numerical Methods for Stochastic Control Problems
in Continuous Time, Springer-Verlag, New-York, 1992.

M. Falcone, Numerical approach to the infinite horizon problem of deterministic con-
trol theory, Applied Mathematics and Optimization, Vol. 15 (1), pp. 1-13, 1987.

R. Gonzales, and E. Rofman, On Deterministic Control Problems: an Approximation
Procedure for the Optimal Cost, I, Stationary Problem, SIAM Journal on Control
and Optimization, 23, pp. 242-266, 1985.

H. J. Kushner, Numerical methods for stochastic control problems in continuous time,
STAM Journal on Control and Optimization, Vol. 28 (5), pp. 999-1048, 1990.

W. Fleming, and R. Rishel, Deterministic and Stochastic Optimal Control, Springer-
Verlag, New York, 1975.

R. Bellman, Dynamic Programming, Princeton University Press, Princeton, N.J.,
1957.

F. Glover, R. Glover, and D. Klingman, The Threshold Shortest Path Algorithm,
Networks, 14, 1986.

U. Pape, Implementation and Efficiency of Moore-Algorithms for the Shortest Path
Problem, Mathematical Programming, 7, 212-222, 1974.

A. A. Brown, and M. C. Bartholomew-Biggs, Some Effective Methods for Uncon-
strained Optimization Based on the Solution of Systems of Ordinary Differential
Equations, Tech. Rep. 178, Numerical Optimization Centre, The Hatfield Polytechnic,
Hatfield, UK, 1987.

D. P. Bertsekas, Distributed Dynamic Programming, IEEE Transactions on Aut. Con-
trol, Vol. AC-27, pp. 610-616, 1982.

