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This paper considers deterministic discrete-time optimal control problems
over an infinite horizon involving a stationary system and a nonpositive cost
per stage. Various results are provided relating to existence of an e-optimal

stationary policy, and existence of an optimal stationary policy assuming an
optimal policy exists.

1. PROBLEM FORMULATION AND MAIN RESULTS

The question whether it is possible to restrict attention to stationary policies
in deterministic and stochastic optimal control over an infinite horizon has
received considerable attention in view of the fact that stationary policies are
much easier to implement than nonstationary ones, and can often be computed
by means of efficient algorithms. The question is also highly nontrivial and
not as yet completely resolved. The purpose of this paper is to provide an-
analysis of the deterministic optimal control case. The results obtained are to
some extent different in nature than those known for the corresponding stochastic
case as will be explained in the sequel. ‘

Consider a stationary deterministic system

X1 = f (% > Up)s k=0,1,.. (1)

where x, and u, , k =0, 1,... are elements of given nonempty sets S and C
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608 BERTSEKAS AND SHREVE

-referred to as the state space and comtrol space respectively. The function
f:8 X C— S is given. For each x € S we are given a nonempty set Ux)CcC
referred to as the control constraint set at x. Let M be the set of all functions
p: § — C such that pu(x) € U(x) for all x € S. Let IT be the set of all sequences
(ko » 11 5---) such that u, e M, k=0, 1,.... An element of IT is referred to as a
policy. A policy of the form (u, t--.) where u € M is referred to as a stationary
policy.

Let «€(0, 1] be a scalar and g: S x C — [—0, 0] be a function. We refer

to « as the discount factor and to g as the cost per stage. Foreachw = (u, , py ,...) €
IT and x, € S define :

o

Jolx) = 3. oglmy , paley)] )

k=0

where x;,, k =0, 1,... is generated from x, and 7 via the equation

xk+1 :f[xk 3 [.l:k(xk)], k —_ 0, 1,.... ) (3)

The function [ : § — [— oo, 0] is referred to as the cost Sfunction associated with
7. For a stationary policy = = (u, y,...) we also write J..in place of J, .
‘Define the optimal cost function J*: S — [— o0, 0] by

J¥x) = inf J(x), VxeS.

If J.(x) = J¥x)foranwelland xc .S we say that = is optimal at x. If ] (x) =

- J¥(x) for all x € S we say that « is optimal. If for an e > 0 and 7 € IT we have for
all xe S

T@ < +e i

<-4 i

J¥(x) > —o0

JH@) = —co

we say that = is e-optimal.
Our results are given in the following two propositions, the proofs of which
are provided in the next section.

PrOPOSITION 1. Assume that for each x € S there exists a policy that is optimal
at x.
() - If « = 1, then there exists an optimal stationary policy.

(b) If « <1 and J¥(x) > — o0 for all x€ S, then there exists an optimal
stationary policy.

'PROPOSITION 2. If S is a countable set, and o — 1, then for every ¢ > O there
exists an e-optimal stationary policy.

The assumptic

* tion (1b) as the
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The assumption J*(x) > —oo for all x € S cannot be eliminated in Proposi-
tion (1b) as the following counterexample shows:

Counterexample 1. Leto < 1, S = {0}, U(0) = (— 0, 0], £(0, %) = u. Then
J*(0) = — oo and there exists an optimal nonstationary policy — for example
p(0) = —a¥, k =0, 1,.... However for every stationary policy (i, u,...) We
have J.(0) = [1/(1 — o] u(0).

Also when « < 1 the conclusion of Proposition 2 need not hold, even when S
is countable. To see this, consider the following counterexample.

Counterexample 2. Let «€(0,1) and S =1{—1,0,1,2,...}. Consider a
control space consisting of two elements s and ¢ (C' = {s, c}). The control s may
be viewed as a stopping action that drives the system from any state to state —1
which may be viewed as a termination state. The control ¢ may be viewed as a
continuation action which drives the system from any nonnegative state i to state
7 + 1. Thus we have

flx,u) = —1, if
flx,u) =x+1,

x=—1 or u=s

otherwise.

If the system is in the termination state or the continuation action ¢ is chosen,
then the cost incurred is zero. There is a cost(a? — 1)/, 7 =0, 1,... if the
stopping action s is chosen at state 7. Thus we have

x=—1 or u=¢

g(x, u) =0, if

ot — 1

g(i, s) = w0 Vi =0,1,....

Given a stationary policy m = (g, f,.-.) there are two possibilities: either u(x) = ¢
forallx =0, 1,...1n which case J,(x) = 0 for all x € S, or else there is a smallest

nonnegative integer, say 7, such that u(Z) = s, in which case we have

.Mﬂ=a;1, i=0,1,..,i
and in particular
Lo =1— .
On the other hand it is easy to see that
J*6@) = — —1— V=0, 1,..
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Hence we have
@) = J*@) + 1

and the stationary policy (u, y,...) is not e-optimal if « <1

It may be possible to eliminate the countability assumption in Proposition 2,
We have neither a proof of this fact nor a’counterexample disproving it. It can
be seen from our method of proof that if Proposition 2 can be shown for the case
where [* is uniformly bounded below (S not necessarily countable) then the
result holds for the general case. For particular classes of problems with uncount-
able .S, such as the stopping problems considered by Dubins and Savage, it is
possible to show ([5], p. 60) existence of an e-optimal policy under the assump-
tion that J* is uniformly bounded below. Our method of proof can thus be
used to show that for such problems there exists an e-optimal stationary policy
even when J* is unbounded and/or infinite.

We note that Proposition 1 holds but Proposition 2 fails to hold when g(x, u)

- 2 0 (instead of g(x, u) < 0) for all (x, u) e S x C (see'[2], Propositions 5.1, 5.4).
It can be shown, however, that if « < | and g(x, %) = 0 for all (x,u)e S x C
then there exists an e-optimal policy for every ¢ > 0 ([2] Proposition 5.1). Thus
the situation regarding existence of e-optimal stationary policies is quite different
for the cases g > 0 and g < 0.

The questions considered in this paper have received attention in the works of
Dubins and Savage [5], Blackwell [3], [4], and Ornstein [6]. In all these papers
the discount factor was taken to be unity (« = 1). Furthermore, with the excep-

- tion of [5], the problems considered in these works are stochastic in nature, i.e.,

- the system evolution contains a stochastic parameter and the expected value of

 the infinite sum of costs per stage is minimized. The presence of a discount
factor less than unity, and of a stochastic element in the problem affect strongly
the existence of stationary optimal policies and this constitutes our motivation

for restricting attention to deterministic problems while éIIowing a < 1.

More specifically, Proposition (1a) has been given by Ornstein ([6], p. 568)
for the case where J*(x) > —oo forall x€ S, @ = 1, and a stochastic parameter
taking values in a countable space is present in the system equation. Related
results have been given by Blackwell [4] for stochastic problems with countable

state space and bounded cost per stage, and Dubins and Savage ({51, p. 60)

for a special type of gambling problem. Blackwell [4] gives an example showing
that for a stochastic problem the assumption J*(x) > —oo for all xe S is
essential in order for an optimal stationary policy to exist. Our contribution
here consists of showing that this assumption is unnecessary when the problem
is deterministic. Furthermore while the proofs of Ornstein and Dubins and

Savage are based on Zorn’s lemma, our proof is constructive at least for the

case where [* takes finite values everywhere. We have to resort to Zorn’s lemma
however for the case where J*(x) = —oo for some x € S. Our constructive

proof of Proposition (1a) can be modified to show part (b) of Proposition 1
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which is a new result, and apparently. cannot be proved by arguments such as
those used by Ornstein and Dubins and Savage.

Proposition 2 has been shown by Ornstein ([6], p. 564) for the case where .S
is countable, « = 1, a stochastic element is present, and J* is a uniformly
bounded function. Ornstein [6] and Blackwell [3] provide examples showing
that the countability and boundedness assumptions are both necessary in the
presence of a stochastic element. Dubins and Savage ([5], p. 60) show that for a
special type of deterministic gambling problem the state space S can be taken
to be uncountable but boundedness of J* is still assumed and used substantively
in the proof. Our contribution consists of showing that if S is countable there
exists an e-optimal stationary policy even when J* is unbounded or even infinite.
The fact that this need not be true if « < 11isa somewhat surprising and thus

far unreported result.

9. PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1. Consider the set S, of states where [* takes finite

values

S, ={xeS| JHx) > —oo} 4)

We first assume that Sy = S. Subsequently we prove part (a) by extending the
proof to the general case where we may have S; # S. ’

A sequence {xg , Uy , X1 5 Uy -} 1 said to be admissible if u; € U(xy) and xp 4y =
f(y » ) for all k=0, 1,.... An admissible sequence is said to be optimal if
J*(x) = S o okg(xy , uy). An admissible sequence is said to be thrifty if

THey) = gl » w) + o @), k=01 (5)
From Bellman’s equation ([1], Chapter 6, Proposition 8) we have for all x& S

JH(x) = inf {g(x,u) + «J*[f(x )]} ©6)

ue U{x)

so that an alternative definition of a thrifty sequence can be based on the relation
g(xk ’ ulc) "'1— O‘]*[f(xk ’ u?c)] = inf {g(xlc ’ u) + a]*[f(xlc s u)]}r

ue Ulxy)

VE=0,1,.. (7)

We have the following lemma (where we assume S; = 8S):

Levma 1. An admissible sequence {x , g , %1, ¥ ...} is optimal if and only if
it is thrifty and limy o of J*(x) = 0.
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Proof. If{xy,uy,x,,u,,..} is optimal, then we have for n = 1, 2,...

[ n—~1

' ]*(xo) = Z O‘kg(xk ’ ulc) = Z akg(xk ’ uk) + a” 2 O‘kg(xn+k > un+k)

k=0 k=0 k=0

and optimality of {x , u,, %, , % ,...} implies that 3_o o%e(%,,, 5 » Unir) = JH(x,).
Hence forn =1, 2,...

n~1

TH#e) = Y afg(xy, , wy) + o J¥(x,). (8)

k=0

It follows that lim,_,, o J*(x,) — 0 and for all & = 0, 1,...

» JH () = g(ox , wz) + o JH(%54,)-
Hence {x, , #, ,...} is thrifty. |
Conversely if {x, , u, , %, , % ..} is thrifty then (5) holds and implies that (8)

also holds. Since a”J*(x,) — 0 it follows that TH(%e) = Tnrp og(2y , ;) and
%0, %, %, , 4, ,...} is optimal. Q.E.D.

For a scalar 8 with 0 < B <1 to be specified further later define
Ay ={xeS|—p" < JH=)} ©)

We have J,__, A, = S and for each xe .S such that J*(x) < O there is a
unique integer denoted 7*(x) such that

%€ Aurie) = Anr@s1 = {9 € Aprte) | ¥ ¢ Auiayia)- (10)
We now prove parts (a), (b) assuming S, = S.

Case 1 (x =1). Let B be any scalar in (0, 1) and define for x, € 4, — 4,41
m*(x,) = min{m > 1 | a thrifty sequence{x, , %, ,...} exists for which x,, € 4,,,;}-
If {%y, uy, 1, 4y ,...} is an optimal sequence then J*(x,) — 0 so that m*(x,) is
well defined as a positive integer. Let {x, , #, ,+--} be a thrifty sequence for which
Xmx(ny) € Aniq and define u(xg) = u, . In this way p is defined on ), __ A4, =
{xeS| J*x) < 0. If J¥(x,) =0, let {%q , 45 ,...} be any admissible sequence
and define u(xy) = u,. We show that the stationary policy 7 = (u, u,...) is
optimal.

For xye A, — A,.; let xy, uy,... be a thrifty sequence for which u, = u(x)
and Xmr(z) € Apyq . Either
(8) m*(x)) =1, ie, € 4,4, n*(xy) = n-+1, or
(b) m*(x,) = 2.
In case (b) we have x; € 4,, — A,.,, and in view of the definition of m*(-) we
obtain

m*(x;) = m*(xy) — 1.

It follows that 1
policy = = (i, ¢

for some & (in
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It follows that if xy € S and %, %, ,... is a sequence generated by the stationary

policy = = (u, ,...), then m*(x;) = 1 for infinitely many &’s, or else J*(x,) = 0
for some % (in which case = is optimal at x,). If J*(x,) 7 O for all £ we have

n*(xy) = n, n*(x;) = n -+ 8;, n*¥(xy) =n + 8, + &, ,... where §, > 0, and for
infinitely many &’s, §,, > 1. Hence

1 * —
}ggn (%) = 0

and since —B7*@» < J*(x,) we obtain lim, ., [*(x;) = 0. It follows from Lem-
ma | that = is optimal at x, .
Case 2 (x << 1). Let B = « and define for x,e 4, — 4,4
m*(x,) = min{m > 1
Xy € A

| a thrifty sequence {x,, #,, X; , #y,...} exists for which
n— m—%—.‘x;L
If {xy, %y, %y, 4y ,..} is an optimal sequence then «”J*(x,)— 0 so that for m
sufficiently large we have —o?*! < o™ [*(x,,) and x,, € 4,_,,.; - It follows that
m*(x,) above is well defined and is a positive integer for each x,€ S. Let
{xy, t4g,...} be a thrifty sequence for which Xmr(z)) € An-mrz)1 and define

(%) = . In this way u is defined on {J,__ 4, ={xeS 1 J¥(x) < 0} If
J*(xo) = 0, define wu(x;) as in Case 1. We show that the stationary policy
7 = (g, ,...) is optimal.

For xge 4, — Apq let {x,,uy, %, 4y,..} be a thrifty sequence for which
Uy = p(%p) and Xpez ) € Ap_r(z)41 - Either

(a) m*(xy) = 1,1e.,x,€4,,n*x) >mn,or
(b) m¥(x) =2

In case (b) we have J*(x,) << —«" and from (5) we obtain also —a® < J*(x,) <
o J*(x,). Hence .
—ar < JHry) < —an

andx; €4, , — A, ,lLe,n*(x;) =n— 1. Let Xy = %y, &y = #y ..., Lpra )1 =
Kmx(ag) »eee Since Xmr(zy) € An—m*(aco)+1 we obtain Xmr(z)-1 € A(n—l)—[m*(mo)—1]+1 .
Hence

m*(aey) < () — 1.

It follows from the preceding analysis that if x, € S and &, , #, ,... is the sequence
generated by the stationary policy = = (g, u,...), then m*(x,) = 1 for infinitely
many &’s or else J*(x;) = O for some & (in which case = is optimal at x;). If
J*(x) 7 0 for all & we have n*(x)) =n, n¥(x))=n— 148, n¥(x) =
n—2+8 + 82 ,-.. where &, > 0 and for infinitely many &’s, §, > 1. Con-
sequently

lim[n*(x,) + k] = 0. (1

409/69(2-22
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Now we have by definition

___an*(mk) < ]*(xk)
and hence

}zim[—otn*(wk)+k] < }zlfg ak]*(xk) < 0. » (12)
Combining (11), (12) and the fact 0 < « << 1 we obtain lim,_,, o® J*(x;,) = 0.
Since {x,, %y, %1 , %y ,...} is a thrifty sequence it follows from Lemma 1 that it
is also optimal and hence 7 is optimal at x,, .

We now turn to the proof of part (a) for the case where S; 5 S, i.e., when
J*(x) = — oo for at least one x € S. Given a € M and a set 2 C S (possibly

empty) we say that a policy = = (uy , py ,-..) is optimal, p-stationary and closed
on 2 if, respectively

Ja®) = JH5(x),  mul(x) = plx),

and furthermore for every x, € £ the sequence of states {x,, % ,...} generated
via the system equation using = belongs to @, i.e., x;, € 2 for all & if x) € 2 and

i1 = o » wtg)] for all E.
We have the following crucial lemma:

Vxef, k=0,1,..

Lemma 2. Assume that for each x € S, there exists a policy that is optimal at x.
If 7 = (g, iy -..) @s optimal, p-stationary and closed on Q C S, then given any
%o ¢ 8 there exists a function i€ M, a set £ D QU {x,} and a policy 7 which is
optimal, fi-stationary and closed on £ and u(x) = [i(x) for all x € Q.

Proof. We distinguish two cases:
Case 1 (J*(x) > —o0). Define
g == Sf U Q

where Sy = {x | J*(x) > — o0}. Since if the initial state is in S, all subsequent
states under any admissible policy will belong to S;, by the result proved

earlier we can find a stationary policy i which is optimal at every point in S; .
Define

xeS; — 0
x¢ S, — Q2

A = () if
A) = px) f

and consider the stationary policy # = (i, fi,...). Then 7 is optimal, fi-stationary
and closed on 2 and p(x) = f(x) for all xe Q.

Case 2 (J*(xp) = —o0). Let {x,, uy, %1, % ,...; be an optimal sequence.
There are two possibilities:

(a) x,€8 for some k >1. Let k =minfk > 1|x, €02} and consider
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the finite sequence {x, , ¥ ,..., Xz_,}. If xy appears only once in this sequence we
consider the sequence {x, ,..., x;_;} and apply the process below. If x, appears
more than once, i.e., the system returns to x,, let 7 <L & — 1 be the last integer
for which x, = x,. If 3,_ Og(xz , #;) < 0 then a finite subset SC {x,, x, ,.

x5 1 can be delineated in which no state appears more than once and a functlon
fi € M can be obtained such that fi(x;) = u;, [u(x,) = J*(x;) = —o0 for all
%; € S. Under this policy when we start at x, we traverse all states in S one by
one and return to x, while incurring strictly negative cost in each cycle. The
stationary policy # = (&, f&,...) for which z(x) = fi(x) for x ¢ £ and f(x) = u(x)
for x € 2 is optimal, i-stationary and closed on £ == 2 U S and satisfies the
requirement in the lemma. If Zz o g(xz , U ) =0 we replace the sequence
{xy , X1 5.--s X;_1} Dy the sequence {x;, X;.q,..., Xz_1}. Suppose now that x;,,
occurs more than once in the sequence {x;,; ,..., ¥z_;}. Then as before, we can
either construct the desired policy 77 or else reduce the sequence {x;. 4 ,..., Xz_1}
to one in which x,; occurs only once. We continue doing this, and at the end of
the process, i.e., when we reach x;_; , we will either have obtained a policy 7
satisfying the requirement of the lemma or else we will have a subsequence .S
of {x, , %y ,-.., ¥z} containing x, and x;_; in which each state appears only once.
Let # = (fi, fi,...) be any policy statisfying fi(x;) = u; for each x,€ S and
fi(x) = p(x) for all x e Q. Then 7 is optimal, -stationary and closed on Q =
QU Sand ji(x) = u(x) for all xe Q.

(b) x;, ¢ 2 for all k. If a sequence {x, , x; ,..., x5} exists for which x, = x,
and Z?:, g(x; , u;) < 0, then the desired policy # can be constructed as in (a).
Otherwise, the state returns to %, infinitely often but g(x, , u,) = 0 for every %,
or else the state returns to x, only finitely often. The former case is really not
possible, since we have assumed [*(x;) = —oo. In the latter case, we let
i = max{k > 0| x;, == x,} and replace {x, ,..., x;} by {x;}. We apply the same
process to {1 , Xz, ... and continue this way so that we obtain either a finite
subsequence of {x;,x;,...} and a stationary policy defined as above which
satisfies the requirement of the lemma, or else an infinite subsequence S of
{x,, %y ...} with first element x, in which each state appears only once. Let
# = (@i, fi,...) be any policy satisfying fi(x;) = u; for x; € § and ji(x) = u(x) for
all x€ Q. Then # is optimal, -stationary and closed on ﬁ QuU S and
p(x) = p(x) for all x € Q. Q.E.D.

Let 2 be the set of ordered pairs (i, 2), where p € M, Q2 C S, and 7 = (u, w,...)
is closed and optimal on Q. Define an equivalence relation on & by

(1, Q) ~ (0, @) =R =2 and px) =u(x) Vxel,

and partially order the set Z of equivalence classes in & by the relation

(s D] <[, Q)] = R2CQ  and Vae @,

u(x) = (@)
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where [(u, £2)] denotes the equivalence class contammg (u, 2). Let ZC R be
totally ordered and define

Q =0 {Q][(s, 2)] € Z for some u & M}.

‘There exists i € M such that whenever [(u, 2)] € Z and x & 2, we have i(x) =
p(x). The equivalence class [({, £2)] is an upper bound for Z. It follows from
Zorn’s Lemma that there exists a maximal element in A, i.e., there exists u* e M
and £* C S such that 7* = (u*, u*,...) is closed and optimal on Q*, and it is
not possible to find a i* € M and 2* C S such that #* = (7%, i2*,...) is closed
and optimal on 2%, Q* is properly contained in £2* and ¥ (x) = pX(x) for every
x € Q*. Tt follows from Lemma 2 that Q% — S, and hence #* is an optimal
stationary policy. This proves part (a). ' Q.E.D.

Proof of Proposition 2. We will use the following lemma which may be easily
deduced from Theorem C of Ornstein [6].

Lemma 3. If S is countable, o = 1, and there exists a scalar B € (— oo, 0]

such that B < J*(x), Vx € S, then for every ¢ > 0 there exists an e-optimal station-
ary policy.

Lemma 3 proves Proposition 2 for the case where J* is uniformly bounded
below. It can be used to prove Proposition 2 for the case where J*(x) > — oo,
Vx €S, as the following lemma shows.

Lemma 4. If S is countable, o = 1, and J*(x) > — o0, Vx € S, then for every
€ > O there exists an c-optimal stationary policy.

Proof. Define for n =0, 1,...
n-+1)e ne
S, = ngS'——(——j:———)———<]*(x)<-—— .
2 2
We have S ={J._, S, . Furthermore if xg€ S, and {x, uy, %y, %, ,...} is any
admissible sequence then x,, € U;L(, S;forall k =0, 1,..., i.e., there is no control
sequence that can drive the system from x, to a state in a set S, with & > .
Thus the optimal cost function of the corresponding deterministic problems
where the state space is restricted to be | J;_4 S;, # = 0, 1,... is the function J*
restricted to UZ;@ S; . Select for each n = 0, 1,... a p,, € M satisfying

: n .
Juua(%) \<\]*(x)+-27;—1—, Vee ) S;.
=0
This is possible by Lemma 3 since J* is bounded on |J;_, S, . Define € M by
means of

Ty

(%) = pn(%) if xe8,.
We will show that (i, u,...) is e-optimal.

Let xS, a1

Then

There are two

(a) X S AS
(b) x,€

We will show tl

while for all &2
] u.(xk)

On the other h
Hence case (

Now let N,
No <N1 < o

We have



- Let ZC P be

we have f(x) =
It follows from
‘e exists u* e )
m 2% and it is
f£*,...) is closed
p*(x) for every
* is an optimal

" Q.E.D.

h may be easily

ar Be(—oo0, 0]
-optimal station-

ormly bounded
: ]*(x) = — 0,

Y, then for every

s Uy ...} 1S any
re is no control
Se with & > n.
istic problems
‘he function J*

‘ing

efine € M by
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Let x, € S,, and let {x;} be the sequence generated by p, i.e.,

Xy = f 2, p(or)], k=01,..

Then

(23 C U Ss.
=0

- There are two possibilities:

(a) x,€S,, Vk = k where & is some posmve integer

(b) «x,€S;, Vk >k where &, j are positive integers with 1 <j < n

~ We will show that case (b) cannot occur. Indeed if (b) occurred then

Ju(%n) = ]uj(xk)> Vk >k
while for all 2 > &

N . € € €
Jlo) = o) S )+ g < — 5+ mr <— 7

On the other hand we clearly have [, (x;) — 0, which leads to a contradiction.
Hence case (a) occurs and there exists a & such that

) = polm), VR = E.

Now let Ny, N;,...,N,, and ny,ny,...,7,_; be positive integers such that
No < Ny <" < Npy oy <Py < <my<n and

x,€8,, VO < k < N,

X, €Sy,

€S, ., VYN,.+1<E<N,

x, €5, VN, + 1<k
We have
Ng .
]u(x()) = Z g[x1 ’ F‘vz(‘x )] -+ NZ+1 g[xz s /“'n“(qcc)]

_'i_ Z g[xz 3 /J‘nm 1(x )] + ]uo('me—H)

F=Npg_1+1
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We also have

> gl 1ali] + S o) < T50) + g

5 gl ] Jun(®r2) < J*onen) + r

i=Ng+1

3 el st 5] Jar, () < TGy + 3rs

=N p,_3+1

]uo(meﬂ) <J *(me+1) + '5— .

’ If follows from the relations above that

Ju(xg) < J¥(xp) + Q.E.D.

We shall also need the following lemma:

LemMa 5. If a =1 and J¥(x) = —oo for all x€ S, then there exists an
optimal stationary policy.

Proof. Given any x,€.S there exists an adm1881ble sequence {x,, #,, X; ,

‘#,...; and a nonnegative integer N, such that ZL e g(xyp , u,) < —1. It follows

that for any x, € S there exists a pohcy optimal at x, . Hence, by Proposition
1(a), there exists an optimal stationary policy. Q.E.D.

We are ready now to prove Proposition 2. Consider the sets
Sy = {xg€ S | J*(%) > — o0}
Se ={x5€ S| J*(xy) = — o0}

S, = lx,€ S, | there exists u € U(x,), such that f(x, , %) € S, , and

g(xg,u) — J¥[f(xy, 0)] < ..__1____6

S, = {x,€ S, | there exists an admissible sequence{x, , %, ,...} such that
x}; € S, for some & > 0}
8= {xeSa | % S,
For x,€ S, consider the set

Oxy) = {we Ulxy) | f(%0, u) € S3.

Clearly U(x,) s

inf z g(xk b ui

k=0

Assume the co
for all admissil

| Yk =0,1,... w

Consider an a

Then there mt
have from (14

Since Y £

Hence

“which implies

Equation (1
that

and f[x’ ﬁ“(x)]
By Lemma

and f{#, puAx)



iptL

Dty 1

Q.E.D.

here exists an

e {%g, 4y, %,
—1. It follows
»y Proposition

Q.E.D.

, and

} such that
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Clearly U(x,) is nonempty for all x, € S,. We claim that

inf 1Y gy, un) | Xran = F (% » %), Wi € U(xy), k =0, 1,...;} = —o0,

k=0

Ve S..  (13)

Assume the contrary, i.e., that there exists an é >0 and an x, € S, such that
for all admissible sequences {¥, , #q , ¥y , %y ,...} for which x, € S, u;, € U(xy),
Yk =0, 1,... we have ’

1

€

i 8y, up) > —

k=0

Consider an admissible sequence {%,, %, , Xy , & ,...} With % = x, such that

S 1 1 :
Y gl ) < ——— € — = 4

k=0

m

Then there must exist a state &y such that £y € S, and %, ¢ S, for all £ > N. We
have from (14)

N-1 @

=z . 1
Z &(®y , @) + Z g%y, , ) <—-.€___ € —
k=0 k=N

m| =

Since Sho (%, , &) + 1/¢ > 0 it follows that

1

Z g(ﬁkaﬁl{:) <'—_:—€‘
k=N ,

Hence

_ _ 1
g(‘fN ’ uN) + ]*(xN-i-l) <L ———¢

€

which implies that &y € S, . Since Xy € S, we obtain a contradiction.
Equation (13) together with Lemma 5 implies that there exists a i € M such
that '
Jax) = J¥(x) = —o0,  VxeS.,

and f[x, f(x)] e S. if x e S..
By Lemma 4 there exists a u, € M such that

]uf(x) < ]*(x) + € Vx € Sf ’
and f[x, u{x)] € S, if x€ Sy .
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Consider the sequence of sets {3, ,} defined by
ge,() = Se
S. 51 ={xe S, | there exists u U(x) such that f(x, u) e S, ).

Clearly (J;_o S., = S. . Consider a @ € M having the property
flx f@)] €Sy, gla, A=) + JHf (% A=) < — -z— —e if xe§

A : G k
f[x’ tu'(x)] € ‘§e,k if xe Se,k+1 and x ié U S

Jj=0
De_ﬁne © € M by means of
WE) =plx) i xes,
WE)=fx) i xeS,
u(x) = () if xeS..
Then it is easy to see that (u, ,...) is e-optimal. Q.E.D.
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