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Preface 

This book evolved from teaching a course on Dynamic Programming and 
Stochastic Control over a fourteen-year period at Stanford University, the 
University of Illinois, and the Massachusetts Institute of Technology. The 
purpose of the book is to provide a unified treatment of the subject suitable 
for a broad audience from engineering, operations research , and, to some 
extent, economics and applied mathematics. Thus, for example, we treat 
simultaneously stochastic control problems popular in modem control theory, 
Markovian decision problems popular in operations research, and a number 
of combinatorial problems usually addressed in computer science courses. 
The theory is illustrated through a large variety of examples , many of them 
involving applications that are importan,t in their own right. These examples 
can be covered in class independently of one another , so an instructor can 
tailor a course to his/her awhcnce by emphasizing the appropriate set of 
applications. 

The mathematical prerequisite for the text is a good knowledge of 
introductory probability and undergraduate mathematics. This includes the 
equivalent of a one-semester first course in probability theory together with 
the usual calculus , real analysis, vector-matrix algebra, and elementary 
optimization theory almost all undergraduates are exposed to by their fourth 
year of studies. A summary of this material is provided in the appendixes. 
While prior courses or background on dynamic system theory , optimization , 
or control will undoubtedly be helpful to the reader, it is felt that the material 
in the text is reasonably self-contained . 

Dynamic programming is a conceptually simple technique that can be 
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viii Preface 

adequately explained using elementary analysis. Yet a mathematically rig­
orous treatment of general, stochastic dynamic programming requires the 
complicated machinery of measure-theoretic probability. My choice has 
been to bypass the complicated mathematics by carrying out the analysis 
in a general setting while claiming rigor only when the underlying probability 
spaces are countable. A mathematically rigorous treatment of the subject 
is carried out in my monograph "Stochastic Optimal Control: The Discrete 
Time Case," Academic Press, 1978, coauthored with Steven Shreve. This 
monograph complements the present text and provides a solid foundation 
for the subjects developed somewhat informally here. 

I am thankful to a number of individuals and institutions for their 
contributions to the book. My understanding of the subject was sharpened 
while I worked with Steven Shreve on our 1978 monograph. Several proofs 
and results dealing with infinite horizon problems were improved during 
that time, and they are now part of the present text. Michael Caramanis, 
Lennart Ljung, and John Tsitsiklis taught from versions of the book and 
contributed several substantive comments and homework problems. I had 
the benefit of interaction with several able teaching assistants over the years 
and in this connection I would like to mention Paris Canellakis, Panos 
Constantopoulos, and John Tsitsiklis. A number of colleagues contributed 
valuable insights and information, particularly David Castanon and Krishna 
Pattipati. NSF supported the research on infinite horizon problems reported 
in Chapter 5. MIT, with its stimulating teaching and research environment, 
was an ideal setting for carrying out this project. 

Dimitri P. Bertsekas 



CHAPTER ONE 

Life can only be understood going backwards, 
but it must be lived going forwards. 

Kierkegaard 

The Dynamic Programming 
Algorithm 

1.1 THE BASIC PROBLEM 

This text looks at situations where decisions are made in stages. The 
outcome of each decision is not fully predictable but can be observed before 
the next decision is made. The objective is to minimize a certain cost­
a mathematical expression of what is considered desirable outcome. 

A key aspect of such problems is that decisions cannot be viewed in 
isolation since one must balance the desire for low present cost with the 
possibility of high future costs being inevitable. This idea is captured in 
the dynamic programming technique whereby at each stage one selects a 
decision that minimizes the sum of the current stage cost, and the best cost 
that can be expected from future stages. 

A very wide class of problems can be treated in this way and in this 
text we make an effort to keep the main ideas uncluttered by irrelevant 
assumptions on problem structure. To this end we formulate in this section 
a broadly applicable model of optimal control of a dynamic system over a 
finite number of stages (a finite horizon). This model will occupy us for 
the first four chapters; its infinite horizon version will be the subject of the 
last three chapters. 

Two main features of the basic problem determine its structure: 
(1) an underlying discrete-time dynamic system, and (2) a cost functional 
that is additive over time. The dynamic system is of the form 

xk+t = fk(xk, uk, wk), k = 0, 1, ... , N - 1, 
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where 

k indexes discrete time, 
xk is the state of the system and summarizes past information that is relevant 

for future optimization, 
uk is the control or decision variable to be selected at time k with knowledge of 

the state xk , 

wk is a random parameter (also called disturbance or noise) , 

N is the horizon or number of times control is applied. 

The cost functional is additive in the sense that a cost gixk, uk, wk) 
is incurred at each time k, and the total cost along any system sample 
trajectory is 

N - 1 

gN(xN) + L gixk, uk, w k) , 
k=O 

where gN(xN) is a terminal cost incurred at the end of the process. However, 
because of the presence of wk, cost is generally a random variable and 
cannot be meaningfully optimized. We therefore formulate the problem as 
one whereby we wish to select controls u0, u 1 , ••• , u N _ 1 so as to minimize 
the expected cost 

N - 1 

E{gN(xN) + L gixk, uk, wk)}, 
k=O 

where the expectation is taken with respect to the joint distribution of the 
random variables involved. 

A more precise definition of the terminology just used will be given 
shortly. We first provide some orientation by means of examples. 

Inventory Control Example 

Consider a problem of ordering a quantity of a certain item at the 
beginning of each of N time periods so as to meet a stochastic demand. 
Let us denote 

xk stock available at the beginning of the kth period, 

uk stock ordered (and immediately delivered) at the beginning of the kth period, 

wk demand during the kth period with given probability distribution. 

We assume that w0, ... , wN I are independent random variables and that 
excess demand is backlogged and filled as soon as additional inventory 
becomes available. Thus stock evolves according to the discrete-time (or 
difference) equation 

Xk+ I = xk + Uk - w k, 

where negative stock corresponds to backlogged demand (see Figure l. I). 
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Stock at Period k 

wk Demand at Period k 

Inventory 
System Stock at Period k + 1 

Stock Ordered at 7 
Period k Cost of Period k 

cu k + H ( X k + I ) 

Figure I.I Inventory control example The stock (state) x k at period k, the 
stock ordered (control) uk at period k, and the demand (random disturbance) 11·1. 

at period k determine the stock at the next period k + 1 and the cost of the kth 
period using the difference equation xk+J = xk + u k - w k. 

3 

The cost incurred at each period k consists of two components: 
(1) the purchasing cost cuk, where c is cost per unit ordered, and (2) a cost 
H(xk+,) representing a penalty for either positive stock xk + 1 > 0 at the end 
of the period (holding cost for excess inventory) or negative stock xk + 1 < 
0 (shortage cost for unfilled demand). Using the equation xh 1 = xk + uk 

- wk, we can write the cost for period k as 

cuk + H(xk -+ uk - wd 
and the total expected cost over N periods as 

E{I cu,+ H(x, + u, - w,)} 
Our objective is to minimize this cost by proper choice of the orders 

u0 , • •• , uN- i subject to the natural constraint uk ~ 0, k = 0, ... , 
N - I. One possibility would be to choose at time O all the orders u0 , 

.•. , uN-i without waiting to see subsequent levels of demand. However, 
a clearly better choice would be to postpone ordering of uk until time k 
when the current stock level xk will be known. This mode of operation 
involves information gathering and sequential decision making based on 
information as it becomes available and is of central importance in dynamic 
programming. It implies that we are not really interested in selecting optimal 
numerical values for inventory orders, but rather we are interested in finding 
an optimal rule for choosing at each period k an order uk /<Jr each pnssible 
value of stock xk that can occur. This is an '"action versus strategy" 
distinction. Mathematically, the problem is one of finding a sequence of 
functions µ,k, k = 0, ... , N - l, mapping stock x" into order th so as to 
minimize the total expected cost. The meaning of f-Lk is that, for each k and 
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each possible value of xk, 

µ.,ixk) = amount that should be ordered at time k if 
stock is xk. 

The sequence 1r = {µ.,0 , µ., 1, ••• , µ.,N- 1} will also be referred to as a 
control law or a policy. For each such 1r, the corresponding cost for a 
fixed initial stock x0 is 

I .(x,) = E { ~: cµ,,(x,) + Hix, + µ,,(x,) - w,]}. 
and our objective will be to minimize J 1lx0 ) for fixed x0 over all admissible 
1r. This is a typical dynamic programming problem. We will show in Section 
2.2 that, for a reasonable choice of the cost function H, the optimal ordering 
rule is of the form 

if Xk < Sk, 
ifxk;;::::Sk, 

where Skis a suitable threshold level determined by the data of the problem. 
In other words, when stock falls below the threshold S"', order just enough 
to bring stock up to S k. 

The preceding example illustrates the main ingredients of the basic 
problem formulation: 

l. A discrete-time system of the form 

Xk+t = fixb uk, wd, 
where .fie is some function ; in this example fixk, uk, wk) = xk + uk - wk. 

2. Independent random parameters wk. This will be generalized by allowing the 
probability distribution of wk to depend on xk and u,; in the context of the 
example we can think of a situation where the level of demand w, is influenced 
by the current stock level. 

3. A control constraint; in the example u, ~ 0. In general, the constraint set 
will depend on xk and the time index k, that is, u, E Vk(xd. To see how 
constraints dependent on xk can arise in the inventory context, think of a 
situation where there is an upper bound B on the level of stock that can be 
accommodated, so uk ~ B - xk. 

4. An additive cost of the form 

E {gN(xN) + ~~ gbk, Uk, wd}, 

where gk> k = 0, ... , N, are some functions; in the preceding example 
gN(xN) = 0, and gixk, uk, wk) = cuk + H(xk + uk - wk). 

5. Optimization over control laws, that is, rules for choosing u, for each k and 
possible value of xk. 

In the preceding example, the state x" was a real number. In other 
cases the state is an n-dimensional vector. It is also possible, however, 
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that the state takes values from a discrete set , such as the integers, or even 
a finite set. 

A version of the inventory problem where a discrete viewpoint is more 
natural arises when stock is measured in whole units (such as cars), each 
of which is a significant fraction of xk, uk, or wk. It is more appropriate 
then to take as state space the set of all integers, rather than the set of 
real numbers. The form of the system equation and the cost per period 
will , of course, stay the same. 

In other systems the state is naturally discrete and there is no continuous 
counterpart of the problem. Such systems are often conveniently specified 
in terms of the probabilities of transition between the states. What we need 
to know is pu(u, k) defined as the probability at time k that the next state 
xk+1 will bej, given that the current state xk is i, and the control ut. selected 
is u; that is, 

pu(u , k) = P{xk+t = j I xk = i, uk = u}. 

flf the system is stationary, i.e. the previous probabilities do not depend 
on k , we will suppress the argument k and write Pu(u) in place of 
pu(u , k).] Such a system can be described alternatively in terms of a 
discrete-time system equation of the form 

Xk+I = Wk, 

where the probability distribution of the random parameter wk is 

P {wk = j I xk = i, uk = u} = pu(u, k). 

Depending on the situation at hand, it may be preferable to use a system 
description in terms of a difference equation or in terms of transition prob­
abilities. We illustrate these ideas with an example. 

Queueing Example 

Consider a queueing system with room for n customers operating over 
N time periods (see Figure I .2). We assume that service of a customer 
can start (end) only at the beginning (end) of a period. The probability p 111 

of m customers arriving during a time period is given, and the numbers of 
arrivals in two different periods are independent. Custon1ers finding the 
system full depart without attempting to enter later. The system offers two 
kinds of service, fast and slow, with cost per period er and c,, respectively. 
Service can be switched between fast and slow at the beginning of each 
period. Iffast (slow) service is provided during a certain period, a customer 
in service at the beginning of the period will terminate service at the end 
of the period with probability qr (respectively, q_,) independently of the 
number of periods the customer has been in service and the number of 
customers in the system (qr> q_, ). There is a cost c(i) for each period for 
which there are i customers in the system. There is also a terminal cost 
C(i) for i customers left in the system at the end of the last period. The 
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Pm = Probability of 

Fast or slow server 
with probability of 
service completion 
within a period q1 

--...,.....------,--

3

-r---

2
-"T"----,I or q·" respective!~ 

m arrivals for 

caoh period • I n I n - I I · . . . . . . . 
(a) 

Number in Number in Number in Number in 
the System at the System at the System at the System at 
Time k 

3 

2 

0 

Time k + l Time k Time k + l 
3 3 

2 2 

0 0 

Fast Service Slow Service 

(b) 

Figure 1.2 Queueing system with room for n customers . The service can be 
switched between fast and slow at any time period so as to minimize the sum 
of customer waiting and service costs: (a) Queueing system with room for n 
customers and two kinds of service . (b) Transition probability graphs for fast 
and slow service . The data assumed are n = 3, Po = 0.2 , p 1 = 0.5, p 2 = 0.3, 
Pm = 0 for m > 2, and q1 = 0.8, q, = 0.3. 

3 

2 

0 

problem is to choose the kind of service provided at each time period as 
a function of the number of customers in the system at the start 0f the 
period so as to minimize the expected total cost over N periods. 

It is appropriate to take as state here the number i of customers in 
the system at the start of a period and as decision variable (control) the 
kind of service provided . The cost per period then is c(i) plus c1 or c" 
depending on whether fast or slow service is provided. We derive the 
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transition probabilities of the system. When the system is empty at the 
start of a period, the probability that the next state is j is independent of 
the kind of service provided. It equals the given probability of j customer 
arrivals when j < n 

Poiu1) = Poius) = Pi, j = 0, 1, . .. , n - l, 
and it equals the probability of n or more customer arrivals when j n: 

1n=n 

When there is at least one customer in the system (i > 0), we have 

pu(u1) = 0, if j < i - l, 

P;c; - o(u1) = qJPo, 

pu(u1) = P{j - i + I arrivals, service completed} 

+ P{j - i arrivals, service not completed} 

= qfp i- ; + 1 + (1 - qr) Pi-;, if i - I < j < n - l , 

Pi(n-o(u1) = qf L Pm + (l - q1)Pn - 1-;, 
m=n -i 

m=n i 

The transition probabilities when slow service is provided are also given 
by these formulas with u1 and q1 replaced by us and qs, respectively. 

Transition probabilities are sometimes shown on a graph whose arcs 
represent transitions between various states. This is known as the transition 
probability graph, or simply transition graph, and is illustrated in Figure 
1.2 for the special case where n = 3, Po = 0.2, p 1 = 0.5 , p2 = 0.3, 
Pm = 0 for m > 2, and q1 = 0.8, qs = 0.3. 

In our subsequent formulation we will assume that the state xk takes 
values from some set Sk called the state space. We will not require that 
Sk be a finite set or a space of n-dimensional vectors. A surprising aspect 
of dynamic programming is that its applicability depends very little on the 
nature of the state space Sk (although its effectiveness certainly does depend 
on Sd. For this reason we find it convenient to proceed without imposing 
any assumptions on Sk; indeed, such assumptions would become a serious 
impediment later. We similarly allow uk and w" to take values from some 
unspecified spaces Ck and Dk , respectively. 

Basic Problem 

We are given the discrete-time dynamic system 

xk f 1 = fk(xk, lh, wd, k = 0. I ..... N ·- I. (l.l) 
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where the state x1-; is an element of a space SJ... the control uJ.. is an element 
of a space C1-;, and the random "disturbance .. u-J.. is an element of a space 
Dk. The control 111-; is constrained to take values from a given nonempty 
subset Vixk) of C1-;, which depends on the current state xJ.. [uJ.. E VJ..(xd 
for all xk E Sk and k]. The random disturbance u-J.. is characterized by a 
probability measure Pi·lx1-;, ud that may depend explicitly on xJ.. and llJ.. but 
not on values of prior disturbances u-1-; _ 1 , •••• w 0 . We consider the class 
of control laws (also called policies) that consist of a sequence of functions 
1T = {µ,0 , µ, 1 , ••• , µ,N _ 1}, where µ,1-; maps states xJ.. into controls llJ.. = µ, J.. (xd, 
and is such that µ,ixd E U1-;(xd for all x1-; E SJ... Such control laws will be 
termed admissible . 

Given an initial state x0 , the problem is to find an admissible control 
law 1r = {µ, 0 , µ, 1 , ••• , µ,N _ 1} that minimizes the cost functional 

{ 

N - 1 } 

Jrr(x0 ) = ~ gN(xN) + k~o gJxJ.., µ,1c(xd. wJ.. l ( 1.2) 

k =O ..... N-1 

subject to the system equation constraint 

xk+t = f k[xk, µ,J.;(x!-;), wd , k = 0, I , ... , N - 1. ( l.3) 

The cost functions gk, k = 0, I , . .. , N , are given. 
For a given initial state x0 , an optimal control law 1r* 1s one that 

minimizes the corresponding cost 

Jrr*(x0 ) = min l rr(x0 ) , 
rrEO 

where TT is the set of all admissible control laws. The optimal cost cor­
responding to x0 will be denoted J* (x0 ) ; that is , 

J* (x0 ) = min l rr(x0 ) . 
rrEO 

We view J* as a function that assigns to each initial state x0 the optimal 
cost J*(x0 ) and call it the optimal cost function or optimal value function. 

[For the benefit of the mathematically oriented reader we note that 
in the preceding equation min denotes the greatest lower bound (or infimum) 
of the set of numbers {J rr(.t0 ) I 1r E TI}. A notation more in line with normal 
mathematical usage would be to write J*(x0 ) = infrrEn Jrr(x0 ). However 
(as discussed in Appendix B). we find it convenient to use min in place of 
inf even when the infimum is not attained. It is less distracting and will 
not lead to any confusion.] 

Role of Information in the Basic Problem 

We mentioned earlier that a policy {µ,0 , µ, 1 ••••• µ,N 1} may be viewed 
as a plan that specifies the control to be applied at each time for every 
state that may occur at that time. It is important to realize that this mode 
of operation implies information gathering. The information received by 
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the controller is the value of the current state at each time and is utilized 
directly during the control process, since the control at time k depends on 
the current state xk via the function µ.,k (cf. Figure 1.3). The effects of the 
availability of this information may be significant indeed. If this information 
is not available, the controller cannot adapt appropriately to unexpected 
values of the state, and as a result the cost can be adversely affected. For 
example, in the inventory control problem considered earlier, the information 
that becomes available at the beginning of each period k is the inventory 
stock xk. Clearly, this information is very important to the inventory manager, 
who will want to adjust the amount uk to be purchased depending on whether 
the current stock xk is running high or low. 

Note, however, that whereas availability of the state information cannot 
hurt, it may not result in an advantage either. For instance, in deterministic 
control problems, where no random disturbances are present, one can 
predict the future states given the initial state and the sequence of controls. 
Therefore, optimization over all sequences {u0 , u 1 , ... , uN_ 1} of controls 
leads to the same optimal cost as optimization over all admissible policies. 
The same fact may be true even in some stochastic control problems (see 
Problem 13). This brings up a related issue. Assuming no information is 
forgotten, the controller actually knows the prior states and controls x0 , 

u0 , ••• , xk-i, uk-i, as well as the current state xk. Therefore, the question 
arises whether policies that use the entire system history can be superior 
to policies that use just the current state. The answer turns out to be 
negative (see (8231). The intuitive reason is that. for a given problem, time 
k and state xk, all future expected costs depend explicitly just on xk and 
not on prior history. 

Theoretical Limitations of the Formulation of the 
Basic Problem 

Before proceeding with the development of the dynamic programming 
algorithm, we try to clarify certain aspects of our problem that do not lie 
on firm mathematical ground. The issue here is one of mathematical rigor 
and is highly technical in nature. The reader who is not mathematically 

Figure 1.3 Information gathering in the 
basic problem. At each time k the con­
troller observes the current state xk and 
applies control uk = µ,k(x.) that depends 
on that state. 

Uk= µk(xk ) System 

xk + 1 = fk(xk• Uk• wk) 
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inclined need not be concerned about it and can skip the rest of this section 
without loss of continuity. 

First, once an admissible control law {µ,0 , µ, 1, ••• , µ,N_,} is adopted, 
the following sequence of events is envisioned for each stage k = 0, 1, 
... , N - I: 

1. The controller observes xk and applies uk = µixk). 

2. The disturbance wk is generated according to the given probability measure 
Pklxk, µbk))· 

3. The cost gk[xk, µixk), wd is incurred and added to previous costs. 

4. The next state xk+ 1 is generated according to the system equation 

Xk+I = fk[xk, µixk), wk]. 

If this is the last stage (k = N - 1), the terminal cost gN(xN) is added to 
previous costs and the process terminates. Otherwise, k is incremented, and 
the same sequence of events is repeated for the next stage. 

This process is well defined and couched in precise probabilistic terms. 
Things are complicated, however, by the need to view the cost 

N-l 

gN(xN) + L gk[xb µ,k(xk), wd 
k=O 

as a well-defined random variable with well-defined expected value. The 
framework of probability theory requires that for each {µ,0 , µ, 1 , ••• , µ,N- 1} 

we define an underlying probability space, that is, a set f!, a collection of 
events in f!, and a probability measure on these events. Furthermore, the 
cost must be a well-defined random variable on this space in the sense of 
Appendix C (a measurable function from the probability space into the real 
line in the terminology of measure-theoretic probability theory). For this 
to be true, additional (measurability) assumptions on the functions fk, gk, 
and µ,k may be required, and it may be necessary to introduce additional 
structure on the spaces Sk, Ck, and Dk. Furthermore, these assumptions 
may restrict the class of admissible control laws since the functions µ,k may 
be constrained to satisfy additional (measurability) requirements. 

Thus, unless these additional assumptions and structure are specified, 
the problem is formulated inadequately. On the other hand, a rigorous 
formulation of the basic problem for general state, control, and disturbance 
spaces is well beyond the mathematical framework of this introductory text 
and will not be undertaken here (see [B23]). Nonetheless, these difficulties 
are mainly technical and do not substantially affect the basic results to be 
obtained. For this reason we find it convenient to proceed with informal 
derivations and arguments in much the same way as in all introductory 
texts and most journal literature on the subject. 

We would like to stress, however, that under the assumption that the 
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disturbance spaces Dk, k = 0, I, ... , N - I, are countable sets all the 
mathematical difficulties mentioned disappear since, for this case, with 
the only additional assumption that the expected values of all terms in the 
cost (1.2) exist and are finite for every admissible policy 1r, one can provide 
a sound framework for the problem. 

One easy way to do this when Dk are countable is to rewrite all 
expected values in the cost as infinite sums in terms of the probabilities of 
the elements of Dk. Another way is to write the cost J 1T(x0 ) as 

(1.4) 

where 

with the preceding expectation taken with respect to the probability distribution 
Pd·lxk> µ,k(xk)) defined on the countable set Dk. Then one may take as 
the basic probability space the Cartesian product of 5\, 5\, ... , SN, where 

5\ = {x1 E S1 I X1 = fo[xo, JJ,oC-to), Wo], Wo E Do}, 

Sk+I = {xk+1 E Sk+t I xk+1 = fk[xk> µ,,,.(xk), wd, 
k = l , 2, .. . , N - l. 

The set S k is the subset of S k of all states that can be reached at time k 
when the control law {µ,0 , µ, 1 , ••• , µ,N-,} is employed. The fact that D0 , 

D,, ... , D N I are countable sets ensures that the sets 5\, ... , SN are also 
countable (this is true since the union of any countable collection of countable 
sets is a countable set). Now the system equation ( 1.3), the probability 
distributions Pk(·lxk, µ,k(xd), the initial state x0 , and the control law {µ,0 , 

µ, 1, ••• , µ,N , } define a probability distribution on the countable set S, x 
52 x · · · x SN, and the expectation in (I .4) is defined with respect to this 
latter distribution . 

In conclusion, the basic problem has been formulated rigorously only 
when the disturbance spaces D0 , ••• , DN-, are countable sets. In the 
absence of countability of Dk, the reader should interpret subsequent results 
and conclusions as essentially correct but mathematically imprecise state­
ments. In fact, when discussing infinite horizon problems (where the need 
for precision is greater), we will make the countability assumption explicit. 
We note, however, that the advanced reader will have little difficulty in 
establishing rigorously most of our subsequent results concl;'rning specific 
applications in Chapters 2 and 3. This can be done as explained in the 
Notes to this chapter and in Problem 12. 
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1.2 THE DYNAMIC PROGRAMMING ALGORITHM 

The dynamic programming (DP) technique rests on a very simple idea, the 
principle of optimality. The name is due to Bellman, who contributed a 
great deal to the popularization of DP and to its transformation into a 
systematic tool. Roughly, the principle of optimality states the following 
rather obvious fact. 

Let 1r* = {µ,6 , µ,f, ... , µ,.t,_ ,} be an optimal control law for the basic 
problem. Consider the subproblem whereby we are at state x,- at time i 
and wish to minimize the "cost-to-go" from time i to time N; 

N-1 

E{gN(xN) + L gdxk> J..lk(xd, wd }, 
k = i 

and assume that when using 1r* the state x ,- occurs with positive probability. 
Then the truncated control law {µ,7 , µ,;t 1 , ••• , µ,.t, _ 1} is optimal for this 
subproblem. 

The intuitive justification of the principle of optimality is very simple . 
If the truncated control law {µ,; , J.LT+ 1 , ••• , µ,.t, _ 1} were not optimal as 
stated, we would be able to reduce the cost further by switching to an 
optimal policy for the subproblem once we reach x,.. For an auto travel 
analogy, suppose we have found the fastest route from Los Angeles to 
Boston and this route passes through Chicago. The principle of optimality 
translates to the obvious fact that the Chicago to Boston portion of the 
route is also a fastest route for a trip that starts from Chicago and ends in 
Boston. 

It is perhaps best to introduce the DP algorithm by means of an 
example . 

Inventory Control Example (continued) 

Consider the inventory control example of the previous section and 
the following procedure for determining the optimal inventory ordering 
policy starting with the last time period and proceeding backward in time. 

N - I Period Assume that at the beginning of period N - I the 
stock available is xN _ 1• Clearly, no matter what happened in the past, the 
inventory manager should order inventory u.t, _ 1 = µ,.t, _ 1 (xN 1), which min­
imizes over uN - i the sum of the ordering, holding , and shortage costs for 
the last time period , which is equal to 

E {cuN-1 + H(xN-1 + uN- 1 - wN_i)}. 
l1' N 1 

Let us denote the optimal cost for the last period by J N 1 (x N 1): 

JN-1(xN-1) = min E { cuN-I + H(xN- I + uN-t - w N_ 1)}. 
UN t;e.O IVN-1 
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Naturally, J N-1 is a function of the stock xN _ 1• It is calculated for each 
xN- 1 either analytically or numerically (in which case a table is used for 
computer storage of the function JN _1). In the process of calculating JN 

1 
we obtain the optimal inventory ordering policy µ,X,_ 1(xN _ 1) for the last 
period, where µ,X,_1(xN-i) ~ 0 minimizes the right side of the preceding 
equation for each value of xN- 1 • 

N - 2 Period Assume that at the beginning of period N - 2 the 
inventory is xN _ 2 • Now it is clear that the inventory manager should order 
inventory uN- 2 = µ,,t _2 (xN_ 2), which minimizes not just the expected cost 
of period N - 2 but rather the 

(expected cost of period N - 2) + (expected cost of period N - I, 
given that an optimal policy will be used at period N - I). 

This, however, is equal to 

E {cuN-2 + H(xN-2 + uN-2 - wN_z)} + E VN-1(xN-1H-
wN-2 

Using the system equation xN- i = xN 2 + uN 2 - wN_ 2, the last term is 
also written EWN-i {JN_1(xN -z + uN-2 - wN-2)}. 

Thus the optimal cost JN _2(xN _2) for the last two periods, given that 
we are at state xN-z, is given by 

JN_z(XN_z) = min E {cuN-2 + H(xN-2 + uN-2 - wN_z) 
UN-2;;;,,Q WN-2 

+ JN-J(XN-2 + UN-2 - WN_z)}. 

Again J N i(xN _2 ) is calculated for every xN _ 2 • At the same time the optimal 
ordering policy µ,t;_ 2(xN_2) is also computed. 

k Period Similarly, we have that at period k and for initial inventory 
xk the inventory manager should order u" to minimize 

(expected cost of period k) + (expected cost of periods k + I, ... , N - I, 
given that an optimal policy will be used for these periods). 

By denoting by Jk(xk) the optimal cost, we have 

Jk(xk) = min E {cuk + H(xk + uk - wk) 

+ lk+ 1(X" + u" - wiJ}, (1.5) 

which is actually the dynamic programming equation for this problem. 
The functions J"(xd denote the optimal expected cost for the remaining 

periods when starting at period k and with initial inventory x,. These 
functions are computed recursively backward in time, starting at period 
N - 1 and ending at period 0. The value l 0 (x0 ) is the optimal expected 
cost for the process when the initial inventory at time O is x0 • During the 
calculations the optimal inventory policy, {111r (Xo). µ,i' (X1). .... µ,~, I (Xv I)} 
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is simultaneously computed from minimization of the right side of (1.5) for 
every xk and k. 

The example illustrates the main advantage offered by DP. Our original 
inventory problem requires an optimization over the set of policies, that 
is, the set of sequences of functions of the current stock (more generally 
the current state). The DP algorithm of (1.5) decomposes this problem into 
a sequence of minimization problems that is carried out over the set of 
orders (more generally the space of controls). Each of these problems is 
far simpler than the original. 

We now state the DP algorithm for the basic problem and show its 
optimality. 

Proposition. Let J*(x0) be the optimal cost. Then 

J *(xo) = lo(Xo) , 

where the function 10 is given by the last step of the following algorithm, 
which proceeds backward in time from period N - 1 to period 0: 

JN(xN) = gN(xN) (1.6) 

Jk(xk) = min E {gk(xk> uk, wk) + lk+i[fk(xk, uk, wk)]}, (l.7)t 
UkEUk(Xk) Wk 

k=0,l, ... ,N- 1. 

Furthermore, if ut = /.LI (xk) minimizes the right side of ( I. 7) for each xk 
and k, the control law Tr* = {µ,t, ... , µ,,t_ 1} is optimal. 

Proof. The fact that the probability measure characterizing wk depends 
only on xk and uk and not on prior values of disturbances w0, ... , wk- 1 

allows us to write J *(x0) in the form 

J*(xo) ~ ,.,_m_i:N ,[~{go lxo, JLo(xo), woJ + ~{ g, [x., µ, (x, ), w,) + .. · 

+ w~,{gN- 1[XN - 1, /LN-o(XN-1), WN-tl + gN(xN)) .. , } } l 
where the expectation over wk, k = 0, I, ... , N - I, is conditional on 
xk and µ,k(xk). This expression may also be written 

t Both the DP algorithm and its proof are, of course, rigorous only if the basic problem 
is rigorously formulated. As explained in the previous section, this is the case when the 
disturbance spaces D,, k = 0, I, ... , N - I, are countable sets and the expected values of 
all terms in the expression of the cost functional ( 1.2) arc well defined and finite for every 
admissible policy TT. In addition, it is assu med that the expected value in (1.7) exists and is 
finite for all u, E Vdx.> and all x, E S,. We further note that, although not explicitly denoted, 
the expectation in (I. 7) is taken with respect to the probability measure characterizing w,. 
which depends on both x* and u* . 
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In this equation the minimizations are over all functions J-lk such that 
J-lk(xk) E Uk(xk) for all xk and k. In addition, the minimization is subject 
to the system equation constraint 

Xk r 1 = fdxk, J..lk(xk), wd. 

Now we use the fact that for any function F of x, u, we have 

min F[x, µ,(x)] = min F(x, u), 
µ,EM uEU(x) 

where M is the set of all functions µ,(x) such that µ,(x) E U (x) for all x. 
By applying this fact in the equation for J*(x0 ), using the substitution 

xk+ 1 = fk(xk, uk, wk), and introducing the functions Jk of (l.7), we obtain 
the desired result: 

It is also clear that {J-ld, ... , µ,tJ _ 1} is an optimal control law ifµ,[ (xk) 
minimizes the right side of (I. 7) for each xk and k, since such a control law 
attains the optimal cost. Q.E.D. 

The argument of the preceding proof can also be used to establish an 
interpretation of Jk(xk). It is the optimal cost for an (N - k)-stage problem 
starting at state xk and time k and ending at time N. We consequently call 
Jk(xk) the cost-to-go at state xk and time k, and refer to Jk as the cost-lo­
go Junction at time k. Ideally, we would like to use the DP algorithm to 
determine closed-form expressions for Jk. Otherwise, one hopes to obtain 
useful characterizations of Jk or µ,[. In many cases one has to resort to 
numerical solution of the DP equations. This may be quite time consuming 
since the minimization in (I. 7) must be carried out for each value of xk. 
Typically, the state space is discretized and the minimization is carried out 
for a finite number of states xk. The computational requirements are pro­
portional to the number of discretization points. Thus for complex mul­
tidimensional problems the computational burden may be prohibitive. 
Nonetheless, DP is the only general approach for sequential optimization 
under uncertainty. 

We now provide examples illustrating the analytical and computational 
aspects of the DP algorithm. 



16 The Dynamic Programming Algorithm Chap. 1 

Example 1 
A certain material is passed through a sequence of two ovens (see Figure I .4). 

Denote 

x0 : initial temperature of the material, 

xk, k = 1, 2: temperature of the material at the exit of oven k, 

uk- i, k = 1, 2: prevailing temperature in oven k. 

We assume a model of the form 

xk+I = (I - a)xk + auk, k = 0, 1, 

where a is some scalar from the interval (0, 1). The objective is to get the final 
temperature x2 close to a given target T, while expending relatively little energy. 
This is expressed by a cost function of the form 

r(x2 - T)2 + ul + uL 
where r > 0 is a given scalar. We assume no constraints on uk. (In reality, there 
are constraints, but if we can solve the unconstrained problem and verify that the 
solution satisfies the constraints , everything will be fine.) 

We see that this is a deterministic problem that fi ts the basic framework. We 
have N = 2 and a terminal cost g2(x2 ) = r(x2 - T)2, so the initial condition for 
the DP algorithm is [cf. (1.6)] 

l 2(x2) = r(x2 - T)2. 
For the next-to-last stage, we have [cf. (1.7)] 

li(x1) = min[ui + l2(X2)] 
UI 

= min[ui + 12[0 - a)x1 + aui]]. 

Substituting the previous form of 12 , we obtain 

l,(x,) = min[ui + r[(l - a)x1 + au1 - Tf]. u, (1.8) 

This minimization will be done by setting to zero the derivative with respect to u 1• 

We thus have 

0 = 2u1 + 2ra[(l - a)x1 + au 1 - T], 

and by collecting terms we obtain the optimal temperature for the last oven: 

_ *( ) _ ra[T - (1 - a)xi] 
U1 - JJ,1 X1 - 1 + ra2 

Init ial 
Temperature 

Xo X1 
Oven Temperature 1----------i 

Uo 
Oven Temperature 

UI 

Final 
Temperature 

X2 

Figure 1.4 Problem of Example I. The temperature of the material evolves 
according to xk+ 1 = (I - a)xk + auk , where a is some scalar with O < a < l. 
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Note that this is not a single control but rather a control function a rule that tells 
us the optimal oven temperature u1 for each possible state x1• ' 

By substituting the optimal u, in the expression ( 1.8) for J 1, we obtain 

1 ( ) = r
2
a

2
[(1 - a)x1 - T]

2 
[ ra

2[T - (1 - a)xi] ]
2 

1 X1 (l + 2) 2 + r (1 - a)x, + ry - T 
ra l + ra· 

r
2
a

2
[(1 - a)x1 - T]2 ( ra

2 
)

2 

= (1 + ra2)2 + r 1 + ,a2 - 1 [(1 - a)x1 - T]2, 

and finally 

J ( ) _ r[(l - a)x1 - T]2 
I X1 - 1 + ra2 

We now go one stage back to stage 0. We have [cf. (1.7)] 

lo(xo) = min[u~ + 1 1(x1)] 
110 

= min[u~ + 1 1[(1 - a)x0 + auo]], 
110 

and by substituting the expression already obtained for J,, we have 

1 ( ) . [ 1 r[(l - a>2xo + (1 - a)au0 - T]2] 
o Xo = mm Uo + 1 • 

uo 1 + ra· 

We minimize with respect to u0 by setting the corresponding derivative to zero. 
We obtain 

0 
_ 

2 
2r(l - a)a[(l - a)2x0 + (1 - a)au0 - T] 

- Uo + l 2 + ra 

This yields, after some calculation, the optimal temperature of the first oven: 

_ *( ) _ r(l - a)a[T - (1 - ahoJ 
uo - f.J,o Xo - 1 + ra2[ 1 + (1 - a )2] 

The optimal cost is obtained by substituting this expression in the formula for J0 • 

This leads to a straightforward but lengthy calculation, which in the end yields the 
rather simple formula 

r[(l - a)2x0 - T]2 
Jo(Xo) = l + ra2[1 + (1 - a)2f 

This completes the solution of the problem. 

Several noteworthy features in this example, as we will see later, 
admit broad generalizations. The first is the facility with which we obtained 
an analytical solution. A little thought while tracing the steps of the algorithm 
will convince the reader that what makes the easy solution possible is the 
quadratic nature of the cost and the linearity of the system equation. Indeed, 
in Section 2.1 we will see that, generally, when the system is linear and 
the cost is quadratic then, regardless of the number of stages N, the optimal 
policy admits an analytical expression. 

Another noteworthy feature of this example is that the optimal policy 
remains unaffected when a zero-mean stochastic disturbance is added in 
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the system equation. To see this, assume that the material's temperature 
evolves according to 

xk+i=O-a)xk+auk+wk, k=0,l, 
where w0 , w 1 are independent random variables with given distribution, 
zero mean 

E{w0 } = E{w1} = 0, 

and finite variance. Then the equation for 1 1 [cf. (1.7)] becomes 

11(x1) = min Ew
1 
{uT + r[(l - a)x1 + au1 + W1 - T]2} 

Ul 

= min[ui + r[(l - a)x1 + au 1 - T]2 
Ul 

+ 2rE{w1}[(1 - a)x1 + au 1 - T] + rE{wi}]. 

Therefore, using the fact that E{ w 1} = 0, we obtain 

J 1(x1) = min[uf + r[(l - a)x1 + au1 - T]2] + rE{wi}. 
U] 

Comparing this equation with (1.8), we see that the presence of w 1 has 
resulted in an additional inconsequential term, ,E{ wD. Therefore, the optimal 
policy for the last stage remains unaffected by the presence of w 1, while 
1 1(x 1) is increased by the constant term rE{wi} . It is easily seen that a 
similar situation also holds for the first stage. In particular, the optimal 
cost is given by the same expression as before except for the additional 
term r(E{w~} + E{wi}). 

The property whereby the optimal policy is unaffected by the presence 
of zero-mean disturbances is a manifestation of the certainty equivalence 
principle , which holds for several types of problems involving a linear 
system and a quadratic cost (see Sections 2.1, 3.2, 3.3, and 6.1). 
Example 2 
Consider an inventory control problem similar to the one of Section 2.1 but different 
in that inventory and demand are nonnegative integer variables. Furthermore, 
assume that there is an upper bound on the stock (x, + u,) that can be stored and 
also assume that the excess demand (w, - x, - 11.) is lost. As a result, the stock 
equation takes the form 

xk+l = max(0, xk + uk - wd. 
Assume that the maximum capacity (x, + ud for stock is 2 units , that the 

planning horizon N is 3 periods, and that the ordering cost c is l unit. The 
holding/shortage cost per stage is given by 

H(xk + uk - wk) = max(0, xk + uk - wk) + 3 max(0, wk - xk - uk). 

The terminal state cost is zero. The initial stock x 0 is given, and the demand w, 
has the same probability distribution for all periods, given by 

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2. 

The system can also be represented in terms of the probabilities of transition between 
the three possible states 0, I, 2 for the different values of control (see Figure 1.5a). 
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Stock 2 Stock 2 Stock 2 0 Stock 2 

0. 1 

Stock 1 Stock 1 Stock 1 Stock 1 

Stock 0 Stock 0 Stock 0 Stock 0 

Stock Purchased= 0 Stock Purchased = 1 

Stock 2 0 Stock 2 

Stock 1 0 Stock I 

Stock 0 
0.2 

Stock 0 

Stock Purchased= 2 

(a) 

Stage 0 St;ige I Stage 2 

Opt. Stock Opt. Stock Opt. Stock 
Stock Cost-to-go to Purchase Cost-io-go to Purchase Cost-to-go to Purchase 

0 4.9 I 3.3 1 1.7 

I 3.9 0 2.3 0 0. 7 

2 3.35 0 1.82 0 0.9 

(b) 

Figure 1.5 System and DP results for Example 2: (a) Transition probability 
diagrams for the different values of stock purchased (control). The numbers 
next to the arcs are the transition probabilities. The control u = 1 is not available 
at state 2 because of the limitation xk + uk ,;;;; 2. Similarly, the control u = 2 
is available only at state 0. (b) Results of the DP algorithm for Example 2. 

I 

0 

0 
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The starting equation for the DP algorithm is 

lJ(x3) = 0, 

since the terminal state cost is zero [cf. (1.6)]. The algorithm takes the form [cf. 
(1.7)] 

lk(xk) = min E {uk + max(0, xk + uk - wk) + 3 max(0, wk - xk - uk) 
Q~u.4. ~2 - Xk Wk 

llk=0,1,2 

k = 0, 1, 2, 

where Xk, uk, wk can take the values 0, 1, and 2. 

Stage 2 We compute l 2(xz) for each of the three possible states: 

12 (0) = min E {u2 + max(0, u2 - w2 ) + 3 max(0, W2 - u 2)} 
u2=0,l,2 W2 

= min {u2 + 0. l[max(0, u2 ) + 3 max(0, - u2)] 
u2=0,l,2 

+ 0.7[max(0, u 2 - 1) + 3 max(0, 1 - u 2)] + 0.2[max(0, u 2 - 2) 

+ 3 max(0, 2 - u2 )]}. 

We calculate the expectation of the right side for each of the three possible values 
of U2: 

u2 = 0: E {·} = 0.7 X 3 X 1 + 0.2 X 3 X 2 = 3.3, 

u2 = l: E{·} = 1 + 0.1 X l + 0.2 X 3 X l = 1.7, 

U2 = 2: E {·} = 2 + 0.1 x 2 + 0.7 x 1 = 2.9. 

Hence we have, by selecting the minimizing u2 , 

[> 12(0) = 1.7, µ,t(0) = 1. 

For x2 = 1, we have 

120) = min E {u2 + max(0, 1 + u2 - w2) + 3 max(0, w2 - 1 - u2)} 
u2=0,I w2 

= min {u2 + 0. l[max(0, 1 + u2 ) + 3 max(0, - 1 - u2)] 
u2=0.I 

+ 0.7[max(0, u2 ) + 3 max(0, - u2)] 

+ 0.2[max(0, u2 - 1) + 3 max(0, 1 - u2 )]}, 

u2 = 0: E {·} = 0.1 X 1 + 0.2 X 3 X 1 = 0.7, 

u2 = 1: E {·} = 1 + 0.1 x 2 + 0.7 X 1 = 1.9. 

Hence 

[> 120) = 0.7, µ,f (1) = 0. 

[> 

For Xz = 2, the only admissible control is u 2 = 0, so we have 

12(2) = E {max(0, 2 - w2) + 3 max(0, w2 - 2)} 
"'2 

= 0.1 X 2 + 0.7 X 1 = 0.9, 

12(2) = 0.9, µ,f(2) = 0. 

<I 

<I 

<I 
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Stage I Again we compute l 1(x1) for each of the three possible states x2 = 
0, 1, 2 using the values 12(0), 12(1) , 12(2) obtained in the previous stage: 

I> 

[> 

[> 

1,(0) = min E {u 1 + max(O, u1 - w1) + 3 max(O, w1 - u1) 
UI ~0,1,2 WI 

+ l 2[max(O, u1 - w1)]}, 

u, = 0: E {·} = 0.1 X 12(0) + 0.7[3 X 1 + 12(0)] 

+ 0.2[3 X 2 + 12(0)] = 5.0, 

U1 = 1: E {·} = 1 + 0.1[1 + 120)] + 0.7 X 12(0) 

+ 0.2[3 X 1 + 12(0)] = 3.3, 

u1 = 2: E {·} = 2 + 0.1[2 + 12(2)] + 0.7[1 + 12 (1)] 

+ 0.2 X J2(0) = 3.82, 

lr(O) = 3.3, µf(O) = 1, 

1,(1) = min E {u1 + max(O, 1 + u1 - w1) + 3 max(O, w1 - 1 - u1) 
u1=0,I w1 

+ 12[max(O, 1 + u1 - w1)J} 

U1 = 0: E {-} = 0.1[1 + 12(1)] + 0.7 X 12(0) 

+ 0.2[3 X 1 + 12(0)] = 2.3, 

u, = I : E {·} = I + 0.1[2 + 12(2)) + 0.7[1 + 120)] 

+ 0.2 X 12 (0) = 2.82, 

µf(l) = 0, 

11(2) = E {max(O, 2 - w1) + 3 max(O, w1 - 2) + J 2[max(O, 2 - w1)] 

= 0.1[2 + lz(2)J + 0.7[1 + lz(l)J + 0.2 X 12(0) = 1.82, 

1, (2) = 1.82, µf(2) = 0. 

<1 

<1 

<] 

Stage O Here we need only compute 10 (0) since the initial staie is known 
to be zero. We have 

[> 

10 (0) = min E {u0 + max(O, u0 - wo) + 3 max(O, Wo - u0 ) 
uo =0,1,2 wo 

+ J,[max(O, u0 - wo)]}, 

u0 = 0: E {·} = 0.1 X 1 1(0) + 0.7[3 X 1 + 1 1(0)] 

+ 0.2[3 X 2 + 11 (0)] = 6.6, 

u0 = 1: E {·} = 1 + 0.1[1 + 11(1)] + 0.7 X 11(0) 

+ 0.2[3 X 1 + 11(0)) = 4.9, 

u0 = 2: E {-} = 2 + 0.1[2 + 1 1(2)] + 0.7[1 + 110)) 

+ 0.2 X 1 1(0) = 5.352, 

10 (0) = 4.9, µt (0) = 1. <1 

If the initial state were not known a priori, we would have to compute in a similar 
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manner 10 (1) and 10 ('2) as well as the minimizing 110 • These calculations yield 

[> 

[> 

l oO) = 3.9, µJ'(l) = 0, 

10 (2) = 3.352, µJ (2) = 0. 

<] 

<] 

Thus the optimal ordering policy for each period is to order one unit if the current 
stock is zero. and order nothing otherwise. The results of the DP algorithm are 
given in tabular form in Figure 1.5b. 

Example 3 
Finite State Systems. We mentioned earlier (cf. the queueing example in the previous 
section) that systems with a finite number of states can be represented either by a 
discrete-time system equation or in terms of the probabilities of transition between 
the states (cf. Figures 1.2 and 1.5). Let us work out the corresponding DP algnrithm. 
We will assume for the sake of the following discussion that the problem is stationary 
(i .e. the transition probabilities. the cost per stage. and the control constraint set 
do not change from one stage to the next) . Then, if 

p ij( u) = P {xk+t = j I xk = i , uk = u} 

are the transition probabilities. we can alternatively represent the system by the 
system equation (cf. the discussion of the previous section) 

where the probability distribution of the disturbance wk is 

P {wk = j I xk = i, uk = u} = Pij(u). 

Using this system equation and denoting by g{i. u) the expected cost per stage at 
state i when control II is applied. the DP algorithm can be rewritten as 

Jk(i) = min [g(i, u) + E {lk+1(wd}] 
uEU(i) 

or equivalently (in view of the distribution of w~ given previously) 

Jk(i) = min[g(i, u) + LPi/u)lk+iU)], k = 0, 1, ... , N - 1. 
uEV(i) 

As an illustration. in the queueing problem of the previous section this algLH·ithm 
takes the form 

JN(i) = C(i), i = 0, 1, ... , n, 

Jk(i) = min[c(i) + Ct+ L pij(u1)lk+1U>, c(i) + Cs + L pij(uJl k+iU)]. 
j=O j=O 

k = 0, 1. ...• N - 1. 

The two expressions in the minimization correspond to the two available decisions 
(fast and slow service). 

1.3 DETERMINISTIC SYSTEMS AND THE SHORTEST PATH 
PROBU: 

The main objective of this text is the analysis of stochastic optimization 
problems and the ramifications of the presence of uncertainty . However, 
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deterministic problems arise in many important contexts, and the present 
and the next sections are devoted to explaining some of their distinguishing 
features . 

We first note that deterministic problems can certainly be embedded 
within the framework of the basic problem simply by considering disturbance 
spaces Dk having a single element. However, in contrast with stochastic 
problems, using feedback in deterministic problems results in no advantage 
in terms of cost reduction. In other words, minimizing the cost functional 
over the class of admissible control laws {µ, 0 , ..• , /LN 1} results in the 
same optimal cost as minimizing over the class of sequences of control 
vectors {uo, ... , uN- 1} with uk E Vk(xd for all k. This is true simply 
because the cost achieved by an optimal control law { µ,J , ... , µ,t; _ 1} for 
a deterministic problem is also achieved by the control sequence 

ut = µ,t (xt), k = 0, . .. , N - 1, 

where the states x3', ... , x,t,_ 1 are defined by 

x3' = x0 , k = 0, 1, ... , N - 1. 

For this reason we may minimize the cost functional over sequences of 
controls, a task that may be achieved by variational deterministic optimal 
control algorithms such as steepest descent, conjugate gradient, and Newton's 
method. These algorithms, when applicable, arc usually more efficient than 
DP. On the other hand, DP has a wider scope of applicability since it can 
handle difficult constraint sets such as integer or discrete sets. Furthermore, 
DP leads to a globally optimal solution as opposed to variational techniques, 
for which this cannot be guaranteed in general. 

Consider now a deterministic problem where the state space Sk is a 
finite set for each k. Then at any state X1-: a control u1-: can be associated 
with a transition from the state x1-: to the state f~ (x1-:, ud. Thus a finite state 
deterministic problem can be equivalently represented by a graph such as 
the one of Figure 1.6, where the arcs correspond to transitions between 
states at successive stages and each arc has a cost associated with it. We 
have also added an artificial terminal node t. Each arc connecting a state 
xN at stage N to the termim1! node has cost gN(xN ). Control sequences 
correspond to paths originating at the initial state (node s at stage 0) and 
terminating at one of the nodes corresponding to the final stage N. If we 
view the cost of an arc as its length, we see that a deterministic problem 
is equivalent to .findinr;? a shortest path from the initial node s qf the vaph 
to the terminal node t. [A path is a sequence of arcs of the form U,, jJ, 
(j2 ,j3 ), •• • , U1-: ,,}1-:); its length is the sum of the length of its arcs .] 

If we denote 

ct = cost of transition from state i E SA 
to statej E Sk+i, k = 0, 1, ... , N - I, 

c';'/ = terminal cost of sta te i E SN, 
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Figure 1.6 Transition graph for a deterministic finite state system. Nodes cor­
respond to states. An arc with start and end nodes x* and xH 1, respectively, 
corresponds to a transition of the form xk+i = ft(xb u*). The length of this arc 
is equal to the cost of the corresponding transition glx*, u*). The problem is 
equivalent to finding a shortest path from the initial node s to the terminal node 
t . 

the DP algorithm takes the form 

JN(i) = cf:, i E SN, 

Jk(i) = min kt+ lk+1U)}. 
jESk+ I 

i E Sb k = 0, 1, ... , N - 1. 

(1.9) 

(1.10) 

The optimal cost is J0 (s) and equals the length of the shortest path from 
s to t. 

The preceding algorithm proceeds backward in time. It is possible 
to derive an equivalent algorithm that proceeds forward in time by means 
of the following simple observation. An optimal path from s to t is also 
an optimal path from t to s in a "reverse" shortest path problem whereby 
the direction of each arc is reversed and its length is left unchanged. The 
DP algorithm corresponding to this "reverse" problem is 

(1.11) 

]k(j) = min {c~ - k + lk+ 1U)}, j E SN-k+I• 
iESN - k 

k = 1, 2, ... , N - 1, (1.12) 

and the optimal cost is 

(1.13) 
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The backward and forward DP algorithms (1.9), (1.10) and (I.I I) to (1.13), 
respectively, are equivalent in the sense that J0 (s) = ]0 (t), and an optimal 
control sequence (or shortest path) obtained from any one of the two is 
optimal for the original problem. We may view ]kU) in (1.12) as an optimal 
cost-to-arrive to state j from the initial state s. This should be contrasted 
with Jk(i) in (1. 10), which represents the optimal cost-to-go from state i to 
the terminal state t . 

In conclusion, a deterministic finite state problem is equivalent to a 
special type of shortest path problem and can be solved by either the 
ordinary (backward) DP algorithm or by an alternative forward DP algorithm. 
It is also interesting to note that any shortest path problem can be posed 
as a deterministic finite state DP problem, as we now show. 

Let {I, 2, ... , N, t} be the set of nodes of a graph, and let ciJ be the 
cost of moving from node i to node j (or length of the arc joining i and}). 
Node t is a special node, which we call the destination. We allow the 
possibility c,1 = = to account for the case where there is no arc joining 
nodes i and j. We want to find a shortest path from each node i to node 
t, that is, a sequence of moves that minimizes total cost to get to t from 
each of the nodes I, 2, ... , N. For the problem to have a solution , it is 
necessary to exclude the possibility that a sequence of moves that starts 
and ends at the same node (a cycle) has negative total length. Otherwise, 
it would be possible to decrease the length of some paths to arbitrarily 
small values simply by adding more and more negative-length cycles. 

Since negative-length cycles have been excluded by assumption, it is 
clear that an optimal path need not take more than N moves, so we may 
limit the number of moves to N. We formulate the problem as one where 
we require exactly N moves but allow degenerate moves from a node i to 
itself with cost C;; = 0. We denote for i = 1, ... , N, k = 0, 1, ... , 
N - I, 

J N- t (i) = optimal cost for getting from i tot in one move, 

Jk(i) = optimal cost for getting from i tot in (N - k) moves. 

Then the cost of the optimal path from i to t is 10 (i). It is possible to 
formulate this problem within the framework of the basic problem and 
subsequently apply the DP algorithm. For simplicity, however, we write 
directly the DP equation, which takes the intuitively clear form 

or 

with 

optimal cost from i tot in (N - k) moves 

= min {cu + optimal cost fromj tot in (N - k - 1) moves}, 
j= l. ... ,N 

Jk(i) = min {cu+ lk+1W}, 
j=l, .... N 

k = 0, 1, ... , N - 2, 

i = 1,2, ... ,N. 
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The optimal policy when at node i after k moves is to move to node j*. 
where j* minimizes over all j = I, ... , N the expression in braces. Note 
that a degenerate move from i to i is not excluded. If the optimal path 
obtained from the algorithm contains such degenerate moves, this simply 
means that its duration is less than N moves. 

To demonstrate the algorithm, consider the problem shown in Figure 
1.7a, where the costs cu, i -/=- j (we assume cu = cji) , are shown along the 
connecting line segments. Figure 1.7b shows the cost-to-go l1Ji) at each 
node i and index k together with the optimal path. The optimal paths are 

1 ~ 5, 2 ~ 3 ~ 4 ~ 5, 3 ~ 4 ~ 5, 4 ~ 5. 

State i 
Destination t = 5 

5 

4 

3 

2 

2 0.5 3 

(a) 

3 

4 

4.5 

0 2 

(b) 

3 4 Stage k 

Figure 1. 7 (a) Shortest path problem data. The destination is 5. Arc lengths 
are equal in both directions and are shown along the line segments connecting 
nodes . (b) Costs-to-go generated by the DP algorithm. The number along stage 
k and state i is l h ). Arrows indicate the optimal moves at each stage and node . 

1.4 SHORTEST PATH APPLICATIONS IN CRITICAL PATH 
ANALYSIS, CODING THEORY, AND FORWARD 
SEAllC 

The shortest path problem appears in many diverse contexts. We provide 
some examples. 

Critical Path Analysis 

Consider the planning of a project involving several activities, some 
of which must be completed before others can begin. The duration of each 
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activity is known in advance . We want to find the time required to complete 
the project , as well as the critical activities, those that even if slightly 
delayed will result in a corresponding delay of completion of the overall 
project. 

The problem can be represented by a directed graph with nodes 1, 
... , N such as the one shown in Figure 1.8 (also called an activity network). 
Here nodes represent completion of some phase of the project. An arc 
(i, }) represents an activity that starts once phase i is completed and has 
known duration tiJ. A phase (node) j is completed when all activities or 
arcs (i, j) that are incoming to j are completed. The special nodes 1 and 
N represent the start and end of the project. Naturally, node I (N) has 
no incoming (outgoing) arcs. 

An important characteristic of an activity network is that it is acyclic; 
that is , it has no directed cycles [sequences of directed arcs of the form 
(i, i1), U1, } 2), .. . , Uk , i)J. This is inherent in the problem formulation 
and the interpretation of nodes as phase completions. 

Consider now the time T required to complete all phases of the project 
and hence the project itself. For any directed path p = {(I, i1), U1, i 2), 
... , Uk 1 , jk)} from node I to node ik , let DP be the duration of the path 
defined as the sum of durations of its activities; that is, 

So DP is the total duration of the sequence of activities (1 , } 1) , ••• , Uk- 1 , 

jk) if each could be started immediately after the previous ended. Clearly , 
DP cannot exceed the total project duration time ; that is, 

all paths p. 

Figure 1.8 Graph of an activity network. Nodes represent completion of some 
phase of the project. Arcs represent activities and are labeled by the duration. 
A phase is completed if all activities associated with incoming arcs at the cor­
responding node are completed. The project is completed when all phases are 
completed. The project duration time is the length of the longest path from node 
1 to node 7. 
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We claim that 

T = maxDp, 
p 

and therefore finding T may be viewed as a problem of finding the longest 
path from node I to node N when the length of each arc (i, j) is tu. Because 
the graph is acyclic, this problem may also be viewed as a shortest path 
problem with the length of each arc (i, j) being - tu. 

The easiest way to show this is by deriving the corresponding DP 
algorithm. Let Nk, k = 1, 2, ... , be the set of phases 

N" = {i I the maximum number of arcs contained in paths 
from 1 to i is exactly k} 

with N 0 = {l}. For each phase i, let 

T;: required time to complete i. 

Then we have 

T; = max{ti; + I'; Ii E No U ··· U N k-1}, 
U,0 

and a little thought reveals that T; equals the maximum DP over all paths 
p from 1 to i . For i = N, we obtain T = maxP DP . 

For the activity network of Figure 1.8, we have 

N0 = {l}, N 1 = {2, 4}, N2 = {3, 5}, N3 = {6}, N 4 = {7}. 

A calculation using the preceding formula yields 

T1 = 0, T2 = 3, T4 = 1, T3 = 4, T5 = 4, T6 = 9, T7 = 11, 

and the critical (i.e ., longest) path is 1 ~ 2 ~ 3 ~ 6 ~ 7. Any delay in 
the completion of the critical activities (I, 2), (2, 3), (3, 6), (6, 7) will 
proportionately delay the completion of the overall project. 

Convolutional Coding and the Viterbi Decoder 

When binary data are transmitted over a noisy communication channel, 
it is often essential to use coding as a means of enhancing reliability of 
communication. A very common type of coding method, called convolutional 
coding, converts a source-generated binary data sequence 

{w i, w2, •.. }, wk E {O, 1}, k = 1, 2, ... , 

into a coded sequence 

where each Yk, k = I, 2, 
coordinates (called codeword) 

[
Yk] Yk = ... , 
Y

/1 

k 

{Y1, Y2, ... }, 

is an n-dimensional vector with binary 

y~ E {O, l} , i = 1, ... , n. 
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The vectors Yk are related to wk via equations of the form 

Yk = Cxk-1 + dwk, k = l. 2, .... 

k = I, 2, ...• 

(1.14) 

(1.15) 

x0 : given, 

where xk is an m-dimensional vector with binary coordinates I called state) 
and C, d, A, and bare n x m, n x I, m x m. and m ,, I matrices. 
respectively, with binary coordinates. The products and the sums im·olved 
in the expressions Cxk- i + dwk and Ax~_ 1 - hd. are calculated using 
modulo 2 arithmetic. 

As an example, let m = 2, n 

c~[m 
3, and 

A - [ ~: l 
h~ m 

Then the evolution of the system ( 1.14) to ( 1.15 J can be repre-,.ented by the 
transition diagram (called a trellis) shown in Figure 1.9. From thi;;, diagram 
and the initial x0 , it is possible to generate the cude,1. orJ. ,eq uence · y ! . Y: . 
... } corresponding to a data sequence {w 1, H':- ... }. for c\ctmpk. when the 

Old State xk-l 

00 

01 

JO 

11 

0/000 
New State xi 

0: 

I( 

Figure 1.9 State transition diagram from x- _ 1 to x.. The bi ary number pair 
on each arc is the data/codeword pair w I· for the corre<;pond. r.g tran,•t • 
So, for example, when x1 1 = 01 , a zero data bit (w1 = Ol effec s a tran,1t1on 
to x 1 = 11 and generates the codeword 011. 



30 The Dynamic Programming Algorithm Chap. 1 

initial state is x0 = 00, the data sequence 

{w 1, w2 , w3 , w4 } = {l, 0, 0, l} 

generates the state sequence 

{xo, X1, Xz, X3, X4} = {00, 01, 11 , 10, 00}, 

and the codeword sequence 

{Y1, Y2, y3, y4} = {Ill , 011, 111,011}. 

Assume now that the characteristics of the noisy transmission channel 
are such that a codeword y is actually received as z with known probability 
p(z I y), where z is any n-bit binary number. We denote 

ZN= {z 1, z2, ... , ZN} 

the sequence received when the transmitted sequence is 

YN = {Y1, Y2, ... , YN}. 

We assume independent errors so that 
N 

p(ZN I YN) = IT p(zk I Yd-
k=I 

(1 .16) 

A maximum likelihood decoder converts a received sequence ZN into a 
sequence 

such that 

p(ZN I YN) = max p(ZN I YN) . 
YN 

The constraint on Y N is that it must be a feasible codeword sequence (i.e., 
it must correspond to some initial state and data sequence). Given YN, 
one can then construct a corresponding data sequence { «1

1, ••• , «1N} that 
is accepted as the decoded data. 

Viterbi developed a shortest path scheme that implements the maximum 
likelihood decoder. Using ( 1. 16) , we see that the problem of maximizing 
p(ZN I YN) is equivalent to the problem 

N 

minimize 2, - ln[p(zk I Yk)] 
k=I (1.17) 

over all binary sequences {Y1, Y2, ... , YN} 

for a known received sequence {z 1 , z2 , ... , ZN}. To see that this is a shortest 
path problem, note that, given Zk, we can assign to each arc on the state 
transition diagram the length - ln[p( zk I yd), where Yk is the codeword 
associated with the arc. Next we construct a graph by concatenating N 
state transition diagrams and appending dummy nodes s and t on the left 
and right side of the graph connected with zero-length arcs to the states 
x0 and xN- 1, respectively (see Figure I. IO) . The solution to problem (1.17) 
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Figure 1. 10 Maximum likelihood decoding viewed as a problem of finding a 
shortest path from s to t . Length of arcs from s to states x0 and from states 
xN-1 tot is zero. Length of an arc from a state xk-i to xk is - In p(zk I yk), where 
Zk is the received codeword and Yk is the codeword associated with the arc. 
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is obtained by constructing a shortest path from s to t and finding the 
associated sequence {y 1, ... , y N}. From the shortest path and the trellis 
diagram, we can then obtain the decoded data sequence {«1

1, w2, ... , wN}. 
In practice, the shortest path is most conveniently constructed by 

calculating the shortest distance from s to each node on-line as soon as the 
corresponding codeword is received. There are a number of practical schemes 
for decoding a portion of the data sequence prior to receiving the entire 
codeword sequence ZN. (This is useful if ZN is a long sequence.) For 
example, one can check rather easily whether for some k all shortest paths 
from s to states xk pass through a single node in the subgraph of states 
x0, ... , xk 1• If so, it can be seen that the shortest path from s to that 
node will not be affected by rc1..:eption of additional codewords (the principle 
of optimality), and therefore the corresponding data subsequence can be 
safely decoded and delivered to its destination. 

Forward Search 

In some shortest path problems the number of nodes is extremely 
large. As a result, storing these nodes in a computer's memory can be 
very difficult. Indeed, the nature of some shortest path problems is such 
that the solution becomes very simple once the nodes of the underlying 
graph are enumerated, and the real issue is how to solve the problem while 
avoiding a complete enumeration of all nodes. ln such cases it is frequently 
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possible to save both in memory and in computation by means of a forward 
search for a shortest path from an origin node toward a destination node. 
The techniques for doing this have partly originated in artificial intelligence 
and are typically used in computer progams that solve puzzles or play 
games such as chess (see Section 4.3). Let us provide some examples. 

Example 1 
The Four Queens Problem. Four queens must be placed on a 4 x 4 portion of a 
chessboard so that no queen can attack another. In other words, the placement 
must be such that every row, column, or diagonal of the 4 x 4 board contains at 
most one queen. Equivalently, we can view the problem as a sequence of problems: 
first, placing a queen in one of the first two squares in the top row , then placing 
another queen in the second row so that it is not attacked by the first, and similarly 
placing the third and fourth queens. (It is sufficient to consider only the first two 
squares of the top row since the other two squares lead to symmetric positions.) 
We can associate positions with nodes of an acyclic graph where the root node s 
corresponds to the position with no queens and the terminal nodes correspond to 
the dead-end positions where no additional queens can be placed without some 
queen attacking another. Let us connect each terminal position with an artificial 
node t by means of an arc. Let us also assign to all arcs length zero except for 
the artificial arcs connecting terminal positions with less than four queens with the 
artificial node t. These latter arcs are assigned the length + = (see Figure 1. 11) to 
express the fact that they correspond to dead-end positions that cannot lead to a 
solution. Then the four queens problem reduces to finding a shortest path from 
nodes to node t. Note that once the nodes of the graph are enumerated the problem 
is essentially solved. Here the number of nodes is small. However, we can think 
of similar problems with much larger memory requirements. For example, there 
is an eight queens problem where the board is 8 x 8 instead of 4 x 4. 
Example 2 
The Traveling Salesman Problem. An important model for scheduling a sequence 
of operations is the classical traveling salesman problem. Here we are given N 
cities and the mileage between each pair of cities, and we wish to find a minimum­
mileage trip that visits each of the cities exactly once. To convert this problem to 
a shortest path problem, we associate a node with every sequence of II distinct 
cities, where n = l , 2, ... , N. The construction and arc lengths of the corresponding 
graph are explained by means of an example in Figure 1. 12. The origin node s 

consists of city A, taken as the start. A sequence of II cities (n < N) yields a 
sequence of (n + 1) cities by adding a new city. Two such sequences are connected 
by an arc with length equal to the mileage between the last two of the n + l cities. 
Each sequence of N cities is connected to an artificial terminal node t with an arc 
having length equal to the distance from the last city of the sequence to the starting 
city A. Note that the number of nodes grows exponentially with the number of 
cities, so we would like to have algorithms that do not require the enumeration 
and /or storage of these nodes. 

In the shortest path problem that we will consider there is a single 
node s with no incoming arcs, called the origin, and a single node t with 
no outgoing arcs, called the destination. We assume that every arc (i, j) 
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Dead-end Position 

Artificial 
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Length== 0 

Figure 1.11 Shortest path formulation of the four queens problem. Symmetric 
positions resulting from placing a queen in one of the rightmost squares in the 
top row have been ignored. Squares containing a queen have been darkened. 
All arcs have length zero except for those connecting dead-end positions to the 

artificial terminal node. 
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ABC 
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4 4 

Artificial Terminal Node t 
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Table of Mileage between Cities 

3 

ADB 

20 

Figure 1.12 Example of shortest path formulation of the traveling salesman 
problem. The distance between the four cities A, B, C, and Dare shown in the 
table . The arc lengths are shown next to the arcs. 

20 

has a length au which is nonnegative or + x, and we wish to find a shortest 
path from origin to destination. We assume that there exists a shortest path with 
finite length. The following algorithm is a general method for solving the prob­
lem. In it we make use of two lists of nodes called OPEN and CLOSED. The 
list OPEN contains nodes that are currently active in the sense that they are can­
didates for further examination by the algorithm. The list CLOSED contains 
nodes that have been examined by the algorithm and are not currently candi­
dates for further consideration. Using CLOSED is not essential for the algo­
rithm, but results in some conceptual simplification. Initially, OPEN contains 
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j ust the origin node s and CLOSED is empty. The algorithm maintains an 
upper bound of the shortest distance from origin to destination called UPPER 
and initially equal to + =. The algorithm also maintains for each node i 
an upper bound d; of its shortest distance from the origin. Initially, ds = O 
and d; = + = for all other nodes i. A node j is called a son of node i if 
there is an arc (i, j) connecting i with j. The steps of the algorithm are as 
follows: 

Step 1 Remove a node i from the top of OPEN and place it in 
CLOSED. For each son j of i, go to step la if j I- t, and go to step lb if 
j = t. 

_ Step la U I- t) If d; + aiJ < min{dj, UPPER}, set dj = d; + aiJ, 
give j the label i, place j at the top of OPEN, and remove j from CLOSED 
if it belongs there. (Note: The label is needed in order to trace the shortest 
path to the origin after the algorithm terminates .) 

Step 1 b U = t): If d; + a;1 < UPPER, set UPPER = d; + a;r, and 
mark node i as lying on the best path found so far from s to t. 

Step 2 If OPEN is empty , terminate; else go to step 1. 

It can be seen that, throughout the algorithm, d1 is either +=(if node 
j has not yet entered the OPEN list), or else it is the length of a path from 
s to j consisting of nodes that have entered the OPEN list at least once. 
Furthermore, UPPER is either + =, or else it is the length of a path from 
s to t, and consequently it is an overestimate of the shortest distance from 
s to t. The idea in the algorithm is that when a shorter path from s to j is 
discovered than those considered earlier (d; + a;1 < d1 in step I a), the value 
of d1 is accordingly reduced, and node j enters the OPEN list so that paths 
passing through j and reaching the sons of j can be taken into account. It 
makes sense to do so, however, only when the path considered has a chance 
of leading to a path from s to t with length smaller than the overestimate 
UPPER of the shortest distance fr0m s to t. In view of the nonnegativity 
of the arc lengths, this is not possible if the path length d; + a;1 is not 
smaller than UPPER. This provides the rationale for entering j into OPEN 
in step la only if d; + aiJ is less than UPPER. 

Tracing the algorithm, we see that it will first examine node s (the 
only node initially in OPEN), places (permanently) in CLOSED, and assuming 
t is not a son of s, it will place all the sons j of s in OPEN after setting 
d

1 
= asJ· If tis a son of s, then UPPER will be set to a., 1 in step lb, and 

the sons of s examined after t will be placed in OPEN only if asJ < a, 1 ; 

indeed, this should be so since if as1 ~ a.u node j cannot lie on a shorter 
path from s to t than the direct path consisting of arc (s. t). The algorithm 
will subsequently take the last son j I- t of s from the top of OPEN, place 
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it in CLOSED, and place those of its sons j =f t that satisfy the criterion 
of step la in OPEN, etc. When the algorithm terminates, we claim that a 
shortest path can be obtained by using the node last marked in step I b as 
lying on the best path. By tracing labels starting from that node we can 
proceed backward and construct a shortest path to the origin node. Fig. 
1.13 illustrates the use of the algorithm to solve the traveling salesman 
problem of Fig. 1.12. 

To verify that a path obtained as just described is shortest. we reason 
as follows. We first argue by contradiction that the algorithm will terminate. 
Indeed, if this is not so, some node j will enter the OPEN list infinitely 
often, which means that dJ will be decreased infinitely often. each time 
obtaining a corresponding shorter path from s to}. This is not possible 
since, in view of the nonnegative arc assumption, the number of distinct 
lengths of paths from s to} is finite. Therefore, the algorithm will terminate. 
We next show that the value of UPPER upon termination must equal the 
shortest distance d* from s to t. Indeed, let (s, j 1 , J~, . . . , j 1.. t) be a 
shortest path from s tot. Then each path (s. }1 , •••• },,,). m = I. .... k. 
is a shortest path from s to Jm, respectively. If the value of UPPER is 
larger than d* at termination, the same must be true throughout the algorithm. 
and therefore UPPER will also be larger than the length of all the paths 
(s, }1 , ••• , },,,), m = I , ... , k, throughout the algorithm. It follows that 
node }1. will never enter the OPEN list with dh equal to the shortest distance 
from s to }1., since in this case UPPER would be set to d* in step I b 
immediately following the next time node Ji. is examined by the algorithm 
in step 1. Similarly, this means that node Ji._ 1 will never enter the OPEN 
list with dJ,, 

11 
equal to the shortest distance from s to Ji. 1 • Proceeding 

backward, we conclude that }1 never enters the OPEN list with d1 equal 
to the shortest distance from s to } 1 (which is equal to the length 

I 

of the 
arc (s, Ji)). This happens, however. at the first iteration of the algorithm 
as discussed earlier, so we have reached a contradiction. lt follows that 
UPPER will equal at termination the shortest distance from s to t. It is 
seen that the path constructed by tracing labels backward from t to s has 
length equal to UPPER, so it is a shortest path from s to t. 

There are two attractive aspects to this algorithm. The first is a 
potential saving in computation in that nodes} for which d; + a;J ~ UPPER 
in step la need not enter OPEN and be examined later. Furthermore , if 
we know a lower bound to the shortest distance. we can terminate the 
computation once UPPER reaches that bound either exactly or within an 
acceptable tolerance £ > 0. (This feature is useful. for example. in the 
four queens problem, where the shortest distance is known to be zero or 
infinity. Then the algorithm will terminate once a solution is found.) 

The second attractive aspect of the algorithm is a potential saving in 
memory storage requirements. This is most evident in graphs such as those 
in Figures 1.11 and 1.12 for which there is a unique directed path from the 
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3 ABC 

3 3 4 4 20 

Artificial Terminal Node t 

(a) 

Node Entering 
Iteration No. List OPEN CLOSED UPPER 

0 +oo 

1 2, 7, JO +oo 
2 3, 5, 7, 10 2 +oo 

3 4, 5, 7, 10 3 +oo 

4 5, 7, JO 4 43 

5 6, 7, JO 5 43 

6 7, iO 6 13 

7 8, 10 7 13 

8 9, JO 8 13 

9 JO 9 13 

JO Empty JO 13 

(b) 

Figure 1.13 The algorithm applied to the traveling salesman problem of Figure 
1.12. The optimal solution ABDC is found after examining node" 1 through JO 
in that order. The table shows the successive contents of the OPEN list. 
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origin node to every other node. Then, in view of our convention of placing 
nodes at and removing nodes from the top of OPEN, the search proceeds 
in depth-first fashion, as shown in Figure 1.14. As a result, large portions 
of CLOSED can be purged from memory, as shown in Figure 1.15. The 
basis for this is that once all sons of a node enter the CLOSED list then 
all paths passing through that node have been generated and evaluated . 
Therefore , it is sufficient to store only the best path found so far and purge 
all other information relating to such a node. 

There are a number of variations of the algorithm just given. The 
preceding proof of validity of the algorithm does not depend on removing 
a node from the top of OPEN in step 1 or placing a node at the top of 
OPEN in step la. This allows a great deal of freedom on how the algorithm 
is operated. An important case is when the node i selected in step 1 is not 
the node that happens to be at the top of OPEN, but rather the one in 
OPEN for which d; is minimum. This is accordingly known as best-first 
search and is equivalent for the problem considered here to Dijkstra's 

Origin Node s 

Destination Node t 

Figure 1.14 Searching a tree in depth-first fashion . The checkmarks show the 
order in which nodes enter the CLOSED list. 
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Figure l. 15 Memory requirements of 
depth-first search for the graph of Figure 
1.14. At the time the node marked by 
the checkmark enters the CLOSED list, 
only the solid-line portion of the tree is 
needed in memory. The dotted-line por­
tion has been generated and purged from 
memory based on the rule that it is un­
necessary to store a node with all suc­
cessors in CLOSED. The broken-line 
portion of the tree has not yet been 
generated. 
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algorithm (see [P2] and Problem 27). Another possibility is to place in step 
la the node j at the top of OPEN if j currently belongs to CLOSED, to 
the bottom of OPEN if J does not belong to CLOSED or OPEN, and to 
leave j in its current position in OPEN if it belongs to OPEN. This algorithm 
was suggested by Pape [P4] and turns out to be very effective for important 
classes of problems [D6]. 

We mentioned earlier that the key idea of the algorithm is to save 
computation by foregoing the examination of nodes j that cannot lie on a 
shortest path. This is based on the test d; + a;j < UPPER that node J 
must pass before it can be placed in the OPEN list in step la. We can 
strengthen this test if we can find a positive underestimate hj of the shortest 
distance of node j to the destination. Such an estimate can be obtained 
from special knowledge about the problem at hand. We may speed up the 
computation substantially by placing a node j in OPEN in step la when 
d; + a;j + hj < UPPER (instead of d; + a;J < UPPER). In this way, fewer 
nodes will potentially be placed in OPEN before termination. Using the 
fact that hj is an underestimate of the true shortest distance from j to the 
destination, the argument given earlier shows that the algorithm will terminate 
with a correct shortest path. 

The idea just described is one way to sharpen the test d; + aiJ < 
UPPER for admission of node j into the OPEN list. An alternative idea 
is to try to reduce the value of UPPER by obtaining for the node j in step 
la an overestimate hj of the shortest distance from j to the destination. 
Then if d1 + hj < UPPER after step I a, we can reduce UPPER to d1 + 
hi, thereby making the test for future admissibility into OPEN more stringent. 
This idea is used in some versions of the branch-and-bound algorithm, one 
of which we now briefly desc1ibe (see also [P2] and I P9J for further discussion). 
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Example 3 
Branch-and-Bound Algorithm. Consider a problem of minimizing a cost function 
f(x) over a finite set of feasible solutions X. The branch-and-bound algorithm uses 
an acyclic graph with nodes that correspond on a one-to-one basis with a collection 
.}( of subsets of X . We require the following: 

l. XE .}( (i.e., the set of all solutions is a node) . 
2. If x is a solution, then {x} E .}((i.e., all solutions viewed as singleton sets 

are nodes). 

3. If Y E .}( contains more than one solution x E X, then there exist Y1, ••• , 

Yn E .}( such that Y; -=/= Y for all i and 
n 

LJ Y; = Y. 
i=I 

Y is called the parent of f 1, ••• , Yn , and Y1 , ••• , Yn are called the sons 
of Y. 

4. Each node other than X has at least one parent. 

It is clear that .}( defines an acyclic graph with root node X and terminal nodes 
{x}, x E X (see Figure 1.16). If Y; is a son of Y, we assume that there is an arc 
connecting Y and Y;. Suppose that for every node Y there is an algorithm that calculates 
upper and lower bounds fy and J y for the minimum cost over Y, that is: 

fr ~ minf(x) ~Jy. 
- xEY 

Assume further that the upper and lower bounds are exact for a singleton solution 
node, 

[Ix} = f(x) = fix}, for all x EX. 

X ::: { 1, 2, 3, 4, 5} 

{ 5 } 

Figure 1.16 A tree corresponding to a branch-and-bound algorithm. Each node 
(subset) except those consisting of a single solution is partitioned into several 
other nodes (subsets). 
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Define now the length of an arc involving a parent Y and a son Y; to be the lower 
bound difference 

[r; - fr· 
Then evidently for every node Y the lower boundf,. is}: plus the length of any path from 
the origin node X to Y. Because of our assumption-(!;,>-= (f(x) for all feasible solutions x 
E X, it is clear that finding a shortest path from the origin node to one of the singleton 
nodes is equivalent to minimizing ( j(x) over x E X. 

Consider now a variation of the shortest path algorithm discussed earlier where in 
addition we use our knowledge of the upper bounds};. to reduce the value of UPPER. 
Initially , OPEN contains just X, and UPPER equals L 

Step I Remove a node Y from OPEN. For each son Yi of Y, execute Step 2 . 

Step 2 If [rj <:_ UPPER, then place ~ in OPEN. If in addition .frj < UPPER, 
then set UPPER = frj, and if Y;- consists of a single solution, mark that solution 
as being the best solution found so far. 

Step 3 If OPEN is nonempty, go to step 1. Otherwise, terminate; the best 
solution found so far is optimal. 

An alternative termination step 3 for the preceding algorithm is to set a 
tolerance E > 0 and check whether UPPER and the minimum lower bound fr over 
all sets Yin the OPEN list differ by less than E. If so, the algorithm is terminated, 
and some set in OPEN must contain a solution within E of being optimal. There 
are a number of other variations of the algorithm. For example, if the upper bound 
.fr at a node is actually the cost f(x) of some element x E Y, then this element can 
be taken as the best solution found so far whenever .fr < UPPER in step 2. Other 
variations relate to the method of selecting a node from OPEN in step l. For 
example, two strategies of the best-first type are to select the node with minimal 
lower or upper bound. In closing, we note that applying branch and bound effectively 
requires the creative use of knowledge of the particular problem at hand. In particular, 
it is important to have algorithms for generating as sharp as practically possible 
upper and lower bounds at each node, since then fewer nodes will be admitted into 
OPEN, with attendant computational savings. 

1.5 TIME LAGS, CORRELATED DISTURBANCES, 
AND FORECASTS 

This section deals with situations where some of the assumptions in the 
basic problem formulation are not satisfied. We shall consider the case 
where there are time lags in the system equation, the case where the 
disturbances wk are correlated, and the case where at time k a forecast on 
the future uncertainties wk> wk+ 1, ••• becomes available , thus updating the 
corresponding probability distributions. The situation where the system 
evolution may terminate prior to the final time either due to a random event 
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or due to an action of the decision maker is covered in the problems. 
Generally , in all these cases it is possible to reformulate the problem into 
the framework of the basic problem by using the device of state augmentation. 
The (unavoidable) price paid, however, is an increase in complexity of the 
reformulated problem. 

Time Lags 

For simplicity, assume that there is at most a single period time lag 
in the state and control, that is, assume a system equation of the form 

xk+t =fk(xk,xk_,,uk,uk_,,wk), k= 1,2, ... ,N-1, (l.lS) 

x, = fo(Xo, Uo, Wo). 

Time lags of more than one period can be handled by a straightforward 
extension. 

Now if we introduce additional state variables Y1.. and s1c and make the 
identifications Y1c = x1c_ 1, s1c = u1c- 1 , the system equation (1.18) yields. for 
k = l, 2, ... , N - l, 

[

Xk+• ] - [fdxk, Yb Uk, Sk, wk)] 
Yk+t - xk . 
Sk+l Uk 

(1.19) 

By defining xk (xk, Yb sk) as the new state, we have 

Xk+l = lk(xk, Uk, wk), (1.20) 

where the system function f1c is defined in an obvious manner from ( 1.19). 
By using ( 1.20) as the system equation and by making a suitable reformulation 
of the cost functional. the problem is reduced to the basic problem without 
time lags. Naturally, the control law {µ 0 , •• • , µN_ 1} that is sought will 
consist of functions µk of the new state x\, or equivalently µk will be a 
function of the present state X1c as well as past state X1c- 1 and control ih- 1 • 

The DP algorithm (in terms of the variables of the original problem) is 

JN(xN) = gN(xN), 

+ JN[fN-1(XN-l, XN-2, UN-1, UN-2, WN-1)]}, 

l ixk, xk- t , uk_ 1) = min E {gixk, uk, wk) 
ukEUk(xk) wk 

+ lk+ilfixk, xk-1, uk, uk-1, wk), Xk, ud}, 

k = 1, ... , N - 2. 
Jo(x0) min E {go(x0 , u0 , w0 ) 

UoEUo(Xo) Wo 
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We note that similar reformulations are possible when time lags appear 
in the cost functional, for example, in the case where the expression to be 
minimized is of the form 

E{ KN(xN, xN- ,) + :t~ g,(x,, x,_ 1, u,, w,) }-

The extreme case of time lags in the cost functional is when it has the 
nonadditive form 

E{gN(xN, XN -1, ... , Xo, uN-1, ... , Uo, WN -1, ... , Wo)}. 

Then, to reduce the problem to the form of the basic problem, the augmented 
state xk at time k must include 

and the reformulated cost functional takes the form 

E{gN(xN)}, where XN = (xo, ... , XN, Uo, ... , UN-J, Wo, ... , WN- 1) , 

The control law sought consists of functions f.Lk of the present and past 
states xk, ... , x 0, the past controls uk- 1, ••• , u0, and the past disturbances 
wk- 1, ••• , w 0 • Naturally, we must assume that past disturbances are known 
to the controller for otherwise we are faced with a problem with imperfect 
state information. The DP algorithm takes the form 

J N-1(Xo, . .. , XN - 1, Uo, ... , UN -2, Wo, ... , WN -2) 

min E {gN(xo, ... , xN-1, fN -1(xN-1 , uN-1, wN-1), 
UN-1EUN -J(XN-I) WN-1 

Uo, ••• , UN-I, Wo, •.• , WN-1)}. 

Jk(Xo, ... , xk, Uo, ... , Uk 1, Wo, ... , wk _,) 

min E{lk+i(x0 , ••• , xk,fk(xk, uk , wd, 
ukEUk(xk) wk 

k = 0, ... , N - 2. 

Similar algorithms may be written for the case where the control constraint 
set depends on past states or controls, and so on. 

Correlated Disturbances 

We turn now to the case where the disturbances wk are correlated. 
Here we shall assume that the wk are elements of a Euclidean space and 
that the probability distribution of w" does not depend explicitly on the 
current state xk and control uk, but rather it depends explicitly on the prior 
values of the disturbances w0 , ••• , wk . , . By using statistical methods (see, 
e.g., [AIJ) it is often possible to represent the process wo, w, . ... , w.v , 
by means of a linear system 

Yk+I = AkYk + gk, 

wk= CkYk+i, 

k = 0, 1, ... , N - I, Yo = 0, 
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where Ak, Ck are matrices of appropriate dimension and (k are independent 
random vectors with given distribution. In other words, the correlated 
process w0, ... , wN- 1 is represented as the output of a linear system 
perturbed by a white process, that is, a process consisting of independent 
random vectors as shown in Figure 1.17. By considering now y k as additional 
state variables, we have a new system equation: 

[Xk+l] = [fk[Xk, Uk , Ck(AkYk + {k)]]. (1.21) 
Yk+ I Akyk + gk 

By taking as the new state the pair xk = (xk, Yk) and as new disturbance 
the vector (k, we can write (1.21) as 

xk+1 = fic(xk, uk, tk>· 

By suitable reformulation of the cost functional, the problem is reduced to 
the form of the basic problem. Note that it is necessary that Yk, k = I, 
... , N - I , can be observed by the controller in order for the problem 
to be one of perfect state information. This is true when the matrix Ck-1 
is the identity matrix and wk- i is observable. The DP algorithm takes the 
form 

JN(xN, YN) = gN(xN), 

Jk(xk, Yk) = min E{gdxk, uk, Ck(AkYk + [d] 
ukEVk(xk) {k 

+ lk +il/dxk, uk, Ck(AkYk + (k)], AkYk + (d}. 

When Ck is the identity matrix, the optimal controller is of the form 

{µ,3'(xo), µ,t(x1 , Wo), ... , µ,t-i(XN-1, WN-2)}. 

Forecasts 

Finally, consider the case where at time k the decision maker has 
access to a forecast Yk that results in a reassessment of the probability 
distribution of wk and possibly of future disturbances. For example, Yk may 
be an exact prediction of wk or an exact prediction that the probability 
distribution of wk is a specific one out of a finite collection of distributions. 
Forecasts that can be of interest in practice are, for example, probabilistic pre­
dictions on the state of the weather, the interest rate for money, and demand for 
inventory . 

Generally, forecasts can be handled by state augmentation although 

I 
J'k__+ l 

y k + I = A k Yk + ~k ' ~ 

~---------' 

Figure 1.17 Representation of a correlated process { w,} as the output of a linear 
system driven by a white noise sequence {td. 
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the reformulation into the form of the basic problem may be quite complex. 
We will treat here only a simple situation. 

Consider the case where the probability distribution of wk does not 
depend on xk' Uk' wk - I' ... ' Wo. Assume that at the beginning of each 
period k the decision maker receives an accurate prediction that the next 
disturbance wk will be selected in accordance with a particular probability 
distribution out of a finite collection of given distributions {Pkp, ... , Pkln}; 

that is, if the forecast is i, then wk is selected according to Pkli· The a 
priori probability that the forecast at time k will be i is pf and is given. 
Thus the forecasting process can be represented by means of the equation 

Yk+I = gk, (1.22) 

where Yk+i can take the values I, 2, ... , n and gk is a random variable 
taking the values I, 2, ... , n with probabilities p7+ 1

, •• • , p~,-1- The 
inte"rpretation here is that when gk takes the value i , then wk+ 1 will occur 
in accordance with the probability distribution Pk+ ,

1
;. 

By combining the system equation and (1.22), we obtain an augmented 
system given by 

[Xk+I] - [fk(xk, Uk, wk)] - f- c- - ) - /: - k xk' Uk' wk . 
Yk+I ~k 

The new state is xk = (xk, Yk) and the new disturbance is wk = (wk, td. 
The probability distribution of wk is given in terms of the distributions Pkli 
and the probabilities pf, and depends explicitly on xk (via yd but not on 
the prior disturbances wk _ 1 , ••• , w0. Thus by suitable reformulation of the 
cost functional, the problem can be cast into the framework of the basic 
problem. It is to be noted that the control applied at each time is a function 
of both the current state and the current forecast. The DP algorithm takes 
the form 

JN(xN,YN) = gN(xN), 

Jk(xk, yk) = mm E{gixk, uk, wd + t pf+ 'Jh 11/1,;(x1,:, uk, w1,: ), iJIY"}, 
ukEUk(xk) wk 1= I 

k = 0, I , ... , N - I, 

where the expectation over wk is taken with respect to the probability 
distribution P1,:,y,, where y" may take the values 1, 2, ... , n. Extension to 
forecasts covering several periods can be handled similarly, albeit at the 
expense of increased complexity. Problems where forecasts can be affected 
by the control action also admit a similar treatment. 

It should be clear from the preceding discussion that state augmentation 
is a very general and potent device for reformulating problems of decision 
under uncertainty into the basic problem form. One should also realize 
that there are many ways to reformulate a problem by augmenting the state 
in different way~. The basic guideline is to .\·£'feet <ts the augmented s tate 
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at time k only those variables the knowledge of which can be of benefit to 
the decision maker when making the kth decision. For example, in the 
case of single period time lags it is intuitively obvious that the controller 
can benefit from knowing at time k the values of xk, xk- 1, uk _,, since these 
variables affect the value of the next state xk+ 1 through the system equation. 
The controller, however, has nothing to gain from knowing at time k the 
values of xk_ 2 , xk 3 , ••• , uk_ 2 , ... , and for this reason these past states 
and controls need not be included in the augmented state, although their 
inclusion is technically possible. The theme of considering as state variables 
in the reformulated problem only those variables the knowledge of which 
would be beneficial to the decision making process will be predominant in 
the discussion of problems with imperfect state information (Chapter 3). 

Finally, we note that whereas state augmentation is a convenient 
device, it tends to introduce both analytical and computational complexities, 
which in many cases are insurmountable . 

1.6 NOTES 

Dynamic programming is a simple mathematical technique that has been 
used for many years by engineers, mathematicians, and social scientists in 
a variety of contexts. It was Bellman, however, who realized in the early 
1950s that DP could be developed (in conjunction with the then appearing 
digital computer) into a systematic tool for optimization. Bellman dem­
onstrated the broad scope of DP and helped streamline its theory. His 
early books [BS, B6] are still popular reading. Other books related to DP 
are !H8], [Hl6], [K5], IK14], [N2], [R7], [W7], and [WI I]. For a rigorous 
treatment of DP in general spaces that resolves the associated measurability 
issues and supplements the present text, see [B23]. For continuous-time 
formulations, see [B7] and [F3] . 

The connection of the Viterbi algorithm with the shortest path problem 
has been clarified in [02] and [F4]. For further material on search methods 
and their use in game programs, see [P9]. For background on shortest 
paths, branch-and-bound, and combinatorial optimization see [P2l . 

As discussed in Section I. I, the basic problem was formulated rigorously 
only for the case where the disturbance spaces are countable sets. None­
theless, the DP algorithm can often be utilized in a simple way when the 
countability assumption is not satisfied and there are further restrictions 
(such as measurability) on the class of admissible control laws. The advanced 
reader will understand how this can be done by solving Problem 12, which 
shows that if one can find within a subset of control laws (such as those 
satisfying certain measurability restrictions) a control law that attains the 
minimum in the DP algorithm, then this control law is optimal. This fact 
may be used to establish rigorously many of our subsequent results concerning 
specific applications in Chapters 2 and 3. For example, in linear-quadratic 
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problems (Section 2.1) one determines from the DP equations a control law 
that is a linear function of the current state. When wk can take uncountably 
many values, it is necessary that admissible control laws consist only of 
functions µ,k which are Borel measurable. Since the linear control law 
belongs to this class, the result of Problem 12 guarantees that this control 
law is optimal. 

PROBLEMS 

1. Use the DP algorithm to solve the following two problems: 
(a) minimize Li=o xt + u; 

subject to x0 = 0, x4 = 8, U; = nonnegative integer, 
X;+J = X; + U;, i = 0, 1, 2, 3; 

(b) minimize Li=o xt + 2u; 
subject to x0 = 5, u; E {O, 1, 2}, 

X;+ t = X; - U;, i = 0, 1, 2, 3. 

2. Air transportation is available between n cities, in some cases directly and in 
others through intermediate stops and change of carrier. The air fare between 
cities i and j is denoted C;/ Cu = Ci;), and for notational convenience we write 
CiJ = = if there is no direct flight between i and j. The problem is to find the 
cheapest possible air fare for going from any city i to any other city j perhaps 
through intermediate stops . Formulate a DP algorithm for solving this problem. 
Solve the problem for n = 6 and C12 = 30, C 13 = 60, C 14 = 25, C1s = C16 = 
00 , C23 = C24 = C25 = 00 , C26 = 50, C34 = 35, C3s = C36 = 00 , C45 = 15 , 
C46 = oo, Cs6 = 15. 

3. Suppose we have a machine that is either running or broken down. If it runs 
throughout one week, it makes a gross profit of $100. If it fails during the 
week, gross profit is zero. If it is running at the start of the week and we 
perform preventive maintenance, the probability that it will fail dming the week 
is 0.4. If we do not perform such maintenance, the probability of failure is 0.7. 
However, maintenance will cost $20. When the machine is broken down at 
the start of the week, it may either be repaired at a cost of $40, in which case 
it will fail during the week with a probability of 0.4, or it may be replaced at 
a cost of $150 by a new machine: that is guaranteed to run through its first week 
of operation. Find the optimal repair, replacement, and maintenance policy 
that maximizes total profit over four weeks, assuming a new machine at the 
start of the first week . 

4. A game of the blackjack variety is played by two players as follows: Both 
players throw a die. The first player, knowing his opponent's result, may stop 
or may throw the die again and add the result to the result of his previous 
throw. He then may stop or throw again and add the result of the new throw 
to the sum of his previous throws. He may repeat this process as many times 
as he wishes. If his sum exceeds seven (i.e., he busts), he loses the game. If 
he stops before exceeding seven, the second player takes over and throws the 
die successively until the sum of his throws is four or higher. If tht> sum of 
the second player is over seven, he loses the game . Othe rwise the player with 
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the larger sum wins, and in case of a tie the second player wins. The problem 
is to determine a stopping strategy for the first player that maximizes his probability 
of winning for each possible initial throw of the second player. Formulate the 
problem in terms of DP and find an optimal stopping strategy for the case where 
the second player's initial throw is three. Hint: Take N = 6 and a state space 
consisting of the following 15 states: 

x 1
: busted, 

x•+;: already stopped at sum i (1 .;;; i.;;; 7), 

x8+;: current sum is i but the player has not yet stopped (1 .;;; i.;;; 7). 

The optimal strategy is to throw until the sum is four or higher. 
5. Min-Max Problems . In the framework of the basic problem, consider the case 

where the disturbances Wo, w,, ... , wN , do not have a probabilistic description 
but rather are known to belong to corresponding given sets W, (.t"k, u,) C D1., 
k = 0, 1, ... , N - 1, which may depend on the current state xk and control 
uk. Consider the problem of finding a control law 7T = {µ,0 , •••• µ,N _ , } with 
µ,k(xk) E Uixk) for all xk, k, which minimizes the cost functional 

The DP algorithm for this problem takes the form 

JN(xN) = gN(xN), 

Jk(xk) = min max {gk(Xk, Uk, wk) + lk+tlfk(Xk, Uk, wk)]}. 
ukEU(xk) wkEWk(xk.uk) 

Assuming that Jk(xd > - 00 for all xk and k, show that the optimal cost equals 
l o(x0). Hint: Imitate the proof for the stochastic case; prove and use the following 
fact: If U, W, X are three sets, f : W - Xis a function, and M is the set of 
all functionsµ, : X - U, then for any functions G0 : W - ( - oo, = J. G, : X x U -
( -oo, oo] such that 

min G1[f(w) , u] > -oo, for all wEW 
uEU 

we have 

min max{G0 (w) + G,[f(w) , µ,(f(w))J} = max{G0 (w) + min Gilf(w), uJ}. 
µ.EM wEW wEW uEU 

6. Discounted Cost per Stage. In the framework of the basic problem, consider 
the case where the cost functional is of the form 

E{ a.NgN(xN) + ~: a kgk(Xk, Uk, wk)}, 

where a is a discount factor with O < a < I. Show that an alternate form of 
the DP algorithm is given by 

VN(xN) = gN (xN), 

Vi,(xk) = min E{gk(xk, Uk, wk) + aVk+ilfk(xk, Uk, wd]}. 
ukEUk(xk) 

1. Exponential Cost Functional. In the framework of the basic problem, consider 
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the case where the cost functional is of the form 

~ { exp[ gN(xN) + ~>k(Xk, Uk, wk)]}· 
k=O,l, ... ,N-1 

(a) Show that the optimal cost and an optimal policy can be obtained from the 
last step of the DP algorithm 

JN(xN) = exp[gN(xN)], 

Jk(xk) = min E{lk+1fh(xk, uk, wk)] exp[gk(xk, Uk, wk)]}. 
UkEUk(xk) wk 

Show that the algorithm yields an optimal control law if one exists. 

(b) Define the functions Vk(xd = In Jk(xd. Assume also that gk is a function 
of xk and uk only (and not of wd. Show that the above DP algorithm can 
be rewritten 

VN(xN) = gN(xN), 

Vi(xk) = min [gk(Xk, uk) + lnE{exp Vk+tl/k(xk, Uk, wkm]. 
ukE Uk(xk) wk 

8. Terminating Process. Consider the case in the basic problem where the system 
evolution terminates at time i when a given value w; of the disturbance at time 
i occurs, or when a termination decision u; is made by the controller. If termination 
occurs at time i, the resulting cost is 

T + L gk(xk, uk, wk), 
k-0 

where T is a termination cost. If the process has not terminated up to the final 
time N, the resulting cost is gN(xN) + 'i.~-0

1 Rk(xJ.., 111., w.). Reformulate the 
problem into the framework of the basic problem. Hint: Augment the state 
space with a special termination state. 

9. Multiplicative Cost. In the framework of the basic problem, consider the case 
where the cost functional has the multiplicative form 

E {gN(xN) · gN-1(xN-1, uN-1, wN-1) ··· go(Xo, uo, wo)}, 
Wt_ 

k O, .... N-1 

Devise an algorithm of the DP type for this problem under the assumption 
gk(xk, Uk, wd ;,, 0 for all Xk, Uk, wk, and k. 

IO. Assume that we have a vessel whose maximum weight capacity i.;; ;:. and whose 
cargo is to consist of different quantities of N different items. Let v, denote 
the value of the ith type of item, w; the weight of ith type of item, and x; the 
number of items of type i that are loaded in the vessel. The problem of determining 
the most valuable cargo is that of maximizing L~ 1 X;V; subject to the constraints 
2.f 1 x;w;:,;;; z and x; = 0, 1, 2, .. .. Formulate this problem in terms of DP. 

11. Consider a device consisting of N stages connected in series, where each stage 
consists of a particular component. The components arc subject to failure, and 
to increase the reliability of the device duplicate components an: provided. For 
j = I, 2, ... , N, let (I + m1 ) be the number of components for the jth stage, 
let p

1 
( m

1
) be the probability of successful operation of the jth stage when 
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(1 + m) components are used, and let cj denote the cost of a single component 
at the jth stage. Consider the problem of finding the number of components 
at each stage that maximize the reliability of the device expressed by 

P1(m1) · P2(m2) ··· PN(mN) 

subject to the cost constraint Lf: 1 cjmj ~ A, where A > 0 is given. Formulate 
the problem in terms of DP. 

12. Minimization over a Subset of Policies. This problem is primarily of theoretical 
interest (see the end of the Notes to this chapter). Consider a variation of the 
basic problem whereby we seek 

min J " (xo), 
1rEfi 

where fi is some given subset of the set of sequences {µ0, J,1,1, ... , µN _ 1} of 
functions µk:Sk - Ck with µk(xd E Vk(xd for all xk Es •. Assume that 

1r* = {µt, µf, ... , µ ,t_ 1} 

belongs to fi and attains the minimum in the DP algorithm; that is , for all k 
0, 1, . . . , N - 1 and Xk E s k 

Jk(xk) = E{gdxk> µ t(xk ) , wk ] + l k+1 rJk(xk, µ t(xk ) , wd]} 
Wk 

min E{gk(xk, uk, wk ) + l k+ 1rJk(xk, Uk, wd]}, 
UkE U k(Xk ) Wk 

with JN(xN) = gN(xN). Assume further that the functions Jk are real valued 
and the preceding expectations are well defined and finite. Show that 1r* is 

optimal within fi and 

10 (x0 ) = min J"(x0 ) = J". (x0 ) . 
1rEfi 

13. Semilinear System s. Consider a problem involving the system 

xk+1 = A kxk + fi, (ud + wk, 
where xk E Rn, fk are given functions , and A . and w, are random n x n matrices 
and n-vectors, respectively , with given probability distributions that do not 
depend on xk, uk or prior values of Ak and wk. Assume that the cost functional 
is of the form 

A~ k { cNxN + 1:[ckxk + gk [µk(xk )]]}. 
k=O,l, .. ,N-1 

where c, are given vectors and gk given functions. Show that if the optimal 
cost for this problem is finite and the control constraint sets V, (x, ) are independent 
of xk, then the cost-to-go functions of the DP algorithm are affine (linear plus 
constant). Assuming that there is at least one optimal policy. show that there 
exists an optimal policy that consists of constant functions µf ; that is , µ[ (x, ) = 
constant for all xk E R n. 

14. A farmer annually producing xk units of a certain crop stores (l - udxk units 
of his production, where 0 ~ u k ~ 1, and invests the remaining u 1,x k units, thus 
increasing the next year's production to a level xk+ 1 given by 

Xk+I = Xk + WkU~k, k = 0, 1, ... , N - 1. 
The scalars wk are independent random variables with identical probability 
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distributions that do not depend either on xk or uk. Furthermore, E{ wk} = w 
> 0. The problem is to find the optimal investment policy that maximizes the 
total expected product stored over N years 

{ 

N-1 1 
~ XN + eo (1 - udxk J . 

k=0,1, ... ,N-1 

Show that one optimal control law is given by: 
(a) If w > 1, µci'(x0) = ··· = µt_,(xN_,) = 1. 
(b) If 0 < w < 1/ N, µci'(xo) = ··· = J.lN-1(xN-i) = 0. 
(c)Ifl/N~w~l , 

µci'(xo) = ... = J.lN-I-hN-I-1) = 1, 

J.lN-Tc(XN-I) = ... = J.lN -1 (XN-1) = 0, 

where k is such that 1/(k + 1) < w ~ 1/k. (Note that this control law 
consists of constant functions.) 

15. Let xk denote the number of educators in a certain country at time k and let 
Yk denote the number of research scientists at time k. New scientists (potential 
educators or research scientists) are produced during the kth period by educators 
at a rate 'Yk per educator, while educators and research scientists leave the field 
due to death, retirement, and transfer at a rate ok. The scalars 'Y,, k = 0, 1, 
. . . , N - 1, are independent identically distributed random variables taking 
values within a closed and bounded interval of positive numbers. Similarly oh 
k = 0, 1, ... , N - 1, are independent identically distributed and take values 
in an interval [o, 01

] with O < o ~ 01 < 1. By means of incentives a science 
policy maker can determine the proportion uk of new scientists produced at 
time k who become educators. Thus the number of research scientists and 
educators evolves according to the equations 

Xk+I = (1 - ok)Xk + Uk"fkXk, 
Yk+I = (1 - odyk + (1 - uk)ykxk. 

The initial numbers x 0 , y 0 are known, and it is required to find a policy {J.ld (x0 , 

Yo), ••. , JLN-1(XN-1, YN-1)} with 

for all xk, Yk, and k, 

which maximizes Ey,.a, {yN} (i.e., the expected final number of research scientists 
after N periods) . The scalars a and /3 are given. 
(a) Show that the cost-to-go functions Jk(xk,yk) are linear; that is, for some 

scalars Ak, J.lk 

Jk(xk,Yk) = Akxk + J.lkYk· 

(b) Derive an optimal policy {µt, ... , µ'!-, 1} under the assumption E{"!d > 
E{ok}, and show that this optimal policy can consist of constant functions. 

(c) Assume that the proportion of new scientists who become educators at time 
k is uk + ck (rather than ud, where ck are identically distributed independent 
random variables that are also independent of 'Yk, o, and take values in the 
interval [ -a, l - /3]. Derive the form of the cost-to-go functions and the 
optimal policy. 

16. DP on Two Parallel Processors [Ll]. Formulate a DP algorithm to solve the 
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deterministic problem of Section 1.3 on a parallel computer with two processors. 
One processor should execute a forward algorithm and the other a backward 
algorithm. 

17. The paragraphing problem deals with breaking up a sequence of N words 
w 1 , ••• , wN with lengths L,, ... , LN into lines of length A. In a simple version 
of the problem, words are separated by blanks whose ideal width is b, but 
blanks can stretch or shrink if necessary, so that a line w;, w;+t• ... , W;+1.. has 
length exactly A. The cost associated with the line is (k + I) lb' - bl, where 
b' = (A - L; - .. · - L;+d/(k + l) is the actual average width of the blanks, 
except if we have the last line (N = i + k), in which case the cost is zero 
when b' ~ b. Formulate a DP algorithm for solving for the minimum cost 
separation. Hint: Consider the subproblems of optimally separating w;, ... , 

wN for i = 1, ... , N. 
18. Computer Assignment. In the classical game of blackjack the player draws 

cards knowing only one card of the dealer. The player loses upon reaching a 
sum of cards exceeding 21. If the player stops before exceeding 21, the dealer 
draws cards until reaching 17 or higher. The dealer loses upon reaching a sum 
exceeding 21 or a lower sum than the player's. If player and dealer end up 
with an equal sum no one wins, and in all other cases the dealer wins. An ace 
for the player may be counted as a 1 or an 11 as the player chooses. An ace 
for the dealer is counted as an 11 if this results in a sum from 17 to 21 and as 
a 1 otherwise. Jacks, queens, and kings count as 10 for both dealer and player. 
We assume an infinite card deck so the probability of a particular card showing 
up is independent of earlier cards. 
(a) For every possible initial dealer card, calculate the probability that the dealer 

will reach a sum of 17, 18, 19, 20, 21 , or over 21. 
(b) Calculate the optimal choice of the player (draw or stop) for each of the 

possible combinations of dealer's card and player's sum of 12 to 20. Assume 
that the player's cards do not include an ace. 

(c) Repeat part (b) for the case where the player's cards include an ace. 
19. Consider a smaller version of a popular puzzle game. Three square tiles numbered 

l, 2, and 3 are placed in a 2 x 2 grid with one space left empty. The two tiles 
adjacent to the empty space can be moved into that space, thereby creating 
new configurations. Use a DP argument to answer the question whether it is 
possible to generate a given configuration starting from any other configuration. 

20. From a pile of eleven matchsticks, two players take turns removing one or four 
sticks. The player who removes the last stick wins. Use a DP argument to 
show that there is a winning strategy for the player who plays first. 

21. The Counte,feit Coin Problern. We are given six coins, one of which is counterfeit 
and is known to be heavier or lighter than the rest. Construct a strategy to 
find the counterfeit coin using a two-pan scale in a minimum average number 
of tries. Hint: There are two initial decisions that make sense: ( l) test two of 
the coins against two others, and (2) test one of the coins against one other. 

22. Given a sequence of matrix multiplications 

M1M2 ... M1..M1..+1 ... MN, 

where Mk, k 1, ... , N, is of dimension n k x n k+ 1, the order in which 
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multiplications arc carried out can make a difference . For example, if n
1 

--= 1, 
n 2 = IO, n-1 - I, and n4 = 10, the calculation ((M 1M 2 )M1 ) requires 20 multiplica­
tions, but the calculation (M 1(M2M ,)) requires 200 multiplications. Derive a DP 
algorithm for finding the optimal multiplication order. Solve the problem for 
n = 3, n, = 2, n2 = IO , n1 = 5, and n4 = I. 

23. Doubling Algorithms. Consider a deterministic finite state problem that is time 
invariant in the sense that the state and control spaces, the cost per stage, and 
the system equation are the same for each time period. Let Jk(x, y) be the 
optimal cost to reach state y at time k from stale x at time 0. Show that for 
all k 

l ik(x, y) = min{Jk(x, z) + Jk(z , y)}. 
? 

Discuss how this equation may be used with advantage to solve problems with 
a large number of stages. 

24. Complexity of DP for Shortest Paths. Consider the shortest path algorithm 

Jk(i ) = min {c;j + lk+iU)} 
j~l, ... ,N 

of Section 1.3. Suppose m is the largest number of arcs in a shortest path from 
any node 1, ... , N to the destination node t. Show that the algorithm can be 
terminated after m steps and that the number of arithmetic operations required 
is bounded by ymL, where L is the number of arcs and y is a number that is 
independent of m, L , and N. 

25. Monotonicity Property of DP. An evident, yet very important property of the 
DP algorithm is that if the terminal cost f?N is changed to a uniformly larger 
cost RN [i.e., f?N(xN) -,s; RN(xN) for all AN], then the corresponding costs Jdxd 
will be uniformly increased. More generally, given two functions Jh I and ]k + 1 

with lk+i (xk+i ) ~ ]k+ 1(xk+i) for all xk+i, we have, for all xk and uk E Uk(xd, 

E{gk(xk, uk, wk) + l k+11/k(xk, uk, wk)]} 
Wk 

~ E{gk(xb uk, wk) + lk+11/k(xk, Uk, wk)]}. 
Wk 

Suppose now that in the basic problem the system and cost are time invariant; 
that is, sk = s, ck = C, Dk = D, h = f, Uk(xk) = U(xk), and gk = g. Show 
that if in the DP algorithm we have JN _ ,(x) ~ JN(x) for all x E S then 

Jk(x) ~ lk+i(x), for all x ES and k. 

Similarly, if we have JN_,(x);;;;,, JN(x) for all x ES, then 

Jk(x);;;;,, lk+ 1(x), for all x ES and k. 

26. Modify the forward search algorithm of Section I .4 so that it simultaneously finds 
the shortest paths from the origin s to several destination nodes and also detects 
when shortest paths do not exist. !lint: Connect the destination nodes with a new 
artificial node using arcs with very large length. 

27. Dijkstra's Algorithm for Shortest Paths. Consider the best-first version of the 
forward search algorithm of Section 1.4. Here at each iteration we select a node 
j from OPEN that has minimum estimate d1 over all nodes in OPEN. 
(a) Show that each node j will enter OPEN at mos;t once and sh(w.; that at 
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the time it enters CLOSED its estimate d1 is equal to the shortest distance 
from s to j . 

(b) Show that the number of arithmetic operations required for termination is 
bounded by cN2 where N is the number of nodes and c is some constant. 

28. Distributed Asynchronous Shortest Path Computation [B 19 ). Consider the problem 
of finding a shortest path from nodes 1, 2, ... , N to node t, and assume that 
all arc lengths c;1 are positive. Consider the iteration 

d~+i = min{ciJ + dj} , i = 1, 2, ... , N , 
J (1.23) 

d1+ 1 = 0. 

(a) It was shown in Section 1.3 that, if the initial condition is d? = for i = 
1, ... , N and d~ = 0, then (1.23) yields the shortest distances d t in N 
steps. Show that if the initial condition is d? = 0, for all i = 1, ... , N , 
t, then (1.23) yields the shortest distances in a finite number of steps . Provide 
an upper bound for this number in terms of the problem data. 

(b) Assume that the iteration 

d; := min{cu + dJl (1.24) 
j 

is executed at node i in parallel with the corresponding iteration for d1 at 
every other node j. However, the times of execution of this iteration at 
the various nodes are not synchronized. Furthermore, each node i com­
municates the results of its latest computation of d, at arbitrary times with 
potentially large communication delays. Therefore, there is the possibility 
of a node executing iteration (1.24) several times before receiving a com­
munication from every other neighboring node. Assume that each node 
never stops executing iteration (1.24) and transmitting the result to the other 
nodes. Show that the estimates dT available at time Tat the corresponding 
nodes i equal the shortest distances dt for all T after a finite time T. Hint: 
Let d7 and 47 be the estimates generated by (1.23) when starting from the 
first and the second initial conditions in part (a), respectively. Show that 
for every k there exists a time Tk such that for all T ~ Tk we have d 7 ,;; 
df,;; d7. For a detai led analysis of asynchronous iterative algorithms. includ­
ing algorithms for shortest paths and dynamic programming . sec D. P. 
Bertsekas and J. N. Tsitsiklis. "Parallel and Distributed Computation: Numer­
ical Methods", Prentice-Hall , 1989. 



CHAPTER TWO 

Applications in Specific Areas 

2 .1 LINEAR SYSTEMS AND QUADRATIC COST: 
THE CERTAINTY EQUIVALENCE PRINCIPLE 

In this section we consider the special case of a linear system 

xk+l = A~k + Bkuk + wk, k = 0, 1, ... ,N- 1, 
where the objective is to find a control law minimizing the quadratic cost 
functional 

E 
Wk 

k= O, .... N-1 

In these expressions, xk and uk are vectors of dimension n and m, respectively, 
and the matrices Ak, Bk, Qk, Rk are given and have appropriate dimension. 
We assume that Qk are symmc:tric positive semidefinite matrices and Rk 
are symmetric and positive definite. The disturbances w1.: are independent 
random vectors with given probability distributions that do not depend on 
xk, uk. Furthermore, the vectors w1,: have zero mean and finite second 
moments. The control uk is unconstrained. 

This is a popular formulation of a regulation problem whereby we 
want to keep the state of the system close to the origin. Such problems 
are common in the theory of automatic control of a motion or a process. 
The quadratic cost functional is often reasonable since it induces a high 
penalty for large deviations of the state from the origin but a relatively 
small penalty for small deviations. However, the quadratic cost is frequently 

55 
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used even when it is not entirely justified, since it leads to an elegant 
analytical solution that can be easily implemented . A number of variations 
and generalizations have similar solutions. For example, the disturbances 
wk could have nonzero means and the quadratic cost could have the form 

which expresses a desire to keep the state of the system close to a certain 
given trajectory (x0 , x 1, ... , xN) rather than close to the origin . Another 
generalization is when Ak, Bk are independent random matrices, rather than 
being known. This case is considered at the end of this section. 

Applying now the DP algorithm, we have 

JN(xN) = x ;..,QNxN, (2.1) 

lixk) = min E{x£Qkxk + u[Rkuk + lk+ i(Akxk + Bkuk + wk)} . (2-2) 
Uk 

It turns out that the cost-to-go functions Jk are quadratic and as a 
result the optimal control law is a linear function of the state. These facts 
can be verified by straightforward calculation. By expansion of the quadratic 
form (2.1) in (2.2) for k = N - I, and by using the fact E{wN_ 1} = 0 to 
eliminate the term E{w;..,_ 1QN(AN- 1xN- i + BN- 1uN- 1)}, we have 

JN- 1(XN- 1) = x;..,_ IQN- tXN-1 + min[u;..,_IRN-tUN-1 
UN-I 

+ u;..,_ 1B;.., _1 QNBN- 1uN- 1 + x;..,_ 1AN-1QNAN- 1XN-1 

+ 2x;..,_1A ;..,_1 QNBN- 1UN-1] + E{w;..,_1QNwN-1}-

By differentiating with respect to uN , and setting the derivative equal to 
zero , we obtain 

(RN- I + B;..,_ 1QNBN- 1)UN-I = -B;..,_IQNAN- IXN-1• 

The matrix multiplying uN , on the left is positive definite (and hence 
invertible), since RN - t is positive definite and B;.., _ 1QNBN I is positive sem­
idefinite. As a result, the minimizing control vector is given by 

uX--1 = - (RN-1 + B;..,_ 1QNBN- 1)-1B;..,_ 1QNA N-1XN- 1• 

By substitution into the expression for JN-i, we have 

JN-1(xN-1) = x;..,_1K N-1XN- 1 + E {w;..,_1 QNwN-1}, 

where the matrix KN - 1 is obtained by straightforward calculation and 1s 
given by 

KN- I= A;.., ,[QN - QNBN-1(B;.., iQNBN- 1 + RN-1)- 1B;..,_ 1QN]AN- l 

+ QN- 1• 

The matrix K N I is clearly symmetric. It is also positive semidefinite. To 
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see this, note that from the preceding calculation we have for x E Rn 

x'KN_ 1x = min[x'QN _1x + u'RN _ 1u 

" 
+ (AN-1X + BN_ 1u)'QN(AN_,x + BN_ 1u)]. 

Since QN- 1, RN 1, and QN are positive semidefinite, the expression within 
brackets is nonnegative. Minimization over u preserves nonnegativity, so 
it follows that x' KN_ ,x ~ 0 for all x ER". Hence KN- i is positive semidefinite. 

In view of the fact that JN- i is a positive semidefinite quadratic function 
(plus an inconsequential constant term), we may proceed similarly and 
obtain from the DP equation (2 .2) the optimal control law for stage N - 2. 
As earlier, we show that JN 2 is a positive semidefinite quadratic function, 
and proceeding sequentially we obtain the optimal control law for every k. 
It has the form 

µ,f (xk) = L,h, 

where the gain matrices L k are given by the equation 

L k = -(BkKk+IBk + Rk)-
1
B {Kk+1Ak, 

(2.3) 

(2.4) 

and where the symmetric positive semidefinite matrices Kk are given re­
cursively by the algorithm 

KN = QN, (2.5) 

Kk = AaKk+I - Kk+,BiB'i.Kk-t-,sk + R.t) -'lJIKk+-iJA" + Qk. (2.6) 

The optimal cost is given by 
N-1 

Jo(x0 ) = x~K0x0 + I E{wkKk+lwk}. 
k=O 

The attractive aspect of the solut ion is the relative ease with which 
the control law (2.3) can be computed and implemented in engineering 
applications. The current state x" is being fed back as input through the 
linear feedback gain matrix Lk as shown in Figure 2.1. This fact accounts 
for the great popularity of the linear-quadratic formulation. As we will 

Figure 2.1 Linear feedback structure of the optimal controller for the linear­
quadratic problem. 
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see in Chapter 3, the linearity of the control law is still maintained even 
for problems where the state xk of the system is not completely observable 
(imperfect state information). 

The Riccati Equation and Its Asymptotic 
Behavior 

Equation (2.6) is called the discrete-time Riccati equation. It plays 
an important role in modern control theory. Its properties have been studied 
extensively and exhaustively. One interesting property of the Riccati equation 
is that whenever the matrices Ak, Bk, Qk, Rk are constant and equal to A, 
B, Q, R, respectively, then as k ~ - = the solution Kk converges (under 
mild assumptions) to a steady-state solution K satisfying the algebraic 
Riccati equation 

K = A'[K - KB(B'KB + R) - 1B'K]A + Q. (2.7) 

This property, to be proved shortly, indicates that when the system is 

xk+ I = Axk + Buk + wk, k = 0, 1, ... , N - 1, (2.8) 

and the number of stages N is large, one can reasonably approximate the 
control law (2.3) by a linear stationary control law of the form {µ, * , µ, *, 
... , µ,*}, where 

µ,*(x) = Lx, 

L = - (B'KB + R) - 1B'KA, 

(2.9) 

(2.10) 

and K is the steady-state solution of the Riccati equation (2.6) satisfying 
(2.7). This control law is even more attractive for implementation purposes. 

We now turn to proving convergence of the sequence of matrices {Kk} 
generated by the Riccati equations (2.5) and (2.6). We first introduce the 
notions of controllability and observability, which are of major importance 
in modern control theory. 

Definition. A pair (A, B), where A is an n x n matrix and B an 
n x m matrix, is said to be controllable if the n x nm matrix 

[B, AB, A2B, . .. , An -lB] 

has full rank (i.e., has linearly independent rows). A pair (A, C), where 
A is an n x n matrix and C an m x n matrix, is said to be observable if 
the pair (A', C') is controllable, where A' and C' denote the transposes of 
A and C, respectively. 

One may show that if the pair (A, B) is controllable, then for any 
initial state x0 there exists a sequence of control vectors u0 , u 1 , • , un 1 

that force the state Xn of the system 

xk+ t = Axk + Buk (2.11) 

to be equal to zero at time n. To see this, note that from the system 
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equation we o tain 

x "xo + Bu,. _1 + ABu,._2 + ··· + A"- 1Bu0 

or equivalently 

X - [
Un-1] 

"x0 = [B , AB, ... , A"- 1B] ~o • (2. 1~) 

If (A. B) is .:ontroUc1.ble. the matrix [B, AB, ... , An- 1B] has full rank and 
as a result the right side of (2.12) can be made equal to any vector in K 
by appropriate sek.:tion off u0 • u 1 , ••• , un- 1). In particular. one can choose 
(uo. U 1 ..... 11.c-: 1 so that the right side of(2.12) is equal to -A"xi:, \1,hich 
implies x'" = 0. This property explains the name "controllable pair" and 
in fact is often u sect to define controllability. The notion of ob sen ability 
has an analogous interpretation in the context of estimation problems: that 
is. given measurements;,,;. ;, 1, ••• , ZN- i of the form zk = Cxk. it is possible 
to infer the initial state x0 of the system xk+ 1 = Ax* . 

Definition. \\·e sa1 that an n x n matrix D is stable if lim. __ x 

Dk = 0 ti.e .. ect.:h -,equence of elements of Dk converges to zero I. 

~ote thc1.t if D i-, a 5table matrix then the state x 1. of the system 
xk ~ 1 = Dx, tends to zero as k ._ = for an arbitrary state x0 • The notion 
of stability is of pa.r-c1.mount importance in control theory. In the context 
of our proclerr: i~ i-, important that the stationary control law (2 .91 results 
in a stable s:, s:err: . :hc1.t i~ . the matrix (A + BL) is a stable matrix: then. 
in the absence of inpJ.: disturbance, the state xk of the corresponding clo~ed­
loop system 

xL = (" + BL)xk - I = (A + BL)*x0 , k = 0, 1, .... 

tends to zero a5 J;_ ~ -:xi. 

We gi'< e :he f,::.:10 1.1, ing proposition, which shows that. for a stationar:, 
system and .:0:1 s :2.:--1: :-r:a~rices Qk. Rk, under controllability and ob'Sen abilit:, 
conditions :he sc1l u1:10:1 of the Riccati equation (2.5) and (2.6) com·erges to 
a positi\e de:=::-:1:e :T.c1.~rix K for an arbitrary positive semidefinite initial 
matrix. In c1dd1:!c1:--,. :he propmition shows that the corresponding control 
law. (2.9 1 c1nd , : . : 1),. re<:ulh in a stable system. To simplify notation. \, e 
have reYersed :he :1:Tle indexing of the Riccati equation in the folio\\ ing 
propositi on . Th..1~ P, in equation (2.13) corresponds to K, i. in equation 
(2.6). 

Proposition. Le~ A be an n x n matrix, B an n x m matrix. Q an 
n x n s:, m:r:e:r::. p,c·,1~i', e -,emidefinitc matrix, and R an m / m -.,ymmetric 
positi\e deb1:e :T.c:.:ri\. Consider the discrete-time Riccati equation 

pi.-]= A :P, - P,B B'P,B TR) 
1B'PdA + Q. J.. ...c 0. 1. .... (2.131 
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where the initial matrix P0 is an arbitrary positive semidefinite symmetric 
matrix. Assume that the pair (A, B) is controllable. Assume also that Q 
may be written as C'C, where the pair (A, C) is observable.t Then: 

(a) There exists a positive definite symmetric matrix P such that for 
every positive semidefinite symmetric initial matrix P0 we have 

lim Pk = P . 
k->= 

Furthermore, P is the unique solution of the algebraic matrix equation 

P = A'[P - PB(B'PB + R) - 1B'P]A + Q (2.14) 

within the class of positive semidefinite symmetric matrices. 
(b) The matrix 

D = A+ BL, (2.15) 

where 

L = -(B'PB + R)- 1B'PA, (2.16) 

is a stable matrix . 

Proof The proof proceeds in several steps. First we show convergence 
of the sequence generated by (2.13) when the initial matrix P 0 is equal to 
zero. Next we show that the corresponding matrix D of (2. 15) is stable. 
Subsequently, we show convergence of the sequence generated by (2.13) 
when P0 is any positive semidefinite symmetric matrix, and finally we show 
uniqueness of the solution of (2.14). 

Initial Matrix P0 = 0. Consider the optimal control problem of finding 
a sequence u0 , u1 , ••• , uk- i that minimizes 

k-1 

L (x;Qx; + u;Ru;) (2.17) 
i=O 

subject to 

X;+t = Ax;+ Bu;, i = 0, 1, ... , k - 1, (2.18) 

where x 0 is given. The optimal value of this problem, according to the 
theory of this section, is 

x(J\(0)x0 , 

where Pk(0) is given by the Riccati equation (2.13) with P0 = 0. We have 

xbPk(0)xo ~ xbPk+ 1(0)x0 , for all x0 ER", k = 0, I, ... , 

since for any control sequence (u0 , u 1 , ••• , uk) we have 
k-1 k 

L (x;Qx; + u;Ru;) ~ L (x!Qx; + u;Ru;) 
i=O - i = O 

t Notice that if r is the rank of Q, there exists an r x n matrix C of rank r such that 
Q = C'C (see Appendix A). 
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and hence 
k-1 

x;Ri0)xo = min L (x; Qx; + u;Ru;) 
u,,i=O, ... ,k-1 i=O 

k 

~ min L (x!Qx; + u;Ru;) = x[Rk+ 1(0)x0 , 
u;.i=O ..... k i=O 

where both minimizations are subject to the system equation constraint 
x,. 1-1 = Ax; + Bu;. Furthermore, for a fixed x0 and for every k, xbP,J0)x0 

is bounded above by the cost corresponding to a control sequence that 
forces x0 to the origin in n steps and applies zero control after that. Such 
a sequence exists by the controllability assumption. Thus the sequence 
{xbPi0)x0} is increasing and bounded above and therefore converges to 
some real number for every x0 E Rn. It follows that the sequence {Pk(0)} 
converges to some matrix P in the sense that each of the sequences of the 
elements of Pi0) converges to the corresponding elements of P. To see 
this, take x0 = (1, 0, ... , 0). It follows that the sequence of first diagonal 
elements of Pi0) converges to the first diagonal element of P. Similarly, 
by taking x0 = (0, ... , 0, 1, 0, ... , 0) with the one in the ith coordinate, 
for i = 2, ... , n, it follows that all the diagonal elements of Pk(0) converge 
to the corresponding diagonal elements of P. Next take x0 = (1, 1, 0, ... , 
0) to show that the second elements of the first row converge. Similarly 
proceeding, we obtain 

lim PiO) =-- P, 
k---+-..o 

where Pk(0) are generated by (2.13) with P0 = 0. Furthermore, the limit 
matrix P is positive semidefinite and symmetric. Now by taking the limit 
in (2.13) it follows that P satisifes 

P = A'[P - PB(B'PB + R)- 1B'PlA + Q. (2.19) 

Furthermore, if we define 

L = -(B'PB + R) - 1B'PA, D = A+ BL (2 .20) 

by direct calculation we can verify the following equality, which will be 
useful subsequently in the proof: 

P = D'PD + Q + L'RL. (2.21) 

Stability of D = A + BL. Consider the system 

xk+ 1 = (A + BL)xk = D xk 

for an arbitrary initial state x0 • Since 

x,.. = Dkx0 , 

(2.22) 

it will be sufficient to show that xk - 0 as k - = . We have for all k , by 
using (2.21), 

xI+ 1Pxk+t - xWxk = xk(D'PD - P)xk = -xHQ + L'RL)xk. 
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Hence 
k 

X1c+1Pxk+ I = x[/'x0 - L x;(Q + L'RL)x;. (2.23) 
i=O 

Since the left side of the equation is bounded below by zero, it follows 
that 

x1c(Q + L'RL)xk ~ 0. 

Using the fact that R is positive definite and Q may be written as C'C, we 
obtain 

lim Cxk = 0, lim Lxk = 0. (2.24) 
k-oo k-oo 

From (2.22) we have 

CAn-1 

(2.25) 

CA 

Cxk C 

By (2.24) the left side tends to zero and hence the right side tends to zero 
also. By the observability assumption, however , the matrix multiplying xk 
on the right side of (2.25) has full rank. It follows that x1,. ~ 0 and hence 
the matrix D of (2 .21) is stable. 

Positive Definiteness of P. Assume the contrary, i.e., there exists 
some x0 -/- 0 such that x0Px0 = 0. Then from (2.23) we obtain 

x1c(Q + L'RL)xk = 0, k = 0, I, ... , 

where xk = Dkx0 • This in turn implies [cf. Eq. (2.24)] 

Cxk = 0, Lxk = 0, k = 0, I, .... 

Consider now (2.25) for k = 0. By the preceding equalities, the left side 
is zero and hence 

0= 

Since the matrix multiplying x0 has full rank by the observability assumption, 
we obtain x0 = 0, which contradicts the hypothesis x0 -/- 0. Hence P is 
positive definite. 
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Arbitrary Initial Matrix P0 • Next we show that the sequence of matrices 
{PiPo)}, defined by (2.13) when the starting matrix is an arbitrary positive 
semidefinite matrix P0 , converges to P = limh= PiO). Indeed, the optimal 
cost of the problem of minimizing 

k-1 

xkPoxk + L (x;Qx; + u;RuJ (2.26) 
i=O 

subject to (2.18) equals xbPiP0 )x0 • Hence we have for every x 0 E Rn 

xbPiO)x0 ~ xbPk(P0 )xo. 

Consider now the cost (2.26) corresponding to the controller µ,(xk) = uk = 
Lxk, where L is defined by (2.20). This cost is given by 

x.[D''PoD' + I [D';(Q + L'RL)D;J]x, 

and is greater than xbPiP0)x0 , which is, of course, the optimal value of 
(2.26). Hence we have for all k and x E Rn 

[ 

k-1 ] 

x'PiO)x ~ x'Pk(P0 )x ~ x' D'kP0Dk + ~ [D';(Q + L'RL)D;] x. (2.27) 

Now we have proved 

lim PiO) = P, (2.28) 

and we also have (using the fact that limk-no D'kPoDk 0) 

!~~ { D''P,D' + :t: [D';(Q + L' RL)D;]} 

= !~~ {~: [D';(Q + L'RL)IY]} = P, (2.29) 

where the last equality may be verified easily using (2.21). Combining (2.27) 

to (2.29), we obtain 

lim PiPo) = P, 

for an arbitrary positive semidefinite symmetric P0 . 

Uni.queness of Solution. ~j> wer: another positive semidefinite solution 
of (2.14), we would have Pk(P) = P for all k = 0, I, .... From the 
convergence result just proved we would also have 

Jim Pk(P) = P, 

and it follows that P = P. Q.E.D. 

The assumptions of the preceding proposition can he relaxed somewhat. 
Suppose that, in~tead of controllability of the pair (A, B), we assume that 
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the system is stabilizab/e in the sense that there exists an m x n feedback 
gain matrix G such that the matrix (A + BG) is stable. Then the proof of 
convergence of Pi0) to some positive semidefinite P given previously carries 
through . [We use the stationary control law µ.,(x) = Gx for which (A + 
BG) is stable to ensure that xbPk(0)x0 is bounded.] Suppose that, instead 
of observability of the pair (A, C), the system is assumed detectable in the 
sense that A is such that if uk ~ 0 and Cxk ~ 0 then it follows that xk ~ 
0. (This essentially means that instability of the system can be detected 
by looking at the measurement sequence {zk} with zk = Cxk.) Then Eq. 
(2.24) implies that xk ~ 0 and that the matrix D = A + BL is stable. The 
other parts of the proof of the proposition follow similarly, with the exception 
of positive definiteness of P, which cannot be guaranteed anymore. (As 
an example take A = 0, B = 0, C = 0, R > 0. Then both the stabilizability 
and the detectability assumptions are satisfied, but P = 0.) To summarize, 
if the controllability and observability assumptions of the proposition are 
replaced by the previous stabilizability and detectability assumptions, the 
conclusions of the proposition hold with the exception of positive definiteness 
of the limit matrix P, which can now be guaranteed to be only positive 
semidefinite. 

Random System Matrices 

We consider now the more general case where {A 0 , B0}, {A 1 , B 1}, ••• , 

{AN_ 1, BN_ ,} are not known but rather are independent random matrices 
that are also independent of Wo, w 1 , • • • , w N- 1 • Their probability distributions 
are given and they are asssumed to have finite second moments. This 
problem falls again within the framework of the basic problem by considering 
as disturbance at each time k the triplet (Ak, Bk, wk). The DP algorithm 
is written 

JN(xN) = x;..,QNxN, 

lixk) = min E {xkQkxk + ukRkuk + lk+ 1(Akxk + Bkuk + wk)}. 
Uk Wk,Ak,Bk 

Calculations very similar to those for the case where Ak, Bk are not random 
show that the optimal control law is of the form 

µ.,f (xk) = Lkxk, 

where the gain matrices Lk are given by 

Lk = -[Rk + E{BkKk+1BJr 1 E{B;_Kk+IAk}, 

and where the matrices Kk are given by the recursive equation 

KN= QN, 

Kk = E{AkKk+IAk} - E{AkKk+IBk}[Rk + E{BkKk+1Bk}r 1 

x E{mKk+ 1Ak} + Qk. 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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We close this section by making an observation related to the nature 
of the quadratic cost. Consider the minimization over u of the quadratic 
form 

E {(ax + bu + w)2}, 

where a, b are given scalars and w is a random variable. The optimum is 
attained for 

Thus u* depends on the probability distribution of w only through the mean 
E{w}. In particular, the result of the optimization is the same as for the 
corresponding deterministic problem where w is replaced by E{w}. This 
property is called the certainty equivalence principle and appears in various 
forms in many (but not all) stochastic control problems involving linear 
systems and quadratic cost. For the first problem of this section (At.:, Bi. 
known), the certainty equivalence principle is expressed by the fact that 
the control law (2.3) is the same as the one that would be obtained from 
the corresponding deterministic problem where wk is not random but rather 
is known and equal to zero (its expected value). However, for the problem 
where Ak, Bk are random the certainty equivalence principle does not hold 
since if one replaces At.:, Bk with their expected values in Eq. (2.33), the 
resulting control law need not be optimal. 

2.2 INVENTORY CONTROL 

We consider now the inventory control problem discussed in Sections I. l 
and I .2. We assume that excess demand at each period is backlogged and 
is filled when additional inventory becomes available. This is represented 
by negative inventory in the system equation 

xk+I = xk + uk - wk, k = 0, 1, ... , N - 1. 

We also assume that the succes-;ivc: demands wi. are bounded and independent, 
the unfilled demand at the end of the Nth period is lost, and the inventory 
leftover at the end of the Nth period has zero value. Under these circum­
stances the total expected cost to be minimized is given by the expression 

! Ct: [cu,+ p max (0, -xH 1) + h max (0, x,.,>1} 
k = O ..... N-1 

or using the system equation 

! { l: I cu, + p max(0, w, - x, - 11,) + h max(0, .r, + 11, - u·,I] }-

1. · 0 .. .. N I 
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(A more general cost function may also be used as discussed in Section 
1.1.) We assume that c > 0, h ~ 0, p > c. This is necessary in order for 
the problem to be well posed as will become apparent in what follows. 

By applying the DP algorithm, we have 

JN(XN) = 0 

Jixk) = min [cuk + L(xk + uk) + E{Jk+ 1(xk + uk - wk)}], 
Uk""O 

where the function L is defined by 

L(y) = p E{max(0, wk - y)} + h E{max(O, y - wk)} . 

(2.34) 

(2.35) 

Actually, L depends on k whenever the probability distribution of wk depends 
on k. To simplify notation, we do not show this dependence and assume 
that all demands are identically distributed . 

By introducing the variable Yk = xk + uk, we can write the right side 
of (2.35) as 

min [cyk + L(yk) + E{Jk+1(Yk - wk)}] - cxk. 
Yk""Xk 

The function L can be seen to be convex. We will prove shortly that Jk + 1 

is convex, but for the moment let us assume this fact. Then the function 
in brackets is convex. Suppose that this function has a minimum Sk. Then 
it is seen that (in view of the constraint Yk ~ xk) a minimizing Yk equals xk 
if xk ~ Sk, and equals Sk otherwise. Using the equation uk = Yk - xk, we 
see that, under these circumstances, an optimal policy is determined by a 
sequence of scalars {S0 , S 1, ••• , SN_1} and has the form 

*( ) _ {Sk - Xk, if Xk < Sk, 
µ,kxk - 0, if Xk~ Sk. (2 .36) 

For each k, the scalar Sk minimizes the function 

Gk(y) = cy + L(y) + E{lk+1 (Y - w)} . (2.37) 

Thus we can prove the optimality of the policy (2.36) by showing that 
the cost-to-go functions Jk [and hence also the functions Gk of (2.37)] are 
convex, and furthermore limlvl-= Giy) = =, so that the minimizing scalars 
Sk exist. We proceed to show these properties inductively. 

We have that J N is convex [cf. Eq. (2.34)]. Since the derivative of 
L(y) as y ~ - =, tends to -p, and c < p we see that the derivative of 
GN_,(y) ( = y + L(y)) is negative and positive as v ~ - x and v ~ x, 

respectively (see Figure 2.2). Therefore limlvl-= GN- _ 1(y) = =. An ·optimal 
policy at time N - I is given by 

* ( ) _ {SN-I - XN- 1, if XN -1 < SN- I , 
f..lN - IXN - 1 - 0 "f >S 

• l XN - 1 - N I· 

Furthermore , from the DP equation (2.35) we have 

1 ( ) _ {c(SN-1 - xN- 1) + L(SN-1), if xN-1 < SN- i , 
N-1 xN- 1 - L( ) ·r 

XN-1, l XN- 1 ~ SN - I , 
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which is a convex function by the convexity of L and the fact that SN- 1 

minimizes cy + L(y) (see Figure 2.2). Thus, given the convexity of JN, 
we were able to prove the convexity of J N _ 1 • Furthermore lim

1
Y

1
_,= J N _ 1 (y) 

= = 
Similarly, fork = N - 2, ... , 0, it is seen that limlYI---->= Gk(y) = 

since c < p, and limlYl--+oo l k+ 1(y) = =. We have 

lixk) = {c(Sk - xk) + L(Sk) + E{Jk+ 1(Sk - wk)}, 
L(xk) + E{h+ 1(xk - wk)}, 

if Xk < Sk, 
if Xk ~ Sk, 

=, 

where Sk minimizes cy + L(y) + E{Jk + i(Y - w)}. Again we have lim
1

yl---->= 
Jk(y) = =, and the convexity of lk+ 1 [which implies convexity of 
E{lk + 1(x - w)}] shows the convexity of h The optimality proof of the 
policy (2.36) is complete. 

cy + L(y) 

I ,_____ :}csf','-1 
---...___, I L(y) 

~ ~ 
I '---.. 

I ----
1 

---- ---- ----
I 

----L---------'----------~-
---- ---- ----

_v 

---- ----
---- .___ -cy 

----
----

,-.J_ _______ ___L _________ ► 

----
-------- ------------

- - cy 

Figure 2.2 Structure of the cost-to-go functions when fi xed cost is zero. 
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Positive Fixed Cost 

We now turn to the more complicated case where there is a nonzero 
fixed cost K > 0 associated with a positive inventory order. Here the cost 
for ordering inventory u ;=::,: 0 is 

C(u) = {K + cu, 
0, 

The DP algorithm takes the form 

J~XN) = 0, 

if u > 0, 
if u = 0. 

Jixk) = min [C(uJ + L(xk + uk) + E{lk+1(xk + uk - wk)}], 
Uk""O 

with L defined as earlier by 

L(y) = p E{max(0, w - y)} + h E{max(0, y - w)}. 

Consider again the functions Gk : 

G/y) = cy + L(y) + E{lk+ 1(y - w)}. (2.38) 

If we could prove that the functions Gk were convex, then it would 
be easily verified that a policy of the (s, S) type 

*( ) _ {Sk - Xk, if X < Sk> 
f-tk Xk - 0 .[ > 

, 1 Xc.-Sk, 
(2.39) 

is optimal, where S" is a value of y that minimizes G"(y) and s" is the 
smallest value of y for which G"(y) = K + G"(S"). Unfortunately, when 
K > 0 it is not necessarily true that J" or G" are convex functions. This 
opens the possibility of functions G1,; having the form shown in Figure 2.3. 
For this case the optimal policy is to order (S - .r) in interval I, zero in 

I I 
I I 
I I 
I I 

I 
I I 
I I 
I I 
I I~ 

SI J' I s IS . 0 

~1 
• I • 

II -+--III • I • 
IV 

y 

Figure 2.3 Potential form of the function Gk when fixed cost is nonzero. 
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intervals II and IV, and (S - x) in interval III . However, we will show 
that even though the functions Gk may not be convex they have the property 

K + G,(z + y);;, G,(y) + z[ G.(y) - i,(y -b)], 

for all z ;?!: 0, b > 0, y. (2.40) 
This property is called K-convexity and was first utilized by Scarf [S4] to 
show the optimality of multiperiod (s, S) policies. Now if (2.40) holds, 
then the situation shown in Figure 2.3 is impossible; for if y 0 is the local 
maximum in the interval III, then we must have, for sufficiently small 
b > 0, 

Giyo) - GiYo - b) ;?!: O, 
b 

and from (2.40) it follows that 

K + GiS) ;?!: Giyo), 

which contradicts the construction shown in Figure 2.3. More generally, 
it is easy to show by using part (d) of the following lemma that if (2.40) 
holds then an optimal policy takes the form (2.39). 

Definition. We say that a function g: R - R is K-convex, where 
K ;?!: 0, if 

K + g(z + y);;, g(y) + z[ g(y) - !(y - b)], for all z;;. 0, b > 0, y, 

Some properties of K-convex functions are provided in the following 
lemma. The last part of the lemma essentially proves the optimality of the 
(s, S) policy (2.39) when Gk satisfies (2.40). 

Lemma. (a) A convex function g: R - R is also 0-convex and hence 
also K-convex for all K ;?!: 0. 

(b) If g 1(y) and gz(y) are K-convex and L-convex (K ~ 0, L ~ 0), 
respectively, then ag 1(y) + f3gz(y) is (aK + (3L)-convex for all positive a 

and (3. 
(c) If g(y) is K-convex, then Ew {g(y - w)} is also K-convex provided 

Ew {jg(y - w)I} < = for all y. 
(d) If g: R - R is a continuous K-convex function and g(y) - = as 

IYI-=, then there exist scalars s and S with s ~ S such that 
(i) g(S) ~ g(y), for ally E R; 

(ii) g(S) + K = g(s) < g(y), for all y < s; 
(iii) g(y) is a decreasing function on ( - =, s); 
(iv) g(y) ~ g(z) + K for ally, z with s ~ y ~ z. 

Proof. Part (a) follows from elementary properties of convex functions 
and parts (b) and (c) follow directly from the definition of a K-convex 
function. We will thus concentrate on proving part (d). 
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Since g is continuous and g(y) ~ oo as IYI ~ 00 , there exists a 
minimizing point of g. Let S be such a point. Also let s be the smallest 
scalar z for which z ::::=; S and g(S) + K = g(z). For all y with y < s, we 
have from the definition of K-convexity 

S-s 
K + g(S) ~ g(s) + -- [g(s) - g(y)]. 

s-y 

Since K + g(S) - g(s) = 0, we obtain g(s) - g(y) ::::=; 0. Since y < s and 
s is the smallest scalar for which g(S) + K = g(s), we must have g(s) < 
g(y) and (ii) is proved. Now for y1 < y2 < s, we have 

S - Y2 
K + g(S) ~ g(y2) + -- [g(yz) - g(y1)]. 

Y2 - Yi 

Also from (ii), 

and by adding these two inequalities we obtain 

S - Y2 
0 > -- [g(y2) - g(y1 )], 

Yz - Yi 

from which g(y1) > g(y2 ), thus proving (iii). To prove (iv), we note that 
it holds for y = z as well as for either y = S or y = s. There remain two 
other possibilities, S < y < z and s < y < S. If S < y < z, then by K­
convexity 

z - y 
K + g(z) ~ g(y) + --

8 
[g(y) - g(S)] ~ g(y), 

y-

and (iv) is proved. If s < y < S, then by K-convexity 

from which 

g(s) = K + g(S) ~ g(y) + S - y [g(y) - g(s)], 
y - s 

[ 1 + S - y]g(s) ~ [1 + S - y]g(y), 
y-s y - s 

and g(s) ~ g(y). Noting that 

g(z) + K ~ g(S) + K = g(s), 

it follows that g(z) + K ~ g(y). Thus (iv) is proved for this case as 
well. Q.E.D. 

Consider now the function GN- t of (2.38): 

GN- i(Y) = cy + L(y). 

Clearly, GN-1 is convex and hence by part (a) of the previous lemma it is 
also K-convex. We have, from the analysis of the case where K = 0, 

JN-i(x) = {K + GN-1(SN- 1) - ex, for x < sN-i, (2.4l) 
GN- 1(x) - ex, for x ~ sN- i, 



Sec. 2.2 Inventory Control 71 

where SN-1 minimizes GN _ 1(y) and sN-i is the smallest value of y for which 
GN - ,(y) = K + GN- 1(SN- 1). Notice that since K > 0 we have sN . 1 =f 
SN-1 and furthermore the slope of GN I at sN- i is negative. As a result 
the left slope of J N _ 1 at sN . 1 is greater than the right slope, as shown in 
Figure 2.4, and JN I is not convex. However, we will show that JN-i is 
K-convex based on the fact that GN- i is K-convex. To this end we must 
verify that 

K + J ( + ) >-J ( ) + [JN-1(Y) - JN_I(Y - b)] 
N-1 Y Z =-- N-I Y Z b ' 

for all z ~ 0, b > 0, y. (2.42) 

We distinguish three cases: 

Case 1 y ~ sN-I If y - b ~ sN-I, then in this region of values of 
z, b, y the function J N- i, by (2.41), is the sum of a K-convex function and 
a linear function. Hence by part (b) of the lemma it is K-convex and (2.42) 
holds. If y - b < sN_ 1, then in view of (2.41) we can write (2.42) as 

K + G N- 1 ( y + z) - c( y + z) 

( ) [
GN-1(Y) - cy - GN-1(sN-I) + c(y - b)] 

~ GN-1 y - cy + z b ' 

or equivalently 

[
GN - ,( y) - GN- i(sN ,)] 

K + GN _, (y + z) ~ GN_,(y) + z b · 

"--
---, -ex 

- -- ---- ~ 
I 

I 
I 

I 
I L(x)=GN-l(x) -cx 
I 
I 
I 

X 

Figure 2.4 Structure of the cost-to-go function when fi,cd co~t is nonzero. 

(2.43) 
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Thus (2.43) and hence also (2.42) hold. If y is such that GN-1(Y) < GN-hN- 1), 
then we have 

K + GN-1(Y + z) ~ K + GN_,(SN_,) = GN-1(sN-1) > GN-1(Y) 

So for this case (2.43), and hence also (2.42), hold. 

Case 2 y ~ y + z ~ sN-t In this region, by (2.41) , the function 
J N- t is linear and hence (2.42) holds. 

Case 3 y < sN_, < y + z For this case, in view of (2.41) , we can 
write (2.42) as 

K + GN-1(Y + z) - c(y + z) 

[
GN- 1(sN-1) - cy - GN- 1(sN-1) + c(y - b)] 

~ GN-hN- 1) - cy + z b ' 

or equivalently 

K + GN _,(y + z) ~ GN-1(sN-1) , 

which holds true by the definition of s N- 1 • 

We have thus proved that K-convexity and continuity of GN I together 
with the fact that GN- 1(y) _,.. = as I.vi _,.. = imply K-convexity of J N- 1• 

In addition, J N I can be seen to be continuous. Now using the lemma it 
follows from (2.38) that GN _2 is a K-convex function. Furthermore, by 
using the boundedness of w N- 2 , it follows that G N 2 is continuous and, in 
addition, GN 2(y) _,.. = as IYI _,.. =. Repeating the preceding argu­
ment, we obtain that JN_ 2 is K-convex and proceeding similarly we prove 
K-convexity and continuity of the functions Gk for all k, as well as that 
Gk(y) _,.. = as IYI _,.. =. At the same time [by using part (d) of the lemma] 
we prove optimality of the multi period (s, S) policy of (2.39). 

Optimality of policies of the (s, S) type can be proved for several 
other inventory problems (see Problems 3 to 6 and 14 to 17). 
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2.3 DYNAMIC PORTFOLIO ANALYSIS 

Portfolio theory deals with the question of how to invest a certain amount 
of wealth among a collection of assets. Usually this problem is handled 
via the mean-variance formulation [M4, S18] whereby an investor is assumed 
to be maximizing the expected value of a utility function that depends on 
the mean and the variance of the return of the rate of investment. An 
alternative approach, to be discussed in this section, is to assume that an 
investor makes decisions over several time periods with the objective of 
maximizing final wealth. We will start with an analysis of a single-period 
model and then extend the results to the multiperiod case. 

Let x0 denote the initial wealth (measured in monetary units) of the 
investor and assume that there are n risky assets, with corresponding random 
rates of return e 1 , e2 , ••• , e,, among which the investor can allocate his 
wealth. The investor can also invest in a riskless asset offering a sure rate 
of returns. If we denote by u 1, ••• , u11 the corresponding amounts invested 
in the n risky assets and by (x0 - u 1 - • •• - u 11 ) the amount invested in 
the riskless asset, the final wealth is given by 

x 1 = s(x0 - u 1 - • • • - u,,) + I e;u;, 
i=l 

or equivalently 

x 1 = sx0 + L (e; - s)u;. 
i = l 

The objective is to maximize over u 1, ••• , u,,, 

(2.44) 

where U is a known utility function for the investor [AS]. We assume that 
the given expected value is well defined and finite for all x0 , II;, and that 
U is concave and twice continuously differentiable. We will not impose 
constraints on u 1 , ••• , 11 11 • This is necessary in order to obtain the results 
in convenient form. A few additional assumptions will be made later. 

Let us consider the preceding problem for every value of initial wealth 
and denote by ut = µ/*(x0 ), i = 1, ... , n, the optimal amounts to be 
invested in the n risky assets when the initial wealth is x0 . 

We say that the portfolio {µ 1'(x0 ), ••• , µ"\x0 )} is partially separated 

if 
i = 1, ... , n, (2.45) 

where a;, i = 1, ... , n, are fixed constants and h(x0 ) is a function of Xo 

(which is the same for all i). 
When partial separation holds, the ratios of amounts invested in the 
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risky assets are fixed and independent of the initial wealth; that is, 

µ/*(xo) o/ 
µ/*(xo) = «i' 

for 1 ~ i,j ~ n, ai =I= 0. 

Actually, in the cases we will examine, when partial separation holds, the 
portfolio {µ, 1*(x0 ), ••• , µ,n*(x0 )} will be shown to consist of affine (linear 
plus constant) functions of x0 that have the form 

µ,i*(x0 ) = a/[a + bsx0], i = 1, ... , n, (2.46) 

where a and b are constants characterizing the utility function V. In the 
special case where a = 0 in (2.46), we say that the optimal portfolio is 
completely separated in the sense that the ratios of the amounts invested 
in both the risky asset and the riskless asset are fixed and independent of 
initial wealth. 

We now show that when the utility function satisfies 

V'(x1) 

- V"(x
1
)=a+bx1, forallx1 , (2.47) 

where V' and U" denote the first and second derivatives of V, respectively, 
and a and b are some scalars, then the optimal portfolio is given by (2.46). 
Furthermore, if J(x0) is the optimal value of the problem 

J(x0) = max E{V(xi)} , (2.48) 
u; 

then we have 

for all x0 • (2.49) 

Let us assume that an optimal portfolio exists and is of the form 

µ,i*(x0 ) = ci(x0 )[a + bsx0], 

where a/(x0 ), i = I, ... , n, are some differentiable functions. We will 
prove that da,.(x0 )/ dx0 = 0 for all x0 and hence the functions a,. must be 
constant. 

We have for every x0 , by the optimality of µ,,.*(x0), for i = I, ... , n, 

dEi:;/,)} = E{ u•[sx0 + J (e1 - s)a'(x0 )(a + bsx0 ) }e, -s)} = 0. 

(2.50) 
Differentiating the n equations in (2.50) with respect to x0 yields 

da 1(x0 ) 

(2.51) 
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Using relation (2.47), we have 

U'(xi) 

a + b[ sx0 + t, (e; - s)a;(x0)(a + bsx0 )] 

U'(x1 ) 

(a + bsx,>[ I + t (e1 - s)a\x0)b] . 

75 

(2.52) 

Substituting in (2.5 I) and using (2.50), we have that the right side of (2.51) 
is the zero vector. The matrix on the left in (2.51), except for degenerate 
cases , can be shown to be nonsingular. Assuming that it is indeed nonsingular, 
we obtain 

i = I, ... , n, 

and c/(x0 ) = ci, where ci are some constants, thus proving (2.46). 
We now turn our attention to proving relation (2.49). We have 

J(x0 ) = E{U(x 1 )} = E{ u[s[ I + i (e1 - s)a'b }, + ,t, (e, - s)a'a ]} 

and hence 

J'(x0 ) = E{ U'(x1)s[ I + t (e1 - s)a"b ]}, 

J"(x0) = E{ U"(x,)s'[ I + t (e, - s)a'b ]'} 

The last relation after some calculation and using (2.52) yields 

E{ U'(x1)s[ I + i (e; - s)a;b ]}s 
a + bsx0 

By combining (2 .53) and (2.54), we obtain the desired result: 

- J'(xo) = ~ + bx
0

• 

J"(x0 ) s 

(2.53) 

(2.54) 
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It can be shown that the following utility functions satisfy this condition 

exponential: - e-xla, for b = 0, 

logarithmic: ln(x + a) , for b = 1, (2.55) 

power: [1/(b - l)](a + bx)1-0lb), otherwise . 

Naturally in our problem only concave utility functions from this class are 
admissible. Furthermore, if a utility function that is not defined over the 
whole real line is used, the problem should be formulated in a way that 
ensures that all possible values of the resulting final wealth are within the 
domain of definition of the utility function. 

It is now easy to extend the one-period result of the preceding analysis 
to the multiperiod case. We will assume that the current wealth can be 
reinvested at the beginning of each of N consecutive time periods. We 
denote 

xk the wealth of the investor at the begining of the kth period, 
u} the amount invested at the beginning of the kth period in the ith risky 

asset, 

e7 the rate of return of the ith risky asset duriag the kth period, 

sk the rate of return of the riskless asset during the kth period . 

We have (in accordance with the single-period model) the system 
equation 

xk+ 1 = s~k + L (e} - sk)u}, k = 0, 1, . .. , N - 1. (2.56) 
i = l 

We assume that the vectors ek = (e7, ... , e~), k = 0, ... , N 1, are 
independent with given probability distributions that result in finite expected 
values throughout the following analysis. 

The objective is to maximize E{U(xN)}, the expected utility of the 
terminal wealth xN, where we assume that U satisfies for all x 

U '(x) 
- U"(x) = a + bx. 

Applying the DP algorithm to this problem , we have 

Jtv<_xN) = V (xN), 

J,(x, ) - -~a_:/{1,, {s,x, + i (e/ - s,)11/]} 

(2.57) 

(2.58) 

From the solution of the one-period problem we have that the optimal 
policy at the beginning of period N - 1 is of the form 
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where aN - 1 is an appropriate n-dimensional vector. Furthermore, we have 

Jiv-1(x) a 
- J" ( ) = - + bx. (2.59) 

N-1 X SN-1 

Hence, applying the result of this section in (2.58) for the next to the last 
period, we obtain the optimal policy 

µ.,t_z(xN-2) = aN-2(_a_ + bsN-2xN-2), 
SN-I 

where aN _2 is again an appropriate n-dimensional vector. 
Proceeding similarly, we have for the kth period 

µ.,f(xk) = ak(' a + bs~k), (2.60) 
SN-1••·S1,:t1 

where a1,:, k = 0, I, ... , N - I, are n-dimensional vectors that depend 
on the probability distributions of the rates of return e7 of the risky assets 
and are determined by optimization of the e>..pected value of the optimal 
cost-to-go functions Jk. These functions satisfy 

J,lx) a 
- J%(x) = sN-t ... sk + bx, k = 0, I, ... , N - I. (2.61) 

Thus one can see that the investor, when faced with the opportunity 
to reinvest sequentially his wealth, uses a poliry :-,imilar to that of the single­
period case. Carrying the analysis one step further, one can see that if the 
utility function U is such that a = 0, that is, U has one of the forms 

In x, for b = 1, 

(b ~ i)<bx)'-"/bl, for b -/= 0, b -/= 1, 

then it follows from (2.60) that the investor acts at each stage k as if he 
were faced with a single-period investment characterized by the rates of 
return s1,:, e7, i = 1, ... , n, and the objective function E{U(x1,:+ 1)}. This 
policy whereby the investor can ignore the fact that he will have the op­
portunity to reinvest his wealth is called a myopic policy [M 10]. 

Note that a myopic policy is also optimal whens" = l for all k, which 
means that wealth is discounted at the rate of return of the riskless asset. 
Furthermore, it can be proved that when a = 0 a myopic policy is optimal 
even in the more general case where the rates of return s" are independent 
random variables [MIO], and for the case where forecasts on the probability 
distributions of the rates of return e7 of the risky assets become available 
during the investment process (see Problem 7). 

It turns out that even for the more general case where a I- 0 only a 
small amount of foresight is required on the part of the decision maker. It 
can be seen [compare (2.58) to (2.61)] that the optimal policy (2.60) at 
period k is the same as the one that would be used if the investor were 
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faced with a single-period problem whereby he would maximize over u7, 
i = I, ... , n, 

E{V(sN 1 ••• sk+1Xk+1)} 

subject to xk + 1 = skxk + ~7= 1 (e7 - sk)u7. In other words, the investor 
maximizes the expected utility of wealth that results if amounts u7 are 
invested in the risky assets in period k and the resulting wealth xk+ 1 is 
subsequently invested exclusively in the riskless asset during the remaining 
periods k + I, ... , N - I. This is known as a partially myopic policy 
[MIO]. Such a policy can also be shown to be optimal when forecasts on 
the probability distributions of the rates of return of the risky assets become 
available during the investment process (see Problem 7). 

Another interesting aspect of the case where a i= 0 is that, when 
sk > I for all k, then as the horizon becomes increasingly long (N ~ =) 
the policy in the initial stages approaches a myopic policy [compare (2.60) 
and (2.61)]. Thus we can conclude that for sk > I a partially myopic policy 
is asymptotically myopic as the horizon tends to infinity. 

2.4 OPTIMAL STOPPING PROBLEMS 

Optimal stopping problems of the type we will consider in this and subsequent 
sections are characterized by the availability, at each state, of a control that 
stops the evolution of the system. Thus at each stage the controller observes 
the current state of the system and decides whether to continue the process 
(perhaps at a certain cost) or stop the process and incur a certain loss. 

Asset Selling Problem 

As a first example, consider a person having an asset (say a piece of 
land) for which he is offered an amount of money from period to period. 
Let us assume that these random offers w 0, w 1, ... , wN I are independent , 
identically distributed, and take values within some bounded interval. We 
consider a horizon of N stages and assume that if the person accepts the 
offer, he can invest the money at a fixed rate of interest r > 0, and if he 
rejects the offer, he waits until the next period to consider the next off er. 
Offers rejected are not renewed , and we assume that the last offer wN- 1 

must be accepted if every prior offer has been rejected. The objective is 
to find a policy for accepting and rejecting offers that maximizes the revenue 
of the person at the Nth period. 

The DP algorithm for this problem can be derived by elementary 
reasoning. As a modeling exercise, however, we will try to embed the 
problem in the framework of the basic problem by defining the state space, 
control space, disturbance space, system equation, and cost functional. We 
consider as disturbance at time k the random offer wk and as corresponding 
disturbance space the real line. The control space consists of two elements 
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u1, u2
, which correspond to the decisions "sell" and "do not sell," re­

spectively. We define the state space to be the real line, augmented with 
an additional state (call it T), which is a termination state. The system 
moves into the termination state as soon as the asset is sold. By writing 
that the system is at a state xk -=I= T at time k, we mean that the asset has 
not been sold as yet and the current offer under consideration is equal to 
xk. By writing that the system is at state xk = Tat time k, we mean that 
the asset has already been sold. With these conventions we may write a 
system equation of the form 

k = 0, ... , N - 1, 

Xo = 0, 

where xk E R U {T} and the function fk is defined via the relations 

Xk+I = {
T, 
wk, 

if uk = u1(sell) or 
otherwise. 

The corresponding reward function may be written 

where 

~ { g_.{xN)+ ]>.<x,, u., w,)} 
k=O, ... ,N--1 

if XN -=I= T, 
otherwise, 

if xk f T and uk = u1
, 

otherwise. 

Based on this formulation we can write the corresponding DP algorithm 
over the states xk: 

if XN f T, 
if XN = T, 

(2.62) 

J ( ) 
= {max[(l + r)N-kxk, E{Jk+ 1(wk)}], ~f xk f T, (2.63) 

k xk o, 1f xk = T. 

In Eq. (2.63), (1 + r)N-kxk (where xk f T) is the revenue resulting from 
decision u 1 (sell) when the offer under consideration is xk> and E{J1.:+ 1(w1,:)} 
represents the expected revenue corresponding to the decision u

2 
(do not 

sell) . . . . 
Now from the DP algorithm (2.62) and (2.63) we obtam the followmg 

optimal policy for the case where xk f T: 
accept the offer wk-I = xk if (1 + r)N -kxk > E{lk+i<wk)}, 

reject the offer wk-I = xk if (1 + ,t-kxk < E{Jk+ 1(wk)}. 

When (1 + rt kxk = E{Jk ., ,(wk)}, both acceptance and rejection are optimal. 
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The result can be put into a more convenient form by some further 
analysis . Let us introduce the functions 

which represent discounted cost-to-go for the last N - k stages. It can 
be seen from (2.62) and (2.63) that 

V~xN) = xN, 

Vixk) = max[xk , (l + ,)- 1 E{Vk+ 1(wk)}], k = 0, 1, ... , N - l. 

By using the notation 

the optimal policy is given by 

accept the offer wk- I = xk 

reject the offer wk- I = xk if xk < ak, 

(2.64) 

(2.65) 

while both acceptance and rejection are optimal for x1-; = a1-; (Figure 2.5). 
Thus the optimal policy is determined by the sequence a 1 , ••• , aN-,. 

From the algorithm (2.64) and (2.65) we have 

Hence we obtain 

if xk > ak, 
if xk < ak . 

I 1 fak+i l 1= 
a1-; = -

1
-- E{V1-; + 1(w1-;)} = -

1
-- a.1-;+ 1 dP(wJ) + -- W1-; dP(w1,), 

+ r + r o I + r a, . 1 

Acceptance Threshold 

al 
a 1 i=--.._ __ a~2 

0 N-1 N k 

Figure 2.5 Threshold for accepting offers as a function of time. 
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where the function P is defined for all scalars 'A by 

P('A.) = Prob{w < 'A.}. 
The difference equation for ak may also be written 

P(ak+ ,) 1 Joo 
ak = 1 + ak+1 + -

1
-- wk dP(wk), k = l, ... , N - 1, r + r ak+I 

81 

(2.66) 

with aN = 0. Let us first show that the solution of this equation is mon­
otonically nonincreasing (as one would expect); that is, 

ak ;::= ak+t, for all k. (2.67) 

Indeed, from (2.64) and 2.65), we see that for all x ~ O 

V N-1(x) ;::= V N(x), for all x ;::= 0. 

Applying (2.65) for k = N - 2 and k = N - l, and using the preceding 
inequality, we obtain for all x ;::= 0 

VN_z(x) = max [x, (1 + r)-'Ew{VN_ 1(w)}I 

;:::= max [x, (1 + ,)-'Ew{V~w)}] = VN_,(x). 

Continuing in the same manner, we see that 

Vix) ;::= Vk+ 1(x), for all x ;::= 0 and k. 

Since ak = E{Vk+ 1(wk)}/(1 + r), we obtain (2.67). 
Now since we have 

O ~ P(a) ~ _1 _ < l 
l+r l+r ' 

for all a~ 0, 

for all k, 

it can be seen, using the monotonicity property (2.67), that the sequence 
{ak} generated (backward) by the difference equation (2.66) converges (as 
k ~ - =) to a constant a satisfying 

a(l + r) = P(a)a + J: w dP(w). 

This equation is obtained from (2.66) by taking limits as k ~ - = and by 
using the fact that P is continuous from the left. 

Thus, when the horizon tends to become longer and longer (i.e., 
N ~ =), the optimal policy for every fixed k ~ l approximates the stationary 
policy: 

accept the offer wk- t = xk 

reject the offer wk- t = xk 

if xk > a, 
if xk < a. 

The optimality of such a policy for the corresponding infinite horizon problem 
will be shown in Section 6.1. 
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Purchasing with a Deadline 

Let us consider another problem of similar nature. Assume that a 
certain quantity of raw material is required by a certain time. If the price 
of this material fluctuates, then there arises the problem of deciding whether 
to purchase at the current price or wait a further period, during which the 
price may go up or down. We assume that successive prices wk are in­
dependent and identically distributed with distribution P(wk), and that the 
purchase must be made within N time periods. 

This problem and the earlier one have obvious similarities. Let us 
denote by 

Xk+I = Wk 

the price prevailing in the beginning of period k + I. We have similarly 
as before the DP algorithm 

Jtv<.xN) = XN, 

Jixk) = min[xk> E{lk+ ,(wk)}], 

and the optimal policy is given by 

purchase if xk < E{lk+ ,(wk)} = ak, 

do not purchase if xk > E{lk+ ,(wk)} = ak. 

We have similarly that the thresholds ai, a2 , ••• , aN- t can be obtained 
from the discrete-time equation 

rak+I 

ak = ak +1Cl - P(ak+1)] + Jo w dP(w), 

aN-1 = {x:, wdP(w) = E{w}. 

Consider now a variation of this problem whereby we do not assume 
that the successive prices w0 , ••• , wN - 1 are independent but rather that 
they are correlated and can be represented as 

k = 0, I, . . . , N - 1, 
with 

Xk+ I = A.xk + fk, Xo = 0, 

where A is a scalar with 0 ~ A < I and fo, f 1 , ••• , g N- 1 are independent 
identically distributed random variables taking positive values with given 
probability distribution. As discussed in Section 1.5, the DP algorithm 
under these circumstances takes the form 

J tv<.xN) = XN, 

Jixk) = min[xk> E{lk+1(A.xk + fk)}], 

where the cost associated with the purchasing decision is xk and the cost 
associated with the waiting decision is E{lk+ 1(A.xk + g k)}. 



Sec. 2.4 Optimal Stopping Problems 83 

We will show that in this case the optimal policy is also of the same 
type as the one for independent prices. Indeed, we have 

JN _ i(xN- 1) = min [xN- 1, AXN - 1 + g], 
where ""[ = E{gN_ 1}. As shown in Figure 2.6, an optimal policy at time 
N - 1 is given by 

purchase 

do not purchase 

if XN- 1 < a N- I, 

if XN - 1 > a N- 1, 

where aN- 1 is defined from the equation aN - 1 = >...aN - 1 + ""[; that is, 

1 -
a N-1 = 1 - >... g. 

Note that 

for all x , 

and that JN-t is concave and increasing in x . Using this fact in the DP 
algorithm, one may show (Problem 25 in Chapter l ) that 

for all x and k, 
and that Jk is concave and increasing in x for all k . Furthermore, in view 
of the fact that ""[ = E{g k} > 0 for all k, one can show that 

E {l k+Mk)} > 0, for all k. 

These facts imply (as shown in Figure 2.7) that the optimal policy for every 

r--- Purchase---1•~1◄«F----- Do not purchase ----- -- x N- 1 

aN-1 

Figure 2.6 Structure of cost-to-go function JN 1(x" 1) when pri-:es are correlated. 
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...,.I •i----- Purchase ---~-----Do not purchase -------

Figure 2. 7 Determining the optimal policy when prices are correlated. 

period k is of the form 

purchase 

do not purchase 

if xk < ak, 

if Xk > <Xk, 

Chap. 2 

X 

where the scalar ak is obtained as the unique positive solution of the equation 

X = E{Jk+ 1(AX + gk)}. 

Note that lix) ~ lk+ 1(x) implies 

for all k, 

and hence (as one would expect) the threshold price below which one should 
purchase is lower in the early stages of the process and increases as the 
deadline comes nearer. 

General Stopping Problems and the One-Step­
Look-Ahead Rule 

We now formulate a general type of N-stage problem where stopping 
is mandatory at or before stage N. Consider the stationary version of the 
basic problem of Section 1.1 (state, control, and disturbance spaces, dis­
turbance distribution, control constraint set, and cost per stage are the same 
for all times). Assume that at each state xk and time k there is available, 
in addition to the controls uk E U(xk), a stopping action that forces the 
system to enter a termination state at a cost t(xk) and subsequently remain 
there at no cost. The terminal cost, assuming stopping has not occurred 
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by the last stage, is t(xN). Thus, in effect, we assume that the termination 
cost will always be incurred either at the last stage or earlier. 

The DP algorithm is given by 

J ,jxN) = t(xN) (2.68) 

Jixk) = min [t(xk), min E{g(xk, uk, wk) 
uEU(x) 

k = 0, 1, ... , N - I , 

and it is optimal to stop at time k for states x in the set 

Tk = {xjt(x) ~ min E{g(x, u, w) + Jk+ 1[f(x, u, w)]}}. 
uEU(x) 

We have from (2.68) and (2.69) 

for all x ES, 

and -using this fact in (2.69) we obtain inductively 

Jix) ~ h+ 1(x), for all x E Sand k. 

(2.69) 

[We are making use here of the stationarity of the problem and the mon­
otonicity property of DP (Problem 25 in Chapter I). l Using this fact and 
the definition of Tk, we see that 

(2.70) 

Consider now the case where the set TN- i is absorbing in the sense 
that if a state belongs to TN I and termination is not selected, the next 
state will also be in TN- i; that is, 

f(x , u, w) E TN-i, for x E TN-i, u E U(x), w ED. (2.71) 

We will show that equality holds in (2.70) and for all k we have 

Tk = TN-I = {x E Sjt(x) ~ min E{g(x, u, w) + t[f(x, u, w)]}}. 
uEU(x) 

To see this, note that by definition of TN-I we have 

JN_ 1(x) = t(x), x E TN-I, 

and using (2. 71) we obtain for x E T N- 1 

min E{g(x, u, w) + JN_ 1[J(x, u, w)]} 
uEU(x) 

= min E{g(x, u, w) + t[f(x, u, w)]} ~ t(x). 
uEU(x) 

Therefore, stopping is optimal for all xN _2 E TN- 1 or equivalently T.v _ 1 C 
TN _2 • This together with (2.70) implies TN_ 2 = TN-t• and proceeding 
similarly we obtain Tk = TN-1 for all k. 

In conclusion, if condition (2.71) holds (the one-step stopping set TN 1 

is absorbing), then the stopping sets Tk are all equal lo the set <~{ states 
for which it is better to stop rather than continue for 011e more stage and 
then stop. A policy of this type is known as a one-step-look-ahead po/in·. 
It turns out to be optimal in several types of applications. We provide next 
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some examples. Additional examples are given in the problem section and 
in Sections 6.3 and 6.4 where the stopping problem is reexamined in an 
infinite horizon context. 

Example 1 
Asset Selling with Past Offers Retained. Consider the asset selling problem considered 
earlier in this section with the difference that rejected offers can be accepted at a 
later time. Then if the asset is not sold at time k the state evolves according to 

Xk+ 1 = max[xb wd 
instead of xk+I = wk. The DP equations (2.64) and (2.65) become then 

V~xN) = xN 

Vbk) = max[xk, (1 + r)- 1 E{Vi+1(max[xk> wd)}]. 

The one-step-to-go stopping set is 

TN- I = {x Ix;?; (1 + r)- 1 E{max[x, w]}}. 

It is seen [ compare with (2.66)] that an alternative characterization is 

TN_ 1 = {x I x ;?; a} 

where a is obtained from the equation 

a(l + r) = P(a)a + fa"° w dp(w) . 

(2.72) 

Since past offers can be accepted at a later date, the effective offer available cannot 
decrease with time, and it follows that the one-step stopping set (2. 72) is absorbing 
in the sense of (2.71). Therefore, the one-step-look-ahead stopping rule that accepts 
the first offer that equals or exceeds a is optimal. Note that this policy is independent 
of the horizon length N. 

Example 2 
The Rational Burglar [WI I]. A burglar may at any night k choose to retire with 
his accumulated earnings xk or enter a house and bring home an amount wk. However, 
in the latter case he gets caught with probability p and then he is forced to terminate 
his activities and forfeit his earnings thus far. The amounts wk are independent, 
identically distributed with mean w. The problem is to find a policy that maximizes 
the burglar's expected earnings over N nights. 

We can formulate this problem as a stopping problem with two actions (retire 
or continue) and a state space consisting of the real line, the retirement state, and 
a special state corresponding to the burglar getting caught. The DP algorithm is 
given by 

J~XN ) = XN 

Jixk) = max[xk, (1 - p)E{Jk+1(xk + wk)}]. 

The one-step-to-go stopping set is 

TN-1 =- {x Ix ;?; (1 - p)(x + w)} = { x Ix;?; (1 -Pp)w}, 

(more accurately this set together with the special state corresponding to the burglar's 
arrest). Since this set is absorbing in the sense of (2.71), we conclude that the one­
step-look-ahead policy by which the burglar retires when his earnings reach or 
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exceed (1 - p)w /p is optimal. The optimality of this policy for the corresponding 
infinite horizon problem will be demonstrated in Section 6.3. 

2.5 SCHEDULING AND THE INTERCHANGE ARGUMENT 

Suppose one has a collection of tasks to perform but the ordering of the 
tasks is subject to optimal choice; for example, the ordering of operations 
in a construction project so as to minimize construction time or the scheduling 
of jobs in a workshop so as to minimize machine idle time. In such problems 
a useful technique is often to start with some schedule and then to interchange 
two adjacent tasks and see what happens . 

As an example, consider a quiz contest whereby a person must answer 
questions from a given list of N in any order he chooses. Question i will 
be answered correctly with probability Pi, and the person will then receive 
a reward r;. At the first incorrect answer, the quiz terminates and the 
person is allowed to keep his previous rewards. The problem is to choose 
the ordering of questions so as to maximize expected rewards. 

Let i and j be two adjacent questions in an optimally ordered list 
L = (i0, ... , h-1, i, j, ik+ 2, ... , iN-1). Consider the list L' = (i0, ... , 
ik - 1, j, i, ik+ 2 , ••• , iN _ 1) obtained from L by interchanging the order of 
the kth and (k + l)st questions i andj. We compare the expected rewards 
of Land L' . We have 

£{reward of L} = £{reward of {i0 , ••• , ik _1}} 

+ Pio · • • P;k-1 (p;r; + PiPf) 

+ Pio ... Pi* _piPi £{reward of {ik+ 2 , ••• , iN_ 1}} 

£{reward of L'} = £{reward of {io, ... , ik-1}} 

+ P;0 • • • P;, 1 (Pfi + PiP;r;) 

+ Pio ... Pik-lPiPiE{reward of {ik+ 2, ... , iN_ 1}}. 

Since L is optimally ordered, it follows from these equations that 

piri + PiP;Y; ~ p;r; + P;Pfi 

or equivalently 

Ph < -1!..!.i__ 
I - Pi -.c 1 - P;. 

Therefore, to maximize expected rewards, questions should be answered 
in decreasing order of p;r;/(1 - p;). 

The Interchange Argument 

Let us consider the basic problem of Chapter l and try to generalize 
the interchange argument given previously. The basic requirement is that 
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the problem be such that there exists an open-loop policy that is optimal, 
that is, a sequence of controls that performs as well as any sequence of 
control functions. This is certainly true in deterministic problems as discussed 
in Chapter 1, but it is also true in some stochastic problems including the 
preceding example. 

To apply the interchange argument, we start with an optimal sequence 
{u0, ... , uk- t, u*, a, uk+ 2, ... , uN- 1} and focus attention on the controls 
u* and a applied at times k and k + 1, respectively (k = 0, 1, ... , N -
1). We then argue that if the order of u* and a is interchanged the expected 
cost cannot decrease. In particular, if X1:. is the set of states that can occur 
with positive probability starting from the given initial state x0 and using 
the control subsequence {u0, ... , uk_ 1}, we must have for all x1:. E X1:. 

E{gixk, u*, wk)+ gk+1(X:+1, u, Wk+I) + I.t+iXk+2n 
(2.73) 

where xt+ 1 and xt+ 2 (or i1:.+ 1 and ik+ 2) are the states subsequent to x" when 
uk = u* and uk+t = a (or uk = a and u1:_-.- 1 = u*) are applied, and Jt.k) 
is the optimal cost-to-go function for time k + 2. 

Relation (2. 73) is a necessary condition for optimality. It holds for 
every k and every optimal policy that is open-loop. There is no guarantee 
that it is powerful enough to lead to an optimal solution in any given 
scheduling problem but it is certainly worth considering. We now provide 
two examples. 

Job Scheduling on a Single Processor 

Suppose we have N jobs to process in sequential order with the ith 
job requiring a random time T; for its execution. The times T1 , ••• , TN 
are independent. If job i is completed at time t, the reward is dR;, where 
a is a discount factor with O < a < 1. The problem is to find a schedule 
that maximizes the total expected reward [R7]. 

It is evident that this problem can be formulated within the context 
of the basic problem. (Discrete time is incremented when a job is completed, 
the state at stage k is the collection of jobs completed thus far, and the 
admissible controls at time k are the jobs yet to be processed. The time 
of completion of the kth job need not be included in the state since the 
times T; are independent.) It is clear also that there exists an open-loop 
policy that is optimal. 

Consider an optimal job schedule L = (i0, ... , ik- 1 , i, j, ik+i, ... , 
iN-1) , and the schedule L' = Uo, ... , ik-t, j, i, ik+i, ... , iN_ 1) obtained 
by interchanging i and}. Let tk be the time of completion of job ik- - 1• Since 
the reward for completing the remaining jobs}" + 2 , ••• , iN _ 1 is independent 
of the order in which jobs i and j are executed, the necessary condition 
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(2. 73) yields 

E{a'k+T;R; + a'k+ T;+TjR) ~ E{a'k+TjR, + a'k+T1+T;R;}. 

Since tk, Ti, and ½ are independent, this relation can be written 

E{a1k}(E{aT;}Ri + E{aT'}E{aT1}R) ~ E{d1
} (E{aT1}R, + E{aT1}E{aT'}R;), 

from which we finally obtain 

Ri E{aT} >- R, E{aT1} 

1 - E{aT} ~ l - E{aT;} · 

89 

It follows that scheduling jobs in order of decreasing R; E{aT'}/(1 - E{ar'}) 
maximizes expected rewards. 

Job Scheduling on Two Processors in Series [W3] 

· Consider scheduling of N jobs in two processors A and B, such that 
B accepts the output of A as input. Job i requires known times a; and b; 
for processing in A and B, respectively. The problem is to find a schedule 
that minimizes the total processing time . 

To formulate the problem into the form of the basic problem, we 
increment discrete time at the moments when processing of a job is completed 
at machine A and the next job is started. We take as state at time k the 
collection of jobs Xk that remain to be processed at A together with the 
backlog of work Tk at machine B, the amount of time needed to clear B if 
no further jobs were left. Thus if (Xk, Tk) is the state at stage k and job i 
is completed at machine A, the state change~ to (Xk, 1 , T1. t 1) given by 

Xk + I = x k - {i}, 'Tk+ J = b; + max[O, 'Tk - a;]. 

The corresponding DP algorithm is 

JiXk, Tk) = min [a; + l k+ 1(Xk - {i}, bi + max [O, rk - aJ)] 
iEXk 

with the terminal condition 

where 0 is the empty set. 
Since the problem is deterministic , there exists an optimal open-loop 

schedule {i0 , ••• , ik _1, i,j, ik +l • .. . , iN _ 1}. Applying the necessary condition 
(2 .73) , we obtain 

l k+iX k - {i} - {j}, 'T';) ~ l k+iX k - {i} - {j}, T,;), (2.74) 

where T (T··) is the backlog at machine Bat time k + 2 when i is processed 
IJ JI 

before j (j before i) and the backlog at time k was Tk. A straightforward 
calculation shows that 

ru = b; + b, - a; - a, + max[Tk, a;, a;+ a, - b;], 

T,; = b, + b; - a, - a; + max[Tk, a1 , aJ + a; - bJ. 
(2.75a) 

(2.75b) 
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Clearly, lk+i is monotonically increasing in T, so from (2.74) we obtain 

Tu~ Tji· 

In view of (2.75), this relation implies two possibilities. The first is 

Tk ~ max[ai, ai + ai - b;], 

Tk ~ max[ai, ai + ai - bi], 

in which case Tu = TJ; and the order of i and j makes no difference. (This 
is the case where the backlog at time k is so large that both jobs i and j 
will find B working on an earlier job.) The second possibility is that 

max[a;, ai + ai - bi]~ max[aJ, ai + ai - bJ, 

which can be seen to be equivalent to 

min[ai, bi]~ min[aJ, b;]. 

A schedule satisfying these necessary conditions for optimality can 
be constructed by the following procedure: 

1. Find min min[a;, b;]. 

2. If the minimizing value is an a take the corresponding job first; if it is a b, 
take the corresponding job last. 

3. Repeat the procedure with the remaining jobs until a complete schedule is 
constructed. 

To show that this schedule is indeed optimal, we start with an optimal 
schedule. We consider the job i0 that minimizes min[a;, b;] and by successive 
interchanges we move it to the same position as in the schedule constructed 
previously. It is seen from the preceding analysis that the resulting schedule 
is still optimal. Similarly, continuing through successive interchanges and 
maintaining optimality throughout, we can transform the optimal schedule 
into the schedule constructed earlier. We leave the details to the reader. 

2.6 NOTES 

The certainty equivalence principle for dynamic linear-quadratic problems 
was first discussed by Simon [S19]. His work was preceded by that of 
Theil [T2], who considered a single-period case, and Holt et al. [HI I], who 
considered a deterministic case. Similar problems were considered somewhat 
later (and apparently independently) by Kalman and Koepcke [K2], Gunckel 
and Franklin [G5J, and Joseph and Tou [J5]. Since their work, the literature 
on linear-quadratic problems has grown tremendously. The special issue 
on the linear-quadratic problem of the IEEE Transactions on Automatic 
Control [II] contains most of the pertinent theory and variations thereof, 
together with hundreds of references. For a multidimensional version of 
Problem 2, see [JI]. 
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The literature on inventory control stimulated by the pioneering paper 
of Arrow et al. [A 7] is also voluminous. The 1966 survey paper by Veinott 
[V5] contains 118 references. An important work summarizing most of the 
research up to 1958 is the book by Arrow et al. [A8]. The ingenious line 
of argument for proving the optimality of (s, S) policies in the case of 
nonzero fixed costs is due to Scarf [S5]. The result of Problem 17 is due 
to Veinott [V7]. See also Tsitsiklis [T7]. 

Most of the material in Section 2.3 is taken from the paper by Mossin 
[MIO]. 

PROBLEMS 

1. Linear-Quadratic Problems with Forecasts. Consider the linear-quadratic problem 
first examined in Section '.L. l (Ak, Bk: known) for the case where at the beginning 
of period k there is available a forecast Yk E { l , 2, .. . , n} consisting of an 
accurate prediction that wk will be selected in accordance with a particular 
probability distribution Pkil'k· (cf. Section 1.5). The vectors wk need not have 
zero mean under the distributions PA1-.. Show that the optimal control law is 
of the form 

µ,/xk, Yk) = - (B1cKk+ ,Bk + Rk)- 1B1cK1c+ ,[A~k + E{wklYk}] + ab 

where the matrices Kk are given by the Riccati equation (2.5) and (2.6) and ak 
are appropriate vectors. 

2. Consider a scalar linear system 

xk+t = a~k + b1cuk + w1c, k = 0, 1, ... , N - l , 

where a1c, bk E R, and each wk is a Gaussian random variable with zero mean 
and variance a-2. Show that the control law {µJ , µ.f , ... , µ.t . 1} that minimizes 
the cost functional 

E{ exp[ xi+ %>xi+ ruD ]}, r > 0, 

is linear in the state variable. We assume no control constraints, independent 
disturbances, and that the optimal cost is finite for every x0 • Show by example 
that the Gaussian assumption is essential for the result to hold . 

3. Consider an inventory control problem similar to the multistage inventory problem 
of Section 2.2. The only difference is that at the beginning of each period k 
the decision maker, in addition to knowing the current inventory level xk, 
receives an accurate forecast that the demand wk will be selected in accordance 
with one out of two possible probability distributions P1 , P., (large demand, 
small demand). The a priori probability of a large demand forecast is known 
(cf. Section 1 .4). 
(a) Obtain the optimal inventory ordering policy for the case of a single-period 

problem. 
(b) Extend the result to the N-period case. 
(c) Extend the result to the case of any finite number of possible distributions. 

4. Consider the inventory control problem where the purchase costs c,. k = 0. 
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1, ... , N - 1, are not known at the beginning of the process but instead they 
are independent random variables with a priori known probability distributions. 
The exact value of the cost ck, however, becomes known to the decision maker 
at the beginning of the kth period, so that the invent.ory purchasing decision at 
time k is made with exact knowledge of the cost ck. Characterize the optimal 
ordering policy. 

5. Consider the multiperiod inventory model of Section 2.2 for the case where 
there is a one-period time lag between order and delivery of inventory; that is, 
the system equation is of the form 

k = 1, ... , N - 1, 

Xi = Xo - Wo, 

Show that an (s, S) policy is optimal. 
6. Consider the inventory problem under the assumption that unfilled demand at 

each stage is not backlogged but rather is lost; that is, the system equation is 
xk+i = max[O, xk + uk - wk] instead of xk+i = xk + uk - wk. Show that a 
multi period (s , S) policy is optimal. 

Abbreviated Proof (S. Shreve) Let JJl._x) = 0 and for all k 

Gt( y) = cy + E{h max[O, y - wk] + p max[O, wk - y] 

+ l k+1(max[O, y - wd)}, 

lix) = -ex + min[Ko(u) + Gt(x + u)], 
uca,O 

where o(O) = 0, o(u) = 1 for u > 0. The result will follow if we can show 
that Gk is K-convex , continuous, and Gi y) - 00 as jyj - 00 • The difficult 
part is to show K-convexity since K-convexity of G,~ 1 does not imply K­
convexity of E{Jh 1(max[O, y - w])}. It will be sufficient to show' that K­
convexity of Gk+ 1 implies K-convexity of 

H( y) = p max[O, -y] + lk +1(max[O, y]), (2.76) 

or equivalently that 

K + H(y + z) ~ H( y) + z H( y) - H(y - b), 
b 

z ~ 0, b > 0, y. (2.77) 

By K-convexity of Gk+ 1 we have for appropriate scalars sk+ 1 and Sk + 1 such that 
Gk +1(Sk+1) = miny Gk +1(Y) and K + Gk +1(Sk +1) = Gk +1(sk+ 1): 

J ( ) _ {Gk+1(X), if Sk+I ~ x, 
k+1 x - -ex+ K G (S ) i'f + k+I k+I , X < Sk+I• 

(2.78) 

and lk+i is K-convex by the theory of Section 2.2. 

Case 1 0 ~ y - b < y ~ y + z For this region, (2. 77) follows from 
K-convexity of lk+ 1. 

Case 2 y - b < y ~ y + z ~ 0 In this region, H is linear and hence 
K-convex. 
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Case 3 y - b < y ,;;; 0 ,;;; y + z In this region, (2. 77) may be written 
[in view of (2.76)] as K + lk+i<Y + z);,, lk+i(0) - p(y + z). We will show 
that 

K + lk+1(z);,, lk+/0) - pz, z;,, 0. (2.79) 

If 0 < sk+1 ,;;; z, then using (2.78) and the fact p > c, 

K + Jk+1(z) = K - cz + Gk+1(z);,, K - pz + Gk+1(Sk+1) = lk+1(0) - pz. 

If 0 ,;;; z ,;;; sk+ 1, then using (2. 78) and the fact p > c, 
K + lk+1(z) = 2K - cz + Gk+1(Sk+1);,, K - pz + Gk+1(Sk+1) 

= lk+ ,(O) - pz. 

If sk +, ,;;; 0 ,;;; z, then using (2. 78), the fact p > c, and part (iv) of the lemma 
in Section 2.2, 

K + lk+ ,(z) = K - cz + Gk+ 1(z) ;,, Gk+ 1(0) - pz = lk+ 1(0) - pz. 

Thus (2.79) is proved and (2.77) follows for the case under consideration. 

Case 4 y - b < 0 < y ,;;; y + z Then 0 < y < b. If 

H(y) - H(0);,, H(y) - H(y - b) (
2

_
80

) 
y b , 

then since H agrees with lk+t on [0, =) and lk+t is K-convex, 

H(y)-H(0) _ H(y)-H(y-b) 
K + H( y + z) ;,, H( y) + z y ;,, H( y) + z b , 

where the last step follows from (2.80). If 

H(y) - H(0) H(y) - H(y - b) 
y < b , 

then we have 

H(y) - H(0) < f [H(y) - H(y - b)] = f [H(y) - H(0) + p(y - b)]. 

It follows that 

(1 - f)[H(y) - H(O)] < (f)p(y - b) = -py(l -f). 
and since b > y, 

H(y) - H(0) < - py. 

Now we have, using the definition of H, (2.79), and (2.81), 

H(y) - H(y - b) H(0) - py - H(0) + p(y - b) 
H(y) + z b = H(y) + z b 

= H(y)- pz<H(0) - p(y + z) 

,;;;; K + H(y + z). 

Hence (2.77) is proved for this case as well. Q.E.D. 

(2.81) 

7. Consider the dynamic portfolio problem of Section 2.3 for the case where at 
each period k there is a forecast that the rates of return of the risky assets for 
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that period will be selected in accordance with a particular probability dist1ibution 
as in Section 1.5. Show that a partially myopic policy is optimal. 

8. Consider a problem involving the linear system 

xk+J = Akxk + Bkut> k = 0, 1, ... , N - 1, 

where the n x II matrices A,( are given and the II x m matrices B,( are independent 
random matrices and have given probability distributions that do not depend 
on xk. Lh- The problem is to find the optimal control law {,u..._f •...• ,u'{ ,} 
that maximizes the cost functional E{V(c'.rs)}. where c is a given 11-dimensional 
vector. We assume that V is a concave utility function satisfying for all y 

- U'(y) - + b 
V"(y) - a y , 

and that the control is unconstrained. Show that the optimal control law consists 
of affine functions of the current state. Hint: Reduce the problem to a one­
dimensional problem and use the results of Section 2.3. 

9. An employer interviews N candidates for a position and must decide immediately 
after each interview whether to appoint the corresponding candidate. A score 
is given to a candidate after the interview. and scores are independent and 
identically distributed. Determine the policy that maximizes the expected score 
of the appointed candidate . 

10. Suppose that an individual wants to sell a house and an offer comes at the 
beginning of each day. We assume that successive offers are independent and 
an offer is x1 with probability p1 • j = 1 ..... 11. where x, are given nonnegative 
scalars. Any offer not immediately accepted is not lost but may be accepted 
at any later date. Also. a maintenance cost c is incurred for each day that the 
house remains unsold. The objective is to maximize the price at which the 
house is sold minus the maintenance costs. Consider the problem when there 
is a deadline to sell the house within N days and characterize the optimal policy. 

11. Capacity Expa11sion Problem. Consider a problem of expanding the capacity 
of a facility for production of a single type of nonstorable good or service over 
N time periods. Let us denote by .r,( the production capacity at the beginning 
of the kth period and by 11,( ? 0 the addition to capacity during the kth period. 
Thus capacity evolves according to 

k = 0, 1, ... , N - 1. 

The demand at the kth period is denoted ll',( and has a known probability 
distribution that does not depend on either .r,( or 11,(. Also. successive demands 
are assumed to be independent and bounded. We denote 

Ciuk) expansion cost associated with adding capacity uk, 

Pixk + uk - wk) penalty cost associated with capacity xk + uk and 
demand wk, 

S(xN) salvage value of final capacity xN. 

E 
Wk 

.( 0.1. .. \' I 
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(a) Derive the DP algorithm for solving this problem. 
(b) Assume that S is a concave function with limx ..... = dS(x)/ dx 0, Pk are 

convex functions, and the expansion cost Ck is of the form 

C .( ) = {K + eku, if u > 0, 
k U O "f - 0 , l U - , 

where K ;;,, 0, ck > 0 for all k. Show that the optimal policy is of the (s, S) 
type assuming cky + E{Piy - wk)} - oo as IYI - oo, 

12. A Gambling Problem. A gambler enters a game whereby he may at any time 
k stake any amount uk ;;,, 0 that does not exceed his current fortune xk (defined 
to be his initial capital plus his gain or minus his loss thus far). He wins his 
stake back and as much more with probability p, where ½ < p < 1, and he 
loses his stake with probability ( I - p). Show that the gambling strategy that 
maximizes £{In xN}, where xN denotes his fortune after N plays, is to stake at 
each time k an amount uk = (2p - l)xk. Hint: The problem is related to the 
portfolio problem of Section 2.3. 

13. Optimal Termination of Sampling. A collection of N ;;,, 2 objects is observed 
randomly and sequentially one at a time. The observer may either select the 
current object observed, in which case the selection process is terminated, or 
reject the object and proceed to observe the next. The observer can rank each 
object relative to those already observed, and the objective is to maximize the 
probability of selecting the "best" object according to some criterion. It is 
assumed that no two objects can be judged to be equal. Let r* be the smallest 
positive integer r such that 

1 1 1 ---+---+ ... +-,:;;;1. 
N-1 N-2 r 

Show that an optimal policy requires that the first r* objects be observed. If 
the r*th object has rank I relative to the others already observed, it should be 
selected; otherwise, the observation process should be continued until an object 
of rank l relative to those already observed is found. Hint: We assume that. 
if the rth object has rank 1 relative to the previous (r - I) objects, then the 
probability that it is best is r/ N. Fork ;;,, r*, let Jk(0) be the maximal probability 
of finding the best object assuming k objects have been selected and the A.1h 
object is not best relative to the previous (k - I) objects. Show that 

Jl0) = ~ (N ~ 1 + ... + ;J 
14. Consider the inventory control problem of Section 2.2 with the difference that 

successive demands are correlated and satisfy a relation of the form 

wk= ek - eek-I, k = 0, 1, ... , 

where c is a given scalar, ek are independent random variables. and e _ 1 = 0. 
(a) Show that this problem can be converted into an inventory problem with 

independent demands. Hint: Given ll'o, w 1 , .•. , 11·,_ 1 , we can determine 
ek- i in view of the relation 

k-1 

Define Zk = xk + eek - 1 as a new state variable. 
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(b) Show that the same is true when in addition there is a one-period delay in 
the delivery of inventory (cf. Problem 5). 

15. Consider the inventory control problem of Section 2.2 with zero fixed cost, the 
only difference being that there is an upper bound band a lower bound !z. to 
the allowable values of the stock xk. This imposes the additional constraint on 
Uk 

f!. + d ~ uk + xk ~ b, 
where d > 0 is the maximum value that the demand wk can take (we assume 
f!. + d < b). Show that there exist scalars S0 , S1, ••• , SN-I and an optimal 
policy {µt, ... , µt;_ 1} of the form 

*( ) _ {Sk - Xk, 
µk Xk - O, 

if Xk < Sk, 
if Xk~sk. 

16. Consider the inventory control problem of Section 2.2 (nonzero fixed cost) with 
the difference that demand is deterministic and must be met at each time period 
(i.e., the shortage cost per unit is = ). Show that it is optimal to order a positive 
amount at period k if and only if the stock xk is insufficient to meet the demand 
wk. Furthermore, when a positive amount is ordered, it should bring up stock 
to a level that will satisfy demand for an integral number of periods. 

17. [W 11] Consider the inventory control problem of Section 2.2 for zero fixed cost 
with the only difference that the orders u" are constrained to be nonnegative 
integers. Let Jk be the optimal cost-to-go function. Show that: 
(a) Jk is continuous. 
(b) Jix + 1) - · Jix) is a nondecreasing function of x. 
(c) There exists a sequence {Sk} of numbers such that the policy given by 

( ) {n, if xk E [Sk - n, Sk - n + I) , n = 1, 2, ... , 
µk Xk = 0, if Xk ~ Sk 

is optimal. 

18. [WI I] The Greek adventurer Theseus is trapped in King Minos' Labyrinth maze. 
He can try on each day one of N passages. If he enters passage i he will escape 
with probability Pi, he will be killed with probability qi, and he will determine 
that the passage is a dead end with probability (I - Pi - qi), in which case 
he will return to the point from which he started. Show that trying passages 
in order of decreasing p;/ q; maximizes the probability of escape within N days. 
Hint: Use an interchange argument. 

19. A driver is looking for a parking place on the way to his destination. Each 
parking place is free with probability p independently of whether other parking 
places are free or not. The driver cannot observe whether a parking place is 
free until he reaches it. If he parks k places from his destination, he incurs a 
cost k. If he reaches the destination without having parked the cost is C. 
(a) Let Fk be the minimal expected cost if he is k parking places from his 

destination. Show that 

Fo = C 

Fk = p min[k, Fk-il + qFk-1, 

where q = 1 - p. 

k= 1,2, ... , 
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(b) Show that an optimal policy is of the form: never park if k ;;,: k*, but take 
the first free place if k < k*, where k is the number of parking places from 
the destination and k* is the smallest integer i satisfying qH < (pC + q)- 1• 

20. H ardy's Theorem. Let {a 1 , ••• , an} and {b 1, ••• , bn} be monotonically non-
decreasing sequences of numbers. Let us associate with each i = 1, ... , n a 
distinct indexj;, and consider the expression I,? 1a;bj,. Show that this expression 
is maximized when j; = i for all i, and is minimized when j,. = n - i + 1 for 
all i. Hint: Use an interchange argument. 

21. [W 11) A person may go hunting for a certain type of animal on a given day or stay 
home. When the animal population is x, the probability of capturing one animal 
is p(x), a known increasing function, and the probability of capturing more than 
one is zero. A captured animal is worth one unit and a day of hunting costs 
c units. Assume that the hunter knows x at all times, thac the horizon is finite, and 
that the terminal benefit i'..; zero. Show that it is optimal to hunt only whenp(x)? c. 

22. ·consider the scalar linear system 

xk+1 = axk + buk 

where a and b are known. At each period k we have the option of using a 
control uk and incur a cost qxf + ruz, or else stop and incur a stopping cost 
txf. If we have not stopped by period N, the terminal cost is the stopping cost 
txi. We assume that q ;;,: 0, r > 0, t > 0. Show that there is a threshold value 
for t below which immediate stopping is optimal at every initial state and above 
which continuing at every state xk and period k is optimal. 

23. Consider a situation involving a blackmailer and his victim. Each year the black­
mailer has a choice of: a) Accepting a lump sum payment of R from the victim and 
promising not to blackmail again b) Demanding a payment of u, where u E: [O, I). 
If blackmailed, the victim will either: I) Comply with the demand and pay u to the 
blackmailer. This happens with probability I - u. 2) Refuse to pay and denounce 
the blackmailer to the police. This happens with probability u. Once known to the 
police, the blackmailer cannot ask for any more money. Consider the blackmailer's 
problem of maximizing the expected amount of money he gets over an /V year pe­
riod. (Note that there is no additional penalty for being denounced to the police.) 
Write a DP algorithm and find the optimal policy for any R > 0. 



CHAPTER THREE 

Problems with Imperfect 
State Information 

3.1 REDUCTION TO THE PERFECT STATE INFORMATION 
CASE 

We have assumed so far that the controller has access to the exact value 
of the current state, but this assumption is often unrealistic. For example, 
some state variables may be inaccessible , the sensors used for measuring 
them may be inaccurate , or the cost of obtaining the exact value of the 
state may be prohibitive. We model situations of this type by assuming 
that at each stage the controller receives some observations about the value 
of the current state, which may be corrupted by stochastic uncertainty. 
Mathematically , the observation zk obtained at stage k has the form 

Zk = hixk, uk- 1, vk) , 

where hk is some function and vk is a random disturbance. We will provide 
a precise problem formulation shortly. We first look at an example . 

Multiaccess Communication Example 

Consider a collection of transmitting stations sharing a common channel, 
for example, a set of ground stations communicating with a satellite at a 
common frequency. The stations are synchronized to transmit packets of 
data at integer times. Each packet requires one time unit (also called a 
slot) for transmission. The total number ak of packet arrivals during slot 
k is independent of prior arrivals and has a given probability distribution. 
The stations do not know the backlog xk at the beginning of the kth slot 

98 
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(the number of packets waiting transmission). There is therefore some 
difficulty in scheduling packet transmissions. As a result, a strategy is 
adopted (known as slotted Aloha) whereby each packet in the system at 
the beginning of slot k is transmitted during that slot with probability uk 

(common for all packets). If two or more packets are transmitted simul­
taneously , they collide and have to rejoin the backlog for retransmission 
at a later slot. However, the stations can observe the channel and determine 
whether in any one slot there was a collision (more than two packets), a 
success (one packet), or an idle (no packets). These observations provide 
information about the state of the system (the backlog xk) and can be used 
to select appropriately the co11trol (the transmission probability uk)- The 
objective is to keep the backlog small so that a cost per stage gixk), which 
is a monotonically increa~ing function of xk, is appropriate. 

The state of the system here is the backlog xk and evolves according 
to the equation 

Xk+ I = xk + ak - tk, 

where ak is the number of new arrivals and tk is the number of packets 
successfully transmitted during slot k. Both ak and tk may be viewed as 
stochastic disturbances, and the distribution of tk depends on the state xk 

and the control uk. It can be seen that tk is unity (a success) with probability 
xkuil - ukr- 1

, and zero (idle or collision) otherwise. If we had perfect 
state information (i.e., the backlog xk were known at the beginning of slot 
k), the optimal policy would be to select the value of uk that maximizes 
the success probability xkuk( l - ud' - 1

• By setting the derivative of this 
probability to zero, we find the optimal (perfect state information) policy 
to be 

for all xk ~ 1. 

However, xk is not known (imperfect state information). and the optimal 
control must be chosen on the basis of the available observations (i.e., the 
entire channel history of successes, idles, and collisions). These observations 
relate to the backlog history (the past states) and the past transmission 
probabilities (the past controls), but are corrupted by stochastic uncertainty. 
Mathematically , we may write an equation zk + 1 = uk +,, where Zk +, is the 
observation obtained at the end of the kth slot, and the random variable 
uk+ 

1 
yields an idle with probability (l - u1J'\ a success with probability 

xkuil - ukr- 1
, and a collision otherwise. 

We now state precisely the problem of this chapter. 

Basic Problem with Imperfect State Information 

Consider the basic problem of Section 1.1 where the controller. instead 
of having perfect knowledge of the state, has access to observations ;,~ of 

the form 
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z0 = ho(x0 , v0 ) , Zk = hixk , uk- l • vk) , k = l, 2, .•. , N - 1. (3 .1) 

The observation zk belongs to a given observation space Zk. The random 
observation disturbance vk belongs to a given space Vk and is characterized 
by a given probability measure 

Pv/ · lxk, ... , Xo, Uk-!, ... , Uo , wk- 1, ... , Wo , vk- 1 .•. , Vo), 

which depends explicitly on the current state and the past states, controls, 
and disturbances. 

The initial state x0 is also random and characterized by a given probability 
measure Pxo· The probability measure Pw/·lxk, uk) of wk is given and may 
depend explicitly on xk and uk but not on prior disturbances w0 , ••• , 

wk- 1, v0 , ••• , vk- 1• The control uk is constrained to take values from a 
given nonempty subset Uk of the control space Ck. It is assumed that this 
subset does not depend on x k . 

Let us denote by h the information available to the controller at time 
k and call it the information vector. We have 

h = (z0 , zI , . .. , Zk, u0 , u 1, ••• , uk_1) , k = I , 2, . .. , N - I , 

lo = Zo­
(3 .2) 

We consider the class of control laws (or policies), which consist of 
a sequence of functions 1r = {µ,0 , µ, 1 , ••• , µ,N- 1}, where each function µ,k 

maps the information vector h into the control space C1-. and 

µ,ih)EUk, for all h , k = 0, .. . , N - 1. 

Such control laws are termed admissible. The problem is to find an admissible 
control law 1T = {µ,0 , µ, 1, •• , µ,N _ 1} that minimizes the cost functional 

J. = x,.! .", { g.,(xN) + I g,[x., µ,J,I, ), w,]} (3.3) 
k = O, ... ,N- 1 

subject to the system equation 

x k+ 1 = h[xk , µ,k(h) , wk], 

and the measurement equation 

Zo = ho(Xo , Vo) , 

Zk = hk[xk, µ k- 1(/k- 1) , vd , 

k = 0, I, ... , N - 1, 

k = 1, 2, ... , N - 1. 

The cost functions gk, k = 0, I , ... , N , are given. 
Notice the difference from the case of perfect state information. Whereas 

before we were trying to find a rule that would specify the control uk to 
be applied for each state xk and time k , now we are looking for a rule that 
gives the control to be applied for every possible information vector Ik (or 
state of information), that is , for every sequence of observations received 
and controls employed up to time k. 

We now show how the problem can be reformulated into the framework 
of the basic problem with perfect state information. Similarly, as in the 
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discussion of state augmentation in Section 1.5, it is intuitively clear that 
we should define a new system the state of which at time k consists of all 
variables the knowledge of which can be of benefit to the controller when 
making the kth decision. Thus a first candidate as the state of the new 
system is the information vector h. Indeed we will show that this choice 
is appropriate. 

We have by definition [cf. Eq. (3.2)] 

h+1=(h,Zk+1,uk), k=0,1, ... ,N-2, l 0 =zo. (3.4) 
These equations can be viewed us describing the evolution of a system of 
the same nature as the one considered in the basic problem of Section I .I. 
The state of the system is 1;, the control uk, and zk. 1 can be viewed as a 
random disturbance. Furthermore, we have 

P(zk+t E Zk+1llk , uk) = P(zk+t E Zk+dh, uk, Zo, Z1, ... , Zk), (3.5) 

for any event Zk t 1 (a subset of Zk+ 1) since z0 , z,, ... , Zk are part of the 
information vector h. Thus the probability measure of Zk+, depends explicitly 
only on the state h and control uk of the new system (3.4) and not on the 
prior disturbances Zk, ••• , zo 

By writing 

E{g,(x,, u,. w,)) - EL,1:., {g,(x,. u,, w,)IJ,, u,)}, 
we can similarly reformulate the cost functional in terms of the variables 
of the new system. The cost per stage as a function of the new state h. 
and the control uk is 

gih, uk) = E {gixk, u,_, wk)lh, uk}. (3.6) 

Thus the basic problem with imperfect state information has been 
reformulated to a problem with perfect state information that involves system 
(3.4) and cost per stage (3.6). By writing the DP algorithm for thi s latter 
problem and substituting the expressions (3.4) and (3.6), we obtain 

J N-iUN-i) = min [ E {gN[JN_ 1(XN-1, uN _ ,, wN - 1)1 
UN - ,EUN- I XN- I• WN I 

+ gN_,(XN-1• UN-I• WN_,)IIN-1, UN_,)], 

h(h) = min [ E {gk(xk, Uk, wk) 
ukEUk xk• w,.Zk + I 

+ J, . 1(/, , z,. 1, u,)11,, u,) l 

(3.7) 

(3.8) 

Equations (3.7) and (3.8) constitute the basic DP algorithm for the 
problem of this section. An optimal control law {µ,i'f. µ,{ . .... µ,\ ,} is 
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obtained by first solving the minimization problem in (3.7) for every possible 
value of the information vector /N- i to obtain µ.,'h- 1(/N - 1)- Simultaneously, 
J N- 1 (/ N- 1) is computed and used in the computation of J N _ z(/ N _ 2) via the 
minimization in (3.8), which is carried out for every possible value of 
I N 2 • Proceeding similarly, one obtains J N-i/N _3) and µ.,'h - 3 and so on 
until 10(/0 ) = J0(z0 ) is computed. The optimal cost J* is then obtained 
from 

(3.9) 
zo 

3 .2 LINEAR SYSTEMS AND QUADRATIC COST: 
SEPARATION OF ESTIMATION AND CONTROL 

We now consider the imperfect state information analog of the linear sys­
tem/quadratic cost problem of Section 2.1. We have the same linear system 

xk+l = A!(Xk + B kuk + w k> k = 0, 1, . .. , N - 1,- (3. 10) 

and quadratic cost 

E{x;&~N + ~: (x;Q,x, + u;R,u, )} , (3 .11) 

but now the controller does not have access to the current system state. 
Instead it receives at the beginning of each period k an observation of the 
form 

k = 0, 1, ... , N - 1, (3.12) 

where zk E R S, Ck is a given s x m matrix , k = 0, 1, ... , N 1, and 
uk E Rs is an observation noise vector with given probability distribution. 
Furthermore, the vectors uk are independent, and independent from wk and 
x0 as well . We make the same assumptions as in Section 2. 1 concerning 
the input disturbances wk , and we assume that the system matrices Ak , Bk 
are known. 

From Eq. (3 .7) we have 

JN- 1(/ N-1) = min[ E {(A N- 1XN - 1 + B N- 1uN- 1 + wN- i)'Q N 
UN - I XN - t,WN - 1 

X (AN-IXN- 1 + B N- IUN- 1 + WN - 1) + XN-I QN- IXN - 1 

+ uN-1RN- 1uN- ilIN- 1}]. 

Using the fact that E{wN _ 1IIN- 1} = E{wN- 1} = 0, this expression can be 
written 

JN-1(/N-1 ) = E {xN- 1(AN- 1QNA N-1 + QN- 1)xN-1II N-1} 
X N - 1 

wN I (3.13) 
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+ 2E{xN-1IIN-1}'AN-1QNBN--1uN- 11-
The minimization yields the optimal control law for the last stage, 

ut_, = µ.,'t - i(IN- 1) (3.14) 

= -(BN-,QNBN-1 + RN-1)-
1
BN-1QNAN-1 E{xN_,IJN-1 }, 

and upon substitution in (3 .13) we obtain 

1 N- ,UN-1) = E {x~- ,KN- 1XN il!N- 1} 

WN 1 

where the matrices KN-I and PN-I are given by 

PN-1 = AN-IQNBN_i(RN-1 + B~-1QNBN- 1)- 1B~_,QNAN-I, 

KN-I = A~- ,QNAN-1 - PN- 1 + QN - 1• 

(3.15) 

Note that the control law (3.14) is identical to the corresponding 
optimal control law for the problem of Section 2.1 except that xN _ 1 is 
replaced by its conditional expectation E{xN-ilIN- 1}. Notice also that the 
cost-to-go J N- 1(/ N- 1) exhibits a corresponding similarity to the cost-to-go 
for the perfect information problem except that J N _ iU N 1) contains an 
additional middle term, which is in effect a penalty for estimation error. 

Now the DP equation for period N - 2 is 

JN-2(/N -2) = min[ E {xN-2QN-2xN-2 + u~-2RN-2UN-2 
UN-2 XN-2WN-2 

+ JN _ ,(IN-IWN-2• UN_,}] 
= min[ E {x~-2QN-2XN-2 + u~-2RN-2uN-2 

UN-2 XN-2WN-2 

+ (AN-2XN-2 + BN-2UN-2 + WN-2)
1 

KN_ ,(AN-2XN-2 (3.16) 

+ BN-2UN-2 + WN-,WN-,}] 

+ E{[xN-t - E{xN-ilIN-1}]'PN-1[xN-1 

- E{xN -.IIN - ,}]IIN-2, uN-2} 

Note that we have excluded the next to last term from the minimization 
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with respect to uN_ 2 . We have done so since this term will be shown to 
be independent of uN_ 2 , a fact that follows easily from the following lemma. 

Lemma. For every k, there is a function Fk such that for all policies 
we have 

Proof Fix a policy and consider the following two systems with identical 
initial condition x0 = x0 • In the first system there is control as determined 
by the policy 

while in the second system there is no control: 

Denote 

l = (zo, ... , Zk)', zk = (Zo , ... ' Zk) I , 

wk = (wo, ... , wk)'' v* = (vo, ... , vk)' , 

uk = (uo, ... , uk)'. 

Linearity implies the existence of matrices Fk, Gk, and Hk such that 

xk = Fkxo + Gkuk- l + Hkw*- •, 

xk = Fkxo + Hkw*- 1
• 

Since we have u*- 1 = E{uk- 11/k}, these equations yield 

xk - E{xklh} = xk - E{xklh}. 

From the equations for zk and Zk, we see that the information provided by 
h = (l, uk- t) regarding xk is summarized in zk. Therefore, we have 
E{xklh} = E{xklzk}, and it follows that 

xk - E{xklh} = xk - E{xklzk}. Q.E.D. 

The lemma says essentially that the quality of estimation as expressed 
by the statistics of the error xk - E{xklh} cannot be influenced by the 
choice of control. This is due to the linearity of both the system and the 
measurement equation. 

Returning now to our problem, the minimization in Eq. (3.16) yields, 
using a similar type of argument as for the last stage, 

u°tJ _z = JJ-°tJ-2(/N- 2) = -(RN-2 + B~-2KN-1BN-2)-
1 

X B~-2KN-JAN-z E{xN-2IIN-2}, 

and proceeding similarly we obtain the optimal control law for every stage: 

µ,f(Ik) = LkE{xklh} (3.17) 
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where 

Lk = -(Rk + BkKk +1Bd- 1BkKk+IAk, 
with the matrices Kk given recursively by the Riccati equation 

KN= QN 

Kk = A;JKk+I - Kk+IBk(Rk + BkKkt-lBk) 1B{Kk.-1]Ak + Qk. 
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(3.18) 

(3.19) 

(3.20) 

Generalizing an earlier observation, we note that the optimal control 
law (3.17) is identical to the optimal control law for the corresponding 
perfect state information problem of Section 2.1 except that the state xk is 
replaced by its conditional expectation E{xklh}. 

It is interesting to note that the optimal controller can be decomposed 
into the two parts shown in Figure 3. 1, an estimator, which uses the data 
to generate the conditional expectation E{xklh}, and an actuator, which 
multiplies E{xkllk} by the gain matrix Lk and applies the control input uk = 
Lk E{xklh}. Furthermore, the gain matrix Lk is independent of the statistics 
of the problem and is the same as the one that would be used if we were 
faced with the deterministic problem where wk and x0 would be fixed and 
equal to their expected values. On the other hand, it can be shown that 
the estimate x of a random vector x given some information (random vector) 
/, which minimizes the mean squared error Ex{llx - xWII} is precisely the 
conditional expectation Exfxll} (expand the quadratic form and set to zero 
the derivative with respect to .x). Thus the estimator portion of the optimal 
controller is an optimal solution of the problem of estimating the state xk 
assuming no control takes place, while the actuator portion is an optimal 
solution of the control problem assuming pe,fect state inforrnation prevails . 

Delay 

Estimator 

Figure 3. 1 Structure of the opti ma l controller for the lim:;1r qu.idra ti c proh lc m . 
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This property, which shows that the two portions of the optimal controller 
can be designed independently as optimal solutions of an estimation and a 
control problem, has been called the separation theorem for linear systems 
and quadratic cost and occupies a central position in modern automatic 
control theory. 

Another interesting observation is that the optimal controller applies 
at each time k the control that would be applied when faced with the 
deterministic problem of minimizing the cost-to-go 

N-1 

x'rvQNxN + L (xf Q;x; + ufR;u;), 
i=k 

and the input disturbances wk, wk+ 1 , ••• , wN- 1 and current state xk were 
known and fixed at their conditional expected values, which are zero and 
E{xklh}, respectively. This is another form of the certainty equivalence 
principle, which was referred to in Section 2.1. For a generalization of this 
fact to the case of correlated disturbances, see Problem I. 

Implementation Aspects: Steady-State 
Controller 

As explained in the perfect information case, the linear form of the 
actuator portion of the optimal control law is particularly attractive for 
implementation. In the imperfect information case, however, we are faced 
with the additional problem of constructing an estimator that produces the 
conditional expectation E{xklh}. The implementation of such an estimator 
is not easy in general. However, in the important special case, when the 
disturbances wk> vk, and the initial state x0 are Gaussian random vectors, 
a convenient implementation of the estimator is possible by means of the 
Kalman filtering algorithm [Kl]. This algorithm provides the conditional 
expectation E{xklh}, which due to the Gaussian nature of the uncertainties 
turns out to be a linear function of the information vector ht (i.e., the 
measurements Zo, z1 , ••• , Zk and the controls u0 , u1 ••• , uk_ 1) . The 
computations, however, are organized recursively so that only the most 
recent measurement zk and control uk 1 are needed at time k, together with 
E{xk-1lh-1} in order to produce E{xklh}. The form of the algorithm is (see 
[Al], [M6]) 

E{xk+dh+1} = AkE{xklh} + Bkuk 

+ ~k+tlk+1q.+1N;J1[Zk+1 - Ck+1(AkE{xklh} + Bkuk)], 

k = 0, 1, ... , N - 1, (3.21) 

t Actually, the conditional expectation E{x,llk} can be shown to be a linear function of 
I. for a more general class of probability distributions of x0 • w,. u, that includes the Gaussian 
distribution as a special case, the class of spherically invariant distributions [V9. B31]. 
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where the matrices Lklk are precomputable and given recursively by 

Lk+11k+1 = Lk+11k - Lk+11kC1c+1<Ck+1Lk+11kC1c+, + Nk+1> 'ck+,Lk+lk, 

Lk+llk = AkLklkAk + M k, k = 0, 1, ... , N - ] , 
with 

Lo10 = S - SCb<CoSCb + N0 )-
1C0S. 
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(3.22) 

(3.23) 

(3.24) 

In this equation Mk, Nk, and S are the covariance matrices of wk, uk, and 
Xo, respectively, and we assume that wk and uk have zero mean; that is, 

E{wk} = E{vk} = 0, 

Mk = E{wkwD, N k = E{vkv;J, 

S = E{[x0 - E{x0 }][x - E{x0 }] '}. 

In addition, the matrices Nk are assumed to be positive definite. 
Consider now the case where the system and measurement equations 

and the disturbance statistics are stationary. We can then drop suhscripts 
from the system matrices. Assume that the pair (A, BJ is controllable and 
the pair (A, F) is observable, where Fis a matrix such that Q = F' F. By 
the theory of Section 2.1, if the horizon tends to infinity, the optimal 
controller tends to the steady-state control law 

where we use the notation 

E{xklh } = xk, 

µ*(h) = L xk, (3.25) 

L = -(R + B'KB) -'B'KA , (3.26) 

and K is the unique positive semidefinite symmetric solution of the algehraic 
Riccati equation 

K = A'[K - KB(R + B'KB) - 'B'K]A + Q. (3.27) 

By a similar argument, xk can be generated in the limit as k - = by a 
steady-state Kalman filtering algorithm: 

xk+1 = (A + BL)xk ~ fc'N- 1[zk+1 - C(A + BL)xd , (3.28) 

where r is given by 

f = L - LC'(CLC' + N)- 'CL, (3.29) 

and L is the unique positive semidefinite solution of the Riccati equation 

L = A[L - LC'(CLC' + N)- 1CL]A' + M. (3.30) 

This can be shown using the theory of Section 2.1 provided the pair (A, 
C) is observable and the pair (A, DJ is contrnllahle, where D is a matrix 
such that M = DD'. The steady-state controller of Eqs. (3.25), (3.26), and 
(3.28) is particularly attractive for practical implementation in view of its 
simplicity. 
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3.3 MINIMUM VARIANCE CONTROL OF LINEAR SYSTEMS 

We have considered so far control of linear systems in state variable form 
as in the previous section. However, linear systems are often modeled by 
means of an input-output equation, which is more economical in terms of 
number of parameters needed to describe the system dynamics. In this 
section we consider single-input, single-output, linear, time-invariant systems 
and a special type of quadratic cost functional. The resulting optimal control 
law is particularly simple and has found wide application. We first introduce 
some of the basic facts regarding linear systems in input-output form. 
Detailed discussions may be found in [Al I], [Al2], [G3], and [Wl2]. 

A single-input, single-output, linear, finite-dimensional, causal, time­
invariant system is specified by an equation of the form 

Yk + a1Yk-l + ... + amYk-m = bouk + b1uk-l + ... + bmuk-m• (3.31) 
where a;, b; are given scalars. The scalar sequences {uk I k = 0, ± l, ± 2, 
... }, {Yk I k = 0, ± l, ± 2, ... } are viewed as the input and output of the 
system, respectively. 

It is convenient to describe this type of system by means of the 
backward shift operator, denoted s, which when operating on a sequence 
(xk I k = 0, ± 1, ±2, ... } shifts its index by one unit; that is, 

s(xk) = xk-t, k = 0, ± 1, ±2, .... 
We denote by sr the operator resulting from r successive applications of s. 

sr(xk) = Xk-r, k = 0, ± 1, ± 2, .... (3.32) 

We also write for simplicity srxk = xk-r· The forward shift operator, denoted 
s- 1

, is the inverse of s and is defined by 
s- 1(xk) = xk+t, k = 0, ± 1, ±2, .... 

Thus the notation (3.32) holds for all integers r. We can form linear com­
binations of operators of the form sr. Thus, for example, the operator 
(s + 2s2

) is defined by 

(s + 2s2)(xk) = xk-1 + 2.xk-2, k = 0, ± 1, ±2, .... 
With this notation, (3.31) can be written 

A(s)yk = B(s)uk, (3.33) 

where A(s), B(s) are the operators 

or 

A(s) = 1 + a 1s + ··· + amsm, 

B(s) = b0 + b 1s + · ·· + bmsm. 

Sometimes it is convenient to write (3 .33) as 
B(s) 

Yk = A(s) uk 

(3.34) 

(3.35) 



Sec. 3.3 Minimum Variance Control of Linear Systems 109 

The meaning of both equations is that the sequences {yk} and {uk} are related 
via (3.33). There is a certain ambiguity here in that, for a fixed {uk}, Eq. 
(3.33) has an infinite number of solutions in {yk}. For example, the equation 

Yk + ayk-1 = uk 

for uk = 0 has as solutions all sequences of the form Yk = /3( - a)\ where 
/3 is any scalar. As will be discussed shortly, however, for stable systems 
and for a bounded sequence {uk} there is a unique solution {yk} that is 
bounded. It is this solution that will be denoted (B(s)/ A(s))uk in what 
follows. Note that B(s)/ A(s) can be viewed as a transfer function in the 
usual linear system sense involving z-transforms. 

We now introduce some terminology: 
(a) When {yk}, {uk} satisfy A(s)yk = B(s)uk, we say that Yk is obtained 

by passing uk through the filter B(s)/A(s). This comes from engineering 
terminology, where linear time-invariant systems are commonly referred to 
as filters. We also refer to the equation A(s)yk = B(s)uk as the filter B(s)/ A(s). 

(b) A filter B(s)/ A(s) is said to be stable if the polynomial A(s) has 
all its (complex) roots strictly outside the unit circle of the complex plane, 
that is, jpj > I for a11 complex p satisfying A(p) = 0. A stable filter B(s)/ A(s) 
has the following two properties: 

I. Every solution {yk} of 

A(s)yk = 0 

satisfies limh-✓~ Yk = O; that is, the output Yk tends to zero if the input sequence 
{uk} is identically zero. 

2. For every bounded sequence {ud, the equation 

A(s)yk = B(s)uk 

has a unique solution {5\} within the class of bounded sequences. Furthermore. 
every solution {y,} (possibly unbounded) of the equation satisfies 

lim (Yk - Yk) = 0. (3.36) 
,-, ,. 

For example, consider the system 

Yk - O.Sy,-1 = u,. 

Given the bounded input sequence uk = { ... , I , I , I , ... }, the set of all 
solutions is given by 

13 
Yk = 2 -t ?' 

but of these the only bounded solution is Yk = { ... , 2, 2, 2, ... }. 

(c) The filter B(s)/ A(s) is said to be minimum phase when the polynomial 
B(s) has all its roots strictly outside the unit circle. The tem1inology "minimum 
phase" is explained, for example, in [P5]. The reasons will not concern 
us here. If h

0 
f O and the filter B(s)/ A(s) is minimum phase and stahle. 

then the inverse filter A(s)/ B(s) is also minimum phase and stable. Under 
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these circumstances, for every bounded output sequence {yk}, there is a 
unique bounded input sequence {uk} satisfying 

A(s):yk = B(s)uk. 

Modeling of Linear Time-Invariant Systems with 
Stochastic Inputs 

Consider now a stochastic, linear, time-invariant, finite-dimensional 
system with output {yk}, control input {uk} and a zero-mean stochastic input 
{wk}. We assume that {wk} is a stationary (up to second order) stochastic 
process. That is, {wk} is a sequence of random variables defined on the 
same probability space and satisfying, for all i, k = 0, ±I, ± 2, ... , 

E {wk} = 0, E{w0w;} = E{wkwk+i} < =. 
(All references to stationary processes in this section are meant in the 
limited sense just described.) By linearity we have that Yk is the sum of 
one sequence due to the presence of {uk} and one due to the presence of 
{wk}. In other words, we have 

where Yk, yt satisfy 

A1(s)yl = B 1(s)uk, 

Az(s)y~ = Bz(s)wk 

for some filters B1(s)/ Ai(s), Bz(s) / Az(s). 
Operating on (3.38a) and (3.38b) with Az(s) and A 1(s) , 

adding, and using (3.37), we obtain 

A(s)yk = B(s)uk + vk, 

where A(s) and B(s) are the polynomials 

A(s) = A 1(s)Az(s), 

B(s) = Az(s)B1(s), 

and {vk}, given by 

(3.37) 

(3.38a) 

(3.38b) 

respectively, 

(3.39) 

(3.40) 

is a zero-mean, generally correlated, stationary stochastic process. 
We envision a situation where uk is a control input applied after yk, 

Yk- 1, Yk-2, ... have occurred and been observed. Thus we are interested 
in the case where in (3.38) 

B1(0) = 0. 

Therefore, the polynomials A (s) and B(s) have the form 

A(s) = 1 + ll1S + ... + a smo mo ' 

B(s) = b1s + ·· · + b smo mo 
for some scalars a; and h; and some positive integer m0 • 
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To summarize, we have constructed a model of the form 

A(s)yk = B(s)uk + vk, 
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where A (s) and B(s) are polynomials of the preceding form and {v,J is some 
zero-mean, correlated, stationary stochastic process. 

Stochastic Processes with Rational Spectrum 

Let us now digress for a moment to discuss the nature of the stochastic 
process {vk} of (3.40). Given a zero-mean, stationary scalar process {vk}, 
denote by C(k) the autocorrelation function 

C(k) = E{v;V;+k}, k = 0, ± I, ±2, .... 

We say that {vk} has rational spectrum if the transform of {C(k)} defined 
by 

sp,.) = L C(k) e-jk>-- = C(O) + 2 L C(k) cos(k>..) 
k= -oo k= I 

exists for A E [ -1r, 1r] and can be expressed as 

2 IB(ej>-.)12 
Su(A) = a- IA(ej>--)l2 , A E [-1r, 1r], (3.41) 

where er is a scalar, A(z) and B(z) are some polynomials with real coefficients 

A(z) = 1 + a1z + ... + amzm, (3.42a) 

B(z) = 1 + b1z + ··· + bmzm, (3.42b) 

and A(z) has no roots on the unit circle {zl lzl = l}. 
We have the following facts: 
{a) If {vk} is a white process with C(O) = a-2, C(k) 0 for k -f 0, 

then 

and clearly {vk} has rational spectrum. 
(b) If {vk} has rational spectrum Su given by (3.41), then Su can be 

written as 

A E [ -1r, 1r], 

where ii is a scalar and A(z), B(z) are unique real polynomials of the form 

A(z) = 1 + G1Z + ... + GmZm, 

B(z) = 1 + h1z + ... + bmzm 

satisfying: 

l. A(z) has all its roots strictly outside the unit circle. 
2. B(z) has all its roots strictly outside or on the unit _circk. and if B(.J has no 

roots on the unit circle, then the same is true for B(z). 
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These facts are seen by noting that if p I- 0 is a root of A(z) then 
JA(e1")12 = A(ei>--)A(e-J>--) contains a factor (I - p- 1 ei>--)(1 - p - 1 e - J>-- L = 
p- 2(1 - peJ>-- )(1 - pe-J>-- ). A little reflection shows that the roots of A(z) 
should be p or p - 1 depending on whether p is outside or inside the unit 
circle. Similarly, the roots of B(z) are obtained from the roots of B(z). 
Thus the polynomials .A.(z) and B(z) as well as &-2 can be uniquely determined. 
We may thus assume without loss of generality that A(z) and B(z) in (3.41) 
have no roots inside the unit circle. 

(c) If {uk} is stationary with rational spectrum SJA), and {wd is another 
stationary process obtained by passing uk through a stable linear filter 
B 1(s)/ A 1(s), that is, 

A 1(s)wk = Bi(s)vk, 

then {wk} has rational spectrum Sw given by 
JBi(ei>--)12 

Sw(A) = IA,(ei >--)12 Su(A) , A E [ - 1r , 7T]. 

In particular, if {uk} is white and E{uZ} = a-2, then 

JB 1(ei>--)12 
Sw(A) = cr2 JA ,(ei>--)12' A E [ -77, 7T] . 

The proof of this is straightforward using the definitions. It is a standard 
fact given, for example, in [P5]. 

(d) The next fact is hard to prove rigorously . We state it as a proposition. 
For a proof see, for example , [AlO, pp. 75-76]. 

Proposition. If {ud is a zero-mean, stationary stochastic process with 
rational spectrum 

A E [ -7r, 7TJ, 

where A, Bare given by (3.42) and are assumed (without loss of generality) 
to have no roots inside the unit circle, then there exists a zero-mean, white, 
stationary process {t:k} (defined on the same probability space as {uk}) with 
E{t:n = a-2 such that for all k 

Uk + a1Uk-l + ... + amuk-m = Ek + b,ek-1 + .. . + bmEk-m • 

(For the mathematically advanced we note that this relation is meant in a 
P-almost everywhere sense, where P is the probability measure of the 
space.) 

ARMAX Models 

Let us now return to the problem of representation of a linear system 
with stochastic inputs. We had arrived at the model (3.39), 

A (s)yk = B(s)uk + uk. 
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If the zero-mean stationary process {v,J has rational spectrum, the preceding 
analysis and proposition show that there exists a zero-mean, white, stationary 
process {ek} satisfying 

D(s)vk = C(s)ek, 

where the polynomials C(s) and D(s) are of the form 

C(s) = 1 + c,s + ... + Cm,sm', 

D(s) = 1 + d,s + ··· + dm 1s
1111

, 

(3.43) 

and C(s) has no roots inside the unit circle. Operating on both sides of 
(3.39) with D(s) and using (3.43), we obtain 

where 
A(s)yk = B(s)uk + C(s)ek, (3.44) 

A(s) = D(s)A (s), 

B(s) = D(s)B(s). 

In view of the fact that A (0) = I, B(O) = 0, we can write, for some integer 
m and scalars a,, ... , am, b1, ... , bm, C1, ••• , Cm, 

A(s) = 1 + a1s + ··· + amsm, 

B(s) = b,s + ··· + b111sm, 

C(s) = I + c,s + · · · + ems"', 

and write (3 .44) as 

Yk + a1Yk -l + ... + amYk-m = b,uk-1 + . '• + bmuk-m (3.45) 
+ €k + C1€k-l + ... + Cm€k-m• 

The model (3.45) is the one that we will adopt, and without loss of 
generality it will be assumed that C(s) has no roots strictly inside the unit 
circle. Equation (3.45) is known as an ARMAX model (AutoRegressive, 
Moving Average, with eXogenous input). For much of the analysis in 
subsequent sections, it will be necessary to excluJe the critical case where 
C(s) has roots on the unit circle and assume that the filter C(s)/A(s) is 
minimum phase. This assumption is satisfied in most practical cases. 

In several situations, analysis and algorithms relating to the ARMAX 
model 

A(s)yk = B(s)uk + C(s)ek 

are greatly simplified if C(s) = I so that the noise term sequence C(s)Ek 
ek is white. However, our earlier analysis showed that this is typically an 
unrealistic assumption. To emphasize this point and see how easily the 
noise can be correlated, suppose that we have a first-order system 

where we observe 
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Then 
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Yk + I = X k+ I + Vk+ I 

= axk + wk + Vk+ I 

= a(yk - vk) + wk + Vk+ I • 

so finally 

Yk + I = ayk + Vk+I - avk + wk. 

However, the noise sequence {vk + 1 - auk + wk} is correlated even if {vk} 
and {wk} are white and mutually independent. 

The ARMAX model (3.45) can be put into state space form. The 
process is based on state augmentation and can perhaps be best understood 
in terms of an example. Consider the system 

(3.46) 

We have 

(3 .47) 

By setting 

[
-a1b2C1] 

A = 0 0 0 , 
0 0 0 

we can write (3 .47) as 

xk+ t = A xk + Buk + wk, (3.48) 

where {wk} is a stationary white process . We have arrived at this state 
space model through state augmentation. Notice that the state X1-: includes 
€1-:. Thus if the controller is assumed to know at time k only the present 
and past outputs Yk, Yk- 1 , ••• , and the past controls u 1-:- i , u1-: _ 2 , ••• (but 
not Ek - i, Ek _ 2 , ••. ), we are faced with a model of imperfect state information. 
If c 1 = 0 in (3.46), then the state space model can be simplified so that 

x, ~ [:: .] 

in which case we have perfect state information. More generally, we have 
perfect state information in the ARMAX model (3.45) if and only if c 1 

C2 = · · · = Cm = 0. 
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Minimum Variance Control: Perfect State 
Information Case 
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Consider the perfect state information case of the ARMAX model 
(3.45): 

Yk + a1Yk- l + ... + amYk-m = b1uk-l + .. . + bmuk-m + €k, 

where b1 =f 0. We wish to minimize the cost 
(3.49) 

(3.50) 

The controller at time k applies uk knowing the present and past outputs 
Yb Yk -1, ••• , as well as the past controls uk- 1 , uk_ 2 , •••• There are no 
constraints on uk. By transforming the system to state space form, we see 
that this problem can be reduced to a perfect state information linear­
quadratic problem involving a system of the form 

xk+I = Axk + Buk + wk, 

where xk is the vector 

The problem is of the same nature as the one of Section 2.1 except that 
the corresponding matrices Rk in the quadratic cost functional are zero 
here. Nonetheless, in Section 2.1 we used the invertibility of Rk only to 
ensure that various matrices in the optimal control law and the Riccati 
equation are invertible . If invertibility of these matrices can be guaranteed 
by other means, the same analysis applies even if Rk is not positive definite. 
This is indeed the case for the problem involving the system (3 .49) and the 
cost functional (3.50). An analysis analogous to the one of Section 2.1 
shows that the optimal control ut at time k (given Yb Yk- 1 , ••• , Yk-m t 1 , 

uk _ 1, ••• , uk-m+ 1) is the same as the one that would be applied if all future 
disturbances ek+ 1, ••• , eN were set equal to zero, their expected value 
( certainty equivalence). It follows that 

µ,t(yk , ... , Yk-m+l, Uk-I• ... , uk-m+I) 

1 =,;; (a1Yk + ... + amYk-m+l - bzUk-l - ... -bmuk-m+1), 

and {ut} is generated via the equation 

b1ut + b2ut-1 + ... + bmuf-m+I 

= a1Yk + azYk-1 + ... + amYk-m+I• (3.51) 

In other words, {ut} is generated by passing {yk} through the linear filter 
A (s)/B(s), where 

(3.52) 
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B(s) = b1 + b2s + ··· + bmsm- 1, (3.53) 

as shown in Figure 3.2. The resulting closed-loop system is 

(3.54) 

and the associated cost is 

N E{en. 

Notice that the optimal policy, called minimum variance control law, is 
time invariant and does not depend on the horizon N. 

Whereas the optimal closed-loop system as given by (3.54) is clearly 
stable, we can anticipate serious difficulties if the filter A (s)/B(s) in the 
feedback loop is unstable. For if B(s) has some roots inside the unit circle, 
then the sequence {uk} will tend to be unbounded. This is illustrated by 
the following example. 

Example 
Consider the system 

Y k + Yk-1 = u k-1 - 2uk-2 + Ek. 

The optimal control law is 

uk = Yk + 2uk-1 

and the optimal closed-loop system is 

Ek . 
I --

A(s) 

+l+ ~k B(s) 
:::: 

A(s) 
L 

Uk A (s) V -k 
-

B(s) -

-

Figure 3.2 Minimum variance control with perfect state information. Structure 
ofoptimal cl~ed-loop system, where A(s) = l + a 1s + ··· + amsm , B(s) = b,s + 
··· + bmsm, A(s) = s- 1 (A(s) - l) , and B(s) = s - 1B(s). 
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which is a stable system. On the other hand , these two equations yield 

Uk= Ek+ 2uk-l• 

It follows that uk is generated by an unstable system and in fact is given by 
k 

Uk = I 2nEk-n. 
n=O 
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Therefore, even though the output Yk stays bounded, the control uk becomes unbounded 
with probability 1. 

For another view of the same difficulty, suppose that the coefficients 
b1, . .. , bm of B(s) are slightly different from the ones of the true system. 
We will show that if the feedback filter A (s)/B(s) is unstable then the 
closed-loop system is also unstable in the sense that both uk and Yk become 
unbounded with probability one. 

Assume that the system is governed by 

A 0(s)yk = B0(s)uk + Ek, (3.55) 

while the control law is calculated under the assumption that the system 
model is 

A(s)yk = B(s)uk + Ek, 

where the coefficients of A(s) and B(s) differ slightly from those of A 0(s), 
B0(s). Define A 0(s), 1i0(s) by 

I + sA 0(s) = A0(s), (3.56a) 

sB0(s) = B0(s). (3.56b) 

Note that A 0(s) = A(s) and B0(s) = B(s) if A°(s) = A(s), B0(s) = B(s ). 
Multiplying (3.55) with B(s) and using the control law relation 

B(s)uk = A(s)Yk, 

we obtain 
B(s)A0(s)yk = B°(s)A(s)yk + B(s)Ek• 

Using (3.56) to eliminate A 0(s) and B°(s) we obtain the closed-loop system 

{B(s) + s[B(s)A 0(s) - B 0(s)A (s)]}yk = B(s)Ek. 

If the coefficients of A 0(s) and 1i0(s) are close to those of A (s), B(s), then 
the roots of the polynomial 

B(s) + s[B(s)A 0(s) - B°(s)A (s)] 

are close to the roots of B(s), and the closed-loop system is stable only if 
the roots of B(s) are outside the unit circle; that is, the filter A (s)/B(s) is 
stable. If our model is exact, the closed-loop system will be stable due to 
what is commonly referred to as a pole-zero cancellation. However, the 
slightest modeling discrepancy will induce instability. 

The conclusion from the preceding analysis is that the minimum variance 
control law is advisable only if it can be realized through a stable filter 
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[B(s) has roots outside the unit circle]. Even if B(s) has its roots outside 
the unit circle, but some of these roots are near the unit circle, the performance 
of the minimum variance control law can be very sensitive to variations in 
the parameters of the polynomials A(s) and B(s). One way to overcome 
this sensitivity is to change the cost to 

E{J, (iy, I' + Rlu,_ t!'i} 
where R is some positive parameter. This requires solution via the Riccati 
equation as in Section 2.1. For a detailed derivation, see [Al2]. 

In some problems the system equation includes an additional external 
input sequence {vk}, the values of which can be measured by the controller 
as they occur. Consider the scalar system 

Yk + a1Yk - I + ... + amYk -m 

= biuk - 1 + ... + bmuk-m + divk-1 + ... + dmvk-m + Ek, 

where {vd is an arbitrary sequence. The value vk can be measured without 
error by the controller at time k. The minimum variance controller then 
takes the form 

I 
= b1 (a1Yk + • .. + amYk-m+ I 

- d1Vk - ... - dmvk-m+ I - biuk-1 ... -bmuk-m+ 1) 

and {ut} is generated by 

B(s)ut = A(s)yk - D(s)vk, 

where 

A(s) = a1 + ais + ··· + amsm- 1, 

B(s) = h1 +bis+ + bmsm - 1, 

D(s) = d1 + dis + + dmsm - 1. 

The closed-loop system is again Yk = e1;,, but for practical purposes 1t 1s 
stable only if B(s) has its roots outside the unit circle. The process whereby 
external inputs are measured and used for control is commonly referred to 
as Jeedforward control. 

Imperfect State Information Case 

Consider now the general ARMAX model 

Yk + a1Yk-l + ... + GmYk -m 

= bMuk -M + ... + bmuk-m + Ek + C1Ek-l + ... + CmEk-m 
or equivalently 
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where 
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A(s) = I + a 1s + ·· · + amsm, 

B(s) = bMsM + ... + bmsm, 

C(s) = 1 + C1S + .. . + CmSm. 
We assume the following: 

1. bM -=I=- 0, and 1 ~ M ~ m. 

2. {Ek} is a zero mean, white, stationary process. 
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3. The polynomial C(s) has all its roots outside the unit circle. (As explained 
earlier, this assumption is not overly restrictive.) 

The controller knows at each time k the present and past outputs 
Yk> Yk- 1, .•. , Y-m + i, uk- 1, uk-2, ... , u -m+M · Thus the information vector 
at t_ime k is 

h = (yk, Yk- 1, ... , Y-m+I, Uk-I , uk-2, ... , u -m+ M) , (3.57) 
There are no constraints on uk. The problem is to find a control law {µ,0(/0 ), 

• • ., J.LN -1(/N- 1)} that minimizes 

EU\1Y,I'} 
This problem can be cast using state augmentation into the framework 

of the linear-quadratic problem of Section 3.2. The corresponding linear 
system in state space format involves a state xk given by 

Because Yk+M-i, . . . , Yk +i and Ek+ M-i, ... , Ek+M-m are unknown to the 
controller, we are faced with a problem of imperfect state information. 

An analysis analogous to the one of Section 3.2 shows that the optimal 
control ut at time k (given h) is the same as the one that would be applied 
in the deterministic problem where the current state 

xk = (Yk+M- 1• ... , Yk+M-m• Uk-I• ... , Uk +M-m• Ek+M-1• ... , Ek+M-m) 

is set equal to its ronditional expected value given Ik, and the future 
disturbances Ek+M• ... , EN arc set equal to zero (their expected value). 

Thus the optimal control ut = µ,t(h) is the one for which E{Yk+Mlu", 
h} = O and is obtained by solving for uk the equation 

E{Yk+MIYk, ... , Y-m+I• Uk, Uk-I• ... , U-m+M} = 0. (3.58) 
This leads to the problem of calculating this conditional expected value, 
the forecasting or prediction problem, which is important in its own right. 

Forecasting for ARMAX Models 

Given A(s) and C(s), we can obtain polynomials F(s) and G(s) of the 

form 
(3.59) 
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(3.60) 

satisfying 

C(s) = A(s)F(s) + sMG(s) . (3.61) 

The coefficients of F(s) and G(s) are uniquely determined from those of 
C(s) and A(s) by equating coefficients of both sides of the relation 

I+ c,s + ... + CmSm = (1 + a,s + .. . + amsm)(l +f,s + ... +fM-ISM 1
) 

+ SM(go + g ,S + ••• + gm-tSm-l). 

Example 
Let m = 3 and M = 2. Then the preceding equation takes the form 

l + c1s + c2s2 + c3s3 = (1 + a1s + a2s2 + a 3s3)(1 + J;s) + s2(go + g1s + gzs2), 

and by equating coefficients we have 

C3 = a3 + a2fi + g1, a3J; + g2 = 0, 

from whichf1, g0 , g 1, and g2 are uniquely determined. 

The ARMAX model can be written as 

A(s)Yk+M = B(s)uk + C(s)Ek+M• 

where 

B(s) = s-MB(s) = bM + bM+tS + ... + bmsm-M. 

Multiplying both sides of (3.62) with F(s) , we have 

F(s)A(s)Yk+M = F(s)B(s)uk + F(s)C(s)Ek+M• 

and using (3 .61) we obtain 

Let 
C(s)[Yk+M - F(s)Ek+Ml = F(s)B(s)uk + G(s)yk. 

Zk+M = Yk+M - F(s)Ek+M 

= Yk+M - Ek+M - f1Ek+M-I - ..• - fM-tEk+I 

wk = F(s)B(s)uk + G(s)yk. 

Then (3 .63) is written as 

or 

(3.62) 

(3 .63) 

(3.64) 

(3 .65) 

Zk+M + C1Zk+M-I + ... + CmZk+M-m = Wk. (3 .66) 
We now make two basic observations regarding zk+M: 
(a) We have from (3.64) and the fact that {Ek} is an independent, zero­

mean sequence 

E{zk+Ml l k, uk} = E{Yk+Mlh , uk}, 

so we can obtain the desired forecast of Yk+M by forecasting Zk+M in its 
place. 



Sec. 3.3 Minimum Variance Control of Linear Systems 121 

(b) The scalar wk of (3.65) is available at time k (i.e., is determined 
from hand uk). Therefore, (3.66) can serve as a basis for forecasting zhM 

using wk. In particular, the forecast E{zk+Mlh} can be approximated by 
Yk+M generated by 

Yk+m + Ct.Yk+m-1 + ··· + CmYk+M-m = Wk 
with initial condition 

YM-l = YM-2 = •·· = YM-m = 0. 
To see this, note that from (3.66) to (3.68) we have 

Zk+M = .Yk+M + [)"1(k)ZM-l + ••• + 'Ym(k)ZM-m] 
and 

i=I 

(3.67) 

(3.68) 

(3.69) 

where y,(k), ... , 'Ynlk) are appropriate scalars depending on k. Since C(s) 
has all its roots inside the unit circle, we have (compare with the discussion 
on stability earlier in this section) 

lim y 1(k) = lim yi(k) = ··· = lim 'Ym(k) = 0. (3.70) 
k-+oo k-+oo k-+oo 

It follows that, for large values of k, 

Yk+M = E{zk+Mlh, uk} = E{Yk-t-Mllk, uk}. 

(More precisely, we have I.Yk+M - E{yk 1-Mlh, uk}I - 0 as k - =, where 
the convergence is in the mean-square sense.) 

In conclusion, an approximation to the optima/forecast E{Yk+Mlh, uk} 

is given by .Yk+M generated by the equation 

Yk+M + Ci.Yk+M-1 + ... + Cm.Yk+M-m = F(s)B(s)uk + G(s)yk (3.71) 

with the initial condition 

YM-l = YM-2 = ··· = YM-m = 0. 

Minimum Variance Control: Imperfect State 
Information Case 

(3.72) 

From the earlier discussion, we have that the minimum variance control 
law is obtained by solving for uk equation (3.58), repeated here: 

E{Yk+Mlh, uk} = 0. 
Thus a reasonable approximation is obtained by setting uk to the value that 
makes .Yk-1 M = 0, that is, by solving for uf.- the equation [cf. (3.71) and 
(3.72)] 

F(s)B(s)uk + G(s)yk = C1.Yk+M-I + ... + Cm.Yk+M-m· 

If this policy is followed, however, the earlier forecasts 5\ dt-, •. ..• 5\ t.\1 ,,, 

will be equal to zero. Thus the (approximate) minimum variance control 



122 Problems with Imperfect State Information Chap. 3 

law is given by 

F(s)B(s)uk + G(s)yk = 0. (3 . 73) 

That is, ut is generated by passing Yk through the linear filter 
-G(s)/F(s)B(s) , as shown in Figure 3.3. 

From (3.63) and (3.73), we obtain the equation for the closed-loop 
system: 

C(s)[Yk+M - F(s)ek+ M1 = 0. 

Since C(s) has its roots outside the unit circle, we obtain 

Yk+M = F(s)ek+ M + y(k) , 

where y(k) ~ 0 ask~ =. So asymptotically the closed-loop system takes 
the form 

Y k = € k + f1€k-l + .. . + fM- 1€k-M+l• 

Let us consider now the stability properties of the closed-loop system 
when the true system parameters differ slightly from those of the assumed 
model. Let the true system be described by 

A 0(s)yk = sMB0(s)uk + C0(s)€k, (3.74) 

while uk is given by the minimum variance control law 

where 

F(s)B(s)uk + G(s)yk = 0, 

C(s) = A(s)F(s) + sMG(s). 

B(s) 

A(s) 

G(s) 

F ( s)B(s) 

+ 

C( s) 

A( s ) 

Figure 3.3 Minimum variance control with imperfect state information. Structure 
of optimal closed-loop system. 

(3.75) 
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Operating on (3.74) with F(s)B(s) and using (3.75), we obtain 

F(s)B(s)A
0
(s)yk = -?1B0(s)G(s)yk + F(s)B(s)C0(s)ek. 

Combining the last two equations and collecting terms, we have 

{F(s)B(s)A 0(s) + [C(s) - A(s)F(s)]B0(s)}Yk = F(s)B(s)C0(s)ek 
or 

{B
0
(s)C(s) + F(s)[B (s)A °(s) - A(s)B0(s)]}yk = F(s)B(s)C0(s)ek. 
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If the coefficients of A 0(s), B 0(s), and C 0(s) are near those of A(s), B(s), 
and C(s), then the poles of the closed-loop system will be near the roots 
of B(s)C(s). Thus the closed-loop system will be in effect stable only if the 
roots of B( s) are strictly outside the unit circle, similarly as for the perfect 
state information case examined earlier. 

Example 

Consider the case of no delay (M = 1). From (3.61) we have 

G(s) = s- 1[C(s) - A (s)] , F(s) = 1, 

and from (3.73) we obtain, using B(s) = s- 1B(s) , 

B(s)uk = [A (s) - C(s)]Yk· 

Equivalently , uk is generated via the equation 

1 
Uk = bi [(a1 - C1)Yk + ... + (am - Cm)Yk-m+I - b2uk-l - ••• - bmuk-m+ tl -

The closed-loop system is given by 

Yk - Ek + C1(Yk-l - Ek-I) + •·• + Cm(Yk-m - Ek-m) = 0, 

or equivalently C(s)( Yk - E. ) = 0. Since C(s) has its roots outside the unit circle, 
this is a stable system, and we have 

Yk = Ek + y(k) , 

where y(k) ---,) 0 as k ---,) =. 

3.4 SUFFICIENT STATISTICS AND FINITE STATE MARKOV 
CHAINS: A PROBLEM OF INSTRUCTION 

The main difficulty with the DP algorithm (3. 7) and (3.8) is that it is carried 
out over a state space of expanding dimension. As a new measurement is 
added at each stage k, the dimension of the state (the information vector 
Jk) increases accordingly. This motivates an effort to reduce the data that 
are truly necessary for control purposes. In other words, it is of interest 
to look for quantities known as sufficient statis tics , which ideally would 
be of smaller dimension than h and yet summarize all the essential content 
of h as far as control is concerned. 

Consider the DP algorithm (3.7) and (3.8) restated here for convenience: 
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JN_,([N _,) = ".,-~t-' CN-~-N}gN[fN-1 (XN-l• UN-h WN_,)] 

+ gN_,(XN-1,IIN-J, WN_,)ITN-h"N-1)]. (3 .76) 

lih) = min [ E {gixk> uk> wk) 
ukEUk xk.wk,Zk+I 

+ J,+ ,(T, , z,+" u, )IT., u,) l (3. 77) 

Suppose that we can find a function S"(-) of the information vector h, 
such that a minimizing control in (3.76) and (3.77) depends on h via S,/h). 
By this we mean that the minimization in the right side of the DP algorithm 
(3.76) and (3.77) can be written in terms of some function H" as 

min Hk[S,.(h) , ud. 

Such a function S,.(-) will be called a sufficient statistic. Its salient feature 
is that an optimal control law obtained by the preceding minimization can 
be written as 

µ,,.(Ik) = JLk[S,.(lk)] , 

where µ" is an appropriate function. Thus, if the sufficient statistic is 
characterized by a set of fewer numbers than the information vector h, it 
may be easier to implement the control law in the form u" = µ"[S,.(J,.)] and 
take advantage of the resulting data reduction. 

There are many different functions that can serve as sufficient statistics. 
The identity function S"(/,_) =/,_is certainly one of them. Another important 
sufficient statistic is obtained if we assume that the probability distribution 
of the observation disturbance v" t I depends explicitly only on the immediately 
preceding state, control, and system disturbance x", u", w", and not on 
xk-1, •• • , x 0 , u k- i , ••• , u0 , wk-I• ••• , w0 , vk-i, ••• , v0 • Under this 
assumption we can show that a sufficient statistic is given by the conditional 
probability measure P Hlh of the state x", given the information vector f:.:. 

Proving that P"lh is a sufficient statistic requires a development that 
is of independent interest. A key fact is that P.,1.lh is generated recursively 
in time and can be viewed as the state of a controlled discrete-time dynamic 
system. By using Bayes's rule, we can write for all k 

p Xk+tllk+1 = <l>,.{Pxkllk• llk, Zk+)), (3.78) 
where <I>" is some function that can be determined from the data of the 
problem, u1.. is the control of the system, and Z1..+ 1 plays the role of a random 
disturbance the statistics of which are known and depend explicitly on 
P,1.11. and u" only and not on z", ... , zo. This fact is perhaps best illustrated 
by an example. 
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Example 

In a cla'>'>ical problem of <,earch, one has to decide at each period whether to <;earch 
a '>ite that may contain a trea<,ure. If a treasure is pre<,ent, the <,earch reveals it 
with probability {J, in which ca'>e the trea<,urc is removed from the '>ite. Denote 

Pi: probability a trea<,ure i'> pre<,ent at the beginning of period k. 

This probability evolves according to the equation 

if the site is not searched at time k 
if the site is searched and a treasure is 
found at period k, 
if the site is <,earched but no treasure is 
found at period k. 

The '>econd relation hold'> bccau'>e the treas11re is removed after a .;;ucce<,<,ful <,earch. 
The third relation follow<, by application of Baye<;'s, rule (p,. 1 i'> the kth period 
probability of a trea..,ure being pre<,ent and the '>earch being un<;ucces.s.fuL divided 
hy th<..: probability of an un<,ucccss.ful s.carch). The preceding ClJUation define'> a 
dynamic s.ystcm of th<..: form (.l.78). Ht..:re the control u, takes two values: search 
and not '>earch. If the '>ite i'> '>earched, the observation ::.1, - i takes two value'>. 
treas.ure found or not found. while the value of z.,. i is. irrelevant when the site i'> 
not searched. 

The general form of equation (3.78) is developed in Problem 7 for the 
case where the '>late, control, observation, and di'iturbance '>paces are finite 
sets. In the case where these spaces arc the real line and all random 
variable'> involved possess probability density functions, the conditional 
density p(x,. ill,. 1) is generated from p(xJI,), u,, and z,. 1 by means of the 
equation 

( II ) _p(xk+1,Zk+ill k, uk) 
pxk+1 k,uk,Zk+i -

p(::.,, J!f,, ll1J 

p(xk+illk, uk)p(zk+illk, uk, xk+1) 

J~...c, p(xk + 1lh, uk)P(Zk+ dlk, uk, xk+ 1) dxk+ 1 

In thi'> equation all the probabili ty densities appearing in the right '>ide may 
be expressed in terms of p(x1.IJ,), u,, and z.,. 1 alone. In particular, the 
density p(x,. 

1 
II,. u1) may he expressed through p(x,(ll.J, u,, and the system 

equation x,. i = J;(.tk, ll1.. w,) using the given density p(uJt,. 11t_) and the 

relation 

p(w,II,, U1J = r/, p(xkll1Jp(w1..IX1.., U1.)clx,. 

Similarly, the density p(::.,. ill,. 111-, x,. 1) is expressed through the mea-;urement 
equation 7.1-. 1 --= h 1 • 1(x1-. 1 , 111-. v,. 1) using p(x1-II1-), p(w,Jt1... ll1l and the given 
prohability dens,ity p(u1 . 1 !x1-, 11". w"). By suhstituting thcs,e exprC'>'>iOn'> in 
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the equation for p(xk+ ilh+ 1), we obtain an equation of the form (3.78). 
Other explicit examples of equations of the form of (3. 78) will be given in 
subsequent sections. A mathematically rigorous substantiation of (3.78) 
and the following DP algorithm can be found in [B23]. In any case, one 
can see that the system described by (3.78) fits the framework of the basic 
problem. Furthermore, the controller can calculate (at least in principle) 
at time k the conditional probability measure Pxklh. Therefore, in system 
(3.78), the controller has perfect state information. 

Now the DP algorithm (3.76) and (3.77) can be written in terms of 
the sufficient statistic Pxklh by making use of the new system equation (3.78) 
as follows: 

JN_i(PXN-ilIN-,) = min [ E {gN[JN-1(xN-1, uN-1, wN-1)] 
UN-tEUN-1 XN-1,WN-I 

+ gN_,(XN-t, UN -I, WN_,)IIN-l, UN_ ,}], 

IiPxk11) = min [ E {gixk, Uk, w,J 
UkEUk Xk,Wk,Zk+I 

Furthermore, this DP algorithm yields a control law of the form 

u[ = P:f(Pxkllk), k = 0, 1, ... , N - l. 
In addition, the optimal cost is given by 

J* = E{]o(P xolzo)}, 
zo 

(3.79) 

(3.80) 

where J0 is obtained by the last step of the algorithm (3.79) and (3.80), and 
the probability measure of z0 is obtained from the statistics of x0 and v0 

and the measurement equation zo = ho(x0 , v0 ). 

The preceding analysis is in effect an alternate reduction of the basic 
problem with imperfect state information to a problem with perfect state 
information that involves system (3.78), the state of which is Px,lh, and an 
appropriately reformulated cost functional. A conclusion that can be drawn 
is that the conditional probability P.nlh summarizes all the information that 
is necessary for control purposes at period k. In the absence of perfect 
knowledge of the state, the controller can be viewed as controlling the 
"probabilistic state" Pnlh so as to minimize the expected cost-to-go con­
ditioned on the information h available . 

Regardless of its computational value, the representation of the optimal 
control law as a sequence of functions of the conditional probability distribution 
PXklh, 

k = 0, 1, ... , N - 1, 
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is conceptually useful. It provides a decomposition of the optimal controller 
in two parts: (1) an estimator, which uses at time k the measurement zk 
and the control uk- J to generate the probability distribution Pxklh, and 
(2) an actuator, which generates a control input to the system as a function 
of the probability distribution Pxklh (Figure 3.4). Aside from its conceptual 
and analytical importance, this interpretation has formed the basis for vari­
ous suboptimal control schemes that separate a priori the controller into 
an estimator and an actuator and attempt to design each part in a man­
ner that seems "reasonable." Schemes of this type will be presented in 
Chapter 4. 

When the system is a finite state Markov chain, the conditional prob­
ability distribution Pxkih is characterized by a finite set of numbers. This 
is particularly convenient, and the situation simplifies further when the 
control and observation spaces are also finite sets. It then turns out that 
the cost-to-go functions Jk in the DP algorithm (3.79) and (3.80) are piecewise 
linear and concave . The demonstration of this fact is straightforward , but 
tedious, and is outlined in Problem 7. The piecewise linearity of Jk is, 
however, an important property since it shows that Jk can be characterized 
by a finite set of scalars . Still, however, for fixed k, the number of these 
scalars can increase fast with N, and there may be no computationally 
efficient way to solve the problem (see [P3]) . We will not discuss here any 
special procedures for computing Jk (see [S21], [S23]). Instead we will 
demonstrate the DP algorithm by means of examples. The first example, 
a problem of instruction , is considered in this section. The second, a 
hypothesis testing problem, is treated in the next. 

Delay 

Actuator Pxk /h Estimator /J; L-...------------1 r/J k - 1 ,___ ___ __, 

Figure 3.4 Co nceptual separatio n of the opt imal controller into an estimator 

and an actuator. 
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A Problem of Instruction 

Consider a problem of instruction where the objective is to teach a 
student a certain simple item. At the beginning of each period, the student 
may be in one of two possible states: 

x 1 item learned, 
x2 item not learned. 

At the beginning of each period, the instructor must make one of two 
decisions 

u1 terminate the instruction, 
u2 continue the instruction for one period and then conduct a test that indicates 

whether the student has learned the item. 

The test has two possible outcomes: 

z1 student gives a correct answer, 
z2 student gives an incorrect answer. 

The transition probabilities from one state to the next if instruction takes 
place are given by 

P(xk+ 1 = x 1lxk = x 1) = I, P(xk+I = x2lxk = x 1
) = 0, 

O<t<l. 

The outcome of the test depends probabilistically on the state of knowledge 
of the student as follows: 

P(zk = z1lxk = x 1
) = l, P(zk = z2lxk = x 1

) = 0, 

O<r< 1. 

The cost of instruction and testing is / per period, the cost of terminating 
instruction is 0, and C > 0 if the student has learned or has not learned 
the item, respectively. The objective is to find the instruction-termination 
policy for each period k as a function of the test information accrued up 
to that period, which minimizes the total expected cost, assuming that there 
is a maximum of N periods of instruction. 

It is easy to reformulate this problem into the framework of the basic 
problem with imperfect state information and conclude that the decision 
whether to terminate or continue instruction at period k should depend on 
the conditional probability that the student has learned the item given the 
test results so far. This probability is denoted 

Pk = P(xk = x 1lzo, Z1, ... , Zk). 

In addition, we can use the DP algorithm (3.79) and (3.80) defined over the 
space of the sufficient statistic Pk to obtain an optimal policy. However, 
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rather than proceeding with this elaborate reformulation, we prefer to argue 
and obtain directly this DP algorithm. 
. C~ncerning the evolution of the conditional probability PJ.:. (assuming 
mstruchon occurs), we have by Bayes' rule 

PJ.:. ~1 = P(xJ.:.t1 = x
1/zo, ... , ZH1) 

_ P(xk+1 = x', Zk+1 lzo, ... , zk) 

- P(zk+ 1 lzo, ... , Zk) 

P(xk+t = x 1lzo, ... , zk)P(zk+dzo, ... , zk, xk+1 = x
1
) 

2 

I P(xk+1 = xilzo, ..• , zk)P(zk+1lzo, ... , zk, xk+t = x;) 
i=I 

From the probabifo,tic descriptions given, we have 

P(zk+dzo, ... , Zk, xk+t = x1
) = P(zk+1lxk+1 = x1

) 

_ {1, if Zk+1 = z
1

, 

- 0, if Zk+I = z2, 

P(zk+1lzo, ... , Zk, xk+t = x2
) = P(zk+ilxk+t = x2

) 

= {'1 - r, 
if Zk+I = z1, 
if Zk+I = Z

2
, 

P(xk +1 = x1lzo, ... , Zk) = Pk + (1 Pk)t, 

P(xk+1 = x2lzo, ... , zk) = (1 - Pk)(I - t). 

Combining these equations, we obtain 

Pk+ I = <l>(pk, Zk+ 1), 

where the function <I> is defined by 

[ 

Pk + (I - Pk)t 

,h( ) _ Pk + (I - Pk)t + (1 - Pk)(I - t)r' 
'-1-' Pk, Zk+l -

0, if Zk+I = z2. 

or equivalently 

,h( ) _ 1 - (1 - t)(l - r)(l - Pk)' 
'-1-' Pk, Zk+ I -

0, if Zk+I = Z
2

• 

(3.81) 

[ 

I - (I - t)(l - P1,) 

A cursory examination of this equation shows that, as expected, the conditional 
probability lh 

1 1 
that the student has learned the item increases with every 

correct answer and drops to zero with every incorrect answer. We mention 
also that Eq. (3.81) is a special case of Eq. (3.78) . The dependence of the 
function <I> on the control 111, is not explicitly shown since there is only one 
possible action aside from termination. 
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We turn now to the development of the DP algorithm for the problem. 
At the end of the Nth period, assuming instruction has continued to that 
period, the expected cost is 

]N(PN) = (1 - PN)C. (3.82) 

At the end of period N - I, the instructor has calculated the conditional 
probability PN- 1 that the student has learned the item and wishes to decide 
whether to terminate instruction and incur an expected cost (1 - PN _ 1)C 
or continue the instruction and incur an expected cost I + E zN{]N(pN)}. 
This leads to the following equation for the optimal expected cost-to-go: 

JN-1(PN-1) - min[ (I - PN-1)C, I+ ~{JN[<l>(PN-h ZN)]} J 
Similarly, the algorithm is written for every stage k by replacing N by 
k + 1: 

Jipk) = min[o - Pk)C, ] + £ {lk+ 1[<1>(pk, Zk+ 1m] • 
Zk+ 1 

Now using expression (3.81) for the function <I> and the probabilities 

P(zk+1 = z21PJ = (1 - t)(l - r) (1 - Pk), 

P(zk+ 1 = z1lpk) = 1 - (1 - t)(l - r)(I - Pk), 

we have 

(3 .83) 
where 

A( )-[l (I )(1 )(1 )]] [ l - (1-t)(l-p,J ] 
k Pk - - - t - r - Pk k+ i 1 - (1 - t)(l - r)(l - Pk) 

+ (1 - t)(l - r)(l - Pk)]k+ 1(0). (3.84) 

In particular, by using (3.82) to (3 .84), we have by straightforward calculation 

JN- 1(PN-1) = min[(l - PN- 1)C, I+ A N- 1(PN- 1)] 

= min[(l - PN- 1)C, I + (I - t)(l - PN-1)C]. 

Thus, as shown in Figure 3.5, if 

I + (I - t)C < C, (3.85) 
there exists a scalar aN 1 with O < a N _ 1 < I that determines an optimal 
policy for the last period: 

continue instruction 

terminate instruction if PN-t > a N-1. 

It may be shown (Problem 8) using (3.84) that under condition (3.85) 
the functions Aip) are concave and piecewise linear for each k and satisfy, 
for all k, 

Ail)= 0. (3.86) 
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I+ (N- t)C 

0 L_ Continue ----•+-• ___ Terminate __ __,,._.11 
I - Instruction Instruction 

Figure 3.5 Determining the optimal instruction policy in the last period. 

Furthermore, they satisfy , for all k, 
Aip)~Aip'), for O~p<p'~ 1, 

for all p E [O, 1]. 
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p 

(3.87) 

(3.88) 

Thus , from the DP algorithm (3.83) and Eqs. (3.86) to (3.88), we obtain 
that the optimal policy for each period is determined by the unique scalars 
ak, which are such that 

(1 - ak)C = I + Aiak) , k = 0, l , . .. , N - l. 

An optimal policy for period k is given by 

continue instruction 

terminate instruction if Pk > a k. 

Since the functions Aip) are monotonically nondecreasing with respect 
to k, it follows from Figure 3.6 that 

and therefore the sequence {ak} converges to some scalar a as k - - = 
Thus, as the horizon gets longer, the optimal policy (at least for the initial 
stages) can be approximated by the stationary policy 

continue instruction if Pk~ a, (3 .89) 

terminate instruction if Pk> a. 
It turns out that this stationary policy has a convenient implementation that 
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C 

0 p 

Figure 3.6 Demonstrating that the instruction thresholds are decreasing with 
time. 

does not require the calculation of the conditional probability at each stage. 
From Eq. (3.81) we have that Pk, 1 increases over P1-;, if a correct answer 
z' is given and drops to zero if an incorrect answer z2 is given. Define 
recursively the probabilities 

1r1 = <1>(0, z1 
), 1r2 = <l>(1r1, z1 

) , ••• , 7Tk+ 1 = <l>(1rk, z1 
), ••. , 

and let n be the smallest integer for which 1r11 > a. It is clear that the 
stationary policy (3.89) can be implemented as follows: 

terminate instruction 

continue instruction 

if n successive correct answers have been received, 

otherwise. 

3.5 HYPOTHESIS TESTING: SEQUENTIAL PROBABILITY 
RATIO TEST 

In this section we consider a hypothesis testing problem typical of statistical 
sequential analysis. A decision maker can make observations, at a cost C 
each, relating to two hypotheses. Given a new observation, he can either 
accept one of the hypotheses or delay the decision for one more period, 
pay the cost C, and obtain a new observation. At issue is trading off the 
cost of observation with the higher probability of accepting the wrong 
hypothesis . 
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Let Zo, Z1, ... , ZN- I be the sequence of observations. We assume 
that they are independent, identically distributed random variables taking 
values on a finite set Z. Suppose we know that the probability distribution 
of the z/s is either fo or f 1 and that we are trying to decide on one of these. 
Here, for any element z E Z , fo(z) [f1(z)] denotes the probability of z when 
Jo (f1) is the true distribution. At time k after observing z0 , .•• , z1-:, we 
may either stop observing and accept either fo or f 1, or we may take an 
additional observation at a cost C > 0. If we stop observing and make a 
choice, then we incur zero cost if our choice is correct, and costs L 0 , L 1 

if we choose incorrectly fo and f 1 , respectively. We are given the a priori 
probability p that the true distribution is fo, and we assume that at most 
N observations are possible . 

It is easy to sec that we are faced with an imperfect state information 
problem involving the two states: 

x 0
: true distribution is fo, 

x 1: true distribution is f 1 • 

The sufficient statistic DP algorithm (3. 79) and (3 .80) is defined over the 
interval [0, l] of possible values of the conditional probability 

P1-: = P(x1-: = x 0lzo, ... , z1-:). 

Similarly, as in the previous section, we will obtain ihis algorithm directly. 
The conditional probability P1-: is generated recursively according to 

the following equation [assuming fo(z) > 0, f,(z) > 0 for all z E Z]: 

P1-:+ 1 = P1.fo(z1-:. 1) + (1 - P1-:)fiCz1-:+ ,) ' 

Pfo(Zo) 

k = 0, 1, ... ,N- 2, (3.90) 

(3.91) 

where p is the a priori probability that the true distribution is / 0 . The 
optimal expected cost for the last period is 

JN_ 1(pN_ 1) = min[(l - PN-1)Lo,PN-1L1L (3.92) 

where (1 - PN-i)L0 is the expected cost for acceptingfti and PN-,L, is the 
expected cost for accepting f,. Taking into account (3. 90) and (3. 91), we 
can obtain the optimal expected cost-to-go for the kth period from the 
equation 

J,<p,) - min[ (I - p,)L0 , p,L,, 

C E{J [ Pdo(Z1.+1) l}] 
+ ~,.

1 
1-:-.-, p1;.fo(ZJ.:-.-1) + (1 - P1.)f,(;:,1-:.,)_ , 

where the expectation over z1-: ... 1 is taken with respect to the probability 

distribution 
p(zk+ 1) = pdo(zk+ 1) + (1 - Pk)f1(Zk+ 1), zk+ 1 E Z. 
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Equivalently, for k = 0, 1, ... , N - 2, 

lipk) = min[(l - Pk)Lo, PkL1, C + Aipk)], 

where 

Aipk) = E{lk+t[ Pdo(Zk+t) ]}. 
Zk+1 Pdo(Zk+1) + (1 - Pk)f1(Zk+1) 

(3.93) 

(3.94) 

An optimal policy for the last period (see Figure 3.7) is obtained from 
the minimization indicated in (3.92): 

acceptfo if PN-1 ~ µ,, 

acceptf, if PN-1 < µ,, 

where µ, is determined from the relation (1 - µ,)L 0 

Lo 

µ,L 1 or equivalently 

µ, = . 
L 0 + L, 

We now prove the following lemma. 

Lemma. The functions Ak: [0, 1] ~ R of (3.94) are concave and 
satisfy for all k and p E [0, 1] 

Ai0) = Ail) = 0, 

Ak-1(P) ~ Aip). 

Proof We have for all p E [0, 1] 

JN-2(p) ~ min [(1 - p)Lo, pLo] = JN_i(p). 

By making use of the stationarity of the system and the monotonicity 

p 

Figure 3. 7 Determining the optimal policy in the last period. 
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property of DP (Problem 24 in Chapter 1), we obtain 

lip)::::; Jk+1(P) 

135 

for all k and p E (0, I]. Using (3.94), we obtain Ak _, (p) ::;;; Aip) for all 
k and p E [0, 1] . 

To prove concavity of Ak in view of (3.92) and (3.93), it is sufficient 
to show that concavity of lk+ 1 implies concavity of Ak through relation 
(3.94). Indeed, assume that Jk+ 1 is concave over (0, 1] . Let z', z2, ... , 
zn denote the elements of the observation space Z. We have from (3.94) 
that 

~ · · - [ Pfo(i) ] 
Aip) = t/Pfo(z') + (1 - p)fi(z')]lk+t pfo(i) + (1 _ p)fi(l) · 

Hence it is sufficient to show that concavity of Jk-t- 1 implies concavity of 
each · of the functions 

. . - [ pfo(l) ] 
h;(p) = [pfo(z') + (1 - PV1(z')]lk+1 pfo(l) + (1 _ p)f,(l) . 

To show concavity of h;, we must show that for every >.. E fO, I], p,, 
P2 E [0, 1] we have 

>..h;(p1) + (1 - >..)h;(p2 )::::; h;[>..p1 + (1 - A)p2]. 

Using the notation 

~ 1 = Pifo(i) + (1 - Pt )f,(l), 

the preceding inequality is equivalent to 

>..g, 1- [pifo(i)] (l - A)(2 1- [Pzfo(i)] 
k+ I + k+ I c >..g, + (I - >..)t2 (, >..g, + (I - >..)(2 s2 

:,,:::: - [(Ap 1 + (1 - A)pz)fo(i)]. 
-..:lk+I At1 + (1 - A)t2 

This relation, however, is implied by the concavity of Jk t,. Q.E.D. 

Using the lemma, we obtain (see Figure 3.8) that if 

C + AN_i[L0/(L0 +Li)]< LoLi/(Lo + L, ), 

then an optimal policy for each period k is of the form 

acceptf0 if Pk~ ak, 

accept.fi if Pk::;;; {3k, 

continue the observations if f3k < Pk < ak, 

where the scalars ak, f3k are determined from the relations 

f3kLt = C + Aif3k), 

(1 - ak)L0 = C + Aiak). 
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C + AN_i(p) 

C + A,,.,·-lP) 

C 

0 Lo o:_,. - c I -(C Lt1 ) 
- - ~ 

Lo+ Li O:_y - 3 

Figure 3.8 Determining the optimal hypothesis testing policy. 

Furthermore, we have 

C 
... ;?: f3k+);?: f3k;?: f3k-l;?: ... ;?: L1 · 

Chap. 3 

Hence as N ~ = the sequences {aN_;}, {f3N-J converge to scalars a, {i, 
respectively, and the optimal policy is approximated by the stationary policy 

acceptfo 

acceptf1 

continue the observations 

if Pk ?: a, 

if Pk~ {i, 

if{i < Pk< a. 
Now the conditional probability Pk is given by 

pfoCzo)foCz 1) · · · fo(zk) 
Pk = ,r r ' pfo(zo) " ' fo(zk) + (1 - P)1,(zo) ... 1,(zd 

(3 .95) 

(3 .96) 

p 

where p is the a priori probability that fo is the true hypothesis. Using 
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(3.96), the stationary policy (3.95) can be written in the form 

accept +
0 

if R ~ A = (1 - P )a 
J( k p(l - a), 

accept +1 if R ~ B = (1 - P')} 
J l k p(l _ /3) , (3.97) 

continue the observations if B < Rk < A, 

where the sequential probability ratio Rk is given by 

Rk = fo(zo) · · · fo(zk). 
fi(Zo) ··· fi(zk) 

Note that Rk can be easily generated by means of the recursive equation 

Rk+1 = fo(zk-t-1)R~. 
f1(Zk+ I) 

The procedure (3.97) is known as the sequential probability ratio test. 
Procedures of this type were among the first formal methods of statistical 
sequential analysis [WI]. The optimality of policy (3. 95) for the infinite 
horizon version of the problem will be shown in Section 6.3. 

3.6 NOTES 

For literature on linear-quadratic problems with imperfect state information, 
see the references quoted for Section 2.1 and Witsenhausen's survey paper 
[Wl6]. The Kalman filtering algorithm [Kl] is a well-known and widely 
used tool. Detailed discussions can be found in many textbooks [A I, J3, 
L8, M6, M7, NI]. For linear-quadratic problems with Gaussian uncertainties 
and observation cost in the spirit of Prohlcm 3, sec [A4] and [C3]. Problem 
I, indicating the form of the certainty equivalence principle when the random 
disturbances are correlated, is based on an unpublished report by the author 
[B8]. The minimum variance approach is also described in [Al I], [Al3], 
and [W12]. 

The idea of data reduction via a sufficient statistic gained wide attention 
following the 1965 paper by Striebel [S29] (see also [S27, S31]). For the 
analog of the sufficient statistic idea in sequential minimax problems, see 
[B22] . 

The possibility of analysis of the problem of control of a Markov chain 
with imperfect state information via sufficient statistics has been known for 
a long time. It has been exploited in [E2], [S21]. and [S23]. The proof of 
piecewise linearity of the cost-to-go functions and an algorithm for their 
computation is given in [S21] and [S23]. The instruction model described 
in Section 3.4 has been considered (with some variations) by a number of 
authors [Al4, G4, K3, S20]. 
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For a discussion of the sequential probability ratio test and related 
subjects, see [CI], [DI], [WII], and the references quoted therein . The 
treatment given here stems from [A6]. 

PRO BLE M S 

l. Consider the linear system and measurement equation of Section 3.2 and consider 
the problem of finding a control law {~(/0), ... , µ'/J_ 1(/N _ 1)} that minimizes 
the quadratic cost 

E{ x~QxN + ~~ ukRkuk}• 

Assume, however, that the random vectors x0, w0, ... , wN-i, Vo, ..• , vN-1 
are correlated and have given joint probability distribution and finite first and 
second moments. Show that the optimal control law is given by 

µf(h) = Lk E{Yklh}, 

where the gain matrices Lk are obtained from the recursive algorithm 

Lk = -(B1cKk +1Bk + Rk) -'B1cKk+1Ak, 

KN= Q, 

Kk = AHKk+I - Kk+1BiB'icKk+1Bk + Rk)- 1Bf.Kk+i1Ak, 

and the vectors Yk are given by 

Yk = xk + A;1wk + A;
1
A;]1wk+1 + ··· + A; 1 

••• AN:1wN-1 

(assuming the matrices A0 , A1, ••• , AN- i are invertible). Hint : Show that the 
cost can be written 

where 

Pk = mKk+IBk + Rk. 

2. Consider the scalar system 

Xk+I = Xk + Uk + Wk, 

Zk = Xk + Vk, 

where the assumptions of Section 3.2 are in effect. Let the cost be 

E{ x~ +~>xi+ ub }, 

and let the given probability distributions be 

p(xo = 2) = ½, p(wk = 1) = ½, p(vk = ¼) = ½, 

p(xo = -2) = ½, p(wk = -1) = ½, p(vk = -¼) = ½. 
(a) Determine the optimal control law. Hint: For this particular problem, E{xklh} 

can be determined from E{xk-illk-i} , uk_., and Zk• 
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(b) Determine the control law that is optimal within the class of all control 
laws that are linear functions of the measurements. 

(c) Determine the asymptotic form of the control laws in parts (a) and (b) as 
N - =. Find the ratio of the corresponding long-term average costs 

1 {N-I } J~ NE ~/xf + uf) . 

3. A linear system with Gaussian disturbances 

xk+1 = Axk + Buk + wk, k = 0, 1, ... , N - 1, 

is to be controlled so as to minimize a quadratic cost similarly as in Section 
3.2. The difference is that the controller has the option of choosing at each 
time k one of two types of measurements for the next stage (k + 1): 

First type: Zk+i = C I
xk+l + vl+1 

Second type: Zk+l = C2
xk+ I + vL1-

Here C' and C2 are given matrices of appropriate dimension and {ul} and {un 
are zero-mean, white, random sequences with given finite covariances that are 
independent of x0 and {wk}. There is a cost g 1 (or g2 ) each time a measurement 
of type I (or type 2) is taken. The problem is to find the optimal control and 
measurement selection policy that minimizes the expected value of the sum of 
the quadratic cost 

N-1 

x~QxN + L (x1cQxk + ufRuk) 
k=O 

and the total measurement cost. Assume for convenience that N = 2 and that 
the first measurement z0 is of type I. Show that the optimal measurement 
selection at k = 0 and k = 1 does not depend on the value of the information 
vectors / 0 and / 1 and can be determined a priori. Describe the nature of the 
optimal policy. 

4. Consider a scalar single-input, single-output system given by 

Yk + a1Yk- l + ... + amYk-m 

= bMuk- M + ... + bmuk-m + Ek + CJ Ek-I + ... , Ek-m + vk-n 

where I ,,:; M ,,:; m, 0 ,,:; n ,,:; m, and uk is generated by an equation of the form 

Uk+ d,uk-1 + ... + d,,IJk-m = SI + e,~k-1 + ... + ernS/..-m, 

and the polynomials (1 + c1s + · · · + cmsm), (1 + d,s + · · · + dmsm), and 
(1 + e,s + • • • + emsm) have roots strictly outside the unit circle. The value 
of the scalar uk is observed by the controller at time k together with Yk. The 
sequences {Ed and {i;,d are zero mean independent identically distributed with 
finite variances. Find an easily implementable approximation to the minimum 
variance controller minimizing Ef'iro yi}. Discuss the stability properties of 
the closed-loop system. 

s. (a) Within the framework of the basic problem with impeifect state information, 
consider the case where the system and the observations are linear: 

xk+i = A~k + Bkuk + wk, 

Zk = C~k + Uk, 

k = 0, 1, ... , 

k = 0, 1, ... . 
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The initial state x0 and the disturbances wk and uk are assumed Gaussian 
and mutually independent. Their covariances are given, and wk and uk have 
zero mean. Show that E{x0 j/0 }, ••• , E{xN_ 1jJN_i} constitute a sufficient 
statistic for this problem. 

(b) Use the result of part (a) to obtain an optimal control law for the special 
case of the single-stage problem involving the scalar system and observation 

Xi = Xo + Uo, 

Zo = Xo + Vo, 

and the cost functional E{lx I I}. 
(c) Generalize part (b) for the case of the scalar system 

xk+1=axk+uk> k=0,1, ... ,N-1, 

Zk = cxk + Vk, k = 0, 1, ... , N - 1 

and the cost functional E{2-r I lxkl}. The scalars a and C are given. Note: 
You may find useful the following "differentiation of an integral" formula: 

.!!._ (f3<Y> f(y, g) dt = (fJ<Y> df(y, f) df + f[y, ,B(y)J d,B(y) - f[y, a( y)] da(y). 
dy lacy> lacv> dy dy dy 

6. Consider a machine that can be in one of two states, good or bad. Suppose 
that the machine produces an item at the end of each period. The item produced 
is either good or bad depending on whether the machine is in a good or bad 
state, respectively. We suppose that once the machine is in a bad state it 
remains in that state until it is replaced. If the machine is in a good state at 
the beginning of a certain period, then with probability t it will be in the bad 
state at the end of the period. Once an item is produced, we may inspect the 
item at a cost / or not inspect. If an inspected item is found bad, the machine 
is replaced with a machine in good state at a cost R. The cost for producing 
a bad item is C > 0. Write a DP algorithm for obtaining an optimal inspection 
policy assuming an initial machine in good state and a horizon of N periods. 
Solve the problem fort = 0.2, I = I, R = 3, C = 2, and N = 8. (The optimal 
policy is to inspect at the end of the third period and not inspect in any other 
period.) Hint: Search for a suitable sufficient statistic. 

7. Control of Finite-State Systems with Imperfect State Information. Consider a 
system that at any time can be in any one of a finite number of states I, 2, 
... , n. When a control u is applied, the system moves from state i to state j 
with probability pu(u). The control u is chosen from a finite collection u 1

, u2, 

... , um. Following each state transition, an observation is made by the controller. 
There is a finite number of possible observation outcomes z 1, z2, ... , zq. The 
probability of occurrence of l, given that the current state is j and the previous 
control was u, is denoted r/u, 0), 0 = 1, ... , q. 
(a) Consider the column vector of conditional probabilities 

pk = [pk, ... , P,T, 
where 

p{ = P(xk = jlzo, ... , Zk,uo, ••• , uk-1), j = 1, ... , n, 

and show that it can be updated according to 
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L p~pij( uk)r/u,. , z,.. 1) 

i- I 
j = I, ... , n. 

s= I i= I 

Write this equation in the compact form 

Pk+1 = [r(uk, Zk+1)] * [P(ud'Pd' j = 1, ... , n, 
r(uk, zk + ,)' P(ud' pk 

where P(u,.) is the n x n transition probability matrix with ljth element 
pij(u1.), r(u,., Zk+ 1) is the column vector with jth coordinate r,(u,., z,, 1), 

[P(u1.)' P,.1J is thejth coordinate of the vector P(uk)' P,., [r(u., Zb 1)] * [P(uk)'P,.J 
denotes the vector with jth coordinate r/u,., Zk+iHP(u1.)'PdJ, and prime 
denotes transposition. 

(b) Assume there is a cost for each stage k denoted g,.(i, u, j) and associated 
with the control u and a transition from i to j. There is no terminal cost . 
Consider the problem of finding an optimal policy minimizing the sum of 
costs per stage over N periods. Show that the con-esponding DP algorithm 
is given by 

IN-1(PN-1) = min P'tv-,GN-1(u) 
uE{ul •. . ,um) 

IiPd = min [P"Giu) 
uE{ul, ... ,um) 

~ , )' - [[r(u, 0)] * [P(u)'Pk]]] 
+ {:, r(u, 0) P(u, Pklk+I r(u, 0)'P(u)'Pk , 

k = 0, I, ... , N - 2, 

where Giu) is given by 

[ 

,:- p,,(u)gil, u,j) l · 
L p,,iu)gin, u,j) 
j=I 

Giu) k 0, 1, ... , N - 1. 

(c) Show by induction that, for all k, 11. when viewed as a function on the set 
of vectors with nonnegative coordinates is positi1·ely homogeneous; that is, 

A> 0. 

Use this fact to write Jk, k = 0, 1, ... , N - 2, in the alternative form 
q 

IiPk) = mm [P,.Giu) + ~ Ik+ 1[[r(u, 0)] * [P(u)'Pd ]] . 
uE{u 1 ..... u"'} H I 

(d) Show by induction that, for all k, Jk is of the form 

IiPk) = min [P"al, ... , P"a?''], 

where a!, ... , a'f:4 are some vectors in R". 

8. Consider the functions J,.(p,.) in the instruction problem. Show inductively that 
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each of these functions is piecewise linear and concave of the form 

lipk) = min[ai + f3iPk> a i + f3i Pk> . .. , a':* + /3':*pk], 

where aL ... , a':\ f3L . .. , /3':* are suitable scalars. 

Chap. 3 

9. Two-Armed Bandit Problem. A person is offered N free plays to be distributed 
as he pleases between two slot machines A and B. Machine A pays a dollars 
with known probability s and nothing with probability (I - s). Machine B 
pays /3 dollars with probability p and nothing with probability (I - p). The 
person does not know p but instead has an a priori probability distribution F(p) 
for p. The problem is to find a playing policy that maximizes expected profit. 
Let (m + n) denote the number of plays in machine B after k free plays (m + 
n :e;;; k), and let m denote the number of successes and n the number of failures . 
Show that a DP algorithm for this problem is given by 

JN- 1(m, n) = max {sa, p(m, n)/3}, m + n :e;;; N - 1, 

Jim, n) = max {s[a + lk+im, n)] + (1 - s)lk+ 1(m , n), 

p(m, n)[/3 + I k+ 1(m + l , n)J + [1 - p(m, n)]lk+i (m , n + 1)}, 

m + n :e;;; k, 

where 

L1 p m+ lo - Pl dF(p) 

p(m , n) = (1 . 
Jo pm(l - pt dF(p) 

Solve the problem for N = 6, a = f3 = l , s = 0.6, dF(p) / dp = 1 for O ,:;;;_ p 
:,;;; I. [The answer is to play machine B for the following pairs (m , n) :(0, 0), 
(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (2, 1), (3 , 1), (4, 1). Otherwise, machine A 
should be played.] 

10. A person is offered 2 to 1 odds in a coin-tossing game where he wins whenever 
a tail occurs. However, he suspects that the coin is biased and has an a priori 
probability distribution F(p) for the probability p that a head occurs at each 
toss. The problem is to find an optimal policy of deciding whether to continue 
or stop participating in the game given the outcomes of the game so far. A 
maximum of N tossings is allowed. Indicate how such a policy can be found 
by means of DP. 



CHAPTER FOUR 

Suboptimal and 
Adaptive Control 

We have seen that it is sometimes possible to obtain a closed-form solution 
of the DP algorithm or at least use the algorithm for characterization of an 
optimal policy. However, this tends to he the exception, and in most cases 
one has to solve the DP equations numerically in order to obtain an optimal 
policy. The computational requirements for doing so are often overwhelming, 
and for many problems a complete solution of the problem by DP is impossible. 
The reason lies in what Bellman has called the "curse of dimensionality." 
Consider, for example, a problem where the state space is R". To obtain 
the cost-to-go function Jixk), it is necessary first to discretize the state 
space. Taking, for example, 100 discretization points per axis results in a 
grid with 100" points. For each of these points the minimization in the 
right side of the DP equation must be carried out numerically. Matters are 
fu rther complicated by the requirement to carry out a numerical integration 
(the expectation operation) every time the function under minimization is 
evaluated. Computer storage also presents an acute problem. Thus, for 
problems with finite-dimensional state and control spaces, DP can be applied 
only if the dimension of these spaces is small. When the control space is 
one-dimensional, things sometimes are simplified through the use of one­
dimensional minimization techniques [L9]. In other cases the special structure 
of the problem can be exploited to reduce the computational requirements. 

When everything else fails, one has to settle for a control scheme that 
can be practically implemented and performs adequately (hopefully close 
to optimally). In this chapter we discuss several ideas for suboptimal control. 

143 
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4.1 CERTAINTY EQUIVALENT CONTROL 

The certainty equivalent controller (CEC) is a suboptimal control scheme 
that is motivated by linear-quadratic control theory. It applies at each 
stage the control that would be optimal if all the uncertain quantities were 
fixed at their expected values; that is, it acts as if a form of the certainty 
equivalence principle were holding. 

We take as our model the basic problem with imperfect state information 
of Section 3.1 and we further assume that the probability measures of the 
input disturbances wk do not depend on xk and uk. We assume that the 
state spaces and disturbance spaces are convex subsets of corresponding 
Euclidean spaces so that the expected values 

xk = E{xk I h}, wk = E{wk}, 

belong to the corresponding state spaces and disturbance spaces. If this 
is not so, the following scheme may be implemented with xk and wk being 
some "typical" elements of the respective spaces. 

The control input µ.,k(h) applied by the CEC at each time k is determined 
by the following rule: 

1. Given the information vector h, compute 

xk = E{xk I h}. 

2. Solve the deterministic problem of finding a control sequence {u 1., u k +,, ... , 
uN _ 1} that minimizes 

N-1 

gN(xN) + L g;(x;, u;, W;) 
i=k 

subject to the constraints 

U; E U; , X;+J = f;(X;, U;, W;), i = k, k + 1, ... , N - 1, 

3. Apply the control input 

Note that if the current state xk is measured exactly (perfect state 
information), then step (I) is unnecessary. The deterministic optimization 
problem in step (2) must be solved at each time k as soon as the initial 
state xk = E{xk j Ik} becomes known by means of an estimation (or perfect 
observation) procedure. (In practice, one often uses a suboptimal estimation 
scheme that generates an approximation to xk). A total of N such problems 
must be solved in any actual operation of the CEC. Each of these problems, 
however, is a deterministic optimal control problem and is often of the type 
for which powerful numerical techniques such as steepest descent, conjugate 
gradient, and Newton 's method [LIO] are applicable. Thus the CEC requires 
the solution of N such problems in place of the solution of the DP algorithm 
required to obtain an optimal controller. Furthermore, the implementation 
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of the CEC requires no storage of the type required for the optimal feedback 
controller, often a major advantage. 

An alternative to solving N optimal control problems in an "on-line" 
fashion is to solve these problems a priori. This is accomplished by computing 
an optimal feedback controller for the deterministic optimal control problem 
obtained from the original problem by replacing all uncertain quantities by 
their expected values. It is easy to verify (based on the equivalence of 
open-loop and feedback implementation of optimal controllers for deterministic 
problems) that the implementation of the CEC given earlier is equivalent 
to the following: 

Let {µ,g(x 0), ••. , µ,'fv ixN- ,)} be an optimal controller obtained from 
the DP algorithm for the deterministic problem 

N-1 

minimize gN(xN) + I gdxk, µ,k(xk), wd, 
k=O 

over all {µ,0 , ••• , µ,N - ,} 

xk+, = fdxk, µ,ixk), Wi--), 

k = 0, I, ... , N - 1. 

Then the control input 'jik(lk) applied by the CEC at time k is given by 

'iiih) = µ,f[E{xk I Ik}I = µ, f(xk) 

as shown in Figure 4.1. 
In other words an alternative implementation of the CEC consists of 

finding a feedback controller {µ,g, µ,1, ... , µ,'fv ,} that is optimal for a 
corresponding deterministic problem, and subsequently using this controller 

System 
xk-1 =fk(xk, Uk, wk) 

Measurement Device 
zk = hk(xk, Uk-I• vk) 

Delay 

' I 
I 

Actuator 
µt 

-- ---7 

llk - I I 
I 

I :k 

'--------- Estimator .-------+--J---l 

I 

I 
I Certainty Equivalent Controller I 

____ J L ___ _ 

Figure 4.1 Structure of the certainty equivalent controller. 
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for control of the uncertain system (modulo substitution of the state by its 
expected value). Either of the definitions given for the CEC can serve as 
a basis for its implementation. Depending on the nature of the problem, 
one method may be preferable to the other. 

The CEC often performs well in practice and results in a cost that is 
close to the optimal. In fact, for the linear-quadratic problems of Sections 
2.1 and 3.2, it is identical to the optimal controller (certainty equivalence 
principle). It is possible, however, that it performs strictly worse than the 
optimal open-loop controller (see Problem 4). 

Multiaccess Communication Example 

Consider the slotted Aloha system described at the beginning of Section 
3. I. It is very difficult to obtain an optimal policy for this problem primarily 
because there is no simple characterization of the conditional distribution 
of the backlog (state), given the channel transmission history. We therefore 
resort to a suboptimal policy. As discussed in Section 3 .1, the perfect state 
information version .of the problem admits a simple optimal policy: 

1 
µ,ixk) = - , for all xk ;,,: 1. 

Xk 

As a result, there is a natural CEC, 

iik (h) = min[t, 2], 
Xk 

where xk is an estimate of the current packet backlog based on the entire 
past channel history of successes, idles, and collisions. Recursive estimators 
for generating xk are given in [H2] and [RI]. The latter estimator obtains 
xk+ 1 by increasing xk by a certain amount if a collision occurs in the kih 
slot and by decreasing it by unity otherwise. Then it adds the expected 
number of packet arrivals during the kih slot, which is estimated as the 
observed success rate (number of successes up to slot k divided by k). We 
refer to [H2l and [RI] for details. The stability of the overall control scheme 
is investigated in [TS]. 

4.2 OPEN-LOOP FEEDBACK CONTROLLER 

The open-loop feedback controller (OLFC) is similar to the CEC except 
that it takes explicitly into account the uncertainty about xk, wk, ... , wN _ 1 

when calculating the control µ,ih) to be applied at time k. This control is 
determined by the following procedure: 

1. Given the information vector h, compute the conditional probability measure 
Px,llk· 
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2. Find a control sequence {uk, uk+ 1, ••• , uN- 1} that minimizes 

xk,wk~wN-1 {gN(XN) + llg;(X;, U,, W;) I h} 
subject to the constraints 

U;E U;, X;+1 = /;(X;, U;, W;), i = k, ... , N - 1.t 
3. Apply the control input 

Jiih) = Uk, 
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The operation of the OLFC can be interpreted as follows: At each 
time k the controller uses the new measurement received to calculate the 
conditional probability distribution Px,,h. However, it selects the control 
input as if no further measurements will be received in the future. 

Similarly to the CEC, the OLFC requires the solution of N optimal 
control problems in any actual operation of the system. Each problem may 
again be solved by deterministic optimal control or mathematical programming 
techniques. The computations are a little more complicated than those for 
the CEC since now the cost includes the expectation operation with respect 
to the uncertain quantities. The main difficulty in the implementation of 
the OLFC is the computation of Pxkllk. In many cases one cannot compute 
Pxklh exactly, in which case some "reasonable" approximation scheme must 
be used. Of course, if we have perfect state information, this difficulty 
does not arise . 

In any suboptimal control policy, one would like to be assured that 
measurements are used with advantage. By this we mean that the scheme 
performs at least as well as any open-loop policy applying a sequence of 
controls that is independent of the values of the measurements received. 
An optimal open-loop policy can be obtained by finding a sequence 
{ * * *}h ... u0 , u 1 , ..• , uN- 1 t at mm1m1zes 

J(u0 , u1, ... , uN_,) = ,;:.,, { g_.(xN) + 1: g.(x., u., w,)} 
k=O,l, .... N- I 

subject to the constraints xk+ 1 = fk(xk, uk, wk), and uk E U~, k = 0, 1, 
.. . , N - 1. A nice property of the OLFC is that, in contrast with the 
CEC (cf. Problem 4), it performs at least as well as an optimal open-loop 
policy. 

Proposition. The cost Jrr corresponding to an OLFC 1T {,:Z0 , 

µ 1, •.. , µN_ 1} satisfies 

t Similarly as for the CEC, we assume that an optimal ~olution to this problem exists 
and ambiguities ·resulting from multiple ~olutions are resolved by some rule. 
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where r6 is the cost corresponding to an optimal open-loop policy. 

Proof t We have 

where the function J0 is obtained from the recursive algorithm 

+ gN-1[XN-1, lIN-l(IN-1), WN-1] I /N- 1}, 

Jk(h) = E {gk[xk, 7Iih), wJ 

(4.2) 

(4.3) 

+ Ik+ 1[h, hk+ 1lfixk> 7Iih), wk), 7Iih), Uk+ 1L 7Iih)] I h}, (4.4) 

k = 0, l, ... , N - 1. 

Consider also the functions J~(h), k = 0, 1, ... , N - 1, defined by 

J [(I ,) ~ :~ }w; { g N(x N) + 1>; (X;, II;, w;) I I,}- ( 4.5) 
i=k, ... ,N-1 X;+t=f;(x;,u;,w;) 

i=k, ... ,N-1 

The minimization problem in this equation is precisely the one that 
must be solved at time k in order to calculate the control input µ.,k(h) of 
the OLFC. Clearly, J~(h) can be interpreted as the calculated open-loop 
optimal cost from time k to time N when the current information vector is 
h. It can be seen that 

E {J~(zo)} ~ Jt. (4.6) 
zo 

We will prove that 

for all h and k. (4.7) 

Then from (4.2) , (4.6) , and (4. 7) it will follow that 

which is the relation to be proved. We show (4.7) by induction. 
By the definition of the OLFC and (4.5), we have 

lrv - 1(/N- 1) = JC,. _1(/N- 1), for all IN - 1, 

and hence (4.7) holds fork = N - 1. Assume 

for all h+t• (4.8) 

t We assume throughout the proof that all expected values appearing are well defined 
and finite and the minimum in (4.5) is attained for every h-
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Then from (4.4), (4.8), and (4.5), we have 

Jilk) = E {gk[xk, µ,k(h), wk] 

+ l k+1 [h, hk+1lfixk, liih), wk), liih), vk+iJ, liih)] I I k} 

~ E {gk[xk /Lk(h), wd 
xk, wk, vk+ I 

+ I i+ 1 [h, hk+ ,[fixk, /Lk(h), wk), /Lk(h), Vk+ 11, µilk)] I Ik} 

x~·"!!.vk+i{ ~i~ xk~w, {gk[xk, µild, wd 
i=k+l, ... ,N-1 ~;+1=fi(x;,u;,w;) 

z=k+l, ... ,N-1 

+ ,I, g,(x,, u, , w1) + gN(xN) I I,+ 11 I 1,} 

,ea; ~~ "'·~·"• { KN(xN) + g,[x,, "µ;,([,), w,] 
i=k+ l, .. ,N-1 x;+1 =f;(x;,u;,w;) 

i=k+ 1, .. ,N- 1 

N-1 } 
+ L g;(X;, U;, W;) I h = JHh). 

i=k+I 
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The second inequality follows by interchanging expectation and minimization 
(notice that we always have E {min[·]}~ min [E {-}I) and by "integrating 
out" vk+ 1 • The last equality follows from the definition of OLFC. Thus 
(4.7) is proved for all k and the desired result is shown. Q.E.D. 

It is worth noting that by (4.7) the calculated open-loop optimal cost 
from time k to time N, JHft.:), provides a readily obtainable performance 
bound for the O LFC. 

The preceding proposition shows that the OLFC uses the measurements 
with advantage even though it selects at each period the present control 
input as if no further measurements will be taken in the future. Of course, 
this says nothing about how closely the resulting cost approximates the 
optimal. It appears, however, that the OLFC is a fairly satisfactory mode 
of control for many problems. 

4.3 LIMITED LOOKAHEAD POLICIES: APPLICATIONS IN 
FLEXIBLE MANUFACTURING AND COMPUTER CHESS 

A practical way to cut down the number of states examined by the DP 
algorithm is to truncate the time horizon and use at each stage a decision 
based on lookahead of a small number of stages. The simplest possibility 
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is to use a one-step lookahead policy whereby at stage k and state xk one 
uses the control jlk(xk), which attains the minimum in the expression 

min E{gixk, uk, wk) + J k+1 Cfixk, uk, wk)]} , 
ukE U k(xk) 

where lk+ 1 is some approximation of the true cost-to-go function lk+ 1 • 

Similarly, a two-step lookahead policy applies at time k and state xk the 
control jlk(xk), attaining the minimum in the preceding equation where now 
lk+ 1 is obtained itself on the basis of a one-step lookahead approximation. 
In other words, for all possible states 

Xk+ 1 = fixk, Uk, wk), 
we have 

min 

+ Ik+2[fk+1(Xk+t, Uk+t, Wk+I)]}, 

where lk+ 2 is some approximation of the cost-to-go function lk +2-
The computational savings of this approach are evident. For a one­

step lookahead policy, only a single minimization problem has to be solved 
per stage, while in a two-step policy the number of states at which the DP 
equation has to be solved at stage k equals one plus the number of all 
possible next states xk+ 1 that can be generated from the current state xk. 
Actually, the entire two-step lookahead computation can be formulated as 
a single mathematical programming problem that is often tractable (see 
Problems 1 and 2). Note also that the fixed lookahead approach can be 
combined with the certainty equivalent and open-loop-feedback control 
approaches of Sections 4.1 and 4.2 to simplify even further the calculations. 

A key issue in implementing a limited lookahead policy is the selection 
of the cost-to-go approximation at the final step. It may appear important 
at first sight that the true cost-to-go function be approximated well over 
the range of relevant states; however, this is not necessarily true. What 
is important is that the cost-to-go differentials (or relative values) be ap­
proximated well; that is, for an n-step lookahead policy it is important to 
have 

J k+n(x ) - J k+nCx') = l k+ nCx) - h +nCx' ) , 

for any two states x and x' that can be generated n steps ahead from the 
~urrent state. For example, if equality were to hold for all x, x', then 
lk +nCx) and lk+n(x) would differ by the same constant for each relevant x 
and the n-step lookahead policy would be optimal. 

The manner in which the cost-to-go approximation is selected depends 
very much on the problem solved. For example , in some games like chess, 
the approximate cost-to-go in a certain position (state) involves a heuristic 
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incorporation of certain features of the position into a figure of merit. In 
other problems, a cost-to-go approximation may be based on solution of a 
simpler problem that is tractable computationally or analytically. The fol­
lowing examples illustrate these approaches. 

Production Control in a Flexible Manufacturing 
System 

Flexible manufacturing systems (FMS) provide a popular approach 
for increasing productivity in the manufacture of small- and medium-sized 
batches of related parts. There are several workstations in an FMS and 
each is capable of carrying out a variety of operations. This allows the 
simultaneous manufacturing of more than one part type, reduces idle time, 
and allows production to continue even when a workstation is out of service 
because of failure or maintenance. 

Consider a work center in which n part types are produced. Denote 

u~: the amount of part i produced in period k . 

d~: a known demand for part i in period k. 

x~: the cumulative diff crence of amount of part i produced and demanded up 
to period k. 

Let us denote also by xk, uk, dk the n-dimensional vectors with coordinates 
xL uL dL respectively . We then have 

xk +t = xk + uk - dk . (4.9) 

The work center consists of m workstations that fail and get repaired 
in random fashion, thereby affecting the productive capacity of the system 
(i.e., the constraints on uk). Roughly, our problem is to schedule part 
production so that xk is kept around zero to the extent possible. 

The state of the workstations is described by an m-dimensional vector 

where 

{
1, 
0, 

ak = (al, ... , a;'), 

if station i is operational at period k, 
otherwise. 

We model the evolution of ak by a Markov chain with known transition 
probabilities 

P~s = P(at+ 1 = s I a~ = r), r, s = 0, 1, and i = 1, 2, ... , m. 

In a practical context these probabilities must be estimated from individual 
station failure and repair rates, but we will not go into the matter further. 
Note also that in practice these probabilities may depend on u1;. This 
dependence is ignored for the purpose of development of a cost-to-go ap-



152 Suboptimal and Adaptive Control Chap. 4 

proximation [cf. (4.15)]. It may be taken into account when the actual 
suboptimal control is computed [cf. the minimization of (4.16)]. 

The productive capacity of the system is, by definition. the constraint 
set of the production vector uk and depends on the workstation state ak. 

We denote it by U(ak) . 
We select as system state the pair (xk, ak), where xk evolves according 

to (4.9) and ak evolves according to the Markov chain described earlier. 
The problem is to find for every state (Xi. ak) a production vector u" E 
U(ak) such that a cost function of the form 

J, (x0) - E {It C;(x~)} 

is minimized. The cost per stage g; expresses the desire to keep the current 
backlog or surplus of part i near zero. Two examples are g;(x;) = ,B;jx;I or 
g;(xi) = ,Bilxi12, with ,Bi > 0. 

The DP algorithm for this problem is 

Jk(xk, ak) = I g/rt) + min E {Jh 1(xk + uk - dk. ak+ 1) I ak}. (4.10) 
i=I ukEU(a.k)a.k+I 

but unfortunately often requires a prohibitive amount of calculation for an 
FMS of realistic size (say for n > 10 part types). We therefore consider 
!__he possibility of a one-step lookahead policy with a suitable approximation 
l k+ 1 replacing the cost-to-go l k+ 1 • 

We now observe that our problem can to a large extent be decomposed 
with respect to individual part types. Indeed. the system equation (4.9) 
and the cost per stage have a decomposable structure and the only coupling 
between parts comes from the constraint uk E V(a1J. This constraint typically 
has a simplex-like structure 

U(ak) = {uk I y(ak)' uk ~ o(ak) , u~ ~ 0, i = 1, ... , n}, (4.11) 

where y(a") is a known n-dimensional vector and o(ad is a known scalar 
depending on ak. Suppose we approximate V(ak) by hypercubes U(ad 
and U ( a k) of the form 

U(ak) = {u~ IO~ ui ~ lL(ak)}, 

U(ak) = {u~ IO~ u~ ~ B i(ak)}, 

U(ak) C U(ak) C U(ak), 

(4.12) 

as shown in Figure 4.2. If V(ak) is replaced for each workstation state a" 
by either V(ak) or V(ak), then the problem is decomposed completely with 
respect to part types. For every part i the DP algorithm for the outer 
approximation is given by 

(4.13) 
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Circumscribed Hypercube U (cxk) 

I \ 
Inscribed Hypercube !! (cxk) Production Constraint Set U (cxk) 

Figure 4.2 Inner and outer approximation, of the prvduction capacity cons traint 
set by hypercubes. 

and for the inner approximation it is given by 

li(xi, ak) = g;(xi) + (4.14) 

Furthermore, in view of (4.12), the cost-to-go functio ns J~ and l_~ provide 
lower and upper bounds to the true cost-to-go function Jk, 

(4. 15) 
i = I i=I 

and can be used to construct approximations to Jf.. that are suitable for a 
one-step lookahead policy. The simplest possibility is to adopt the averaging 
approximation 

and use a t state (xk, ak) the suboptimal control i"ii_ that minimizes [cf. (4.10)] 

E{I,. [Ji+ 1(xi + ui - di, ak+ 1) + 
(4. 16) 

l l+ ,(x[ + u[ - d[, " •• ,)] I a,} 
over all uk E U(ak). 

To implement this scheme, it is necessary to caITy out the DP algorithm 
(4. 13) and (4.14) and to store the corresponding functions J~ and l~ in tables 
so that they can be used in the real-time computation of the suboptimal 
control via the minimization of exprcs\ion (4.16). The calculations involved 



154 Suboptimal and Adaptive Control Chap. 4 

in the DP algorithm (4.13) and (4.14) are nontrivial but they can be carried 
out off-line, and in any case are much less than what would be required 
to compute the optimal controller. The feasibility and the benefits of the 
overall approach have been demonstrated by simulation for FMS of realistic 
size in [KS]. See also [T6] and [K7] . 

Computer Chess 

Chess-playing computer programs are one of the more visible successes 
of artificial intelligence. Their underlying methodology provides an interesting 
case study in the use of suboptimal control. It involves the idea of limited 
lookahead , but also illustrates some DP ideas that we have not had much 
opportunity to look at in detail. These are the idea of a forward search , 
an important memory-saving technique that is common in artificial intelligence 
applications and was discussed in Section 1.4, and the idea of alpha-beta 
pruning, which is an effective method for reducing the amount of calculation 
required to find optimal game strategies. 

The fundamental paper on which all computer chess programs are 
based was written by one of the most illustrious modern-day applied math­
ematicians, C. Shannon [S16]. It was argued by Shannon that whether the 
starting chess position is a win, loss, or draw is a question that can be 
answered in principle, but the answer will probably never be known. He 
estimated that, based on the chess rule requiring a pawn advance or a 
capture every 50 moves (otherwise a draw is declared), there are on the 
order of 10120 different possible sequences of moves in a chess game . He 
concluded that to examine these and select the best initial move for White 
would require 1090 years of a "fast" computer's time. As an alternative, 
Shannon proposed a limited lookahead of a few moves and evaluating the 
end positions by means of a scoring function that suitably takes into account 
the material balance, mobility, pawn structure, and other positional factors. 
The convention here is that White is favored in positions with high score, 
while Black is favored in positions with low score. 

Consider first a one-move lookahead strategy for selecting the first 
move in a given position P. Let M 1 , ••• , M,. be all the legal moves that 
can be made in position P by the side to move. Denote the resulting 
positions by M 1P, M 2P, ... , M,.P, and let S(M1P), ... , S(M,.P) be the 
corresponding scores. Then the move selected by White (Black) in position 
P is the move with maximum (minimum) score . This is known as the 
backed-up score of P and is given by 

[

max{S(M1P) , ... , S(M,.P)} , 

BS(P) = . 
mm{S(M1P), . .. , S(M,.P)} , 

if White is to move in 
position P , 
if Black is to move in 
position P . 

This process is illustrated in Figure 4.3. 
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p 

+5 +1 

Figure 4.3 A one-move lookahead tree. If White moves at position P, the best 
move is M 1 and the backed-up score is +5. If Black moves at position P, the 
best move is M3 and the backed-up score of Pis - 3. 

Consider next a two-move lookahead strategy in a given position P. 
Assume for concreteness that White moves, and let the legal moves be M1, 

... , Mr and the corresponding positions be M 1P, ... , M,P. Then in each 
of the positions M;P, i = l, ... , r, apply the one-move lookahead strategy 
with Black to move. This gives a best move and a backed-up score BS(M;P) 
for Black in each of the positions M;P, i = l, ... , r. Finally, based on 
the backed-up scores BS(M1P), ... , BS(M,P), apply a one-move lookahead 
strategy for White , thereby obtaining the best move at position P and a 
backed-up score for position P of 

BS(P) = max {BS(M1P) , . .. , BS(M rP )}. 

The sequence of best moves is known as the principal continuation. The 
process is illustrated in Figure 4.4. 

M1 1 

+1 0 

P (Whit e to Move) 

.11 3 p 

,,/ Black to Move 

M2, M 2_1 .11 33 

M12 M22 

\ j \/)) White to 
Move 

-5 +3 -4 0 +s +16 -1 +27 

Figure 4.4 A two-move lookahead tree with White to move . The backed-up 
scores are shown in parentheses. The best initial move i~ .",f, and the principal 
continuation is (M,, M,2). 
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It is clear that Shannon's method as just described (known as the type 
A minimax algorithm) can be generalized for an arbitrary number of lookahead 
moves (see Figure 4.5). The idea of solving one-step lookahead problems 
with a terminal cost (or backed-up score) that summarizes future costs is 
of course central in the DP algorithm. Indeed, it can be seen that the 
minimax algorithm described is nothing but the DP algorithm for minimax 
problems (see Problem 5 in Chapter 1). Here positions and moves can be 
identified with st8.tes and controls, respectively, there are only terminal 
costs (the scores of the terminal positions), and the backed-up score of a 
position is nothing but the optimal cost-to-go at the corresponding state. 

Shannon recognized that with a type A strategy one still could not 
expect a computer to seriously challenge human players of even moderate 
strength. In a typical chess position there are around 30 to 35 legal moves. 
It follows that for an n-move lookahead there will be around 30n to 3Y 
terminal positions to be scored. For n = 6 this gives roughly 106 positions, 
and assuming that a position can be scored in 10 µ,s , we conclude that for 
a six-move lookahead a computer would need about 2 hours and 45 minutes 
just to score terminal positions. Another drawback was that some chess 
positions require more analysis than others. For example, if in the last 

P (White to Move) 

+8 +20 +18 +16 +24 +20 +10 +12 -4 +8 +21 +11 -5 +10 +32 +27 +10 +9 +3 

Figure 4.5 A four-move lookahead tree with White to move. The backed-up 
scores are shown in parentheses. The best initial move is M1• The principal 
continuation is heavily shaded. 



Sec. 4.3 Limited Lookahead Policies 157 

move of a search sequence a capture occurs, it is essential to consider 
whether the opponent will recapture and how. 

These considerations led Shannon to consider a type B strategy whereby 
the depth of the search tree is variable. He suggested that at each position 
the computer give all legal moves a preliminary examination and discard 
those that are "obviously bad." A scoring function together with some 
heuristic strategy can be used for this purpose. Similarly, he suggested 
that some positions, involving for example captmes or checkmate threats, 
be explored further beyond the nominal depth of the search. 

Nearly all chess-playing computer programs utilize some form of Shan­
non's type B strategy. They differ in the choice of scoring function, the 
criteria for discarding moves in a given position, and the criteria for declaring 
a given position as terminal. A particularly effective algorithm known as 
swapoff is used to quickly analyze long sequences of captures and coun­
tercaptures, thereby making it possible to score realistically complex, dynamic 
positions [L2]. 

Shannon pointed out that, while the amount of computation per move 
grows exponentially with the depth of lookahead, the amount of memory 
required grows only linearly, thereby allowing chess programs to operate 
in limited-memory microprocessor systems. This is illustrated in Figures 
4.6 and 4.7 and is accomplished by generating new moves only when needed, 
and by storing only the one move sequence under current examination 
together with one list of legal moves at each level of the search tree. 
Calculations and move generation are done in depth-first fashion. The 
precise algorithm can be described by the following routine, which calls 
itself recursively. 

Minimax algorithm. To determine the backed-up score BS(n) of 
position n, do the following: 

1. If n is a terminal position return its score. 
Otherwise: 

2. Generate the list of legal moves at position II and let the corresponding 
positions be n 1, ••• , n,. Set tl1e tentative backed-up score TBS(n) of position 
n to + oo if it is White's turn to move at n and to - 00 if it is Black's turn 
to move at n. 

3. For i = 1, ... , r, do: 
a. Determine the backed-up score BS(n;) of position n;. 
b. If it is White's turn to move at position 11, set TBS(n) :-c max {TBS(n). 

BS(n;)}. 
If it is Black's turn to move at position n, set TBS(n) := min{TBS(n), 

BS(n;)}. 

4. Return BS(n) = TBS(n). 

Note that once the backed-up score of a position is calculated all of 
its successors in the search tree can be purged from memory. as indicated 
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j 

✓ j j j j j j j ✓ 

Figure 4.6 Traversing a tree in depth-first fa shion. Checkmarks show the points 
where scores of terminal positions and backed-up scores of intermediate positions 
are evaluated. 

in Figure 4.7. The substantial memory savings afforded by this forward 
method of calculation is very useful in search problems with a large number 
of terminal states, as discussed also in Section 1.4. 

The efficiency of the minimax algorithm can be substantially improved 
by using the alpha-beta pruning procedure (denoted a-(3 for short), which 
can be used to forgo some calculations involving positions that cannot affect 
the selection of the best move. To understand the a-(3 procedure, consider 
a chess player pondering the next move at position P. Suppose that the 
player has already exhaustively analyzed one relatively good move M 1 with 
corresponding score BS(M1P) and proceeds to examine the next move M 2 • 

Suppose that as the opponent's replies are examined a particularly strong 
response is found , which assures that the score of M2 will be worse than 
that of M,. Such a response, called a refutation of move M2 , makes further 
consideration of move M2 unnecessary (i.e., the portion of the search tree 
that descends from move M2 can be discarded). An example is shown in 
Figure 4.8. 

The a-(3 procedure can be generalized to trees of arbitrary or irregular 
depth and can be incorporated very simply into the minimax algorithm. 
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Figure 4. 7 Storage requirements of the depth-first ver~ion of the minimax algorithm 
for the tree of Figure 4.6. At the time that the terminal position marked by a 
checkmark is scored, only the solid-line moves are stored in memory. The dotted­
line moves have been generated and purged from memory. The broken-line 
moves have not been generated as yet. The memory requirements grow linearly 
with the depth of the lookahead. 

P (White to Move) 

+ 5 +1 +20 +3 -5 -2 +3 +20 

Figure 4.8 The a.-{3 procedure . White has evaluated move M 1 to have backed­
up score ( + 1), and starts evaluating move M2 • The first reply of Black is a 
refutation of M2 since it leads to a temporary score of - 5, less than the backed­
up score of M1• Since the backed-up score of M2 will be - 5 or less, M2 will 
be inferior to M1 • Therefore, it is not necessary to evaluate move M2 further. 
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Generally, if in the process of updating the backed-up score of a given 
position (step 3b) this score crosses a certain bound, then no further calculation 
is needed regarding that position. The cutoff bounds are adjusted dynamically 
and transmitted top-down as follows: 

l . The cutoff bound for Black in position n is denoted a and equals the highest 
current score of all ancestor positions of n where White has to move. The 
exploration of position n can be terminated as soon as its temporary backed­
up score equals or falls below a . 

2. The cutoff bound for White in position n is denoted {3 and equals the lowest 
current value of all ancestor positions of n where Black has the move. The 
exploration of position n can be terminated as soon as its temporary backed­
up score rises above {3 . 

The process is illustrated in Figure 4.9. It can be shown that the 
backed-up score and optimal move at the starting position are unaffected 
by the incorporation of the cx-(3 procedure in the minimax algorithm. We 
leave the verification of this fact to the reader (Problem 8). It can be seen 

P (White to Move) 

Black to Move 

Black to 

+8 +20 +18 +16 +24 +20 +10 +12 -4 +8 +21 +11 -5 +10 +32 +27 +10 +9 +3 

Figure 4.9 The a-{3 pruning procedure applied to the tree of Figure 4.5. For 
example, the /3-cutoff in position P 1 is due to the fact that its temporary score 
( + 20) exceeds its current /3-bound ( + 16). The a-cutoffs in positions P2 , P3 , 

and P4 are due to the fact that the corresponding temporary scores, + 8, + 11, 
and + 11, have fallen below the current o:-bound, which is + 16, the current 
temporary score in position P. 
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that the a-{3 procedure will be more effective if the best moves in each 
position are explored first. This tends to keep the a bounds high and the 
/3 bounds low, thus saving a maximum amount of calculation. Much of the 
current level of success of chess programs is due to intelligent techniques 
for ordering moves so as to maximize the effectiveness of the a-{3 procedure. 
Two of these techniques, known as iterative deepening and the killer heuristic, 
will be discussed briefly. 

Iterative deepening, in its pure form, consists of first conducting a 
search based on lookahead of one move; then carrying out (from scratch) 
a search based on lookahead of two moves; then carrying out a search 
based on lookahead of three moves, and so on. This process is continued 
either up to a fixed level of lookahead or until some limit on computation 
time is exceeded. At each iteration associated with a certain level of look­
ahead, one obtains a best move at the starting position. This move is 
examined first in the subsequent iteration involving one extra move of 
lookahead. This enhances the power of the a-{3 procedure, thereby more 
than making up for the extra computation involved in doing a short lookahead 
search before doing a longer one. (Actually, given that the number of 
terminal positions increases on the average hy more than a factor of about 
30 with each additional level of lookahead, the extra computation is relatively 
small.) An additional benefit of this method is that a best move is maintained 
throughout the search and can be produced at any time as needed. This 
comes in handy in commercial programs that incorporate a feature whereby 
the computer is forced to move either upon exhausting a given time allocation 
or upon command by a human opponent. An improvement of the method 
is to obtain a thoroughly sorted list of moves at the starting position via a 
one-move lookahead, and then use the improved ordering in subsequent 
iterations to enhance the performance of the a-{3 procedure. 

The killer heuristic is similar to iterative deepening in that it aims at 
examining first the most powerful moves at each position, thereby enhancing 
the pruning power of the a-{3 procedure. To understand the idea, suppose 
that in some position White selects the first move M1 from a candidate list 
{M1, M2 , M3 , •.. }, and upon examining Black's responses to Mi finds that 
a particular move, call it K, is by far Black's best. Then it is often true 
that K (commonly referred to as a killer move) is also Black's best response 
to the second and subsequent moves M2, M,, ... in White's list. It is 
therefore a good idea from the point of view of a-(3 pruning to consider 
the killer move K first as a potential response to the remaining moves M 2 , 

M
3

, • • • • Of course. this does not always work as hoped, in which case 
it is advisable to change the killer move depending on subsequent results 
of the computation. (Some programs actually maintain lists of more than 
one killer move at each level of lookahead.) 

The a-{3 procedure is safe in the sense that searching a game tree 
with and without it will produce the same result. Some computer chess 
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programs use more drastic tree-pruning procedures, which usually require 
less computation for a given level of lookahead, but may miss on occasion 
the strongest move. There is some debate at present regarding the merits 
of such procedures. References [L2] and [N4] consider this subject and 
provide a broader discussion of the limitations of computer chess programs. 

4.4 ADAPTIVE CONTROL: SELF-TUNING REGULATORS 

We have been dealing so far with systems having a known state equation. 
In practice, however, one is frequently faced with situations where the 
system equation contains parameters that are not known exactly . One 
possible approach, of course, is to conduct experiments and estimate the 
unknown parameters from input-output records of the system. This pro­
cedure, however, can be quite time consuming. Furthermore , it may be 
necessary to repeat the procedure if the parameters of the system change 
with time, as is often the case in many industrial processes. 

The alternative is to formulate the stochastic control problem in a 
way that unknown parameters are dealt with directly. It is easy to show 
that problems involving unknown system parameters can be embedded 
within the framework of our basic problem with imperfect state information 
by using state augmentation. Indeed, let the system equation be of the 
form 

xk+ I = fixk, 0, Uk, wk) , 

where 0 is a vector of unknown parameters with a given a priori probability 
distribution. We introduce an additional state variable Yk = 0 and obtain 
a system equation of the form 

By defining xk 

[;:::] = [f,<x,. y~: u,. w,) ]. 
(xk, Yk) as the new state, we obtain 

~\+1 = l i xk, Uk, wk) , 

(4 .17) 

where Jk is defined in an obvious manner from (4 .17). The initial state is 

Xo = (Xo, 0) . 

With a suitable reformulation of the cost functional, the resulting problem 
becomes one that fits our usual framework . 

It is to be noted, however, that since Yk = 0 is unobservable , we are 
faced with a problem of imperfect state information even if the controller 
receives an exact measurement of the state xk. Furthermore, the parameter 
vector 0 usually enters the state equation in a manner that makes the 
augmented system (4 . 17) nonlinear. As a result, in the great majority of 
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cases it is practically impossible to obtain an optimal controller by means 
of a DP algorithm. Suboptimal controllers are thus called for and in this 
section we discuss some of the issues involved in their design. We then 
consider a form of the certainty equivalent controller for ARMAX models, 
called the self-tuning regulator, that has been used with success in practice. 

Caution, Probing, and Dual Control 

Suboptimal control is often guided by the qualitative nature of optimal 
control. It is therefore important to try to understand some of the characteristic 
features of the latter. One of these is the need for balance between "caution" 
and "probing," two notions that are best explained by means of an example. 

Consider the linear scalar system 

Xk+ 1 = xk + buk + wk, k = 0, 1, ... , N - 1, 

and the quadratic terminal cost E{ t~}. Here everything is as in Section 2.1 
(perfect state information) except that the control coefficient b is unknown. 
Instead, it is known that the a priori probability distribution of bis Gaussian 
with mean and variance 

b = E{b} > o, 
Furthermore , wk is zero mean Gaussian with variance CT~. for each k. 

Consider first the case where N = 1 so the cost is 

E{xT} = E{ (x0 + bu0 + Wo>2}. 

A straightforward 1.:alculation gives the minimizing value of u0 : 

b 

and the optimal cost is 
2 

(Tb 2 2 
2 2 Xo + CT»· 

b + (Tb 

Therefore, the optimal control hPre is cautious in that lu0 j decreases as the 
uncertainty in b (i.e., <r~) increases. 

Consider next the case where N = 2. The optimal cost-to-go at stage 
I is obtained by the calculation given earlier: 

<rW) 2 2 
11(/,) = [b(1)]2 + <rW) X1 + <Tw, (4. 18) 

where / 1 = (x0 , u0 , x 1) is the information vector and 

b (1) = E{b I I,}, <ri(l) = E{[(b - b(l)J2 i I,} . 

The value of <T~( I) can be obtained from the equation x, ---= -"o + Imo + H'o 
and standard least-squares estimation theory results (see IA I I and IL 71). 
The end result will be of no further use to us, so we just state it without 
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going into the calculation: 
2 2 

CT~(l) = 2:tCTw er=. (4.19) 
Uo b + w 

From (4.18) we see that at stage l we would like to have small cr~(l), and 
it follows from (4.19) that to achieve this we must apply a control u0 that 
is large in absolute value. A choice of large control to enhance parameter 
identification is called probing. On the other hand, if luol is large, lx1I will 
also be large, and this is not desirable in view of (4.18). Therefore, in 
choosing u0 we must strike a balance between caution (a small value to 
keep x 1 reasonably small) and probing (a large value to improve the signal­
to-noise ratio and enhance estimation of b). This tradeoff between the 
control objective and the parameter estimation objective is commonly referred 
to as dual control. It manifests itself often when system parameters are 
unknown, but unfortunately it cannot be quantified precisely in most cases. 

Tw o-Phase Control and Identifiability 

An apparently reasonable form of suboptimal control in the presence 
of unknown parameters is to separate the control process into two phases, 
a parameter identification phase and a control phase. In the first phase 
the unknown parameters are identified, while the control takes no account 
of the interim results of identification. The final parameter estimates from 
the first phase are then used to implement an optimal control law in the 
second phase. This alternation of identification and control phases may be 
repeated several times during any system run in order to take into account 
subsequent changes of the parameters . 

One drawback of this approach is that information gathered during 
the identification phase is not used to adjust the control law until the 
beginning of the second phase . Furthermore , it is not always easy to 
determine when to terminate one phase and start the other. 

A second difficulty, of a more fundamental nature, is due to the fact 
that the control process may make some of the unknown parameters invisible 
to the identification process. This is the problem of parameter identifiability 
[L7l, which is best explained by means of an example. 

Example 1 

Consider the scalar system 

xk+ 1 = axk + buk + w k, 

with the quadratic cost 
k = 0, 1, . .. , N - 1 

We assume perfect state information: so if the parameters a and b are known, this 
is a minimum variance control problem (cf. Section 3.3), and the optimal control 
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law is 

Adaptive Control: Self-Tuning Regulators 

a 
µ._f (xk) = -t/k. 

165 

Assume now that the parameters a and b are unknown and consider the two-phase 
method. During the first phase the control law 

µ,k (xk) = yxk (4.20) 

is used (y is some scalar; for example, y = - alb where ci, 7i are a priori estimates 
of a and b). At the end of the first phase, the control law is changed to 

µ,ixk) = -~xk, 
b 

where a and b are the estimates obtained from the identification process. However, 
with the control law (4.20), the closed-loop system is 

xk+I = (a + by)xk + wk, 

so the identification process can at best identify the value of (a + by) but not the 
values of both a and b. In other words, the identification process cannot discriminate 
between pairs of values (a 1 , b1) and (a2 , bi) such that a, + b1y = a 2 + h2y. 
Therefore, a and b are not identifiable when feedback control of the form (4.20) is 
applied. 

One way to correct the difficulty is to add an additional known input fh to 
the control law (4.20); that is, use 

""iihk) = yxk + fh. 
Then the closed-loop system becomes 

xk+t = (a + by)xk + bih + wk> 

and from knowledge of {xk} and {ok} it is possible to identify (a + by) and b. Given 
y, one can then obtain estimates of a and b. Actually, to guarantee this in a more 
general context where the system is of higher dimension. the sequence {<\} must 
satisfy certain conditions: it must be "persistently exciting" (see [L8]). 

A second possibility to bypass the identifiability problem is to change the 
structure of the system by artificially introducing a one-unit delay in the control 
feedback. Thus, instead of considering ~ontrol laws of the form µ,k(xk) = yx,, we 
consider controls of the form 

Uk = flixk- 1) = yxk-1 • 

The closed-loop system then becomes 

xk+t = axk + byxk-1 + wk, 

and, given y, it is possible to identify both parameters a and b. This technique 
can be generalized for systems of arbitrary order, but artificially introducing a control 
delay seems like a less than ideal solution to the identifiability problem. 

Certainty Equivalent Control and Identifiability 

A scheme that in some sense lies at the opposite extreme of the two­
phase method is to incorporate into the control law the parameter estimates 
as they are generated, treating them as if they were true values. This 
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scheme is essentially the certainty equivalent controller considered in Section 
4.2. In terms of the system 

Xk+J = fixk, 0, Uk, wk) 

considered earlier, suppose that, for each possible value of 0, the control 
law 1r*(0) = {µ,6(-, 0), ... , µ,i _ 1 ( ·, 0)} is optimal with respect to a certain 
cost ]

7
/Xo, 0). Then the (suboptimal) control used at time k is 

P,ilk) = µ,[(xk, Ok), 

where Ok is an estimate of 0 based on the information 

h = {x0 , x 1 , ••• , xk> u0 , ••• , uk_ 1} 

available at time k; for example, 

Ok = E{0 I h} 

or, more likely , an estimate obtained via an on-line system identification 
method. 

Unfortunately, identifiability difficulties are associated with this scheme 
as well. Suppose for simplicity that the system is stationary with a priori 
known transition probabilities P{xk+ 1 I xk, uk, 0} and that the control law 
used is also stationary: 

P,k (h) = µ,*(xk, Ok), k =.= 0, 1, .... 

Then at time k , given the estimate Ok, the controller thinks that the probabilistic 
evolution of the system is governed by 

P{xk+t I xk, µ,*(xk, Ok), Ok}. 

However, the true probabilistic evolution is governed by 

P{xk+I I Xk, µ,*(xk, Ok), 0*}, 

where 0* is the true parameter value. Suppose now that for some 0 -:/= 0* 
and all xk+t, xk, we have 

(4.21) 

That is, there is a false value of parameter for which the system under 
closed-loop control looks exactly as if the false value were true. Then, if 
the controller estimates at some time the parameter to be 0, subsequent 
data will tend to reinforce this erroneous estimate . As a result, a situation 
may develop where the identification procedure locks onto a wrong parameter 
value and the controls applied differ consistently from the optimal, regardless 
of how long information is collected. 

Relation (4.2 I) indicates the nature of the identifiability problem under 
closed-loop control. The true parameter value cannot be determined uniquely 
from the probabilistic evolution of the closed-loop system. The following 
examples illustrate this difficulty . 
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Example 2 [B33] 
Consider a two-state system with two controls u 1 and u2. The transition probabilities 
depend on the control applied as well as a parameter 0, which is known to take 
one of two values 0* and 0. They are as shown in Figure 4.10. There is zero cost 
for a transition from state 1 to itself and a unity cost for all other transitions. 
Therefore , the optimal control at state 1 is the one that maximizes the probability 
of the state remaining at 1. Assume the true parameter is 0*. Then the optimal 
control is u2, but if the controller thinks that the true parameter is 0, it will apply 
u 1

• Because under u 1 the system looks identical for both values of the parameter, 
subsequent data will tend to reinforce the controller' s belief that the true parameter 
is indeed 0. 

More precisely, suppose that the parameter estimation method selects at each 
time k the value of 0 that maximizes 

P{0 I l } = P{h I 0}P(0) 
k P(h) ' 

where P(0) is the a priori probability that the true parameter is 0. (This scheme is 
almost the same as the maximum likelihood method .) Then if P(0) > P(0*), it can 
be seen that the controller will at each time k estimate fal sely 0 to be 0 and apply 
the incorrect control u 1

• 

Example 3 [Kil] 
Consider the linear scalar system 

xk+ 1 = axk + buk + wk, 

Figure 4. 10 Transition probabilities for 
two-state system of Example 2. Under 
the nonoptimal control u' , the system 
looks identical under the true and the 
false values of parameter 0. 

p 11 (u 1)=0.5 Cost= I 

Cost= I 

Transition probabilities for 0 = 0 * 
(true parameter value) 

Pi1 (u 1
) = 0.5 Cost= I 

Cos t = I 

A 

Transition probabilities for 0 = 0 
(false parameter value) 
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where we know that the parameters are either (a, b) = (l, 1) or (a, b) = (0, -1) . 
The sequence {wk} is independent, stationary, zero mean, and Gaussian. The cost 
is quadratic of the form 

N-1 

I <xz + 2ui), 
k~O 

where N is very large, so the stationary form of the optimal control law is used 
(see Sections 2.1 and 7.4). This control law can be calculated via the Riccati equation 
to be 

if (a , b) = (1 , 1), 

if (a , b) = (0, -1). 

To estimate (a, b) , we use a least-squares identification method. The value of the 
least-squares criterion at time k is given by 

k-1 

Vil, 1) = L (x;+ 1 - X ; - u;)2, for(a , b) = (1, 1) , (4.22a) 
i=O 

k-1 

Vi0, -1) = L (x;+1 +u;)2, for (a, b) = (0, -1). (4.22b) 
;~o 

The control applied at time k is 

- {-¥, 
Uk= µ,ih) = 

0, if Vil , 1) > VlO , -1) . 

if Vil, 1) < Vi0 , - 1), 

Suppose the true parameters are 0* = (0, - 1 ). Then the true system evolves 
according to 

Xk + I = -uk + wk . (4.23) 

If at time k the controller estimates incorrectly the parameters to be 0 (l, 1) 

because ViO) < Vi0*), the control applied will be lh = - xd2 and the true closed­
loop system will evolve according to 

(4.24) 

On the other hand, the controller thinks (given the estimate 0) that the closed-loop 
system will evolve according to 

(4.25) 

so from (4 .24) and (4.25) we see that under the control law uk = -xd2 the closed­
loop system evolves identically for both the true and the false values of the parameters 
[cf. (4.21)]. 

To see what can go wrong, note that if Vk(O) < Vi(0*) for some k we will 
have , from (4 .23) to (4 .25), 
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so from (4.22a) and (4.22b) we obtain 

Vk+iC0) < Vk+i(O*), 

Therefore, if Vi j0) < Vi (0*), the least-squares identification method will yield the 
wrong estimate O for every k. To see that this can happen with positive probability, 
note that, since the true system is xk+ i = - uk + wk , we have 

Vi (0) = (xi - Xo - uo)2 = (wo - x0 - 2u0)
2

, 

Vi (O*) = (xi + u0)2 = w~. 

Therefore , the inequality Vi (0) < Vi (O*) is equivalent to 

(xo + 2uo)2 < 2wo(Xo + 2uo), 

which will occur with positive probability since w0 is Gaussian. 

Finally, we note that intuition suggests that, if the parameter estimates 
converge to some 0 -J 0*, then for this 0 loss of identifiability in the sense 
of (4.21) is very likely, since, generally, parameter estimate convergence in 
identification methods implies that the data obtained are asymptotically 
consistent with the view of the system one has based on the current estimates. 
This will be shown in the context of ARMAX models, least-squares iden­
tification, and minimum variance control in what follows. It can also be 
shown in other contexts (e.g., finite state systems and maximum likelihood 
identification; see [B321 and [B33J, which were the first to clarify the issues 
just described). The conclusion is that loss of identifiability is a serious 
problem that typically arises in the context of certainty equivalent control. 

Self-tuning Regulator 

We described earlier the nature of the identifiability issue in certainty 
equivalent control; that is, under closed-loop control incorrect parameter 
estimates may make the system behave as if these estimates were correct 
[cf. (4.21)]. As a result, the identification scheme may lock onto false 
parameter values. This is not necessarily bad, however, since it may happen 
that the control law implemented on the basis of the false parameter values 
is near optimal. Indeed, through a fortuitous coincidence, it turns out that 
in the practically important minimum variance control formulation ( Section 
3.3) when the parameter estimates converge, they typically con11erge to 
false values , but the resulting control law typically converges to the optimal. 
We can get an idea about this phenomenon by means of an example : 

Example 4 
Consider the simplest ARMAX model: 

Yk+l + ayk = buk + f"k+l• 

The minimum variance control law when a and b are known is 
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SuppL)Se nL)W that t1 and f, are OL)t knL)Wn 1:iut they are iJentitied L'1n-line J:,y means 
of - me s ·heme. The 1ntrol applied i 

iit 
lit = ~ ' 't• bt. 

(4.26) 

where ,1, and I~, are the estimates L)l:itained at time C Let the true p.rrameter Yalues 
1:ie £1"° and Ji .... Then the difti(ulty with iJentitial:iility L1((urs \\ hen 

a,:---+a. h1:---+b. 
where Sand I~ are su(h that the true d,.1sed-lL1L1p :-\:stem giYen t,y 

b"' a 
\' + I + a*v,: = ~"" + E,: ... I . . b. 

(L)in(ides with the dL)Sed-iL)L)P Sy stem that the (L)ntrL)lkr thinks is true l)n the 1:iasis 
of the estimates a and b. This latter system is 

For these two yst m to b identi -al. w must have 

a* a 
b* b. 

whi(h means that rht· t'<lflfr,1/ /dH' ,-1.:ri1 t1sn11rr,,ri,·,;l/_y f,,,·,,11:,s ,1rrimc1/ dt·srile 
the fact that tht• asymptoti · stimatl's a and i, may be incorrt·ct. 

Example -l- (an b(' ('Xt('nd('d w the gener.11 .-\R\L-\:\. nwdel l1f Se(til1Il 
3. with n delay: 

y + I G;'Y -i - ( .2 ) 
i=I i I i= I 

If the parameter estimates (l)nY('rge (r('gardkss L1f the id('ntifi('atiL1n method 
used). then a minimum Y~uian('(' (l1ntmlkr rhinf..s that th(' clL1sed-kx1p system 
i a ymptotically 

(4 .2 ) 

(cf. Se(tion 3.3). Sl1 if th(' diffi(ulty with idrntifiability l)('('llfS. the true 
clL1sed-k1L1p system must alsl1 asymptl1ti(al\y be giYen by (-l-.28) and this is 
clearl th optimal closed-loop s ·stem. 

Tl) summa1iLe. we haY(' sh,..1wn that. if th(' par:uneter c-stimates (L)TTYerge 
to Yalues for whi(h k)ss L)f ilkntifiability O('('llfS in the sense c,f (-l.21 ). then 
the resulting minimum Yaria1Ke (l)ntwl law fr,r th(' .-\R\L\:\. ml)del (-l.27) 
is asymptoti(al\y l)ptimal r('gardkss l)f the identifi(atiL)n methl)d used. \Ve 
now strength('n this r('sult by showing that (( idcnr(tit·11ri,)n mt·rh,)ds (f rhe 
lcasr-squarcs rypc arc used. rht·n fltlramt'lt'l' csrinz,llt' t·,1rn-t·rgo1ce can 
occur only ar ,·a/11es thtzr rcs11lr in h1ss ,f idt·nr(ti11biliry r ,md rht'rtf)n- make 
rhc corrcsp<nzding nzininwnz ,·aritlllCt' ,·<1nfrt1! !t111· ,1synzpr<1ric,zlly <1primt1! !. 
In fa(t. this (an O('('l!r ('Yen if the modd adL1pt('d for identifi(atil1n is in(orre(t 
to some extent. 
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Assume that the true system is given by 
m m m 

Yk + L a!Yk-i = L bfuk- i + ek + L cf ek-i• (4.29) 
i =I i= I i=I 

For simplicity, we require that ht i O (this assumption can be relaxed 
using essentially the same proof as the one to be given shortly). The 
controller assumes a model of the form 

i= I i =I 

and applies minimum variance control 

- - (/) - 1 (~ ~ k uk - µk k - -bk Li a ;Yk-i+ 1 
I i= I 

(4.30) 

where the estimates a~ b 7 minimize over a; and b;: 
k m m 

L (Yn + L ll;Yn-i - L b;Un-i )2. 
n=I i = l i = I 

Setting to zero the derivatives of this expression with respect to a;, we 
obtain, for all i = 1, ... , m , 

(4.31) 
n=I j = I j=) 

Assume now that the estimates a 7 and b 7 converge to some ci; and b; as 
k ~ =: 

i = 1, .. . , m. 

Then, in view of the use of the minimum variance control (4.30), we have 
m m 

L a;Yn- i - L b;Un-i ~ 0, as n ~ =, 
i = l i=I 

so from ( 4.31) we obtain for the closed-loop system 

1 k 

lim -k L Yn-i Yn = 0, 
k-+oo n = I 

i = 1, .. . , m . 

Under mild (ergodicity) assumptions, the time average in the preceding 
equation can be replaced by an ensemble average, which implies that asymp­
totically , as k ~ =, we have 

E{Yk-iYk} = 0, i = 1, ... , m. 

Therefore, the output Yk is uncorrelated with past outputs y~ - , , i = 1. 
2, ... , asymptotically as k ~ 00 • It follows that the true closed-loop 
system asymptotically becomes 

(4. 32) 
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This is the optimal that can be achieved with minimum variance control 
even when all system parameters are known. 

Note that the asymptotic estimates fi; and b; will not converge to the 
true values at and ht if ct -J 0. Even in the simplest case where m = l 
and ct = 0, the only relation implied by (4.32) is at I ht = fi1 /b1. 

The preceding argument can also be used to show a similar result for 
slightly different least-squares identification procedures. Similar results can 
also be shown for other identification methods, but the proof is somewhat 
different [KIO]. To repeat, if the least-squares parameter estimates converge, 
then an asymptotically optimal minimum variance control law is obtained. 

The next issue that arises is whether the least-squares parameter es­
timates indeed converge. Extensive simulations have shown that these 
estimates converge for many systems, and this has established the practicality 
of the overall control scheme. However, a complete analysis of the con­
vergence issue has defied the efforts of numerous researchers. The partial 
results [L6] available at present have not yet been brought together into a 
comprehensive theory. We refer to the survey paper [KlOJ for an exposition 
of the status of research on this subject. However, the self-tuning regulator 
has proved sufficiently robust in practice to be widely marketed at present 
as a general-purpose process control algorithm. 

4.5 NOTES 

The problems caused by large dimensionality have long been recognized 
as the principal drawback of DP. A great deal of effort by Bellman and 
his associates, and by others, has been directed toward finding partial 
remedies (see for example [B5], [B6], and [N2l). A class of two-stage 
problems, called stochastic programming problems, can be solved by using 
mathematical programming techniques ( see Problems 1, 2, references [VI], 
[B 10], [B 13], [R3], and [W2], and the references quoted therein). 

The example of Problem 4 showing that the CEC may perform worse 
than the optimal open-loop controller is due to Witsenhausen (see [Tl)). 
For an interesting sensitivity property of the CEC, see [Ml]. The idea of 
open-loop feedback control is due to Dreyfus [D8]. Its superiority over 
open-loop control was established in [B 171 in the context of minimax control. 
A generalization of this result is given in [W4J. Suboptimal controllers 
other than the ones given here have been suggested by a number of authors 
[Bl, B21, T3, T4, T5, D5, SI, S2, S24, and S32l. Self-tuning regulators 
received wide attention following the paper by Astrom and Wittenmark 
[A14]. Kumar has considered the general linear quadratic problem with 
unknown parameters [K 11 J and has provided an excellent survey of adaptive 
control [KIO]. See also [Al2], [G3], [L6), and [L8J. Control of Markov 
chains with unknown parameters has been considered in [B32], [B33], [D71, 
[Kl2], and [M2]. 
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Whenever a suboptimal controller is used in practice It IS desirable 
to know how close the resulting cost approximates the optimal. Tight 
bounds on the performance of the suhoptimal controller are useful but are 
usually quite hard to obtain. For some interesting results in this direction 
see [W14] and [W15]. 

PROBLEMS 

1. Two-Stage Problems and Deterministic Optimization. The purpose of this problem 
is to show how certain stochastic control problems can be solved by (deterministic) 
mathematical programming techniques. Consider the basic problem of Chapter 
J for the case where there are only two stages (N = 2) and the disturbance 
space for the initial stage is a finite set D0 = { wL ... , w~}. The probability of 
w~ , i = 1, ... , r, is denoted p; and does not depend on x0 or u0 • Verify that 
the optimal cost function J0(x0 ) given by 

10(x0) = min L p;[g0(x0 , uo, w~) 
110E Uu( 'u) i I 

+ min ; E {gi[fo(Xo, uo, w~), U1, wi] 
u 1EU1[[0(x0 .u0 .w0 JJ "'i 

+ gz[.fi [fo(xo, Uo, w~), U1, wi]]}] 

is equal to the optimal cost of the problem 

minimi;2e L p;[go(Xo, uo, w~) + Z;] 
uo,Z;,u 1 i= I 
i= l ..... r 

subject to Z; ~ E {g1lfo(xo, uo, w&), u~, wi] 
K'1 

Show also how a solution of this mathematical programming problem may be 
used to yield an optimal control law. 

2. Stochastic Programminf?. Consider the problem of minimizing over x: 

g(x) + E { Y:in q'y} 
r f(x)+Ay=r 

subject to h;(x) = 0, i = 1, ... , s, l;(x) ~ 0, j = 1, ... , p, where x E Rn, y 
E R"', q is a given vector in Rm, r E R" is a random vector taking a finite 
number of values r1 , ••• , r, with given probabilities Pi, . . . , p,, g, h;, lj are 
given continuously differentiable real-valued f unctions.f: R" ~ R" is a continuously 
differentiable mapping, and A is a given k x m matrix. Show that this problem 
may be viewed as a two-stage problem that fits the framework of the basic 
problem of Chapter 1. Show also how the problem can be converted to a 
deterministic problem that can be solved by standard mathematical programming 

techniques. 
3. Consider a problem with perfect state information involving the 11-dimcnsional 
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linear system of Section 2.1: 

xk+ 1 = Akxk + Bkuk + wk, 

and a cost functional of the form 

k = 0, 1, ... , N - 1, 

N-1 

E {gN(c'xN) + L giuk)}, 
Wk 

k O, ... ,N-1 

Chap. 4 

where c E Rn is a given vector. Show that the DP algorithm for this problem 
can be carried out over a one-dimensional state space. 

4. Consider the following two-dimensional, two-stage linear system with scalar 
control and disturbance 

xk+I = xk + buk + dwk, k = 0, 1, 

where b = [l, 0]' and d = [112, \/2/2)'. The initial state is x0 = 0. The 
controls u0 and u 1 are unconstrained, and the disturbances w0 and w1 are in­
dependent random variables with identical distribution. They take the values 
+ 1 and -1 each with probability 1/2. Perfect state information prevails. The 
cost is 

Wo,WJ 

where 11·11 denotes the usual Euclidean norm. Show that the optimal open-loop 
cost and the optimal closed-loop cost are both \/3 /2, but the cost corresponding 
to the CEC is 1. 

5. Consider a two-stage problem with perfect state information involving the scalar 
system 

Xo = 1, Xi = Xo + Uo + Wo, 

The control constraints are u0 , u 1 E{0, - I}. The random variable w0 takes the 
values + l and - 1 with equal probability t The function f is defined by 

f(l,0) =f(l, -1) =f(-1,0) =f(-1 , -1) = 0.5, 

f(2, 0) = 0, f(2, - 1) = 2, 

The cost functional is 

f(0, -1) = 0.6, 

(a) Show that one possible OLFC for this problem is 

f(0, 0) = 2. 

if X1 = ± 1, 2, 
1th1) = {

o, 
-1, if X1 = 0, 

and the resulting cost is 0.5. 
(b) Show that one possible CEC for this problem is 

{
o, 

i,i,1(X1) = 
-1, 

if XJ = ± 1, 2, 

(4.33) 

(4.34) 

and the resulting cost is 0.3. Show also that this CEC is an optimal feedback 
controller. 

6. Consider the system and cost functional of Problem 5 but with the difference 



Chap. 4 

that 

Problems 175 

f(O, -1) = 0. 

(a) Show that the controller (4.33) of Problem 5 is both an OLFC and a CEC 
and that the corresponding cost is 0.5. 

(b) Assume that the control constraint set for the first stage is {O} rather than 
{O, -1}. Show that the controller (4.34) of Problem 5 is both an OLFC 
and a CEC and that the corresponding cost is 0. 
Note: This problem illustrates a pathology that ocl'.urs generically in suboptimal 
control. To see this, consider a problem and a suboptimal control strategy 
that is not optimal for the problem. Let 7r* = {µ,t, ... , µ,'I; 1} be an optimal 
policy. Restrict the control constraint set so that only the optimal control 
µ,f (xk) is allowed at state xk. Then the cost attained by the suboptimal 
control strategy will be improved. 

7. Show that the Astrom-Wittenmark result regarding the convergence properties 
of the self-tuning regulator also holds in either one of the following two situations: 
(a) The value of the parameter b1 is not estimated but rather is kept at some 

fixed nonzero value while all other parameters are estimated using least 
squares. 

(b) The control delay is greater than 1. 
8. Provide a careful argument showing that searching a chess position with and 

without a-{3 pruning will give the same result. 
9. In a version of the game of Nim, two players start with a stack of five pennies 

and take turns removing one, two, or three pennies from the stack. The player 
who removes the last penny loses. Construct the game tree and verify that the 
second player to move can win with optimal play. 



CHAPTER FIVE 

Infinite Horizon Problems: 
Theory 

The remainder of the text is devoted to problems that differ from those 
considered so far in two respects. First, the number of stages is infinite, 
and, second, the system is stationary: that is, the system equation, the cost 
per stage, and the random disturbance statistics do not change from one 
stage to the next. The assumption of an infinite number of stages is, of 
course, a mathematical formalization since it is never satisfied in practice. 
It constitutes a reasonable approximation for problems involving a finite 
but very large number of stages. The assumption of stationarity is often 
satisfied in practice, and in other cases it approximates reasonably a situation 
where the system parameters vary slowly with time. 

Infinite horizon problems, as a general rule, require considerably more 
sophisticated analysis than their finite horizon counterparts. The difficulties 
are of a twofold nature. First, the consideration of an infinite horizon 
requires analysis of limiting behavior, for example, the convergence of the 
DP algorithm and the corresponding optimal policies. This analysis is often 
nontrivial and at times reveals surprising possibilities. Second, a rigorous 
consideration of the probabilistic aspects of problems involving uncountable 
disturbance spaces requires the sophisticated machinery of measure-theoretic 
probability theory. The resulting difficulties are considerably more severe 
than those of finite horizon problems and are far beyond the introductory 
scope of this text. For this reason and given that the need for precision 
is much greater in infinite horizon problems than in their finite horizon 
counterparts, we will restrict ourselves exclusively to the case where the 
disturbance space is a countable set. Reference [B23] addresses in detail 

176 
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the mathematical issues relating to uncountable disturbance spaces, and 
gives a more complete treatment of advanced topics. 

On the positive side, the analysis of infinite horizon problems is often 
elegant, and the implementation of optimal policies is often simple. For 
example , optimal policies are typically stationary; that is, the optimal rule 
for applying controls does not change from one stage to the next. 

Traditionally, there have been three classes of infinite horizon problems 
of major interest: 

(a) In the discounted case with bounded cost per stage, the cost 
functional takes the form 

J,,rCx0 ) = lim E 
N-+00 Wk 

k - 0. 1... 

where J 77 (x0 ) denotes the cost associated with an initial state x0 and a policy 
n = {µ, 0 , µ, 1, ••• }, and a is a scalar with O < a < l, called the discount 
factor . The cost per stage g(x, u, w) is uniformly bounded from above 
and below. This case is examined in Sections .5.1 to 5.3 and is by far the 
simplest infinite horizon problem, primarily due to the presence of a con­
traction mapping underlying the DP iteration (Section 5.3). There are no 
pathologies here, and effective computational methods are available for 
solution. 

(b) In the case of unbounded costs per stage, the cost functional has 
the same form as in (a) except that the scalar a is positive but not necessarily 
less than unity. Furthermore, the cost per stage is allowed to be unbounded 
either from above or from below. This case is treated in Section 5 .4. 

(c) Minimization of J 17(x0 ) in (a) makes sense only if Jrr(x0 ) is finite 
for at least some a.dmissible policies 1r and some initial states x0 • In many 
problems of interest, it turns out that Jrr(x0 ) = + =, but the limit 

1. I E lffi -
N-+= N Wk 

k=O.I. ... 

is finite for every policy 1r = {µ, 0 , µ,,, . .. } and initial state x0 • Under these 
circumstances it is reasonable to try to minimize the preceding expression, 
which may be viewed as an average cost per stage associated with policy 
1r. Such problems are the subject of Chapter 7, where we restrict attention 
mostly to finite state Markov chains. 

Throughout the remainder of the text we concentrate on the perfect 
information case. Imperfect information problems can be treated, as in 
Chapter 3, by reformulation into pe1fect information problems involving a 
sufficient statistic. In this chapter we focus on the following infinite horizon. 
stationary version of the basic problem of Chapter I. 
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Problem I: Total Expected Cost Infinite Horizon Problem. Consider 
the stationary discrete-time dynamic system 

xk+I = f(xk, uk, wk), k = 0, 1, 2, ... , (5.1) 

where the state xk, k = 0, 1, ... , is an element of a space S, the control 
uk, k = 0, 1, ... , is an element of a space C, and the random disturbance 
wk, k = 0, 1, ... , is an element of a space D. It is assumed that D is a 
countable set. The control uk is constrained to take values in a given 
nonempty subset U(xd of C, which depends on the current state 
xk [uk E U(xk), for all xk E S, k = 0, 1, ... ]. The random disturbances 
wk, k = 0, 1, ... , have identical statistics and are characterized by probabilities 
P( ·lxk, uk) defined on D, where P(wklxk, uk) is the probability of occurrence 
of wk, when the current state and control are xk and uk, respectively. The 
probability of wk may depend explicitly on xk and uk but not on values of 
prior disturbances wk-t, ... , Wo. 

Given an initial state x0 , the problem is to find a policy 1r = {J.Lo, 
µ,1 , ••• } where µ,k:S ~ C, J.Lk(xk) E U(xk), for all xk E S, k = 0, 
l , ... , that minimizes the cost functionalt 

J,(x0 ) = !"! ~ {I ,lg[x,, µ,,(x,) , w,J} (5.2) 

k = O,I, . . 

subject to the system equation constraint (5 .1). The real-valued function 
g: S x C x D ~ R is given, and the scalar a is positive. 

Note that, while we allow an arbitrary state and control space, we 
require that the disturbance space be a countable set. This is necessary 
to avoid the mathematical complications discussed in Section 1.1. Our 
assumption, however, is satisfied in many problems of interest, notably for 
deterministic optimal control problems and problems of control of finite 
and countable state Markov chains. For other problems, our main results 
can typically be proved (under additional technical conditions) by following 
the same line of argument as given here [B23]. 

The cost J1T(x0 ) given by (5.2) represents the limit of finite horizon 
costs. These costs are well defined as discussed in Section 1.1. Another 
possibility would be to minimize over 1r the expected infinite horizon cost 

~ Lt a'g[x., µ,.(x,), w.J }-
k = 0.1 . ... 

Such a cost functional would require a far more complex mathematical 
formulation (a probability measure on the space of all disturbance sequences; 

t In what follows we always assume that g(x , u, w) is either nonnegative for all x , u, 
and w or nonpositive for all x. u. and w. so the limit in (5 .2) is well defined as a real number 
or::!:: = . 
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see [B23]). However, we mention that, under the assumptions that we will 
be using, the preceding expression is equal to the cost given by (5.2). This 
may be proved by using the monotone convergence theorem (see Section 
5.4), which allows interchange of limit and expectation under conditions 
that in our case are satisfied. 

In the first three sections of this chapter we will operate under the 
following assumption: 

Assumption D (Discounted Cost). The cost per stage g satisfies 

0 ~ g(x, u, w) ~ M, for all (x, u, w) ES x C x D, (5.3) 

where Mis some scalar. Furthermore, 0 < a < 1. 

Notice that (5.3) could be replaced by an inequality of the form 

M2 ~ g(x, u , w) ~ M,, 

where M, and M2 are arbitrary scalars, since addition of a constant r to g 
merely adds (I - a)- 1 r to the cost. Assumption D is not as restrictive as 
might appear. It holds for problems where the spaces S, C, and D are 
finite sets. Even if these spaces are not finite, during computational solution 
of the problem they will ordinarily be approximated by finite sets. In other 
cases it is often possible to reformulate the problem so that it is defined 
over bounded regions of the state and control spaces over which relation 
(5.3) holds. 

Let us denote by TI the set of all admissible policies 1r, that is, the 
set of all sequences of functions 1r = {µ,0, µ, 1 , ••• } with /.Lk: S ~ C, 
µ,/x) E V(x) for all x E S, k = 0, I, . . . The optimal cost function J* 
given by 

J*(x) = min J'TT (x) , x ES , 
7rETT 

is well defined as a real-valued function under Assumption D. In fact, using 
(5.2) and (5.3), it is easily seen that O ~ J*(x) ~ M I;-'= 0 cl = M /(1 - a) 
for all x E S. 

A class of admissible policies of particular interest to us is the class 
of stationary policies of the form 1T = {µ,, µ,, ... } for which the rule for 
control selection is the same at every stage. Throughout this chapter a 
stationary policy is implicitly assumed to be admissible. The cost associated 
with a stationary policy {µ,, µ,, ... } and an initial state x E S will also be 
denoted by 1µ,(x); that is, for 1r = {µ, , µ, , . .. }, we write 

lµ,(x0 ) = Jrr(x0 ) --= lim E 
N-+00 Wk 

(5.4) 

k= O.I .... 

Similarly as for J*, we have that lµ is well defined as a real-valued function 
under Assumption D. A statement that the stationary policy {µ *. µ * .... } 
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is optimal will mean throughout this chapter that J*(x) = l 11Ax) for all 
x ES. 

The next section gives a characterization of the optimal cost function 
J* and provides the basic results under Assumption D. Section 5.2 describes 
computational methods, assuming that the state, control, and disturbance 
spaces are finite sets. The results obtained in Sections 5.1 and 5.2 are 
interpreted by means of the notion of a contraction mapping in Section 5.3. 
In Section 5.4 we relax Assumption D and consider costs per stage that 
are unbounded above or below. Finally, in Section 5.5 we consider problems 
involving a nonstationary or periodic system and cost per stage. We show 
that such problems can be reformulated as problems involving a stationary 
system and cost per stage. Consequently, we are able to obtain in a simple 
manner results for nonstationary problems that are analogous to those for 
the stationary case. 

5.1 BASIC RESULTS 

Consider an N-stage problem obtained from the infinite horizon problem 
by truncation. This problem is to find a policy 1TN = {µ,0 , µ, 1 , ••• , µ,N _ 1} 

with µ,k(xk) E V(xk), for all xk E S that minimizes 

J • .(x0 ) ~ ~ {I ,lg[x., /L,(x,), w.J} (5.5) 
k=O.I ..... N - I 

subject to the system equation constraints. The optimal cost of this problem 
for each initial state x 0 is V0 (x0 ), where V0 is given by the last step of the 
DP algorithm: 

VN(x)=0 , xES, 

Vk(x) = min E{akg(x, u, w) + Vk+ 1 [f(x, u, w)]}, 
uEU(x) w 

xES, k = 0, 1, ... ,N- 1. 

Dividing both sides by ak, and denoting 

JN_k(x) = a-kvk(x), XE S , k = 0, I , ... , N, 
these equations can be written as 

10 (x) = 0, x E S (5.6) 

lk+1(x) = min E{g(x, u, w) + aldf(x, u, w)]}, 
uEU(x) w 

XE S, k = 0, I , ... , N - 1. (5.7) 
The optimal cost is J N(x0 ). 

The algorithm (5.6), (5.7) is equivalent to the ordinary DP algorithm. 
The main difference is that the indexing of the cost-to-go functions has 
been reversed so that now the algorithm proceeds from lower to higher 
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values of the index k. We can interpret Jk(x) as the minimal cost that can 
be obtained starting at state x and proceeding for k (rather than N - k) 
stages (i.e., it is the k-stage optimal cost). Since the number of stages is 
not fixed in an infinite horizon problem, working with Jk rather than Vk is 
convenient. For this reason, the form (5.6) and (5.7) of the DP algorithm 
will be adopted throughout the remainder of the text. 

We want to develop relations between the N-stage problem with cost 
(5.5) and its infinite horizon counterpart, but before doing so we need to 
introduce some notation and preliminary facts. 

For any functions J:S - R, µ,:S - C with µ,(x) E U(x), for all 
x E S, we denote: 

T (J)(x) = min E {g(x, u, w) + aJ[f(x, u, w)J}, (5.8) 
uEU(x) w 

Tµ,(l)(x) = E{g[x, µ,(x), w] + aJ[f(x, µ,(x) , w)J}. (5.9) 

(Whenever we write T(J)(x) or Tµ.(J)(x) we implicitly assume that the 
expected values are well defined.) Note that T(J)(·) and Tµ.(1)(·) are functions 
defined on the state space S, and T, Tµ. may be viewed as mappings that 
transform a function J on S into another function [ T(J) or Tµ. (J)] on S. 

The mappings T and Tµ. play an important theoretical role and provide 
a convenient shorthand notation in expressions that would be too complicated 
to write otherwise. For this reason the reader should gain a firm grasp of 
their meaning. From the definitions (5.8) and (5.9), it can be seen that 
T (J)(x) is the optimal cost for the one-stage problem with initial state x, 
s tage cost g, and terminal cost function a.J. Similarly, Tµ.(l)(x) is the cost 
corresponding to policy {µ,, µ, , ... } for the same problem. 

We will denote by Tk the composition of the mapping T with itself k 
times; that is, for all x and k 

Tk(J)(x) = T[ Tk- 1(J)](x), T 0(J)(x) = J(x). 

Similarly, T!(J) is defined by 

T! (J)(x) = Tµ, [ T!- 1(J)](x), T~(J)(x) = J(x). 

It is seen that Tk(J)(x) is the optimal cost for the k-staie, a-discounted 
p roblem with initial state x, cost per stage g, and terminal cost fiuzction 
akJ. Similarly, T~(J)(x) is the cost of a policy {µ,, µ,, ... } for the same 
problem. Note that in terms of this notation the DP algorithm (5.6), (5.7), 
which corresponds to a finite horizon problem with a zero terminal cost 
function , can be written 

10 (x) = 0, 

Jk(x) = Tk(J0 )(x). 

(5.10) 

(5.11) 

Finally, consider a k-stage policy for a k-stagc problem {µ,o, µ, 1, •• • , 

11.,, } Then ( T T ... T )(J)(x) is defined recur~ivcly for i ~ 0, ... , r~ I • /1-o µ,1 µ,, 1 
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k - 2 by 

(T,,,lµ,i+t . .. Tµ,k_)(J)(x) = Tµ,J(Tµ,;+i . .. Tµ,k_)(J)](x) 

and represents the cost of the policy for the k-stage, a-discounted problem 
with initial state x, cost per stage g, and terminal cost akJ. 

The following monotonicity property plays a fundamental role in the 
developments of this chapter. 

Lemma 1. For any functions J: S ~ R, J': S ~ R, such that 

J(x) ~ J'(x), for all x ES, 

and for any function µ.,:S ~ C with µ.,(x) E U(x), for all x E S, we have 

T\J)(x) ~ Tk(J')(x), x ES, k = 1, 2, ... , 

T~(J)(x) ~ T~(J')(x), x ES, k = 1, 2, ... . 

Proof. The proof follows from the interpretations given previously of 
Tk(J)(x) and T~(J)(x) as k-stage problem costs. (As the terminal cost 
function increases uniformly so will the k-stage costs.) Q.E.D. 

For any two functions J:S ~ R, J' :S ~ R, we write 

J ~ J', if J(x) ~ J'(x) for all x ES. 

With this notation, Lemma 1 is stated as 

J ~ J' ⇒ T\J) ~ Tk(J') , k = 1, 2, ... , 

J~J' ⇒ T~(J) ~ T~(J'), k = 1, 2, ... . 

Denote also by e: S ~ R the unit function that takes the value 1 
identically on S: 

e(x) = 1, for all x ES. (5.12) 

We have from (5.8) and (5.9) for any function J:S ~Rand any scalar r, 
and all x ES, 

T(J + re)(x) = T(J)(x) + ar, 

Tµ,(l + re)(x) = Tµ,(J)(x) + ar. 

More generally, by induction we can show the following lemma. 

Lemma 2. For every k, function J: S 
{µ.,, µ., , ... }, and scalar r, we have 

~ R, stationary policy 

Tk(J + re)(x) = T\J)(x) + akr, 

T~(J + re)(x) = T~(J)(x) + akr, 

for all x ES, 

for all x ES. 

(5 .13) 

(5 .14) 

The following proposition shows that the DP algorithm (5.6) and (5.7) 
or (5.10) and (5.11) converges to the optimal cost function J* for an arbitrary 
bounded starting function J. This will follow as a consequence of Assumption 
D, which implies that the "tail" of the costE{2::;'=N akg(x1,;, uk, wk)} diminishes 
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to zero a s N ~ =. Furthermore, even if a terminal cost aN J (xN ) is added 
to the N-stage cost , its effect dimini shes to zero as N ~ = when J is 
bounded . 

Proposition 1: Convergence of the DP Algorithm. For any bounded 
function J : S ~ R , there holds 

J*(x) = lim Tk(J)(x), for all x E S. (5.15) 
k---->= 

Proof. From (5.3) we have, for any initial state x ES and every policy 
{µ,o, µ,,' .. . }, 

!~ E{I a*g[x., ,., (x,), w,J} 
.; E{~: a'g[x., l',(x,) , w,l} + M ,ta'. 

By taking minimum over {µ,0 , µ, 1 , • • • } of both sides, 

l *(x) "'JN(x) + C "_N ,;;) M, for all x ES, N - 0, I, ... , (5.16) 

where J N is defined for all N by (5.6) and (5.7) [or (5. 10) and (5. l 1)]. Also, 
since the cost per stage is nonnegative 

JN(x) ~ J*(x), for all x ES. (5.17) 

Combining the two inequalities, we obtain 

J * (x) = lim JN(x ), for all x ES. (5 .18) 
N-+oo 

Now for an arbitrary bounded function J: S - R, let r be a scalar 
such that 

10 - re ~ 1~10 + re, (5 .19) 

where 10 is the zero function. By applying T" to this relation and using 
Lemma 2, we obtain 

T k(J0 ) - akre ~ Tk(J) ~ T\ 10 ) + akre. (5.20) 

Since T"(J0 ) converges to J * [Eq. (5.18)] and c/r converges to Lero, the 
result follows. Q.E .D. 

Given any stationary policy {µ,, µ,, ... }, we can consider a problem 
that is the same as Problem I except for the fact that the control constraint 
set contains only one element for each state x, the control µ,(x), that is, a 
control constraint set of the form D (x) = {µ,(x)}, x E S. Clearly, in this 
problem Assumption D is satisfied , and since there is only one admissible 
policy({µ,,µ,, . .. }), application of Proposition I yields the following corollary : 

Corollary 1.1. Let 1µ.(x) be the value of the cost functiona l (5 .2) 
corresponding to a stationary policy {µ,, µ,, . .. } when the initial state is 
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x. Then for any bounded function J: S ~ R there holds 

J,,,(x) = lim Tt(J)(x) , x ES. 
k->= 

(5.21) 

The next proposition shows that J* is the unique solution of a functional 
equation. This equation, called Bellman's equation, provides the means 
for obtaining a stationary optimal policy. 

Proposition 2: Bellman's Equation, Necessary and Sufficient Condition 
for Optimality (a) The optimal cost function J* satisfies 

J*(x) = min E{g(x, u, w) + aJ*[f(x, u, w)]}, x ES, (5.22) 
uEU(x) w 

or equivalently 

J*(x) = T(J*)(x) , xES. 

Furthermore, J* is the unique bounded solution of this equation. 
(b) A stationary policy{µ,*,µ,*, ... } is optimal if and only if µ,*(x) 

attains the minimum in (5.22) for all x E S; that is, 

T(J*)(x) = T,,_*(J*)(x), x E S. 

Proof. (a) From (5 .16) we have 

J k ~ J* ~ J k + ( Mak ) e. 
1 - a 

Applying the mapping T in this relation and using Lemma 2, we obtain 

l k+1 ~ T(J*) ~ lk+1 + _a __ e. (
M k+I) 

I - a 

Since 11;+ 1 converges to J* (Proposition I), we obtain J* = T(J*) by taking 
the limit as k ~ = in the preceding relation . 

To show uniqueness simply observe that if J is bounded and satisfies 
J = T(J) then J = lim1c--= T"(J), so by Proposition I we have J = J *. 

(b) To show this part, let us state the following corollary, which follows 
from the part of Proposition 2 already proved by the same reasoning we 
used to obtain Corollary 1.1 from Proposition 1. 

Corollary 2.1. Let {µ,, µ,, ... } be a stationary policy. Then 

J,,,(x) = E{g[x, µ,(x), w] + aJ,,,[f(x, µ,(x), w)]}, x ES, (5.23) 

or equivalently 

Jµ,(x) = T,,,(J,,,)(x), xE S. 

Furthermore, J µ, is the unique bounded solution of this equation. 

Now if µ,*(x) minimizes the right side of (5.22) for each x E S, then 
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we have for all x E S, 

J*(x) = E{g[x, µ,*(x), w] + aJ*[f(x, µ,*(x), w)]}. 
w 

Hence, by the uniqueness part of the corollary, we must have J*(x) 
J,.,,.(x) for all x E S, and it follows that{µ,*,µ,*, ... } is optimal. Also, if 
{µ, *, µ, *, ... } is optimal, then we have J* = J ,.,,. , while from the corollary 
we obtain J,.,,. = T,.,,.(J,.,,.). Hence J* = T,.,,.(J*), which implies that µ,*(x) 
attains the minimum in (5.22) for all x E S. Q.E.D. 

Note that Proposition 2 implies the existence of an optimal stationary 
policy when the minimum in the right side of (5.22) is attained for all 
x E S. In particular, when V(x) is finite for each x E S, an optimal 
stationary policy is guaranteed to exist. 

. We finally show the following convergence rate estimate, which holds 
for any bounded function J: 

maxi Tk(J)(x) - J*(x)I ~ ak maxiJ(x) - J*(x)I, k = 0, 1, .... 
xES xES 

This relation is a special case of the following result: 

Proposition 3. For any two bounded functions J:S - R, J':S -
R , and for all k = 0, 1, ... , there holds 

maxi Tk(J)(x) - Tk(J')(x)I ~ a/ maxiJ(x) - J'(x)I. (5.24) 
xES xES 

Proof. Denote 

c = maxiJ(x) - J'(x)j . 
. ,ES 

Then we have 

J - ce ~ J' ~ J + ce. 

Applying Tk in this relation and using Lemma 2, we obtain 

Tk(J) - cice ~ Tk(J') ~ T\J) + akce. 

It follows that 

I T'(J)(x) - 'f'<(J')(x)I ~ akc, 

which proves the result. Q.E.D. 

As earlier, we have: 

XE S, 

Corollary 3.1. For any two bounded functions J: S - R, J': S -
R , and any stationary policy {µ,, µ,, ... }, we have 

maxi T!(J)(x) - T!(J')(x)I ~ ak maxiJ(x) - J'(x)I, k = 0, 1, .... 
xES xES 

The main conclusion from the propositions established so far is that 
the optimal cost function J* is the unique bounded solution of Bellman's 
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equation (5.22). This equation yields an optimal stationary policy provided 
the minimum in its right side is attained. Furthermore, the DP algorithm 
yields in the limit the function J* starting from an arbitrary bounded function 
J, and the rate of convergence is at least as fast as the rate of a convergent 
geometric progression (Proposition 3). Thus the DP algorithm may be used 
for actual computation of at least an approximation to J*. This computational 
method together with some additional methods will be examined in the 
next section. The remainder of this section is devoted to two examples. 

Asset Selling Example 

Consider the asset selling problem of Section 2.4 . When the problem 
is viewed over an infinite horizon, it is essentially a discounted cost problem 
with discount factor a = 1/(1 + r) [cf. Eq. (2.65)]. If we assume that the 
offers x are bounded, then the analysis of the present section is applicable, 
and the optimal value function is the unique solution of Bellman's equation 

J*(x) = max[x, (1 + r) - 1 E{J*(w)}]. 

The optimal policy is obtained from this equation and has the following 
form. If current offer;;,: (1 + r)- 1 E{J*(w)} = a, sell; otherwise, do not 
sell. The critical number a = (1 + r)- 1 E{J*(w)} is obtained as in Section 
2.4. 

Component Replacement Example 

A certain component of a machine tool can be in any one of a continuum 
of states, which we represent by the interval [0, 1] . At the beginning of 
each period the component is inspected, its current state x E [0, 1] is 
determined, and a decision is made on whether or not to replace the component 
at a cost R > 0 by a new one at state x = 0. The expected cost of having 
the component at state x for a single period is C(x) , where C(-) is a 
nonnegative bounded and increasing function of x on [0, l]. The conditional 
probability distribution F(zlx) of the component being at a state less or 
equal to z at the end of the period, given that it was at state x at the beginning 
of the period , is known. Furthermore, for each nondecreasing function 
J:[0, 1] ~ R, we have 

f J(z) dF(z lx 1) ~ f J(z) dF(zl x2) , for 0 ~ x 1 ~ x2 ~ I. 
This assumption implies that the component tends to turn worse gradually 
with use; that is, for each y E [0, I] there is greater chance that the 
component will go to a final state in the interval [y , 1] when at a worse 
initial state. Assuming a discount factor a E (0, 1) and an infinite horizon, 
the problem is to determine the optimal replacement policy. 

The problem clearly falls within the framework of this section , and 
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the optimal cost function J* is the unique bounded solution of Bellman's 
equation 

J*(x) = min[ R + C(O) + a J.' J*(z) dF(zlO), C(x) + a J.' J*(z) dF(zlx)]. 

An optimal replacement policy is given by 

Replace if R + C(O) + a f J*(z) dF(zlO) ~ C(x) + a f J*(z) dF(zlx). 

Do not replace otherwise. 

Now consider the DP algorithm 

lo(X) = 0, 

T(J0 )(x) = min[R + C(O), C(x)], 

T'(J0 )(x) = min[ R + C(O) + "J:' r•- 1(1,)(z) dF(zlO), 

C(x) + " J.' r•-1(10 )(z) dF(zlx ) l k = 1, 2, .... 

Since C(x) is increasing in x , we have that T(J0 )(x) is nondecreasing in x , 
and, in view of our assumption on the distributions F(zlx), the same is 
true for T2(J0)(x). Similarly, it is seen that, for all k, T\J0)(x) is nondecreasing 
in x and so is the limit 

J*(x) = lim T\J0 )(x). 
k ---+oo 

C(x) + o: J1 J*(z)dF(z Ix ) 
0 

0 1-- Do not _ .,_xr* ll(f.----- Replace~ 
replace 

Figure 5.1 Determining the optimal policy in the replacement example. 

X 
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It follows under our assumptions that the function C(x) + a Ii J*(z) dF (zlx) 
is increasing in x. This is simply a reflection of the intuitively clear fact 
that the optimal cost cannot decrease as the initial state increases (i.e., we 
start at a worse initial state). Thus the optimal policy takes the form 

Replace if x ;;:: x* 

Do not replace if x < x * , 

where x* is the scalar for which 

R + C(O) + a L' J*(z) dF(zlO) = C(x*) + a L' J*(z) dF(zlx*), 

as shown in Figure 5 .1. 

5.2 COMPUTATIONAL METHODS: SUCCESSIVE 
APPROXIMATION, POLICY ITERATION, ADAPTIVE 
AGGREGATION, LINEAR PROGRAMMING 

This section presents alternative approaches for solving the infinite horizon 
problem (5.1) under Assumption D. The first approach, successive ap­
proximation, is essentially the DP algorithm and yields in the limit the 
optimal cost function and an optimal policy, as discussed in the previous 
section. We will describe some variations aimed at accelerating convergence. 
Two other approaches, policy iteration and linear programming, terminate 
in a finite number of iterations (assuming the spaces involved are finite 
sets). However, when the number of states is large, these approaches are 
impractical because of large overhead per iteration. Adaptive aggregation 
is a new approach [B20] that bridges the gap between successive approximation 
and policy iteration, and in a sense combines the best features of both 
methods . 

Throughout this section we assume that Assumption D holds and that 
the spaces S, C, and D underlying the problem are finite sets. Thus we 
are dealing in effect with control of a finite state Markov chain. 

Let S consist of n states denoted by I , 2, . .. , n: 

S ={l ,2, ... , n} . 

Let us denote by Pu(u) the transition probability 

Pu(u) = P(xk+t = j lxk = i, uk = u ), i,j E S , u E U(i) . 

Thus pu(u) is the probability that the next state will be j given that the 
current state is i and control u E U(i) is applied. These transition probabilities 
may either be given a priori or calculated from the system equation 

Xk+1 = f(xk, uk, wd 
and the known probability distribution P( ·lx , u) of the input disturbance 
wk. Indeed, we have 
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where W;/u) is the (finite) set 

W;iu) = {w E Djf(i, u, w) = j}. 

To simplify notation when dealing with Markov chains, we assume that 
the cost per stage does not depend on w. This amounts to using expected 
cost per stage in all calculations, which makes no essential difference in 
either the definitions of the mappings T and T,,, of (5.8), (5.9), or the subsequent 
analysis. The basic expression 

g(i, u) + aE{J[f(i, u, w)]} 

may be written in terms of pu(u) as 

g(i, u) + a L Pu(u)J(j), iE S. 
j=l 

As a result, the mappings T and T,,, of (5.8) and (5.9) can be written 

T(J)(i) = min_ [g(i, u) +a± p,/u)J(j)], i = I, 2, ... , n, 
uEU(1) j=l 

T,,,(J)(i) = g[i, µ,(i)] + a L Pu[µ,(i)]J(j), i = I , 2, ... , n. 
j=l 

The functions J, T,,, (J) may be represented by the n-dimensional vectors 

J = [J~l)] , 
J(n) 

If we form the transition probability matrix 

P1n[~(l)]]. 
Pnn[µ,(n)] 

and consider the n-dimensional vector gµ defined by 

= [g[l, ;(l)]] 
g,,, . , 

g [n , µ,(n)] 

then we can write in vector notation 

T,,,(J) = g,,, + aP,,,J. 

The cost function J,,, corresponding to a stationary policy {µ, µ, ... } 

is, by Corollary 2.1, the unique solution of the equation 

1µ, = Tµ,(1µ,) = gµ, + aPµ,1µ,- (5.25) 

This equation can also be written as 

(/ - aP,,,)J,,, = gµ,, 
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or equivalently 

1µ, = (/ - aPµ,)- 1gµ,, 

where / denotes the n x n identity matrix. The invertibility of the matrix 
I - aP µ, is assured since we have proved that the system of equations 
representing the equation 1µ, = Tµ,(Jµ,) has a unique solution for any vector 
gµ, (cf. Corollary 2.1). 

Successive Approximation and Error Bounds 

Here we start with any n-dimensional vector 1 and successively com­
pute T(J), T2(J), ... , where the mapping Tis defined by (5.8). By Proposi­
tion 1, we have 

i ES. 

Furthermore, by Proposition 3, ll*(i) - T\l)U)I is bounded by a multiple 
of a geometric progression for all i E S. It is also of interest to note that 
the successive approximation method will yield an optimal policy after a 
finite number of iterations (see Problem 14). The method can be substantially 
improved thanks to the availability of certain error bounds, as we now 
proceed to explain. 

As an aid in understanding the nature of these bounds, note that the 
cost of a stationary policy {µ,, µ, , ... } is expressed as 

k=I 

We first observe that 

k=o k=I 

where 
f3 = min gµ,[i,µ,(i)], /3 = max gµ[i,µ,(i)]. 

i 

By using the preceding relations and by letting e be the unit vector e 
[1 ,1, ... , 1]' , we can bound the cost function Jµ, as follows: 

gµ + C':'.'3J , ,s; Jµ ,s; gµ + C~J ,. 
Thes_e b~unds will now be applied in the context of the successive ap­
proximation method. Suppose that we have a vector 1 and we compute 

Tµ,(1) = gµ, + aPµ,1. 
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By using this equation to eliminate gµ, from the equation 

we obtain 
1µ, = gµ, + aPµ,1µ,, 

which is a variational form of the equation 1µ, = Tµ,(J,_,J. It follows from 
this equation that 1 µ, - 1 is the cost vector associated with the policy 
{µ,, µ,, ... } and a cost per stage vector equal to Tµ,(J) - 1. Therefore, 
the bounds (5.27) apply with 1µ, replaced by 1µ, - 1 and gµ, replaced by 
T,,,(J) - J. It follows that 

where 

T,,,(1) - J + (~) e ~ J,,, - 1 
I - a 

~ Tµ,(1) - 1 + ( ay ) 
1-a 

y = min[T,,,(J)(i) - l(i)], y = max[Tµ(l)(i) - l(i)]. 
i i 

Equivalently, for every vector 1, we have 

Tµ(J) + (i rry a) e ,a;; J" 

~ Tµ, (1) + ( ay -) e 
1-a 

The following proposition is obtained by a more sophisticated application 
of the preceding argument. 

Proposition 4. For every vector 1, state i, and k, we have 

Tk(l)(i) + ck~ Tk+ 1(1)(i) + ck+ 1 (5.28) 

where 

~ l*(i) ~ Tk+ 1(l)(i) + ci+ 1 ~ T\l)(i) + ck, 

ck = _a_min[ T\J)(i) - Tk- 1(1)(i)], 
I - a iES 

Proof Denote 
y = min[ T(J)(i) - J(i)]. 

iES 

We have 

(5.29) 

(5.30) 

J + ye~ T(J). (5.31) 

Applying T to both sides, using the monotonicity of T and (5.13), 

T(J) + aye~ T2(J), (5.32) 
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and, because of (5.31), 
J + (1 + a::}ye ~ T(J) + a-ye~ T2(J). 

This process can be repeated, first applying T to obtain 

T(J) + (a + a::2)-ye ~ T2(J) + a::2-ye ~ T3(J), 

and then using (5.31) to write 

J + (1 + a:: + a::2)-ye ~ T(J) + (a + a::2)-ye 
~ T2(J) + a 2ye ~ T3(J). 

After k steps, this results in the inequalities 

J + (#. a}e,; T(J) + (t a}e 
,; T2(J) + (t a}ye,; ···,; T'+'(J). 

Taking the limit as k --+ =, we obtain 

(5.33) 

(5.34) 

(5.35) 

J + ( ~); ,; T( J) + c,e ,; T2(J) + ac1e .; .r, (5.36) 

where c 1 is defined by (5.29). Replacing J by T\J) in this inequality, we 
have 

Tk+1(J) + ck+1e ~ J*, 

which is the second inequality in (5.28). 
From (5.33), we have 

a::-y ~ min[T2(J)(i) - T(J)(i)], 
iES 

and consequently 

Using this in (5.36) yields 

T(J) + c1e ~ T2(J) + c2e, 
and replacing J by Tk- 1(1), we have the first inequality in (5.28). An 
analogous argument shows the last two inequalities in (5.28). Q.E.D. 

Notice that the error bounds (5.28) may be easily computed as a by­
product of the computations in the successive approximation method. The 
following example demonstrates their nature. 

Example 

Consider a problem where there are two states and two controls 

S = {l, 2}, C = {u1, u2
}. 

The transition probabilities corresponding to the controls u' and u2 are as shown 
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in Figure 5.2; that is, we have the transition probability matrices 

P(u') = [P11(u:) P12(u:)] = [! ~], 
P21(u) P22(u) 4 4 

P(u2) = [Pll(u:) P12(u:)] = [~ !] . 
P21(u) P22(u) 4 -i 

The transition costs are as follows: 

g(I, u1
) = 2, g(l, u2

) = 0.5, 

and the discount factor is a = 0.9. The mapping Tis given by 

T(J)(i) = min{ g(i, u1
) + at, pij(u1)J(j), 

g(i, u2) + a#, pij(u2)J(j) }, 

The scalars ck and erc of (5.29) and (5.30) are given by 

i = I, 2. 

ck= 
1 

: a min{Tk(J)(l) - Tk-l(J)(l), Tk(J)(2) - Tk- 1(1)(2)}, 

ck= 
1 

: a max{Tk(J)(l) - Tk- 1(1)(1), Tk(J)(2) - Tk- 1(1)(2)}. 

193 

The results of the successive approximation methoJ starting with the zero function 
10 [10 (1) = 10 (2) = OJ are shown in Table 5.1 and illustrate the power and practicality 
of the error bounds. 

In practice, one terminates the iterations of successive approximation 
when the difference (ck -- cd of the error bounds becomes sufficiently 
small. One can then take as final estimate of J* the "median" 

], = T'(J) + ("• ; c,) e 

3 
4 4 

I 
4 4 

3 
4 4 

2 2 2 2 
I 
4 4 

(a) (b) 

Figure 5.2 State transition diagram for Example I: (a) 11 - 11
1

: (b) 11 - 1r. 
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TABLE 5.1 Performam't' nf the Sm.'l"t>SSiw Appnnimation "'.\ lethod \\i th and 
,lithout t' rror Bounds of Pro~·ition 4 

A. I'Vo )(I) TVoK2) T'{J,,)(0 + t·,. r-t.J,, )( 1) + c".t T'-(_J., )(2) + Ct r-(J,,)(_) +c. 

0 0.00000 0 OO(l()(l 

0.50000 l.00000 5 0(1()0( 9 50000 5 50000 10.00000 

2 1.56_50 6.35000 3"'500 6 62500 

3 _ ~ 063 -62 7 767-0 7 23-50 
"'LQ(i_ i 'iW69 7 46031 
7 _,_14 7.4166., 5 33 

6 3 34321 .. _1,;_~ - .-0 _3.,o_-4 7 b2946 
i 3 n912 7.34563 "'6543"' 

.0993 . 362~ 7 6637_ ~ 053 

9 4. 21 0 7 331.24 ... 6 ... 633 

10 4.71156 3_935 7 6"'4(.)6 

11 7 32833 6716., 7 6.,32 1 

12 Z-94 7.67206 7 6727 ... 

13 7_3_77 7.67:!26 7 6 2'i7 
14 :.9.50<.\5 7 .32"'66 ... 67234 7.6"'248 
1 6.12 ~ 7 3276_ 7 67:!3-: 7 6 245 
16 6 2 ' 20.:- 7 _ 27b0 7.67240 7 67243 
17 6 42 163 7 32"'-9 7 67241 7 67242 

6.546"'0 7 327_ 9 7 67241 7 6 .. 242 

or the "average" 

J k = T" J + 1 a: ) L [ T"( J)(i) - Tk- I J)(i) ]e. 
ll( - O'. ,=t 

Both l)f these Yecwrs lie in the regil1n delineated hy the e1nw hl1unds. If 
there is a unique l)ptimal statilmary pl)Iicy {µ*. µ* . ... }. it can he shown 
[B~O] that the rate at which r and J, approach the l)ptimal cost Yector J* 
is gL)Wrned hy the suhdt>mind!IT eigenYalue of the transitil)n probability 
matrix P,,• . More precisely. kt A1 ••••• A,, be the eigenYalues L)f /\. orde red 
according t decreasing modulu : that i . 

I ,I:;,, I -'~···;.-:I nl, 
with 11. 1 equal tl1 l. Then A.: is the suhdl1minant eigenYalue . The speed of 
CL)nwrgence of J, - P- depends lHl how close IA.: I is to unity. If 
l"-:

1 
c::c l and ct l. then the rate L)f conn~rgence is slow: essentially. 

I;_ - J* converges w Lero like n ' . If l"-.: I "" 0. the rate of convergence is 
fast. [The adn.nced reader will gain Sl)me understanding of the reason fo r 
this by fir t verifying the quation {for all J and µ, *) 

T,.,.. (l - l µ.* = a.P,.,..(J - 1µ.*), 

and then assuming the existence l)f a st?t of linearly independent eigen­
vectors e1, e2 , ••• , e" co11 .. esponding to A1, A.2, ... , A,. with £> 1 = = 
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[I, 1, ... , 1]' . Then we have 

J 2 

for some scalars f 1, f 2 , ••• , f n, and the error of the succes'::ii ve approximation 
method can be written as 

j=2 

Using the error bounds of Proposition 4 amount<::, to a translation of T : .. ( J) 

along the vector e. This can eliminate the component cif 1e of the error. 
but cannot affect the remaining term c.i 2.7 _ 2 A.~f

1
e

1
, which diminishe'::i like 

cljA.2 lk with A.2 being the -;uhdominant eigenvalue (see abo [B20, M8], [M9), 
and Problem 26) . 

In the preceding example, it can he shown that µ,*(l) = 1/, µ,*(2) = 
u1

, and 

The eigenvalues of P,,_. are A 1 = 1 and A2 = - ~ and convergence is quite 
fast. On the other hand, there are -,ituation-, where convergence of the 
method even with the use of error hounds is very ...,Jow. For example, 
suppose that P,,_. is block diagonal with two or more blocks, or more generally 
correspond<::, to a <::,y-,tem with more than one ergodic cla-,-, hee Appendix 
DJ. Then it can be shown that the subdominant eigenvalue A. 2 is unity. and 
convergence is typically slow when a is near unity. 

A-; an example, consider three simple deterministic problems with a 
single policy and more than one ergodic class: 

Problem 1. n = 3, P,,_ = three-dimensional identity, g,,_[i, µ,(i)] i. 

Problem 2. n = 5, P,,_ = five-dimensional identity, g,,_[i, µ,(i)] = i. 

Problem 3. n 6, g,,_[i, µ,(i)] = i and 

() () () () () 

() () l () () () 

() l () () () () 
p 

() () () () l () µ. 

0 0 0 0 0 1 
0 0 0 J 0 0 

Table 5.2 shows the number of iteration-, needed by the -,ucces-,ive 
approximation method with and without the error hounds of Propo-,ition 4 
to find .I,, within a maximum coordinatewi'>e error of IO " max, I ./1, ( i )j. The 
starting function in all ca'>es wa'> taken to be zero. The perl'ormance i'> 
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TABLE 5.2 Number of Iterations for Successive Approximation Method with 
and without Error Bounds. The Problems Are Deterministic. Because the 
Subdominant Eigenvalue of the Transition Matrix Is Unity, the Error Bounds 
Are Ineffective. 

Problem 1 Problem 2 Problem 3 
a = 0.9 a = 0.99 a = 0.9 a = 0.99 a = 0.9 a = 0.99 

Without error bounds 
With error bounds 

131 
127 

1374 
1333 

131 
129 

1374 
1352 

132 
131 

1392 
1374 

rather unsatisfactory but, nonetheless, is typical of situations where the 
subdominant eigenvalue modulus of the optimal transition probability matrix 
is near unity. 

Gauss-Seidel Version of Successive 
Approximation 

In the successive approximation method described earlier, the ap­
proximate cost function is iterated on for all states simultaneously. An 
alternative is to iterate one state at a time, while incorporating into the 
computation the interim results. This corresponds to using the Gauss­
Seidel method for solving the nonlinear system of equations J = T(J) (see 
[04]) . 

For n-dimensional vectors J, define the mapping F by 

F(J)(I) = min [g(i , u) + a L pu(u)JU)] 
uEU(i) j= I 

(5 .37) 

and, for i = 2, ... , n , 

F(J)(i) = mi~ [g(i, u) + a;~ Pu(u)F(J)(j) + a± pu(u)J(j)]. (5.38) 
uEU(1) j= t j=i 

In words, F(J)(i) is computed by the same equation as T(J)(i) except that 
the previously calculated values F(J)(l), ... , F(J)(i - 1) are used in place 
of J(l), ... , J(i - I). Evidently the computation of F(J) is as easy as 
the computation of T(J), unless a parallel computer is used. 

Consider now the successive approximation method whereby we com­
pute J, F(J), F

2
(J), .... The following propositions show that the method 

is valid and provide an indication of better performance over the earlier 
successive approximation method . 

Proposition 5. Let J, J' be two n-dimensional vectors. Then for any 
k 0, 1, 

max!Fk(J)(i) - F\J')(i)I ~ cl maxjJ(i) - J'(i)I. 
~s ~s 

(5.39) 
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Furthermore, we have 

F(J*)(i) = J*(i), 

lim Fk(J)(i) = J*(i), 
k-+= 

i ES, 

i ES. 

197 

(5.40) 

(5.41) 

Proof It is sufficient to prove (5.39) for k = I. We have by the 
definition of F and Proposition 3, 

IF(J)(l) - F(J')O)I ~ a maxjJ(i) - J'(i)j. 
iES 

Also, using this inequality, 

IF(J)(2) - F(J')(2)1 ~ a max{IF(J)(l) - F(J')(l)j, 

IJ(2) - J'(2)1, ... , IJ(n) - J'(n)I} 

~ a maxi.JU) - J'(i)j. 
iES 

Proceeding similarly, we have, for every i and j ~ i, 

IF(J)(j) - F(J')(j)j ~ a maxjJ(i) - J'(i)/, 
iES 

so (5.39) is obtained for k = I. Relation (5.40) follows from definition 
(5.37) to (5.38) and the fact that J* = T(J*). Relation (5.41) follows from 
(5 .39) and (5.40). Q.E.D. 

then 

Proposition 6. If a vector J satisfies 

J(i) ~ T(J)(i) ~ J*(i), i ES, 

i ES, k = 1, 2, .... (5.42) 

Proof. The proof is immediate by using definition (5.37) to (5.38) and 
the monotonicity property of T. Q.E.D. 

The preceding proposition provides the main motivation for employing 
the mapping F in place of T in the successive approximation method. A 
similar result may be proved for n-dimensional vectors J satisfying J* ~ 
T(J) ~ J. The faster convergence of the Gauss-Seidel version over the 
ordinary successive approximation method has been confirmed in practice 
through extensive experimentation. This comparison is somewhat misleading. 
however, because the ordinary method will normally be used in conjunction 
with the error bounds of Proposition 4. One may also employ error bounds 
in the Gauss-Seidel version (see Problem 3). However, there is no clear 
superiority of one method over the other when bounds are introduced. 
Furthermore, the ordinary method is better suited for parallel computation 
than the Gauss-Seidel version. 
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Elimination of Nonoptimal Actions in Successive 
Approximation 

We know from Proposition 2 that, if ii E U(i) is such that 
n 

g(i, u) + a L Pu(il)J*(j) > J*(i), 
j=I 

(5.43) 

then ii cannot be optimal at state i; that is, for every optimal stationary 
policy{µ,*,µ,*, ... }, we have µ,*(i) i- ii. Therefore, if we could be sure 
that (5.43) holds, we could safely eliminate ii from the admissible set U(i). 
While we cannot check (5.43) directly since we do not know the optimal 
cost function J*, we can guarantee that it holds if 

g(i, u) + a L Pu(il)!_(j) > J (i), (5.44) 
j=I 

where J and !__ are upper and lower bounds satisfying 

!__ (i) ~ J*(i) ~ J (i), i ES. 

The preceding observation is the basis for a useful application of the 
error bounds given earlier in this section. As these bounds are computed 
in the course of the successive approximation method, the inequality (5 .44) 
can be simultaneously checked and nonoptimal actions can be eliminated 
from the admissible set with considerable savings in subsequent computations. 
Since the upper and lower bound functions J and J converge to J*, it is 
easily seen [taking into account the finiteness of the constraint set U(i)] 
that eventually all nonoptimal ii E U(i) will be eliminated, thereby reducing 
after a finite number of iterations the set U(i) to the set of controls that 
are optimal at i. In this manner the computational requirements of successive 
approximation can be substantially reduced. However, the amount of com­
puter memory required to maintain the set of controls not as yet eliminated 
at each i E S may be increased. 

Policy Iteration 

The policy iteration algorithm operates as follows. An initial stationary 
policy 1r

0 = {µ,0
, µ, 0

, ••• } is adopted, and the corresponding cost function 
J ,,,o = J 1To is calculated. Then an improved policy 1r

1 = {µ, 1, µ, 1, ... } is 
computed by minimization in the DP equation corresponding to J ,,,o and the 
process is repeated. 

The algorithm is based on the following proposition. 

Proposition 7. Let 1r = {µ,, µ,, . .. } and 1r = {µ, µ, ... } be stationary 
policies such that 

g[i, µ(i)] + a L PuOr(i)]J,,,(j) n 

i°"' 1 = min [g(i , u) + a L Pu(u)J,,,(j)] , 
uEU(i) j=I 

(5.45) 
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or equivalently 

Then we have 

Jµ:(i) ~ Jµ,(i), i ES. (5.46) 

Furthermore, if 1r is not optimal, strict inequality holds in (5.46) for at least 
one state i E S. 

Proof. From Corollary 2.1 and (5 .45), we have for every i E S, 

Jµ,(i) = g[i, µ,(i)] + a L P;j[µ,(i)]Jµ,(j) 
j= I 

~ g[i, µ,(i)1 + a I PdP:U)1Jµ,U) 
j=I 

= Tµ:(Jµ,)(i). 

Applying repeatedly Tµ: on both sides of this inequality and using the mon­
otonicity of T µ: and Corollary 1. 1, we obtain 

J ~- T-(J ) ~ ··· ~ T'!...(J ) ~ ··· ~ lim T'!...(J ) = J-µ, µ, µ, µ, µ, µ. µ, µ., 
k-+oo 

proving (5.46). If Jµ. = Jµ:, then from the preceding relation 1µ. = Tµ:(1
1
,.) 

and from (5.45) we-have Tµ:(Jµ.) = T(Jµ.), so that 1µ. = T(Jµ.) and hence 
1µ. = 1* by Proposition 2. Thus 1r = {µ, µ, ... } must be optimal. It 
follows that strict inequality holds in (5 .46) for some i E S if 1r is not 
optimal. Q.E.D. 

Policy Iteration Algorithm 

Step 1 (Initialization) Guess an initial stationary policy 

rro = {µo, µo, ... }. 

Step 2 (Policy Evaluation) Given the stationary policy 

1Tk = {µ\ µ\ ... }, 
compute the corresponding cost function J µk from the linear system of equations 

(/ - aPµ.k)lµ.k = gµ.k· 

Step 3 (Policy Improvement) Obtain a new stationary policy 1rk+ 1 = {µ*+ 1, 

µ k+ 
1

, • • • } satisfying for all i E S 
n 

gfi, µk+ 1(i)] + a L Pu[µk+ 1(i)]Jµ.k(j) = min [g(i, u) + a L Pu(u)lµ.kU)] 
j= I uEU(i) j= I 

or equivalently 

Tµ.k+1(Jµ.k) = T(J,,,k) . 

If 1µ.k = T(lµ.k) stop; else return to step 2 and repeat the process. 

Since the collection of all stationary policies is finite (by the finiteness 
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of S and C) and an improved policy is generated at every iteration, it 
follows that the algorithm will find an optimal stationary policy in a finite 
number of iterations and thereby terminate. This property of the policy 
iteration algorithm is its main advantage over successive approximation, 
which in general converges in an infinite number of iterations. On the other 
hand, finding the exact value of J,,,k in step 2 of the algorithm requires 
solution of the system of linear equations representing J,,,. = T,,,.(J,,,, ). The 
dimension of this system is equal to the number of states, and thus when 
this number is very large the method is not attractive. 

We demonstrate the algorithm by means of the example considered 
earlier in this section. 

Example (continued) 

Step 1 Let us select an initial policy 1r
0 = {µ,0

, µ,0
, ••• }, where 

µ,o(l) = u1, µ,o(2) = u2. 

Step 2 We obtain 1µ.o through the equation 1µ.o = Tµ. o(Jµ.") or equivalently 

1µ.o(l) = g(l, u 1
) + ap 11 (u 1)1µ.o(l) + ap12(u 1)1µ.o(2), 

lµ.o(2) = g(2, u 2) + <XP21(u2)lµ.o(l) + <XP22(u2)1µ.o(2). 

Substituting the data of the problem, 

l µ.o( l) = 2 + 0.9 X ¾ X J,,,o(l) + 0.9 X ¼ X lµ.o(2), 

J,,,o(2) = 3 + 0.9 X ¼ X lµ.o(l) + 0.9 X ¾ X 1µ.o(2). 

Solving this system of linear equations for 1µ.o(l) and 1µ.o(2). we obtain 

l µ.o(l) = 24.12, lµ.o(2) = 25.96. 

Step 3 We now find µ, 1
(1) and µ, 1(2) satisfying Tµ. 1(1µ.u) = T(Jµ.o). We have 

T(Jµ.o)(l) = min{2 + 0.9(i X 24.12 + ¼ X 25.96), 

0.5 + 0.9(! X 24.12 + ¾ X 25.96)} 

= min{24.1 2, 23.45} = 23.45, 

T(Jµ.o)(2) = min{l + 0.9(¾ X 24.12 + ~ x 25.96), 

3 + 0.9(¼ X 24.12 + ! X 25.96)} 

= min{23 . 12, 25.95} = 23.12. 

The minimizing controls are 

µ,'(l) = u2, 
Step 2 We obtain lµ., through the equation 1µ., = Tµ.,(Jµ.1): 

lµ.1(1) = g(l, u 2
) + ap 11 (u 2)1µ.,(l) + apdu 2)1µ.i(2), 

lµ.1(2) = g(2, u') + ap2, (u 1)lµ.1(1) + ap22 (u 1)1µ.1(2). 

S~bstitution of the data of the problem and solution of the system of equations 
yields 
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Step 3 We perform the minimization required to find T(J ,,_,): 

T(J"1)0) = min{2 + 0.9(¾ x 7.33 + ¼ x 7.67) , 

0.5 + 0.9(¼ X 7.33 + ¾ X 7.67)} 

= min{8.67, 7.33} = 7.33, 

TU"1 )(2) = min{I + 0.9(¾ x 7.33 + ¾ x 7.67) , 

3 + 0.9q X 7.33 + J X 7.67)} 

= min{7.67, 9.83} = 7.67. 

201 

Hence we have 1µ, = TU,,_,), which implies that {µ, 1
, µ:, ... } i'> optimal and 

J,,,. = J*: 

J*(l) = 7.33 , 1*(2) = 7.67. 

Approximate Policy Iteration and Adaptive State 
Aggregation 

We remarked earlier that, when the number of states is large. the 
policy evaluation step of the policy iteration algorithm is time com.urning 
and detracts from the practicality of the method. One way to get around 
this difficulty i-, to carry out policy evaluation approximately by tinding for 
each k an approximate solution ] ,,l of the system 

1µ.• = gµ.k + aP ,,lJ,,,. . 

A natural way to do thi-, is to carry out several successive approximation 
steps aimed at solving the preceding system. Here we enter the kth policy 
evaluation step with the result Tµ, (] ;;,' , ) = T(} µ.' ,) of the policy improvement 
step , and approximate J µJ by 

] µ.k = r;k(] µ.k -1 ) , 

where mis some po<:,itive integer. Error bounds such as the ones of Proposi­
tion 4 can be used to refine this process. Taking m = 1 corresponds to a 
successive approximation method where the policy evaluation step i.., skipped 
altogether, while taking m = = corresponds to policy iteration v. hereby 
the policy evaluation step is performed iteratively via the successive ap­
proximation method. Analysi'- aod computational experience ([PI8]. [P19]) 
suggest that it is usually best to take m an integer that is greater than unity 
and is determined by trial and error. A key idea here is that a succe-,sive 
approximation step involving a single policy [evaluating T,, (1) for '>Orne µ, 

and JJ is much less expensive than a step involving all policies [evaluating 
T(J) for some J], when the number of controls available at each -,tale i-, 
large. Note that Gauss-Seidel steps can he used in place of the usual 
successive approximation steps, and this results typically in more efficient 
computation. 

It is not e-,sentiai to use successive approximation to solve approximate!::, 

the system 
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Another possibility is to solve instead a system of smaller dimension obtained 
by lumping together the states of the original system into a smaller set of 
aggregate states. More specifically, for a fixed stationary policy {µ,, µ,, 
.. . }, we partition the state space S into m disjoint subsets S 1 , S2 , ••• , 

Sm, 

S = S1 U S2 U ... U Sm, 

called aggregate states. Suppose that we have an estimate J of J,,, and 
that we postulate that over the states s of every aggregate state S, the 
variation J,,,(s) - J(s) is constant. This amounts to hypothesizing that for 
some m-dimensional vector y we have 

J,,, - J = Wy, 

where the ith column of the n x m matrix W has unit entries at coordinates 
corresponding to states in S; and all other entries equal to zero. From the 
equations T,,,(J) = g,,, + a.P,,,J and J,,, = g,,, + a.P,,,J,,, , we have 

(I - a.P,,,)(J,,, - J) = T,,,(J) - J . 

This is the variational form of the equation J,,, = T,,,(J,,,) discussed earlier 
and can be used equally well for evaluating J,,,. Let us multiply both sides 
with the transpose W' and use the equation J,,, - J = Wy. We obtain 

W'(l - aP,,,)Wy = W'(T,,,(J) - J) , 

and this equation can be solved for y, giving 

y = [W'(l - aP,,,)Wr 1W'(T,,,(J) - J) . 

Therefore, by substitution in the equation J,,, - J = Wy, we have 

J,,, = J + W[W'(I - aP,,,)Wr 1W '(T,,,(J) - J), 

and, by applying T,,, to both sides, 

J,,, = T,,,(J,,,) = T,,,(J) + aP,,,W[W'(l - aP,,,)Wr 1W '( T,,,(J) - J). 

We can conclude therefore that, if the variation of J,,,(s) - J(s) is 
roughly constant over each aggregate state, then a good approximation for 
J,,, is given by 

J,,, = T,,,(J) + aP,,,W[W'(I - aP,,,)Wr 1W'(T,,,(J) - J). 

To obtain this approximation, given J, we need to: 

1. Compute T,,, (J). 

2. Delineate the aggregate states (i.e., define W). 

3. Solve for the vector y in the system 

W'(l - aP,,,)Wy = W'(T,,,(J) - J) 

and approximate J,,, using 

J,,, = T,,,(J) + aP,,,Wy. 

(5.47) 

A key point is that the dimension of (5.47) is m (the number of 
aggregate states), which can be much smaller than n (the dimension of the 
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system 1µ. = Tµ.(1µ. ) arising in the policy evaluation phase of policy iteration). 
In fact, a small value of m , say 3 to 6, is often very effective (see [B20]). 

Note that it is possible to use more than one successive aggregation 
step to approximate the policy evaluation step of the policy iteration algorithm. 
Furthermore, experimentation and analysis [B20] show that the most effective 
way to operate the method is to precede and follow each aggregation step 
with several successive approximation steps ; that is , applications of the 
mapping T µ. on the current iterate . The number of successive approximation 
steps following an aggregation step is either fixed or is based on algorithmic 
progress; that is, an aggregation step is performed when the progress of 
the successive approximation steps becomes relatively small. 

There is no proof of convergence of the scheme just described. On 
the basis of computational experimentation , it appears reliable in practice. 
Its convergence nonetheless can be guaranteed by introducing a feature 
whereby the error bounds of Proposition 4 are calculated at the successive 
approximation step (step 1), and a requirement is imposed that the subsequent 
aggregation step is skipped if these error bounds do not improve by a 
certain factor over the bounds computed prior to the preceding aggregation 
step. 

The system (5.47) has an interesting interpretation . Suppose we multiply 
both sides with the diagonal matrix 

n 11 0 
n2- I 

N = 

0 

where n; is the number of states in the aggregate state S;. Then a straight­
forward calculation shows that the system (5.47) takes the form 

(I - aP)y = r, 

where p is a transition probahi!ity m x m matrix for the aggregate Markov 
chain with elements 

1 
Pu = - L L Ps,(µ,), i,j, = 1, ... , m, 

n; sES; tES1 

and r is the vector having as ith coordinate the average value of 
Tµ.( J ) - Jover the ith aggregate state 

r; = _!_ L [ T µ. ( J)(j) - J (j)], 
nijES; 

(see Figure 5.3). Thus we can view solution of system (5.47) as a policy 
evaluation step for the aggreiate Markov chain, and for cost per stage for 
each aigregate state i equal tor; - the average Tµ(J) - 1 m·er that state. 
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Figure 5.3 Interpretation of the adaptive aggregation method. In this example 
the aggregate states are S1 = {l, 2, 3}, S2 = {4, 5}, and S3 = {6}. The aggregate 
Markov chain has transition probabilities P11 = ½(P21 + P23), P12 = !<Pi• + 
p34), Pn = 0, P21 = ½(p4z + PsJ), P22 = ½P•s, P2J = ½P46, PJ1 = 0, PJ2 = Ps6, and 
p33 = O. An aggregation step can be interpreted as a policy evaluation step 
involving the aggregate Markov chain. 

The key issue is how to identify the aggregate states S,, ... , S,,, in 
a way that the error 1µ. - J is of similar magnitude on each one. One way 
to resolve this is to group states according to magnitude of the differences 
Tµ.(J)(i) - J(i). By this we mean that for each state i, we set i E S 1 if 
Tµ.(J)(i) - J(i) c, and 

if Tµ.(l)(i) - J(i) - c - (k - l)a E (0, a], 

where 

c = min[ Tµ.(J)(i) - J(i)], c = max[ Tµ.(l)(i) - J(i)], 
i i 

c - c a=--. 
111 

This choice is based on the conjecture that, at least near convergence, 
T,.,.(J)(i) - J(i) will be of comparable magnitude for states i for which 
1µ.(i) - J(i) is of comparable magnitude. This is certainly true if P is the 
identity matrix, but it turns out to be true also in other situations exemplified 
by the case when the Markov chain has more than one ergodic class, which 
is precisely the type of problem where the successive approximation method 
converges slowly. We refer to [B20) for detailed analysis and computational 
results. In particular, for problems involving several ergodic classes it is 
important to carry out several (pure) successive approximation steps before 
carrying out a single aggregation step. This has the effect of making both 
J,.,.(i) - J(i) and T,.,_(J)(i) - J(i) of comparable magnitude within each 
ergodic class prior to the aggregation step. 

It is worth noting that the aggregate states can change from one 
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iteration to the next, and this is our reason for characterizing the aggregation 
scheme as adaptive. Furthermore, the criterion used to delineate the aggregate 
states does not exploit any special problem structure. In some cases it is 
possible to take advantage of existing special structure and modify accordingly 
the method used to form the aggregate states. 

To illustrate the effectiveness of the adaptive aggregation method, 
consider the three deterministic problems described earlier (cf. Table 5 .2), 
and the performance of the method with two, three, and four aggregate 
states, starting from the zero function. The results given in Table 5.3 should 
be compared with those of Table 5 .2. 

It is intuitively clear that the performance of the aggregation method 
should improve as the number of aggregate states increases, and indeed 
the computational results bear this out. The two extreme cases where 
m = n and m = I are of interest. When m = n, each aggregate state has 
a single state and we obtain the policy iteration algorithm. When m = 1, 
there is only one aggregate state ; we have 

and a straightforward calculation shows that eyuation (5.47) yields 

l " 
y = n(l - a) ~[ T,,(J )(i) - J (i)]. 

From this equation we obtain the approximation 
11 

1 µ. = T,,( J ) + W~(l ~ a) ~[T,,(J)(i) - J (i)] , 

which amounts to shifting the result T,,(J) of successive approximation to 
a vector that lies somewhere in the middle of the error bound range given 
by Proposition 4. Thus we may view the aggregation scheme as a continuum 
of algorithms with policy iteration and successive approximation (coupled 
with the error bounds of Proposiuon 4) induded as the two extreme special 
cases. 

TABLE 5.3 Number of Iterations of Adaptive Aggregation Methods with Two, 
Three, and Four Aggregate States to Solve the Problems of Table 5.2 

Number of 
Aggregate Problem 1 Problem 2 Problem 3 

States a= 0.9 a = 0.99 a= 0.9 a= 0.99 a= 0.9 a= 0.99 

2 14 13 9 9 83 505 

3 1 1 3 3 64 367 

4 3 3 26 354 



206 Infinite Horizon Problems: Theory Chap. 5 

Linear Programming 

As discussed earlier, we have 

J ~ T(J) ⇒ J ~ J* = T(J*). 

Thus it is clear that J*(l), ... , J*(n) solve the following maximization 
problem (in .X.1, ••• , An): 

n 

max LA; 
i=I 

subject to 
i = 1, ... , n, 

where the function JA: S ~ R is defined by 

The problem is written 

subject to 

JA(i) = A;, i = 1, ... , n. 

j=I 

max LA; 
i=I 

i = 1, ... , n, u E V (i). 

This is a linear program with n variables and as many as n x m constraints, 
where m is the maximum number of elements of the sets V(i). As n 
increases , its solution becomes more complex, and for very large n and m 
(in the order of several hundreds) the linear programming approach becomes 
impractical. 

For the example considered in this section, the linear programming 
problem takes the form 

maximize A1 + A2 

subject to A1 ~ 2 + 0.9(¾>-.. 1 + ¼.X.2), 

A2 ~ 1 + 0.9(¾>-.. 1 + ¼.X.2), 

A. 1 ~ 0.5 + 0.9(¼.X. 1 + ¾.X.2), 

A2 ~ 3 + 0.9(¼.X. 1 + ¾.X.2). 

5.3 THE ROLE OF CONTRACTION MAPPINGS 

Two key structural properties in DP models are responsible for most of 
the mathematical results one can prove about them. The first is the mon­
otonicity property of the mappings T and T,,_ (cf. Lemma l in Section 5.1). 
This property is fundamental for the model of this chapter. For example, 
it forms the basis for the results to be shown in the next section. 

When the cost per stage is bounded and there is discounting, however, 
we have another property that strengthens the effects of monotonicity, the 
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fact that the mappings T and T,,, are contraction mappings. In this section 
we explain the meaning and implications of this property. The material in 
this section is conceptually very important since contraction mappings are 
present in several additional DP models. However, the reader can also 
skip this section without loss of continuity. Abstract DP models and the 
implications of monotonicity and contraction are explored in detail in [D2], 
[B 16], and [823]. 

Let B(S) denote the set of all bounded real-valued functions on S. 
With every function J: S ~ R that belongs to B(S) we associate the scalar 

11111 = maxJJ(x)J. 
xES 

(For the benefit of the advanced reader we mention that the function 11·11 

may be shown to be a norm on the linear space B(S), and with this norm 
B(S) becomes a complete normed linear space, i.e., a Banach space [L9].) 
The following definition and theorem are specializations to B(S) of a more 
general notion and result (see, e.g., references [L5] and [L9]). 

Definition. A mapping H:B(S) ~ B(S) is said to be a contraction 
mapping if there exists a scalar p < 1 such that 

IIH(J) - H(J')II E; pill - I'll, for all J, J' E B(S), 

where 11·11 is as in (5.47). It is said to be an m-stage contraction mapping 
if there exists a positive integer m and some p < l such that 

IIHm(J) - ~(J')II:::;;; pill - I'll, for all 1 , J' E B(S), 

where Hm denotes the composition H ... Hof H with itself m times. 

The main result concerning contraction mappings is as follows. 

Contraction Mapping Fixed-Point Theorem. If H:B(S) _,,. B(S) is a 
contraction mapping or an m-stage contraction mapping, then there exists 
a unique fixed point of H; that is, there exists a unique function J* E B(S) 

such that 
H(J*) = J*. 

Furthermore, if J is any function in B(S) and Hk is the composition of H 
with itself k times, then 

Proof. See reference [L5] or [L9]. 

Now consider the mappings T and T,,, defined by (5.8) and (5.9). 
Proposition 3 and Corollary 3.1 show that T and T,,, are contraction mappings 
(p = a). As a result, the convergence of the successive approximation 
method to the unique fixed point of T follows directly from the contraction 
mapping theorem. Notice also that, by Proposition 5, the mapping F defined 
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by (5.37) and (5.38) is also a contraction mapping with p = a, and the 
convergence result of Proposition 5 is again a special case of the fixed­
point theorem. 

5.4 UNBOUNDED COSTS PER STAGE AND 
LJNDISCOONTED PROBlEMS 

In this section we consider Problem I but relax Assumption D by allowing 
a ;::: I and costs per stage that are unbounded above or below. The com­
plications resulting are substantial, and the analysis required is considerably 
more sophisticated than the one under Assumption D. The main difficulty 
is that Proposition 1 and the results that depend on it need not be true 
anymore even if a < 1. We will assume that one of the following two 
assumptions is in effect in place of Assumption D. 

Assumption P (Positivity). t The function g in the cost functional (5 .2) 
satisfies 

0 ~ g(x, u , w), for all (x, u , w) ES X C X D . (5.48) 

Assumption N (Negativity). The function gin the cost functional (5.2) 
satisfies 

g(x, u, w) ~ 0, for all (x , u , w) ES x C x D . (5.49) 

In problems where reward or utility per stage is nonnegative and total 
discounted expected reward is to be maximized, we may consider minimization 
of negative reward, thus coming within the framework of Assumption N. 

Note that when a < 1, and g is either bounded above or below, we 
may add a scalar tog so that either (5.48) or (5.49) is satisfied. An optimal 
policy will not be affected by this change since, in view of the presence 
of the discount factor, the addition of a constant r to g merely adds 
(1 - a)- 1r to the cost associated with every policy. 

One complication arising from unbounded costs per stage is that, for 
some initial states x0 and some admissible policies 1r = {µ,0 , µ, 1 , ••• } , the 
cost J 1T(x0 ) may be + = (in the case of Assumption P) or - = (in the case 
of Assumption N). Consider the following example. 
Example 1 
Let the system equation be 

xk+I = f3xk + uk, k = 0, 1, 2, ... , 

where xk, uk E R, k = 0, I, . . . , and f3 is a positive scalar. The control constraint 

t Problems corresponding to Assumption P are sometimes referred to in the research 
literature as negative DP problems [S28]. In these problems the objective function is maximized 
and the reward per stage is negative. Similarly. problems corresponding to Assumption N 
are sometimes referred to as positive DP problems [B28, S28]. 
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is lukl ~ 1 and the cost is 
N-1 

I.ho) = lim L cllxd-
N-00 k 0 

Consider the policy ii {µ,, µ,, ... }, where µ,(x) = O for all x E R. Then 
N-1 

J ir (xo) = lim L akf3klxol, 
N--->oo k=O 

and hence 

Jir(xo) = = , if x0 =I= 0, a/3 ~1, 

and J*(xo) is finite otherwise. It is also possible to verify that when f3 > I and 
a/3 ~ 1 the optimal cost J*(x0 ) is equal to + ex:, for lxol ? 11({3 l) and is finite 
for lxoJ < 11({3 ~ 1). The problem here is that when {3 > 1 the system is unstable, 
and in view of the restriction ort the control it may not be possible to force the 
state- near zero once it has reached sufficiently large magnitude. 

There is not much that can be done about the possibility of the cost 
function being infinite for some policies. The presence of a discount factor 
a < I does not help very much since the product clg(xk, uk, wd may still 
be bounded away from zero as k ~ = for some state and control trajectories. 
To cope with this situation, we conduct our analysis with the notational 
understanding that the costs 11T(x0) and J*(x0) may be +=(-=)under P 
(N) for some initial states x 0 and policies 1r E n. In other words, we 
consider J1r(·) and J*(·) to be extended real-valued functions. In fact, the 
entire subsequent analysis is valid even if the cost g(x, u, w) is + = ( - =) 
for some (x, u, w). 

The results to be presented provide characterizations of the optimal 
cost function J*, as well as optimal stationary policies. They also provide 
conditions under which the successive approximation method yields in the 
limit the optimal cost function J*. In the proofs we will often need to 
interchange expectation and limit in various relations. This interchange is 
valid under the assumptions of the following theorem. 

Monotone Convergence Theorem. Let P = (p 1, p 2 , ••. ) be a probability 
distribution over a countable set S denoted by S = { 1, 2, ... } . Let { h N} 
be a sequence of extended real-valued functions on S such that 

0 ~ hN(i) ~ hN+iU), i, N = I, 2, .... 

Let h: S ~ [0, + =] be the limit function 

h(i) = lim hN(i). 
N-'>= 

Then 

lim L p;hN(i) = L P; lim hN(i) = L P;h(i). 
N -'>00 i= 1 i= I N-+oo i I 
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Proof We have 

i = I i=I 

By taking the limit, we obtain 

lim L p;hN(i) ~ L P;h(i), 
N-00 i = I i = I 

so it remains to prove the reverse inequality. For every integer M ~ I, 
we have 

M M 

lim L p;hN(i) ~ lim L p;hN(i) = L p;h(i), 
N-00 i= I N-00 i= I i =I 

and by taking the limit as M ~ = the reverse inequality follows. Q.E.D. 

Bellman's Equation: Conditions for Optimality 

Proposition 8. Under either Assumption P or N the optimal cost 
function J* satisfies 

J*(x) = min E {g(x , u , w) + aJ*[f(x, u , w)]}, xES (5 .50a) 
uEU(x) w 

or, in terms of the mapping T of (5 .8), 

J* = T(J*) . (5 .50b) 

Proof Let 1T = {µ,0 , µ, 1, ••• } be an admissible policy, and consider 
the cost J1r(x) corresponding to 1T when the initial state is x. We have 

J1r(x) = E{g[x, µ,0 (x), w] + V1r[f(x , µ,0 (x) , w)]}, (5 .51) 
w 

where, for all x1 E S, 

In this equation, xk+ 1 is generated from xk, µ,k(xk), wk by the system equation 
(5.1). In other words, V1T(x 1) is the cost from stage I to infinity using 1T 

when the initial state is x1• We have clearly 

V1r (x,) ~ aJ*(x,) , for all x1 E S . 

Hence from (5.51) 

J1r (x) ~ E{g[x, µ,0 (x) , w] + aJ*[f(x , µ,0 (x) , w)]} 
w 

~ min E{g(x , u , w) + aJ*[f(x , u, w)]} . 
uEU(x) w 



Sec. 5.4 Unbounded Costs per Stage and Undiscounted Problems 211 

Taking the minimum over all admissible policies, we have 

min 1,,/x) = J*(x) ~ min E{g(x, u, w) + aJ*[f(x, u, w)]} = T(J*)(x) . 
-rr uEU(x) w 

Thus it remains to prove that the reverse inequality also holds. 
Assume P, let k} be a positive sequence, and consider an admissible 

policy 7T = {µ0 , µ 1 , • • • } such that 

T,;,/l*)(x) ~ T(J*)(x) + Ek, x ES, k = 0, 1, .... 

It was shown earlier that T(J*) ~ J*, so from the preceding inequality we 
obtain 

x Es, k = 0, 1, ... . 

Applying T,;,k _ 1 on both sides of this relation, we have 

(T,;,k-lT,;,)(J*)(x) ~ T,;,k_,(J*)(x) + aEk 

~ T(J*)(x) + Ek-1 + aek 

~J*(x) +Ek-I+ aek. 

Continuing this process , we obtain 
k 

(TJi.oT,;,
1 

••• T,;,)(J*)(x) ~ T(J*)(x) + L aiE;. 
i=O 

Taking the limit as k ~ =, it follows that 

XE S. 
i=O 

Since the sequence k} is arbitrary, we can take ~;':, 0 a;e; as small as desired, 
and we obtain J *(x) ~ T(J*)(x) for all x E S. Combining this with the 
inequality J*(x) ~ T(J*)(x) shown earlier, the result follows (under Assumption 
P). 

Assume N and let J N be the optimal cost function for the corresponding 
N-stage problem N-i 

JN(x0) = m~n E{ ,~o alg[x,, µ,(x,), w,1}. (5.52) 

We first show that 

xE S. (5.53) 
N-+oo 

Indeed, in view of Assumption N we have J* ~ J"t for all N, so 

J *(x) ~ lim JN(x), x ES. (5.54) 
N-+oo 

Also, for all 7T 
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and by taking the limit as N ~ 00 

J7T(x) ~ lim JN(x), xES. 
N->oo 

Taking minima over 1r E TI, we obtain J*(x) ~ limN-= J N(x), a,1d combining 
this relation with (5.54) we obtain (5.53). 

For every admissible µ,, we have 

T,,,(JN) ~ IN+I 

and by taking the limit as N ~ = and using the monotone convergence 
theorem and (5.53), we obtain 

Tµ,(1*) ~ J* . 

Taking minimum over µ,, we obtain T(J*) ~ J*, which combined with the 
inequality J * ~ T(J*) shown earlier proves the result under Assumption 
N. Q.E.D. 

Similarly as in Corollaries 1. 1, 2.1, and 3 .1, we have: 

Corollary 8.1. Let 1r = {µ,, µ,, ... } be a stationary policy. Then 
under Assumption P or N, we have 

Jµ,(x) = E{g[x, µ,(x), w] + al,,.[f(x, µ,(x), w)]} 
w 

or, in terms of the mapping Tµ, of (5.9), 

1µ, = Tµ,(1µ,) . (5.55) 

Contrary to the case of Assumption D, the optimal cost function J* 
under Assumption P or N need not be the unique solution of Bellman's 
equation 

J(x) = T(J)(x) = min E{g(x, u, w) + al [f(x, u, w)]}. (5.56) 
uEU(x) w 

Consider the following example. 
Example 2 
Let S = [0, +=) (or S = (-=, OJ) and 

g(x, u, w) = 0, 

Then for every /3, the function J given by 

X 
f(x , u, w) = -. 

a 

J(x) = f3x , x ES, 

is a solution of (5.56) and hence T has an infinite number of fixed points in this 
cac:;e. Note, however, that there is a unique fixed point within the class of bounded 
functions, the zero function J0 (x) == 0, which is the optimal cost function for this 
problem. More generally, it can be shown by using the following Proposition 9 
that if a < 1 and there exists a bounded function that is a fixed point of T, then 
that function must be equal to the optimal cost function J* (see Problem 15). When 
a = I, Eq. (5.56) may have an infinity of solutions even within the class of bounded 
functions. This is clear since if a = I and J(·) is any solution of (5.56), then 
J (·) + r, where r is any scalar, is also a solution. 
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The optimal cost function J* , however, has the property that it is the 
smallest (under Assumption P) or largest (under Assumption N) fixed point 
of T in the sense described in the following proposition. 

Proposition 9. (a) Under Assumption P, if J:S ~ (-=, +=] satisfies 
] ? T(]) and either ] is bounded below and a < 1, or J ? 0, 
then J ? J*. 

(b) Under Assumption N, if ]:S ~ [-=, +=)satisfies] ~ T(]) 
and either ] is bounded above and a < 1, or J ~ 0, then J ~ J * . 

Proof. (a) Under Assumption P, let r be a scalar such that ] (x) + 
r ? 0 for all x E S and if a ? I let r = 0. For any sequence {Ek} with 
Ek > 0, let if = {ji,0 , ji 1, •• • } be an admissible policy for which we have 
for every x E S and k, 

E{g[ x, .U1,; (x ) , w ] + o:][f( x, ,U1,; (x ) , w)]} ~ T(])(x ) + E1,;. (5 .57) 
w 

Such a policy exists since T(] )( x) > - = for all x E S. We have for any 
initial state x 0 E S, 

J*(x0) = min lim E{ N::{ a1-g [x1,; . µ.. i,;( x 1,; ) , w1,; ]} 
1T N-+oo Wk k=O 

E{ \" - N....; ! k . ( ) ] l 
~ min lim inf a· [ J (xs) + rl + ~ a o' LX1.;, µ..1,; xk , wk j 

1T N-+00 Wk k=O 

~ Jim inf E{a·''[ ] <xs) , r] --t- I 1 

akg [x1,;. jii.;(xd. wd}-
N-+-x. l\".(_ k=O 

Using (5.57) and the assumption ] ? T( ]) . we obtain 

E{ ol'] (xN) + ~: a*g[x,, iJ,,(x,), w,]} 
= E{aN] [j(xN 

1
, .u.,·- 1 (.x-_,. 1 ) . 11•,._ 1 )] + Nit Llg [xk, jik(xi:) , w.]} 

Wk k=O 

E{ N- I - ) ~2 /. f • - ( • ) ' 1} + .V I 
,s; "'k a T(J )(xN-J + f::o a gL.\ 1-, µ.. 1- .x, . H , a E,v 1 

~ E{aN-t ] (xN 1) + NI
2 

akg[xk . .Uk(xA) . wd} + aN-1E_v 1 

Wk k=O 

~ E{aN- 2](x_,._
2

) + I 3 

clg[x1-, µ.,(x~). w;,]} + aN- 2
€.v. 2 + aN-IE_,·- 1 

Wk k=O 

N-1 

~ ] (x0 ) + L akek. 
k=O 
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Combining these inequalities, we obtain 

( 

N-1 ) 

J*(x0)::;;; l(x0) + lim aNr + L akek . 
N-+00 k=O 

Since the sequence {ck} is arbitrary (except for Ek > 0), we may select {cd 
so that limN---->= .L 1:=-01 akEk is arbitrarily close to zero, and the result follows. 

(b) Under Assumption N, let r be a scalar such that ] (x) + r ::;;; 0 
for all x E S, and if a ;?: 1, let r = 0. We have for every initial state 
x0 ES, 

J*(x0 ) = min lim E{'3:1 

akg[xk, µ,k(xk), wk]} 
7T N-+= Wk k=O 

(5.58) 

{ 

N-1 } 

;?: lim sup min E ~N[](xN) + r] + L akg[xk, µ,k(xk), wk] , 
N-'>oo 7T Wk k=O 

where the last inequality follows from the fact that for any sequence {hN(A)} 
of functions of a parameter A we have 

min lim sup hN(A.);?: lim sup min hN(A.). 
A N-+oo N-+oo A 

This inequality follows by writing 

hN(A.) ;?: min hN(A.) 
>.. 

and by subsequently taking the limit superior of both sides and the minimum 
over A of the left side. 

Now we have, by using the assumption]::;;; T(]), 

min!{ aNJ(xN) + ~: ,lg[x., µ,(x,), w,l} 

~ ~n!{ aN-l](xN_,) + I a'g[x., µ.(x,), w,l} 
;?: l(xo). 
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Using this relation in (5 .58), we obtain 

J*(xo) ~ ](x0 ) + lim a N r = ](x0 ). Q.E.D. 
N ~ = 

As before, we have the following corollary: 

Corollary 9.1. Let 1T = {µ,, µ,, ... } be an admissible stationary 
policy. 

(a) Under Assumption P, if J:S - (-= , +=] satisfies J;;, T (1) and either J is 
- - µ. 

bounded below and a < 1, or J ;;, 0, then J ;;, J µ. . 

(b) Under Assumption N, if J :S - [-=, +=)satisfies] :e:;; Tµ.(1) and either] 
is bounded above and a < I , or] :e:;; 0, then] :e:;; 1µ.. 

Under Assumption N, Proposition 9 yields abo the following char­
acterization of an optimal stationary policy. 

Proposition 10: Necessary and Sufficient Condition for Optimality under 
Assumption N. For a stationary policy 1r* = {µ,*, µ,* , ... }to be optimal 
under Assumption N, it is necessary and sufficient that -

1µ,• = Tµ,. (Jµ,. ) = T(Jµ,. ), 

or equivalently 

1µ.• (X) = E{g[x, µ *(x ), w] + aJµ,. [f(x , µ,*(x), w)]} 
w 

= min E {g(x, u , w) + aJµ,. [f(x, u, w)]}, xE S. 
uE U (x) w 

Proof. Assume that the preceding condition holds . Then , since 1µ.. 
is a fixed point of T, we have by Propo~ition 9 that J µ.· ~ 1*, which implies 
that 7r* is optimal. Conversely, if 1r* is optimal, we have 1* = 1 µ. • and 
hence we obtain Tµ..(1µ..) = 1µ.- = J* = T(J*) = T(Jµ. ), which proves 
the desired result. Q.E .D . 

The interpretation of the preceding optimality condition is that per­
sistently using µ, * is optimal if and only if it performs at least as well as 
using any µ, at the first stage and using µ, * thereafter. While this condition 
is necessary under Assumption P, it is not sufficient. as the following 
example shows. 

Example 3 
Let S = (-oo, + =), U (x) = (0, I] for all x E S, 

g(x, u, w) = lxl, f(x, u, w) = a-•ux, 

for all (x, u , w) ES x C x D . Let µ*(x) = 1 for all x ES. Then Jµ..(x) = += 
if x -::J O and Jµ. . (O) = 0. Furthermore . we have J µ. = T µ.. (1µ..) = T(Jµ..). as the 
reader can easily verify. It is al <; o easy to verify that J"'(xl = lrl. and hen~e the 
policy {µ *, µ *, ... } is not optimal. 
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On the other hand, under Assumption P we have a different optimality 
condition. 

Proposition 11: Necessary and Sufficient Condition for Optimality under 
Assumption P. For a stationary policy 1r* = {µ,*, µ,*, . .. } to be optimal 
under Assumption P, it is necessary and sufficient that 

J* = T,AJ*) = T(J*) , 

or equivalently 

J*(x) = E{g[x, µ,*(x), w] + aJ*[f(x, µ,*(x), w)]} 

= min E{g(x, u, w) + aJ*[f(x, u, w)]}, xES. 
uEV(x) 

Proof. We have by Corollary 8.1 that 1µ,* = Tµ,.(1µ,•). If the preceding 
condition holds [i.e., J* = Tµ,.(J*)], then we obtain from Corollary 9.1 
that J µ,* ~ J*, which implies optimality of 1r*. Conversely, if 1r* is optimal, 
we have J* = 1µ,* and hence we obtain Tµ,.(J*) = Tµ,.(1µ,.) = 1µ,* = 
J* = T(J*), which proves the desired result. Q.E.D. 

Again the sufficiency part of the proposition need not be true under 
Assumption N, as the following example shows. 
Example 4 
Let S = C = (-oo, O] , U(x) = C for all x ES, and 

g(x, u, w) = f(x, u, w) = u, 

for all (x, u, w) E S x C x D. Then J*(x) = - 00 for all x E S, and every 
stationary policy 1r* = {µ,*, µ,*, ... } satisfies the condition of the preceding proposition. 
On the other hand, for µ,*(x) = 0 we have lµ.•(X) = 0 for all x E S and hence 
{µ, *, µ, *, . . . } is not optimal. 

It is worth noting that Proposition 11 implies the existence of an 
optimal stationary policy under Assumption P when V (x) is a finite set for 
every x E S. This need not be true under Assumption N (see Problem 7 
in Chapter 6). 

The Successive Approximation Method 

We now turn to the question whether the DP algorithm converges to 
the optimal cost function J*. Let 10 be the zero function on S; that is, 

10 (x) = 0, for all x ES. 
Then under Assumption P we have 

lo~ TUo) ~ T 2 (lo) ~ ··· ~ Tk(Jo) ~ · · · , 

while under Assumption N we have 

lo~ T(Jo) ~ T 2Uo) ~ ··· ~ Tk(l0 ) ~ ••• • 
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In either case the limit function 

l=(x) = lim Tk(J0 )(x), xES (5.59) 
k-+= 

is well defined provided we allow the possibility that J = can take the value 
+ = (under Assumption P) or - = (under Assumption N). There arises 
the question of whether the successive approximation method is valid in 
the sense 

Jex, = J*. (5.60) 

This question is, of course, of computational interest, but it is also of 
analytical interest since, if one knows that J* = limk-= T\10 ), one can 
infer properties of the unknown function J* from properties of T"(J0 ) that 
are functions defined in a concrek algorithmic manner. 

Under Assumption D, we proved that we always have 1-x., = J*. We 
will show that this is true under Assumption N as well. It turns out, 
however, that under Assumption P we may have J= =I- J* (see Problem 
9). In what follows we will provide easily verifiable conditions that gwirantee 
that J= = J* under Assumption P. We have the following proposition. 

Proposition 12. (a) Let Assumption P hold and assume that 

l = (x) = T(J00 )(x), x ES. 

Then if J : S ---'> R is any bounded function and a < 1, or otherwise 10 ~ 

1 ~ l*, we have 

Jim Tk(J)(x) = J*(x) , xE S . (5.61) 

(b) Let Assumption N hold. Then if J: S - R is any bounded function 
and a < 1, or otherwise J * ~ 1 ~ J0 , we have 

Jim Tk(l)(x) = l*(x), x E S. (5.62) 
k--+c.,C, 

Proof (a) Since under Assumption P we have 

1
0 
~ T(J0 ) ~ ... ~ Tk(l0 ) ~ ... ~ J*, 

it follows that limk-= Tk(J0 ) = I = ~ J*. Since 1-~ is also a fixed point of 
T by assumption, we obtain from Proposition 9 that J* ~ J ,_ . It follows 

that 
(5.63) 

and hence (5.61) is proved for the case 1 = lo, 
For the case where a < 1 and J is bounded, let r be a scalar such 

that 
10 - re~ 1 ~ 10 + re. (5.64) 

Applying T" to this relation and using Lemmas I and 2, we obtain 

Tk(10 ) - akre ~ Tk(l) ~ Tk(10 ) + akre. (5.65) 
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Since Tk(J0 ) converges to J*, as shown, this relation shows that Tk(J) 

converges also to J *. 
In the case where J0 ~ J ~ J *, we have by applying Tk 

Tk(J0 ) ~ Tk(J) ~ J*, k = 0, 1,. . . . (5.66) 

Since T\J0 ) converges to J*, so does Tk(J). 
(b) It was shown earlier [cf. (5.53)] that under Assumption N we 

have 
(5.67) 

k-+oo 

The proof from this point is identical to that for part (a). Q.E.D. 

We now proceed to obtain conditions that guarantee under Assumption 
P that l= = T(Joo) (and hence, by Proposition 12, l= = l*) holds. We 
prove two propositions. The first admits an easy proof but requires a 
restrictive assumption. The second is a little harder to prove but requires 
a much weaker assumption. 

Proposition 13. Let Assumption P hold and assume that the control 
constraint set is finite for every x E S. Then 

J00 = T(J00 ) = J*. (5.68) 

Proof. As shown in the proof of part (a) of Proposition 12, we have, 
for all k, Tk(J0 ) ~ J= ~ J*. Applying Tin this relation we obtain 

T k+ 1(J0 )(x) = min E{g(x, u, w) + aTk(J0 )[f(x, u, w)]} 
uEU(x) w (5.69) 

~ T(l=)(x), 

and taking the limit in (5.69), l= ~ T(l=)· Suppose that there existed a 
state .x E S such that 

(5.70) 

Let uk minimize in (5.69) when x = x. Since V(x) is finite , there must 
exist some u E V(.x) such that uk = u for all k in some infinite subset :J{ 

of the positive integers. By (5.69) we have for all k E :J{ 

Tk+ 1(10)(.x) = E{g(x, u, w) + aTkUo)[f(x, u, w)]} ~ T(Joo )(x). 
11' 

Taking the limit as k ~ =, k E X, we obtain 

Joo(x) = E{g(x, u, w) + aJoo[f(.x, u, w)]} 
11' 

~ T(Joo)(.x) = min E{g(.x, u, w) + aJ=[f(x, u, w)]}. 
uEU(x) w 

It follows that l =(x) = T(Jc,J( x), contradicting (5.70). Q.E.D. 

The following proposition strengthens Proposition 13 in that it requires 
a compactness rather than a finiteness assumption. We recall (see Appendix 
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A) that a subset X of an n-dimensional Euclidean space Rn is said to be 
compact if every sequence {xd with xk E X contains a subsequence {xdkEX 
that converges to a point x E X. Equivalently, X is compact if and only 
if it is closed and bounded. The empty set is (trivially) considered compact. 
Given any collection of compact sets, their intersection is a compact set 
(possibly empty). Given a sequence of nonempty compact sets X 1, X 2 , 

... 'xk, ... such that 

X1 :) X2:) ··· :) xk:) xk+, :) ··· , (5.71) 

their intersection n;~ 1 Xk is both nonempty and compact. In view of this 
fact, it follows that if f:R" - [ -=, +=] is a function such that the set 

Fx = {x E Rnlf(x) ~ A} (5.72) 

is compact for every A E R, then there exists a point x* minimizing f; that 
is, there exists an x* E Rn such that 

f(x*) = minf(x). (5.73) 
xER" 

To see this, take a sequence {,\d such that ,\k - minxER" f(x) and "-k ~ 
"-k+ 1 for all k. If minxER"f(x) < + =, such a sequence exists and the sets 

F>-.k = {x E Rnlf(x) ~ ,\k} (5.74) 

are nonempty and compact. Furthermore, F>-.1 :=J F>-. •• 1 for all k, and hence 
the intersection n;_ 1 F>--k is also nonempty and compact. Let x* be any 
point in n;= 1 Fxk. Then 

f(x*) ~ "-k, k = 1, 2, ... , (5.75) 

and taking the limit as k - = we obtain f(x*) ~ minxER" f(x), proving that 
x* minimizes f(x). The most common case where we can guarantee that 
the set F>-- of (5.72) is compact for all ,\ is when f is continuous and f(x) 

- = as llxll - =. 

Proposition 14. Let Assumption P hold, and as~ume that the sets 

U,(x, >.) - { u E U(x) 1~{g(x, u, w) + aT'(J0 )[f(x, u, w)l} <SA} (5.76) 

are compact subsets of a Euclidean space for every x E S, ,\ E R , and for 
all k greater than some integer k. Then 

]
00 

= T(J
00

) = J*. (5.77) 

Furthermore, there exists a stationary optimal policy. 

Proof. As in Proposition 13, we have l oo~ T(J..,,,). Suppose that there 

existed a state .x E S such that 
1

00
(.x) < T(loo)(x). (5.78) 

Clearly, we must have J = ( x) < + =. For every k ~ I, consider the sets 

Uk[x, L,,(x)] = {u E U(x)IE{!,;'(X, u, w) + aTk(Jo)lfLr, [(, w)l} ~ J.J(}}. 
I<' 
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Let also u . be a point attaining the minimum in 

Tk+ l(lo (x) = min E{g(x , u, w) + aTk(loHf(x , u, w)]}. 
uEU(.t) w 

That i • uk is such that 

Tk+l(Jo)(x) = E{g(x, Uk, w) + ar(Jo)[f(x , Uk, w)]} . 

Such minimizing points uJ.. exist by our compactness assumption. For every 
k ? k. consider tile sequence {u;};'~-k. Since ruo) ~ Tkt- 1(10) ~ ... ~ J=, 
it follows that 

E{g(x ' ll;, w) + ar(Jo)l/(x ' U;, w)]} 

~ E{g(x , u,, w) + aTi(lo)l/(x , U;, w)]} 

~ J=(x) , i ?= k. 

Hence {u;};.::.J.. c UJ..[x. J=(x)]. and since U,dx. J,,c(x)] is compact, all the 
limit points of {u;};:J.. belong to U,dx. J=(x)] and at least one such limit 
point exists. Hence the same is true of the limit points of the whole 
sequence {u;};".,:. It follows that if ll is a limit point of {u;};'r then 

This implies by (5. 76) that for all k ?= k 
l oo(X)?: E {g(x , u, w + a.T\ lo)l/(x , u, w)]} ?= Tk+l (lo)Ci) . 

Taking the limit as k ~ oo, we obtain 

J=(x ) = E{g(x , 'ii , w) + aJ= [.f(x, u, w)]} . 

Since the right side is greater or equal to T(J ~ )(x). (5. 78) is contradicted. 
Hence J = = T(J ~) and (5. 77) is proved in view of Proposition 12(a). 

To show that there exists an optimal stationary policy, observe that 
(5. 77) and the last relation imply that ll attains the minimum in 

J *(x) = min E {g(x , u, w) + aJ* [.f(x , u, w)]} 
uEU(.t) w 

for a state .r E S \\ ith J *(.r) < + =. For states x E S such that J*(x) 
-,-- =. every u E VU) attains the preceding minimum. Hence by Proposition 
11 an optimal stationary policy exists . Q.E.D . 

The reader may verify by inspection of the proof that if µ,1,:(i), k 
O. 1, .... attains the minimum in the relation 

Tk+ 1(10 )Ci) = min E{g(x , u, w) + aTk(J0 )[.f(x , u, w)]} 
uEU(x) w 

then if µ*(.r) is a limit point of {µ,1,:(x)}, for every .t E S, the policy 1r* 

{µ *. µ * .... } is optimal. Furthermore, {µ,k(x)} has at least one limit point 
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for every x ES for which 1*(.x) < + =. Thus the successive approximation 
method under the assumptions of Proposition 13 or 14 yields in the limit 
not only the optimal cost function 1* but also an optimal stationary policy. 

Other Computational Methods 

Under Assumption D we discussed three methods for computational 
solution: successive approximation, policy iteration, and linear programming. 
We have already seen that the validity of successive approximation carries 
over under Assumptions P and N. (Actually, under P an additional condition 
is needed such as finiteness of the control space, but this will typically be 
satisfied when computational solution is attempted.) 

Unfortunately. policy iteration is not a valid procedure under either 
P or N in the absence of further conditions. If {µ,, µ, . ... } and {µ.. µ.. 
... } are admissible policies and Tµ;(.]

1
,) T(J

1
,), then it can be shown that 

under Assumption P we have 

lµ;(x) ~ 1µ,(x), x ES. (5.79) 

To see this, note that Tµ;UµJ = T(Jµ,) ~ Tµ,(1µ,) = 1µ from which we obtain 
limN~,.J~(Jµ,) ~ lw Since 1µ; = limN--,J~(J0 ) and 10 ~ 1,J_• we obtain 
(5.79). However, (5.79) by itself is not sufficient to guarantee the \'alidity 
of policy iteration. For example, it is not clear that strict inequality holds 
in (5.79) for at least one state x E S whenµ is not optimal. The difficulty 
here is that the equality 1µ, = T(lµ,) does not imply that {µ,. µ, . ... } i-, 
optimal as it does under Assumption D, and additional conditions are needed 
to guarantee the validity of policy iteration. However. for se\'eral type-, 
of problems such conditions can be verified (see Sections 6.1 and 6.41. 

It is possible to devise a computational method based on mathematical 
programming when S, C, and Dare finite sets by making use of Propo-,ition 
9. Under N and a = I, the corresponding (linear) program i'> (compare 
with the end of Section 6.2) 

max LA; 
i=I 

subject to 

A;~ g(i, u) + L py(u)Aj, i = I , 2, ... , n, u E U (i). 

Under P and a 

subject to 

j=I 

I. the corresponding program takes the form 

min LA; 
i=I 

A;~ min [g(i, u) + L pu(u)Aj], i= I , ... ,n, 
uEU(1) j= I 

but unfortunately this program is not linear or c\'cn cun\C\. 
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The reader should keep in mind, however, that problems involving 
finite state Markov chains (S, C, and D finite) and no discounting (a ~ 1) 
are of two basic types. One possibility is that the optimal total expected 
cost is infinite for some initial states, in which case the formulation of this 
chapter is very likely not meaningful and the problem should be cast in the 
average cost per stage framework of Chapter 7. The other possibility is 
that the optimal total expected cost is finite for all initial states, in which 
case Assumption P or N implies that, with probability one, some cost-free 
state (or set of cost-free states) is eventually entered and never left sub­
sequently. There is a special theory for problems of this type (see Section 
6.4), which guarantees the validity of policy iteration under normally satisfied 
assumptions. 

5.5 NONSTATIONARV AND PERIODIC PROBLEMS 

The standing assumption so far in this chapter has been that the problem 
involves a stationary system and a stationary cost per stage (except for the 
presence of the discount factor). Problems where the system or the cost 
per stage are nonstationary arise occasionally in practice or in theoretical 
studies and are thus of some interest. It turns out that such problems can 
be embedded by means of a simple reformulation within thi framework of 
Problem I for which stationarity prevails. Once this reformulation is con­
sidered, one obtains results analogous to those of Sections 5.1 and 5.4. 

Consider a nonstationary system of the form 

Xk+ I = fixk, Uk, w k), 

and a cost functional of the form 

k = 0, I , . .. , 

1,(xo) - J~ ~ Ct ,lg, [x, , µ ,(x,), w,l}. 
k - 0.1. .. .. N - I 

(5 .80) 

In these equations, for each k, xk belongs to a space Sk, uk belongs to a 
space Ck and satisfies uk E Vk(xk) for all xk E Sk, and wk belongs to a 
countable space Dk . The sets Sk, Ck, Vk(xk), Dk may differ from one stage 
to the next. The random disturbances wk are characterized by probabilities 
Pk(·lxk> uk), which depend on xk and uk as well as the time index k. The 
set of admissible policies n is the set of all sequences 1r = {µ,0 , µ, 1 , • •• } 

with µ,k:Sk ~ c k and µ,ix k) E Uixk) for all x k E s k and k = 0, I , 
.... The functions gk : Sk x Ck x Dk ~ R are given and are assumed to 
sati sfy one of the following three assumptions, which are analogous to 
Assumptions D, P, and N considered earlier in this chapter: 

Assumption D'. The functions gk satisfy , for all k = 0, 1, ... , 

0 ~ gk(xk, Uk, wk) ~ M , for all (xk, Uk, w k) E s k x c k x D k, 

where M is some scalar and a < 1. 
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Assumption P'. The functions gk satisfy, for all k = 0, I, . .. , 

0 ~ gk(xk, Uk, wk), for all (xk, Uk, wk) E sk x ck x Dk. 

Assumption N'. The functions g k satisfy, for all k = 0, I , . . . , 

We will refer to the problem formulated as the nonstationary problem 
(NSP). We can get an idea on how the NSP can be converted to a stationary 
problem by considering the special case where the state space is the same 
for each stage (i.e., Sk = S for all k). We consider an augmented state 

x = (x, k), 
where x E S, and k is the time index. The new state space is S = S x 
K, where K denotes the set of nonnegative integers. The augmented system 
evolves according to 

(x, k) ~ [fk(x , uk, wk), k + I] , 

Similarly, we can define a cost per stage as 

(x , k) ES. 

g[(x, k), uk, wd = gix, uk, wk), (x , k) E S. 
It is evident that the problem corresponding to the augmented system is 
stationary. If we restrict attention to initial states .x0 E S x {O}, it can be 
seen that this stationary problem is equivalent to the NSP. 

Let us now consider the more general case. To simplify notation, we 
will assume that the state spaces S;, i = 0, 1, ... , the control spaces C;, 
i = 0, I, ... , and the disturbance spaces D;, i = 0, 1, ... , are all mutually 
disjoint. This assumption does not involve a loss of generality since, if 
necessary, we may relabel the elements of S;, C;, and D; without affecting 
the structure of the problem. Define now a new state space S, a new 
control space C, and a new (countable) disturbance space D by 

C= UC;, D = UD;. 
i=O i= O 

Introduce a new (stationary) system 

xk+1 = f(xk, uk, »\), k = o, 1, .. . , (5 .81) 

where xk E S, uk E C, wk E D, and the system function f:S x C x 
D ~ S is defined by 

f(x , u , w) = J;(x, u, w) , if x ES;, u E C;, w ED;, i = 0, I , .... 

For triplets (x, u, w ), where for some i = 0, I, .. . we have .x E S; but 
u (/:. C;, or w (/:. D;, the definition of fis immaterial; any definition is adequate 
for our purposes in view of the control constraints to be introduced. The 
control constraint is taken to be it E U(x) for all .r E S, where U(·) is 
defined by 

U(.x) = U;(.x), if x E S;, i = 0, 1, .... 
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The disturbance w is characterized by probabilities P( wl .x, u) such that 

P(w E DJx E Si, ii E CJ = 1, i = 0, 1, ... , 

P(w (/:. DJx E Si, ii E CJ = 0, i = 0, l, ... . 

Furthermore, for any w; E D;, x; E S;, u; E C;, i = 0, I, ... , we have 

P(wilx;, ui) = P;(w;Jxi, uJ. 

We also intoduce a new cost functional 

]ir(xo) = lim lj, {I1 

(ig[xk, ji,k(xd, tt\J}, (5.82) 
N-00 Wk k=O 

k=O,l, ... ,N-1 

where the (stationary) cost per stage g: S x C x D ~ R is defined by 

g(x, u, w) = g;(X, ii, w), if x ES;, ii EC;, w E Di, i = 0, 1, .... 

For triplets (x, ii, w), where for some i = 0, I, ... we have x E S; but 
ii (/:. C; or w (/:. D;, any definition of g is adequate provided O ~ g(x, ii, w) 
~ M for all (x, ii, w) when Assumption D' holds, 0 ~ g(x, ii, w) when P' 
holds, and g(x, ii, w) ~ 0 when N' holds. The set of admissible policies 
fi for the new problem consists of all sequences ii = {ji,0 , µ, 1 , •.• } , where 
ji,k:S ~ C and ii,ix) E V(x) for all x E S and k = 0, 1, .... 

The construction given defines a problem that clearly fits the framework 
of Problem I. We will refer to this problem as the stationary problem (SP). 

It is important to understand the nature of the intimate connection 
between the NSP and the SP formulated here. Let 1r = {µ, 0 , µ, 1 ••• } be 
an admissible policy for the NSP. Also, let ii = {ji,0 , ji, 1 , ••• } be an 
admissible policy for the SP such that 

fi,;(x) = µ,;(x), if x ES;, i = 0, 1, .... (5.83) 

Let x 0 E S0 be the initial state for the NSP and consider the same initial 
state for the SP (i.e., .x0 = x 0 E S0 ). Then the sequence of states {.x;} 
generated in the SP will satisfy X; E S;, i = 0, l, ... , with probability 1 
(i.e., the system will move from the set S 0 to the set S1 , then to S2 , etc., 
just as in the NSP). Furthermore, the probabilistic law of generation of 
states and costs is identical in the NSP and the SP. As a result, it is easy 
to see that for any admissible policies 1r and ii satisfying (5. 83) and initial 
states x 0 , x0 satisfying x 0 = x0 E S0 , the sequence of generated states in 
the NSP and the SP is the same (x; = X;, for all i) provided the generated 
disturbances w; and w; are also the same for all i (w; = -ft1;, for all i). 
Furthermore, if 1r and ii satisfy (5.83) we have J-rr(x0 ) = ]-rr(x0 ) if x0 = 
'i0 E S 0 • Let us also consider the optimal cost functions for the NSP and 
the SP: 

J*(x0 ) = min J-rr(x0 ), x 0 E S0 , 
-rrECT 

]*(xo) = min] if(xo), 
ifEll 

'i0 ES. 
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Then it follows from the construction of the SP that 

if i 0 E Si, i = 0, 1, ... , (5 .84) 
where 

]*(.x0, i) = min lim E {N~i k-i [ ( ) ]} L., a gkxk,J.LkXk ,wk ' 
?TETI N-= w.1: k=i 

k=i ..... N-1 

if i 0 = X; E Si, i = 0, 1, .... (5.85) 

Note that in this equation the right side is defined in terms of the data of 
the NSP. As a special case of this equation, we obtain 

if .x0 = x0 E S0 • (5.86) 

Thus the optimal cost function J* of the NSP can be obtained from the 
optimal cost function ]* of the SP. Furthermore, if ii-* {µ.6, 
µ. f, ... } is an optimal policy for the SP, then the policy 1r* = {µ.,6, 
µ,f , ... } defined by 

µ,f(x;) = µ.f(x;), for all X; ES;, i = 0, 1, ... , (5.87) 

is an optimal policy for the NSP. Thus optimal policies for the SP yield 
optimal policies for the NSP via (5.87). Another point to be noted is that 
if Assumption D' (P', N') is satisfied for the NSP, then Assumption D (P, 
N) introduced earlier in this chapter is satisfied for the SP. 

These observations show that one may analyze the NSP hy means of 
the SP. Every result given in Sections 5.1 and 5.4 when applied to the SP 
yields a corresponding result for the NSP. We will just provide the form 
of the optimality equation for the NSP in the following proposition. 

Proposition 15. Under Assumption D' (P', N'), there holds 

J*(x0 ) = ]*(x0 , 0), x0 E S0 , 

where for all i = 0, 1, . . . , the functions ]*( ·, i) map S, into [0, =) 
([0, =], [ -=, 0]), are given by (5.85), and satisfy 

]*(x;, i) = min E{glx;, ui, w;) + a]*[J;(x;, U;, W;), i + 1]}, 
u;EU;(x;) w; 

X; E S; , i = 0, 1, .. .. (5.88) 

Under Assumption D' the functions]*(·, i), i = 0, I, ... , are the unique 
bounded solutions of the set of equations (5.88). Furthermore, under As­
sumption D' or P', if µ.,f(x;) E U,(x,) attains the minimum in (5.88) for all 
x; E S;, and i, then the policy rr* = {µ.,J, µf . ... } is optimal for the NSP. 

Proof. Apply Propositions 2. 8, and 11 to the SP. Then the result 
follows by using definitions (5.84) to (5.86). Q.E.D. 

Periodic Problems 

Assume within the framework of the NSP that there exists an integer 
p ~ 2 (called the period) such that for all integer.., i anJ .i with Ii - JI = 
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>..p, >.. = 1, 2, ... , we have 

J; = Jj, gi = gj, Pklx, u) = Pi·lx, u), (x, u) E S; X C;. 

We assume that the spaces S;, C;, D;, i = 0, I, ... , p - I, are mutually 
disjoint. We define new state, control, and disturbance spaces by 

p-1 p-1 p-1 
S = U Si, C= UC;, D = UD;. 

i=O i=O i=O 

The optimality equation for the equivalent stationary problem reduces to 
the system of p equations: 

]*(x0 , 0) = min E{g0 (x0 , u0 , w0 ) + al*l/o(Xo, uo , Wo), 11}, 
uoEUo(xo) wo 

]*(x1, 1) = min E{g1(x1, u1 , w 1) + al*[fi(x1, U1, w1), 21}, 
u1EU1(x1) Wt 

+ a]*[,[p _1(xp- t, up-t, wp_ 1), 0]}. 

These equations may be used to obtain (under Assumption D' or P') a 
. d' 1· f h J:: { * * * * } per10 1c po icy o t e 1orm µ,0 , • • • , /.tp -1 , /.to , . . . , /.tp - 1 , • • • 

whenever the minimum of the right side is attained for all x;, i = 0, 
1, ... ' p - 1. 

When all spaces involved are finite, an optimal policy may be found 
in a finite number of arithmetic operations by means of the policy iteration 
algorithm or linear programming. The form of these algorithms may be 
obtained by applying them to the corresponding SP. 

Finally, we provide the form of the successive approximation method 
with starting functions equal to zero: 

10(x;, i) = 0, X; ES;, i = 0, 1, ... , p - 1. 

The (k + l)st iteration is given by 

lk+i(X;, i) = min E{g;(x;, U;, w;) + a]k[J;(x;, U;, w;), i + 11}, 
u;EU;(x;) w; 

i = 0, 1, ... , p - 2, 

min E {gp-1(xp-1, up-1, wp-1) 
Up-1EUp-t(Xp 1) Wp-1 

+ a]k[fp-1(Xp-1, up-1, wp_ 1), 0]}. 

Under Assumptions D' and N', we have (by applying Proposition 1 or 12 
to the corresponding SP) 

lim fix;, i) = ]*(x;, i), X; ES;, i = 0, ... , p - 1, 
k--:,,oo 
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while under Assumption P ' the same equations hold , provided the sets 

U.(x;, A, i) = { u; E U;(x;)l!{g;(x;, U; , w;) 
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+ aJ,Lt;(x;, U; , w;), i + 11} >s A}, i = 0, .. . , p ~ 2, 

Uixp- 1, >.. , p - I)= {up- IE up- 1(Xp- 1)1 E {gp-1(Xp - J, up-I , wp- 1) 
Wp-1 

+ aJ ,[f,,_, (x,_" u,_,, w , .. 1) , OJ} >s A} 

are compact subsets of Euclidean spaces for all .,\,i E Si, 'A E R, and k 
greater than some integer k (Proposition 14 applied to the SP). Under the 
same compactness condition, an optimal periodic policy is guaranteed to 
exist. 

5 .6 NOTES 

The discounted problem with bounded cost per stage is by far the simplest 
and most well-behaved infinite horizon problem. This is due to the contraction 
property induced by the discount factor. Many authors have contributed 
to its analysis, most notably Bellman [B5] and Blackwell [B27]. The mapping 
F of Section 5.2 and the corresponding algorithms are given in [Kl4], where 
the connection with Gauss-Seidel iterations is pointed out (see also [H5]). 
The linear programming approach of Section 5.2 was proposed in [D3]. 
The error bounds given in Section 5.2 and Problem 3 are improvements on 
results from [M5] (see [Pl3], [Pl4], and [B17]). For discretization procedures 
that approximate infinite state space problems with finite state Markov 
chains, see [B18], [F5], [H6], [W8], [W9], and [WIO]. Surveys of com­
putational research can be found in [Pi6]. Discounted semi-Markov decision 
problems are similar to those considered in this chapter except that the 
time needed for a transition between successive states is random and affects 
the cost through the discount fact0r. Their analysis follows closely the one 
given here (see [R6]). In particular, when costs per stage are bounded, a 
contraction property such as the one of Section 5.3 can be established and 
used to derive results analogous to the ones of Section 5.1 and 5.2. The 
material on adaptive aggregation is n~w (see [B20]). Our approach differs 
from other approaches [SI IJ in that aggregate states change adaptively from 
one iteration to the next depending on the progress of the computation. 
This has a significant effect in the efficiency of the computation, particularly 
for problems involving multiple ergodic classes. 

Undiscounted problems and discounted problems with unbounded cost 
per stage were first analyzed systematically in [09] . [828]. and [S28]. An 
extensive treatment, which also resolves the associat ed measurahility qucs-
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tions , is [B23]. Sufficient conditions for convergence of the successive ap­
proximation method under Assumption N (cf. Proposition 14) were derived 
independently in [B16] and [S6]. Reference [B16] also derives necessary 
and sufficient conditions for convergence. Sec also [D 11] and [H9]. 

While the primary objective in this text has been the analysis of 
stochastic optimal control problems with additive cost structure, at various 
points we have indicated that DP is applicable to other types of problems 
(see, e.g., Problems 5, 7, 9 in Chapter I, and Problems 4 and 6 in this 
chapter). While the nature of these problems may vary widely, their underlying 
structure turns out to be very similar. We can capture this structure by 
taking as a starting point an abstract mapping describing the corresponding 
DP algorithm. In this way, most basic results of an analytical or computational 
nature relating to DP can be developed· in a unified manner. This analysis 
is given in detail in [B 16] and [B23]. 

The structure of the successive approximation method is very well 
suited for parallel or distributed computation. It turns out that the method 
can be carried out by multiple processors in an asynchronous, in effect 
chaotic, manner allowing arbitrary communication delays between processors 
regarding the results of their respective computations. See Problem 8 and 
[B19] . 

In the formulation of Problem I we can take into account the possibility 
of constraints on the state xk of the form xk E X C S by adjusting the 
control constraint set V(xk_ 1) if necessary so that we have 

xk = f(xk - 1, uk-1, w k- 1) EX, for all wk- IE D , uk-l E V(xk_ 1) . 

An alternative possibility is to take the state constraint xk E X directly into 
account under Assumption P by adding to the cost per stage g the indicator 
function o(xlX)'of the set X: 

o(xlX) = {0
• +=, 

if 
if 

xE X , 

X $. X. 

This formulation, however, requires that g can take the value + =. None­
theless, all the results of Section 5.4 shown under Assumption P may be 
proved for g satisfying 

0 ~ g (x , u, w) ~ += (x , u , w) ES X C X D , 

that is , whenever g is allowed to take the value + =. For an analysis and 
treatment of state constraints , see references [B 12) and [B 14] or Problem 
10 in Chapter 6. 

We have bypassed a number of complex theoretical issues relating to 
stationary policies that historically have played an important role in the 
development of the subject of this chapter. The main question is to what 
extent is it possible to restrict attention to stationary policies. Some aspects 
of thi s question are still open . Suppose, for example, that we are given 
an E > 0. One issue is whether there exists an E-optimal stationary policy, 
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that is, a policy {µ,, µ,, ... } such that 

Jµ,(X) ~ J*(x) + E, for all x ES with J*(x) > -=, 
1 

1µ,(x) ~ --, 
E 

for all x ES with J*(x) = -=. 

The answer is positive under any one of the following conditions: 

1. Assumption P holds and a < 1 (see Problem 22). 

2. Assumption N holds, S is a finite set, a = 1, and J*(x) > - = for all 
x E S (see Problem 25 or [B28], [B29], and [03]). 
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3. Assumption N holds, Sis a countable set, a = 1, and the problem is deterministic 
(see [B24]). 

The answer can be negative under any one of the following conditions: 

4. Assumption P holds and a = 1 (see Problem 22). 

5. Assumption N holds and a < 1 (see Problem 25 or [B24]). 

Another issue is whether there exists an optimal stationary policy 
whenever there exists an optimal policy for each initial state. This is true 
under Assumption P (see Problem 23). It is also true (but very hard to 
prove) under Assumption N if J*(x) > - = for all x E S, a = 1, and the 
disturbance space Dis countable [B29], [D9], [03]. Simple two-state examples 
can be constructed showing that the result fails to hold if a = 1 
and J*(x) = - = for some state x (see Problem 24). However, these 
examples rely on the presence of a stochastic element in the problem. If 
the problem is deterministic, stronger results are available; one can find an 
optimal stationary policy if there exists an optimal policy at each initial 
state and either a = I or a < 1 and J*(x) > - = for all x E S. These 
results also require a difficult proof [B24]. 

Finally, we note that even though the problem of this chapter requires 
a countable disturbance space, it may still serve as the starting point of 
analysis of a problem with uncountable disturbance space. This can be 
done by reducing such a prouiem to a deterministic problem (i.e., one 
where the disturbance space consists of a single element) with state space 
a set of probability measures. The basic idea of this reduction is demonstrated 
in Problem 18. The advanced reader may consult [B231 and see how a 
related reduction can be effected for a very broad class of finite and infinite 
horizon problems. 

PROBLEMS 

I. A computer manufacturer can be in two states. In state I he has a successful 
product that sells well, while in state 2 his product sells poorly. While in state 
I he can advertise his product in which case the one-stage reward is 4 units. 



230 Infinite Horizon Problems : Theory Chap. 5 

and the transition probabilities are p 11 = 0.8 and Pi2 = 0.2. If in state I he 
does not advertise, the reward is 6 units and the transition probabilities are 
p 11 = p 12 = 0.5. While in state 2 he can do research to improve his product, 
in which case the one-stage reward is - 5 units and the transition probabilities 
are p 21 = 0. 7 and p 22 = 0.3. If in state 2 he does not do research, the reward 
is - 3 and the transition probabilities are p 21 = 0.4 and p 22 = 0.6. Consider 
the infinite horizon, discounted version of this problem. 
(a) Show that when the discount factor a is sufficiently small the computer 

manufacturer should follow the "shortsighted" policy of not advertising 
(not doing research) while in state I (state 2). By contrast, when a is 
sufficiently close to unity he should follow the "farsighted" policy of adver­
tising (doing research) while at state 1 (state 2). 

(b) Calculate the optimal cost and policy when a = 0.9. 

2. An energetic salesman works every day of the week. He can work in only one 
of two towns A and B on each day. For each day he works in town A (B) his 
expected reward is rA <rs), The cost for changing towns is c. Assume that 
c > rA > rs and that there is a discount factor a < 1. 
(a) Show that for a sufficiently small the optimal policy is to stay in the town 

he starts in, and that for a sufficiently close to unity the optimal policy is 
to move to town A (if not starting there) and stay in A for all subsequent 
times. 

(b) Solve the problem for c = 3, rA = 2, rn = 1, and a = 0.9. 
(c) Suppose that on Sundays only the expected reward for working in towns 

A and B is changed to RA and Rs, respectively . Assuming that RA < Rs, 
discuss the nature of the optimal policy. Solve the problem for the data in 
part (b) and RA = l, Rs = 4.5. Hint: This part requires the theory of 
periodic problems of Section 5.5. 

3. Generalized Error Bounds [P14], [Pl5], [B17]. Let S be a set and B(S) be the 
set of all bounded real-valued functions on S. Let T: B(S) - B(S) be a mapping 
with the following two properties: 

(1) T(J) ~ T(J') for all J, J' E B(S) with J ~ J'. 
(2) For every scalar r -=I= 0 and all x E S 

[T(J + re)(x ) - T(J)(x)] 
0'. 1 ~ - --------'----'-.c..:; ~ 0'.2, 

r 

where a 1, a 2 are two scalars with O ~ a 1 ~ a 2 < 1. 
(a) Show that T is a contraction mapping on B(S), and hence for every J E 

B(S) we have 

lim T\J)(x ) = J * (x) , X E S, 
k-= 

where J * is the unique fixed point of Tin B(S) . 
(b) Show that for all J E B(S) , x E S, and k = 1, 2, 

T\J)(x) + ck~ Tk+ 1(J)(x ) + ck+ i ~ J * (x ) 

~ Tk+ l(J)(x) + ci+1 ~ T k(J)(x ) + Ck, 
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where for all k 

ck= min{-
1 

a, min[Tk(J)(x) - Tk- 1(J)(x)], 
- al xES 

-
1 

a 2 min[Tk(J)(x) - Tk- 1(J)(x)]}, 
- a2xES 

ck = max{-
1 

a, max[Tk(J)(x) - Tk- 1(J)(x)], - a, xES 

-
1 

a 2 
- max[Tk(J)(x) - Tk- 1(J)(x)]}. 

- a2 xES 

A geometric interpretation of these relations for the case where S consists 
of a single element is provided in Figure 5 .4. 

(c) Show that the Gauss-Seidel mapping F defined by (5.37) and (5.38) satisfies 

n [F(J + re)(x) - F(J)(x)] 
a ~---------~a, 

r 

where n is the number of elements in S. 
(d) Let J be an n-dimensional vector and consider solution of the equation 

J = T(J). The mapping T:Rn ~ Rn is given by 

T(J) = g + Ml 

0 J* 

Figure 5.4 Graphical interpretation of the error bounds of Problem -~-
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where the vector g E Rn and the matrix M are given. Let S; be the ith row 
sum of M, that is, 

n 

S; = L mu, 
j=l 

and let a 1 = min; S;, a 2 max; s;, Show that if the elements mu of Mare 
all nonnegative and a 2 < I then the conclusions of parts (a) and (b) hold. 

(e) Consider the Gauss-Seidel method for solving the system J = g + aPJ, 
where O < a < I and P is a transition probability matrix. Use part (d) to 
construct bounds that are sharper than the ones implied by the inequality 
of part (c). 

4. Minimax Problems. Provide analogs for the results and algorithms of Sections 
5.1 and 5.2 for the minimax problem where the cost is 

N-1 

J"(x0) = lim max ~ akg[xk, J.tk(xk), wd , 
N-+ oo WkEW[Xk,µk(Xk)] k=O 

k 0,1 , ... 

g satisfies Assumption D, xk is generated by xk+ t = f[Xk,J.tk(xk) ,wd , and 
W(x, u) is a given nonempty subset of D for each (x, u) E 5 x C. (Compare 
with Problem 5, Chapter 1.) 

5. Consider a problem similar to that of Section 5.1 except for the fact that when 
we are at state xk there is a probability {3, where O < f3 < 1, that the next state 
xh I will be determined according to xk r1 = f(xk, uk, wd and a probability 
(l - (3) that the system will move to a termination state where it stays permanently 
thereafter at no cost. Show that even if a = 1 (no discounting) the problem 
can be put into the discounted cost framework. 

6. Consider a problem similar to Problem I under Assumption D except for the 
fact that the discount factor a depends on the current state xk, the control u1., 

and the disturbance wk, that is , the cost functional has the form 

where 

a-,,,k = a[xo, J.to(xo), w0Ja[x1 , J.t1(x1), wi] ··· a[xk , J.tk(xd , wd, 

with a(x, u , w) a given function satisfying 

0,;:; min{a(x , u , w)lx ES, u EC, w ED} 

,;:; max{a(x, u, w)lx ES, u EC, w ED}< 1. 

Show that the results and algorithms of Sections 5.1 and 5.2 have direct coun­
terparts for such problems . 

7. Let J: S ~ R be any bounded function on 5 and consider the successive 
approximation method of Section 5.2 with a starting function J:S ~ R of the 
form 

J(x) = J(x) + r , xE S, 

where r is some scalar. Show that the bounds Tk(J)(x) + ck and Tk(J)(x) + 
ck on J*(x) of Proposition 4 are independent of the scalar r for all x E 5. Show 
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also that if S consists of a single element x (i.e., S = {x}) then 

T(J)(x) + C1 = T(J)(x) + C1 = J*(x). 
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8. Distributed Asynchronous Dynamic Programming [B 19]. The successive ap­
proximation method is well suited for distributed (or parallel) computation since 
the iteration 

J(i) := T(J)(i) (5.89) 

corresponding to state i can be carried out in parallel with the iteration cor­
responding to any other state. Consider the finite state discounted problem of 
Section 5.2 and assume that iteration (5.89) is executed asynchronously at a 
different processor i for each state i. By this we mean that the ith processor 
executes at arbitrary times an iteration of the form 

J'(i) := T(f)(i), 

and at arbitrary times transmits the results of the latest computation to other 
.processors m who then update Jm(i) according to 

r(i):= Ji(i). 

Assume that all processors never stop computing and transmitting the results 
of their computation to the other processors. Show that the estimates 1; of the 
optimal cost function available at each processor i at time t converge to the 
optimal solution function 1:._ a~ t _~ 00 • Hint: Let J and -!_ be two functions 
such that -!_ ~ T(-!_) and T(J) :s; J, and ~uppose that for all initial estimates 
10 of the processors we have J :s; 10 :s; J. Show that the estimates 1; of the 
processors at time t satisfy-!_ ;: 1; :s; J, for all E ?c O and T(-!_) ~ 1; ~ T(J) for 
t sufficiently large. 

9. Let S = [0, oo) and C = U(x) = (0, =) be the state and control spaces. 
respectively , let the system equation be 

Xk+I = (~) Xk + Uk, 

where a is the discount factor, and let 

k = 0, 1, ... , 

g(xk, Uk) = xk + Uk 

be the cost per stage. Show that for this deterministic problem Assumption P 
is satisfied and that J*(x) = 00 for all x E S, hut T"(J0 )(0) = 0 for all k (Jn is 
the zero function, J0 (x) = 0, for all x E S]. 

10. Let Assumption P hold and consider the finite state case S = D = {I. 2, ... , 
n}, a = 1, xk+i = wk. The mapping Tis represented as 

T(J)(i) = min [g(i, u) + L Pu(u) J(j)], i = 1, ... , n, 
uEU(i) j= I 

where pij(u) denotes the transition probability that the next state will bej when 
the current state is i and control u is applied. Assume that p;,(11) and g(i, u) 

are continuous on U(i) for all i, j and that the sets U(i) are compact subsets 
of Rm for all i. Show that we have lim•-•= T\J0 )(i) = J*(i). where ln(i) = 0, 
i = 1, ... , n. Show also that there exists an optimal stationary policy. 

11. Consider a deterministic problem involving a linear system 

k=O,l, ... , 
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where the pair (A, B) is controllable and xk E Rn, uk E Rm. Assume no 
constraints on the control and a cost per stage g satisfying 

0 ,,,,; g(x, u), (x, u) E Rn X Rm. 

Assume furthermore that g is continuous in x and u, and that g(xn, un) - + = 
if {xn} is bounded and lunl - +=. 
(a) Show that for a discount factor a < 1 the optimal cost satisfies O e:;; J*(x) 

< +=, for all x E Rn. Furthermore, there exists an optimal stationary 
policy and 

lim Tk(J0)(x) = J*(x), 
k--->= 

(b) Show that the same holds true except perhaps for J*(x) < + = when the 
system is of the form Xk+I = f(xk, uk), with f:Rn x Rm - Rn being a 
continuous function. 

(c) Prove the same results assuming that the control is constrained to lie in a 
compact set U C Rm ( U(x) = U) in place of the assumption g(xn, Un) -
+= if {xn} is bounded and lunl - +=. Hint: Show that T\10 ) is real 
valued and continuous for every k and use Proposition 14. 

12. Under Assumption P, letµ., be such that µ.,(x) E U(x), for all x E S, and 

T/L(J*)(x),,,,; T(J*)(x) + E, x ES. 

Show that, if a < 1, 

xES. 

Hint: Show that T~(J*)(x) e:;; J*(x) + L}:d a;e. Alternatively, let J = J* + 
[e/(1 - a)]e , show that T/L(]) ,,,,; ], and use Corollary 9.1. 

13. Generalized Policy Iteration Algorithm. The purpose of this problem is to 
provide a policy iteration algorithm for the case where the state space and the 
control space are not necessarily finite sets. Under Assumption D, let {µ.,, 
µ.,, . . . } be an admissible stationary policy and let J µ,: S - R be such that 

maxllµ(x) - 1µ,(x)I e:;; y. 
xES 

Let J' : S - R be such that 

maxlJ'(x) - T(l/L)(x)I e:;; 8 
xES 

and assume that 

maxlJ'(x) - 1µ,(x)I e:;; E. 
xES 

Show that for all x E S there holds 

() + E 
J*(x) e:;; JJL(x) e:;; J*(x) + -- + y. 

1 - a 

Consider the following policy iteration algorithm, for fixed y, 8, E > 0. 

l. Start with an admissible stationary policy 1r
0 = {µ.,0 , µ.,0 , ••• }. 

(5.90) 

2. Given {µ.,;, µ.,;, ••. }, find ]µ; :S - R such that l]µ;(x) - lµ;(x)I e:;; ya; for 
all x E S. 
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3. Find µ/+
1 :S ~ C with µ/+ 1(x) E U(x) for all x E S such that 

Tµ_i+l(lµ,;)(x):,;;; T(lµ,;)(x) + oa), XE S. 

If maxxEslTµ,;+ 1(1µ,;)(x) - Jµ,;(x)I :::;; e:, stop. Otherwise, replace µ,; by µ,i+I 

and go to step 2. 

Show that the algorithm will terminate after a finite number of iterations (say 
k) and that 

XE S. 

Hint: To show inequality (5.90), use the fact that for any f3 > 0 there exists 
a k such that for all x E S 

ITk+i(]µ,)(x) - J*(x)I:,;;; {3 . 

. Then use the inequalities 

iJµ,(x) - J*(x)I:,;;; iJµ,(x) - T(lµ,)(x)I + IT(]µ,)(x) - T2(1µ,)(x)I 

+ ··· + ITk+l(]µ,)(x) - J*(x)I 

:,;;; maxl]µ,(x) - T(lµ,)(x)l(l + a + ··· + ak) + f3 
xES 

I 
:::;; -- maxl]µ,(x) - T(lµ,)(x)I + /3 , 

I - a xES 

to show that 

- 1 - -
/1µ,(x) - J*(x)I:::;; -

1 
- maxllµ,(x) - T(Jµ,)(x)I, 
- a xES 

XE S. 

To show that the policy iteration algorithm will terminate in a finite number of 
iterations, assume the contrary; that is, we have 

maxJTµ,;.1(1µ, ;)(x) - Jµ,,(x)I > E 
xES 

for all i, and the algorithm generates an infinite sequence of policies {1rl Show 
first that , for all x E S and i = 0, l, ... , we have 

Tµ,i+1(Jµ,;)(x):,;;; T(Jµ,;)(x) + (o + 2ya)ai:,;;; lµ,;(X) + (o + 2ya)ai. 

Use this inequality to show that, for all x E S and i, k, 
k-1 

T!;+i(Jµ,;)(x) :::;; T(Jµ,;)(x) + (o + 2ya)ai L aj, 
j=O 

and conclude that , for all x E Sandi = 0, l, ... , 

J*(x) :::;; lµ,;+1(x) :::;; T(Jµ,;)(x) + A.a;, 

where 

o + 2ya 
'A=--~ 

1-a 

Show that, for all x E Sandi = 1, 2, ... , 

J*(x):,;;; lµ,;(X):,;;; T;(lµ,o)(x) + ia;- 1'A, 
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and conclude that 

lim maxlJµ;(x) - J*(x)I = 0. 
i ➔= xES 

Use this equality to reach a contradiction. 
14. The purpose of this problem is to show that the successive approximation 

method of Section 5.2 will yield an optimal policy after a finite number of 
iterations when S, C, and D are finite sets. Under Assumption D, let J: S -
R be a function such that for some e > 0 and all x E S we have 

IJ(x) - J*(x)I ~ e. 

Let µ,(x) be such that for all x E S we have µ,(x) E U(x) and 

Tµ(l)(x) = E{g[x, µ,(x), w] + aJ[f(x, µ,(x), w)]} 
"' 

= min E{g(x, u, w) + aJ[f(x, u, w)J} = T(J)(x). 
uEU(x) w 

(a) Show that, for all x E S, 

ITµ (J)(x) - J(x )I ~ (1 + a)e. 

(b) Using the preceding inequality, show that, for all x E S, 

a(l + a) 
ITµ(J)(x) - lµ(x)I ,s 

1 
_ a e. 

(c) Show that, for all x E S, 

2e 
J*(x) ~ lµ(x) ~ J*(x) + 

1 
_ a. 

(d) Assume that the state, control, and disturbance spaces are finite sets. Show 
that the successive approximation method after some index will yield an 
optimal policy at every _geration; that is, for any starting function J: S -
R there exists an index k such that if µ, * is such that 

Tµ•[T\J)] = yk+ 1(J) and k ~ k, 
then {µ,*, µ,*, ... } is optimal. 

15. Under Assumption P or N, show that if a < l and ]:S - R is a bounded 
function satisfying J = T(]), then J = J*. 

16. Policy Iteration and Newton's Method [Pl7). The purpose of this problem is 
to demonstrate a relation between policy iteration and Newton's method for 
solving nonlinear equations. Consider an equation of the form F(J) = 0, where 
F:R" - R". Given a vector Jk E R", Newton's method determines J, + 1 by 
solving the linear system of equations 

aF(Jd 
F(Jk) + ---;;y- (lk+I - Jd = 0, 

where aF(Jk)/aJ is the Jacobian matrix of F evaluated at Jk. 
(a) Consider the discounted finite-state problem of Section 5 .2 and define 

F(J) = T(J) - J. 

Show that if there is a unique policy µ, such that 

Tµ(J) = T(J) 
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then the Jacobian matrix of F at J is 

aF(J) 
~ = a.P,, -1, 

where I is the n x n identity. 
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(b) Show that the policy iteration algorithm can be identified with Newton ' s 
method for solving F(J) = 0 (assuming it gives a unique policy at each 
step). 

17. Consider the problem of finding a scalar sequence {u0 , u
1

, ••• } satisfying 
Lk=o uk ,;;; c, uk ~ 0, for all k, and maximizing L;;"=o g(uk), where c > 0 and 
g(u) ~ 0 for all u ~ 0, i(O) = 0. Assume that g is monotonically nondecreasing 
on [0, =). Show that the optimal value of the problem is J*(c), where J* is 
a monotonically nondecreasing function on [O, =) satisfying .f*(O) = 0 and 

J*(x) = max{g(u) + J*(x - u)}, XE [0, =). 
o~u~x 

18. Transforming a Stochastic Problem into a Deterministic Problem. Consider 
the problem of this chapter under Assumption D for the case where the sets 
S, C, and D are finite sets. Using the notation of Section 5.2, consider the 
controlled system 

Pk+I = PkPµk• k = 0, 1, ... , 
where p, is a probability distribution over S viewed as a row vector. and Pµi 
is the transition probability matrix corresponding to a function µ,,: C - S with 
µ,k(i) E U(i) for all i E S. The state is Pk and the control isµ,,. Consider also 
the cost functional 

N-1 

lim L akp~M· 
N-,"~ I. 0 

Show that the optimal cost and an optimal policy for the deterministic problem 
involving the system and the preceding cost functional yield the optimal cost 
and an optimal policy for the problem of this chapter. 

19. Jacobi Version of the Successive Approximation Method. Consider the problem 
of Section 5.2 and the version of the successive approximation method that 
starts with an arbitrary function J: S - Rand generates recursively F(J), F

2
(J), 

, where F is the mapping given by 

g(i, u) + a.I Pu(u)J(j) 
F(J)(i) = min----~H-_i ___ _ 

1 - ap;;(u) uEU(i) 

Show that F\J)(i) - J*(i) as k - = and provide a rate of convergence estimate 
that is at least as favorable as the one for the ordinary method (cf. Proposition 
3). 

20. Data Transformations fS9). A finite state problem where the discount factor 
at each stage depends on the state can be transformed into a problem with state 
independent discount factor. To see this, consider the following set of equations 
in the variables 1;: 

l; = g; + L Mulj, 
i= I 

i = 1, ... , n, (5 .91) 
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where we assume that for all i , j we have Mu ~ 0 and 

m; ~ LMu< 1. 
j= I 

(a) Let 

and define, for all i and j, 

- g;(l - a) 
g; = ' 1 - m; 

Show that, for all i and j, 

j = I 

i = j, 
i f- j, 

Chap. 5 

and that a solution {J; I i = 1, ... , n} of (5.91) is also a solution of the 
equations 

n 

l ; = g; + L M ul i, 
j~I 

i = 1, ... , n. 

(b) Provide a version of this result applying to an equation like (5 .91) that 
involves minimization over a control set, and relate it to an infinite horizon 
problem like the one of Section 5.2. 

21. Let Assumption P hold and assume that 1r* = {µ,6', µ,f , ... } E II satisfies 
J* = Tµ, k' (J*) for all k. Show that 1r* is optimal; that is, J.,. = J*. 

22. Under Assumption P, show that , given E > 0, there exists a policy 1r, E II 
such that Jrr (x) ,;;; J *(x) + E for all x E S, and that for a < l the policy 1r. 

can be taked stationary. Give an example where a = l and for each stationary 
policy 1r we have Jrr(x) = 00 , while J*(x) = 0 for all x . Hint: See the proof 
of Proposition 8. 

23. Under Assumption P, show that if there exists an optimal policy (a policy 
1r* E II such that J rr* = J*), then there exists an optimal stationary policy. 

24. Use the following counterexample to show that the result of Problem 23 may 
fail to hold under Assumption N if J *(x) = - oo for some x E S . Let S = 
D = {0, l} , f (x, u, w) = w, g (x, u, w) = u, U(0) = ( -=, 0], U(l) = {0}, 
p(w = 0lx = 0, u) = ½, and p(w = llx = 1, u) = 1. Show that J *(0) = 
- 00 , J *(l) = 0, and that the admissible non stationary policy {µ,3', µ,f , . .. } 
with µ,t(O) = - (2/ a)k is optimal. Show that any admissible stationary policy 
{µ,, µ,, .. . } satisfies 1µ,(0) = [2/(2 - a)]µ,(0), 1µ,(l) = 0 (see [B29], [D9], and 
[03] for related analysis) . 

25. Show that the result of Problem 22 holds under Assumption N if S is a finite 
set, a = 1, and J * (x ) > -oo for all x E S . Construct a counterexample to 
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show that the result can fail to hold if S is countable and a < l (even if J*(x) 
> - 00 for all x E S). Hint: Consider an integer N such that the N-stage optimal 
cost 1 N satisfies J N(x) ~ J*(x) + t: for all x. For a counterexample, see [B24]. 

26. Convergence Rate of Successive Approximation Method with Error Bounds. 
Let P be an n x n transition probability matrix, g be a vector in Rn, e be the 
unit vector in Rn, and a < l be a discount factor. Define for J E Rn 

T(J) = g + aPJ, 

A(J) = J + e'(T(J) - J) e, 
n(l - a) 

F(J) = T(A(J)) = T(J) + a\\~(~~ J) e, 

and consider the method that generates {Fk(J)}. (It is similar to the successive 
approximation method i::oupled with the error bounds of Proposition 4.) 

-(a) Show that 

T(F(J)) - F(J) = aP(F(J) - A(J)) = aP(l - e:') (T(J) - J). 

(b) Define for k 2: J 

Show that for all k 

rk = (aP - l)[F*(J) - J*J 
where J * is the unique fixed point of T. Furthermore, 

rk = aP(l - e:') rk-1 

rk = akP(l - e;') pk- I ( T(J)-1). 

Hint: Show that (1 - e:')P(l - e;') = (1 - e;')P. 

(c) Assume for simplicity that P has a set of linearly independent eigenvectors, 
and consider a decomposition of pk 1

( T(J) - J) into a linear combination 
of these eigenvectors. Show that r* will converge to zero geometrically at 
a rate determined by the snbdominant eigenvalue of aP. Note: If P does 
not have a set of linearly independent eigenvectors, a similar argument 
applies by considering a decomposition of pk 1 

( T(J) - J) along a set of 
invariant subspaces corresponding to the eigenvalues of P. 



CHAPTER SIX 

Infinite Horizon Problems: 

Applications 

In this chapter we consider various special cases of the infinite horizon 
Problem I of Chapter 5. Most of these represent classes of problems that 
are important in their own right. Other applications have been selected 
because they illustrate interesting features of the theory of Chapter 5. The 
problem section touches on several related topics . 

Each problem discussed in this chapter satisfies one of the Assumptions 
D, P, or N of Sections 5.1 and 5.4. To be strictly within the framework 
of Chapter 5, we also assume that the underlying disturbance space is 
countable, although we will not explicitly state this assumption in each 
individual case. Most of the results can be shown for a more general 
disturbance space, albeit at the expense of considerable technical compli­
cations (see [B23]) . 

6.1 LINEAR SYSTEMS AND QUADRATIC COST 

Consider the case where in Problem I the system is linear: 

k = 0, 1, ... , 

where xk ER", uk ER"' for all k and the matrices A, Bare known. As in 
Sections 2.1 and 3.2. we assume that the random disturbances w" are 
independent with zero mean and finite second moments. The cost functional 

240 
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is quadratic and has the form 

Jrr(Xo) - It_:, ~ {I a'[x;Qx, + µ,<x, )'Rµ,(x,4 
k=O, ... ,N · I 

where Q is a positive semidefinite symmetric n x n matrix and R is a 
positive definite symmetric m x m matrix. The problem clearly falls under 
the framework of Assumption P. 

Our approach will be to use the DP algorithm to obtain the functions 
T(10), T2<10), ... , as well as the point wise limit function J_L_, = Iimh-✓-
T\10). Subsequently, we show that J_L_, satisfies]_"' = T(J.,J and hence, by 
Proposition 12 of Section 5 .4, I.,_ = J*. The optimal policy is then obtained 
from the optimal cost function J* using Bellman's equation and Proposition 
11 of Section 5.4. 

As in Section 2.1, we have 

Jo(x) = 0, x ER", 

T(l0 )(x) = min (x'Qx + u'Ru) = x'Qx, 

T2(10 )(x) = min E{x'Qx + u'Ru + a(Ax + Bu + w)'Q(Ax + Bu + w)} 

k-1 

Tk+ 1(1o)(x) = x'Kkx + L ak-m E{w'Kmw} , xER\ k=l,2, ... , 
m=O 

where the matrices K0 , K1 , K2 , ... are given recursively by 

Ko= Q, 
k = 0, 1, .... 

By writing R = R/a and A = \i~A, the preceding equation may be written 

Kk +I = A'[Kk - KkB(B'KkB + R)- 1B'KdA + Q, 

and is of the form considered in Section 2.1. By making use of the result 
shown there, we have 

Kk ~ K 

provided the pairs (A, B) and (A, C), where Q = C' C. are controllable 
and observable, respectively. Since A = VaA, controllability and ob­
servability of (A, B) or (A, C) are clearly equivalent to controllability and 
observability of (A, B) or (A, C). The matrix K is positive definite and is 
the unique solution of the equation 

K = A'[aK - a 2KB(aB'KB + R)- 1B'K]A + Q (6.1) 

within the class of positive semidefinite symmetric matrices. 
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As a result of the preceding analysis, we have that the pointwise limit 
of the functions Tk(J0 ) is given by 

loo(x) = lim Tk(Jo)(x) = x' Kx + c, (6.2) 
k-+oo 

where 
k-1 

c = lim I ak-m E{w' Kmw}. 
k-+oo m=O w 

This limit is well defined because Km~ K. In fact, it can be verified that 

c = _a_ E{w' Kw}. (6.3) 
1 - aw 

Using (6.1) to (6.3), it can be seen that for all x E S 

J_(x) - T(J_)(x) - min[x'Qx + u'Ru + a~{J-(Ax +Bu+ w)}] (6.4) 

and hence, by Proposition 12 of Section 5.4, J= = J*. Another method 
for proving that J 00 = T(J 00) is to show that the assumption of Proposition 
14 of Section 5.4 is satisfied; that is, the sets 

U.(x, A) ~ { ul~{x'Qx + u'Ru + aT'(10 )(Ax + Bu + w)},;; A} 
are compact. This can be easily verified using the fact that T\10 ) is a 
quadratic function and R is positive definite. The optimal policy is obtained 
by minimization in ( 6 .4) and has the form 1r* = {µ, *, µ, *, . . . } , where µ, * 
is given by 

µ,*(x) = -a(aB'KB + R) - 1B'KAx, x E Rn. 

The linearity and stationarity of this policy makes it very attractive for 
engineering applications. A number of generalized versions of the problem 
of this section, including the case of imperfect state information, are treated 
in the problem section. An interesting fact is that the problem can be 
solved by policy iteration (see Problem 5), even though, as discussed in 
Section 5.4, policy iteration is not valid in general under Assumption P. 

6.2 INVENTORY CONTROL 

Let us consider an infinite horizon version of the inventory control problem 
of Section 2.2 where costs per stage are discounted. Inventory stock evolves 
according to the equation 

xk+i=xk+uk-wk, k=0,1,.... (6.5) 

Again we assume that the successive demands w" are independent and 
bounded and have identical probability distributions. We will assume for 
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simplicity that there is no fixed cost. A similar analysis may be carried 
out for the case of a nonzero fixed cost. The function to be minimized is 
given by 

11T(x0) = lim E 
N-00 Wk 

k=O,I ... 

+ h max(O, x, + µ,,<x,) - w,)] }­

The DP algorithm is given by 

Jo(x) = 0, 

Tk+ 
1
( 10 )(x) = min E{cu + p max(0, w - x - u) + h max(0, x + u - w) 

0,e,u w 

+ aTk(J0 )(x + u - w)}. 

Let us first show that 

J*(x0 ) = min J1T(x0) < + oo, for all x0 ES. 

Indeed, consider the policy ii = {µ,, µ,, ... }, where ,u is defined by 

,u(x) = {o, 
-x, 

if X? 0, 
if X < 0. 

(6.6) 

Since wk is nonnegative and bounded, it follows that the inventory stock 
xk when the policy ii is used satisfies 

k = 1, 2, ... , 

and is bounded. Hence ,u(x1J is also bounded. Hence the cost per stage 
incurred when ii is used is bounded, and in view of the presence of the 
discount factor we have 

Jif(Xo) < + 00 , Xo Es. 
Since J* ~ Jif, (6.6) follows. 

Next let us observe that, under the assumption c < p, the functions 
Tk(J0 ) are real-valued and convex. Indeed, we have 

10 ~ T(10) ~ ··• ~ Tk(J0 ) ~ ··• ~ J*, 

which implies that Tk(J0 ) is real-valued. Convexity follows easily by induction 
as shown in Section 2.2. Consider now the sets 

U1,:(x, ..\.) = {u? 0/E{cu + p max(0, w - x - u) + h max(0, x + u - w) 

+ aT\J0)(x + u - w)} ~ A}. (6.7) 

These sets are bounded since the expected value tends to + = as u ~ 
+ =. Also, the sets Uflx, ..\.) are closed since the expected value in (6.7) 
is a continuous function of u [recall that T\10) is a real-valued convex and 
hence continuous function]. Thus we may invoke Proposition I 4 of Section 
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5.4 and assert that 

loo(X) = lim Tk(lo)(x) = J*(x), xE S. 
k---->= 

It follows from the convexity of the functions T\10 ) that the limit function 
J* is a real-valued convex function. Furthermore, we have from Proposition 
8 of Section 5 .4 the optimality equation 

J*(x) = min E{cu + p max(0, w - x - u) + h max(0, x + u - w) 
u:e,,O w 

+ aJ*(x + u - w)}. 

An optimal stationary policy 7r* = {µ, *, µ, *, ... } can be obtained from this 
equation as in Section 2.2. We have 

µ,*(x) = {S* - x, 
0, 

if X ::::=:; S*, 
otherwise , 

where S* is a minimizing point of 

G*(y) = cy + L(y) + E{J*(y - w)}, 

with 

L(y) = p E{max(0, w - y)} + h E{max(0, y - w)}. 

It is easy to see that if p > c we have lim YI-= G*(y) = + = so that such 
a minimizing point exists. Furthermore, by utilizing the observation made 
near the end of Section 5.4, it follows that minimizing points S* of G*(y) 
may be obtained as limit points of sequences {Sk}, where for each k the 
scalar S k minimizes 

Giy) = cy + L(y) + a E{T\J0 )(y - w)} 

and is obtained by means of the successive approximation method. 
It turns out that the critical level S* has a simple characterization. 

It can be shown that S* maximizes the expression (1 - a)cy + L(y) over 
y, and it can be essentially obtained in closed form (see Problem 25 and 
[HS], Ch. 2). 

In the case where there is a positive fixed cost (K > 0), the same line 
of argument may be used. Similarly, we prove that J* is a real-valued K­
convex function. A separate argument is necessary to prove that J* is also 
continuous (this is intuitively clear and is left for the reader). Once K­
convexity and continuity of J* are established, the optimality of a stationary 
(s* , S*) policy follows from the equation 

J*(x) = min E{C(u) + p max(0, w - x - u) + h max(0, x + u - w) 
u:,,,Q w 

+ aJ*(x + u - w)}, 

where C(u) = K + cu if u > 0 and C(0) 0. 
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6 .3 OPTIMAL STOPPING 

Consider a situation where at each state x two possible actions are available. 
We may e ither stop and pay a terminal cost t(x) or pay a cost c(x) and 
continue the process according to the system equation 

xk+1 = fc(xk, wk), k = 0, 1, .... (6.8) 

The objective is to find the optimal stopping policy that minimizes the total 
expected cost over an infinite number of stages. It is assumed that the 
input disturbances wk have the same probability distribution for all k, which 
depends only on the current state xk. 

To put this problem within the framework of Problem I, we introduce 
an additional state s (termination state) and we complete the system equation 
(6.8) as in Section 2.4 by letting 

if uk = stop or xk = s. 

Once the system reaches the termination state, it remains there permanently 
at no cost. 

We will assume in this section that 

t(x) ~ 0, c(x) ~ 0, for all x ES. (6.9) 

The case where t(x) ~ 0 and c(x) ~ 0 for all x E S is treated in Problem 
7. Actually, whenever there exists an E > 0 such that c(x) ~ E for all 
x E S, the results to be obtained apply also to the case where 

min t(x) > - oo, 
xES 

that is, when t(x) is bounded below by some scalar rather than bounded 
by zero. The reason is that, if c(x) is assumed to be greater than E > 0 
for all x E S, any policy that will not stop within a finite expected number 
of stages results in infinite cost and can be excluded from consideration. 
As a result, if we reformulate the problem and add a constant r to t(x) so 
that t(x) + r ~ 0 for all x E S, the optimal cost J*(x) will merely be 
increased by r, while optimal policies will remain unaffected. 

Under our assumptions the problem clearly falls within the framework 
of Problem I provided the disturbance space D is a countable set. Fur­
thermore, Assumption Pis satisfied by virtue of (6.9). The mapping T that 
defines the DP algorithm takes the form 

T(J)(x) = min[t(x) , c(x) + E{J[fjx , w)]}], x ES, (6.10) 

where t(x) is the cost of the stopping action, and c(x) + E" {J[f,.(x, w)]} is 
the cost of the continuation action. To be precise, we should also define 
T(J)(s) = 0, where s is the termination state. However, in what follows 
the value of various functions at s is immaterial and will not be explicitly 
considered. 
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By Proposition 8 of Section 5.4, the optimal cost function 1* satisfies 

1* = T(l* ). 

Since the control space has only two elements, by Proposition 13 of Section 
5.4 we have 

lim T\10)(x) = l *(x) , x ES, (6.11) 

where 10 is the zero function (J0(x) = 0, for all x E S). By Proposition 11 
of Section 5.4, there exists a stationary optimal policy given by: 

Stop if t(x) < c(x) + E{l*[fc (x , w)]}, 

Continue if t(x) ~ c(x) + E{l*[fc{x , w)]}. 

Let us denote by S* the optimal stopping set (which may be empty) 

S * = {x E Slt(x) < c(x) + E{l*[fc{x, w)]}}. 

Consider also the sets 

Sk = {x E Slt(x) < c(x ) + E{Tk(l0 )[fc(x, w)]}} 

that determine the optimal policy for finite horizon versions of the stopping 
problem. Since we have 

10 ~ T(l0 ) ~ • • • ~ T\10 ) ~ .. • ~ 1* , 

it follows that 

S,C .. ·CSkC"·CS* 

and therefore u;=, Sk c S*. Also, if .x (/=. u;= 1 Sk, then we have 

t(.x) ~ c(.x) + E{Tk(lo)[fc{x , w)]}, k = 0, 1, ... , 

and by taking limits and using (6.11) we obtain 

t(x) ~ c(x ) + E{l*[fcCx, w)]} , 

from which x ff=. S *. Hence 

(6 .12) 

In other words, the optimal stopping set S* for the infinite horizon problem 
is equal to the union of all the finite horizon stopping sets S k. In particular, 
when the state space is finite, the infinite and finite horizon stopping sets 
coincide when the horizon is sufficiently large . 

Hypothesis Testing Example: Sequential 
Probability Ratio Test 

Consider the hypothesis testing problem of Section 3.5 for the case 
where the number of possible observations is unlimited . Here the set S is 
the interval [0, I] and corresponds to the sufficient statistic 

Pk = P(xk = x 0lzo, z,, ... , Zk). 
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To each p E [O , 1] we may assign the termination cost 

t(p) = min[(l - p)L0 , pL1], 

247 

that is , the cost associated with optimal choice between the distributions 
fo and !1. The mapping T of (6.10) takes the form 

T(J)(p) = min[o - p)Lo,PL1,C + E{1[ pfo(z) ]}] 
z pfo(z ) + (I - p)f,(z) ' 

(6.13) 

where the expectation over ::: is taken with respect to the probability 
distribution 

z EZ. 
The optimal cost function J* satisfies 

. J *(p) = min[o - p)Lo' PL1' C + E{1*[ pfo(z) ] }] 
z pfo(z) + (I - p )f,(z) 

(6.14) 

and is obtained in the limit through the equation 

J*(p) = lim Tk(J0 )(p) , p E [O, 1], 
k-= 

where 10 is the zero function on [0, 1]. 
Now consider the functions T\10 ), k = 0, l, .... It is clear that 

lo~ T(Jo) ~ ... ~ Tk(lo) ~ ··· ~ min[(l - p)L0 , pL1] . 

Furthermore , in view of the analysis of Section 3.5, we have that the 
function T\10 ) is concave on [0, I] for all k. Hence the pointwise limit 
function J* is also concave on [0, 1]. In addition, (6.14) implies that 

J*(O) = J*(l) = 0 and J *(p) ~ min[(l - p)L0 , pL1]. 

It follows from (6.14) and Figure 6.1 that [provided c < LoL 1/(L0 + L 1 )l 
there exist two scalars a, ~ with O < 7J ~ a < l, that determine an optimal 
stationary policy of the form 

Accept fo if p ?= a. 

Acceptf1 

Continue the observations 

if p ~~­

if~< p < a. 
In view of the optimality of the preceding stationary policy, the sequential 
probability ratio test described in Section 3.5 is justified when the number 
of possible observations is infinite. 

One-Step Lookahead Policies 

We have already considered one valid version of the successive ap­
proximation method that starts with the zero function 10 and progrt>ssively 
calculates TN(J0 ), N = 0, l, .... We can view Tt"(J0 )(.r0 ) as the optimal 
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C +E J* 
{ [ 

Pfo(z) j} 
z pf0(z)+(l-p)f1(z) 

Accept [ 1 

"{f I 
I 

1 Continue 1 

Observations 
Accept / 0 

Figure 6.1 Derivation of the sequential probability ratio test. 

p 

cost at initial state x0 of an N-stage stopping problem whereby at the Nth 
stage the terminal cost is zero if stopping has not already occurred. 

Another interesting N-stage problem (already considered in more general 
form in Section 2.5) is one whereby the terminal cost is t(xN) (i.e., termination 
is forced at the Nth stage if it has not already occurred). The corresponding 
successive approximation method progressively calculates TN(t)(x), for all 
x E S, N = 0, I, . . . . However, this method is not valid in general in 
the sense that TN(t)(x) need not converge to J*(x) as N ~ = for any x. 
To see this, consider a case where the continuation cost c(x) is zero for 
all x, while the termination cost t(x) is bounded below by E > 0. Then we 
will have TN(t)(x) ~ E for all x while J*(x) = 0 for all x since the policy 
that always continues at no cost will be optimal. It would appear, however, 
that if the problem is such that optimal policies terminate eventually with 
probability one then the pathology described will not occur and TN(t) will 
converge to J*. One way to guarantee this (lR6]) is to assume that for some 
E > 0 we have 

c(x) ~ E, for all x ES, (6.15) 

in which case, as discussed earlier, we can also relax the positivity assumption 
on t to one of boundedness from below. For a different set of assumpt10ns, 
see Example 4 at the end of the next section. 

Proposition 1. In the problem of this section assume (6.15) and that 
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t(x) is bounded above over x ES. Then for all x0 ES and N = O, I , . .. , 

0 ~ TN(t)(x ) - J*(x ) ~ (i - e)t(xo) (6.16) 
0 0 

(N + l)e ' 

where e is the lower bound in (6.15) and t is given by 

t = max [e, max t(x)]. 
xES 

Proof. Let 1r* be an optimal policy and let 1TN be the policy that 
chooses the same actions as 1r* for k = 0, I, ... , N - I and stops at 
time N if it has not previously done so. Then if ks is the random time at 
which 1r* stops, and I,,N is the cost corresponding to using 1rN, we have, 
for all x0 E S, 

J*(xo) = J!(xo) = E{Ciks ~ N, 1r*}P(ks ~ N) 

+ E{Ciks > N, 1r*}P(ks > N), 

TN(t)(xo) ~ J1rixo) = E{Clks ~ N, 1r*}P(k5 ~ N) 

+ E{Clks > N, 1TN}P(k5 > N), 

where C denotes total cost incurred and the expectations arc conditional 
on the initial state x0 • From the preceding relations, we obtain 

TN(t)(x0 ) - J*(xo) ~ [E{Ciks > N, 1TN} 

- E{Clks > N, 1r*}] P(ks > N) (6.17) 

~ (i - e)P(ks > N). 

To obtain a bound on P(ks > N) , we note that 

t(x0 ) ~ J*(xo) ~ (N + l)eP(ks > N) , 

so 

(6.18) 

From (6.17) and (6. 18), we obtain the right side of (6.16). The left side is 
obtained by applying the mapping T repeatedly on both sides of the relation 
t ~ J*. Q.E.D. 

Note that relation (6.16) not only guarantees the validity of the successive 
approximation method that starts from the termination cost t, but also 
provides a rate of convergence estimate, as well as precomputable error 

bounds. 
Consider now, as in Section 2.4, the one-step-to-go stopping set 

5\ = {x E Sjt(x) ~ c(x) + E{t[fc(x , w)]}} 

and assume that SI is absorbing in the sense 

fc{x, w) E 5\, for all x E 5\, w ED. 

(6.19) 

(6.20) 
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Then, as in Section 2.4, it follows that the one-step lookahead policy 

Stop if and only if x E S 1 

is optimal. We now provide some examples. 

Asset Selling 

Consider the asset-selling example of Sections 2.4 and 5.1, where the 
rate of interest r is zero and there is instead a maintenance cost c > 0 per 
period for which the house remains unsold. Furthermore, past offers can 
be accepted at any future time. We have the following optimality equation: 

J*(x) = max[x, -c + E{J*(max[x, w])}]. 

In this case we consider maximization of total expected reward , the con­
tinuation cost is strictly negative, and the termination reward x is positive. 
Hence assumption (6.9) is not satisfied. If, however, we assume that x 
takes values in a bounded interval [0, M], where M is an upper bound on 
the possible values of offers, our analysis is still applicable [cf. the discussion 
following (6.9)J. Consider the one-step-to-go stopping set of (6. 19). It is 
given by 

:S\ = {xix~ -c + E {max[x, w]}}. 

After a calculation similar to the one given in Section 2.4, we see that 

5\ = {xix~ a}, 
where a is the scalar satisfying 

a= P(a)a + f""° w dP(w) - c. 

Clearly, 5\ is absorbing in the sense of (6.20) and therefore the one-step 
lookahead policy that accepts the first offer greater than or equal to a is 
optimal. 

The Rational Burglar 

This example was considered at the end of Section 2.4 where it was 
shown that a one-step lookahead policy is optimal for any horizon length. 
The optimality equation is 

J*(x) = max[x, (1 - p)E{J*(x + w)}] 

= max[x, c(x) + E{J*(x + w)}], 
where 

c(x) = - pE{J*(x + w)}. 

We may view c(x) as a strictly negative continuation cost corresponding 
to the possibility of the burglar's arrest. Therefore, the successive ap­
proximation method that starts from the termination cost is valid, equation 
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(6.20) holds, and it is easily seen that the finite horizon optimal policy 
whereby the burglar retires when his accumulated earnings reach or exceed 
(1 - p)w /p is optimal for an infinite horizon as well. 

6.4 THE FIRST PASSAGE PROBLEMt 

In the stopping problem of the previous section there were only two possible 
actions at each stage, stop or continue. We consider now a generalized 
version where the controller cannot stop the system, but instead can influence 
the probability of termination as well as the transition probabilities from 
one state to the next. We distinguish two different versions of the problem. 
In the first we assume that termination is inevitable with probability one 
unqer all policies. In the second version we assume that termination is 
eventually certain under some policies, but assume that the cost structure 
is such that there is an incentive to try to terminate. One can describe 
roughly the control objective as trying to terminate at minimum cost, and 
in this sense the problem of this section can be viewed as a stochastic 
generalization of the shortest path problem of Section 1.3. 

Unless otherwise specified, in this section we assume that the system 
is a finite state Markov chain with state space 

S = {O, 1, ... , n}. 

The control space C is also assumed finite. The transition probabilities 
associated with control u are denoted 

Pu(u) = P{xk+t = jlxk = i , uk = u}. 

State O is a termination state in the sense 

Poo(u) = 1, u E U(O). 

The cost per stage at state i = I, . .. , n when control u is applied is 
denoted g(i, u), and there is no cost incurred while in the termination state; 
that is, g(O, u) = 0 for all u. 

Termination Inevitable under All Policies 

Here we assume that there exists a positive integer m such that for 
every admissible policy 1T = {µ,0, µ,1 , ... } there holds 

P(xm = Olxo = i, 1r) > 0, i = 1, 2, .. . , n. (6.21) 

In words, there is a positive probahility of reaching the termination state 
under every policy from every initial state. A little thought should convince 
the reader that this is equivalent to assuming that termination will occur 

t This section requires some familiarity with the basic notions associated with finite 
state Markov chains. A summary, together with reference~. is given in :\ r r endix D. 
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with probability one under every policy. Actually, it is sufficient to assume 
that (6.21) holds for all stationary policies 1T; see Problems 12 and 13. 

Under this assumption, one may prove a number of important results 
that are not available under either Assumption P or N. In fact, it turns 
out that it is not necessary to assume Assumption P or N (i.e., the costs 
per stage g need not be all either nonnegative or nonpositive) . The basic 
reason is that the mapping T defining the DP algorithm is an m-stage con­
traction mapping over the set of all functions J: S ~ R with J(O) = 0, 
where m is the positive integer in (6.21) (see Section 5.3). 

Proposition 2. There exists a scalar p < I such that for all J, 
J': S ~ R with J(O) = J '(O) = 0 we have 

max ITm(J)(i) - Tm(J')(i)I ~ p max IJ(i) - J'(i)I, (6.22) 
i=O,l, ... ,n i=0,1, ... ,n 

where 

T(J)(i) = min [g(i, u) + ± p;/u)J(j)], 
uEU(1) j= I 

i = I, 2, ... , n, 

T(J)(O) = 0. 

Proof Let 7Tm = {µ 0 , µ 1, ••• , µm_ 1} be such that 

Tm(J') = (T µ,OTµ.1 .. • T,,.m_J(J'). 

By subtracting this equation from the inequality 

Tm(J) ~ (T,,.oTµ.1 •.. T,,.m_J(J), 

we obtain, for every i, 

Tm(J)(i) - Tm(J')(i) ~ (T µ,0 •• • T/J,m - l)(J)(i) - (T µ,0 ••· T,,.m _)(J')(i), (6.23) 

The two terms on the right are m-stage costs corresponding to initial state 
i, policy 7T"', and terminal costs J(xm) and J'(xm), respectively. Therefore, 
the right side of (6.23) equals 

L P(xm = ilxo = i, 1T m)[J(j) - J'(j)], (6.24) 
j= I 

and we obtain, for all i, 

r'(J)(i) - T"'(J')(i) ~ L P(xm = Jlxo = i, 7Tm)maxll(s) - J'(s)I. 
j= I s 

By reversing the roles of J and J', we similarly obtain, for some policy 

T"'(J')(i) - T"'(J)(i) ~ L P(xm = Jlxo = i, 1r:n)maxlJ(s) - J'(s)I. 
j = I s 
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From (6.21), we have 

p = max max L P(xm = ilxo = i, 7T) < 1 (6.25) 
'11' i j=l 

and the last three relations prove (6.22). Q.E.D. 

The argument used in this proof also proves the following corollary. 

Corollary 2.1. Let 1r = {µ 0 , µ 1, ••• } be an admissible policy. Then 
we have, for all J, J': S ~ R with J(0) = J' (0) = 0, 

_ max l(Tµ-0Tµ.1 ... Tµ.m_)(J)(i) - (Tµ.oTµ.1 ... Tµ.m _)(J')U)I 
I ~0 , J. ... ,ll 

~ p max IJU) - J'U)I , 
i=O.l.. ... 11 

where p is given by (6.25). 

Having established the m-stage contraction properties of Proposition 
2 and Corollary 2.1, we are able to state a number of important analytical 
and computational results. The following proposition guarantees the con­
vergence of the successive approximation method to the optimal cost function 
J* starting from an arbitrary function J: S -➔ R with 1(0) = 0. Also, J* 
and J µ. can be obtained as unique solutions of the equations J = T(J) and 
J = Tµ(J), respectively. 

Proposition 3. For every J: S ~ R with J(0) 0, 

J*(x) = Jim Tk(J)(x) , x E S, 

and for every stationary policy {µ, µ, ... }, 

Jµ(x) = lim r:(J)(x), x ES. 
k-+= 

Furthermore, J* and 1µ. are unique solutions of the equations J = T(J) and 
J = Tµ.(l), respectively, within the class of functions J: S - R with 
1(0) = 0. In addition, if µ *U) attains for i = I, ... , n, the minimum in 
the right side of the equation 

J*(i) = mi~ [g(i , u) + ± pii(u)J*(j)], i = 1, ... , n, 
uEU(1) j=I 

then 1r* = {µ, *, µ, *, ... } is an optimal stationary policy. 

The proof of Proposition 3 may be obtained through arguments similar 
to those used in Section 5.1. It is also possible to compute optimal stationary 
policies by using the method of policy iteration or linear programming (cf. 
Section 5.2). The development and proof of validity of these algorithms is 
again left as an exercise for the reader. 
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Example 1 
Minimizin,: rhe A veraf!c Time 10 Termination. The case where 

~(i. u) = I, i = l. ... , 11, u E VU), 
corresponds to a problem where the objective is to terminate as fast as possible 
on the average, while the corresponding optimal cost J*(i) is the minimum average 
time to termination starting from state i. From Proposition 3, we see that these 
times are the unique solution of the equations 

J*(i) = min [ I + :± p;_;(u)J*(j)], i = I. .... n. 
uEUCi) i = I 

In the special case where there is only one control at each state, J*(i) represents the 
mean first passage time from i to O (see Appendix D). These times, denoted t;, are the 
unique solution of the equations 

t; = I + I Put.,, 
j= I 

i = ). .... 11, 

which is a well-known result in Markov chain theory. 

The following example demonstrates a pathology and shows that the 
assumption of a finite control space cannot be easily relaxed . 

Example 2 
The Blackmailer's Dilemma [W 11]. Consider a problem where there are two states, 
the termination state O and another state x = 1. At state 1, we can choose a control u 
in (0, l] and incur a cost - u; we then move to state O with probability 1/. and stay in 
state 1 with probability 1 - u2

• 

We may regard u as a demand made by a blackmailer, and state 1 as the 
situation where the victim complies. State O is the situation where the victim refuses 
to yield to the blackmailer's demand. The problem then can be seen ~s one whereby 
the blackmailer tries to maximize his total gain by balancing his desire for increased 
demands with keeping his victim compliant. 

If controls were chosen from a finite subset of the interval (0, l]. the problem 
would come under the framework of this section, with assumption (6.21) being 
satisfied for every admissible policy. The optimal cost would then be finite. and 
there would exist an optimal stationary policy. It turns out, however. that without the 
finiteness restriction the optimal cost starting at state 1 is - XJ and there exists no optimal 
stationary policy. To see this, first note that Assumption N is satisfied for this problem. 
The mapping T defining the DP algorithm is given by 

7U)(O) = 0 

TUHl) = min [ -u + (I - 11~)J(])). 
uEIO.IJ 

For any stationary policy{µ..µ. .... } withµ.(]) = 11. we have 

Jµ(I) = -11 + (I - 1/)Jµ(I) 

from which 

Jµ(I) = 
II 

Therefore, min,,./µ( I) - = and J*( I) = - 00 , but there is no optimal stationary 
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policy. Note also that this situation would not change if the constraint set were 
u E [O, I] (i.e. u = 0 were an allowable control), although in this case the condition 
(6.21) would be violated. 

Termination Inevitable under Some Policies: 
Shortest Paths Revisited 

Here we impose assumptions that ensure that nothing is lost if attention 
is restricted to policies that lead to termination with probability one. Then, 
in effect, the theory just developed based on the contraction property of 
Proposition 2 comes into play. 

A stationary policy 7T is called proper if there exists an integer m such 
that 

for all i = I , 2, ... , n. (6.26) 

We will assume that there exists at least one optimal proper policy, and that 
Assumption P holds [g(i, u) ~ 0 for all i = 1, ... , n and u E U(i)] . For an 
analysis under more general assumptions, we refer the reader to D. P. 
Bertsekas and J. N. Tsilsiklis, "Parallel and Distributed Computation: 
Numerical Methods", Prentice-Hall, I 989. Note that if there exis ts at 
least one proper policy and 

g(i, u) > 0, i = I , ... , n, u E U(i), (6.27) 

then there must exist an optimal proper policy, since under (6.27), every 
stationary policy that is not proper results in infinite cost for some initial 
state and cannot be optimal. 

Let us denote by P,,, the transition probability matrix 

p = [P,o[~(l)] P11[~(1)] ::: p,J~(l)]]· (6.28) 

µ, Pno[;(n)J Pnil.u(n)] ::: Pnnlµ,(n)I 

The first row of P,,, is (I, 0, ... , 0) since x = 0 is an absorbing state. The 
following corollary is obtained from Proposition 3 by restricting the control 
constraint set at i to be {µ,(i)}. 

Corollary 3.1. If 7T = {µ,, µ,, ... } is a proper policy, then 

J,,, = {J,,,(0), 1,,,(1), ... , 1,,,(n)} 

satisfies J,,, = T,,,(J ,,,), or equivalently 

J,,, = g,,, + P,,,J,,,, 

where P,,, is matrix (6.28) and gµ, is the vector 

gµ, = [!l~:_;i~il]. 
g[n, µ,(n)] 

(6.29) 
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Furthermore, 1,.,. is the unique real-valued 1 satisfying 1 = T,.,.(1) and 
1(0) = 0. In addition, for every real-valued 1 with 1(0) = 0, we have 

lim T!(J)(i) = J ,.,.(i), i = 0, 1, ... , n. (6.30) 
k->oo 

Since Assumption P holds, by Proposition IO in Section 5.4 we have 
that a stationary policy{µ,*,µ,*, ... } is optimal if and only if µ,*(x) attains 
the minimum in Bellman's equation; that is, 

T,AJ*) = T(J*) . (6.31) 

The following proposition provides an alternative necessary and sufficient 
condition. 

Proposition 4. Let 1r* = {µ, *, µ, *, ... } be a stationary policy with 
1 ,.,..(i) < = for all i. In order for 1r* to be optimal, it is necessary and 
sufficient that 

(6.32) 

or equivalently 

J=O n 

= min [g(i, u) + I pu(u)J,.,..(j)], 
uEU(i) }= O 

i = 0, 1, .. . , n. 

Proof. Necessity of (6.32) follows from (6.31). Conversely, for any 
optimal proper policy 1f = {;u, ;u, ... } the condition 1,.,.. = T(l,.,..) implies 
using (6.30) (which can be used because 1,.,.. is assumed real-valued) 

J,,_. ~ Tµ:(1µ..) ~ T¼{Jµ. .) ~ ·· · ~ lim T}(lµ. •) = 1µ: = J*. 
k->oo 

Hence 1r* is optimal. Q.E.D. 

Another result is the following: 

Proposition 5. The optimal cost function J* is the only real-valued 
function 1 with J(0) = 0, JU) ;,,: 0, i = 1, ... , n, that satisfies the equation 
J = T(J). 

Proof. Let 1:S ~ R be a real-valued function with 1(0) = 0, 
J(i) ;,,: 0, such that 1 = T(l). By Proposition 9 of Section 5.4, we have 
J ;,,: J*, so there remains to show the reverse inequality. Let{µ,*, µ, *, ... } 
be an optimal proper policy. Then we have 

J = T(J) ~ Tµ..(1) ~ ··· ~ T~.(J) ~ .... 

Using (6.30), it follows that J ~ 1 µ.*. Since µ, * is optimal, we obtain 
J ~ J*. Q.E.D. 

This result can be used to show the following strengthened version 



Sec. 6.4 The First Passage Problem 

Corollary 5.1. If 1 is a real-valued function with 1(0) 
= 1, ... , n, then 

Iim T\l)(i) = J*(i), i = 0,1, ... , n. 
k-+X 
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0, l(i) ~ 0, 

Proof. Let lo be the zero function. By Proposition 13 of Section 
5.4, we haver = limk_,-.,_ T"(J0). For any scalar 8 > 0, consider the f unc­
tion Jo defined by Jfi(i) = J*(i) + 8 if i = I, ... , n and Jfi (0) = 0. Then 
T(lo)(O) = 0 and for i = l, ... , n we have 

T(fo)(i) = min [g(i,u) + l p;j(u)J*U) + 
uEU(i) J-0 

l Pii (u)8]:s; T(J*)(i) + B = J*(i) + B = J0(i). 
j~ I 

Therefore, lo :5 Tk-r 1(Js) :s: Tk(f 0) :s: · · · :s: T(Jfi) :s: lri- It follows that the 
limit 1-;:, = limk_,.,]k(Jri) exists, and by continuity of the mapping T, it is 
seen that T(J./.,) = lz. From Proposition 5 ,-ve obtain J* = J,_ = lim1,;_,-,. 
T\lri)- Taking 8 sufficiently large so that 10 <; J :s: lri and noting that 
Tk(J0 ) <; Tk(J) :s: Tk(Jri), the desired relation limk ,·,. Tk(J) = J* 
follows. Q.E.D. 

It is possible to show the validity of the policy iteration algorithm 
for the first passage problem under our present assumptions. Indeed, let 
7T = {µ,, µ,, ... } be a stationary policy with 1µ.(i) < = for all i, and let 
µ, be such that µ,(i) E U(i), i = 0, I, ... , n, and 

Tµ:( 1 µ.) = T(J µ.). 

Then T µ:(1 µ.) ~ Tµ.(1 µ.) = 1 µ., so from Corollary 9. I (a) of Section 5 .4 we 
obtain 1µ: ~ 1 w If we had 1,;: = 1 µ., then, in view of the relations 

1µ: = Tµ:(1,;:) ~ Tµ:(11,) = T(lµ.) ~ T,,.(J,,) = 1µ., 

we would obtain T(Jµ.) = 1µ., and by Proposition 4, 1r = {µ,, µ,, ... } would 
be optimal. Therefore, either 7T = {µ,, µ,, ... } is optimal or 7f = {µ,, µ,, 
... } is a strictly better policy. It follows that by policy iteratiun we can 
obtain an optimal proper policy in a finite number of steps provided that 
we start with a stationary policy that yields finite cost for all initial states. 

Example 3 
Shortest Path Problem. Consider a directed graph and the problem of finding a 
shortest path from all nodes i = I, 2, ... , n to a special node 0. We assume that 
the length a;1 of each arc is strictly positive and that there exists a path from every 
node i -=f- 0 to node 0. For convenience we write a,1 = = if (i • .i) is not an arc. 
A little thought should convince the reader that we are faced with a first passage 
problem where nodes are identified with states. outgoing arcs from a node are 
identified with controls available at the corresponding state, cinJ costs per :,tagc are 
identified with arc lengths. Furthermore, there exists an optimal proper policy. If 
we denote by J*(i) the minimum distance from node i to ncJe 0. l.kllman·s equation 
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yields 

l*(i) = min [aij + l*(j)] , i = 1, 2, ... , n, 

l*(0) = 0. 

By Proposition 5 the minimum distances are the unique solution to Bellman's 
equation. Furthermore, these distances can be obtained by policy iteration, or by 
successive approximation starting from arbitrary nonnegative initial distances l(i) 
with 1(0) = 0 (Corollary 5.1). 

Consider now what can happen if we relax the length positivity assumption 
to nonnegativity [au ;,,, 0 for all (i, j)J. Then it may be shown that the shortest path 
distances solve Bellman's equation, but these distances need not be the unique 
solution or equal the optimal cost of the corresponding first passage problem. As 
an example, consider the network shown in Figure 6.2 and the arc lengths a 10 = 1, 
a 12 = 0, a21 = 0. The shortest distances are 1(1) = 1(2) = 1 and satisfy Bellman's 
equation together with 1(0) = 0. However the optimal cost of the associated first 
passage problem is 1*(0) = l*(l) = J*(2) = 0 which also solves Bellman's equation 
as predicted by the theory of Section 5.4. What is happening here is that the optimal 
policy is to move from node 1 to node 2, and from node 2 back to node 1 at zero 
cost. This policy is not proper and does not correspond to a set of paths from 
nodes 1 and 2 to node 0. As a result, Proposition 5 does not hold. Furthermore, 
the proper policy that moves from 1 to 0, and from 2 to 1, satisfies the condition 
(6.32) but is not optimal. In addition, policy iteration, when started with that policy, 
and successive approximation, when started with the shortest distances 1(1) = 
1(2) = 1, 1(0) = 0 make no progress. 

It is possible to allow zero lengths as long as we assume that every directed 
cycle not containing node 0 includes at least one arc with positive length. Then it 
is seen that every optimal policy is proper and, by Proposition 5, the shortest 
distances are the unique solution of Bellman's equation. 

Example 4 
Optimal Stopping. Assume that at each state i there is available a special control 
us that drives the system to the termination state with certainty; that is, 

p;o(us) = 1, i = 1, ... , n. 

We then obtain a stopping problem that is more special than the one of the previous 
section in that the state space is finite, but also more general in that the number 
of controls available at each state aside from termination may be more than one. 
Note that there exists at least one proper policy, the one that stops at each state. 
We will assume that g(i, u) ;,,, 0 for all i and u, and that there exists at least one 

0 

0 

0 

Figure 6.2 Shortest path problem in­
volving a cycle of zero length. The 
shortest distances are 1(1) = 1(2) = 1 
and satisfy, together with 1(0) = 0, Bell­
man's equation. However, the optimal 
costs of the associated first passage 
problem are l*(O) = l*(l) = 1*(2) = 0. 
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optimal proper policy. [This will be true, for example, if (6.27) holds .] Then the 
results of Corollary 3.1 and Propositions 4 and 5 apply. 

Let t(i) · denote the termination cost at state i, 

t(i) = g(i, u•), i = 1, ... , n, 

and U(i) be the set of admissible controls at state i other than stopping: 

i = 1, ... , n. 

Bellman's equation takes the form 

J*(i) = T(J* )(i) = min [1(i), min [g(i, u) + ± Pu(u)J*(j)]], 
uE U(1) j= I 

J*(0) = T(J* )(0) = 0 . 

(6.33) 

(6.34) 

We know from Corollary 5.1 that the successive approximation method starting 
from the zero func tion converges to J*. On the other hand, it is seen from (6.33) 
and (6.34) that the termination cost function t satisfies T(t)(i) -,;;; t(i) for all i. It 
follows from Corollary 5.1 that the successive aprroximation method starting from 
t converges to the optimal cost ; that is, 

lim T\t)(i) = J *(i) , i = 0, 1, . .. , n . 
k---->= 

This fact parallels the conclusion of Proposition 1 for pure stopping problems. 
Consider now the one-step-to-go stopping set 

S1 = {ijt(i) -::;; T(t)(i), i = 0, 1, ... , n}, 

and assume that it is absorbing in the sense that, for all u =I= u., 

Pu(u) = 0, 

Then it is seen, similarly as in the previous section , that there is an optimal one­
step lookahead policy that stops if and only if the current state is in S 1• 

6.5 STOCHASTIC SCHEDULING AND THE M ULTIARMED 
ErA DIT 

In the problem of this section there are n projects (or activities) of which 
only one can be worked on at any time period. Each project i is characterized 
at time k by its state x~. If project i is worked on at time k, one receives 
an expected reward clR;(xD, where a E (0, 1) is a discount factor; the state 
xi then evolves according to the equation 

xi+ 1 = f i(xi, wD, if i is worked on at time k, (6.35) 

where w~ is a random disturbance with probability distribution depending 
on x~ but not on prior disturbances. The states of all idle projects are 
unaffected ; that is , 

if i is idle at time k. (6.36) 

We assume perfect state information and that the reward function s R ;( ·) 
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are uniformly bounded above and below, so the problem comes under 
Assumption D of Chapter 5. 

We assume also that at any time k there is the option of permanently 
retiring from all projects, in which case a reward clM is received and no 
additional rewards are obtained in the future. The retirement reward M is 
given and provides a parameterization of the problem, which will prove 
very useful. Note that for M sufficiently small it is never optimal to retire, 
thereby allowing the possibility of modeling problems where retirement is 
not a real option. 

The key characteristic of the problem is the independence of the 
projects manifested in our three basic assumptions: 

1. States of idle projects remain fixed. 
2. Rewards received depend only on the state of the project currently engaged. 

3. Only one project can be worked on at a time. 

The rich structure implied by these assumptions makes possible a 
powerful methodology. It turns out that optimal policies have the form of 
an index rule; that is, for each project i, there is a function m\x;) such that 
an optimal policy at time k is to 

Retire if M > max {mj(x{)}. (6.37a) 

Work on project i (6.37b) 

Thus m;(xD may be viewed as an index of profitability of operating the ith 
project, while M represents profitability of retirement at time k. The optimal 
policy is to exercise the option of maximum profitability. 

The problem of this section is traditionally known as a multiarmed 
bandit problem. An analogy here is drawn between project scheduling and 
selecting a sequence of plays on a slot machine that has several arms 
corresponding to different but unknown probability distributions of payoff. 
With each play the distribution of the selected arm is better identified, so 
the tradeoff here is between playing arms with high expected payoff and 
exploring the winning potential of other arms. By associating project states 
with distributions of payoff of arms, we see that the fundamental characteristics 
1 to 3 are all present in multiarmed bandit problems. 

Index of a Project 

Let J(x, M) denote the optimal reward attainable when the initial state 
is x = (x 1, ... , x") and the retirement reward is M. From Section 5 .1 we 
know that, for each M, J( ·, M) is the unique bounded solution of Bellman's 
equation: 

for all x , (6.38) 
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where L; is defined by 

Li(x, M, J) = R;(x;) 

+ aE{J[x' xi-t f;(x; w;) x;+1 n M]} . ' ... , ' ' ' ' ... ,x' . 
l-\,,f 

The next proposition gives some useful properties of J. 
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(6.39) 

Proposition 6. Let B = max; maxx; IR ;(x;)I. For fixed x, the optimal 
reward function J(x, M) has the following properties as a function of M: 

(a) J(x, M) is convex and monotonically nondecreasing. 
(b) J(x, M) is constant for M ~ -B/(1 - a). 

(c) J(x, M) = M for all M ~ B/(1 - a). 

. Proof Consider the successive approximation method starting with 
the function 

Jo(x, M) = max [0, M]. 

Successive iterations are generated by 

1,+ ,(x, M) = max [ M, mfx L'(x, M, J,)], k = 0, l , ... , ( 6 .40) 

and we know from Proposition 1 of Section 5 .1 that 

lim Jix, M) = J(x, M), for all x, M. (6.41) 
k-= 

We show inductively that lix, M) has the properties (a) to (c) stated in 
the proposition and, by taking the limit as k .- =, we establish the same 
properties for J. Clearly, Jo(x, M) satisfies properties (a) to (c). Assume 
that lix, M) satisfies (a) to (c). Then from (6.39) and (6.40) it follows that 
l k+ 1(x, M) is convex and monotonically nondecreasing in M since the 
expectation and maximization operations preserve these properties. Veri­
fi cation of (b) and (c) is straightforward and is left for the reader. Q.E.D. 

Consider now a problem where there is only one project that can be 
worked on, say project i. This is a stopping problem such as the one of 
Section 6.3 except for the presence of the discount factor. The optimal 
reward function for this problem is denoted l'(x;, M) and has the properties 
indicated in Proposition 6. A typical form for 1'(./, M) viewed as a function 
of M for fixed x; is shown in Figure 6.3. Clearly, there is a minimal value 
mi(x;) of M for which l'(x;, M) = M; that is, 

m;(x;) = min{MIJ;(x\ M) = M}, for all x;. (6.42) 

The function m;(x;) is called the index Junction (or simply i11dex) of project 
i. It provides an indifference threshold at each state: that is n/(.r1

) is the 
retirement reward for which we are indifferent between retiring and operating 
the project when at state x;. 



262 Infinite Horizon Problems: Applications Chap. 6 

-B/(1 - ex) I 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

Figure 6.3 Form of the ith project reward function J '(x', M) for fixed x' and 
definition of the index m ,.(x ,.). 

M 

Our objective is to show the optimality of the index rule (6 .37) for 
the index function defined by (6.42) . 

Project-by-Project Retirement Policies 

Consider first a problem with a single project, say project i, and a 
fixed retirement reward M. Then by definition (6.42) of the index, an 
optimal policy is to 

Retire project i 

Work on project i 

if m;(x ;) < M, 
if m;(x;) ~ M . 

(6.43a) 

(6.43b) 
In other words, the project is operated continuously up to the time that its 
state fall s into the retirement set 

S; = {x;lm;(x;) < M}. (6.44) 

At that time the project is permanently retired . 
Consider now the multiproject problem for fixed retirement reward 

M. Suppose at some time we are at state x = (x 1
, ••• , xn). Let us ask 

two questions: 

I. Does it make sense to retire (from all projects) when there is still a project 
i with state x ; such that m;(x;) > M? The answer is negative. Retiring when 
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m;(x;) > M cannot be optimal, since if we operate project i exclusively up 
to the time that its state x; falls within the retirement set S; of (6.44) and then 
retire, we will gain a higher expected reward. [This follows from the definition 
(6.42) of the index and the nature of the optimal policy (6.43) for the single­
project problem.] 

2. Does it ever make sense to work on a project i with state in the retirement 
set S; of (6.44)? Intuitively, the answer is negative; it seems unlikely that a 
project unattractive enough to be retired if it were the only choice would 
become attractive merely because of the availability of other projects that 
are independent in the sense assumed here . 

We are led therefore to the conjecture that there is an optimal project­
by-project retirement (PPR) policy that permanently retires projects in the 
same way as if they were the only projects available. Thus at each time 
a PPR policy, when at state x = (x1

, ••• , xn), 

Permanently retires project i if xi E Si, (6.45a) 

Works on some project if xj $. Sj for somej, (6.45b) 

where Si is the ith project retirement set of (6.44). Note that a PPR policy 
decides about retirement of projects but does not specify the project to be 
worked on out of those not yet retired. 

The following proposition substantiates our conjecture. The proof is 
lengthy but quite simple. 

Proposition 7. There exists an optimal PPR policy . 

Proof In view of (6.38), (6.39), and (6.45), existence of a PPR policy 
is equivalent to having, for all i, 

M > L i(x, M, J) , 

M ~ Li(x, M, J) , 

where L; is given by 
Li(x, M , J) = Ri(xi) 

for all x with xi E Si, 

for all x with xi $. Si, 

E{J[ I i-1 fi( i i) i+I n M]} +a x, ... ,x , x,w ,x , ... ,x, , 

(6.46a) 

(6.46b) 

(6.47) 

and J(x, M) is the optimal reward function corresponding to x and M. 
The ith single-project optimal reward function P clearly satisfies, for 

all xi, 
f(xi, M) ~ J(x1, ... , xi-I, xi, xi+I, ... , xn, M), (6.48) 

since having the option of working at projects other than i cannot decrease 
the optimal reward. Furthermore, from the definition (6.44) of the retirement 
set Si, 

(6.49) 

Using (6.47) to (6.49), we obtain (6.46b). 
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It \:ill _ uffi ·e t sho ,. (6.46a) f r i = l. Denote: 

x = (x~ ...• r")· Th .·tate f all pn..,ject other than project l. 
rhl' l)ptim.ll rt.'\\ ;ird tu111.:til)O fl)f the prl)t"lkm re'.Sulting after prnjel.'.t 
l is permane-ntly retired. 

rhe 1.1ptlln.1I rc\\ ;ird fu111.·ti1.1n f1.)r the rr1.)bkm im 1.1l ving all pwjel.'.ts 
and rresp(lnding t state x = (x' . .!_) 

Wt' \\ ill stww tht? f1Jll1.1\\ ing int?yualit::, for all .r = l.\ 1
• ~): 

!__l:!..•·\!)~Jt.r'.:!..•·'n:::,::!__l:!..-·\/) ~ ll\r' .. \n - .\!]. (6.50) 

[In m . .1rds this e\.prt'sst?s the intuiti, dy dear fact that at state (.r 1
• :!..) one 

\\ 1.1lild be happy h.1 rt?tirt' pn.1ject l pcrmant?ntly if l)ne gets in return the 
maximum reward that can be l)btaint?d frlm1 prl,jt'ct l in excess of the 
rt?tirt?mt?nt reward .\/.] We claim that tl, shl)\\' l6.~6a) for i = 1 it will 
suftii:t' t1., sh1.)\\ tti.50). lndad. when .r' t= S'. then J'l.r' . . \/)=,\/.so from 
lfi.50) we 1.,btain ll.r'. -~- .\/) = !____l:!..- .\/). which is in turn equivalent to 
(6 -t6a) for i = 1. 

We n1.rn turn tl, tht' rrl)l)f l)f lb.50). lts kft side is t'\·ident. Tl) show 
tht' right side. wt' rrixt't?d by inductil)tl lm tht' :-uccessiw apprnximation 
re~ursions 

J,. ,tx'. eel """[.\/. R\.r'l ~ "E{]Jf\x'. ,,-'l.x]). 

ma ·{R'(xi) + a E{J [x 1
• F\!__, w; n]. 

'""' 

!_; .. ,l:!..) = max[.\/. m,n lR'l.\·) + n £{!.__JF ·c-~_- \\"')]}]. ,.,., 

1 1
+ 1(x

1
) = max[,H. R\r 1

) + aE{J1Lf'(x1
• w1

)]}]. 

where. i r all i =I I and :!.. = (x:!, .... x'1). 

F i(•· 1, ,· ) _ (•·:! ,. I f'i ,. i u.i) \it-I n) ~" ., - ~, ~ •• , .. , ,. ... -" .. ,. ~ .. , ••• , X • 

The initial conditions f )r the r cursions (6.51) are 

lo(x1. :!._) = f. for all (.t 1
, :!._). 

for all:!._, 

t6.5la) 

(6.5 lc) 

(6.5 ) 

(6.53a) 

(6.53b) 

Jt~(x 1
) = \1 . for allx 1 (6.53c) 

Wt? kr11.n\ that JJ.r' . .r) ___,. Jt.r 1 
• .r .. \/). l~l.r) ___,. ll.r. ,\I). and Jl(.r 1

) -

J\r 1 
•• \/). S1.) tl) shl)\\-lb.50) it will sufficc- tl~ shlm:-that for all k and .r = 

(x 1
• :!._) we haYe 

(6.54) 

In, ic,\ l)f tht? dctiniti1.)t1S lb.5_:n. \\ t? sec that l().5-4) hnlds fork = 0. Assume 
that it hl)lds for St)ll1C /.. . We \\ ill shln\· that it holds for k + I. From 
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(6.51a) and the induction hypothesis (6.54), we have 

J,. ,(x', ~),;; max[ M, R'(x') + a E{!._,(~) + J![f'(x', w' )] - M}, 

1?:,X{ R;(x;) + a E{!._,[F;(~ w;)l + J !(x') - M) }l 
Using the facts !__/~_) ~ M and J!(x1) ~ M [cf. (6.51)] and the preceding 
equation, we see that 

where 

/31 = max[M,R1(x 1
) + aE{J![f1(x 1,w1)]}] + a[{k(~) -M], 

- /3, = max[ M, 1?!\x [R;(x;) + a E{!._,Wt,_, w;)])J] + a[J !(x') - M). 

Using (6.51b), (6.51c), and the preceding equations, we see that 

Jk+1Cx 1, ~) ~ max[lk+1(x 1) + h (~) - M, {k_, 1(~) + J!(x 1
) - M]. (6.55) 

It can be seen from (6.51) and (6.53) that J!(x 1
) ~ J!t 1(x

1
) and Jk(x) ~ 

b+ i(~) for all k, x', and x; so from (6.55) we obtain that (6.54) hoids for 
k + 1. The induction is complete. Q.E.D. 

Form of the Optimal Reward Function 

Armed with the knowledge of the existence of an optimal PPR policy, 
we can relate the optimal reward function J(x, M) of the multiproject 
problem to the optimal reward functions of the single-project problems [see 
Eq. (6.56), which follows]. This will set the stage for the proof of optimality 
of the index rule. We first obtain an expression for the partial derivative 
of J(x, M) with respect of M. 

Lemma. For fixed x, let KM denote the retirement time under an 
optimal policy when the retirement reward is M. Then for all M for which 
aJ(x, M)/aM exists we have 

aJ(x, M) _ E{ KMI _ } - a x0 - x. 
aM 

Proof. Fix x and M. Let 1r* be an optimal policy and let KM be the 
retirement time under 1r*. If 1r* is used for a problem with retirement 
reward M + e, we receive 

£{reward prior to retirement} + (M + f) E{a"'1
} = J(x, M) + E E{aK11

}. 

The optimal reward J(x, M + E) when the retirement reward is M + Eis 
no less than the preceding expression, so 

J(x, M + e) ~ J(x, M) + e E{aKM}. 
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Similarly, we obtain 

J(x, M - E) ~ J(x, M) - E E{aKM}. 

For E > 0, these two relations yield 

J(x, M) - J(x, M - E) E{ KM} J(x , M + E) - J(x , M) --------- ~ a ~ ---------. 
E E 

The result follows by taking E ➔ 0. Q.E.D. 

Note that the convexity of J(x, ·) with respect to M (Proposition 6) 
implies that the derivative aJ(x, M)/aM exists almost everywhere with 
respect to Lebesgue measure [R2]. Furthermore, it can be shown that 
aJ(x, M)/aM exists for all M for which the optimal policy is unique. 

For a given M, initial state x, and optimal policy, let T; be the retirement 
time of project i if it were the only project available, and let T be the 
retirement time for the multiproject problem. Both T; and T take values 
that are either nonnegative or + =. The existence of an optimal PPR policy 
implies that we must have 

i=I 

and in addition T;, i = I, ... , n, are independent random variables. Therefore, 
n 

E{ar} = E{aL;T;} = TI E{o:T;}. 
i = I 

Using the Lemma, we obtain 

aJ(x, M) = IT af(xi, M). 

aM i=• aM 
(6.56) 

Expression (6.56) is sufficient for our purpose of showing optimality 
of the index rule. It is interesting, however, to show how (6.56) can be 
used to obtain an expression for the optimal reward function [WI 1). 
Integrating from M to some constant C ~ M , we obtain 

lC ll aJi(xi, m) 
J(x, M) = J(x, C) - TI --- dm. 

M i=I am 
For C ~ B/1 - a, we know from Proposition 6(c) that J(x, C) C , so 
the preceding equation becomes 

J(x ' M) = C - le Tin af(x\ m) dm, 
Mi = • am 

for all x , C ~ B/(I - a). 

This expresses the optimal reward function of the multiperiod problem in 
terms of the single-project optimal reward functions. 
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Optimality of the Index Rule 

We are now ready to show our main result. 

Proposition 8. The index rule (6.37) is an optimal stationary policy. 

Proof Fix x = (x1
, ••• , xn) and let i be such that 

mi(x;) = m(x) i max{mj(xj)}. 
j 

If m(x) < M, the optimality of the index rule (6.37a) at state x follows from 
the existence of an optimal PPR policy. If m(x) ~ M, we first note that 

f(xi, M) = R i(x;) + a E{f[fi(xi, wi), M]}, 

and then use this relation together with (6.56) to write 

aJ(x, M) = af(xi, M) . TT aJj(~, M) 

aM aM Ni aM 

= a~ E{f[l(xi, wi), M] · TT aJj(xj' M)} 
aM Ni aM 

= a E {~ f[l(xi, w;), M] · TT aJj(xj, M)} 
aM Ni aM 

- E{ a I[ I j-J fi( i i) i+l n M]} - a aM X ' ••• ' X ' X ' w ' X ' ••• ' X ' 

a E{J[ 1 i-1 fi( i i) i+l n M]} = a aM X ' ••• ' X ' X ' w ' X ' ••• ' X ' ' 

and finally 

aJ(x, M) = ~ L;(x M J) 
aM aM ' ' ' 

where 

L i( M J ) R;( i) £{][ I i-1 Ji( i i) i+I n M]} X, , = X +a X, ... ,X , X,W ,X , ... ,X, . 

(The interchange of differentiation and expectation can be justified for almost 
all M; see [Bl3].) By the existence of an optimal PPR policy, we also have 

J[x, m(x)] = Ltx, m(x) , J]. 

Therefore, the convex functions J(x, M) and L;(x, M, J) viewed as functions 
of M for fixed x are equal for M = m(x) and have equal derivative for 
almost all M ,:;;; m(x). It follows that for all M ~ m(x) we have 

J(x, M) = L,.(x, M, J). 

This implies that the index rule (6.37b) is optimal for all x with m(x) ~ M. 

Q.E.D. 
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Deteriorating and Improving Cases 

It is evident that great simplification results from optimality of the 
index rule (6.37) since optimization of a multiproject problem has been 
reduced into n separate single-project optimization problems. Nonetheless, 
solution of each of these single-project problems can be complicated. Under 
certain circumstances, however, the situation simplifies. 

Suppose that for all i, xi, and wi that can occur with positive probability 
we have either 

(6.57) 

or 
mi(xi) ~ mtfi(xi, wi)]. (6.58) 

Under (6.57) [or (6.58)], projects become more (less) profitable as they are 
worked on. We call these the improving and deteriorating cases, respectively. 

In the improving case the nature of the optimal policy is evident: 
Either retire at the first period or else select a project with maximal index 
at the first period and continue engaging that project for all subsequent 
periods. 

In the deteriorating case the form of the optimal policy is less evident 
but actually turns out to be simpler. To see what happens, note that (6.58) 
implies that if retirement is optimal when at state xi then it is also optimal 
at each state P(xi, 11/). Therefore, for all xi such that M = m;(xi) we have, 
for all wi, 

f(x i, M) = M, f[f;(xi, w;), M] = M. 

From Bellman's equation 
f(x i, M) = max[M, Ri(xi) + a E{f[ f;(xi, wi), M]}] 

we obtain 

or 

(6.59) 

The optimal policy in the deteriorating case in now evident from (6.59): 

R . "f M R ;(xi) d h . h . . . etire 1 > max -- an ot erw1se engage t e proJect z with 
; l - a 

maximal one-step reward Ri(x;). 

Example 
Treasure Hunting. Consider a search problem involving N sites. Each site i may 
contain a treasure with expected value v;. A search at site i costs c; and reveals 
the treasure with probability {3; (assuming a treasure is there). Let P; be the probability 
that there is a treasure at site i. We take P; as the state of the project corresponding 
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to searching site i. Then the corresponding one-step reward is 

R;(P;) = {3;P;V; - C;. (6.60) 

If a search at site i does not reveal the treasure, the probability P; drops to 

p~ = P;(l - /3;) 
l P;(l - {3,) + I - P;' 

as can be easily verified using Bayes' rule. If the search finds the treasure, the 
probability P; drops to zero since the treasure is removed from the site. Based on 
this and the fact that R;(P;) is increasing with P; [cf. (6.60)], it is easily shown that 
the deteriorating condition (6.58) holds. Therefore, searching the site for which 
expression (6.60) is maximal is an optimal index rule. 

6.6 OPTIMAL GAMBLING STRATEGIES 

A gambler enters a certain game played as follows. The gambler may stake 
it any time k any amount uk ~ 0 that does not exceed his current fortune 
xk (defined to be his initial capital plus his gain or minus his loss thus far). 
He wins his stake back and as much more with probability p and he loses 
his stake with probability (1 - p). Thus the gambler's fortune evolves 
according to the equation 

xk+i = xk + wkuk, k = 0, I , ... , (6.61) 

where wk = I with probability p and wk = - 1 with probability (I - p). 
Several games, such as playing red and black in roulette, fit this description. 

The gambler enters the game with an initial capital x0 , and his goal 
is to increase his fortune up to a level X. He continues gambling until he 
either reaches his goal or loses his entire initial capital, at which point he 
leaves the game. The problem is to determine the optimal gambling strategy 
for maximizing the probability of reaching his goal. By a gambling strategy. 
we mean a rule that specifies what the stake should be at time k when the 
gambler's fortune is xk for every xk with O < xk < X. 

The problem may be cast within the framework of Problem I. where 
we consider maximization in place of minimization. Let us assume for 
convenience that fortunes are normalized so that X = 1. The state space 
is the set [0, I) U {s}. where s is a termination state to which the system 
moves with certainty from both states O and I with corresponding rewards 
O and I. When x1-, # 0, x1-, # I, the system evolves according to Eq. (6.61 ). 
The control constraint set is specified by 

0 ~ Uk ~ xk, 0 ~ Uk ~ 1 - xk. 

The reward per stage when xk # 0 and x1-, # I is zero. Under these 
circumstances the probability of reaching the goal is equal to the total 
expected reward. Assumption N holds since our problem is equivalent to 
a problem of minimizing expected total cost with nonpositive cosis per 
stage. 
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The mapping T defining the DP algorithm takes the form 

T(J)(x) = max [pJ(x + u) + (1 - p)J(x - u)], x E (0, 1), 
O,s; u,s,x 

O,s,u,s, 1-x (6.62) 
T(J)(0) = 0, T(J)(l) = 1 

for any function J: [0, I] ~ [0, + oo] . Actually, for this problem one may 
restrict attention to functions J taking values in the interval [0, 1] with 
J(0) = 0 and J(l) = 1. 

Consider now the case where 

O<p <½, 

that is, the game is unfair to the gambler. A discretized version of the case 
where ½ ::::;; p < 1 is considered in Problem 15. When 0 < p < ½, it is 
intuitively clear that if the gambler follows a very conservative strategy 
and stakes a very small amount at each time, he is all but certain to lose 
his capital. For example, if the gambler adopts a strategy of betting 1/n 
at each time, then it may be shown (see Problem 15 or [A9, p. 182]) that 
his probability of attaining the target fortune of unity starting with an initial 
capital i/n , 0 < i < n, is given by 

[C;pr ,J[C;pr r 
If O < p < ½, n tends to infinity, i/ n tends to a constant, and the probability 
given tends to zero, thus indicating that placing consistently small bets is 
a bad strategy. 

From the preceding discussion one is led to consider a policy of placing 
large bets and, in particular, the bold strategy whereby the gambler stakes 
at each time k his entire fortune xk or just enough to reach his goal, whichever 
is least. In other words , the bold strategy is the stationary policy 1r* 

{ * * } " h * . b µ, , µ, , . . . wit µ, given y 

µ,* (x) = {x, 
1 - x, 

if 0 <x::::;;½, 
if ½::::;;x< 1. 

We will prove that the bold strategy is indeed an optimal policy. To this 
end it is sufficient to show that for every initial fortune x E [0, 1] the value 
of the reward function J ,,,.(x) corresponding to the bold strategy {µ, *, µ, *, 
.. . } satisfies the sufficiency condition (cf. Proposition 10, Section 5.4) 

T(J,,,.) = J,,,., 
or equivalently 

J,,,.(0) = 0, J,,,.(1) = 1, 

J,,,.(x) ~ pJ,Ax + u) + (1 - p )J,,,.(x - u) 

for all x E (0, 1), u E [0, x ] n [0, 1 - x ]. 
(6.63) 



Sec. 6.6 Optimal Gambling Strategies 

By using the definition of the bold strategy and the fact that 

Jµ.* = Tµ.*(Jµ..), 

we obtain that the function Iµ.* must satisfy 

Jµ..(0) = 0, Jµ..(1) = 1, 

J .(x) = {pJµ. .(2x), 
µ. p + (1 - p)l ,,,.(2x - I), 

if O < X ~ ½, 
if ½ ~ X < l. 
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(6.64) 

(6.65) 

We prove the following lemma showing that 1,,.. is uniquely defined from 
these relations. 

Lemma. For every p, with O < p ~ ½, there is only one bounded 
function on [0, 1] satisfying (6.64) and (6.65), the function 1,,. •. Furthermore, 
Iµ.* is continuous and strictly increasing on [0, l]. 

Proof. Suppose that there existed two bounded functions 1 1: [0, I] ~ 
Rand 12 :[0, I]~ R such that 1;(0) = 0, l;(I) = 1, i = l, 2, and 

J-(x) = {P1;(2x), if O < x ~ ½, 
' P + (1 - p)J;(2x - 1), if ½ ~ x < 1, i = l, 2· 

Then we have 

if ½ ~ X ~ l. 

Let z be any real number with O ~ z ~ 1. Define 

{ 
2z, if O ~ z ~ ½, 

Zt = 2z - 1, if ½ < Z ~ 1, 

{
2Zk-l 

Zk = 2 I Zk-1 - , 

if O~Zk-l~½, 

if ½ < Zk - I ~ I , 

(6.66) 

(6.67) 

fork 
that 

1, 2, . . . . Then from (6.66) and (6.67) it follows (using p ~ ½) 

k = 1, 2, .... 

Since J1(zk) - 12(zk) is bounded, it follows that l1(z) - Ji(z) = 0, for 
otherwise the right side of the inequality would tend to + =. Since z E 
[0, 1) is arbitrary, we obtain 1 1 = 12 • Hence 1 µ,* is the unique bounded 
function on [0, 1] satisfying (6.64) and (6.65). 

To show that 1 µ,* is strictly increasing and continuous, we consider 
the mapping Tµ.•, which operates on functions 1: [0, I] ~ [0, I] and is 
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defined by 

T *(J)(x) = {pJ(2x) + (1 - p)J(0), if O < x ~ ½, 
µ, pJ(I) + (1 - p)J(2x - 1), if ½ ~ x < 1, 

Tµ,*(J)(0) = 0, Tµ,*(J)(l) = 1. (6.68) 

Consider the functions J0 , Tµ,*(J0 ), ••• , T~*(J0 ), ••• , where J0 is the zero 
function (Jo(x) = 0 for all x E [0, l]) . We have 

1µ,*(x) = lim T!*(J0 )(x) , x E [0, 1] . (6.69) 
k-+= 

Furthermore, the functions T~*(J0 ) can be shown to be monotonically non­
decreasing in the interval [0, l]. Hence, by (6.69), Jµ,* is also monotonically 
nondecreasing. 

Consider now for n = 0, 1, . .. the sets 

Sn = {x E [0, l]lx = kz-n, k = nonnegative integer}. 

It is straightforward to verify that: 

r;*(Jo)(x) = r;*(Jo)(x) , 

As a result of this equality and (6.69), 

Jµ,*(x) = T~*(J0 )(x), x E Sn-t, n ~ 1. (6.70) 

A further fact that may be verified by using induction and (6.68) and (6.70) 
is that for any nonnegative integers k, n for which 0 ~ k2-" < (k + 1)2-" 
~ 1, we have 

(6.71) 

Since any number in [0, 1] can be approximated arbitrarily closely from 
above and below by numbers of the form k2 ", and since J ,,_* has been 
shown to be monotonically nondecreasing, it follows immediately from 
(6.71) that J,,_* is continuous and strictly increasing. Q.E.D. 

We are now in a position to prove the following proposition. 

Proposition 9. The bold strategy is an optimal stationary gambling 
policy. 

Proof. We will prove the sufficiency condition 

1µ,*(x ) ~ pJµ,*(x + u) + (1 - p)J,,_*(x - u) , 

x E [0, l ], u E [0, x ] n [0, 1 - x]. (6.72) 

In view of the continuity of J µ,* established in the previous lemma, it is 
sufficient to establish (6.72) for all x E [0, I] and u E [0, x] n [0, I - x] 

that belong to the union u:=o S" of the sets S,, defined by 

Sn = {z E [0, l ]lz = k2 -n, k = nonnegative integer}. 
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We will use induction. By using the fact that J,_,,*(0) = 0, J,.,,*G) = p, and 
J ,_,,*(1) = I, we can show that (6. 72) holds for all x and u in S 0 and S 1 • 

Assume that (6.72) holds for x, u E S,, and n ? l. We will show that it 
holds for all x, u E Sn+l• 

For any x, u E S,,+ 1 with u E [O, x] n [O, I - x], there are four 
possibilities: 

1. X + u ,s; L 
2. x - u ~ L 
3. X - U ,s; X ~ ½ ~ X + U, 

4. X - U ,s; ~ ~ X ~ X + U. 

We_ will prove (6.72) for each of these cases. 

Case 1. If x, u E Sn+t, then 2x E Sn, and 2u E S,,, and by the 
induction hypothesis 

J,_,,*(2x) - pl,,A2x + 2u) - (1 - p)J,.,,*(2x - 2u)? 0. (6.73) 

If x + u ~ ½, then by (6.65) 

J,_,,*(x) - pJ,.,,.(x + u) - (l - p)J,.,,.(x - u) 

= p[J,.,,*(2x) - pJ,.,,*(2x + 2u) - (1 - p)J,_,,*(2x - 2u)] 

and using (6. 73) the desired relation (6. 72) is proved for the case under 
consideration. 

Case 2. If x, u E S,,+ 1, then (2x - 1) E Sn, and 2u E S,,, and by 
the induction hypothesis 

J,.,,*(2x - 1) - pJ,.,,*(2x + 2u - 1) - (1 - p)J,.,,.(2x - 2u - I);::: 0. 

If x - u ;::= ½, then by (6.65) 

J,.,,.(x) - pJ,.,,.(x + u) - (I - p)J,.,,.(x - u) 

= p + (1 - p)J,.,,*(2x - I) - p[p + (I - p)J,_,,*(2x + 2u - I)] 

- (I - p)[p + (I - p)J,.,,.(2x - 2u - I)] 

= (I - p)[ J,.,,.(2x - I) - pJ,.,,.(2x + 2u -- I) 

- (1 - p)J,.,,.(2x - 2u - I)]? 0, 

and (6. 72) follows from the preceding relations. 

Case 3. Using (6.65), we have 

J,.,,.(x) - pl,,Ax + u) - (1 - p)J,,Ax - u) 

= pl,,A2x) - p[p + (1 - p)J,.,,*(2x + 2u - I)] - p(l - p)J,.,,.(2x - 2u) 

= p[1µ.*(2x) - p - (1 - p)lµ.*(2x + 2u - I) - (1 - p)lµ.*(2x - 2u)]. 

Now we must have x ? !, for otherwise 11 < 1 and x + 11 < J. Hence 
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2x ~ ½ and the sequence of equalities can be continued as follows: 

1µ,*(x) - plµ,*(x + u) - (1 - p)lµ,*(x - u) 

= p[p + (1 - p)Jµ,.(4x - 1) - p 

- (1 - p)Jµ,.(2x + 2u - 1) - (1 - p)Jµ,.(2x - 2u)] 

= p(l - p)[lµ,*(4x - 1) - 1µ,*(2x + 2u - 1) 

- 1µ,*(2x - 2u)] 

= (1 - p)[lµ,*(2x - ½) -

plµ,*(2x + 2u - 1) - plµ,*(2x - 2u)] . 

Since p ~ (I - p), the last expression is greater than or equal to both 

(1 - p)[lµ,*(2x - ½) - pfµ,.(2x + 2u - 1) - (1 - p)lµ,*(2x - 2u)] 

and 

(1 - p)[lµ,*(2x - ½) - (1 - p)lµ,*(2x + 2u - 1) - plµ,*(2x - 2u)]. 

Now for x, u E Sn+t and n ~ 1, we have (2x - 0 E Sn and (2u - ½) E 
Sn if (2u - ½) E (0, 1], and (½ - 2u) E Sn if(½ - 2u) E (0, 1]. By the 
induction hypothesis , the first or the second of the preceding expressions 
is nonnegative, depending on whether 2x + 2u - 1 ~ 2x - ~ or 2x - 2u 
~ 2x - ½ (i.e., u ;,:,, ¼ or u ~ ¼). Hence (6.72) is proved for case 3. 

Case 4. The proof resembles the one for case 3. Using (6.65), we 
have 

1µ,*(x) - pJµ,.(x + u) - (1 - p)Jµ,.(x - u) 

= p + (1 - p)Jµ,.(2x - 1) - p[p + (1 - p)lµ,*(2x + 2u - 1)] 

- (1 - p)plµ,*(2x - 2u) = p(l - p) + (1 - p)[lµ,*(2x - 1) 

- plµ,.(2x + 2u - 1) - plµ,.(2x - 2u)]. 

We must have x ~ ¾ for otherwise u < ¼ and x - u > ½. Hence 0 ~ 
2x - 1 ~ ½ ~ 2x - ½ ~ 1, and using (6.65) we have 

(1 - p)lµ,*(2x - 1) = (1 - p)plµ,*(4x - 2) = p[lµ,*(2x - ½) - p]. 

Using the preceding relations , we obtain 

1µ,*(x) - plµ,*(x + u) - (1 - p)-Jµ,*(x - u) 

= p(l - p) + p[lµ,*(2x - ½) - p] - p(l - p)lµ,*(2x + 2u - 1) 

- p(l - p)lµ,*(2x - 2u) 

= p[(l - 2p) + 1µ,.(2x - ½) - (1 - p)lµ,*(2x + 2u - 1) 

- (1 - p)Jµ,.(2x - 2u)]. 

These relations are equal to both 

p[(l - 2p)[l - 1µ,.(2x + 2u - 1)] + 1µ,.(2x - ½) 

- pl µ,*(2x + 2u - 1) - (1 - p) J µ,•(2x - 2u)] 
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and 

p[(l - 2p)[l - 1µ,*(2x - 2u)] + 1µ,*(2x - ½) 

- (1 - p)Jµ,*(2x + 2u - 1) - p1µ,*(2x - 2u)]. 

Since O ~ Jµ,.(2x + 2u - 1) ~ 1 and O ~ J µ,•(2x - 2u) ~ I, these expressions 
are greater than or equal to both 

p[Jµ,.(2x - ½) - p1µ,*(2x + 2u - 1) - (1 - p)Jµ,.(2x - 2u)] 

and 

p[Jµ,.(2x - ½) - (1 - p)Jµ,.(2x + 2u - 1) - pJµ,.(2x - 2u)] 

and the result follows as in case 3. Q.E.D. 

We note that the bold strategy is not the unique optimal stationary 
gambling strategy. For a characterization of all optimal strategies, see [D9, 
p. 90]. Several other gambling situations where strategies of the bold type 
are optimal are described in reference [D9, Chapters 5 and 6]. 

6.7 CONTINUOUS-TIME MARKOV CHAINS AND THEIR 
UNIFORMIZATION: APPLICATIONS IN QUEUEING 
SVSTEMSt 

We have been considering so far problems where the cost per stage does 
not depend on the time required for transition from one state to the next. 
Such problems have a natural discrete-time representation. On the other 
hand, there are situations where controls are applied at discrete times but 
cost is defined as a time integral. Furthermore, the time between transitions 
is variable; it may be random or it may depend on the current state. For 
example, in queueing systems state transitions correspond to arrivals or 
departures of customers, and the corresponding times of transition are 
random. In this section we show that for an important class of continuous­
time optimization models the issues relating to the transition times can be 
worked out in a way that these models may be analyzed within the discrete­
time framework discussed up to now. 

We will restrict ourselves to systems modeled by continuous-time 
Markov chains involving a finite or countable number of states. Here state 
transitions and control selections take place at discrete times, but the time 
from one transition to the next is random. Specifically we assume that: 

I. If the system is in state i and control u is applied, the next state will be j 
with probability Pu(u). 

2. The time interval r between the transition to state i and the transition to the 

t This section requires familiarity with the Poisson process and rhe basi-: notions of ,:ontinuous­
time Markov chains (see, e.g., [R8]). 
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next state is exponentially distributed with parameter v;(u); that is, the probability 
density function of T is 

p(T) = V;(U) e- v;(u).-, 'T ;:,, 0. 

Furthermore, Tis independent of earlier transition times, states . and controls. 
The parameters v;(u) are uniformly bounded in the sense that for some v we 
have 

V;(U) :eS v , for all i , u. 

The state and control at any time t are denoted by x(t) and u(t), 
respectively, and stay constant between transitions. The cost is given by 

E {re-•• g[x(t) , u(t)] dt} , (6.74) 

where g is a given function and /3 ;:,: 0 is a given scalar discount parameter. 
The parameter v;(u) will be referred to as the rate of transition associated 
with state i and control u. It can be verified that the corresponding average 
transition time is 

l= 1 
E{r} = TV;(u) e- v;(u>r dr = -, 

0 V;(U) 

so v;(u) can be interpreted as the average number of transitions per unit 
time . 

We first consider the case where the rate of transition is the same 
for all states and controls ; that is, 

v;(u) = v , for all i , u . 

We then show how models with state- or control-dependent transition rates 
can be reduced to this case by means of a process called uniformization. 

Assume that v;(u) = v for all i and u and denote 

tk: The time of occurrence of the kth transition (t0 = 0 by convention). 

Tk = tk - tk- t: the kth transition time interval. 

xk = x(tk): the state after the kth transition [x(t) = xk for 

tk ,S t < fk+ il• 

uk = u(tk) : the control for the kth transition [u(t) = uk for tk :,;;; t < tk+ i] . 

A little thought should convince the reader that this problem is essentially 
the same as one where transition times are fixed. The intuitive reason is 
that the control cannot influence the cost through the transition time intervals. 
More specifically, the cost (6.74) corresponding to a sequence {(xk, uk)lk 
0, 1, . . . } can be expressed as 

IE {f" e-••g[x(t) , u(t)]dt} = I E {C' e-•• dt}E{g(x., u,)}. 

(6.75) 
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If /3 > 0, we have (using the independence of the transition time intervals) 

E {ftk+ i e-131 dt} = E{e-f3tk}(l - E{e-/3Tk+1}) = cl(l - a) 
u /3 /3 , (6.76) 

where 

If /3 0, then 

{f lk+I } 1 
E tk dt = E{rk+i} = ;· 

From (6.75) and (6.76) and the fact (I - a)//3 = 1/(/3 + v), it follows that 
the cost of the problem can be expressed as 

1 00 

/3
-- ~ ak E{g(xk , uk)}, if /3 > 0, 

+ ll k=O 

and 

if /3 = 0. 

It can be seen that we are faced in effect with an ordinary discrete-time 
problem where expected total cost is to be minimized. If f3 > 0, then 
a< I and the problem is discounted. If /3 = 0, the problem is undiscounted. 
The effect of randomness of the transition times has been simply to ap­
propriately scale the cost per stage. 

To summarize, a continuous-time Markov chain problem with cost 

E {r ,-•'g[x(t), u(t)J dt} 

and rate of transition v that is independent of state and control is equivalent 
to a discrete-time Markov chain problem with discount factor 

V 
('I_=--, 

j3 + V 

and cost per stage given by 

1 
g(i, u) = 

13
-- g(i, u). 

+ 11 

In particular, Bellman's equation takes the form 

J(i) = - 1
- min [g(i, u) + 11 ~ Pu(u)J(j)]. 

/3 + 11 uEU(i) j 

Example 1 

(6.77) 

(6.78) 

(6. 79) 

A manufacturer of a specialty item processes orders in hatches. We assume that 
orders arrive according to a Poisson process with rate A. per unit time. and for each 
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order there is a positive cost c per unit time that the order is unfilled. The setup 
cost for processing the orders is K. Upon arrival of a new order, the manufacturer 
must decide whether to process the current batch or wait for the next order. 

In this example the time between transitions is exponentially distributed with 
parameter >.. independently of state and control as shown in Figure 6.4. Assuming 
a positive discount parameter /3, the effective discount factor is a = >../(/3 + >..) 
[cf. (6.77)], and the average cost of a transition when i orders stay unfilled is (ci)/ 
(/3 + >..) [cf. (6.78)], while the cost of a transition where the orders are processed 
is K. (Note that the setup cost K is assumed to be incurred immediately after a 
decision to process the orders is made, so K is not discounted over the time interval 
up to the next transition.) We are faced with a discounted problem with positive 
but unbounded cost per stage. Assumption P holds (cf. Section 5.4), and Bellman's 
equation takes the form 

J(i) = min[ K + aJ(l), /3 ~ >.. + al(i + l)l i = 1, 2, .... 

[Note that the optimal costs J(i) cannot exceed the cost K/(1 - a) of the policy 
that fills each order at the moment it arrives. Therefore, from Problem 15 in Chapter 
5, we see that the optimal cost function J is the unique bounded solution of Bellman's 
equation.] Reasoning from first principles, we see that J(i) is a monotonically 
nondecreasing function of i, so from Bellman's equation it follows that there exists 
a threshold i* such that it is optimal to process the orders if and only if their number 
i equals or exceeds i*. There is a version of this result when there is no discounting 
(/3 = O); see Problem 11 in Chapter 7. 

Nonuniform Transition Rates 

We now argue that the more general case where the transition rate 
v;(u) depends on the state, and control can be converted to the previous 
case of uniform transition rate by using the trick of allowing fictitious 

Figure 6.4 Transition diagram for the continuous-time Markov chain of Example 
1. The transitions associated with the first control (do not fill the orders) are 
shown with solid lines, and the transitions associated with the second control 
(fill the orders) are shown with broken lines. 
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transitions from a state to itself. Roughly, transitions that are slow on the 
average are speeded up with the understanding that sometimes after a 
transition the state may stay unchanged. To see how this works, let v be 
a new uniform transition rate with v;(u) ~ v for all i and u [cf. (6.75)] and 
define new transition probabilities 

!
v; (u) P;iu), if i =I= j, 

Pii (u) = 1 ~ v;(u), if i = j. 
V 

We refer to this process as the uniform version of the original (see Figure 
6.5). We argue now that the original process leaving state i at a rate v;(u) 

Figure 6.5 Transforming a continuous­
time Markov chain into its uniform ver­
sion through the use of ficti tious self­
transitions. The uniform version has a 
uniform transition rate v, which is an 
upper bound for all transition rates v;(u) 
of the original, and transition probabilities 
fivCu) = (v;(u)/v)py(u), i =f j, and p;;(u) = 

I - v;(u)/11. 

v/u), Pjk (u) 

Transit ion rates and probabilities 
for continuous-time chain 

v;(u)11;i(u ) 

ll 

ll/U) 
1---

11 

ll;(ll) 
1 - -­

ll 

ll 

llk(u) 
1---

ll 

Transition probabilities for uniform version 
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is statistically identical to the new process leaving state i at the faster rate 
v, but returning back to i with probability (1 - v;(u))/v. Equivalently, 
transitions are real (lead to a different state) with probability v;(u)/v < 1. 
By statistical equivalence, we mean that, for any given policy 1r, initial 
state x0 , time t, and state i, the probability P{x(t) = il1r, x0} is identical for 
the original process and its uniform version. We give a proof of this fact 
in Problem 22 for the case of a finite number of states (see also lL4], [S 14J, 
and [R8] for further discussion). In what follows we will illustrate the ideas 
by examples from queueing theory. 

To summarize, we can convert a continuous-time Markov chain problem 
with transition rates v;(u), transition probabilities pij(u), and cost 

Eu: ,-"'g[x(t), u(t)J di}. 
into a discrete-time Markov chain problem with discount factor 

V 
a=--

/3 + v' 

where v is a uniform transition rate chosen so that 

v;(u) ~ v, for all i, u . 

The transition probabilities are 

!
v;(u) P;/u), if i =/= j, 

P;;(u) = I ~ v,~u) , if i = j, 

and the cost per stage is 

g(i, u) = ~ g(i, u), for all i , u . 
~+v 

Bellman's equation in particular takes the form 

J(i) = ~ min [ g(i, u) + [v - v/u)]J(i) 
~ + V uEU(i) 

+ v,(u) f P,;(u)J(j)]. 

Queueing Applications 

Example 2 

(6.80) 

(6.81) 

(6.82) 

(6.83) 

(6.84) 

MIMI l Queue with Controlled Service Rate. Consider a single-server queueing 
system where customers arrive according to a Poisson process with rate >.... The 
service time of a customer is exponentially distributed with parameterµ (called the 
service rate). Service times of customers are independent and are also independent 
of customer interarrival times. The service rate µ can be selected from a closed 
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subset M of an interval [0 , µ] and can be changed when the number of customers in 
the system changes . The re is a cost q(µ,) pe r unit time for using rate µ, and a waiting 
cost c(i) per unit time when there are i customers in the system (waiting in queue 
or undergoing service). The idea is that one should be able to cut down on the 
customer waiting costs by choosing a faster service rate , which presumably costs 
more. The problem, roughly, is to select the service rate so that the service cost 
is optimally traded off with the customer waiting cost. 

We assume the following: 

I. For some µ, E M we have µ, > >.. . (In words, a service rate is available that 
is fast enough to keep up with the arrival rate, thereby maintaining the queue 
length bounded.) 

2. The waiting cost function c is nonnegative , monotonically nondecreasing , and 
" convex" in the sense 

c(i + 2) - c(i + 1) ~ c(i + 1) - c(i), i = 0, 1, .... 

3. The service rate cost function q is nonnegative and continuous on [O , ,::r]. and 
q(O) = 0. 

The problem fits the framework of this section. The state is the number of 
customers in the system , and the control is the choice of service rate following a 
customer departure. The Markov chain , together with the transit ion probabilities 
and transition rates , is shown in Figure 6.6 , which also shows the corresponding 
uniform version for the choice 

11 = >.. + µ-. 

A, I 

µ , µ/(11. + µ) µ, µ/(11. + µ) 

Transition rates and transition probabilities for continuous-time chain 

(µ-µ)/(/\+µ) 

µ/(/\ + µ) 

Transition probabilities for the uniform version 

Figure 6.6 Contin uous-time Markov chain and uniform version for Example 2 
when the service rate is equal to µ, . The transition rate for the uniform version 

is II = A + Ti,. 
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The effective discount factor is 

and the cost per stage is 

V 
a=--

/3 + V 

_1 _ [c(i) + q(µ,)]. 
f3 + V 

Bellman's equation takes the form [cf. (6.84)) 

1 
1(0) = -- [c(0) + (11 - X)J(0) + Al(l)] 

/3 + 11 

J(i) = - 1
- min [c(i) + q(µ,) + µ,J(i - 1) 

/3 + 11 µ,EM 

+ (11 - A - µ,)J(i) + Al(i + 1)), i = 1, 2, .... 

Chap. 6 

(6.85) 

An optimal policy is to use at state i the service rate that minimizes the expression 
on the right. Thus it is optimal to use at state i the service rate 

µ,*(i) = arg min {q(µ,) - µ,a(i)}, (6.86) 
µ,EM 

where a(i) is the optimal cost differential 

au) = J(i) - JU - o, ; = 1, 2, .... 

[When the minimum in (6.86) is attained by more than one service rateµ, we choose 
by convention the smallest.] We will demonstrate shortly that Mi) is monotonically 
nondecreasing. It will then follow from (6.86) (see Figure 6.7) that the optimal 
service rate µ,*(i) is monotonically nondecreasing; so as the queue length increases, 
it is optimal to use a faster service rate. 

To show that a(i) is monotonically nondecreasing, we use the successive 
approximation method to generate a sequence of functions Jk where the starting 
function is 

loU) = 0, 

and, fork = 0, 1, ... [cf. (6.85)], 

i = 0, 1, ... , 

1 
lk+iC0) = -a - [c(0) + (11 - A)li0) + Xh(l)], 

,.., + 11 

1 
lk+ 1U) = -a-- min [c(i) + q(µ,) + µ,Jli - 1) 

fJ + 11 µ,EM 

+ (11 - X - µ,)Jli) + Alli + 1)), i = 1, 2, .... 

For k = 0, 1, ... and i = 1, 2, ... , let 

aii) = Iii) - Iii - 1). 

(6.87) 

For completeness of notation, define also Ji -1) = Ji0) and ai0) = 0. From the 
theory of Section 5.4 (see Proposition 14, and compare with Problem 10 of Chapter 
5), we have Iii) ~ J(i) as k ~ =. It follows that we have 

lim aii) = a(i), i = 1, 2, .... 
k-->oo 

Therefore, it will suffice to show for every k that aii) is monotonically nondecreasing. 
For this we use induction. The assertion is trivially true fork = 0. Assuming that 
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q(µ) 

Slope.1(i+ l)=J(i+ 1) - J(i) 

I 
I 
I 

Slope .1(i) = J(i) -J(i - I) 

o ----------- M-µ_*_<_n ___ µ_*<_i_+_i_) _ __;,~I µ 

Figure 6. 7 Determining the optimal service rate at states i and (i + I) in Example 
2. The optimal cost differential il(i) is monotonically nondecreasing with i. As 
a result, the optimal service rate µ. *(i) tends to increase as the system becomes 
more crowded (i increases). 

D.h) is monotonically nondecreasing, we show that the same is true for D.k+ ,(i). 

Let 
µ,k(O) = 0 

µ,k(i) = arg min {q(µ,) - µ,D.h)}, 
µEM 

From (6.87) we have, for all i = 0, 1, ... , 

D.k+l(i + 1) = lk+l(i + 1) - lk+t<n 

i = 1, 2, .... 

~ _1 __ [c(i + 1) + q[µ,k(i + 1)] + µ,k(i + l)Jii) 
{3 + l 

+ [v - >.. - µ,k(i + l)]Jh + 1) 

+ >..Jt(i + 2) - C(i) - q[µ,\i + 1)] - µ,k(i + 1) Jk(i - 1) 

- [v - >.. - µ,k(i + l)]Jii) - >..Iii + 1)] 
= - 1

- [c(i + 1) - c(i) + >.. D.ii + 2) + (v - >..) D.ii + 1) 
/3 + V 

- µ,k(i + l)[D.t(i + 1) - D.ii)]]. 

(6.88) 
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Similarly, we obtain, for i = 1, 2, ... , 

Ak+ 1(i) ~ - 1
- [c(i) - c(i - 1) + 'A.Aii + 1) 

f3 + V 

Chap. 6 

+ (v - 'A.) Aii) - µk(i - l)[Aii) - Aii - 1))]. 

Subtracting the last two inequalities , we obtain, for i = l, 2, ... , 

(/3 + v)[Ak+1U + 1) - Ak+1U)] 

;=;e [c(i + 1) - c(i)) - [c(i) - c(i - 1)) + A[Aii + 2) - Aii + 1)) 

+ [v - 'A. - µk (i + l)][Aii + 1) - Ah)] 

+ µk(i - l)[Aii) - Ali - 1)). 

Using our convexity assumption on c(i), the fact v - >.. - µ\i + 1) = µ - µk 
(i + I) ;:;e 0, and the induction hypothesis, we see that every term on the right side 
of the preceding inequality is nonnegative. Therefore, Ak+ 1(i + 1) ;:;e Ak.,. ,(i) for 
i = I, 2, .... From (6.88) we can also easily show that Ak.,. 1(1) ;:;e 0 = Ak+1(0), 
and the induction proof is complete. 

To summarize, the optimal service rate µ *(i) is given by (6.86) and tends to 
become faster as the system becomes more crowded (i increases). 

Example 3 
M / M / I Queue with Controlled Arrival Rate. Consider the same queueing system 
as in the previous example with the difference that the service rate µ is fixed, but 
the arrival rate >.. can be controlled. We assume that >.. is chosen from a closed 
subset A of an interval [0, I), and there is a continuous cost q(>..) per unit time. 
All other assumptions of Example 2 are also in effect. What we have here is a 
problem of flow control. The cost for throttling the arrival process is to be traded 
off optimally with the customer waiting cost. 

This problem is very similar to the one of Example 2. We choose as uniform 
transition rate 

v=I+µ 

and construct the uniform version of the Markov chain. Bellman's equation takes 
the form 

J(0) = -
13 

1 
min [c(O) + q('A.) + (v - >..)J(0) + Al(l)], 

+ V >.EA 

l 
J(i) = -Q - min [c(i) + q(>..) + µJ(i - 1) + (v - 'A. - µ)J(i) + Al(i + 1)) . 

/J + V >.EA 

An optimal policy is to use at state i the arrival rate 

'A.*(i) = arg min {q('A.) + >..A(i + I)} , (6.89) 
>.EA 

where, as before, A(i) is the optimal cost differential 

A(i) = J(i) - J(i - 1), i = l, 2, .... 

As in Example 2, we can show that A(i) is monotonically nondecreasing; so from 
(6.89) we see that the optimal arrival rate tends to decrease as the system becomes 
more crowded (i increases). 
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Example 4 
Priority A ssignment and the µ c Rule . Consider n queues that share a single server. 
There is a positive cost c; per unit time and per customer in each queue i. The 
service time of a customer of queue i is exponentially distributed with parameter 
f-l;, and all customer service times are independent. Assuming we start with a given 
number of customers in each queue and no further arrivals occur , what is the 
optimal order for serving the customers? The cost here is 

E {r ,-•• i C;X; (t) d+ 
where x,(t) is the number of customers in the ith queue at time t , and f3 is a positive 
discount parameter. 

We first construct the uniform version of this continuous-time Markov chain 
problem based on the uniform rate 

µ =max{µ ;}. 
i 

The construction is shown in Figure 6.8. The discount factor is 

µ, 
a=---, 

f3 + µ 
(6.90) 

_0____0__::: 

µ 

Transition rates and transition probabilities for the 
ith queue when service is provided 

I -~ 
/J 

/J 

Transition probabilities for uniform version 

Figure 6.8 Continuous-time Markov chain and uniform version for the it h ~ueue 
of Example 4 when service is provided. The transition rate for the umform 

version is µ, = max {µ,;}. 
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and the corresponding cost is 

I "" { ft } -"-}:<iE 4,Jcx~. 
/J + µ;. 0 i= l 

(6.91 

where x;, is the number of cuswmers in the ith queue after the l-1h transition (real 
or fictitious). 

We now rewrite the cost in a wav that is more con\'enient for analysis . The 
idea is to transform the problem from. one of minimizing waiting costs to one of 
maximizing savings in waiting costs through customer serYice. Form = 0. 1. . . .. 

define 

Denote also 

{
;, 

it= 0. 

cio = 0, 

if the A1h transition corresponds to 
a customer departure from queue i , 
if the kth transition is fictitious . 

x~: the initial number of customer in queue i . 

Then the co t (6.91) can al o e \ 'ritten as 

--- L ; -~ + L a.k E L Xo - ,;,.J c, l [ n 
00 

{ ft -1 1] 
/3 + /1- i I k = l =I m=O 

l [
00 

( n = --- ,._, O.k ,._, . X ~ 

/3 + µ A=O i=I 
{

"" = }] - E __, __, clc,_ 
m=Ol.=m+I 

n 

J c r~ - a. a* E {c;t.} 
(/3 + µ (1 - 0:) ~ . (/3 + µ)(1 - a) k=O 

1 n . a E } 
= Q ...J C X o - Q .;...J a { ; · 

/J il /J kO 

Therefore. instead of minimizing the rnst (6 .91). we can equivalently 

maximize}: a4 E{c,J. 
t=O 

(6.92) 

where c,, can be viewed as the sa1·i11gs i11 ll'aiti11g cost rate obtained from the l-1h 
transition. The problem equivalence just established expresses the intuitively clear 
idea that by serving a custl)mer we save the corresponding waiting cost in queue. 

We 110w rccog11i::.c prot,/cm 16 . 9l I as a 11111/tiamit'd ba11dir problem. The 11 
queues can be viewed as separate prnjects . At each time. a nonempty queue. say 
i. is selected and served . Since a customer departure occurs with probability µ. / µ. 
and a fictitious transition that leaves the state unchanged occurs with probability 
1 - µ J µ , the corresponding expected reward is 

(6.93) 

It is evident that the problem falls in the deteriorating case examined at the end of 
Section 6.5 Therefore. after each customer departure an optimal policy is to serve 
the queue with maximum expected reward per stage (i.e. engage the project with 
maximal index: cf. the end of Section 6.5). Equivalently [cf. (6.93)]. ir is <>primal 
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to serve the nonempty queue i for which µ,;c; is maximum. This policy is known 
as the µ,c rule. It plays an important role in several other formulations of the 
priority assignment problem (see [B2J, [H3], and [H4)). We can view µ,;c; as the 
ratio of the waiting cost rate c, by the average time I/µ,; needed to serve a customer, 
thereby saving C; in cost rate. Therefore, the µ,c rule amounts to serving the queue 
for which the savings in waiting cost rate per unit average service time are maximized. 

Example 5 
Threshold Policies for Routing in a Two-Station Queueing System. Consider the 
system consisting of two queues shown in Figure 6.9. Customers arrive according 
to a Poisson process with rate A and are routed upon arrival to one of the two 
queues. Service times are independent and exponentially distributed with parameter 
µ,1 in the first queue and µ,2 in tht! second queue. The cost is 

E {f0 

e-{J/ [c1X1(t) + CiXi(t)] dt}, 

where {3 , c 1 , and c2 are given positive scalars, and x 1(t) and xi(t) denote the number 
of customers at time t in queues 1 and 2, respectively. 

As earlier, we construct the uniform version of this problem with uniform 
rate 

V = A. + /J,1 + /J,2 

and the transition probabilities shown in Figure 6.10. We take as state space the 
set of pairs (i, j) of customers in queues 1 and 2. Bellman's equation takes the 
form 

J(i , j) = -
1

- [c1i + cJ + µ,1JW - W , j] + µ,2J[i , (j - 1)+]] 
f3 + V 

+ _>-.._ min [J(i + l,j) , J(i,j + 1)], 
f3 + V 

where for any x we denote 

(x) + = max [O, x]. 

From this equation we see that an optimal policy is to 

Route an arriving customer to queue 1 
iff the state (i , j) at the time of arrival belongs to S 1, 

Queue I 

)I. 
Queue 2 

(6.94) 

(6.95) 

Figure 6.9 Queueing system of Example 5. The probiem is to route each arriv!ng 
customer to queue I or 2 so as to minimize the total average di ~c nunted wailing 

cost. 
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Transition rates when customers are routed to Queue 1 

Transition probabilities for uniform version 

Figure 6. IO Continuous-time Markov chain and uniform version for Example 
5 when customers are routed to the first queue. The states are the pairs of 
customer numbers in the two queues. 

where S I is the set of states for which routing a new customer to queue results 
in at least as favorable cost-to-go as routing the customer to queue 2, 

S1 = {(i,j)JJ(i + l,j) ~ J(i,j + l)}. (6.96) 

This optimal policy can be characterized better by some further analysis. 
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Number j in Queue 2 

Route to Queue I 

Route to Queue 2 

0 Number i in Queue I 

Figure 6.1 1 Typical threshold policy characterized by a threshold function F. 

Intuitively, one expects that optimal routing can be achieved by sending a customer 
to the queue that is "less crowded" in some sense. It is therefore natural to 
conjecture that, if it is optimal to route to the first queue when the state is (i, j), 
it must be optimal to do the same when the first queue is even less crowded; that 
is, the state is (i - m, j) with m ~ I. This is equivalent to saying that the set of 
states S 1 for which it is optimal to route to the first queue is characterized by a 
monotonically nondecreasing threshold function F by means of 

s. = {(i,j)I i = F(j)} (6.97) 

(see Figure 6.11). Accordingly, we call the corresponding optimal policy a threshold 
policy. 

We will demonstrate the existence of a threshold optimal policy by showing 
that the variations 

a,(i,j) = J(i + t,j) - J(i,j + 1), 

dz(i,j) = J(i,j + 1) - J(i + l,j) 

are monotonically nondecreasing in i for each fixed j, and in j for each fixed i, 
respectively. It will be sufficient to show that for all k = 0. I. ... the functions 

(6.98) 

are monotonically nondecreasing in i for each fixed j, where J, is generated by 
the successive approximation method starting from the zero function; that is. 
l k+ 1(i, j) = T(Jk)(i, }), where Tis the DP mapping defining Bellman's equation (6. 94) 
and J

0 
= 0. This is true because .h(i, j) .- J(i, j) for nil i . .i as k - = (Proposition 

13 in Section 5.4). To prove that a}(i. j) has the desired property. it is useful to 
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first verify that Iii, j) is monotonically nondecreasing in i (or j) for fixed j (or i). 
This is elementary to show by induction or by arguing from first principles using 
the fact that Iii, j) has a k-stage optimal cost interpretation. Next we use (6.94) 
and (6.98) to write 

(/3 + v) M+'(i, j) = c, - Cz 

+ µ,, [Iii,j) - Ik[(i - 1)+ , j + 1]] 

+ µ,z [Ik[i + 1, u - 0+1 - hU, j)] 

+ >.. [min[Iii + 2, j ) , Iii + l , j + 1)] 

- min[Iii + 1,j + 1), Iii,j + 2)]] . 

(6.99) 

We now argue by induction. We have Ll?(i, j) = 0 for all (i, j) . We assume that 
Ll7(i, j) is monotonically nondecreasing in i for fixed j , and show that the same is 
true for Ll1+1(i, j). This can be verified by showing that each of the terms in the 
right side of (6.99) is monotonically nondecreasing in i for fixedj. Indeed, the first 
term is constant , and the second and third terms are easily seen to be monotonically 
nondecreasing in i using the induction hypothesis for the case where i, j > 0 and 
the earlier shown fact that Ih, j) is monotonically nondecreasing in i for the case 
where i = 0 or j = 0. The last term on the right side of (6.99) can be written 

>..[Ni + 1, j + 1) + min[Iii + 2, j) - Iii + l ,j + 1), O] 

- Ih + l , j + 1) - min[O, Iii,j + 2) - I ii + l ,j + 1)]] 

= >..[min[O, I ii+ 2,j) - h (i + 1,j + 1)] 

+ max[O, I h + 1,j + 1) - I li,j + 2)]] 

= >..[min[O, LlW + 1, j)] 

+ max[O, Ll7(i,j + 1)]] . 

Since Ll7(i + 1, j) and Ll7(i, j + 1) are monotonically nondecreasing in i by the 
induction hypothesis, the same is true for the preceding expression. Therefore, 
each of the terms on the right side of (6.99) is monotonically nondecreasing in i, 
and the induction proof is complete. Thus the existence of an optimal threshold 
policy is established. 

There are a number of generalizations of the routing problem of this example 
that admit a similar analysis and for which there exist optimal policies of the 
threshold type. For example , suppose that there are additional Poisson arrival 
processes with rates >.. 1 and >..2 at queues 1 and 2, respectively . Then the existence 
of an optimal threshold policy can be shown by a nearly verbatim repetition of our 
analysis. A more substantive extension is obtained when there is additional service 
capacity µ, that can be switched at the times of transition due to an arrival or service 
completion to serve a customer in queue 1 or 2. Then a similar proof as the earlier 
one can be used to show that it is optimal to route to queue 1 if and only if 
(i , j) E SI and to switch the additional service capacity to queue 2 if and only if 
(i + 1, j + 1) E S1, where S1 is given by (6.96) and is characterized by a threshold 
function as in (6.97). For a proof of this and further extensions, we refer to [H l l, 
which generalizes and unifies several earlier results on the subject. 
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6.8 NOTES 

The first passage problem was first formulated in [E 1]. Our presentation 
sharpens results from several sources, including [D4], [K14], and [Pl]. 

The index rule solution of the multiarmed bandit problem is due to 
[GI] and [G2]. The proof given here is due to Tsitsiklis [T9], and improves 
substantially on an earlier proof by Whittle [Wl 1]. Reference [V3] analyzes 
extensions of the bandit problem. References [KIO] and [K13J describe 
much additional work on the subject. 

The gambling problem and its solution are taken from [D9]. In [B25) 
a surprising property of the optimal reward function J* for this problem is 
shown; it is almost everywhere differentiable with derivative zero, yet it 
is strictly increasing, taking values ranging from O to 1. 

The idea of using uniformization to convert stochastic control problems 
involving continuous-time Markov chains into discrete-time problems gained 
wide attention following [L4]. Control of queueing systems has been re­
searched extensively. For additional material on the problem of control of 
arrival rate or service rate (cf. Examples 2 and 3 in Section 6.7), see [C4], 
[R4], [SIS], [S22J, [S25], and [S26]. For more on priority assignment and 
routing (cf. Examples 4 and 5 in Section 6.7), see [B2], [B3], [C4], [H3], 
[H4], and [E3], [HI], [L3], respectively. 

PROBLEMS 

1. Deterministic Linear-Quadratic Problems. Consider the deterministic linear­
quadratic problem involving the system 

xk+ 1 = Axk + Buk 

and the cost functional 

k=O 

It is assumed that R is posiiive definite symmetric, Q is of the form C'C, and 
the pairs (A, B), (A, C) are controllable and observable, respectively. Use the 
theory of Sections 2. I and 6.1 to show that the stationary policy 7r* = {µ *, 

µ*, ... } with 
µ*(x) = -(B'KB + R)- 1B'KAx 

is optimal, where K is the unique positive semidefinite symmt:tric solution of 
the algebraic Riccati equation (cf. Section 2.1): 

K = A'[K - KB(B'KB + R)- 1B'K]A + Q. 
Provide a similar result under an appropriate controllability assumption for the 
case of a periodic deterministic linear system and a periodic quadratic cost 
functional (cf. Section 5.5 and Problem 3). 
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2. Linear-Quadratic Problems with Nonstationary Disturbances. Consider the 
linear-quadratic problem of Section 6.1 with the only difference that the dis­
turbances wk have zero mean, but their covariance matrices are nonstationary 
and uniformly bounded over k. Show that the optimal control law remains 
unchanged. 

3. Periodic Linear-Quadratic Problems. Consider the linear system 

k = 0, 1, ... , 

J.ho) = lim E 
N--->= Wk 

k =O ..... N - I 

where the matrices have appropriate dimensions, Q1. and Rk are positive semi­
definite and positive definite, respectively, for all k, and 0 < a < l. Assume 
that the system and cost functional are periodic with period p (cf. Section 5.5), 
that the controls are unconstrained, and that the disturbances are independent, 
have zero mean , and finite covariance matrices. Assume further that the following 
(controllability) condition is in effect. 

Given any initial state x0 , there exists a finite sequence of controls 
{uo' U1' ... ' u,} such that X,+ I = 0, where X,+ I is generated by 

k = 0, 1, ... , r. 

Show that there is an optimal periodic policy 7r* of the form 

1T* = {µ,t • µ,t , ... , µ,t-1, µ,t • µ,f, ... , µ,t-1, ... }, 

where µ,t, .. . , µ,;_, are given by 

µ,f(x) = -a(aB[K;+ 1B; + R;) - 1B;Ki+ 1A;x, i = 0, ... , p - 2, 

µ,t - 1(x) = -a(aB;_1KoBp-1 + Rp-1)- 'B;_1K 0Ap-lX, 

and the matrices K0 , K 1, ••• , Kr - 1 satisfy the coupled set of p algebraic Ricca ti 
equations given by 

K; = AI[aK;+1 - ciK;+1B;(aBfK;+ 1B; + R;) -'BfK;+tlA; + Q;, 

i = 0, 1, ... , p - 2, 

Kp- 1 = A;_,[aKo - a 2KoBp-1(aB;_,KoBp-t + Rr_,)- 1B;_1Ko]Ap-t + Qp-t• 

4. Discounted Linear-Quadratic Problems with lmpe,ject State Information. 
Consider the linear-quadratic problem of Section 6.1 with the difference that 
the controller, instead of having perfect state information, has access to mea­
surements of the form 

Zk = Cxk + vk, k = 0, 1, .... 

As in Section 3.2, the disturbances vk are independent and have identical statistics, 
zero mean, and finite covariance matrix. Assume that for every admissible 
policy 7T the matrices 

E{[xk - E {xklh}][xk - E{xklhl1'17T} 
are uniformly bounded over k, where h is the information vector defined in 
Section 3.2. Show that the optimal policy is 7r* = {µ,*, µ,* , ... },whereµ, * is 
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given by 

µ,*(h) = -a(aB'KB + R)- 1B'KA E{xklh}, for all h, k = 0, 1, .... 

Show also that the same is true if wk and vk are nonstationary with zero mean 
and covariance matrices that are uniformly bounded over k. Hint: Combine 
the theory of Sections 3.2 and 6.1. 

5. Policy Iteration fur Discounted Linear-Quadratic Problems [K9). Consider the 
problem of Section 6.1 and let L 0 be an m x n matrix such that the matrix (A 
+ BL0 ) is stable. 
(a) Show that the cost corresponding to the stationary policy {µ,0 , µ,0 , ••• } , 

where µ,0(x) = L0x is of the form 

J µ,o(x) = x' K0x + constant, 

where K0 is a positive semidefinite matrix satisfying the (linear) equation 

Ko= a(A + BLo)'Ko(A + BL0 ) + Q + LoRLo. 

(b) Let µ, 1(x) attain the minimum for each x in the expression 

min {u' Ru + (Ax + Bu)' Ko(Ax + Bu)}. 

Show that for all x 

J,,.
1
(x) = x' K1x + constant~ JP-o(x) , 

where K 1 is some positive semidefinite matrix. 
(c) Show that the policy iteration process described in parts (a) and (b) yields 

a sequence {Kk} such that 

Kk - K, 
where K is the optimal cost matrix of the problem. 

6. Periodic Inventory Control Problems. In the inventory control problem of 
Section 6.2, consider the case where the statistics of the demands w~, the prices 
ck, and the holding and the shortage costs are periodic with period p. Show 
that there exists an optimal periodic policy of the form 1r* = {µJ, ... , µ,;_,. 
µ,t, • • ., /J.,:-1 , · • .}, 

*( ) _ {Sf - x, 
fJ.,; X - 0, 

if X ~Sf' 
otherwise, 

i = 0, I, ... , p - I, 

where St , ... , s; _ 1 are appropriate scalars. 
7. Consider the stopping problem of Section 6.3 under the assumption that 

t(x) ~ 0, c(x) ~ 0, for all x ES. 

Consider the mapping T defined by 

T(J)(x) = min[t(x), c(x) + If {J[fc(x, w)J} l 
(a) Show that the optimal cost function J* satisfies 

J* = T(J* ), J* = lim Tk(J0 ), 
/...----4 ,,._ 

where 10 is the zero function. 
(b) Let S = {I, 2, ... }, fc(i, w) = i + 1, and c(i) 0 for all i E S. w E D, 
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and t(i) = -1 + (1/i) for all i E S. Show that J*(i) = -1 for all i and 
that there does not exist an optimal policy for this problem (even though 
the control space is a finite set) . 

8. Let z0 , z1, ••• be a sequence of independent and identically distributed random 
variables taking values on a finite set Z. We know that the probability distribution 
of the z/ s is one out of n distributions f 1, fz, ... , f,,, and we are trying to 
decide which distribution is the correct one. At each time k after observing 
z1, ••• , Zk, we may either stop the observations and accept one of the n 

distributions as correct or take another observation at a cost c > 0. The cost 
for accepting f; given that fj is correct is Lu , i, j = 1, ... , n. We assume 
Lu > 0 for i -=f j , Lu = 0, i = 1, . .. , n. The a priori distribution of /i, ... , 
f n is denoted 

i= I 

Show that the optimal cost J*(P0 ) is a concave function of P0 • Characterize 
the optimal acceptance regions and show how they can be obtained in the limit 
by means of a successive approximation method. 

9. Show that a finite horizon problem with N stages that falls within the framework 
of the basic problem of Chapter 1 can be viewed as a (stationary) first passage 
problem (not necessarily with finite state, control, and disturbance space) for 
which assumptions similar to those of Section 6.4 are satisfied. Show also that 
a contraction condition such as (6.22) holds for this problem. Hint: If S0 , S 1 , 

... , SN are the state spaces for the stages 0, 1, ... , N , define a new state 
space S by S = {(x, k)lx E Sk, k = 0, 1, ... , N} U {T}, where Tis a termination 
(absorbing) state to which the system is driven with certainty from every state 
in {(x, N)lx E SN} similar to the constructions of Section 5.5. 

10. Infinite Time Reachability [B9], [B 12]. Consider the stationary system 

xk+I = f (xk, uk, wk) , k = 0, 1, ... , 
of the problem of this chapter, where the disturbance space D is an arbitrary 
(not necessarily countable) set. The disturbances wk can take values in a subset 
W(xk, uk) of D that may depend on xk and uk . This problem deals with the 
following question: Given a nonempty subset X of the state space S, under 
what conditions does there exist an admissible policy {µ,0 , µ, 1 , ••• } with µ,ixk) 

E U(xk) for all xk E S and k = 0, 1, ... , such that the state of the (closed­
loop) system 

Xk+ I = f[xk, µ,ixk) , w k] (6.100) 

belongs to the set X for all k and all possible values wk E W[xk, µ,ixk)], that 
is, 

x k EX, for all w k E W[xk, µ,t(xk)] , k = 0, 1, ... ? (6.101) 

The set X is said to be infinitely reachable if there exists an admissible 
policy {µ,0 , µ, 1, ••• } and some initial state x0 E X for which relations (6 .100) 
and (6.101) are satisfied. It is said to be strongly reachable if there exists an 
admissible policy {µ,0 , µ, 1 ... } such that for all initial states x0 E X relations 
(6.100) and (6. 101) are satisfied. 

Consider the function R mapping any subset L of the state space S into 
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a subset R(Z) of S defined by 

R(Z) = {xjthere is u E U(x) withf(x, u, w) E Z, for all w E W(x, u)} n Z. 

(a) Show that the set X is strongly reachable if and only if R(X) = X. 
Given X, consider the set X* defined as foUows: x0 E X* if and only if 
Xo E X and there exists an admissible policy {µ.0 , µ. 1, ••• } such that (6.100) 
and (6.101) are satisfied when x0 is taken as the initial state of the system. 

(b) Show that a set Xis infinitely reachable if and only if it contains a nonempty 
strongly reachable set. Furthermore, the largest such set is X* in the sense 
that X* is strongly reachable whenever nonempty, and if X C X is another 
strongly reachable set, then X C X*. 

(c) Show that if X is infinitely reachable there exists an admissible stationary 
policy {µ,, µ,, ... } such that if the initial state Xu belongs to X*, then all 
subsequent states of the closed-loop system xk+ 1 = f[xk, µ.(xk), wk] are 
guaranteed to belong to X* . 

(d) Given X, consider the sets R(X), ... , R*(X), ... , where Rk(X) denotes the 
set obtained after k applications of the mapping R on X. Show that 

= 
X* C n R\X). 

k=I 

(e) Given X, consider for each x EX and k = 1, 2, ... the set 

Uh) = {ulf(x, u, w) E Rk(X), for all w E W(x, u)}. 

Show that, if there exists an index k such that for all x E X and k ;;,: k the set 
Vix) is a compact subset of a Euclidean space, then X* = nk- 1 Rk(X). 

11. Infinite Time Reachability for Linear Systems. Consider the linear stationary 
system 

xk+t = Axk + Buk + Gwk> 

where xk E Rn , uk E Rm, and wk ER', and the matrices A, B, and Gare known 
and have appropriate dimensions. The matrix A is assumed invertible. The 
controls uk and the disturbances wk are restricted to take values in the ellipsoids 
U = {ulu'Ru ~ 1} and W = {wlw'Qw ~ I}, respectively, where Rand Qare 
positive definite symmetric matrices of appropriate dimensions. Show that in 
order for the ellipsoid X = {xix' Kx ~ I}, where K is a positive definite symmetric 
matrix, to be strongly reachable (in the terminology of Problem 10), it is sufficient 
that for some positive definite matrix M and for some scalar /3 E (0, l) we 
have 

K = A'[(l _ /3)K_, _ 
1 ; /3 GQ-'G' + BR- 1B'r

1

A + M. (6.102) 

K- 1 
- 7i GQ- 1G': positive definite . (6.103) 

Show also that if (6.102) and (6.103) are satisfied, the stationary policy {µ. *, 

µ,*, ... }, where 

µ,*(x) = -(R + B'FB)- 1B'FAx = Lx, 

F = [o - /3)K-I - l ; /3 GQ- 1G'r
1

, 
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achieves reachability of the ellipsoid X = {xix' Kx ::;:; 1}. Furthermore, the matrix 
(A + BL) is a stable matrix. (For a proof together with a computational 
procedure for finding matrices K satisfying (6.102) and (6.103), see [B9J and 
[B1 2]). 

12. In the context of the first passage problem of Section 6.4, assume that there 
exists m > 0 such that 

(6.104) 

for all i = l, ... , n and stationary policies 1r. Show that this relation also 
holds for all nonstationary policies 1r. Hint: Argue by contradiction . Assume 
that there exists a nonstationary 1r = {J.lo, µ, 1, • •• } and an initial state i such 
that (6.104) does not hold for any m. Define, for k = 1, 2, . . . , 

Sii) = UIP(xk = Jlxo = i, 1r) > O} . 

Let S= be the set of states that belong to infinitely many sets Sh), and for 
each J E San let µ,j be such that simultaneously /J-k = µ,j and j E Sk(i) for 
infinitely many integers k. Consider any stationary policy µ, such that µ,(j) 
µ,j(j) for j E S=. Show that (6.104) is violated for Tr = {µ, , µ, , .. . }. 

13. Consider the first passage problem of Section 6.4. 
(a) Suppose that for some stationary policy 1r there exist m > 0 and E > 0 

such that for all i 
P(xm = Olxo = i, 1r) ;:,: E . 

Show by induction that for all k 

P(xkm = Olxo = i, 1T) ;;, 1 - (1 - d 
and therefore P(xk = Olxo = i , 1r) ~ 1 as k ~ 00 • 

(b) Under Assumption N show that either the optimal cost is - 00 for some 
initial state, or else, under every policy, the system eventually enters with 
probability one a set of cost-free states and never leaves that set thereafter. 

(c) Under Assumption P, show that if there exists an optimal nonstationary 
policy for each initial state that is proper in the sense of (6.26), then there 
exists an optimal stationary policy that is proper. 

14. A gambler engages in a game of successive coin flipping over an infinite horizon. 
He wins one dollar each time heads comes up, and loses m > 0 dollars each 
time two successive tails come up (so the sequence TTTT loses 3m dollars). 
The gambler at each time period either flips a fair coin or else cheats by flipping 
a two-headed coin. In the latter case, however, he gets caught with probability 
p > 0 before he flips the coin, the game terminates, and the gambler keeps his 
earnings thus far. The gambler wishes to maximize his expected earnings . 
(a) Show that there is a critical value m for m below which it is optimal to 

flip the fair coin at all times. 
(b) Assume that m > m and argue that it is then optimal to try to cheat if the 

last flip was tails and to play fair otherwise . Hint: This is a first passage 
problem; however, the assumptions of Section 6.4 are not quite satisfied. 

15. Gambling Strategies for Favorable Games. A gambler plays a game such as 
the one of Section 6.6 , but where the probability of winning p satisfies 1 ::;:; 
p < 1. His objective is to reach a final fortune n, where n is a positive integer 
with n ;;, 2. His initial fortune is a positive integer i with O < i < n, and his 
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stake at time k can take only integer values uk satisfying O ,s; uk ,s; xk, O ,s; 
uk ,s; n - xk, where xk is his fortune at time k. Show that the strategy that 
always stakes one unit is optimal [i.e., µ,*(x) = 1 for all integers x with O < x 
< n is optimal]. Hint: Use Proposition 3 to show that 

0 ,s; i ,s; n, ½ < p < 1, 

0 ,s; i ,s; n, p = ½ 

(or see [A9, p. 182] for a proof). Then use the sufficiency condition of Proposition 
10 of Section 5.4. 

16. Computer Assignment. A quarterback can choose between running and passing 
the ball on any given play. The number of yards gained by running is Poisson 

· distributed with parameter 'A,. A pass is incomplete with probability p, is 
intercepted with probability q, and is completed with probability l - p - q. 
When completed, a pass gains a number of yards that is Poisson distributed 
with parameter 'AP" We assume that the yardage gained in each play is integer 
and that the probability of scoring a touchdown on a single play starting x yards 
from the goal equals the probability of gaining a number of yards greater or 
equal to x. We assume also that yardage cannot be lost on any play and that 
there are no penalties. The ball is turned over to the other team on a fourth 
down or when an interception occurs. Formulate the problem as a first passage 
problem, and use successive approximation and policy iteration to compute the 
quarterback's play-selection policy that maximizes the probability of scoring a 
touchdown on any single drive for 'A, = 3, Aµ = 10, p = 0.4, and q = 0.05. 

17. Optimal Serve Selection in Tennis [N4]. A tennis player has a Fast serve and 
a Slow serve, denoted F and S, respectively. The probability of F(S) landing 
in bounds is PF (p5 ). The probability of winning the point assuming the serve 
landed in bounds is qF (q5). We assume PF < Ps and qF > q5. The problem 
is to find the serve to be used at each possible scoring situation during a single 
game that maximizes the probability of winning that game. 
(a) Formulate this as a first passage problem with 36 states (plus the absorbing 

state) and write down Bellman's equation. 
(b) Show analytically that it is optimal (regardless of score) to use F on both 

serves if (pFqF)/(p 5 q5 ) > 1, to use S on both serves if (pFqF)/(psqs) < 
1 + PF - Ps, and to use Fon the first serve and S on the second otherwise. 

(c) Optional computer assignment: Assume that qF - 0.6, qs = 0.4, and 
Ps = 0.95. Plot (in increments of 0.05) the probability of the server winning 
a game with optimal serve selection as a function of PF• 

18. The Tax Problem [V3J. This problem is similar to the multiarmed bandit problem. 
The only difference is that, if we engage project i at period k, we pay a tax 
ciCj(x1) for every other project j [for a total of clL; 11 C'(x.,) ]. instead of earning 
a reward o/R'(x1

). The objective is to find a project selection policy that minimizes 
the total tax paid. Show that the problem can be converted into a bandit problem 
with reward function for project i equal to 

R 1(x1
) = C1(x1

) - aE{C'[f'(x1
, w')]}. 
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19. The Restart Problem [K4]. The purpose of this problem is to show that the 
index of a project in the multiarmed bandit context can be calculated by solving 
an associated infinite horizon discounted cost problem. In what follows we 
consider a single project with reward function R(x), a fixed initial state Xo, and 
the calculation of the value of index m(x0 ) for that state. Consider the problem 
where at state xk and time k there are two options: (1) Continue, which brings 
reward cl R(xk) and moves the project to state xk + 1 = f(xk, w), or (2) restart 
the project, which moves the state to x0 , brings reward o/ R(x0 ), and moves the 
project to state xk+i = f(x0 , w). Show that the optimal reward functions of 
this problem and of the bandit problem with M = m(x0 ) are identical , and 
therefore the optimal reward for both problems when starting at x0 equals m(x0 ) . 

Hint: Show that Bellman's equation for both problems takes the form 

J(x) = max [R(x0 ) + aE{J[f(x0 , w)]}, R(x) + aE{J[f(x, w)]}] . 

20. Alternative Characterization of the Index of a Project . In the multiarmed bandit 
context, fix a project and an initial state x0 , and let m(x0 ) be the value of index 
at that state. Consider the single-project problem with retirement reward equal 
to m(x0). For any stationary policy {µ, , µ, , . .. }, for this problem let Kµ. be the 
corresponding (random) retirement time. Show that 

_ £{discounted reward prior to Ke} 
m(xo) - m;x 1 _ E{aK"} , 

with the maximum attained when µ, is an optimal retirement policy. 
21. Determining the Bottleneck Links in an Open Network of Queues with a Single 

Customer Class [S8]. Consider a network of n queues whereby a customer at 
queue i upon completion of service is routed to queue j with probability p;j, 

and exits the network with probability 1 - L jP ij. For each queue i denote: 

r ;: the external customer arrival rate , 

the average customer service time, 

'>..;: the customer departure rate , 

a;: the total customer arrival rate (sum of external rate and departure rates 
from upstream queues weighted by the corresponding probabilities). 

We have 

a; = r; + L AiPii• 
j= l 

for all i, 

and we assume that any portion of the arrival rate a; in excess of the service 
rate µ,; is lost ; so the departure rate at queue i satisfies 

A; = min [µ,; , a;] = min [µ,;, r; + ± AjPii] . 
J=I 

Assume that r; > 0 for at least one i, and that for every queue i1 with r; > O 
there is a queue i with 1 - LiPu > 0, and a sequence i1 , i2 , • •• , ik, i such that 
P;1;2 > 0, . .. , P;k; > 0. Show that the departure rates A; satisfying the preceding 
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equations are unique and can be found by successive approximation or policy 
iteration. Hint : This is not a Markovian decision problem because we may 
have 2,jpj; > 1 for some i. However, it is possible to carry out an analysis 
based on m-stage contraction mappings that is similar to the one for the first 
passage problem (cf. Proposition 2). 

22. Proof of Validity of Uniformization. Complete the details of the following 
argument, showing the validity of the uniformization procedure for the case of 
a finite number of states i = I, ... , n. We fix a policy, and for notational 
simplicity we do not show the dependence of transition rates on the control. 
Let p(t) be the row vector with coordinates 

p;(t) = P{x(t) = ilx0}, i = 1, ... , n. 

We have 

dp(t)/dt = p(t)A, 

where p(O) is the row vector with ith coordinate equal to one if x0 

zero otherwise , and the matrix A has elements 

a .. = {v;pij, 
IJ -Vj, 

if i -f j, 
if i = j. 

From this we obtain 

where 

p(t) = p(O)eA', 

At - ~ (At)" 
e - ~ k'. 

~ ; Q • 

Consider the transition probability matrix B of the uniform version 

A 
B =I+-, 

V 

where v ~ v;, i 1, ... , n. Consider also the following equation: 
eAt = e-vteBvt 

oo k 

= e_,,, L (Bv,1) . 
k ; O k . 

Use these relations to write 

p(t) = p(O) L f(k , t)B\ 
k ; Q 

where 

f(k, t) = <;r e-vl 

= Prob{k transitions occur between O and t in the uniform 
Markov chain}. 

Verify that for i = 1, . .. , n we have 

p ;(t) = Prob{x(t) = i in the uniform Markov chain}. 

i and 

23. Consider the M/M/1 queueing problem with variable service rate (Example 2 
in Section 6. 7). Assume that no arrivals are allowed (A = 0), and one can 
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either serve a customer at rate µ, or refuse service (M = {O, µ}). Let the cost 
rates for customer waiting and service be c(i) = ci and q(µ,), respectively. 
Show that an optimal policy is to always serve an available customer if 

q(µ) ,< ~ 
µ, ~ {3 ' 

and to always refuse service otherwise . 

24. Consider a machine that may break down and can be repaired . Over a time 
unit where it is in operation it produces a negative cost (benefit) of - I unit, 
and it may break down with probability 0.1. When it is in the breakdown mode, 
we may repair it with an effort u. The probability of making it operative over 
one time unit is then u, and the cost is Cu2

• Determine the optimal repair effort 
over an infinite time horizon with discount factor a < 1. (This problem can 
be solved analytically.) 

25. Show that the critical level S* for the inventory problem with zero fixed cost 
of Section 6.2 maximizes (I - a)cy + L(y) over y. Hint: Show that the cost 
can be expressed as 

1.lxo) = E{t
0 

ak[(l - a)cyk + L(yk)] + 
1 

C:: a E{w} - cx0} 

where Yk = xk + µ,ixk) . 

26. Error Bounds for the First Passage Problem. Consider the first passage prob­
lem under either one of the assumptions of Section 6.4, and let µ,* be an 
optimal proper policy. For any function J ~ 0 with 1(0) = 0, suppose thatµ, is 
a proper policy such that Tµ,(J) = T(J). Let tJµ,*) and t;(µ,) be the mean first 
passage times from state i to state O underµ,* andµ,, respectively. Show that 
for all i = 1, ... , n , 

J(i)+-yt;(µ, ) $ 1µ,(i) $ J(i)+~t;(µ,), 

J(i) +-yt;(µ, *) $ J*(i) $ J(i)+~t;(µ,), 

where 

'Y = min [T(J)(i ) - J(i)], 'Y max [T(J)(i) - J(i )] . 
i L. i I . . 



CHAPTER SEVEN 

Minimization of Average 
Cost per Stage 

The results of the last two chapters are applicable to problems for which 
the total expected cost is finite for at least some initial states. We saw that 
this is possible for several types of problems either through discounting or 
through the presence of cost-free absorbing states that the system eventually 
enters or approaches. On the other hand, in many situations it turns out 
that for every policy and initial state the total expected cost 

{

N-1 } 

;~ E ~o g[xk, µ,ixk), wk] (7.1) 

is infinite, but the limit 

J~ ! E{ I g[xk, µ.(x,), w,]} (7.2) 

exists and is finite. Expression (7.2) may be viewed as average cost per 
stage and is a reasonably meaningful criterion for optimization. This chapter 
will deal with a problem similar to that of Chapter 5, except for the fact 
that the average cost per stage (7.2) is minimized in place of the total 
expected cost of (7 .1). Furthermore, in the first three sections we will 
restrict ourselves to the case of finite state space, control space, and 
disturbance space. For this reason it is convenient to switch at the outset 
to a notation that is better suited for finite state systems. 

Let S = {l, ... , n} denote the state space . To each state i E S and 
control u in the finite control space C there corresponds a set of transition 
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probabilities Pu(u), j = 1, . . . , n, as discussed in Section 5.2. Each time 
the system is in state i and control u is applied, we incur an expected cost 
denoted by g(i, u), and the system moves to state j with probability Pii(u) . 
The objective is to minimize over all admissible policies 1T = {µ,o, µ,i, ... } 
with µ,k:S ~ C, µ,ii) E U(i), for all i ES, the average cost per staget 

{

N-1 } 

J'Tr(x0 ) = f~ !E k~o g[xk, µ,ixk)] , (7.3) 

for any given initial state x0 E S . 

An Expression for Average Cost 

Let us now provide a preliminary discussion of the problem that 
motivates some of the results to be obtained in the next section. Given 
any stationary policy 1T = {µ,, µ,, ... } , let us denote by P µ, the transition 
probability matrix having elements pu[µ(i)l: 

Pµ, = [P11[µ,(1)] : : : P1n[µ,(1)]] · (
7

.4) 

Pni[µ,(n)] • • • Pnn[µ,(n)] 

The matrix P µ, may be used to express the m-step transition probabilities 
corresponding to a stationary policy 1T = {µ,, µ,, ... }. We have 

p ij [µ,(i)] = P(xk+ 1 = j I xk = i , 'TT) , 

and it is an elementary matter to show (see Appendix D) that 

[P ;]ij = P(xk+m = j I Xk = i, 'TT), 

where [P;]ij is the element of the ith row and jth column of the matrix 
P; (i.e., Pµ, raised to the mth power) . 

These probabilities can be used to express the cost J,.(x0 ) of (7 .3). 
As before , we use the notation 

i = 1, ... , n, 

for stationary policies 1T = {µ, , µ, , ... }. Denote 

[

Jµ,(1)] 
J,,, = J,,,?) ' 

J,,,(n) 
[

g[ 1, µ,(1)]] 
_ g[2, µ,(2)] 

g,.,, - : • 

g[n , µ,(n)] 

(7 .5) 

t When the limit in (7 .3) is not known to exist , we define average cost by 

J,.(xo) = lim sup - E L g [xk, µ,h*)] . 
} {N-1 } 

N-= N k=O 

We will show, however, as part of our subsequent analysis that the limit in (7.3) exists at 
least for those policies 1r that are of interest. 
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With this notation it is seen that 
N-1 

J,,_ = lim _!_ L P!g,,_. (7.6) 
N->oo N k=O 

The following result shows that J ,_,_ is well defined. It is a standard result 
on transition probability matrices, and its proof is given in the appendix 
to this chapter (Proposition A 7. I). 

Lemma 1. For any n x n stochastic matrix P, that is, a matrix with 
elements Pii satisfying 

i,j = 1, ... , n, 

we have 

I Pij = 1, ; = 1, ... , n, 
j=I 

N-1 

lim _!_ L pk = P* (7.7) 
N->oo N k=O ' 

where P* is a stochastic matrix with the following properties: 

(a) P* = PP* = P*P = P*P*. 

(b) (/ - P + P*) is an invertible matrix, where I denotes the n x n identity 
matrix. 

Using Lemma l to write 
N-1 

* l' 1 ~ k 
P,_,_ = N1!! N kL:o p ,_,_, (7.8) 

we have from (7.6) that 

J,,_ = P!g,,_. (7.9) 

Thus for every admissible stationary policy the corresponding average cost 
per stage is well defined and conveniently characterized by (7. 9). This 
equation has a natural interpretation. Using (7 .8), we see that the (i, j)th 

· element of P! is the long-term fraction of time the system visits state j 
when the initial state is i. Therefore, (7.9) states that J,,_(i) is the sum over 
all j of the cost gU, µ(j)] incurred when at state j, weighted by the fraction 
of time state j is visited when the initial state is i. 

Dependence of Average Cost on the Initial State 

An important fact to keep in mind regarding the average cost per stage 
(7 .2) is that it primarily expresses cost incurred in the long term. Costs 
incurred in the initial stages (say the first K) do not matter since their 
contribution to the average cost per stage is reduced to zero as N ~ =; 

that is, 

(7.10) 
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Consider now a stationary policy {µ,, µ,, ... } and two states i and j such 
that the system will, underµ,, eventually reachj starting from i with probability 
one. Then intuitively it is clear that the average costs per stage starting 
from either i or j cannot be different, since the costs incurred in the process 
of reaching j from i do not essentially contribute to the average cost per 
stage [cf. (7.10)]. More precisely, let K;/µ,) be the first passage time from 
i to j under µ,, that is, the first index k for which X1c = j starting from 
x0 = i under µ, (see Appendix D). Then the average cost per stage cor­
responding to initial condition x0 = i can be expressed as 

{

Ku(µ,)-1 } { 1 N } 
Jµ,(i) = lim _!_ E L g[xk, µ,(xk)] + lim E N L g[x1c, µ,(x1c)] . 

N ->-oo N k = O N->- oo k=Ku(µ,) 

If E{Ku(µ,)} <=(which is equivalent to assuming that the system eventually 
reaches j starting from i with probability one; see Appendix D), then it is 
easily seen that the first limit is zero, while the second limit equals 1µ,(j). 
Therefore, 

Jµ,(i) = Jµ,(j), for all i, j with E{Ku(µ,)} < =. 
The preceding argument suggests that the optimal cost 

J*(i) = min J 1.(i) , i = l , ... , n 

should also be independent of the initial state under normal circumstances. 
To see this, suppose that for two states i and j there exists a stationary 
policy {µ,,µ,, ... } such that E{KiJ(µ,)} < =. Then it is impossible that 

J*(j) < J* (i) , 

since when starting from i we can adopt the policy {µ,, µ,, ... } up to the 
time when j is first reached and then switch to a policy that is optimal 
when starting from j, thereby achieving an average cost starting from 
equaling J*(j). Indeed, we will show in Proposition 4 that we have 

J*(i) = J*(j) , for all i,j = 1, ... , n 

under the rather weak assumption that for every pair of states i and j there 
exists a stationary policy (dependent on i and j) under which state j is 
reached starting from i with positive probability . 

We thus conclude that for most problems of interest the optimal 
average cost per stage is independent of the initial state. As a result, we 
view this as the normal case and concentrate exclusively on it in the main 
body of this chapter. We provide an analysis of the more general case in 
the chapter appendix. 

The Analog of Bellman's Equation 

Let us try to speculate next on the proper form of Bellman's equation 
for the average cost problem. Consider a stationary policy {µ,, µ,, ... } and 
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the N-horizon cost corresponding to initial state x
0

: 

J~(x0 ) = E{I g[x,, µ(x,)l }-

We have already seen [cf. (7 .6)] that limN_.= (1/ N) 1:(i) 
follows that 
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l µ,(i ), so it 

(7.11) 

w here EN(i) is such that limN--.= [€NU)/ N] = 0. By denoting JN and EN the 
vectors with coordinates 1:(i) and EN(i), i = 1, .... n, we c;n write this 
relation as 

1i = NJµ, + EN . 

By substituting this equation in the usual recursion for the N-stage costs 

J N+I p JN µ, = gµ, + µ; µ,, 
we obtain 

(N + 1)1µ, + EN+I = gµ, + NP µ,1µ, + Pµ,EN. (7.12) 

Dividing by N and taking the limit as N ~ =, we see that 

1µ, = P µ,1µ- (7.13) 

Note that this relation [which follows also from (7.9) and Lemma l(a)] holds 
regardless of whether 1µ,(i) is independent of the initial state i. Furthermore, 
from (7.12) and (7.13) we have 

N = 1, 2, .... (7.14) 

If E~i) converges to a limit as N ~ =, that is, 

lim E~i) = hµ,(i), i=I,2, ... ,n, (7.15) 
N-no 

for some hµ,(i), i = 1, ... , n, then from (7.14) we obtain 

1µ, + hµ, = gµ, + Pµ,hµ,, 

and this turns out to be the proper form of the functional equation satisfied 
by lµ, [ i.e., the analog of 1µ,--= 1~(.Iµ,) in Chapter 5]. Note from (7.11) and 
(7. 15) that, when Jµ,(i) is independent of the initial state i, we have, for 
any i and j, 

hµ,(i) - hµ,(j) = lim [Ji(i) - 1i(j)]. 
N-+oo 

Thus we may view hµ(i) - hµ,(j) as a long-term differential cost expressing 
the long-term difference in total cost (not average cost per stage) due to 
starting at state i rather than state j. 

It is not true in general that EN(i) converges to a limit as in (7.15). 
basically because EN(i) may have a periodic component (see the following 
example). However, it can be shown using the dt>finition (7 .11) of EN and 
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Lemma 1 (see Problem 5) that 
. 1 N • 1 N 

hm NL Ek= hm NL Ek+i = (I - P,,, + P!)-
1 

(/ - P!)g,,, ~ h,,,, 
N->= k= 1 N->oo k= I 

(7.16) 

where P! is given by (7.8). By adding (7.14) for N = 1, 2,. . , we obtain 

1 N (1 N ) 
1µ + N ~I Ek+I = gµ + P,,, N ~I Ek • 

So we see, using (7.16), that the equation 

1µ + hµ = gµ + P,,,h,,, 
holds always regardless of whether the limit in (7.15) exists. From (7.11) 
and (7 .16), we see that for any two states i and j with J ,,,(i) = J ,,,(j) 

N 

h,,,(i) - h,,,(j) = !~ ! k~I [J!(i) - l!U)]. 

Therefore, when J,,,(i) is independent of the initial state i, we may again 
view h,,, as a differential cost vector. 

Example 
Assume that there are two states and the cost per stage vector is 

gµ = [ ~]. 

Case 1: Let the transition probability matrix be 

Pµ = [! fl. 
Then it is easily seen from (7 .8) and (7 .9) that 

P! = [ ! ! ], J µ = D]. 
The N-stage cost vector J~ can be calculated from the recursion 

J~+i = g,,_ + P,,.1: , J~ = [~]. 

and by induction it can be verified that 

N = 1, 2, ... , 
where 

EN= [ -n. 
The costs J~(l) and 1~(2) are shown in Figure 7 .1. In this case EN converges to 
the differential cost vector 

and the relation J,,. + h,,. = g,,_ + P,,.h,,. can be easily verified. 
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Figure 7.1 Interpretation of differential cost as a limit of difference of finite 
horizon costs. 

Case 2: Let the transition probability matrix be 

Pµ = [ ~ ~]. 

Here again we see from (7.8) and (7.9) that 

P* - [½ !] 
µ - ½ ½ ' 

By induction it can be verified that 

J~ =NJµ+ EN, 

where 

N = I, 2, ... , 

if N is even, 

if N is odd. 
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The costs 1i(l) and 1i(2) are shown in Figure 7.2. In this case EN does not converge 
and reflects the periodic behavior of the Markov chain. However, EN converges in 
the sense of (7 .16) to the differential cost vector 

hµ = [ -n. 
satisfying the equation lµ + hµ, = gµ, + Pµ,hµ,. 

Prompted by the form of the functional equation for J µ. it is natural 
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Figure 7 .2 Differential cost interpretation when finite horizon cost differences 
do not converge to a limit. 

to speculate that, when optimal average cost is independent of the initial 
state, Bellman's optimality equation for the average cost problem takes the 
form 

A + h(i) = min [g(i, u) + f Pu(u) h(j)], 
uEU(t) j=l 

i = 1 , ... , n, (7. 17) 

where A = J*(i) for all i, and h(i), i = 1, ... , n, are some scalars having 
a differential cost interpretation as discussed previously. Furthermore, it 
should be possible to obtain an optimal stationary policy via the minimization 
in (7 .17). We will demonstrate this fact in the next section. Sections 7 .2 
and 7 .3 deal with computational methods, while Section 7.4 discusses the 
case of infinite state space and the average cost version of the linear­
quadratic problem in particular. 

The main body of the chapter is devoted exclusively to the case where 
the optimal cost is equal for all initial states. This is the case that normally 
appears in practice, as discussed earlier. However, the analysis of the more 
general case, where optimal costs can be different for different initial states, 
is genuinely interesting as it provides insights and methods of proof for the 
simpler case that would be very hard to obtain by other means. This 
analysis, directed primarily at the advanced reader, is carried out in the 
chapter appendix. 
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7 .1 OPTIMALITY CONDITIONS 

We first introduce the mappings T and Tf-l that were used extensively in 
Chapters 5 and 6. Thus T maps an n-dimensional vector h into another 
n-dimensional vector T(h) according to the equation 

T(h)(i) = min [g(i, u) + f pu(u) h(j)], i = l, ... , n. (7 .18) 
uEU(1) j= I 

For any stationary policy {µ,, µ,, ... }, the corresponding mapping T,1- is 
given by 

T,..(h)(i) = g[i, µ,(i)] + L PiJµ,(i)] h(j), i = 1, ... , n. (7.19) 

Denoting M the set of all admissible control functions µ,, we can write 
these mappings in more compact form as 

T(h) = min [g,.. + P,..h], (7.20) 
µEM 

for all µ, E M, (7.21) 

where gf-l and Pf-l are given by (7.4) and (7.5), and the minimization in (7.20) 
is meant to be separate for each state. 

These mappings have the fundamental monotonicity property 

h ~ h' ⇒ T(h) ~ T(h'), 

h ~ h' ⇒ T,..(h) ~ T,..(h'), µ, EM, 

where, as earlier, the inequalities are assumed separate for each state. In 
what follows we will make use of the unit n-dimensional vector 

Note that if r is a scalar then 

T(h + re) = T(h) + re, 

T,..(h + re) = T,..(h) + re, µ, EM. 

(7.22a) 

(7.22b) 

Our first result introduces the analog of Bellman's equation for the 
case of equal optimal cost for each initial state. The proposition shows 
that all solutions of this equation can be identified with the optimal cost 
and an associated differential cost. However, it provides no assurance that 
the equation has a solution. Further assumptions are required for this and 
will be given in the sequel. 

Proposition 1. If a scalar A and an n-dimensional vector h satisfy 

A+ h(i) = mi~ [t?(i, u) + ± Pii(u) h(j)], i ~ L .... 11, (7.23) 
uEU(I) .i= I 
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or equivalently 

Ae + h = T(h), (7.24) 

then >... is the optimal value of the cost J rrU) for all i: 

A= minJrr(i) = J*(i), i = I, 2, ... , n. (7 .25) 

Furthermore, if µ..*(i) attains the minimum in (7.23) for each i. the stationary 
policy{µ..* , µ..* , ... } is optimal; that is, Jµ..(i) = J*(i) = 'A for all i. 

Proof. Let 1T = {µ..0 , µ.. 1, ••• } be any admissible policy and N > 0 
be an integer. We have, from (7.23), 

X.e + h ~ T,.,.N_
1
(h). 

In view of the monotonicity property. if Tµ._, 
2 

is applied on both sides. the 
inequality is preserved. Therefore, by using (7.22) and (7.23) we obtain 

2Ae + h ~ Ae + T,.,.N_
2
(h) ~ (T,.,.N_

2
T,.,.N_)(h). 

Continuing in the same manner, we finally obtain 

NAe + h ~ (T /J-OT,.,.1 ••• T,.,.N_)(h) (7.26) 

with equality if each µ.. k, k = 0, I. .... N - 1. attains the minimum in 
(7.23). We have 

(T,.,.
0
Tµ.

1 
• • • Tµ. _v_ )(h)(i) = E{h(x.v) + I 1 

g[xk. µ...1.(Xk)]Jx0 = i. rr}. 
k=O 

Using this equation in (7.26) , we obtain 

1 I 1 {N-t } 
>... + - h(i) ~ - E{h(x_,.,.) I x0 = i. rr} + - E I g[xk. µ../xk)llxo = i. 1T • 

N N N k=O 

and by taking the limit as N ~ 00 , 

A~ lrr(i), i = 1, ... , n 

with equality if µ.."(i), k = 0, 1. .... attains the minimum in (7 .23). Q.E.D. 

Note that this proof carries through even if the state space and control 
space are infinite as long as the function h is bounded and the minimum 
in (7.23) is attained for each i. Also. the converse of Proposition I turns 
out to be true; that is, if J*(i) = >.... i = I. .... n. for some scalar>.... then 
A together with a vector h satisfies the optimality equation (7.23). However. 
the proof of this requires the machinery developed in the chapter appendix 
(see Propositions A7.3 and A7.4). 

Now given a stationary policy rr = {µ... µ.. . ... }, we may consider. as 
in the past two chapters, a problem where the constraint set U(i) is replaced 
by the set U(i) = {µ..(i)}; that is, U(i) contains a single element, the control 
µ..(i). Since for the resulting problem there is only one admissible policy. 
the policy {µ... µ.. • ... }, application of Proposition 1 yields the following 
corollary . 
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Corollary 1.1. Let rr = {µ, µ., ... } be a stationary policy. If a scalar 
A,,, and an n-dimemional vector h,,, satisfy, for all i E S, 

j=I 

or equivalently 

then 

i = 1, 2, ... , n. 

We now turn to obtaining conditions that guarantee the existence of 
A and h satisfying Bellman's equation (7.23). At the same time we will 
establish a connection with the discounted cost problem of Chapter 5. 

Consider the discounted cost 

!~ E{I ,lg[x,, µ,(xJ] } , 0 <a< I. 

Let la(i) be the optimal \alue of this cost corresponding to initial state i. 
Proposition 2 in Section 5 .1 shows that la is the unique solution of the 
optimality equation 

J.(i) = .',!'!,~ [fr;. uJ ~ c, J, f',,(u)J.(j)]. i = I, ... , n. (7.27) 

Let s be an arbitrary state in S, and let us define 

ha(i) = la(i) - la(s), i = 1, ... , n. (7.28) 

Using (7.27) to eliminate l)iJ from <7.28), we have 

h.(i) + J .(s) = .'!'tn [ g(i, u) + a J p"(u)[h.(j) + J.(s)J] 

= a.JaCs) -r min [g(i, u) + a ± Pii (u)ha(j) ] 
uEU(1) j=I 

from which 

(] - a)]Js) - h,)i J = mi~ [f?(i. u) + a± piJ(u)ha(j)]. 
uEU(1) j=I 

(7.29) 

This equation looks very similar to the optimality equation (7 .23). In particular. 
if for some <.;equcnce '.Clrd with O < am < I and a,,. - 1 we have 

Jim (1 - am) laJs) = A, (7.30) 

lim h,,ji) = h(i), i=l , ... ,n (7.31) 
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(i.e., the preceding limits exist), then from (7 .29), 

'A. + h(i) = mi~ [g(i , u) + ± Pu(u)h(j)], 
uEU(1) j=I 

i=l, ... ,n, 

and condition (7 .23) is satisfied. The following proposition states that a 
sufficient condition for existence of a sequence {am} such that the limits in 
(7.30) and (7.31) exist is that the differences [l0 (i) - l 0 (s)] are uniformly 
bounded over a. 

Proposition 2. Assume that there exists a constant L such that for 
some state s E S we have 

lla(i) - la(s)I ~ L, for all i E S , a E (0, 1). (7.32) 

Then for some sequence {am} with am E (0, l) and a,,, ~ l, we have for 
all i 

lim [l0 ji) - J0 Js)] = h(i) , 
m---+= 

m---+= 

and 'A. and h satisfy the optimality equation (7 .23). 

Proof. Let {ak} be any sequence such that ak ~ l. By (7 .32), the 
sequences {Jm(i) - l

0
is)} are bounded. Hence there exists a subsequence 

of {ak}, say {a,,,}, such that {Ja,,,U) - 1 0 ,,,(s)} converges to a limit h(i) for 
each i. If B is a constant such that jg(i, u)i ~ B for all i and u E U(i), 

then II am(s )I ~ B(1 - am) - I . 

Hence the sequence {(l - a,,,)110 ,Js)i} is bounded. Thus there exists a 
subsequence of {am}, say {am,} such that 

(1 - a,,,,)Jan,(s) ~ A.. 
From (7 .29) we have 

Taking the limit and interchanging limit and minimization [using the finiteness 
of U(i)] , we obtain (7 .23). Q .E .D. 

Recall that a Markov chain is said to be irreducible if every two states 
communicate with each other. This is equivalent to the existence of a 
single ergodic class that includes all states, as well as to the mean first 
passage time between any two states being finite (Appendix D). The following 
proposition provides the simplest (and most restrictive) condition under 
which the optimal cost is the same for all initial states. 

Proposition 3. Assume that every stationary policy gives rise to an 
irreducible Markov chain. Then there exists a scalar >.. and a vector h 
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such that, for all i E S, 

A + h(i) = min [g(i, u) + ± pu(u)h(j)], 
uEU(i) j=I 

and (by Proposition 1) 

A = J*(i), i = l, ... , n, 

while ifµ., *(i) attains the preceding minimum for each i, the stationary policy 
{ * * } . 1· 1 µ., , µ., , . . . 1s op 1ma . 

Proof. For any a E (0, 1), let {µ,a, µ,a, . .. } be a policy that minimizes 
the corresponding discounted cost. If B is such that lg(i, u)I ~ B for all i 
E S and u E U(i), we have, for every i E S and s E S, 

{

K;s(J.1,a)- I • = } 
l a(i) = E ~ akg[xk> µ.,a(xk)] + L akg[xk> µ.,a(xk)) I Xo = i 

k-0 k=K;s(µ,,,) 

~ B E{Kis(µ.,a)} + la(s), 

where K;s(µ.,a) is the first passage time from i to s under µ,a. The hypothesis 
implies that E{K;s(µ.,a)} is uniformly bounded over i, s, and µ,a. Therefore, 
the difference la(i) - la(s) is uniformly bounded over i, s, and a, and the 
hypothesis of Proposition 2 is satisfied. The result follows from Propositions 
1 and 2. Q.E.D. 

Proposition 3 can be shown under weaker hypotheses. The following 
strengthened version will be proved in the chapter appendix. 

Proposition 4. Assume that one of the following conditions holds: 

(a) Every stationary policy gives rise to a Markov chain with a single ergodic 
class. 

(b) For every two states i and j, there exists a stationary policy 1r such that, for 
some k, 

P(xk = j I Xo = i , 1r) > 0. 

Then the conclusions of Proposition 3 hold. 

Proof. See the chapter appendix. An independent proof under condition 
(a) is also obtained from Proposition 8 that follows. 

The conditions listed are probably the weakest that guarantee that the 
optimal average cost per stage is independent of the initial state. It is clear, 
of course, that some sort of accessibility condition must be satisfied by the 
transition probability matrices corresponding to stationary policies or at 
least to optimal stationary policies. For if there existed two states none 
of which could be reached from the other no matter which policy we use, 
then it can be only by accident that the same optimal cost per state will 
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correspond to each one. An extreme example is a problem where the state 
is forced to stay the same regardless of the control applied (i.e., each state 
is absorbing). Then the optimal average cost per stage for each state i is 
minuEV(i) g(i, u), and this cost may be different for different states. 

For any stationary policy {µ,, µ, ... }, we can consider the problem 
where there is only the control µ,(i) available at state i. Then we obtain 
the following corollary to Proposition 4. A proof of this corollary may also 
be obtained by a small modification of the proof of Proposition 3. 

Corollary 4.1. Let 'Tr = {µ, µ, ... } be a stationary policy giving rise 
to a Markov chain with a single ergodic class. Then there exists a constant 
A,,_ and a vector h,.,, such that 

J,,,(i) = A,,_, i = 1, ... , n, (7.33) 

and 

A,,_ + h,,,(i) = g[i, µ(i)] + L pu[µ(i)]h,,,(j) , i = 1, ... , n. (7.34) 
j=I 

Equation (7 .34) represents a system of n linear equations with (n + 
1) unknowns: the scalars A,,_, h,.,,(1), h,,,(2), ... , h,,,(n). We may add one 
additional equation to this system by requiring that 

h,,,(s) = 0, (7.35) 

where s is any one of the states. This eliminates the degree of freedom 
due to the fact that if {A,,_, h,.,,(1), ... , h,.,,(n)} is a solution of (7 .34), so is 
{A,,_, h,,,(1) + r, ... , h,,,(n) + r}, where r is any scalar. Corollary 4.1 under 
the condition stated asserts that system (7 .34) and (7 .35) has at least one 
solution. We now show that this solution is unique. 

Proposition 5. For every stationary policy 'Tr = {µ, µ, ... } that gives 
rise to a Markov chain with a single ergodic class, the system of equations 
(7.34) and (7.35) has a unique solution. 

Proof Let {A, h(l), ... , h(n)} and {A', h'(l), ... , h'(n)} be two solutions. 
We have A = >-..' = A,,_ by Corollary 1.1. Hence from (7 .34) we obtain, for 
every m ~ 1, 

h - h' = P,,,(h - h') = P;(h - h'), 

or equivalently 

h(i) - h'(i) = L p'!J(µ)[h(j) - h'(j)] , i = 1, ... , n. 
j=I 

Assume first that the state s in (7 .35) belongs to the ergodic class. Then 
we obtain, for some m; ~ 1 and e > 0, 

p'/t(µ) ~ e > 0, 
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and, from (7.35) h(s) - h'(s) = 0. Hence 

Thus we obtain 

n 

lh(i) - h'(i)I ~ L p'(f(µ,)lh(j) - h'U)I 
j=) 

= L p'(f (µ,)lhU) - h'U)I 
Ns 

~ (1 - e) maxlhU) - h'U)I. 
j 

m~xlh(j) - h'U)I ~ (1 - e) maxjh(j) - h'U)I, 
J j 

and h(j) = h'(j) for all j. 
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Consider now the case where the state s in (7 .35) does not belong to 
the ergodic class. We choose another states in the ergodic class and define 

h(i) = h(i) - h(s), h'(i) = h'(i) - h'(s). 

Then {A, h(l), ... , h(n)} and{>-.', h'(l), ... , h'(n)} are solutions of (7.34) 
together with h,,,(s) = 0. By the argument given earlier, we then have 
h = h', which implies that h = h'. Q.E.D. 

We close this section with an example. 

Machine Replacement. Consider a machine that can be in any one 
of n states, S = {I , 2, ... , n}. The implication here is that state i is better 
than state i + I, and state I corresponds to a machine in perfect condition. 
The operating cost per unit time when the machine is in state i is denoted 
C;, and we assume 

(7.36) 

During a time period of operation, the transition probabilities satisfy 

Pii = 0, if j < i, 

P;; < I, i= 1, ... ,n-1. 

That is, the machine cannot go to a better state with usage. We also assume 
that for any nondecreasing function J we have 

(7.37) 
j = l j = l 

At the beginning of each period the state of the machine is determined and 
a decision is made whether to replace the machine at a cost R > 0 with a 
new machine that is in state I or to continue operation. Thus there are 
two possible controls: replace and do not replace. The problem is to find 
a policy that minimizes the average cost per period . 

Note that the hypotheses of Propositions 3 and 4 are not satisfied for 
this problem. For example, consider the stationary policy that replaces at 
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every state except the worst state n (a poor but legitimate choice). The 
corresponding Markov chain has two ergodic classes, {I , 2, ... , n - 1} 
and {n}. It can be also seen that one cannot guarantee in the absence of 
further assumptions that condition (b) of Proposition 4 is satisfied. We will 
be able. however, to argue in terms of Proposition 2. 

Consider the corresponding discounted problem with a discount factor 
a < I. Then we have for all i 

J.(i) = min [ R + g 1 + a ;t P,;l.(j), g, + a ;t P,;l.(j) l 
It follows that 

JJi) - JJI) = min[ R, (g, - g,) + a J, (p,; - p,;)J.(j)] ,; R. 

It is easily shown using (7.36) and (7.37) that we have, for all a E (0, I), 

0 ~ Ja(i) - Ja(l) , i = 1, 2, ... , n. 

Furthermore, l,,(i) - l a(l) is nondecreasing in i . Hence, by Proposition 
2, there exists a scalar A and a nondecreasing function h, such that 

1' -,- hU) = min[ R + R, + ;t P,;h(j), R, + J, P,,h(j)l i= 1, 2 , ... ,n, 

and the policy that chooses the minimizing action is average cost optimal. 
Let 

i* = max { ilg, + J, P,;hU)"' R + R, + ;t, P,;h(j) }-

Then the policy that replaces if the current state is greater than i* and does 
not replace otherwise is optimal. 

7.2 SUCCESSIVE APPROXIMATION, ERROR BOUNDS, AND 
LINEAR PROGRAMMING SOLUTION 

The natural version of the successive approximation method for the average 
cost problem is si mpl y to generate successivel y the N-stage optimal costs 
l o. TU0 ) • ... , T~U 0 ), • • • , starting with the zero function 10 = 0. We can 
gain <some ins ight regarding the nature and proper implementation of this 
method by concentrating on a single stationary policy {µ . µ, ... } and 
considering the iteration 

1~ = 0, J!+l = T/ J!) = gµ, + Pµ,J t. (7. 38) 

Clearl y. 1 ~ i5 the k-stage cost vector corresponding to µ . As discussed in 
the introduction to this chapter , we have 

(7 .39) 
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where J µ is the average cost vector fo r µ,, and E1.; is a vector that converges 
to some hµ in the sense 

} N 

hµ. = lim - L Ek (7.40) 
N-oo N k=I 

(and in many cases in the sense lim1.;-,r,:, E1.; = hµ). Furthermore, we have 

lµ. + hµ. = Tµ(hµ) (7.41) 

and the differences hµ(i) - hµ(j) have the interpretation of long-term differential 
cost. 

We could determine 1µ by recursively generating 1:, k = 0, I, 
.. . , and taking the limit lim1.;-.= (l / k)J:, but this has two drawbacks. First, 1: typically diverges to + = or - =, so direct calculation of lim1.;-,,_,._ 
(I / k) 1: is numerically impractical. Second, this will not provide us with 
a corresponding differential cost vector hµ. We can bypass both difficulties 
by recursively generating instead a sequence {hk} converging to hµ . The 
average cost vector J,,_ can then be obtained by (7.41 ). Actually, for this 
we do not really need the vector hµ of (7.40); any vector hµ differing from 
the one of (7 .40) by the same constant for each coordinate is sufficient to 
determine J µ from (7.41). To eliminate this degree of freedom we therefore 
require that 

h!.(s) = 0 

for some fixed state s. With this in mind, consider the iteration 

hk+ 1 = T,,_(hk) - T,,_(hk)(s)e 

where for all i 

Tµ(hk)(i) = g[i, µ,(i)] + L pij[µ,(i)]hkU) , 
i - I 

(7.42) 

(7.43) 

(7.44) 

and e = [ I, I, ... , I]' is the unit vector. A key observation is that if the 
sequence {hk} converges, say to a vector hµ, then we must have [cf. (7.43)] 

Tµ.(hµ.)(s)e + h,,_ = Tµ(hµ.). 

By Corollary 1.1, this implies that Tµ(hµ)(s) is the average cost corresponding 
to µ, , and hµ. is an associated differential cost vector. 

Consider also the multiple policy version of iteration (7.43) given by 
hk+l = T(hk) - T(hk)(s)e (7.45) 

where for all i 1 

T(h')(i) = .~t~, [ g(i, u) + %,, p,;(u)h'(j)]. 

If this iteration converges to some vector h, then we must have 

T(h)(s)e + h = T(h). 

(7.46) 

By Proposition I, this implies that T(h)(s) is the urtimal value of average 
cost, and h is a corresponding differential cost vector. 
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The following proposition provides conditions under which convergence 
of (7.45) is assured. As an aid in understanding the hypotheses of this 
proposition, we first note that convergence can only be expected when the 
optimal average cost is independent of the initial state. Therefore , at least 
the hypotheses of one of Propositions 2, 3, or 4 are needed for convergence. 
It turns out, however, that a stronger hypothesis such as the one given in 
the proposition is required . The advanced reader can understand the reason 
for this by considering iteration (7.43). Using (7.44), it can be written as 

(7 .47) 

where 

i\_ = (/ - ee;)Pµ, 

and es is the sth coordinate vector, having all coordinates zero except for 
the sth coordinate which is unity. Therefore , convergence of iteration (7.43) 
depends on whether all the eigenvalues of P µ, lie strictly within the unit 
circle. We have, using the facts Pµ,e = e and e;e = 1, 

P! = (Pµ - ee;Pµ,)(Pµ, - ee;Pµ,) = P! - Pµ, ee;Pµ, - ee;P! + ee;Pµ,ee ;Pµ, 

2 2 ~ = Pµ, - ee;Pµ, = Pµ,Pµ, , 

and it follows that for all k > 1 

P! = P!- 1P µ,• (7.48) 

Using this equation, it can be shown that P µ, and P µ, have the same eigenvalues 
except that P µ, has a zero eigenvalue in place of a single unity eigenvalue 
of P µ,. Therefore, for convergence of (7.43), P µ, should have all its eigenvalues 
other than a single unity eigenvalue strictly inside the unit circle. This 
condition is violated when P µ, has multiple ergodic classes in which case 
unity is a multiple eigenvalue, but it is also violated when P µ, has a periodic 
structure and some of its nonunity eigenvalues are on the unit circle. 

Proposition 6. Assume there exists a positive integer m such that 
for every set of control functions µ,0, µ, 1, ... , µ,m with µ,k(i) E V(i), i = 
1, ... , n , k = 0, ... , m , there exists an E > 0 and a state x such that 

i = 1, ... , n, (7 .49) 

[Pµ,m _,Pµ,m_
2 

... P/J,o]ix ~ E, i = 1, ... , n , (7.50) 

where [ • L denotes the element of the ith row and xth column of the cor­
responding matrix . Fix a state s E S and consider the algorithm 

hk+ 1(i) = T(h1(i ) - T(h1(s), i = 1, ... , n, (7.51) 

where h0(i) are arbitrary scalars and the mapping Tis given by (7.46). Then 
the limits 

h(i) = lim hk(i) , i= l ,2, ... , n , (7.52) 
k-H,O 
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exist, and we have 

>.. = J*(i), i = 1, ... , n, 
and 

>.. + h(i) = T(h)(i) , i = 1, ... , n, 
where >.. T(h)(s). 

Proof. Denote 

qk(i) = hk+ 1(i) - hk(i), i = 1, 2, ... , n. 

We will show that for all i and k ~ m we have 
max lU) - min q\i) ~ (I - E) [max qk-m(i) - min qk-m(i)], 

i i i i 

(7.53) 

(7.54) 

(7 .55) 

(7 .56) 

where m and E are as stated in the hypothesis. From (7.56) we then obtain, 
for some B > 0 and all k, 

max lU) - min q\i) ~ B(l - Elim. 
i i 

Since qk(s) = 0, it follows that, for all i, 

lhk+J(i) - hkU)I = /l(i)I ~ max lU) - min l(J) ~ B(1 - dim_ 
j 

Therefore, for every r > 1 and i we have 
r-1 

t=O 

B(l _ dlm[l _ (1 _ Eylm ] 

1 _ (1 _ €)1/m 

(7 .57) 

and it foJlows that {h\i)} is a Cauchy sequence and converges to a limit 
h(i). From (7.51) we see then that 

T(h)(s) + h(i) = T(h)(i) , i = 1, ... , n, 

so by Proposition 1 we obtain 'A = T(h)(s) = J*(i) for all i. 
To prove (7.56), we denote by µii) the control attaining the minimum 

in 

T(h~(i) = mi~ [g(i, u) + ± Pii(u)hk(j)] 
uEU(1) j=l 

for every k and i. Denote 

Then we have 
hk+ 1 = gµ,k + Pµ,khk - wke ~ gµ,k -i + Pµ,k - ihk - wke, 

k p hk- 1 ,c:::: + p hk-1 h = g;_k -1 + µ,k -1 - wk-1e--= gµ,k µ,k - wk-1e, 

where e = [ 1, I, ... , I]' is the unit vector. From these relations, using 
the definition l = hk+ 1 

- h\ we obtain 
Pµ,*qk -t + (wk-l - wk)e ~ qk ~ Pµ,k-lqk -i + (wk-I - wJe. 
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Since this relation holds for every k ~ I, by iterating we obtain 

P,,,k ... Pµ,k-m+lqk-m + (wk-m - wk)e::;:; l 
::;:; P,,,k 

1 
••• Pµ,k-mqk-m + (wk-m - wk)e. (7.58) 

First, let us assume that the special state x corresponding to f.-lk ,,, , 
... , f.-lk as in (7.49) and (7 .50) is the fixed state s used in iteration (7 .5 I); 
that is, 

[Pµ,k-1 ... Pµ,k-m];S ~ €, 

Then the right side of (7 .58) yields 

j=I 

i = I, ... , n, 

i = I, ... , n. 

(7.59) 

(7.60) 

Using (7.60) and the fact l "'(s) = 0, we obtain from the preceding equation 

lU)::::; (1 - e) max qk-m(j) + wk-m - wk, i = 1, ... , n, 
j 

and therefore 

max lU)::::; (1 - e) max qk-m(j) + wk-m - wk. (7.61) 
j j 

Similarly, from the left side of (7 .58) we obtain 

min lU) ~ (1 - e) min qk-m(j) + wk-m - wk, (7.62) 
j j 

and combining (7.61) and (7.62), we obtain the desired relation (7.56). 
When the special state x corresponding to f.-lk-m, ... , f.-lk as in (7.49) 

and (7 .50) is not equal to s, we define a related iterative process 

l?+ 1(i) = T(i?)(i) - T(fl)(x), i = I, ... , n, (7.63) 

ho(i) = ho(i), 

Then, as earlier, we have 

i=l, ... ,n. 

mfx q'(i) - m}n q'(i) ,s (I - ,{ mfx q'-'"(i) - m}n q' -m(i)], 
where 

zy_k = lzk+I _ lzk. 

(7 .64) 

It is straightforward to show, using (7.51) and (7.63), that for all i and k 
we have 

h\i) = h\i) + T(hk- 1)(x) - T(l?- 1)(s). 

Therefore, the coordinates of both hk and l differ from the coordinates of 
lzk and 'c/, respectively, by a constant. It follows that 

max lU) - min lU) = max 'c/(i) - min </(i), 
i i i i 

and from (7.64) we obtain the desired relation (7.56). Q.E.D. 
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Note that as a by-product of the proof we obtain a rate of convergence 
estimate. By taking the limit in (7 .57) as r ~ =, we obtain 

B(l - el 1m 

m~x lhk(i ) - h(i)I ~ 
1 

_ (1 _ e)I/m• k = 0, 1, ... , 

so the rate of convergence is at least linear with convergence ratio (I -
e)11

m. A sharper rate of convergence result can be obtained by considering 
the eigenvalue structure of the matrices i\. in (7.47) . 

Error Bounds 

As for discounted problems, the successive approximation method 
can be strengthened by the calculat10n of monotonic error bounds. 

Proposition 7. U oder the assumption of Proposition 6 for algorithm 
(7.51) , there holds for every k 

(7.65) 

where A = J *(i) for i = 1, ... , n and 

ck = min [T(h1(i) - hk(i)], 

ck = max [T(h1(i) - hk(i)]. 
i 

Proof Let µ,/i) attain the minimum in 

T(h1(i) = mi~ [g(i, u) + ± pu(u)h\j)] 
uEU(1) j =I 

for each k and i. We have, using (7.51), 
11 

T(h1(i) = g[i, µ,/i)] + L PiJµ,/i)]T(hk- t)(j) - T(hk - 1)(s), 
j=l 

11 

h\i) ~ g[i, µ,/i)] + L Pu[µ,/i)]hk - 1(j) - T(hk - 1)(s). 
j = l 

From these we obtain 
ll 

T(h1(i) - hk(i) ~ L Pu[µ,/i)][T(hk - t)(j) - hk - 1(j)] , 
j = l 

and it follows that 
min [T(h1(i) - hk(i)] ~ min [T(hk - 1)(j) - hk- 1(j)] 

i 

or equivalently 

A similar argument shows that 



322 Minimization of Average Cost per Stage Chap. 7 

By Proposition 6 we have hk(i) ~ h(i) and T(h)(i) - h(i) = 'A for all i, so 
that ck ~ 'A. Since {ck} is also nondecreasing, we must have ck ~ 'A for 
all k. Similarly, ck ;?! 'A for all k. Q.E.D. 

We now demonstrate the successive approximation algorithm and the 
error bounds (7.65) by means of an example. 
Example 
Consider an undiscounted version of the example of Section 6.2. We have 

S = {1, 2}, C = {u1, u2
}, 

P(u') = [ P11(u:) 
P21(u ) 

pu(u:)] = [ ! 
P22(u) 4 !l 

P(u2) = [ P11(u:) 
P21(U ) 

p,i(u2)] - [ ¼ 
P2iu2) - ¼ ;], 

and 

g(l, u1
) = 2, g(l, u2) = 0.5, g(2,u1

) = 1, g(2, u2) = 3. 

Letting s = 1 be the reference state, algorithm (7 .51) takes the form 

T(h")(i) = min { g(i, u
1

) + 
1
*' Pu(u

1 
)hk(j), g(i, u

2
) + 

1
*' pu(u

2W(J)}, i = 1, 2, 

hk+l(l) = 0 

hk+l(2) = T(h")(2) - T(h")(l) . 

The results of the computation starting with h0(1) = h0(2) = 0 are shown in Table 
7.1. 

TABLE 7.1 

k hk(l) hk(2) Ck Ck 

0 0.00000 0.00000 
I 0.00000 0.50000 0.62500 0.87500 
2 0.00000 0.25000 0.68750 0.81250 
3 0.00000 0.37500 0.71875 0.78125 
4 0.00000 0.31250 0.73438 0.76563 
5 0.00000 0.34375 0.74219 0.75781 
6 0.00000 0.32813 0.74609 0.75391 
7 0.00000 0.33594 0.74805 0.75195 
8 0.00000 0.33203 0.74902 0.75098 
9 0.00000 0.33398 0.74951 0.75049 

10 0.00000 0.33301 0.74976 0.75024 
11 0.00000 0.33350 0.74988 0.75012 
12 0.00000 0.33325 0.74994 0.75006 
13 0.00000 0.33337 0.74997 0.75003 
14 0.00000 0.33331 0.74998 0.75002 
15 0.00000 0.33334 0.74999 0.75001 
16 0.00000 0.33333 0.75000 0.75000 
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Other Versions of the Successive Approximation 
Method 

323 

We mentioned earlier that the condition for convergence of the suc­
cessive approximation method given in Proposition 6 is stronger than con­
ditions for the optimal average cost to be independent of the initial state 
given in Propositions 3 and 4. In fact, the example given in the introduction 
of this chapter shows that the successive approximation method does not 
converge when applied to a problem with a single policy and corresponding 
transition matrix 

The matrix P µ, is irreducible, but the difficulty here is that the associated 
Markov chain has a periodic character. We can bypass this difficulty by 
modifying the problem without affecting either the optimal cost or optimal 
policies and by applying the successive approximation method to the modified 
problem. 

Let T be any scalar with 

0 < T < 1, 

and consider the problem that results when each transition matrix P ,,_ cor­
responding to a stationary policy {µ,, ,u, ... } is replaced by 

i\ = TPµ, + (1 - 7)/, (7.66) 

where I is the identity matrix. Note that P ,,_ is a trans1t1on probability 
matrix with the property that, at every state, a self-tran~ition occurs with 
probability at least (1 - T). This destroys any periodic character that P ,,_ 
may have. For another view of the same point, note that the eigenvalues 
of P ,,_ are TAk + (I - r) where >..k arc the eigenvalues of P,,,. Therefore, 
all eigenvalues >..k -f- 1 of P ,,_ that lie on the unit circle are mapped into 
eigenvalues of P ,,_ strictly inside the unit circle. The equation 

J;... : hµ, = g,,_ + P,,_ h,,_ 

can also be written 

1,,_ + h,,_ = gµ, + P,,_h,,_ 

with 
- h 
hµ, = ---1=. 

T 

It follows from Corollary I. I that if J ,,_(i) is independent of i for every fl 

then the same is true for the modified problem. Furthermore, the costs of 
all stationary policies, as well as the optimal cost, are equal for both the 
original and the modified problem. 

Consider now the successive approximation method for the modified 
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problem. A straightforward calculation shows that it takes the form 

hk+1(i) = (l - T)h\i) + mi~ [g(i , u) + T ± pi u)hk(j )] 
uEU(t) j =l 

min [g(s , u) + T ± Psiu)hk(j)] (7.67) 
uEU(s) j = l 

where s is some fixed state with h0(s) = 0. Note that this iteration is as 
easy to execute as the original version. It is convergent, however, under 
weaker conditions than those required in Proposition 6. 

Proposition 8. Assume that each stationary policy gives rise to a 
Markov chain with a single ergodic class. Then, for O < T < 1, the sequences 
{h\i)} generated by iteration (7 .67) satisfy 

1. hk(·) h(i) Im l = -, 
k-+= T 

lim min [g(s , u) + T ± Ps/u)hk(j)] = A, 
k-+00 u E U(i) j= I 

(7 .68) 

where A. and h are optimal average and differential costs satisfying 

A. + h(i) = mi~ [g(i , u) + ± pu(u)h(j ) ] , 
uEU(t) j= 1 

i = 1, .. . , n. 

Proof The proof consists of showing that the conditions of Proposition 
6 are satisfied for the modified problem involving the transition probability 
matrices P,,, of (7 .66). 

Indeed, let m > nnM, where n is the number of states and nM is the 
number of distinct stationary policies. Consider a set of control functions 
µ,0 , µ,1 , •• • , µ,m. Then in the subset µ, 1 , • • • , /J,m- 1 at least one µ, E M is 
repeated n times. Let x be a state belonging to the ergodic class of the 
Markov chain corresponding to µ, . Then the conditions 

i = 1, ... , n, 

[P/1,m- l ... P,,,oLx;::,: E, i = 1, ... , n, 

are satisfied for some e because, in view of (7 .66), when there is a positive 
probability of reaching x from i at some stage there is also a positive 
probability of reaching it at any subsequent stage. Q.E.D. 

Note that, since the modified successive approximation method is 
nothing but the ordinary method applied to a modified problem, the error 
bounds of Proposition 7 apply in appropriately modified form. 
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Error Bounds and Linear Programming 

It is possible to bound the optimal cost from above and below in a 
more general manner than the one indicated in Proposition 7. If h is any 
n-dimensional vector and µ., is such that 

T,,,(h) = T(h), 
we will show that, for all i, 

min [T(h)(j) - h(j)] ~ J*(i) ~ J,.,,(i) ~ max [T(h)(j) - h(j)]. (7 .69) 
J j 

These bounds hold regardless of whether J*(i) is independent of the initial 
state i. 

Indeed , let 
o(i) = T(h)(i) - h(i), i = I, ... , n, 

and let o be the vector with coordinates o(i). Since T,,,(h) = T(h), we have 

T,,,(h) = o + h, T~(h) = T,,,(h) + P,,,o = o + P,,,o + h 

and, continuing in the same manner, 
N-1 

T~(h) = I P~o + h, N = I, 2, .... 
k=O 

It follows that 
- 1· __!_ N(h) - * J,,, - 1m N. T,,, - P,,_o , 

N-->oo 

where N-1 

P! = lim __!_ I P~. 
N-+= N k=O 

Therefore, J,,,(i) ~ max1 o(j), and the right side of (7.69) is proved. 
Also, let 1T = {µ.,0 , µ., 1 , ••• } be any policy. We have 

T,,,N(h) ?= o + h 

and, applying T,,,N I 
to both sides of this inequality, we obtain 

(T,,,N !T/J,N)(h) ?= Pµ,N - 10 + T/J,N-l(h) 

~ P /J,N 10 + o + h 

?= 2 [min o(j)Je + h. 

Continuing in the same manner, we have, for all i, 

_l_(Tµ,o ... T,,,N)(h)(i) ?= min o(j) + Nh(+i) 
1 N + 1 1 

and, taking the limit as N ~ =, we obtain 
J"'(i) ?= min o(j). 

j 

Since 1T is arbitrary, we obtain the left side of (7 .69). 
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From the error bounds (7 .69), we obtain the inequalities 

max min [T(h)(j) - h(j)] ~ J*(i) 
h j 

~ min max [T(h)(j) - h(j)] , i = 1, .. . , n. 
h j 

(7.70) 

If a scalar A and a vector h satisfy Ae + h = T(h) (cf. Proposition 1), then 
h attains the extrema indicated in (7.70), and we have J*(i) = A for all i. 
In other words, under these circumstances h solves the problem 

maximize min [T(h)(j) - h(j)] . 
j 

This problem is seen to be equivalent to the problem 

maximize A 

subject to A~ T(h)(i) - h(i) , i = 1, . . . , n. 

It then follows that A and h(i), i = 1, ... , n, solve the linear program 

maximize A 

subject to A + h(i) ~ g(i, u) + L pu(u)h(j), i = I, ... , n, u E U(i). 
j=I 

Unfortunately, when the number of states and/ or controls is very large, 
the solution of this program becomes very difficult. 

7 .3 POLICY ITERATION 

The policy iteration algorithm for the average cost problem is similar to 
those described in the past two chapters. Given a stationary policy, one 
obtains an improved policy by means of a minimization process until no 
further improvement is possible. We will assume throughout this section 
that every stationary policy encountered in the course of the algorithm 
gives rise to a Markov chain with a single ergodic class . 

At the kth step of the policy iteration algorithm, we have a stationary 
policy {µ,\ µ,\ ... }. We determine corresponding average and differential 
costs A k and hk satisfying 

n 

j = I 

or equivalently 

i = 1, ... , n, 

Ake + hk = T,Ah1 = g,,,k + P ,,_khk, 

(7 .71) 

where e = [ 1, 1, ... , 1]' is the unit vector. Note that Ak and hk can be 
determined by solving for the unique solution of the linear system of equations 
(7.71) together with the normalizing equation h\s) = 0, where s is any 
state (cf. Proposition 5). This system can be solved either directly or 
iteratively using successive approximation and adaptive aggregation (see 
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Section 5.2 and [B20]). We subsequently find a stationary policy 1rk+ 1 

{µk+i, 1 .. /+ 1
, ••• }, where µ,k+ 1(i) is such that 

k 

g[i, µ,k+ l(i)] + L pi}µ,k+ l(i)]hk(j) 
j=I 
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min [g(i, u) + :± Pu(u)hk(j)], i = 1, ... , n, (7.72) 
uEU(i ) j= l 

or equivalently 
T,,_k+ 1(h1 = T(h1 . 

There is a restriction here; if µ,\i) attains the minimum in (7.72), we choose 
µ,k+ 1(i) = µ,k(i) even if there are other controls attaining the minimum in 
addition to µ,\i). If µ,k+ 1 = µ,\ the algorithm terminates; otherwise, the 
process is repeated with µ,k+ 1 replacing µ,k. 

The validity of the algorithm is established in the following proposition. 

Proposition 9. The policy iteration algorithm described previously 
terminates in a finite number of steps with an optimal stationary policy. 

It is convenient to state the main argument needed for the proof of 
Proposition 9 as a lemma: 

Lemma 2. Let {µ,, µ,, ... } be a stationary policy, and let 'A. and h 
be corresponding average and differential costs satisfying 

'A.e + h = T,,.(h), (7.73) 

as well as the normalization condition 
N-1 

P!h = lim _l .L P!h = 0. (7.74) 
N-+oo N k=O 

Let {,:t, µ,, ... } be the policy obtained from µ, via the policy iteration step 
described previously, and let Y:: and h be corresponding average and differential 
costs satisfying 

fe + h = T-;;:(h) (7.75) 

and N-t 

- 1 ""' k-Pth = lim - LJ P-;;:h = 0. (7.76) 
N->oo N k= O 

Then if ,:r -I µ, we must have either (1) Y:: < 'A. , or (2) Y:: 'A. and h (i) ~ 
h(i) for all i = I , ... , n with strict inequality for at least one state i. 

We note that, once Lemma 2 is established, it can be easily shown 
that the policy iteration algorithm will terminate in a finite number of steps. 
The reason is that the vector h corresponding to µ, via (7 . 73) and (7. 74) is 
unique by Proposition 5, and therefore the conclusion of Lemma 2 guarantees 
that no policy will be encountered more than once during the course of the 
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algorithm. Since the number of stationary policies is finite, the algorithm 
must terminate finitely. If the algorithm stops at the kth step with µ,k +-' 

µ.,\ we see from (7.71) and (7.72) that 

'A. ke + hk = T(h1, 

which by Proposition I implies that {µ.,\ µ., \ ... } is an optimal stationary 
policy. So to prove Proposition 9 there remains to prove Lemma 2. 

Proof of Lemma 2. For notational convenience, denote 

p = P µ:, 

g = gµ.' g = gµ:. 

Define the vector o by 
o = 'A.e + h - g - Ph. (7.77) 

We have, by assumption, Tµ:(h) = T(h) ~ T,,_(h) = 'A.e + h, or equivalently 

g +Ph~ g + Ph = 'A.e + h (7.78) 

from which we obtain 

Define also 

o(i) ~ o, i = 1, ... , n. 

Ll = h - Ti. 

(7.79) 

(7 .80) 

By combining (7. 77) with the equation I e + h = g + Ph, we obtain 

o = ('A. - I)e + a - P Ll. 

Multiplying this relation with Pk and adding from O to N 
N- l 

~ pk o = N(A. - I)e + Ll - pN a. 
k=O 

Dividing by N and taking the limit as N ~ =, we obtain 
_ l N-1 _ _ 

P*o = lim - ~ pka = (A - 'A.)e . 
N-.--x. N k-0 

In view of the fact o ~ 0 [ cf. (7. 79)], we see that 

A. ~ A.. 

1, we obtain 

(7.81) 

(7 .82) 

If A. > I, we are done; so assume that A. = I. A state i is called P­
recurrent (P-transient) if i belongs (does not belong) to the single ergodic 
class of the Markov chain corresponding to P *. From (7 .82) P *8 = 0 and, 
since 8 ~ 0 and the elements of P* that are positive are those columns 
corresponding to P-recurrent states, we obtain 

o(i) = 0, for all i that are P-recurrent. (7.83) 

It follows by construction of the algorithm that if i is P-recurrent then the 
ith rows of P and P are identical [since µ(i) = µ.,(i) for all i with o(i) = 0]. 
Since P and P have a single ergodic class, it follows that this ergodic class 
is identical for both P and P. From the normalization conditions (7.74) 
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and (7.76), we then obtain h(i) = h(i) for all i that are P-recurrent. 
Equivalently, 

a(i) = o, 

From (7.81) we obtain 
for all i that are P-recurrent. 

N-1 

lim pN a = a - lim L pka ~ a - a. 
N-+oo N-+oo k=O 

(7.84) 

In view of (7 .84), the coordinates of P Na corresponding to P-transient 
states tend to zero. Therefore, we have 

o(i) ~ a(i), for all i that are P-transient. (7.85) 

From (7 .79) and (7 .83) to (7 .85), wc see now that either o 0, in which 
case µ., = µ:, or else a :>- 0 with strict inequality a(i) > 0 for at least one 
]>.:-transient state i. Q.E.D. 

We now demonstrate the policy iteration algorithm by means of the 
example of the previous section. 

Example (continued) 
Let 

We takes = 1 as a reference state ai,J obtain Aµu, hµn( l ). and hµn(2) from the system 
of equations 

Aµo + hµo(l) = g(l, u1) + P11(u1)hµo(l) + pn(u1)hµ.o(2), 

Aµo + hµo(2) = g(2, u2) + pzi(u2)hµ.o(l) + P22(u2)hµ.0(2), 

hµo(l) = 0. 

Substituting the data of the problem, 

Aµo = 2 + ¼hµotl), 

from which 

Aµo = 2.5, hµo(l) = 0, hµo(2) = 2. 

We now find µ,1(1) and µ, 1(2) by the minimization indicated in (7.72) . We 

determine 

min[g(l, u 1
) + p 11(u')hµo(l) + P12(u1)hµo(2), 

g(l, u2) + p 11 (u
2)hµo(1) + P12(u2)hµo(2)] 

= min[2 + ¼ x 2, 0.5 + ¾ x 2] = min [2.5, 2J, 

min[g(2,u1) + p 21(u 1)hµo(l) + P22(u 1)hµo(2), 

g(2, u2) + p 21 (t/ )hµo(l) + Pzz(U2 )hµo(2)] 

= min[l + ! x 2, 3 + ¾ x 2] = min[l .5, 4.5J. 

The minimization yields 

µ, 1(2) = u'. 
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We obtain >-.µ,, hµ,1(1), and hµ,1(2) from the system of equations 

Aµ,1 + hµ,1(1) = g(l, u2
) + p 11(u

2)hµ1(1) + pii(u2 )hµ,1(2), 

Aµ,1 + hµ,1(2) = g(2, u1
) + p 2,(u1 )hµ,1(1) + pzi(u' )hµ,1(2), 

hµ,1(1) = 0. 

By substitution of the data of the problem, we obtain 

AµI = 0. 75, hµ,1(1) = 0, hµ,1(2) = ½. 

We find µ 2(1) and µ 2(2) by determining the minimum in 

min[g(l , u1
) + p 11(u

1)hµ,1(1) + pn(u')hµ,1(2), 

g(l, u2) + p 11(u
2)hµ,1(1) + pn(u2)hµ,1(2)] 

= min[2 + ¼ x l, 0.5 + ¾ x ½] = min[2.08, 0.75], 

min[g(2, u1
) + p 21(u 1 )hµ,1(1) + P2iu' )hµ,1(2), 

g(2, u2) + P21(u2)hµ,1(1) + P2z<u2)hµ,1(2)] 

= min[l + ¼ x l, 3 + ¾ x ½] = min[l .08, 3.25]. 

The minimization yields 

µ2(1) = µ'(I) = u2, 

and hence the preceding policy is optimal and the optimal average cost per stage 
is Aµ,1 = 0.75. 

7.4 INFINITE STATE SPACE: LINEAR SYSTEMS WITH 
QUADRATIC COST FUNCTIONALS 

The standing assumption in the preceding sections has been that the state 
space is finite and thus the underlying system is a controlled finite state 
Markov chain. Once one removes the finiteness assumption on the state 
space, many of the results presented in the past three sections no longer 
hold. For example, whereas one could restrict attention to stationary policies 
for finite state systems, this is not true anymore when the state space is 
infinite. The following example [R6] shows that for a countable state space 
the optimal policy may be nonstationary. 
Example 

Let the state space be S = {1, 2, 3, ... } and let there be two control actions 
C = {u 1

, u2
}. The transition probabilities under u 1 and u2 are specified by 

P;c;+o(u') = P;,{u2
) = 1. 

The costs per stage are 

( . 2) 1 g l, U = -;-, 
l 

i = 1, 2, 3, .... 

In other words, at state i we may either move to state (i + 1) at the cost of one 
unit or stay at i at a cost 1/i. 

For any stationary policy 7T = {µ, µ, ... } other than the policy for which 
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µ(i) = u
1 

for all i, let n(TT) be the smallest integer for which 

µ[n(TT)] = u2. 

Then the corresponding average cost per stage satisfies 

J"(i) = n(~) > 0, i ~ n(TT) . 

For the policy where µ(i) = u1 for all i, we have J1T(i) =-= I for all i. Since the 
optimal cost per stage cannot be less than zero, it is clear that 

minJ"(i) = 0, i = 1, 2, .... 
1T 

However, the optimal cost is not attained by any stationary policy, so no stationary 
policy is optimal. On the other hand, consider the nonstationary policy TT* that on 
entering state i chooses u2 for i consecutive times and then chooses u1• If the 
st~rting state is i, the sequence of costs incurred is 

1 1 
. , ., ... , ., 
I I I t' I, i+2'i+2' .... 

T 

; times (i + I) times 

The average cost corresponding to this policy is 

J,,.(i) = lim m Zm = 0, i = l , 2, 3, .... 
m---+ = L (i + k) 

k = I 

Hence the nonstationary policy TT* is optimal while, as shown previously, no stationary 
policy is optimal. 

Generally, the analysis of average cost problems with an infinite state 
space is difficult. However, certain particular special cases can be satis­
factorily analyzed, and one such case is the average cost version of the 
linear-quadratic problem examined in Chapters 2, 3, and 6. 

Consider an undiscounted version (a = 1) for the linear-quadratic 
problem of Section 6.1 involving the system 

x k+I = Axk + Buk + w k, 

and the cost functional 

k = 0, 1, ... , 

J,(x0 ) ~ !i!::,, ! ~ {I (x;Qx, + µ.(x, )'Rµ,(x,))} 

k = O. J . .. 

(7.86) 

(7.87) 

We make the same assumptions as in Section 6.1; that is, wk are independent 
and have zero mean and finite second moments. We also assume that the 
pair (A , b) is controllable and that the pair (A, C), where Q = C'C, is 
observable. Under these assumptions, it was shown in Section 2.1 that 
the Riccati equation 

Ko= 0, 

Kk+I = A'[Kk - KkB(B'KkB + R)- 1B'KdA + Q 

(7.88) 

(7.89) 
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yields in the limit a matrix K, 

K = lim Kk, 
k---,,o:::, 

which is the unique solution of the equation 

K = A'[K - KB(B'KB + R)- 1B'K]A + Q 

within the class of positive semidefinite symmetric matrices. 
The optimal value of the N-stage costs 

1 
E {Nii (x~Qxk + u~Ruk)} 

N Wk k=O 
k = O,l, .... N-1 

has been derived earlier and was seen to be equal to 

_!_ XoKNXo + L E{w'Kkw} . 
[ 

N-1 ] 

N k=O 

Thus using (7 .90) and the fact 
N-1 

lim _!_ L E{w' Kkw} = E{w' Kw}, 
N-+oo N k=O 

the optimal finite horizon costs tend in the limit as N ~ = to 

A= E{w'Kw}. 

(7.90) 

(7.91) 

(7.92) 

(7.93) 

In addition, the N-stage optimal policy in its initial stages tends to the 
stationary policy 

µ,*(x) = -(B'KB + R)- 1B'KAx. (7.94) 

Furthermore, a simple calculation shows that, by the definition of A, K, 
and µ,*(x) , we have 

A+ x'Kx = min E{x'Qx + u'Ru +(Ax+ Bu+ w)'K(Ax +Bu+ w)}, 

while the minimum in the right side of the equation is attained at u* = 
µ,*(x) as given by (7.94). 

By repeating the proof of Proposition I of this chapter, we obtain 

} } } {N-I } 
'A~NE{x'tvKxNlxo,1T}- NxoKXo + NE t'o (x{Qxk + l(~Ru,Jlxo,1T' 

with equality if 1r = {µ, *, µ, *, ... }. Hence, if 1r is such that E{x'tvKxNlx0 , 1r} 
is uniformly bounded over N, we have, by taking the limit as N ~=in the pre­
ceding relation, 

A~ J-rr(x) , x ER\ 

with equality if 1r {µ, *, µ, *, ... }. Thus the linear stationary policy given 
by (7.94) is optimal over all policies 1r with E{x'tvKxNlx0 , 1r} bounded uniformly 
over N. 
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7.5 NOTES 

The average cost problem was formulated and analyzed in [H15]. Several 
authors have contributed to the problem ([B34, R6, S7, V4, V6]), most 
notably Blackwell ([B26]). 

In our approach to the results of Section 7 .1, we follow [R6]. This 
approach is generalizable to situations where the state space is infinite. 
The result of Proposition 4(b) was shown in [B4]. The successive approx­
imation method of Section 7.2 was given in [W6]. The error bounds of 
Proposition 7 are due to Odoni ((01]). The successive approximation method 
has been analyzed exhaustively in [SlO], [S12], and [S13]. The error bounds 
(7.69) are due to Varaiya ([V2J), who used them to construct a differential 
form of the successive approximation method. Discrete time versions of 
Varaiya's method are given in [P12]. Platzman ([PIO]) points out relations 
between this method and earlier work ([SlOJ) and shows convergence under 
slightly weaker conditions than those given here ([Pl 1 ]). 

The policy iteration algorithm can be generalized for problems where 
the optimal average cost per stage is not the same for every initial state 
(see [B26], [V4J, and [D4]). Adaptive aggregation can be used similarly as 
in Section 5.2 to carry out iteratively the policy evaluation phase of the 
policy iteration algorithm [B20]. 

For analysis of infinite horizon versions of inventory control problems, 
such as the ones of Section 2.2, see [13], [H13], [H14], and [V7]. [K15] 
considers more general average cost problems with infinite state space. 

Problem 3, also known as the streetwalker's dilemma, is adapted from 
[R6], which considers also semi-Markov decision problems involving con­
tinuous time Markov chains. 

PROBLEMS 

I. Optimal Control of Deterministic Finite-State Systems . Consider a stationary 

deterministic control system 

xk+l = f(xk, uk), k = 0, 1, ... , 

where the state xk belongs to a finite state space S -:-: {I, 2, ... , n} and the 
control uA is constrained in a subset U(xA) of a finite control space C. We say 
that the system is completely controllable if, given any two states i, j E:::: S, 
there exists a sequence of admissible controls that drives the state of the system 
from the state i to the state j within at most (11 - I) steps. For a completely 
controllable system and a given initial state Xo = i, consider the problem of 
finding an admissible control sequence {u0 , 111, ••• } that minimizes 

N-1 

J.,,(i) = lim _NI L g(xk, uk), 
N •, A 0 

where R : S x C ~ R is given. Show that the urtirnal cost is th~ same for 
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every initial state. Show also that there exist optimal control sequences that 
after a certain time index are periodic. 

2. Consider a stationary inventory control problem of the type considered in 
Section 2.2 but with the difference that the stock xk can only take integer values 
from 0 to some integer M. The amount of the order uk can take integer values 
with 0 ,:;; uk ,:;; M - xk, and the random demand wk can only take nonnegative 
integer values with P(wk = 0) > 0 and P(wk = 1) > 0. Unsatisfied demand is 
lost, so stock evolves according to the equation xk+ 1 = max(0, xk + uk - wk). 
The problem is to find an inventory policy that minimizes the average cost per 
stage. Show that there exists an optimal stationary policy and that the optimal 
cost is independent of the initial stock x0 • 

3. Consider a businessperson (B) providing a certain type of service to customers. 
B receives at the beginning of each time period with probability p; a proposal 
by a customer of type i, where i = I, 2, ... , n, who offers an amount of 
money M;. We assume L7= 1 p;,:;; I. B may reject the offer, in which case the 
customer leaves and B remains idle during that period, or B may accept the 
off er in which case B spends some time with that customer determined according 
to a Markov process with transition probabilities {3,k, where, for k = 1, 2, ... , 

{3;k = probability that the type i customer will 
leave after k periods, given that the customer 
has already stayed with B for (k - 1) periods. 

The problem is to determine an acceptance-rejection policy that maximizes 

lim -N
1 

{Expected payment over N periods}. 
N -+oo 

Consider two cases: 

I. {3;k = {3; E (0, 1) for all k. 
2. For each i there exists K; such that /3 iic; = 1. 

(a) Formulate the businessperson's problem as an average cost Markovian 
decision problem and show that the optimal value is independent of the 
initial state. 

(b) Show that there exists a scalar A* and an optimal policy that accepts the 
offer of a type i customer if and only if 

X*T;,:;; M; , 

where T; is the expected time spent with the type i customer given by 

T; = /3il + L k{3;k- ,(1 - /3;k-2) ... (1 - /3;o) , 
k = 2 

4. Policy Iteration for Linear-Quadratic Problems. The purpose of this problem 
is to show that policy iteration works for linear-quadratic problems (even though 
neither the state space nor the control space are finite). Consider the problem 
of Section 7.4 under the usual controllability, observability, and positive 
(semi)definiteness assumptions. Let L0 be an m x n matrix such that the matrix 
(A + BL0 ) is stable. 
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(a) Show that the average cost per stage corresponding to the stationary policy 
{µ.o, µo, ... }, where µ.o(x) = LoX, is of the form 

J µ,o = E{w' K0w}, 

where Ko is a positive semidefinite matrix satisfying the (linear) equation 

Ko= (A+ BLo)'Ko(A + BLo) + Q + L0RL0 • 

(b) Let µ1(x) = L1x = (R + B'K0B)- 1B'K0Ax be the control function attaining 
the minimum for each x in the expression 

min {u 'Ru + (Ax+ Bu)'K0(Ax + Bu)}. 
/I 

Show that 
J,,.1 = E{w'K1w} ~ lµ,o, 

where K1 is some positive semidefinite matrix. 
(c) Consider repeating the (policy iteration) process described in parts (a) and 

(b), thereby obtaining a sequence of positive semidefinite matrices {Kk}. 
Show that 

Kk~K, 

where K is the optimal cost matrix of the problem. 
5. Show Eq. (7.16). Sketch of proof- From the definition (7 . 11) we have 

N- 1 

EN= L P!g,,. - NJ,., 
k=O 

and multiplication with P! yields P!t:N = 0. It follows that (I - P,,. + P!kN = 
(I - P ,,.)t:N = g,,. - Pig,,.. By adding this relation from 1 to N, we obtain 
(7.16). 

6. Consider a deterministic system with two states 0 and 1. Upon entering state 
0, the system stays there permanently at no cost. In state 1 there is a choice 
of staying there at no cost or moving to state 0 at unity cost. Show that every 
policy is average cost optimal, but the only stationary policy that is Blackwell 
optimal (sec the chapter appendix) is the one that keeps the system in the state 
it currently is in. 

7. Show that a Blackwell optimal policy is optimal over all policies (not just those 
that are stationary). Hint: Use the following fact: If {en} is a nonnegative 
bounded sequence, then 

N oo 

lim inf_!_ L Cn ~ lim inf (1 - /3) L 13n- lCn 
N-> oo N n= I f3jl n=I 

00 l N 

~ lim sup (1 - /3) I 13n-lCn ~ lim sup -NL Cn. 
/3 fl n= I N->oo n= I 

This fact is a corollary of the following Tauberian theorem, which can be found 
in D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 
N.J., 1941 , pages 181-182. 

If K(•) is nondecreasing on (0, =) and 

f (x) = f' e-xl dK (t), x > 0 
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is convergent, then 

1. . f K(t) 1· . f -~( ) 1· -~( ) 1· K(t) Im m - ,s Im m XJ . X ,s Im sup XJ . X ,s Im sup - . 
t--->= t xLO .do 1~-£ t 

8. Reduction to the Discounted Case. For the problem of Sections 7.1 to 7.3, 
suppose there is a state s such that for some /3 > 0 we have p;,(u) ~ /3 for all 
states i and controls u. Consider the ( 1 - /3)-discounted problem with the same 
state and control space and transition probabilities 

_ ) _ {(1 - /3)- 1pu(u), if j =I S, 

pv(u - (1 - /3)- 1[pu(u) - {3], if j = s. 

Show that f3 J (s) and J (i) are optimal average and differential costs respectively, 
where J is the optimal cost of the ( 1 - /3)-discounted problem. 

9. Solve the average cost version (a = 1) of the computer manufacturer's problem 
(Problem 1 in Chapter 5), and verify that the result of Proposition 2(c) holds. 

IO. Continuous-Time Markov Chains. Consider a continuous-time Markov chain 
problem of the type discussed in Section 6. 7 for the case where the cost is 

}~"2, E{ ½ r g[x(t), u(t)] dt}. 

Use arguments analogous to those in Section 6. 7 to show the following: 
(a) There is an equivalent discrete-time Markov chain problem with average 

cost 

lim _!_ E{~1 g(xk, lh)}, 
N--->oo N k=O V 

where v is an upper bound to all transition rates v;(u). 
(b) Show that for this problem Bellman's equation takes the form 

A + h(i) = ! min [g(i, u) + [11 - v;(u)]h(i) + v;(u) L P;}u)h(j)]. 
II~~ j 

11. Consider the manufacturer's problem of Example l, Section 6.7, for the case 
where f3 = 0, and the cost is 

}~°2, ½E{ r g[x(t), u(t)] dt}. 

(a) Show that Bellman's equation takes the form 

A + h(i) = min [ K + h(l), i + h(i + 1)]. 
(b) Show that there exists a threshold i* such that it is optimal to process the 

orders if and only if i equals or exceeds i*. Hint: Use Proposition 2. 

APPENDIX: EXISTENCE RESULTS AND PROOFS 

In this appendix we provide proofs of some of the results of the main body 
of the chapter (Lemma I and Proposition 4). In the process we will dem­
onstrate the existence of an optimal stationary policy. The proof of this 
result is based on the relationship between the average cost problem and 
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its discounted version. We have already made use of this relation in the 
process of showing Propositions 2 and 3 for the case where the optimal 
average cost is independent of the initial state. We now consider the general 
case. Throughout the appendix we consider the finite state Markov chain 
case and make use of the notation established in the introduction to this 
chapter. 

For any stationary policy{µ,, µ,, ... }, the corresponding a-discounted 
cost is given in vector form by 

la,µ. = I akP!gµ, = (I - aPµ,)- 1 gµ,, 
k=O 

a E (0, 1). (A7.1) 

The following proposition provides an expression for (/ - aP µ.)- 1 and at 
the same time shows Lemma 1. 

Proposition A 7 .1. For any stochastic matrix P and a E (0, 1), there 
holds 

where 0(II al) is an a-dependent matrix such that 

lim 0(ll - al) = 0, 
a->l 

(A7.2) 

(A7.3) 

and the matrices P* and Hare given by 
N-1 

P* = lim _!_IP, 
N-+= N k=O 

H = (I - P + P*)- 1 
- P*. 

(A7.4) 

(A7.5) 

[It will be shown as part of the proof that the limit in (A 7.4) and the inverse 
in (A7.5) exist.] Furthermore, P* and H satisfy the following equations: 

P* = PP* = P*P = P*P* (A7.6) 

P*H = 0 (A7.7) 

P* + H =I+ PH. (A7.8) 

Proof. From the usual matrix inversion formula, it follows that (/ -­
aP) -1 can be expressed as a matrix with elements that are either zero or 
fractions with numerator and denominator being polynomials in a with no 
common divisor. The denominator polynomial of each nonzero element 
cannot have unity as a multiple root since otherwise we would have some 
elements of the matrix (I - a)(/ - aP) 

1 tending to infinity as a ~ l. 
which is not possible in view of the discounted cost interpretation (A 7. l) 
and the fact llcq,(J)I ~ (1 - a) 1 max;lg1_,(i)I. Therefore, (/ - aP) 

1 
has 

an expansion in a neighborhood of a: = I of the form (A7.2) and (A7.3) 

with the identifications 
P* = lim (1 - a)(/ - aP)- 1

, (A7.9) 
a-+l 

H = lim [(/ - aP)- 1 - (I - a)- 1 P*]. (A7.10) 
a--->! 
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We will now show equations (A7.6). (A7.5), (A7.7), and (A7.8), in that 
order, and finally equation (A7.4). We have 

(I - a.P)(l - a.P)- 1 = I ( 7. 11) 

and 

a([ - a.P)(I - a.P)- 1 = al. 

Subtracting these two equations and rearranging terms. we obtain 

a.P(l - a)(/ - a.P)- 1 = (1 - a)(/ - a.P)- 1 + (a - 1)/. 

(A7.12) 

By taking the limit as a ~ 1 and using the definition (A 7. 9). it follows that 

PP*= P*. 

Also, by reversing the order of (/ - a.P) and (/ - a.P)- 1 in (A 7 .11) and 
(A 7 .12), it follows similarly that P* P = P*. From PP* = P*. we also 
obtain (/ - a.P)P* = (1 - a)P* or P* = (1 - a)(/ - aP)- 1P*. and taking 
the limit as a~ 1, we have P* = P*P*. Thus (A7.6) has been proved. 

We have, using (A7.6), (P - P*f = P2 
- P* and similarly 

(P - P* l = P' - P*, k > 0. 

Therefore, 

(I - a.P)- 1 
- (1 - a)- 1 P* = L ak(P' - P*) 

k=O 

= I - P* + L cl(P - P* l 
k=I 

= [/ - a(P - P*)] - 1 
- P*. 

Taking the limit as a ~ 1 and using (A 7. IO). we obtain (A 7 .5). 
From (A7.5), we obtain 

(/ - P + P* )H = I - (I - P + P* )P* 

or, using (A7.6), 

H - PH + P* H = I - P*. (A7.13) 
Multiplying this relation by P* and using (A7.6). we obtain P*H = 0, which 
is (A7.7). Equation (A7.8) then follows from (A7.13). 

Multiplying (A7.8) with pk and using (A7.6). we obtain 
P* + pkfl =pk+ pk+IH, k = 0, 1. .... 

Adding over k = 0, .. . , N - 1 this relation, we have 
N-1 

NP*+ H = L pk+ pNfl. 
k=O 

Dividing by N and taking the limit as N ~ =. we obtain (A7.4). Q.E.D. 

From the expression (A 7 .1) and Proposition A 7 .1, we obtain the following 
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rel~tion between a-di'->countcd and average co<.,t corre<.,ponding to a <.,tationary 
policy. 

PrOJ)(JSition A7.2. For any <.,tationary policy {p,, /J,, ... } and u. ~ 
(0 , 1), there holds 

Ju,µ= (1 - ar'JJJ, + hµ, + 0(11 - al), (A7.14) 
where 

Iµ = P!gµ, = ( lim Nl ~
1 

P!)gµ, 
fv__,-.✓., k 0 

i s the average co<.,t vector corr~')pondrng to µ, , and h,,. i'-> a differential co<.,t 
vector satisfying 

JJJ, + h,, = g,,, + P,,,hw 
Proof The proof follow <., from rA7.lJ and Propo<.,ition A7.l with the 

identificatiom P = Pµ., P" -" P; , and hµ. = Hiµ.. ().E.D. 

We know from Section 5.1 that there exi'->t'> an optimal <.,tationary 
policy for the u-di<.,counted problem for every u. ~ ((), IJ. Wt <.,ay that a 
stationary policy {µ,, µ,, .. . 1 h Blackwell optimal if it i'-> '->imultaneou<.,]y 
optimal for all the a-di'->counted problem'-> with c,. in on interval (a, lJ, where 
a E ((), 1 J i'-> <.,Orne <.,caldr. Thi'-> notion and ihe foll<Jwing line of analy'->i'-> 
were fir.;,t introduced in [B2f')j. from Prcpo'->ition A7.2. it fo]l()w<., that a 
Blackwell optimal polic;r i.s optima.I for the meraie cost prohlem ',1,ithin 
the cla.n of all stationary polir.ie1. To <,ee thi'->, note that if{µ;''. µ.x, .. ·f 
is Bldckwell optimal then for all <.,lationary policie'> {µ .. /J., .. . 1 and u. in 
an interval (a, ]J we have J,,µ• --- I,µ.· Equivalently. 11s,ing (A7.14J, 

(1 - ar 1J; + h! + 0(11 - alJ 
,.:::: (l - af 11,,, + h,,, + O(ll - al), a E (a, l) 

or 

a E (a, l) 

B y taking the limit a'> u.--,. I, v,e obtain Jµ. -- Jµ. The rever'>e l'> not true; 
that i'->, it i'-> po'->'>ible that a '.tationar:,; average co'>t <)ptimal policy i'-> not 
Blackwell optimal (<,ee Problem fjJ_ We menti()n ah<> that one can '->how 
the <.,tronger re<,ult thdt. a Bla.ckv,ell <Jpt.imal poliq i'> avera.ge e<>'>l opti­
mal within the cld'>'> ()f a.ll p<Jlicies, rnot ju--t thu'-ie that are '->tati(Jndr1 : <.,e;e 

Problem 7) 
The following pr<JJ)<J\ili(Jn i'> -:-Jf major importance and pruvides, the 

basis for the proof of Proposition 4 

Propo<,ition A7.3. 'f hert tl.hh 21 Ula.ckv.ell optimal J)(Jlicy. 

ProrJ/, J·r()m (A7.11. ·;.r.:. J.:n<J·;, tha.t. for C:<1:.h ,J. ,,:-:<.! \:,.,,te i I,)i1 ic, 
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a rational function of a. Therefore, for any two policiesµ, andµ,' the graphs 
of la.µ,U) and la.µ,•(i) either coincide or cross only a finite number of times 
in the interval (0, 1). Since there are only a finite number of policies, we 
conclude that for state i there is a policy µ,; and a scalar a; C= (0, l) such 
that µ,; is optimal for the a-discounted problem for a E (a;, l) when the 
initial state is i. Consider the stationary policy defined for each i by µ, *(i) = 
µ,;(i). It can be seen that{µ,*,µ,*, ... } is a stationary optimal policy for 
the a-discounted problem for all a with max; a; < a < I. Therefore, {µ, *, 
µ,*, ... } is Blackwell optimal. Q.E.D. 

The next proposition provides a characterization of Blackwell optimal 
policies: 

Proposition A 7 .4. If {µ, *, µ, *, ... } is Blackwell optimal, then for all 
stationary policies {µ,, µ,, ... } we have 

1µ,* = Pµ,*1µ,* ~ Pµ,1µ.*· 
Furthermore, for allµ, such that P,.,,*J,.,, . = P,.,,J,.,, , we have 

(A7.15) 

J,.,,. + h,.,,* = g,.,,. + P,.,,.h,.,,. ~ gµ, + P,.,,h,.,,., (A7.16) 

where h,.,,* is a differential cost vector corresponding to µ, * (cf. Proposition 
A7.2). 

Proof. Since {µ, *, µ, *, ... } is optimal for the a-discounted problem 
for all a in an interval (a, 1), we must have, for every µ,, 

la,µ.*= g,.,,. + aP,.,,*la.µ.* ~ g,.,, + P,.,,la ,µ.* · 

From Proposition A7.2 , we have, for all a E (a, 1), 

la ,µ.* = (1 - a)- 11,.,,. + h,.,,* + 0(ll - al). 

(A7.17) 

Substituting this expression in (A 7 .17) and taking the limit as a ~ 1, we 
obtain the desired relations. Q.E.D. 

Note that if the average cost 1µ,.(i) corresponding to a Blackwell 
optimal policy {µ,*, µ,*, ... } is independent of the initial state i [i.e., 
Jµ,.(i) = 'A for all i], then, for every µ,, each element of the vector P,.,,J,.,,. 
equals A. . From (A7.16), we then obtain 

X.e + h,.,,. = T(h,.,,*) = min [g,.,, + P µ,h,.,,.l, 
µ, 

which is the sufficiency condition of Proposition 1. Therefore, to show 
Proposition 4 it will suffice to show that its hypotheses guarantee that a 
Blackwell optimal policy yields average cost that is independent of the 
initial state. This is the basis of our proof. 

Proof of Proposition 4 

If a stationary policy {µ,, µ,, ... } gives rise to a Markov chain with 
a single ergodic class, the corresponding average cost J ,.,,U) is independent 



Appendix: Existence Results and Proofs 341 

of the initial state i. (This was shown in Proposition 8 and can also be 
shown by extending the proof of Proposition 3.) Therefore, under hypothesis 
(a) of the proposition, a Blackwell optimal policy yields average cost that 
is independent of the initial state and the result follows as discussed previously. 

Assume hypothesis (b), that is, every pair of states communicates 
under some stationary policy. Consider a Blackwell optimal policy 
{µ, *, µ, *, ... } . If it yields average cost that is independent of the initial 
state, we are done, as earlier. Assume the contrary; that is, the sets M 
and M are nonempty , where 

M = {ilJ,.(i) = mfxJ,.(j)} 
and M is the complement of M. The idea now is that it should be possible 
to reduce the average cost corresponding to states in M by opening com­
munication to the states in M, thereby creating a contradiction. Take any 
states i E M and j E M and a stationary policy {µ,, µ,, ... } such that, for 
some k, P(xk = jlx0 = i, µ,) > 0. Then there must exist states m t= Mand 
m E M such that there is a positive transition probability from m to m 
under µ,; that is, [P ,Jmm = P(xk+ 1 = m lx1c = m, µ,) > 0. It is easily seen 
that the mth component of Pµlµ* is strictly less than max; Jµ.(i), which is 
equal to the mth component of 1µ*. This contradicts the necessary condition 
(A7.15). Q.E.D. 



APPENDIX A 

Mathematical Review 

The purpose of this and the following appendixes is to provide a list of 
mathematical and probabilistic definitions, notations, relations, and results 
that are used frequently in the text. For detailed expositions, the reader 
may consult the references given in each arypendix. 

A.1 SETS 

If xis a member of the set S, we write x E S. We write x $. S if xis not 
a member of S. A set S may be specified by listing its elements within 
braces. For example, by writing S = {x1 , x2 , ••• , xn} we mean that the 
set S consists of the elements x 1 , ••• , xn. A set S may also be specified 
in the generic form 

S = {xix satisfies P} 

as the set of elements satisfying property P. For example, 

S = {xix : real, 0 ~ x ~ 1} 

denotes the set of all real numbers x satisfying O ~ x ~ 1. 
The union of two sets S and Tis denoted by S U T and the intersection 

of S and T is denoted by S n T. The union and intersection of a sequence 
of sets S 1 , S 2 , ••• , Sk, ... is denoted by u;= 1 Sk and n;= 1 Sk, respectively. 
If S is a subset of T (i.e., if every element of S is also an element of T), 
we write S C T or T :J S. 

342 
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Finite and Countable Sets 

A set S is said to be finite if it consists of a finite number of elements. 
It is said to be countable if one can associate with each element of S a 
nonnegative integer in a way that to each pair of distinct elements of S 
there correspond two distinct integers. Thus, according to our definition, 
a finite set is also countable but not conversely. A countable set S that is 
not finite may be represented by listing its elements x0 , x1, x2 , ••• (i.e., 
S = {xo, X1, X2, ••• }. If A = {a0 , a 1 , •.• } is a countable set and Sao, 
Sa1, ... are each countable sets, then the union u;=o Sak (otherwise de­
noted UaEA Sa) is also a countable set. 

Sets of Real Numbers 

If a and b are real numbers or + oo, - oo, we denote by [a, b] the 
set of numbers x satisfying a ~ x ~ b (including the possibility x = + oo 

or x = - 00). A rounded, instead of square, bracket denotes strict inequality 
in the definition. Thus (a, b], [a, b), and (a, b) denote the set of all x 
satisfying a < x ~ b , a ~ x < b, and a < x < b, respectively. 

If S is a set of real numbers bounded above, then there is a smallest 
real number y such that x ~ y for all x E S. This number is called the 
least upper bound or supremum of S and is denoted sup{xlx E S} or 
max{xlx E S}. (This is somewhat inconsistent with normal mathematical 
usage, where the use of max in place of sup indicates that the supremum 
is attained by some element of S.) Similarly, the greatest real number z 
such that z ~ x for all x E S is called the greatest lower bound or infimum 
of Sand is denoted inf{xlx ES} or min{xlx E S}. If Sis unbounded above , 
we write sup{xlx E S} = + oo, and if it is unbounded below, inf{xlx E S} = 
- oo. If S is the empty set, then by convention we write inf{xlx E S} 
+ oo and sup{xlx E S} = - 00 • 

A.2 EUCLIDEAN SPACE 

The set of all n-tuples x = (x1, ... , xn), where x1 , •• • , Xn are real uumbers, 
constitutes the n-dimensional Euclidean space denoted R n. The elements 
of Rn are referred to as n-dimensional vectors or simply vectors when 
confusion cannot arise. The one-dimensional Euclidean space R 1 consists 
of all the real numbers and is denoted R. Vectors in W can be added by 
adding their corresponding components. They can be multiplied by a scalar 
by multiplication of each component by the scalar. The inner product (or 
scalar product) of two vectors x = (x1, ... , x n) , Y = ( Y1 , . .. , Yn ) is 
denoted x'y and is equal to 2.7= 1 X ;Y; . The norm of a vector x = (x 1, . .. , 

. II II d . 1 ( I ) 1/2 (">" 2) 1/2 x
11

) E Rn 1s denoted x an ts equa to xx = ~;: 1 X; . 
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A set of vectors a 1 • cJ: •.... a, is said to be li11carly dcp,'11do1I if 
there e.\ist scalars .\ 1 • A: ..... 11.,. 1wt all Lerl). such that ~~- 1 .\.. ,1_ = 0. 
If no such set of scalars e.\ists. the Yectors an~ said to be li11carly ifldt·pt·fldt'!zl. 

A.3 MATRICES 

An m x II matrix is a rectangular array l1f numbers. called t·!ono/ls. 

arranged in m rows and fl Cl)\umns. The element in the ith r(1\\. and _ith 
column of a matrix A is detwted by a subsc1ipt Jj. such as c;; . in \\ hich 
case we write A = [a,l A. square matri.\ tl1ne with m = 11) with elemenb 
a;.1 = 0 for i -1- j and c1:, = l. for i = l ..... 11. is said w he an idt"!Iliry 
matrix. The sum oft\\ l) m , n matrices .--\ and B is \,·ritten as .4. - B and 
is the matiix whose ekments arc> the sum l1f the Cl1rrespl)nding elements 
in A and B. The producr cf d m,Hri.r A und a s,·,ilar >... written as ,\.A L1r 
Ai\. is obtained by multiplying c'ach eleml:'nt L1f A by A. The prc)ducr AB 
of an m x II matri.\ A and an n , !' matri, B is the m , p matri.\ C with 
elements c;.1 = ~: 

1 
a,,h,. If his an n , l m~1trix ti.e . . an n-dimensi(,nal 

column vector). and .4. is an m , fl m;Hri,. then .--\h is an nz-dimensil1nal 
(column) vector. 

The transpose of an nz , 11 matri\. .-\ is the 11 , m matrix .4. · with 
elements a~, = a,, . A squ;u-e matrix .4. is synzmt'lri,· if .4. · = A. A square 
11 x 11 matrix A is m>flsin_._,u/,ir if there is an 11 , 11 matri, called the im·t·rst· 

of A. denoted hy A I such that.--\ 1
.-\ = I = AA 1

• \\here I is then , n 
identity matrix. A square n , n matrix is nL1nsingular if and L1nly if the n 
vectors that constitute its r1.)\\ s are linearly independent L)L equiY~ilently. 
if the II vectors that CLrnstitute it:- c1.1lumns are linearly indeperh.knt. 

Partitioned Matrices 

It is often CL1I1\"Cnient tl1 11artitiL1n ;l nutri\. intl1 submatri('e:- hy drawing 
partitioning lines thwugh th.:- m;lt1i\.. F1.1r .:-\.ampk. the matri\. 

may be partitioned into 

A 

where 

A11 = [au 01, l A1:? = [an G14], 

A21 = l "" "" l ["~ "" l ... .., = 
£1::.1 ll:,., ll,3 G::,4 
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For a partitioned matrix A = [B ! CJ, we use interchangeably the notation 
[B, C] or [B CJ. The transpose of the partitioned matrix A is 

A' = [Ai1 A~1] 
A,2 A~2 • 

Partitioned matrices may be multiplied just as nonpartitioned matrices provided 
the dimensions involved in the partitions are compatible. Thus if 

then 

A ~ [ 1:: 1::l B ~ [ t: !;:], 
AB = [AllBll + A12B21 AllB12 + A12B22] 

A21B l I + A22B2, A21B 12 + A22B22 , 

provided the dimensions of the submatrices are such that the preceding 
products AuBib i, j, k = 1, 2 can be formed. 

Rank of a Matrix 

The rank of a matrix A is equal to the maximum number of linearly 
independent row vectors of A. It is also equal to the maximum number 
of linearly independent column vectors. An m x n matrix is said to be of 
full rank if the rank of A is equal to the minimum of m and n. A square 
matrix is of full rank if and only if it is invertible (i.e., nonsingular). 

Positive Definite and Semidefinite Matrices 

A square symmetric n x n matrix A is said to be positive semidefinite 
if x' Ax ;:::: 0 for all x E W. It is said to be positive definite if x' Ax > 0 for 
all nonzero x E R n. The matrix A is said to be negative semidefinite 
(definite) if ( -A) is positive semidefinite (definite). 

A positive (negative) definite matrix is invertible and its inverse is 
also positive (negative) definite. Conversely, an invertible positive (negative) 
semidefinite matrix is positive (negative) definite. If A and B are n x n 

positive semidefinite (definite) matrices, then the matrix .\A + µ.B is also 
positive semidefinite (definite) for all A > 0 and µ. > 0. If A is an n x n 
positive semidefinite matrix and C is an m x n matrix, then the matrix 
CAC' is positive semidefinite. If A is positive definite, Chas full rank, and 
m ~ n, then CAC' is positive definite. 

An n x n positive definite matrix A can be written as CC' where C 
is a square invertible matrix. If A is positive semidefinite and its rank is 
m, then it can be written CC', where C is an n x m matrix of full rank. 

Matrix Inversion Formulas 

The following formulas expressing the inverses of various matrices 
are often very useful. Let A and B be square invertible matrices and C be 
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a matrix of appropriate dimension. Then, if all the following inverses exist, 

(A+ CBC')- 1 = A- 1 - A- 1c(B- 1 + cA- 1C)- 1C'A- 1
• 

The equation can be verified by multiplying the right side by A + CBC' 
and showing that the product is the identity matrix. 

Consider a partitioned matrix M of the form 

M- [1 ~l 
Then we have 

M_, [ -D~'CQ-:-i-~ ;r~~Bv-~ J 
where 

Q=(A-BD 1C)- 1
, 

provided all the inverses exist. The proof is obtained by multiplying M 
with the expression given for M · 1 and verifying that the product yields the 
identity matrix. 

A .4 TOPOLOGICAL CONCEPTS IN Rn 

Convergence of Sequences 

A sequence of vectors x0 , x,, ... , xk, ... in Rn, denoted {xk}, is said 
to converge to a limit vector x if llxk - xii --,,. 0 as k --,,. = (i.e., if, given 
E > 0, there is an N such that for all k ? N we have llxk - xii < E). If 
{xk} converges to x, we write xk --,,. x or limk-->= xk = x. As can be easily 
verified, we have Axk + Byk--,,. Ax + By if xk--,,. x, Yk--,,. y, and A, Bare 
matrices of appropriate dimension. 

A vector x is said to be a limit point of a sequence {xk} if there is a 
subsequence of {xk} that converges to x, that is, if there is an infinite subset 
K of the nonnegative integers such that {xk}kEK converges to x. 

A sequence of real numbers {rk} that is monotonically nondecreasing 
(nonincreasing), that is, satisfies rk ~ rk+ 1 (rk ? rk+ 1) for all k, must either 
converge to a real number or be unbounded above (below), in which case 
we write limk-->= rk = + = ( -=). Given any bounded sequence of real 
numbers h}, we may consider the sequence {sk}, where sk = sup{r;li ? k}. 
Since this sequence is monotonically nonincreasing and bounded, it must 
have a limit called the limit superior of {rk} and denoted lim supk-->= rk. We 
define similarly the limit inferior of h} and denote it lim infk-->= rk. If h} 
is unbounded above, we write lim supk-->= rk = + =, and if it is unbounded 
below, we write lim infk-->= rk = - =. We also use this notation if rk E 
[-=, = ]for all k. 



Sec. A.5 Convex Sets and Functions 347 

Open, Closed, and Compact Sets 

A subset S of Rn is said to be open if for every vector x E S one can 
find an E > 0 such that {zl llz - xii < E} c S. A set S is closed if and only 
if its complement in Rn is open. Equivalently, S is closed if and only if 
every convergent sequence {xk} with elements in S converges to a point 
that also belongs to S. A set S is said to be compact if and only if it is 
both closed and bounded (i.e., it is closed and for some M > 0 we have 
llxll ~ M for all x E S). A set S is compact if and only if every sequence 
{xk} with elements in S has at least one limit point that belongs to S. Another 
important fact is that if SO , S 1 , . . . , S k, . . . is a sequence of nonempty 
compact sets in Rn such that Sk ::J Sk+ 1 for all k, then the intersection 
n;=o Skis a nonempty and compact set. 

Continuous Functions 

A function f mapping a set S1 into a set S2 is denoted by f : S1 -
S2 . A functionf:Rn - Rm is said to be continuous if f(xk) - f(x) whenever 
xk - x. Equivalently, f is continuous if, given x E W and € > 0, there is 
a 8 > 0 such that whenever IIY - xii <awe have llf(y) - f(x)II < E. The 
function 

(aif1 + azf2)(•) = aif1(•) + azfl•) 

is continuous for any two scalars a 1, a2 and any two continuous functions 
J;,f2 :Rn - Rm. If S1, S2, S3 are any sets andf1:S, - S2,f2 :S2 - S3 are 
functions, the function f 2 • J; : S 1 - S 3 defined by U2 • f1 )(x) = filf1 (x)] is 
called the composition of f, and J;. If f, : R" - Rm and f 2 : 

Rm - RP are continuous, then f 2 • f, is also continuous. 

A.5 CONVEX SETS AND FUNCTIONS 

A subset C of Rn is said to be convex if for every x1, x2 E C and every 
scalar a with O ~ a ~ l we have ax, + (I - a)x2 E C. In words, C is 
convex if the line segment connecting any two points in C belongs to C. 
A function f: C - R defined over a convex subset C of R" is said to be 
convex if for every x 1, x 2 E C and every scalar a with O ~ a ~ l we have 

f[ax 1 + (1 - a)x2] ~ af(x1) + (1 - a)f(x2), 

The function f is said to be concave if ( - f) is convex. If f: C - R is 
convex, then the sets C. = {xix E C, f(x) ~ >..} are also convex for every 
scalar >... An important property is that a real-valued convex function on 
Rn is always a continuous function. 

If f 1, J;, ... , fm are convex functions over a convex subset C of R" 
and a 1, a 2, ... , am are nonnegative scalars, then the function aif, + · · · 
+ a r is also convex over C. If f: Rm - R is convex, A is an m x n mJm 
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matrix, and b is a vector in R,,, , the function g: Rn ~ R defined by g(x) = 
f(Ax + b) is also convex. If f: R" ~ R is convex, then the function 
g(x) = E,., {f(x + w)}, where w is a random vector in Rn, is a convex 
function provided the expected value is well defined and finite for every 
XE Rn. 

For functions f:R 11 ~ R that are differentiable, there are alternative 
characterizations of convexity. Thus, if Vf(x) denotes the gradient off at 
x , that is, the column vector 

Vf(x) = [af(~ ) , ... , af(:)] ', 
ax ax 

the function f is convex if and only if 

f(y) ~ f(x) + Vf(x)'(y - x) , for all x , y E R n. 

If V2j(x) denotes the Hessian matrix off at x, that is, the matrix 

v 2f(x) = [a2J:(x )] 
ax 1ax1 

the elements of which are the second derivatives off at x, then f is convex 
if and only if V2j(x) is a positive semidefinite matrix for every x E R 11

• 

For detailed presentations of the material in this appendix, see references 
[HlO] , [S27] , [R2] , [R9], and [RIO] . 
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On Optimization Theory 

Given a real-valued function f: S ~ R defined on a set S and a subset 
X C S, by the optimization problem 

minimize 
subject to 

f(x) 

xEX, 
(B.l) 

we mean the problem of finding an element x* E X (called a minimizing 
element or an optimal solution) such that 

f(x*) ~f(x), for all x EX. 

Such an element need not exist. For example, the scalar functions j(x) = x 
and f(x) = ex have no minimizing elements over the set of real numbers. 
The first function decreases without bound to - = as x tends toward - =, 
while the second decreases toward O as x tends toward - = but always 
takes positive values. Given the range of values that j(x) takes as x ranges 
over X, that is, the set of real numbers 

{f(x)/x EX} 

there are two possibilities: 

1. The set {J(x)Jx E X} is unbounded below (i.e., contains arbitrarily small real 
numbers) in which case we write 

min{f(x)/x EX} = - 00 or minf(x) = - 00 • 

xEX 

2. The set {f(x)lx E X} is bounded below; that is, there exists a scalar M such 
that M :,;;; f(x) for all x E X. The greatest lower bound of {J(.r)l \. E X} is 

349 



350 On Optimization Theory Appendix B 

also denoted by 

min{f(x)lx EX} or minf(x). 
xEX 

In either case we call minxEX f(x) the optimal value of problem (B. l) . 
A maximization problem of the form 

maximize f(x) 

subject to xEX 

may be converted into the minimization problem 

minimize - f (x ) 

subject to x E X , 

in the sense that both problems have the same optimal solutions, and the 
optimal value of one is equal to minus the optimal value of the other. The 
optimal value for the maximization problem is denoted maxxEx f(x) . 

Existence of Optimal Solutions 

We are often interested in verifying the existence of at least one 
minimizing element in problem (B. l). Such an element clearly exists when 
X is a finite set. When X is not finite, the existence of a minimizing point 
in problem (B. I) is guaranteed if f: W ~ R is a continuous function and 
Xis a compact subset of Rn. This is the Weierstrass theorem . By a related 
result, existence of a minimizing point is guaranteed if f : Rn ~ R is a 
continuous function , X = R n, and f(x) ~ + 00 if !lxll ~ + 00 • 

Necessary and Sufficient Conditions for 
Optimality 

Such conditions are available when f is a differentiable function on 
Rn and X is a convex subset of W (possibly X = W). Thus , if x* is a 
minimizing point in problem (B. l), f: W ~ R is a continuously differentiable 
function on R n, and X is convex, we have 

Vf(x* )'(x - x* ) ~ 0, for all x EX, (B .2) 

where Vf(x*) denotes the gradient off at x*. When X = Rn (i.e., the 
minimization is unconstrained), the necessary condition (B .2) is equivalent 
to the familiar condition 

Vf(x*) = 0. (B.3) 

When f is in addition twice continuously differentiable and X = W , an 
additional necessary condition is that the Hessian matrix V2f(x*) be positive 
semidefinite at x*. An important fact is that if f : R" ~ R is a convex 
function and X is convex then (B.2) is both a necessary and a sufficient 
condition f or optimality of a point x*. 
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Minimization of Quadratic Forms 

Let f : Rn ~ R be a quadratic form 

f(x) = ½x' Qx + b' x, 

where Q is a symmetric n x n matrix and b E Rn. If Q is a positive definite 
matrix, then f is a convex function. Its gradient is given by 

Vf(x) = Qx + b. 

By (B.3), a point x* is a minimizing point off if and only if 

Vf(x*) = Qx* + b = 0, 

which yields 

x* = -Q- 1b. 

For detailed expositions, see references [A3], [L9], [LlOJ, and lZI]. 



APPENDIX C 

On Probability Theory 

This appendix lists selectively some of the basic probabilistic notions we 
will be using. Its main purpose is to familiarize the reader with some of 
the terminology we will adopt. It is not meant to be exhaustive, and the 
reader should consult references [A9], [F2], [P6], and [P7] for detailed 
treatments, particularly regarding operations with random variables, con­
ditional probability, Bayes' rule, and so on. For a treatment of measure 
theoretic probability theory see the textbook by R. B. Ash, Real Analysis 
and Probability, Academic Press, New York, 1972. 

Probability Space 

A probability space consists of 

(a) a set n, 
(b) a collection 81 of subsets of n, called events, which includes n and has the 

following properties: 
(1) If A is an event, then the complement A = {w E Olw ft. A} is also an 

event. (The complement of n is the empty set and is considered to be 
an event.) 

(2) If A1, A2 are events, then A 1 n A 2, A1 U A 2 are also events. 
(3) If A1, A2, ... , Ak, ... are events, then U,;"=1 Ak and n,;"=1 Ak are also 

events. 

(c) a function P(•) assigning to each event A a real number P(A), called the 
probability of the event A , and satisfying 
(1) P(A) ~ 0 for every event A. 
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(2) P(fl) = 1. 
(3) P(A I U A2) = P(A 1) + P(A2) for every pair of disjoint events A 1, A 2. 

(4) P(U%"= 1 Ak) = Lk I P(Ak) for every sequence of mutually disjoint events 
Ai, A2, ... , Ak, .... 

The function P is referred to as a probability measure. 

Convention for Finite and Countable Probability 
Spaces 

The case of a probability space where the set n is a countable (possibly 
finite) set is encountered frequently in this text. Where we specify that n 
is finite or countable, we implicitly assume that the associated collection 
of events is the collection of all subsets of n (including n and the empty 
set). Under these circumstances, the probability of all events is specified 
by the probability of the elements of n (i.e., of the events consisting of 
single elements in f!). Thus, if n is a finite set n = {(o 1, w2 , ••• , w,,}, the 
probability space is specified by the probabilities p 1, p 2 , •.• , p,,, where 
P; denotes the probability of the event consisting of w;. Similarly, if n = 
{ w 1 , w2 , • • • , wk, . . . } , the probability space is specified by the corresponding 
probabilities p 1, p 2 , ••• , Pk, . . . . In either case we refer to (P1. P2, . 
Pn) or (p1 , p 2 , ••• , Pk> ... ) as a probability distribution over n. 

Random Variables 

Given a probability space (f!, fJi, P), a random variable on the probability 
space is a function x: n - R such that for every scalar A the set 

{w E f!jx(w) ~ A} 

is an event (i.e., belongs to the collection fJ,). 
An n-dimensional random vector x = (x 1 , •••• x,,) is an n-tuple of 

random variables x 1, x 2 , ••• , x
11 

each defined on the same probability space. 
The distribution function F: R - R of a random variable x is defined 

by 

F(z) = P({w E njx(w) ~ z}), 

that is, F(z) is equal to the probability that the random variable takes a 
value less than or equal to z. 

The distribution function F:R" - R of a random vector x = (x1, X2, 

• • ' Xn) is defined by 
F(z 1, z2, ••• , Zn) = P({w E f!jx 1(w) ~ Z1, xi(w) ~ Z2, ..• , Xn(w) ~ z,,}). 

Given the distribution function of a random vector x = (xi ..... x,,). 

the (marginal) distribution function of each random variable x, is obtained 

from 
F;(z;) = lim F(z1, z2, ... , z,,). 

, ;-+00 ,j f i 
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The random variables x,, ... , xn are said to be independent if 

F(z1, ... ,Zn)= F1(z1)FzCz2) ... FnCzn), 

for all scalars z 1 , • • • , Zn . 
The expected value of a random variable x with distribution function 

F is defined as 

E{x} = f ~
00 

z dF(z) 

provided the integral is well defined . 
The expected value of a random vector x = (x1 , ••• , xn) is the vector 

E{x} = (E{x1}, E{x2}, ••• , E{xn}). 
The covariance matrix of a random vector x = (x,, ... , xn) with 

expected value E{x} = (x1, ••• , xn) is defined to be the n x n symmetric 
positive semidefinite matrix 

[ 

E{(x1 - x1)2} 
Qx = 

E{(xn - xn)(x1 - xi)} 

·;- E{(x1 - X.)(x~ ~ x.))]. 
... E{(Xn - Xn) -} 

provided the expectations are well defined. 
Two random vectors x and y are said to be uncorrelated if 

E{(x - E{x})(y - E{y}) '} = o, 
where (x - E{x}) is viewed as a column vector and (y - E{y})' is viewed 
as a row vector. 

The random vector x = (x 1, ••• , x,,) is said to be characterized by 
a piecewise continuous probability density function f: Rn ---'> R if f is piecewise 
continuous and 

F(z1, ... , Zn) = J:1

00 

J:2

00 

. .. fn
00

f(Y1, ... , Yn) dy1 ... dyn , 

for every Zt, .•• , Zn· 

Conditional Probability 

We shall restrict ourselves to the case where the underlying probability 
space n is a countable (possibly finite) set and the set of events is the set 
of all subsets of n. 

Given two events A and B, we define the conditional probability of 
B given A by 

[

P(A n B) 

P(BjA) = P(A) ' 

0, 

if P(A) > 0, 

if P(A) = 0. 

If B1, B2, ... are a countable (possibly finite) collection of mutually exclusive 
and exhaustive events (i.e ., the sets B; are disjoint and their union is f!) 
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and A is an event, then we have 

P(A) = I P(A n B;) . 

From the two preceding relations it is seen that 

P(A) = L P(B;)P(AIB;). 

From these expressions we obtain, for every k, 

P(B IA) = P(A n Bk) = P(Bk)P(AIBk) 
k P(A) L P(BJP(AIB;), 

provided P(A) > 0. This relation is referred to as Bayes' rule. 
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Consider now two random vectors x and yon the (countable) probability 
space taking values in Wand Rm , respectively [i.e., x(w) E R 11

, y(w) E Rm 
for all w E Dl. Given two subsets X and Y of W and Rm, respectively, 
we denote 

P(XI Y) = P({wlx(w) E X}l{wiy(w) E Y}). 

For a fixed vector w E Rn, we define the conditional distribution 
function of x given w by 

F(zlw) = P({wlx(w) ~ z}l{wly(w) = w}), 

and the conditional expectation of x given w by 

E{xlw} = Jr z dF(zlw), 
Rn 

provided the integral is well defined. Note that E{xlw} is a function mapping 
w into Rn. 

Finally, let us derive Bayes' rule for random vectors. If w 1, w2 , ••• 

are the elements of n, denote 

Zi = x(wi), wi = y(w;), i = I , 2, .... 

Also, for any vectors z E Rn, w E Rm, let us denote 

P(z) = P({wlx(w) = z}), P(w) = P({wly(w) = w}). 

We have P(z) = 0 if z -f Zi, i = I , 2, ... , and P(w) = 0 if w -/= w i , i = 
1, 2, . . . . Denote also 

P(zlw) = P({wlx(w) = z}l{wly(w) = w}). 

Then, if P(w) > 0, Bayes' rule yields 

P(zi )P( wlzi) 
P(Z;jw) = IP(z)P(wlz)' 

i = I, 2, ... , 

P(zlw) = 0, if z-/= Z;, i = I, 2, ... , 

where P(wlz) = P({wly(w) = w}l{wlx(w) = z}). 
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On Finite State Markov 

Chains 

A square n x n matrix [Pul is said to be a stochastic matrix if all its 
elements are nonnegative, that is, Pu ~ 0, i, j = I, ... , n, and the sum 
of the elements of each of its rows equals unity, that is, 2-7_ 1 Pu = I for 
all i = 1, .. . , n. 

Stationary Finite State Markov Chains 

Suppose we are given a stochastic n x n matrix P together with a 
finite set S = {I, ... , n} called the state space. The elements of S are 
called states. The pair (S , P) will be referred to as a stationary finite state 
Markov chain. We associate with (S , P) a process whereby an initial state 
x0 E S is chosen in accordance with some initial probability distribution 

Po= (pt P~, ···• P~) . 

Subsequently. a transition is made from state x 0 to a new state x 1 E S in 
accordance with a probability distribution specified by P as follows . The 
probability that the new state will be j is equal to Pu whenever the initial 
state is i; that is, 

P(x1 = jlxo = i) = Pu, i,j = 1, . ... , n . 

Similarly, ·mbsequent transitions produce states x 2 , x 3 , •• • in accordance 
with 

i,j = 1, .. . , n. (D .1) 

The probability that after the kth transition the state xk will be equal to j, 
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given that the initial state .x0 is equal to i, is denoted 

Pt= P(xk = ilxo = i), i , j = 1, ... , n. (D.2) 

These probabilities are easily seen to be equal to the elements of the matrix 
pk (P raised to the kth power), in the sense that Pt is the element in the 
ith row and jth column of Pk: 

pk = [pt]. (D.3) 

Given the initial probability distribution p0 of the state x0 (viewed as a row 
vector in Rn), the probability distribution of the state xk after k transitions 

Pk = (pk, PL ... , PZ) 

(viewed again as a row vector) is given by 

Pk = PoP\ k = 1, 2, .. .. (D.4) 

This relation follows immediately from (D.2) and (D.3) once we write 
n n 

p{ = L P(xk = ilxo = i)p~ = L PtP~-
i=I i=I 

Classification of States of a Markov Chain 

Given a stationary finite state Markov chain (S, P), we say that two 
states i and j communicate if there exist two positive integers k1 and k2 

such that pt1 ~ 0 and p];2 > 0. In words, states i and j communicate if 
one can be reached from the other with positive probability. 

Let S C S be a subset of states such that 

1. All states in S communicate. 
2. If i ES and} f/:. S, then Pt = ·o for all k. 

Then we say that S forms an ergodic class of states. 
If S forms by itself an ergodic class (i.e., all states communicate with 

each other), then we say that the Markov chain is irreducihle. It is possible 
that there exist several ergodic classes. It is also possible to prove that at 
least one ergodic class must exist. States that do not belong to any ergodic 
class are called transient. Transient states are characterized hy the fact 
that 

lim Pt = 0, if and only if i is transient. 
k----+= 

In other words, if the process starts at a transient state, the probability of 
returning to the same state after k transitions diminishes to zero as k tends 
to infinity. 

The definitions imply that once an ergodic class is entered then the 
process remains within this ergodic class for every subsequent transition. 
Thus, if the process starts within an ergodic class. it stays within that class. 
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If it starts at a transient state, it eventually (with probability one) enters 
an ergodic class after a number of transitions and subsequently remains 
there. 

Limiting Probabilities 

An important property of any stochastic matrix P is that the matrix 
P* defined by 

N-1 

P* = lim _!_ L pk 

N-= N k=O 

exists [in the sense that the sequences of the elements of (1/ N) 2.i/=-01 
pk 

converge to the corresponding elements of P*]. The elements Pt of P* 
satisfy 

L Pt = I, i = I, ... , n. 
j=I 

That is, P* is a stochastic matrix. A proof of this fact is given in Proposition 
A 7 .1 in the appendix of Chapter 7. 

If S C Sis an ergodic class and i, j E S, then it may be proved that, 
for all k E S, 

Pfi< = pj,, > 0, 

so that if a Markov chain is irreducible, the matrix P* has identical rows. 
Also, if j is a transient state, we have 

Pt = 0, for all i ES, 

so the columns of the matrix P* corresponding to transient states are 
identically zero. 

First Passage Times 

Let us denote by l 1 the probability that the state will be j for the 
first time after exactly k ~ I transitions given that the initial state is i; that 
is, 

qt = P(xk = j , Xm -/= j, 1 ~ m < kjx0 = i). 

Denote also, for fixed i and j, 

KiJ = min{k ~ llxk = j, Xo = i}. 

Then KiJ, called the first passage time from i to j, may be viewed as a 
random variable . We have, for every k = 1, 2, ... , 

P(KiJ = k) = qt, 
and we write 

P(KiJ = =) = P(xk =t j, k = I , 2, ... /x0 = i) = I 
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Of course, it is possible that L;'= 1 qt < 1. This will occur, for example, 
if j cannot be reached from i in which case qt = 0 for all k = I, 2, .... 
The mean first passage time from i to j is the expected value of Kij: 

[ 

I kqt , 
E{Ku} = k-1 

=, 

k-1 

k= I 

It may be proved that if i and j belong to the same ergodic class then 

E{K;) < =. 
If i and j belong to two different ergodic classes, then E{Ku} = E{K1;} 

= If i belongs to an ergodic class and j is transient, we have E{K;) 
=. For detailed presentations, see [A9], [C2], [K6], and [RS]. 
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