





























2 The Dynamic Programming Algorithm Chap. 1

where

k indexes discrete time,
x, is the state of the system and summarizes past information that is relevant
for future optimization,
u, is the control or decision variable to be selected at time k with knowledge of
the state x,
w, is a random parameter (also called disturbance or noise),
N is the horizon or number of times control is applied.

The cost functional is additive in the sense that a cost gi(x., u;, wy)
is incurred at each time k, and the total cost along any system sample

ject 1S
trajectory e

gn(xn) + 20 glxis s Wi,
k=0
where gn(xy) is a terminal cost incurred at the end of the process. However,
because of the presence of w,, cost is generally a random variable and
cannot be meaningfully optimized. We therefore formulate the problem as
one whereby we wish to select controls ug, u,, . . ., uy_, SO as to minimize

the expected cost N1

E{gn(xy) + E 8l Xk Uy, wl,
k=0

where the expectation is taken with respect to the joint distribution of the
random variables involved.

A more precise definition of the terminology just used will be given
shortly. We first provide some orientation by means of examples.

Inventory Control Example

Consider a problem of ordering a quantity of a certain item at the
beginning of each of N time periods so as to meet a stochastic demand.
Let us denote

X, stock available at the beginning of the kth period,
u; stock ordered (and immediately delivered) at the beginning of the kth period,
w, demand during the kth period with given probability distribution.

We assume that wy, . . ., wy , are independent random variables and that
excess demand is backlogged and filled as soon as additional inventory
becomes available. Thus stock evolves according to the discrete-time (or
difference) equation

Xew1 = Xp + Uy — Wy,

where negative stock corresponds to backlogged demand (see Figure 1.1).
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each possible value of x,,

wi(x,) = amount that should be ordered at time & if
stock is x,.

The sequence 7 = {mo, My, - - -» tny—;; Will also be referred to as a
control law or a policy. For each such 7, the corresponding cost for a
fixed initial stock x, is

N-1
Jo(x0) = E{ > cmlx) + Hix + mlx) — Wk]}-
k=0
and our objective will be to minimize J,(x,) for fixed x, over all admissible
ar. This is a typical dynamic programming problem. We wi show in Section
2.2 that, for a reasonable choice of the cost function H, the optimal ordering
rule is of the form
_ Sk — Xk. ika<Sk.
I'Lk(xk) - {0’ ika > Sk’
where S, is a suitable threshold level determined by the data of the problem.
In other words, when stock falls below the threshold §;. order just enough
to bring stock up to S,.
The preceding example illustrates the main ingredients of the basic
problem formulation:

1. A discrete-time system of the form

Xeer = Sillxes 1y, wy),
where f; is some function; in this example fi(x;, g, wi) = X + w; — wy.

2. Independent random parameters w,. This will be generalized by allowing the
probability distribution of w; to depend on x; and «,; in the context of the
example we can think of a situation where the level of demand w, is influenced
by the current stock level.

3. A control constraint; in the example u, = 0. In general, the constraint set
will depend on x, and the time index &, that is, u;, € U,(x,). To see how
constraints dependent on x; can arise in the inventory context, think of a
situation where there is an upper bound B on the level of stock that can be
accommodated, so u; < B — Xx;.

4. An additive cost of the form

N-1
E{gN(xN) + 2 gk(xk, iy, Wk)},
k0

where g,, k = 0, ..., N, are some functions; in the preceding example
enxy) = 0, and g.(x;, ux, wy) = cuy + H(xy + up — wy).

5. Optimization over control laws, that is, rules for choosing u, for each & and
possible value of x,.

In the preceding example, the state x, was a real number. In other
cases the state is an n-dimensional vector. It is also possible, however,
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where the state x, is an element of a space S;. the control «, is an element
of a space C;, and the random *‘disturbance™ wy is an element of a space
D,. The control u; is constrained to take values from a given nonempty
subset U,(x,) of C,. which depends on the current state x; [, € U(x;)
for all x, € S, and k). The random disturbance w; is characterized by a
probability measure P.(:|x;, ;) that may depend explicitly on x; and «; but
not on values of prior disturbances w;_,, . . .. w,. We consider the class
of control laws (also called policies) that consist of a sequence of functions
= {fg, f1s . . -» n -1}. Where w, maps states x; into controls 1, = w(x;),
and is such that u(x,) € U(x,) for all x, € S;,. Such control laws will be
termed admissible.

Given an initial state x,, the problem is to find an admissible control

law 7 = {w, > . . .» wn—;t that minimizes the cost functional
N-1
JAx)) = E {gN(-\'N) + z el palxe). m]} (1.2)
wi k=0
k=Q..... N 1

subject to the system equation constraint
X1 = fil X pa(x), wil. A=0.1.....N — 1. (13)

The cost functions g, & = 0, 1, . . ., N, are given.
For a given initial state x,, an optimal control law 7* is one that
minimizes the corresponding cost

Jo(xg) = min J,(xo).
well

where I1 is the set of all admissible control laws. The optimal cost cor-
responding to x, will be denoted J*(x,); that is,
J*(xo) = min J,(x,).
wrell
We view J* as a function that assigns to each initial state x, the optimal
cost J*(xy) and call it the optimal cost function or optimal value function.
[For the benefit of the mathematically oriented reader we note that
in the preceding equation min denotes the greatest lower bound (or infimum)
of the set of numbers {J,.(x,) | # € I1}. A notation more in line with normal
mathematical usage would be to write J*(x,) = inf,cp J.(x,). However
(as discussed in Appendix B), we find it convenient to use min in place of
inf even when the infimum is not attained. It is less distracting and will
not lead to any confusion.]

Role of Information in the Basic Problem

We mentioned earlier that a policy {ug, #y. . . .. uy ;} may be viewed
as a plan that specifies the control to be applied at each time for every
state that may occur at that time. It is important to realize that this mode
of operation implies information gathering. The information received by
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inclined need not be concerned about it and can skip the rest of this section
without loss of continuity.

First, once an admissible control law {u,, &, . . ., un_,} is adopted,
the following sequence of events is envisioned for each stage £ = 0, 1,
LN - 1t

1. The controller observes x; and applies #;, = w(x;).

2. The disturbance w; is generated according to the given probability measure
Pk('lxk, (X))

3. The cost gilxi, mlxi), wil is incurred and added to previous costs.

4. The next state x,., is generated according to the system equation

Xeer = filxis ma(xe), wil.
If this is the last stage (k = N — 1), the terminal cost gy(xy) is added to
previous costs and the process terminates. Otherwise, & is incremented, and
the same sequence of events is repeated for the next stage.

This process is well defined and couched in precise probabilistic terms.

Things are complicated, however, by the need to view the cost

N—1

gnv(xn) + 2 gilxis me(xi), il

k=0
as a well-defined random variable with well-defined expected value. The
framework of probability theory requires that for each {uq, @y, . . ., v}
we define an underlying probability space, that is, a set (), a collection of
events in {2, and a probability measure on these events. Furthermore, the
cost must be a well-defined random variable on this space in the sense of
Appendix C (a measurable function from the probability space into the real
line in the terminology of measure-theoretic probability theory). For this
to be true, additional (measurability) assumptions on the functions f, g;,
and u, may be required, and it may be necessary to introduce additional
structure on the spaces S;, Cy, and D,. Furthermore, these assumptions
may restrict the class of admissible control laws since the functions u, may
be constrained to satisfy additional (measurability) requirements.

Thus, unless these additional assumptions and structure are specified,
the problem is formulated inadequately. On the other hand, a rigorous
formulation of the basic problem for general state, control, and disturbance
spaces is well beyond the mathematical framework of this introductory text
and will not be undertaken here (see [B23]). Nonetheless, these difficulties
are mainly technical and do not substantially affect the basic results to be
obtained. For this reason we find it convenient to proceed with informai
derivations and arguments in much the same way as in all introductory
texts and most journal literature on the subject.

We would like to stress, however, that under the assumption that the
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1.2 THE DYNAMIC PROGRAMMING ALGORITHM

The dynamic programming (DP) technique rests on a very simple idea, the
principle of optimality. The name is due to Bellman, who contributed a
great deal to the popularization of DP and to its transformation into a
systematic tool. Roughly, the principle of optimality states the following
rather obvious fact.

Let 7% = {u¥, uf, ..., u}_,} be an optimal control law for the basic
problem. Consider the subproblem whereby we are at state x; at time i
and wish to minimize the ‘‘cost-to-go’’ from time i to time N;

N-1

E{gN(xN) + Z gl X, me(x), wilt,
k=i

and assume that when using 7* the state x; occurs with positive probability.

Then the truncated control law {u}, w¥ . ..., u¥_,} is optimal for this
subproblem.

The intuitive justification of the principle of optimality is very simple.
If the truncated control law {u*, u* ,, ..., u}_,} were not optimal as

stated, we would be able to reduce the cost further by switching to an
optimal policy for the subproblem once we reach x;. For an auto travel
analogy, suppose we have found the fastest route from Los Angeles to
Boston and this route passes through Chicago. The principle of optimality
translates to the obvious fact that the Chicago to Boston portion of the
route is also a fastest route for a trip that starts from Chicago and ends in
Boston.

It is perhaps best to introduce the DP algorithm by means of an
example.

Inventory Control Example (continued)

Consider the inventory control example of the previous section and
the following procedure for determining the optimal inventory ordering
policy starting with the last time period and proceeding backward in time.

N — 1 Period Assume that at the beginning of period N — 1 the
stock available is x5 _,. Clearly, no matter what happened in the past, the
inventory manager should order inventory «%_, = u}_,(xx ), which min-
imizes over uy_, the sum of the ordering, holding, and shortage costs for
the last time period, which is equal to

E {cuy 1+ + H(xy_y + uy_y — wy_))}

Let us denote the optimal cost for the last period by Jy (xy ,):
JN—I(XN—]) = min E {CllN 1 + H(XN_] + Uny_y — H’N—l)}'

un =0 wy
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is simultaneously computed from minimization of the right side of (1.5) for
every x; and &.

The example illustrates the main advantage offered by DP. Our original
inventory problem requires an optimization over the set of policies, that
is, the set of sequences of functions of the current stock (more generally
the current state). The DP algorithm of (1.5) decomposes this problem into
a sequence of minimization problems that is carried out over the set of
orders (more generally the space of controls). Each of these problems is
far simpler than the original.

We now state the DP algorithm for the basic problem and show its
optimality.

Proposition. Let J*(x,) be the optimal cost. Then
J*(xo) = Jo(x0),

where the function Jj is given by the last step of the following algorithm,
which proceeds backward in time from period N — 1 to period 0:

In(xn) = gnlxn) (1.6)
Ji(x) = min E{g,(x;, up, wy) + Jeor[filxw, e, wlt,  (L7)F

wk € Ur(xk) wi

k=0,1,..., N - 1.

Furthermore, if #f = wf(x,) minimizes the right side of (1.7) for each x,
and £, the control law #* = {ug, ..., u¥_,} is optimal.

Proof. The fact that the probability measure characterizing w, depends
only on x, and u, and not on prior values of disturbances wy, . . ., w,_,
allows us to write J*(x,) in the form

J*(xo) = min I:E{go[xm Mo(x0). wol + E{gl[xl’ i), wil + -

wo wi

+ E {en-ilxn- n—1(env=1), W] + ga(en)) o }}]’

WN-1

where the expectation over w,, k = 0, 1, ..., N — 1, is conditional on
X and w,(x,). This expression may also be written

T Both the DP algorithm and its proof are, of course, rigorous only if the basic problem
is rigorously formulated. As explained in the previous section, this is the case when the
disturbance spaces D,, k = 0, 1, ..., N — 1, are countable sets and the expected values of
all terms in the expression of the cost functional (1.2) arc well defined and finite for every
admissible policy . In addition, it is assumed that the expected value in (1.7) exists and is
finite for all u, € U,(x,) and all x, € §,. We further note that, although not explicitly denoted,
the expectation in (1.7) is taken with respect to the probability measure characterizing w, ,
which depends on both x, and u,.
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Example 1
A certain material is passed through a sequence of two ovens (see Figure 1.4).
Denote

Xo: initial temperature of the material,
xi, k = 1, 2: temperature of the material at the exit of oven k,
Uy, k = 1, 2: prevailing temperature in oven k.
We assume a model of the form
X = (1 = a)x, + awy, k=0,1,

where a is some scalar from the interval (0, 1). The objective is to get the final
temperature x, close to a given target 7, while expending relatively little energy.
This is expressed by a cost function of the form

r(x; — TV + wd + i,
where r > 0 is a given scalar. We assume no constraints on «,. (In reality, there
are constraints, but if we can solve the unconstrained problem and verify that the

solution satisfies the constraints, everything will be fine.)

We see that this is a deterministic problem that fits the basic framework. We
have N = 2 and a terminal cost g,(x;) = r(x, — T)*, so the initial condition for
the DP algorithm is [cf. (1.6)]

Jr(x3) = r(x; — T)Z-
For the next-to-last stage, we have [cf. (1.7)]
Ji(xy) = min[uf + Jo(x,)]
= min[#} + L,[(1 — a)x; + au,]].

u\

Substituting the previous form of J,, we obtain

Ji(x)) = min[:2 + r[(1 — a)x, + au, — T1'). (1.8)
This minimization will be done by setting to zero the derivative with respect to u,.
We thus have

0 = 2u, + 2ral(1 — a)x, + au, — T),

and by collecting terms we obtain the optimal temperature for the last oven:
ralT — (1 — a)x,]

= uf(x) =
HitH 1 + ra’

Initial ‘ Oven 1 . l Oven 2 | Final
Temperature Temperature
) x1 X2
—— { Oven Temperature » Oven Temperature ———————3
Ug Uy

Figure 1.4 Problem of Example . The temperature of the material evolves
according to x ,; = (1 — a)x, + au,. where a is some scalar with 0 < a < 1
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the system equation. To see this, assume that the material’s temperature
evolves according to

Xee1 = (1 — a)x, + aug + wy, k=0,1,

where w,, w, are independent random variables with given distribution,
Zero mean

E{Wo} = E{Wl} =0,
and finite variance. Then the equation for J, [cf. (1.7)] becomes
Ji(x;) = min E,, {2 + r[( — a)x, + au, + w, — T}

Il

min[#? + r[(1 — a)x, + au, — TP
+ 2kE{w }[(1 — a)x, + au, — T] + rE{wi}].
Therefore, using the fact that E{w,} = 0, we obtain

Ji(x)) = min[} + r[(1 — a@)x, + au, — TV] + rE{w3}.

Comparing this equation with (1.8), we see that the presence of w, has
resulted in an additional inconsequential term, r E{w?}. Therefore, the optimal
policy for the last stage remains unaffected by the presence of w,, while
Ji(x,) is increased by the constant term rE{wi}. It is easily seen that a
similar situation also holds for the first stage. In particular, the optimal
cost is given by the same expression as before except for the additional
term r(E{wi} + E{w?}).

The property whereby the optimal policy is unaffected by the presence
of zero-mean disturbances is a manifestation of the certainty equivalence
principle, which holds for several types of problems involving a linear
system and a quadratic cost (see Sections 2.1, 3.2, 3.3, and 6.1).

Example 2
Consider an inventory control problem similar to the one of Section 2.1 but different
in that inventory and demand are nonnegative integer variables. Furthermore,
assume that there is an upper bound on the stock (x, + u,) that can be stored and
also assume that the excess demand (w, — x; — u;) is lost. As a result, the stock
equation takes the form

X4+ = max(0, x, + u, — wy).

Assume that the maximum capacity (x, + w,) for stock is 2 units, that the
planning horizon N is 3 periods, and that the ordering cost ¢ is 1 unit. The
holding/shortage cost per stage is given by

H(x; + we — wy) = max(0, x, + 1, — wy) + 3 max(0, w, — x, — u)).

The terminal state cost 1s zero. The initial stock x, is given, and the demand w;,
has the same probability distribution for all periods. given by

pwi=0)=0.1, p,=1=07. pw, =2 =02

The system can also be represented in terms of the probabilities of transition between
the three possible states 0, 1, 2 for the different values of control (see Figure 1.5a).
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The starting equation for the DP algorithm is
J3(x;) = 0,
since the terminal state cost is zero [cf. (1.6)]. The algorithm takes the form [cf.
(1.7)]
J.(x) = min E{u + max(0, x, + ux — wy) + 3 max(0, w, — x, — ;)

gl
+ Jeai[max(0, x, + w, — wp)l}, k=0,1,2,

where x;, u,, w, can take the values 0, 1, and 2.

Stage 2 We compute J,(x,) for each of the three possible states:
J,(0) = min E {4 + max(0, u, — w;) + 3 max(0, w, — u,)}

u2=0,1,2 wy

= min {&, + 0.1[max(0, &,) + 3 max(0, — «,)]
=012

+ 0.7[max(0, u, — 1) + 3 max(0, 1 — u,)] + 0.2[max(0, u, — 2)
+ 3 max(0, 2 — wu,)]}.

We calculate the expectation of the right side for each of the three possible values
of u,:

U

3.3,

00 E{}=07x3x1+4+02x3x2
x 1=1.7,

w=1 E{}=1+01x1+02x3
22 E{}=2+01x2+07x1
Hence we have, by selecting the minimizing u-,
> J0) =17, pi@) =1 <
For x, = 1, we have
L) = min E {4, + max(0, 1 + u>» — w») + 3 max(0, w» — 1 — w,)}

ww 01 wy

= mig)l{uq + 0.1[max(0, 1 + ;) + 3 max(0, — 1 — u.)]

I
™
o

U

+ 0.7[max(0, u,) + 3 max(0, — u.)]
+ 0.2[max(0, u, — 1) + 3 max(0, 1 — 1,)]},
=0 E{}=01x1+02x3x1 0.7,

w=1 E{}-1+01x2+07x1 19
Hence
> J(1) = 0.7 pi(l) =0 <

For x» = 2, the only admissible control is u, = 0, so we have
5, (2) = E {max(0,2 — w,) + 3 max(0, w, — 2)}
w

=0.1x2+07x%x1=0.9,
> J;(2) - 09, wuf@ =0 <
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manner J,(1) and Jo(2) as well as the minimizing #,. These calculations vield
> Jo(1) = 3.9, ug (D) = 0. <
> Jo(2) = 3.352 uE2y =0 <

Thus the optimal ordering policy for each period is to order one unit if the current
stock is zero, and order nothing otherwise. The results of the DP algorithm are
given in tabular form in Figure 1.5b.
Example 3
Finite State Systems. We mentioned earlier (cf. the queucing example in the previous
section) that systems with a finite number of states can be represented either by a
discrete-time system equation or in terms of the probabilities of transition between
the states (cf. Figures 1.2 and 1.5). Let us work out the corresponding DP algorithm.
We will assume for the sake of the following discussion that the problem is stationary
(i.e. the transition probabilities. the cost per stage. and the control constraint set
do not change from one stage to the next). Then, if

p,) =Pl =y vw=1iu = u}
are the transition probabilities, we can alternatively represent the system by the
system equation (cf the discussion of the previous section)

Xp+e1 = My,

where the probability distribution of the disturbance w, 1s

Phwe=jlv=iu =u}=p
Using this system equation and denoting by g(i. 1) the expected cost per stage at
state i when control « is applied. the DP algorithm can be rewritten as

Jo() = minfg(, ) + E{J . ,(w W]

€U
or equivalently (in view of the distribution of w; given previousiy)
Ju(@y = minfgl, ) + 2 p (D] A=0,1....N -1
u L)

As an illustration, in the queueing problem of the previous section this algorithm
takes the form

Jy()=C@. i=0.1,..,n,

Ji() = minfc() + ¢, + 2, p G, () @) + e+ D p ()T (D
g N o
A=0,1 N-1

The two expressions in the minimization correspond to the two available decisions
(fast and slow service).

1.3 DETERMINISTIC SYSTEMS AND THE SHORTEST PATH
PROBLEM

The main objective of this text is the analysis of stochastic optimization
problems and the ramifications of the presence of uncertainty. However.
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Terminal Arcs
with Cost Equal
to Terminal Cost

oo t
Artificial
Terminal
Initial State Node
s .o
Stage Stage Stage Stage _ _  Stage Stage
0 1 2 3 N-1 N

Figure 1.6 Transition graph for a deterministic finite state system. Nodes cor-
respond to states. An arc with start and end nodes x, and x,,;, respectively,
corresponds to a transition of the form x,., = fi{xx, #:). The length of this arc
is equal to the cost of the corresponding transition g (x;, #;). The problem is

equivalent to finding a shortest path from the initial node s to the terminal node
1.

the DP algorithm takes the form

In(i) = ¥, i€ Sy, (1.9)
Ji(1) = min{c}, + J,.,(j)}, i€S,, k=0,1,....,N—1. (1.10)
JESk+1

The optimal cost is Jy(s) and equals the length of the shortest path from
s to 1.

The preceding algorithm proceeds backward in time. It is possible
to derive an equivalent algorithm that proceeds forward in time by means
of the following simple observation. An optimal path from s to ¢ is also
an optimal path from ¢ to s in a “‘reverse’’ shortest path problem whereby
the direction of each arc is reversed and its length is left unchanged. The
DP algorithm corresponding to this ‘‘reverse’’ problem is

IvG) =¢%,  JES, (1.11)

Ji(j) = min {CSI “+ T}, JE Sn_ks1s

IESN &
k=1,2,..., N — 1, (1.12)
and the optimal cost is

Jo(t) = min {cN + T,(i)}. (113)

iESN
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We claim that

T = max D,
P

and therefore finding T may be viewed as a problem of finding the longest
path from node 1 to node N when the length of each arc (i, j) is ;. Because
the graph is acyclic, this problem may also be viewed as a shortest path
problem with the length of each arc (i, j) being —¢;.

The easiest way to show this is by deriving the corresponding DP
algorithm. Let N,, k = 1, 2, . . ., be the set of phases

N, = {i| the maximum number of arcs contained in paths
from 1 to i is exactly k}
with N, = {1}. For each phase i, let
T;: required time to complete i.

Then we have

T, = max{t; + T;|jENoU " UN;_;}, {iE€EN,,
.0

and a little thought reveals that T; equals the maximum D, over all paths
p from 1toi Fori = N, we obtain T = max, D,.

For the activity network of Figure 1.8, we have

No={l}, Ny=1{2,4, N,={3,5} N;={6}, N,={7}

A calculation using the preceding formula yields

T1=0, T2=3, T4=1, T3=4. T5=4, T6=9’ T7= 11,
and the critical (i.e., longest) pathis 1 -2 — 3 — 6 — 7. Any delay in
the completion of the critical activities (1, 2), (2, 3), (3, 6), (6, 7) will
proportionately delay the completion of the overall project.

Convolutional Coding and the Viterbi Decoder

When binary data are transmitted over a noisy communication channel,
it is often essential to use coding as a means of enhancing reliability of
communication. A very common type of coding method, called convolutional
coding, converts a source-generated binary data sequence

{wy, wy, ...}, w,€{0,1}, Lk=1,2,...,
into a coded sequence
{yls Y2, "'}s

where each y., k = 1, 2, ..., is an n-dimensional vector with binary
coordinates (called codeword)

}I( = X N y;(E{O, 1}, i = 1, ey N
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initial state is x, = 00, the data sequence
{wy, wa, w3, wa} = {1,0,0, 1}
generates the state sequence
{xo, X1, X2, X3, X4} = {00, 01, 11, 10, 00},
and the codeword sequence

{y1» y2, ¥3, ya} = {111, 011, 111, O11}.

Assume now that the characteristics of the noisy transmission channel
are such that a codeword y is actually received as z with known probability
p(z | y), where z is any n-bit binary number. We denote

ZN = {Zl, 225 +ee» ZN}
the sequence received when the transmitted sequence is

YN = {yh Y25 eees yN}'
We assume independent errors so that

N
p(Zy| Yx) = I1 Pzl ¥ (1.16)
k=1
A maximum likelihood decoder converts a received sequence Zy into a
sequence

YN = {ylv yZ’ EERE] .’).)N}
such that

P(ZN| ?N) = myax P(ZN| Yn).

The constraint on Yy is that it must be a feasible codeword sequence (i,.\e.,
it must correspond to some initial state and data sequence). Given Yy,
one can then construct a corresponding data sequence {#,, . . ., Wy} that
is accepted as the decoded data.

Viterbi developed a shortest path scheme that implements the maximum
likelihood decoder. Using (1.16), we see that the problem of maximizing
p(Zy | Yu) is equivalent to the problem

N
minimize Y, — In[p(z4 | y)]
k1 (1.17)
over all binary sequences {y;. ¥2, ..., Yn}
for a known received sequence {z;, 5, ..., Zy}- To see that this is a shortest

path problem, note that, given z,, we can assign to each arc on the state
transition diagram the length — In[p(z | y)l, where y, is the codeword
associated with the arc. Next we construct a graph by concatenating N
state transition diagrams and appending dummy nodes s and ¢t on the left
and right side of the graph connected with zero-length arcs to the states
Xo and xy_,, respectively (see Figure 1.10). The solution to problem (1.17)
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possible to save both in memory and in computation by means of a forward
search for a shortest path from an origin node toward a destination node.
The techniques for doing this have partly originated in artificial intelligence
and are typically used in computer progams that solve puzzles or play
games such as chess (see Section 4.3). Let us provide some examples.

Example 1

The Four Queens Problem. Four queens must be placed on a 4 x 4 portion of a
chessboard so that no queen can attack another. In other words, the placement
must be such that every row, column, or diagonal of the 4 x 4 board contains at
most one queen. Equivalently, we can view the problem as a sequence of problems:
first, placing a queen in one of the first two squares in the top row, then placing
another queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first two
squares of the top row since the other two squares lead to symmetric positions.)
We can associate positions with nodes of an acyclic graph where the root node s
corresponds to the position with no queens and the terminal nodes correspond to
the dead-end positions where no additional queens can be placed without some
queen attacking another. Let us connect each terminal position with an artificial
node ¢ by means of an arc. Let us also assign to all arcs length zero except for
the artificial arcs connecting terminal positions with less than four queens with the
artificial node 1. These latter arcs are assigned the length +oc (see Figure 1.11) to
express the fact that they correspond to dead-end positions that cannot lead to a
solution. Then the four queens problem reduces to finding a shortest path from
node s to node ¢. Note that once the nodes of the graph are enumerated the problem
is essentially solved. Here the number of nodes is small. However, we can think
of similar problems with much larger memory requirements. For example, there
is an eight queens problem where the board is 8 X 8 instead of 4 x 4.

Example 2

The Traveling Salesman Problem. An important model for scheduling a sequence
of operations is the classical traveling salesman problem. Here we are given N
cities and the mileage between each pair of cities, and we wish to find a minimum-
mileage trip that visits each of the cities exactly once. To convert this problem to
a shortest path problem, we associate a node with every sequence of »n distinct
cities, where n = 1,2, . . ., N. The construction and arc lengths of the corresponding
graph are explained by means of an example in Figure 1.12. The origin node s
consists of city A, taken as the start. A sequence of n cities (n < N) yields a
sequence of (n + 1) cities by adding a new city. Two such sequences are connected
by an arc with length equal to the mileage between the last two of the n + 1 cities.
Each sequence of N cities is connected to an artificial terminal node ¢ with an arc
having length equal to the distance from the last city of the sequence to the starting
city A. Note that the number of nodes grows exponentially with the number of
cities, so we would like to have algorithms that do not require the enumeration
and /or storage of these nodes

In the shortest path problem that we will consider there is a single
node s with no incoming arcs, called the origin, and a single node r with
no outgoing arcs, called the destination. We assume that every arc (i, j)
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Origin Node s

Table of Mileage between Cities

Figure 1.12 Example of shortest path formulation of the traveling salesman
problem. The distance between the four cities A, B, C, and D are shown in the
table. The arc lengths are shown next to the arcs.

has a length a; which is nonnegative or + =, and we wish to find a shortest
path from origin to destination. We assume that there exists a shortest path with
finite length. The following algorithm is a general method for solving the prob-
lem. In it we make use of two lists of nodes called OPEN and CLOSED. The
list OPEN contains nodes that are currently active in the sense that they are can-
didates for further examination by the algorithm. The list CLOSED contains
nodes that have been examined by the algorithm and are not currently candi-
dates for further consideration. Using CLOSED is not essential for the algo-
rithm, but results in some conceptual simplification. Initially, OPEN contains
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it in CLOSED, and place those of its sons j # ¢ that satisfy the criterion
of step la in OPEN, etc. When the algorithm terminates, we claim that a
shortest path can be obtained by using the node last marked in step 1b as
lying on the best path. By tracing labels starting from that node we can
proceed backward and construct a shortest path to the origin node. Fig.
1.13 illustrates the use of the algorithm to solve the traveling salesman
problem of Fig. 1.12.

To verify that a path obtained as just described is shortest. we reason
as follows. We first argue by contradiction that the algorithm will terminate.
Indeed, if this is not so, some node j will enter the OPEN list infinitely
often, which means that d; will be decreased infinitely often. each time
obtaining a corresponding shorter path from s to j. This is not possible
since, in view of the nonnegative arc assumption, the number of distinct
lengths of paths from s toj is finite. Therefore, the algorithm will terminate.
We next show that the value of UPPER upon termination must equal the
shortest distance d* from s to ¢t. Indeed, let (s, j,. j.. . ... Ji. 1) be a
shortest path from s to r. Then each path (s.j,, .. ..j,).m = 1. ... &k,
i1s a shortest path from s to j,, respectively. If the value of UPPER is
larger than d* at termination, the same must be true throughout the algorithm,
and therefore UPPER will also be larger than the length of all the paths
(S Jis « - enJm)y, m = 1, ..., k, throughout the algorithm. It follows that
node j; will never enter the OPEN list with d;, equal to the shortest distance
from s to j;, since in this case UPPER would be set to d* in step Ib
immediately following the next time node j, is examined by the algorithm
in step 1. Similarly, this means that node j, ., will never enter the OPEN
list with d;, = equal to the shortest distance from s to j; ,. Proceeding
backward, we conclude that j; never enters the OPEN list with d; equal
to the shortest distance from s to j; (which is equal to the lenglh of the
arc (s, j;)). This happens, however, at the first iteration of the algorithm
as discussed earlier, so we have reached a contradiction. Tt follows that
UPPER will equal at termination the shortest distance from s to r. It is
seen that the path constructed by tracing labels backward from  to s has
length equal to UPPER, so it is a shortest path from s to /.

There are two attractive aspects to this algorithm. The first is a
potential saving in computation in that nodes j for which d, + a;; = UPPER
in step la need not enter OPEN and be examined later. Furthermore, if
we know a lower bound to the shortest distance. we can terminate the
computation once UPPER reaches that bound either exactly or within an
acceptable tolerance ¢ > 0. (This feature is useful, for example. in the
four queens problem, where the shortest distance is known to be zero or
infinity. Then the algorithm will terminate once a solution is found.)

The second attractive aspect of the algorithm is a potential saving in
memory storage requirements. This i1s most evident in graphs such as those
in Figures 1.11 and 1.12 for which there is a unique directed path from the
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origin node to every other node. Then, in view of our convention of placing
nodes at and removing nodes from the top of OPEN, the search proceeds
in depth-first fashion, as shown in Figure 1.14. As a result, large portions
of CLOSED can be purged from memory, as shown in Figure 1.15. The
basis for this is that once all sons of a node enter the CLOSED list then
all paths passing through that node have been generated and evaluated.
Therefore, it is sufficient to store only the best path found so far and purge
all other information relating to such a node.

There are a number of variations of the algorithm just given. The
preceding proof of validity of the algorithm does not depend on removing
a node from the top of OPEN in step 1 or placing a node at the top of
OPEN in step la. This allows a great deal of freedom on how the algorithm
is operated. An important case is when the node i selected in step 1 is not
the node that happens to be at the top of OPEN, but rather the one in
OPEN for which d; is minimum. This is accordingly known as best-first
search and is equivalent for the problem considered here to Dijkstra’s

Origin Node s

v Q

Destination Node ¢

Figure 1.14 Searching a tree in depth-first fashion. The checkmarks show the
order in which nodes enter the CLOSED list.
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or due to an action of the decision maker is covered in the problems.
Generally, in all these cases it is possible to reformulate the problem nto
the framework of the basic problem by using the device of state augmentation.
The (unavoidable) price paid, however, is an increase in complexity of the
reformulated problem.

Time Lags

For simplicity, assume that there is at most a single period time lag
in the state and control, that is, assume a system equation of the form

Xewr = SOy Xe— 1, Ui, Uy, Wi), k=1,2,...,N—1, (1.18)

x; = fo(xo, ug, wo).
Time lags of more than one period can be handled by a straightforward
extension.
Now if we introduce additional state variables y, and s, and make the
identifications y, = x,_,, Sy = us_,, the system equation (1.18) yields. for
k=1,2,....N -1,

Xia JeCers Yuo Uiy Sk W)
Yeer1| = X (1.19)
Sk+1 Uy

By defining X; = (x;. ¥«. sx) as the new state, we have

Xp41 = fk(fL, U\ Wy), (1.20)
where the system function f; is defined in an obvious manner from (1.19).
By using (1.20) as the system equation and by making a suitable reformulation
of the cost functional, the problem is reduced to the basic problem without
time lags. Naturally, the control law {ug, . . ., wn_,} that is sought will
consist of functions w, of the new state X, or equivalently w, will be a
Sfunction of the present state x, as well as past state x,_, and control u,_,.
The DP algorithm (in terms of the variables of the original problem) is
In(xy) = galxy),
Invaxy_g, X2, Uy _3) min E {gn_1(xvoy, tty_is W)
un 1€UN_(xn ) wa,
+ INfvCevons Aoz U iy~ wa o),
Jk(.tk. \k._].ll‘_]) = min E{gk(’\kvuk’“k)
WEU) w,
+ Jeaal filoees 2oy s o Wiy x4,
k=1 ...N -2,

Jo(xo) = min  E{gy(x,, uy, wo)
4ELg(t)) w,

+ 1l fo(xo. ttg, wo), Yo, U}
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the larger sum wins, and in case of a tie the second player wins. The problem
is to determine a stopping strategy for the first player that maximizes his probability
of winning for each possible initial throw of the second player. Formulate the
problem in terms of DP and find an optimal stopping strategy for the case where
the second player’s initial throw is three. Hint: Take N = 6 and a state space
consisting of the following 15 states:

x': busted,
x'*%  already stopped at sum i (1 <i=<7),
x%*: current sum is i but the player has not yet stopped (1 <i=< 7).

The optimal strategy is to throw until the sum is four or higher.

5. Min—-Max Problems. In the framework of the basic problem. consider the case
where the disturbances wy, wy, . . ., wy ; do not have a probabilistic description
but rather are known to belong to corresponding given sets W, (x;, «;) C D;,
k=0,1,..., N — 1, which may depend on the current state x, and control
u,. Consider the problem of finding a control law 7 = {ug, . . .. un.,} With
wi(x,) € Ulxy) for all x;, k, which minimizes the cost functional

N-1
Jo(x) =  max {gN(xN) + 2 alx, mlx), wk]}.
W€ W Lxg, iy (x)] k0

k=0.1,..N 1
The DP algorithm for this problem takes the form
In(xn) = gnl(xn),

J(x) = min max  {gi(xi, uy, wi) + T [l 1, wol}
wEUx) WEW xe 1)

Assuming that J,(x;) > —oo for all x; and k, show that the optimal cost equals

Jo(xo). Hint: Imitate the proof for the stochastic case; prove and use the following

fact: If U, W, X are three sets, f : W — X is a function, and M is the set of

all functions u : X — U, then for any functions Gy : W — (—o0,¢], G, : X X U —

(—oo, oo} such that

min G,[f(w), u] > — oo, for all weWw
uel

we have
min max{G,(w) + G,[f(w), u(f(w)]} = max{Gy(w) + min G,[f(w), u]}.
HEM wEW wEW uel

6. Discounted Cost per Stage. In the framework of the basic problem, consider
the case where the cost functional is of the form

N 1
E{aNgN(TN) + Z orgi(xy, . WA)},
k0
where « is a discount factor with 0 < « < 1. Show that an alternate form of
the DP algorithm is given by
Va(xn) = gnlxn),
Vi(x) = min E{gk(xl\- e, wi) + oV lfibe, g, will

w€U(x,)

7. Exponential Cost Functional. In the framework of the basic problem, consider
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(1 + m;) components are used, and let ¢; denote the cost of a single component
at the jth stage. Consider the problem of finding the number of components
at each stage that maximize the reliability of the device expressed by

pi(my) - pa(my) -+ py(my)
subject to the cost constraint =Y, ¢;m; < A, where A > 0 is given. Formulate
the problem in terms of DP.

Minimization over a Subset of Policies. This problem is primarily of theoretical
interest (see the end of the Notes to this chapter). Consider a variation of the
basic problem whereby we seek

min Jw (XO),
w€ell

where IT is some given subser of the set of sequences {ug. 1, - . ., fy_1} Of
functions w,:S; — C; with u(x;) € Ui(x,) for all x, € S,. Assume that

7* = {ud, ufs s ml-a}
belongs to IT and attains the minimum in the DP algorithm; that is, for all k =
O, l,...,N— IandxkESk

Jx) = Elgilxi, uf(x), wil + Jeanlfilxe, mé (x0), wolb

min E{gk(xln g, wi) + JealfiCxs e, will,

uk€Ur(xk)  wy
with Jy(xy) = gn(xy). Assume further that the functions J, are real valued
and the preceding expectations are well defined and finite. Show that #* is
optimal within T and
Jo(x) = mig J2(xg) = T (xo).
me.

Semilinear Systems. Consider a problem involving the system

Xeer = Ax + filwg) + wy,
where x;, € R", f, are given functions, and A, and w, are random n X n matrices
and n-vectors, respectively, with given probability distributions that do not
depend on x;, u; or prior values of A, and w,. Assume that the cost functional
is of the form

N-1
E {CIIVVN + E[C/:«\'k + gL[#k(xk)]]}.

Ak Wk k=0
k=01, N-1

where ¢, are given vectors and g, given functions. Show that if the optimal
cost for this problem is finite and the control constraint sets U, (x,) are independent
of x;, then the cost-to-go functions of the DP algorithm are affine (linear plus
constant). Assuming that there is at least one optimal policy. show that there
exists an optimal policy that consists of constant functions w; that is, u#(x,) =
constant for all x, € R".

A farmer annually producing x; units of a certain crop stores (I — u,)x, units
of his production, where 0 < i, < |, and invests the remaining u, x, units, thus
increasing the next year’s production to a level x,,, given by

Xee1 = 2t wanxe,  A=0,1,....N - 1.
The scalars w, are independent random variables with identical probability
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deterministic problem of Section 1.3 on a parallel computer with two processors.

One processor should execute a forward algorithm and the other a backward

algorithm.

The paragraphing problem deals with breaking up a sequence of N words

wi, ..., wywith lengths L, . . ., Ly into lines of length A. In a simple version

of the problem, words are separated by blanks whose ideal width is b. but
blanks can stretch or shrink if necessary, so that a line w;, w,., . . ., w;, has
length exactly A. The cost associated with the line is (k + 1) |b" — b|, where
b= (A — L, — -+ — L.,;)/(k + 1)is the actual average width of the blanks,
except if we have the last line (N = i + k), in which case the cost is zero
when b’ = b. Formulate a DP algorithm for solving for the minimum cost
separation. Hint: Consider the subproblems of optimally separating w;, . . .,

wyfori=1,..., N.

Computer Assignment. In the classical game of blackjack the player draws

cards knowing only one card of the dealer. The player loses upon reaching a

sum of cards exceeding 21. If the player stops before exceeding 21, the dealer

draws cards until reaching 17 or higher. The dealer loses upon reaching a sum
exceeding 21 or a lower sum than the player’s. If player and dealer end up
with an equal sum no one wins, and in all other cases the dealer wins. An ace
for the player may be counted as a | or an 11 as the player chooses. An ace
for the dealer is counted as an 11 if this results in a sum from 17 to 21 and as

a 1 otherwise. Jacks, queens, and kings count as 10 for both dealer and player.

We assume an infinite card deck so the probability of a particular card showing

up is independent of earlier cards.

(a) For every possible initial dealer card, calculate the probability that the dealer
will reach a sum of 17, 18, 19, 20, 21, or over 21.

(b) Calculate the optimal choice of the player (draw or stop) for each of the
possible combinations of dealer's card and player's sum of 12 to 20. Assume
that the player’s cards do not include an ace.

(c) Repeat part (b) for the case where the player’s cards include an ace.

Consider a smaller version of a popular puzzle game. Three square tiles numbered

1, 2, and 3 are placed in a 2 X 2 grid with one space left empty. The two tiles

adjacent to the empty space can be moved into that space, thereby creating

new configurations. Use a DP argument to answer the question whether it is
possible to generate a given configuration starting from any other configuration.

From a pile of eleven matchsticks, two players take turns removing one or four

sticks. The player who removes the last stick wins. Use a DP argument to

show that there is a winning strategy for the player who plays first.

The Counterfeit Coin Problem. We are given six coins, one of which is counterfeit
and is known to be heavier or lighter than the rest. Construct a strategy to
find the counterfeit coin using a two-pan scale in a minimum average number
of tries. Hint: There are two initial decisions that make sense: (1) test two of
the coins against two others, and (2) test one of the coins against one other.

Given a sequence of matrix multiplications
MIMZ Ml\Mk*l MN‘
where M, k = 1, ..., N, is of dimension n, X n,.,, the order in which
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the time it enters CLOSED its estimate d; is equal to the shortest distance
from s to j.
(b) Show that the number of arithmetic operations required for termination is
bounded by ¢N’* where N is the number of nodes and c¢ is some constant.
. Distributed Asynchronous Shortest Path Computation [B19]. Consider the problem
of finding a shortest path from nodes 1, 2, . . ., N to node ¢, and assume that
all arc lengths c; are positive. Consider the iteration

df*! = minfc, + dj}, i=12...N,
i

I

(1.23)
arl = o.

(a) It was shown in Section 1.3 that, if the initial condition is d° = oo for i =
1, ..., Nand d° = 0, then (1.23) yields the shortest distances d¥ in N
steps. Show that if the initial condition is d? = 0, foralli = 1, ..., N,
t, then (1.23) yields the shortest distances in a finite number of steps. Provide
an upper bound for this number in terms of the problem data.

(b) Assume that the iteration

d,’ = miﬂ{Cij + dJ} (1.24)
J

is executed at node i in parallel with the corresponding iteration for 4, at
every other node j. However, the times of execution of this iteration at
the various nodes are not synchronized. Furthermore, each node i com-
municates the results of its latest computation of d, at arbitrary times with
potentially large communication delays. Therefore, there is the possibility
of a node executing iteration (1.24) several times before receiving a com-
munication from every other neighboring node. Assume that each node
never stops executing iteration (1.24) and transmitting the result to the other
nodes. Show that the estimates d” available at time T at the corresponding
nodes i equal the shortest distances d* for all T after a finite time T. Hint:
Let df and d ¥ be the estimates generated by (1.23) when starting from the
first and the second initial conditions in part (a), respectively. Show that
for every k there exists a time Ty such that for all 7 = T, we have df <
dl < d¥. For a detailed analysis of asynchronous iterative algorithms, includ-
ing algorithms for shortest paths and dynamic programming. see D. P.
Bertsekas and J. N. Tsitsiklis, **Parallel and Distributed Computation: Numer-
ical Methods’’ Prentice-Hall, 1989.
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used even when it is not entirely justified, since it leads to an elegant
analytical solution that can be easily implemented. A number of variations
and generalizations have similar solutions. For example, the disturbances
w, could have nonzero means and the quadratic cost could have the form

N-1 )
E{(XN — Xn) Onlxy — Xy) + 2 [ — X)) Qulxy — X)) + iRl

k=0

which expresses a desire to keep the state of the system close to a certain
given trajectory (%,, X;, . . . , X») rather than close to the origin. Another
generalization is when A, , B, are independent random matrices, rather than
being known. This case is considered at the end of this section.
Applying now the DP algorithm, we have
In(xy) = xNOnXn, 2.1)

Jk(xk) = min E{X;(Qkxk + u;(Rkuk + Jk+l(Ak.xk + Bkuk + W"k)}. (22)

It turns out that the cost-to-go functions J, are quadratic and as a
result the optimal control law is a linear function of the state. These facts
can be verified by straightforward calculation. By expansion of the quadratic
form (2.1) in (2.2) for k = N — 1, and by using the fact E{w,y_,} = 0 to
eliminate the term E{wj_,OMAN_1xn_1 + Bn_iun_,)}, We have

Inoien—1) = XN 1Onoixn-y + minfuy_ | Ry_jun_y

UN-1
+ un_ BN\ OQnBy-n—1 + XN AN ONAN- XN
+ 2xn AN 1ONBN qn—a] + E{w}IVleNWN—l}-

By differentiating with respect to uy , and setting the derivative equal to
Zero, we obtain

(Ry—y + By \ONBy_Duy_y = —BN_\ONAN_1Xn—1-
The matrix multiplying #, , on the left is positive definite (and hence
invertible), since Ry _, is positive definite and By _,QnyBx ; is positive sem-
idefinite. As a result, the minimizing control vector is given by

uf-1 = —(Ry_y + By_1OnByn_1) " 'Bh- 1 ONAN—1XN-1-
By substitution into the expression for Jy_, we have
Inoaben—) = xh_ Koy o + E{wh_Oawn 1,

where the matrix K, _, is obtained by straightforward calculation and is
given by

Ky = AN \[Qy — OBy (BN \QnBy_y + Ry )7 'By_1ON]AN -

+ On-y.
The matrix Ky , is clearly symmetric. It is also positive semidefinite. To






58 Applications in Specific Areas Chap. 2

see in Chapter 3, the linearity of the control law is still maintained even
for problems where the state x, of the system is not completely observable
(imperfect state information).

The Riccati Equation and Its Asymptotic
Behavior

Equation (2.6) is called the discrete-time Riccati equation. It plays
an important role in modern control theory. Its properties have been studied
extensively and exhaustively. One interesting property of the Riccati equation
is that whenever the matrices A,, B,, O, R, are constant and equal to A,
B, O, R, respectively, then as k — — oo the solution K, converges (under
mild assumptions) to a steady-state solution K satisfying the algebraic
Riccati equation

K = A'lK — KB(B'KB + R)"'B'K]A + Q. 2.7)
This property, to be proved shortly, indicates that when the system is
Xi+1 =Axk+Buk+ Wi, k= 0, 1, ...,N— ], (2.8)

and the number of stages N is large, one can reasonably approximate the

control law (2.3) by a linear stationary control law of the form {u*, u*,
. ., u*}, where

uw*(x) = Lx, (2.9)

L= —(B'KB + R)"'B'KA, (2.10)

and K is the steady-state solution of the Riccati equation (2.6) satisfying

(2.7). This control law is even more attractive for implementation purposes.

We now turn to proving convergence of the sequence of matrices {K,}

generated by the Riccati equations (2.5) and (2.6). We first introduce the

notions of controllability and observability, which are of major importance
in modern control theory.

Definition. A pair (A, B), where A is an n X n matrix and B an
n X m matrix, is said to be controllable if the n X nm matrix
[B, AB, A’B, ..., A" 'B]
has full rank (i.e., has linearly independent rows). A pair (A, C), where
Ais an n X n matrix and C an m X n matrix, is said to be observable if

the pair (A, C') is controllable, where A’ and C’ denote the transposes of
A and C, respectively.

One may show that if the pair (A, B) is controllable, then for any
initial state x, there exists a sequence of control vectors uy, u,, . . ., 4, ,
that force the state x, of the system

Xpe1 = Ax, + Buy, (2.11)
to be equal to zero at time n. To see this, note that from the system
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where the initial matrix P, is an arbitrary positive semidefinite symmetric
matrix. Assume that the pair (A, B) is controllable. Assume also that Q
may be written as C’C, where the pair (4, C) is observable.t Then:

(a) There exists a positive definite symmetric matrix P such that for
every positive semidefinite symmetric initial matrix P, we have

limPk=P.

k—>o00
Furthermore, P is the unique solution of the algebraic matrix equation
P = A'[P — PB(B'PB + R)"'B'P]A + Q (2.14)
within the class of positive semidefinite symmetric matrices.
(b) The matrix
D =A + BL, (2.15)
where
L= —(B'PB + R)"'B'PA, (2.16)
is a stable matrix.

Proof. The proof proceeds in several steps. First we show convergence
of the sequence generated by (2.13) when the initial matrix P, is equal to
zero. Next we show that the corresponding matrix D of (2.15) is stable.
Subsequently, we show convergence of the sequence generated by (2.13)
when P, is any positive semidefinite symmetric matrix, and finally we show
uniqueness of the solution of (2.14).

Initial Matrix P, = 0. Consider the optimal control problem of finding

a sequence Uy, Uy, . . ., Uy that minimizes
k—1
> (/Qx, + uRu)) 2.17)
i=0
subject to
Xi+1 = Ax, + Bu;, i=0,1,..., k-1, (2.18)

where x, is given. The optimal value of this problem, according to the
theory of this section, is

xoP(0)x,,
where P(0) is given by the Riccati equation (2.13) with P, = 0. We have
XoP(0)xy < xg Py, 1(0)x,, forallx,€R", k=0,1, ...,
since for any control sequence (g, u;, . . ., 1) we have

k-1 k
> (x/Ox; + ujRu) < >, (x/Ox; + u/Ru,)

i-0 i-0

T Notice that if r is the rank of Q, there exists an r X n matrix C of rank r such that
Q = C'C (see Appendix A).
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Hence
k

X}y 1Py = X4Px — 2, x1(Q + L'RL)x;. (2.23)

i=0
Since the left side of the equation is bounded below by zero, it follows
that
x(Q + L'RL)x;, — 0.
Using the fact that R is positive definite and Q may be written as C'C, we
obtain
lim Cx, = 0, lim Lx, = 0. (2.24)

k—>oo k—oo

From (2.22) we have

- — -

n-1
C('xk+n—l - 2 A" 'BLxy,, 1) cA"!

i=1

n—2 ] \
C(-xk+n—2 - > AT'BLxy i cA"?

i=1 ’ =

e (2.25)

C(xg+1 — BLxy) CA
LC)ck _! LC a

By (2.24) the left side tends to zero and hence the right side tends to zero
also. By the observability assumption, however, the matrix multiplying x,
on the right side of (2.25) has full rank. It follows that x;, — 0 and hence
the matrix D of (2.21) is stable.
Positive Definiteness of P. Assume the contrary, i.e., there exists

some x, # 0 such that x(Px, = 0. Then from (2.23) we obtain

x (@ + L'RL)x;, = 0, k=0,1,...,
where x;, = D*x,. This in turn implies [cf. Eq. (2.24)]

Cx, =0, Lx, =0, k=0,1,...
Consider now (2.25) for & = 0. By the preceding equalities, the left side
is zero and hence

cA™!

Since the matrix multiplying x, has full rank by the observability assumption,
we obtain x, = 0, which contradicts the hypothesis x, # 0. Hence P is
positive definite.
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the system is stabilizable in the sense that there exists an m x n feedback
gain matrix G such that the matrix (A + BG) is stable. Then the proof of
convergence of P,(0) to some positive semidefinite P given previously carries
through. [We use the stationary control law u(x) = Gx for which (A +
BG) is stable to ensure that x;P,(0)x, is bounded.] Suppose that, instead
of observability of the pair (4, C), the system is assumed detectable in the
sense that A is such that if #, — 0 and Cx, — 0 then it follows that x, —
0. (This essentially means that instability of the system can be detected
by looking at the measurement sequence {z;} with z; = Cx;.) Then Eq.
(2.24) implies that x, — 0 and that the matrix D = A + BL is stable. The
other parts of the proof of the proposition follow similarly, with the exception
of positive definiteness of P, which cannot be guaranteed anymore. (As
an example take A = 0, B = 0, C = 0, R > 0. Then both the stabilizability
and the detectability assumptions are satisfied, but P = 0.) To summarize,
if the controllability and observability assumptions of the proposition are
replaced by the previous stabilizability and detectability assumptions, the
conclusions of the proposition hold with the exception of positive definiteness
of the limit matrix P, which can now be guaranteed to be only positive
semidefinite.

Random System Matrices

We consider now the more general case where {A4,, By}, {A,, B}, . . .,
{An_,, By_,} are not known but rather are independent random matrices
that are also independent of wy, wy, . . ., wy_,. Their probability distributions
are given and they are asssumed to have finite second moments. This
problem falls again within the framework of the basic problem by considering
as disturbance at each time & the triplet (A, By, w,). The DP algorithm
is written

InGn) = xnOnxn,
Jk(xk) = min E {X/,(Qkxk + u,"Rkuk + Jk“(Akxk + Bkllk + Wk)}.

ux Wk, Ak By

Calculations very similar to those for the case where A, , B, are not random
show that the optimal control law is of the form

[.L;f(xk) = kak’ (2.30)
where the gain matrices L, are given by
L= —[R, + E{BILKA'+IBA}]~I E{B//\KknAk}» (2.31)
and where the matrices K, are given by the recursive equation
Ky = QOn, (2.32)

K = E{AiK, A} — E{A(K,, BJR, + E{B/K,,,B}1"’

(2.33)
x E{BiK,. A} + Ox.
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(A more general cost function may also be used as discussed in Section

1.1.) We assume that ¢ > 0, h = 0, p > ¢. This is necessary in order for

the problem to be well posed as will become apparent in what follows.
By applying the DP algorithm, we have

Jn(xy) =0 (2.34)
J(x) = min [cu, + Lxx + w) + E{J1(xe + e — wil, (2.35)

up=0
where the function L is defined by
L(y) = p E{max(0, w, — )} + h E{max(0, y — wy)}.
Actually, L depends on k& whenever the probability distribution of w, depends
on k. To simplify notation, we do not show this dependence and assume
that all demands are identically distributed.

By introducing the variable y, = x, + u,, we can write the right side

of (2.35) as

min leve + L(yo) + E{Jioi(ye — wll — cxy.

Yk=Xk
The function L can be seen to be convex. We will prove shortly that J,,,
is convex, but for the moment let us assume this fact. Then the function
in brackets is convex. Suppose that this function has a minimum §,. Then
it is seen that (in view of the constraint y, = x,) a minimizing y, equals x;
if x, = S, and equals S, otherwise. Using the equation u;, = y, — x;, we
see that, under these circumstances, an optimal policy is determined by a
sequence of scalars {S,, S;, . . ., Sv-} and has the form

S, — x if x,<S
* — k k k ks
T CA) {0’ if x.=S,. (2.36)
For each £, the scalar S, minimizes the function
Guy) = cy + L(y) + E{J,(y — w)}. (2.37)

Thus we can prove the optimality of the policy (2.36) by showing that
the cost-to-go functions J, [and hence also the functions G, of (2.37)] are
convex, and furthermore limy,_,.. Gi(y) = oo, so that the minimizing scalars
S, exist. We proceed to show these properties inductively.

We have that Jy is convex [cf. Eq. (2.34)]. Since the derivative of
L(y) as y — —oo, tends to —p, and ¢ < p we see that the derivative of
Gna(y) ( = y + L(y)) is negative and positive as y — — % and y — =,
respectively (see Figure 2.2). Therefore lim,_,.. Gy _,(y) = o. An optimal
policy at time N — 1 is given by

Sn-1 — Xn- if xy_,<S§
* _ JON-1 N-1s N-1 N-1»
H’N—I(XN-—I) {0, lf xN_l BSN .

Furthermore, from the DP equation (2.35) we have

Sno1 —xn ) + L(Sy_) if xn_ < Snh_
o ) - c(Sn—y N 1 N—-1)s N-1 N-13
weibiv-) {L(XN s if xyv =S8y,
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Positive Fixed Cost

We now turn to the more complicated case where there is a nonzero
fixed cost K > 0 associated with a positive inventory order. Here the cost
for ordering inventory u = 0 is

Cu) = {(Ii e g Z i(())’
The DP algorithm takes the form
JMxn) = 0,
Ju(x) = min [Cuy) + L(x; + 1) + E{J, . (xe + ux — wil,

with L defined as earlier by
L(y) = p E{max(0, w — »)} + h E{max(0, y — w)}.
Consider again the functions G;:
G(y) = cy + L(y) + E{J, . (y — w)} (2.38)

If we could prove that the functions G, were convex, then it would
be easily verified that a policy of the (s, §) type

Sy — 2 if 1<s )
% — k ko ke o}
l"k(xk) {0’ lf x = sk (— 39)

is optimal, where §, is a value of y that minimizes G(y) and s, is the
smallest value of y for which G,(v) = K + G«(S,). Unfortunately, when
K > 0 it is not necessarily true that J, or G, are convex functions. This
opens the possibility of functions G, having the form shown in Figure 2.3.
For this case the optimal policy is to order (S — x) in interval I, zero in

Ge(») A

=Y

Figure 2.3 Potential form of the function G, when fixed cost is nonzero
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Since g is continuous and g(y) — oo as |y| — oo, there exists a
minimizing point of g. Let S be such a point. Also let s be the smallest
scalar z for which z < S and g(§) + K = g(z). For all y with y < s, we
have from the definition of K-convexity

S_;mw—ﬂwl

s —

K + g(8) = g(s) +

Since K + g(5) — g(s) = 0, we obtain g(s) — g(y) < 0. Since y < s an
s 1s the smallest scalar for which g(S) + K = g(s), we must have g(s) <
g(y) and (ii) is proved. Now for y; < y, < s, we have

S -y

2 1

K + g(8)=g(y,) + [e(y2) — g(y))].

Also from (ii),
g(y2) > g(S) + K = g(),

and by adding these two inequalities we obtain

N 2
0>>—221e(y,) — gy,
2~ N1

from which g(y,) > g(y,), thus proving (iii). To prove (iv), we note that
it holds for y = z as well as for either y = S or y = s. There remain two
other possibilities, S <y < zand s <y < §. If § < y < z, then by K-
convexity

[ — 89N = 5,

K+ g@)=g(y) +

and (iv) is proved. If s <y < S, then by K-convexity

— [g(») - g(s),

gs) = K + g(5) = g(y) + >

)1
S - S -
[1 - y]g(s)> [1 + y]g(y),
y—s
and g(s) = g(y). Noting that

y—3s
g(@) + K= g(S) + K = g(s),

it follows that g(z) + K = g(y). Thus (iv) is proved for this case as
well. Q.E.D.

from which

Consider now the function Gy_, of (2.38):
Gn-i(y) = ¢y + L(y).
Clearly, Gy_, is convex and hence by part (a) of the previous lemma it is
also K-convex. We have, from the analysis of the case where K = 0,

JN_I(X) — {K + GN—I(SN-]) - Cx, fOI‘ x < sN_|,

Gn_() — cx, for x=sy , 24D
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Now if y is such that Gy_(¥) = Gy_,(sy_,), then by K-convexity of Gy_,
we have

- Gy N-1
K+ Gu_i(y +2)=Gy_1(y) + ZI:GN—I(}’) (s ):|

Yy — Sn-1
Gny_ — Gy_(sn-1)
= Gn_i(y) + Zl: v—1(Y) : N—1\SN ]

Thus (2.43) and hence also (2.42) hold. If y is such that Gy _(¥) < Gy - ((Sn-1),
then we have

K+ Gn_i(y + 2) =K + Gy_1(Sy-1) = Gnoi(sn-1) > Gy-1(y)

Gn-1(y) — Gn_i(sn 1):|‘

= Gn_y(y) + z[ p

So for this case (2.43), and hence also (2.42), hold.

Case 2 y <y + z < sy-; In this region, by (2.41), the function
Jn—; is linear and hence (2.42) holds.

Case 3 y < sy_; <y + z For this case, in view of (2.41), we can
write (2.42) as

K+ Gy iy +2)—cly +2)

Y — v — Gu_i(su_d) + b
= Gy_i(sny-y) — ¢y + Z[GN-](SN 1) cy No1(Sn_y) c(y )]’

b
or equivalently

K + Gn_y(y + 2) = Gy_y(sn-1),
which holds true by the definition of sy ;.

We have thus proved that K-convexity and continuity of Gy , together
with the fact that Gy_,(y) — e as |y| — oo imply K-convexity of Jy_,.
In addition, J5 | can be seen to be continuous. Now using the lemma it
follows from (2.38) that Gy ., is a K-convex function. Furthermore, by
using the boundedness of wy _,, it follows that Gy ., is continuous and, in
addition, Gy ,(y) — oo as |y] — oo. Repeating the preceding argu-
ment, we obtain that Jy_, is K-convex and proceeding similarly we prove
K-convexity and continuity of the functions G, for all k, as well as that
Gi(y) — oo as |y| = oo. At the same time [by using part (d) of the lemma]
we prove optimality of the multiperiod (s, S) policy of (2.39).

Optimality of policies of the (s, S) type can be proved for several
other inventory problems (see Problems 3 to 6 and 14 to 17).












76 Applications in Specific Areas Chap. 2

It can be shown that the following utility functions satisfy this condition
exponential: —e™*/%, for b =0,
logarithmic: In(x + a), for b=1, (2.55)

power: [1/(b — Dl(a + bx)'""?,  otherwise.

Naturally in our problem only concave utility functions from this class are

admissible. Furthermore, if a utility function that is not defined over the

whole real line is used, the problem should be formulated in a way that
ensures that all possible values of the resulting final wealth are within the
domain of definition of the utility function.

It is now easy to extend the one-period result of the preceding analysis
to the multiperiod case. We will assume that the current wealth can be

reinvested at the beginning of each of N consecutive time periods. We
denote

x, the wealth of the investor at the begining of the kth period,

u; the amount invested at the beginning of the kth period in the ith risky
asset,

e; the rate of return of the ith risky asset during the kth period,

s, the rate of return of the riskless asset during the kth period.

We have (in accordance with the single-period model) the system
equation

Xes1 = Sxi + O (€5 — spu¥,  k=0,1,...,N — L. (2.56)
i=1
We assume that the vectors e = (¢, . . ., eﬁ), k=0,....N —1, are
independent with given probability distributions that result in finite expected
values throughout the following analysis.
The objective is to maximize E{U(xy)}, the expected utility of the
terminal wealth x,, where we assume that U satisfies for all x

Ux) _
U a + bx.
Applying the DP algorithm to this problem, we have
Inxn) = Ulxy) (2.57)
Ji(x) = max E{J“][skxk + > (ef — sk)u,‘.}}. (2.58)
o,k i=1

From the solution of the one-period problem we have that the optimal
policy at the beginning of period N — 1 is of the form

ur (v = ay_la + bsy_1xn_1],
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faced with a single-period problem whereby he would maximize over ut,
i=1,...,n,

E{U(SN 1 Sk Xee )}

subject to x;,, = Sx + 2ia (e — souf. In other words, the investor
maximizes the expected utility of wealth that results if amounts ut are
invested in the risky assets in period & and the resulting wealth x,., is
subsequently invested exclusively in the riskless asset during the remaining
periods k + 1, ..., N — 1. This is known as a partially myopic policy
[M10]. Such a policy can also be shown to be optimal when forecasts on
the probability distributions of the rates of return of the risky assets become
available during the investment process (see Problem 7).

Another interesting aspect of the case where a # 0 is that, when
s > 1 for all &, then as the horizon becomes increasingly long (N — <o)
the policy in the initial stages approaches a myopic policy [compare (2.60)
and (2.61)]. Thus we can conclude that for s, > 1 a partially myopic policy
is asymptotically myopic as the horizon tends to infinity.

2.4 OPTIMAL STOPPING PROBLEMS

Optimal stopping problems of the type we will consider in this and subsequent
sections are characterized by the availability, at each state, of a control that
stops the evolution of the system. Thus at each stage the controller observes
the current state of the system and decides whether to continue the process
(perhaps at a certain cost) or stop the process and incur a certain loss.

Asset Selling Problem

As a first example, consider a person having an asset (say a piece of
land) for which he is offered an amount of money from period to period.
Let us assume that these random offers w,, w,, . . ., wy | are independent,
identically distributed, and take values within some bounded interval. We
consider a horizon of N stages and assume that if the person accepts the
offer, he can invest the money at a fixed rate of interest r > 0, and if he
rejects the offer, he waits until the next period to consider the next offer.
Offers rejected are not renewed, and we assume that the last offer wy _,
must be accepted if every prior offer has been rejected. The objective is
to find a policy for accepting and rejecting offers that maximizes the revenue
of the person at the Nth period.

The DP algorithm for this problem can be derived by elementary
reasoning. As a modeling exercise, however, we will try to embed the
problem in the framework of the basic problem by defining the state space,
control space, disturbance space, system equation, and cost functional. We
consider as disturbance at time k the random offer w, and as corresponding
disturbance space the real line. The control space consists of two elements
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The result can be put into a more convenient form by some further
analysis. Let us introduce the functions

1
(—1—'+—r)N__ka(xk)’ x # T,

which represent discounted cost-to-go for the last N — k stages. It can
be seen from (2.62) and (2.63) that

VMxN) = xn, (2.64)
Vk(xk) = max[xk, (1 + r)_l E{Vk+|(wk)}], k= 0, 1, ceey N — 1. (2.65)

Vilxy) =

By using the notation

Qg = 1—-1|-r E{Vk+1(wk)}9
the optimal policy is given by
accept the offer w,_; = x, if x>,
reject the offer w,_, = x; if x <a,

while both acceptance and rejection are optimal for x, = o, (Figure 2.5).
Thus the optimal policy is determined by the sequence «, . . ., ay_,.
From the algorithm (2.64) and (2.65) we have

Xi if Xg > oy
Vilxy) = . ’
W) e, if x < oy

Hence we obtain

1 1 ke 1 =
= E -+ . = f g ) J 2, ’
o 1+ r {Via(w)} 1+ 7o ey dP(w)) + 7 m'[“/\ dP(w,),

Acceptance Threshold A

ay 2 Accept

Reject

L 1l |
0 1 2 N-1 N

~T

Figure 2.5 Threshold for accepting offers as a function of time.






82 Applications in Specific Areas Chap. 2

Purchasing with a Deadline

Let us consider another problem of similar nature. Assume that a
certain quantity of raw material is required by a certain time. If the price
of this material fluctuates, then there arises the problem of deciding whether
to purchase at the current price or wait a further period, during which the
price may go up or down. We assume that successive prices w, are in-
dependent and identically distributed with distribution P(w,), and that the
purchase must be made within N time periods.

This problem and the earlier one have obvious similarities. Let us
denote by

Xk+1 = Wi
the price prevailing in the beginning of period k + 1. We have similarly
as before the DP algorithm

IMxn) = xns
Ji(x) = min[x,, E{J, . ,(wp}],
and the optimal policy is given by
purchase if x, < E{J,.,(w)} = ay,
do not purchase if x, > E{J,, (W)} = «4.

We have similarly that the thresholds «;,, a,, . . ., ay_, can be obtained
from the discrete-time equation

Qk+ 1

o = ol = Ploy.y)] + f w dP(w),

(1]
ayn_; = fo wdP(w) = E{w}.

Consider now a variation of this problem whereby we do not assume

that the successive prices wy, . . ., wy_, are independent but rather that
they are correlated and can be represented as
Wi = Xgr1s k=0,1,...,N -1,
with
Xiv1 = A + &, xo = 0,
where \ is a scalar with 0 < A < 1 and &, &,, ..., éy_, are independent

identically distributed random variables taking positive values with given
probability distribution. As discussed in Section 1.5, the DP algorithm
under these circumstances takes the form
JN(xN) = XN
Jdx) = minlx,, E{J,, (A, + €)Y,
where the cost associated with the purchasing decision is X, and the cost
associated with the waiting decision is E{J,, ,(\x, + £)}.
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e
x 7

I
/s
\\/// E{T i 11 (x + )}
£

\

-
X

|-<—— Purchase ¢ Do not purchase ————~

ax
Figure 2.7 Determining the optimal policy when prices are correlated

period k is of the form
purchase if x <ay,

do not purchase if x>,
where the scalar ¢, is obtained as the unique positive solution of the equation
x = E{J..(0x + &)}
Note that J(x) < J,,,(x) implies
Q| = o = Qs for all &,
and hence (as one would expect) the threshold price below which one should

purchase is lower in the early stages of the process and increases as the
deadline comes nearer.

General Stopping Problems and the One-Step-
Look-Ahead Rule

We now formulate a general type of N-stage problem where stopping
is mandatory at or before stage N. Consider the stationary version of the
basic problem of Section 1.1 (state, control, and disturbance spaces, dis-
turbance distribution, control constraint set, and cost per stage are the same
for all times). Assume that at each state x, and time k there is available,
in addition to the controls u, € U(x,), a stopping action that forces the
system to enter a termination state at a cost #(x,) and subsequently remain
there at no cost. The terminal cost, assuming stopping has not occurred
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some examples. Additional examples are given in the problem section and
in Sections 6.3 and 6.4 where the stopping problem is reexamined in an
infinite horizon context.

Example 1
Asset Selling with Past Offers Retained. Consider the asset selling problem considered
earlier in this section with the difference that rejected offers can be accepted at a
later time. Then if the asset is not sold at time k the state evolves according to

Xge1 = max[xg, wil
instead of x;,; = w,. The DP equations (2.64) and (2.65) become then

Vaxn) = xn
Vix) = maxlx, (1 + N~ E{V,,(max[x,, w)}].
The one-step-to-go stopping set is
Ty-1 = {x|x= (1 + »~" E{max[x, w]}}.

It is seen [compare with (2.66)] that an alternative characterization is

Ty, ={x|x=a} 2.72)
where @& is obtained from the equation

@l +r) = P@a + J'_m w dp(w).

Since past offers can be accepted at a later date, the effective offer available cannot
decrease with time, and it follows that the one-step stopping set (2.72) is absorbing
in the sense of (2.71). Therefore, the one-step-look-ahead stopping rule that accepts
the first offer that equals or exceeds @ is optimal. Note that this policy is independent
of the horizon length N.

Example 2
The Rational Burglar [W11]. A burglar may at any night k choose to retire with
his accumulated earnings x, or enter a house and bring home an amount w,. However,
in the latter case he gets caught with probability p and then he is forced to terminate
his activities and forfeit his earnings thus far. The amounts w; are independent,
identically distributed with mean w. The problem is to find a policy that maximizes
the burglar’s expected earnings over N nights.

We can formulate this problem as a stopping problem with two actions (retire
or continue) and a state space consisting of the real line, the retirement state, and
a special state corresponding to the burglar getting caught. The DP algorithm is

given by

IMxn) = xn

Jux) = maxlx,, (1 — p)E{J, (x + woll.
The one-step-to-go stopping set 1s

. 1 ~ pw
Tvoi = (x|2> (1 = p)x + W)} = {x|xa(—ﬂ},
14
(more accurately this set together with the special state corresponding to the burglar’s
arrest). Since this set is absorbing in the sense of (2.71), we conclude that the one-
step-look-ahead policy by which the burglar retires when his earnings reach or
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the problem be such that there exists an open-loop policy that is optimal,
that is, a sequence of controls that performs as well as any sequence of
control functions. This is certainly true in deterministic problems as discussed
in Chapter 1, but it is also true in some stochastic problems including the
preceding example.

To apply the interchange argument, we start with an optimal sequence
{tg, . . ., Up_1, U*, i, Ugy, . . ., un_y} and focus attention on the controls
u* and @ applied at times k and k + 1, respectively (k = 0,1, ..., N —
1). We then argue that if the order of «* and 4 is interchanged the expected
cost cannot decrease. In particular, if X, is the set of states that can occur
with positive probability starting from the given initial state x, and using
the control subsequence {ug, . . ., ux_,}, we must have for all x, € X;
Elgi(x, u*, wp) + groi(xkter, i, wi)) + JE(xED)

< E{gix, @, w) + geoi(rer, u*, wiiy) + JEo (B2} (2.73)
where x¥,, and x¥,, (or %, and %, ,) are the states subsequent to x, when
u, = u*and u,,, = 4 (or u, = i and u,,, = u*) are applied, and J¢, ()
is the optimal cost-to-go function for time k£ + 2.

Relation (2.73) is a necessary condition for optimality. It holds for
every k and every optimal policy that is open-loop. There is no guarantee
that it is powerful enough to lead to an optimal solution in any given
scheduling problem but it is certainly worth considering. We now provide
two examples.

Job Scheduling on a Single Processor

Suppose we have N jobs to process in sequential order with the ith
job requiring a random time 7; for its execution. The times T,, ..., Tn
are independent. If job i is completed at time ¢, the reward is a'R;, where
a is a discount factor with 0 < a < 1. The problem is to find a schedule
that maximizes the total expected reward [R7].

It is evident that this problem can be formulated within the context
of the basic problem. (Discrete time is incremented when a job is completed,
the state at stage k is the collection of jobs completed thus far, and the
admissible controls at time k are the jobs yet to be processed. The time
of completion of the kth job need not be included in the state since the
times 7; are independent.) It is clear also that there exists an open-loop
policy that is optimal.

Consider an optimal job schedule L = (iy, . . ., k—1y L Jy Geizy o v vy
in-1), and the schedule L' = (g, . . ., i 1, Js Is ix42s - - -+ iy 1) Obtained
by interchanging i and j. Let ¢, be the time of completion of job i,_,. Since
the reward for completing the remaining jobs j;,-, . . ., iy, Is independent
of the order in which jobs i and j are executed, the necessary condition
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1,..., N — 1, are not known at the beginning of the process but instead they
are independent random variables with a priori known probability distributions.
The exact value of the cost ¢,, however, becomes known to the decision maker
at the beginning of the kth period, so that the inventory purchasing decision at
time k is made with exact knowledge of the cost ¢,. Characterize the optimal
ordering policy.

. Consider the multiperiod inventory model of Section 2.2 for the case where

there is a one-period time lag between order and delivery of inventory; that is,
the system equation is of the form

Xps1 = Xg + Up—y — Wy, k= ],...,N_ 1,
X} = Xg — Wp.

Show that an (s, S) policy is optimal.

. Consider the inventory problem under the assumption that unfilled demand at

each stage is not backlogged but rather is lost; that is, the system equation is
X1 = max[0, x; + 4, — wy] instead of x;.; = x, + w; — w,. Show that a
multiperiod (s, §) policy is optimal.

Abbreviated Proof (S. Shreve) Let Jy(x) = 0 and for all k£
Gy(y) = cy + E{h max[0,y — w,] + p max(0, w, — y]
+ Jiwi(max(0, y — w, D)},
Jux) = —cx + m>i£1[K6(u) + Gix + w)],

where 8(0) = 0, 8(u) = 1 for u > 0. The result will follow if we can show
that G, is K-convex, continuous, and Gi(y) — oo as |y| — o=. The difficult
part is to show K-convexity since K-convexity of G,., does not imply K-
convexity of E{J;. ,(max[0, y — w])}. It will be sufficient to show that K-
convexity of Gy, implies K-convexity of
H(y) = p max[0, —y] + Ji. (max[0, y}), (2.76)

or equivalently that
H(y) — H(y — b)

b s
By K-convexity of G,., we have for appropriate scalars s,., and Si+) such that
Gi+1(Sk+1) = min, Gy y(y) and K + G i(Si1) = Giyi(Siar):

K+ H(y + 2= H(y) + z

z2=0, b>0, y. 2.77)

Gii(x) if s <x
J = - k+1 ’ k+1 )
bi®) ot {K + Gri(Sk+1), if x < s, 2.78)

and J,,, is K-convex by the theory of Section 2.2.

Casel 0<y ~ b<ys<y+ z For this region, (2.77) follows from
K-convexity of J,,,.

Case2 y —b<y<y+ z<0 In this region, H is linear and hence
K-convex.
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that period will be selected in accordance with a particular probability distribution
as in Section 1.5. Show that a partially myopic policy is optimal.
Consider a problem involving the linear system

Xy le,\..'lk"}'BkuA, k=01...N—-1,
where the n x n matrices A; are given and the n X m matrices B, are independent
random matrices and have given probability distributions that do not depend
on x;., u;. The problem is to find the optimal control law {uf. .. .. ud i}
that maximizes the cost functional E{U(c¢'xy)}. where ¢ is a given n-dimensional
vector. We assume that U is a concave utility function satisfying for all ¥

and that the control is unconstrained. Show that the optimal control law consists
of affine functions of the current state. Hint: Reduce the problem to a one-
dimensional problem and use the results of Section 2 3

. An employer interviews N candidates for a position and must decide immediately

after each interview whether to appoint the corresponding candidate. A score
is given to a candidate after the interview, and scores are independent and
identically distributed. Determine the policy that maximizes the expected score
of the appointed candidate.

Suppose that an individual wants to sell a house and an offer comes at the
beginning of each day. We assume that successive offers are independent and
an offer is x, with probability p,.j = 1. .. .. n. where x, are given nonnegative
scalars. Any offer not immediately accepted is not lost but may be accepted
at any later date. Also, a maintenance cost ¢ is incurred for each day that the
house remains unsold. The objective is to maximize the price at which the
house is sold minus the maintenance costs. Consider the problem when there
is a deadline to sell the house within N days and characterize the optimal policy.
Capacity Expansion Problem. Consider a problem of expanding the capacity
of a facility for production of a single type of nonstorable good or service over
N time periods. Let us denote by x; the production capacity at the beginning
of the Ath period and by «; = 0 the addition to capacity during the Ath period.
Thus capacity evolves according to
Xy 1 — Y+ . k=0,1,....N -1
The demand at the kth period 1s denoted w; and has a known probability
distribution that does not depend on either x; or 1;. Also. successive demands
are assumed to be independent and bounded. We denote
C1;} expansion cost associated with adding capacity «;.

P + © — n;) penalty cost associated with capacity x, + 1, and
demand w,

S(xy) salvage value of final capacity x, .
Thus the cost functional takes the form

" J
A0l N

A1
E {—S(r\) + X CwW) +PGOy+ u, — w.)]}.












CHAPTER THREE

Problems with Imperfect
State Information

3.1 REDUCTION TO THE PERFECT STATE INFORMATION
CASE

We have assumed so far that the controller has access to the exact value
of the current state, but this assumption is often unrealistic. For example,
some state variables may be inaccessible, the sensors used for measuring
them may be inaccurate, or the cost of obtaining the exact value of the
state may be prohibitive. We model situations of this type by assuming
that at each stage the controller receives some observations about the value
of the current state, which may be corrupted by stochastic uncertainty.
Mathematically, the observation z, obtained at stage k has the form

% = (g, gy, vy,

where £, is some function and v, is a random disturbance. We will provide
a precise problem formulation shortly. We first look at an example.

Multiaccess Communication Example

Consider a collection of transmitting stations sharing a common channel,
for example, a set of ground stations communicating with a satellite at a
common frequency. The stations are synchronized to transmit packets of
data at integer times. Each packet requires one time unit (also called a
slot) for transmission. The total number a, of packet arrivals during slot
k is independent of prior arrivals and has a given probability distribution.
The stations do not know the backlog x, at the beginning of the kth slot
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2o = hy(xo, Vo), % = h(xi, Wy, VO, k=1,2,...,N—1 3.1

The observation z, belongs to a given observation space Z,. The random
observation disturbance v, belongs to a given space V, and is characterized
by a given probability measure

Puk('|xk, ceey Xgy Ug—15 covg Ugs Wi—15 «ovy Wo, Ug—q eeey U()),

which depends explicitly on the current state and the past states, controls,
and disturbances.

The initial state x, is also random and characterized by a given probability
measure P, . The probability measure Pwk(~|xk, u;) of w, is given and may
depend explicitly on x, and «, but not on prior disturbances wy, . . .,
Wi_1, Ugs + - -» Ux_y. The control u, is constrained to take values from a
given nonempty subset U, of the control space C,. It is assumed that this
subset does not depend on x;.

Let us denote by I, the information available to the controller at time
k and call it the information vector. We have

Ik = (209 Zla LEXX] Zk’ uO, uls ceey uk—l)’ k = 11 27 '--’N - lv (3.2)

Io = Z0-

We consider the class of control laws (or policies), which consist of
a sequence of functions # = {uy, w1, . . .. mny—1}, Where each function w,
maps the information vector I, into the control space C, and

/.Lk(Ik)eUk, fOI'a]JIk, k= 0,...,N_ 1.
Such control laws are termed admissible. The problem is to find an admissible

control law 7 = {ug, ;. . . ., My -1} that minimizes the cost functional
N-1
Jr = E {gN(xN) + > el ), Wk]} (3.3)
k:xg,Wk Uk—l k=0

subject to the system equation

Xk+1 =f}<[xk9 l‘l‘k([k)’ ‘vk]’ k - Oa 1 seey N - ls
and the measurement equation

20 = hy(xo, o),
Ze = hlxi, Iy 1), vid, k=1,2,....,N - 1.
The cost functions g,, k = 0, 1, .., N, are given.

Notice the difference from the case of perfect state information. Whereas
before we were trying to find a rule that would specify the control u, to
be applied for each state x, and time k, now we are looking for a rule that
gives the control to be applied for every possible information vector I, (or
state of information), that is, for every sequence of observations received
and controls employed up to time k.

We now show how the problem can be reformulated into the framework
of the basic problem with perfect state information. Similarly, as in the
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with respect to uy_,. We have done so since this term will be shown to
be independent of uy _,, a fact that follows easily from the following lemma.

Lemma. For every k, there is a function F, such that for a policies
we have

Xp — E{xkllk} = Fk(x01 Woy cons Wity Ugy «vvs vk)‘

Proof. Fix a policy and consider the following two systems with identical
initial condition x, = ¥,. In the first system there is control as determined
by the policy

Xeo1 = A + By + wy, Z = Cexy + Uy,
while in the second system there is no control:
X = AX + wy, Z = CX + U
Denote
&= (2o, ) =@ W
wE = (Woy vvny W), v = (g, ..., V),
uk = (ug, ..., u)’.
Linearity implies the existence of matrices F,, G,, and H, such that
X = Fxg + Gud™' + Hw* !,

X, = FkxO + kak_‘.

Since we have !

= E{u*7'|I}. these equations yield

x — Eixl} = % — E{x|I,}.
From the equations for z; and 7, we see that the information provided by
I, = (%, u*™") regarding %, is summarized in zZ*. Therefore, we have
Ex |1} = E{x7"}, and it follows that

Xy — E{xkllk} =Y, - E{fkifk}. Q.E.D.

The lemma says essentially that the quality of estimation as expressed
by the statistics of the error x, — E{x|I,} cannot be influenced by the
choice of control. This is due to the linearity of both the system and the
measurement equation.

Returning now to our problem, the minimization in Eq. (3.16) yields,
using a similar type of argument as for the last stage,

ufi_o = ph_Un_2) = —(Ry_, + By_,Ky_1By_5)"!
X By_oKn-1An—2 E{xy_o|Iy_5},
and proceeding similarly we obtain the optimal control law for every stage:
wEy) = L E{x |1} (3.17)
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These facts are seen by noting that if p # 0 is a root of A(z) then
|A(e™M]? = A(e™)A(e™) contains a factor (1 — p~'e™)1 — p“'e*”‘) =
p X1 — pe™)(1 — pe ™). A little reflection shows that the roots of A(z)
should be p or p~' depending on whether p is outside or inside the unit
circle. Similarly, the roots of B(z) are obtained from the roots of B(z).
Thus the polynomials A(z) and B(z) as well as &> can be uniquely determined.
We may thus assume without loss of generality that A(z) and B(z) in (3.41)
have no roots inside the unit circle.
(c) If {v,} is stationary with rational spectrum S,(A), and {w,} is another
stationary process obtained by passing v, through a stable linear filter
B\(s)/A\(s), that is,

A(s)w, = B($)vy,
then {w,} has rational spectrum §,, given by

B (ej)\) 2
S (A) ||A1( J}\)||2 SU(A)’ AE [-777 'n']
In particular, if {v,} is white and E{vi} = o7, then
Bi(e™)
cl- .
S =t enp MELm

The proof of this is straightforward using the definitions. It is a standard
fact given, for example, in [P5].

(d) The next fact is hard to prove rigorously. We state it as a proposition.
For a proof see, for example, [A10, pp. 75-76].

Proposition. If {v,} is a zero-mean, stationary stochastic process with
rational spectrum

2 |Be™)

S,(\) = NE|[—m, 7],

where A, B are given by (3.42) and are assumed (without loss of generality)
to have no roots inside the unit circle, then there exists a zero-mean, white,
stationary process {€,} (defined on the same probability space as {v,}) with
E{e} = o such that for all k

Uy + aUp_ + -+ a0 ,, = € + blek_l + e+ bmek_,,,,.
(For the mathematically advanced we note that this relation is meant in a

P-almost everywhere sense, where P is the probability measure of the
space.)

ARMAX Models

Let us now return to the problem of representation of a linear system
with stochastic inputs. We had arrived at the model (3.39),

AS)y, = By, + vy.
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[B(s) has roots outside the unit circle]. Even if B(s) has its roots outside
the unit circle, but some of these roots are near the unit circle, the performance
of the minimum variance control law can be very sensitive to variations in
the parameters of the polynomials A(s) and B(s). One way to overcome
this sensitivity is to change the cost to

N
E{z (il + R|uk_,|2>},
k=1

where R is some positive parameter. This requires solution via the Riccati
equation as in Section 2.1. For a detailed derivation, see [A12].

In some problems the system equation includes an additional external
input sequence {v,}, the values of which can be measured by the controller
as they occur. Consider the scalar system

Yet @Ye-r + 0+ QY m
=buyy+ o+ byl AV + ot dpUim €k
where {v,} is an arbitrary sequence. The value v, can be measured without

error by the controller at time k. The minimum variance controller then
takes the form

*
/*Lk(ylw coes Yh—mats Wiy ooy Ui q5 Ugy vnesy kam*l)
1
=@y + o+ apYi_mi
1

—dy — = AUk a1 — bollg = b i)
and {u}} is generated by
B(s)ut = A(s)yx — D(s)vs,
where
AG) =a, + as + -+ + a,s",
E(S) - bl + bzs 4+ eee bmsm 1,
E(S) = dl + d2s e dmsm~l‘

The closed-lo_op system is again y, = €, but for practical purposes it is
stable only if B(s) has its roots outside the unit circle. The process whereby
external inputs are measured and used for control is commonly referred to
as feedforward control.

Imperfect State Information Case
Consider now the general ARMAX model
Vet ayey + 0+ apy m

= bMuk Mt o+ bm“k—m + € + C1€x—1 + e+ Cm€i—m
or equivalently

A(s)yx = B(s)u, + C(s)e,
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Cl >Ny I+Ay_,(»

Figure 3.6 Demonstrating that the instruction thresholds are decreasing with
time.

does not require the calculation of the conditional probability at each stage.
From Eq. (3.81) we have that p,,, increases over p,, if a correct answer
z' is given and drops to zero if an incorrect answer z” is given. Define
recursively the probabilities

m = ®0,z2"), 7 = Oy, 2'), o, my = Pl '),

and let n be the smallest integer for which #, > @. It is clear that the
stationary policy (3.89) can be implemented as follows:

terminate instruction if n successive correct answers have been received,
continue instruction otherwise.

3.5 HYPOTHESIS TESTING: SEQUENTIAL PROBABILITY
RATIO TEST

In this section we consider a hypothesis testing problem typical of statistical
sequential analysis. A decision maker can make observations, at a cost C
each, relating to two hypotheses. Given a new observation, he can either
accept one of the hypotheses or delay the decision for one more period,
pay the cost C, and obtain a new observation. At issue is trading off the
cost of observation with the higher probability of accepting the wrong
hypothesis
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Figure 3.8 Determining the optimal hypothesis testing policy.

Furthermore, we have

C
Sy SogSsog o gscos] -y
L,
= >C
'Z,BIHI?.BI:/BA»IZ'”/Z'
1

Hence as N — oo the sequences {an_;}, {Bn_:} converge to scalars @, 3,
respectively, and the optimal policy is approximated by the stationary policy

accept f, if p, = @,
accept f; if p.< B, (395
continue the observations  if 8 < p, < @.

Now the conditional probability p, is given by

P = Pfozo)folz1) - folzk)
“T pflze) o filz) + (1= pfizo) - filz)’

where p is the a priori probability that f, is the true hypothesis. Using

(3.96)
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For a discussion of the sequential probability ratio test and related
subjects, see [C1], [D1], [WI11], and the references quoted therein. The
treatment given here stems from [A6].

PROBLEMS
1. Consider the linear system and measurement equation of Section 3.2 and consider
the problem of finding a control law {ug(ly), . . ., u}.(Ix_1)} that minimizes

the quadratic cost
N-1
E{x,’vaN + 2 u,QRkuk}.
k=0

Assume, however, that the random vectors xy, Wy, . . ., Wy_1, Ugs - « - Un—1
are correlated and have given joint probability distribution and finite first and
second moments. Show that the optimal control law is given by

i) = Ly E{)’kllk}a
where the gain matrices L, are obtained from the recursive algorithm
Ly = —(BiKy+ 1By + Rk)_lBl':KkﬂAk,
Ky =0,
K, = AilKisy — Kio \BUBIKy 1By + Ry)™'BiK,1)Ay,
and the vectors y; are given by
Yo = X + AW + ACA Wiy + o+ A AR e

(assuming the matrices Ay, A,, . . ., Ay_, are invertible). Hint: Show that the
cost can be written

N-1
E{yéKayo + D (e — L)' Py — Ly},
k-0

where
P, = BiK; By + R,.
2. Consider the scalar system
Xir1 = X + Up + Wy,
LU = X t Uy,
where the assumptions of Section 3.2 are in effect. Let the cost be

N-1
Eli+ S i+l
k=0
and let the given probability distributions be
Po=2 =4, pwe=1)=4  pu=1=4
pro=-2) =4, pw=-D=4  py,=-H=4

(a) Determine the optimal control law. Hint: For this particular problem, E{x|I,}
can be determined from E{x,_|I,_\}, us_y, and z,.
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for control of the uncertain system (modulo substitution of the state by its
expected value). Either of the definitions given for the CEC can serve as
a basis for its implementation. Depending on the nature of the problem,
one method may be preferable to the other.

The CEC often performs well in practice and results in a cost that is
close to the optimal. In fact, for the linear—quadratic problems of Sections
2.1 and 3.2, it is identical to the optimal controller (certainty equivalence
principle). It is possible, however, that it performs strictly worse than the
optimal open-loop controller (see Problem 4).

Multiaccess Communication Example

Consider the slotted Aloha system described at the beginning of Section
3.1. It is very difficult to obtain an optimal policy for this problem primarily
because there is no simple characterization of the conditional distribution
of the backlog (state), given the channel transmission history. We therefore
resort to a suboptimal policy. As discussed in Section 3.1, the perfect state
information version.of the problem admits a simple optimal policy:

1
milx) = —, for all x, = 1.
Xk

As a result, there is a natural CEC,

A 1) = min[l,_l],
Xk

where X, is an estimate of the current packet backlog based on the entire
past channel history of successes, idles, and collisions. Recursive estimators
for generating X, are given in [H2] and [R1]. The latter estimator obtains
X,+1 by increasing X, by a certain amount if a collision occurs in the kth
slot and by decreasing it by unity otherwise. Then it adds the expected
number of packet arrivals during the kth slot, which is estimated as the
observed success rate (number of successes up to slot k divided by k). We
refer to [H2] and [R1] for details. The stability of the overall control scheme
is investigated in [T8].

4.2 OPEN-LOOP FEEDBACK CONTROLLER

The open-loop feedback controller (OLFC) is similar to the CEC except
that it takes explicitly into account the uncertainty about x,, w,, . . ., wy_;
when calculating the control m.(,) to be applied at time k. This control is
determined by the following procedure:

1. Given the information vector f,, compute the conditional probability measure
ka|lk'
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is to use a one-step lookahead policy whereby at stage k and state x;, one
uses the control fi,(x,), which attains the minimum in the expression
min  E{g(x, ue, wo) + Teoilfilxies i, wolhs
u, € Up(xy)

where .7“1 is some approximation of the true cost-to-go function J,,,.
Similarly, a two-step lookahead policy applies at time k and state x, the
control f,(x,), attaining the minimum in the preceding equation where now
J.1 is obtained itself on the basis of a one-step lookahead approximation.
In other words, for all possible states

Xk+1 = ﬂ(xk’ Uy, wk)’
we have

-7k+1(xk+1) = min E{gii1 Opsrs Uii1s Wasr)
U €U (Kper )

+ Tl fe oG rs Upars Wi DI}

where jk+2 is some approximation of the cost-to-go function J, ..

The computational savings of this approach are evident. For a one-
step lookahead policy, only a single minimization problem has to be solved
per stage, while in a two-step policy the number of states at which the DP
equation has to be solved at stage k equals one plus the number of all
possible next states x,.; that can be generated from the current state x;.
Actually, the entire two-step lookahead computation can be formulated as
a single mathematical programming problem that is often tractable (see
Problems 1 and 2). Note also that the fixed jokahead approach can be
combined with the certainty equivalent and open-loop-feedback control
approaches of Sections 4.1 and 4.2 to simplify even further the calculations.

A key issue in implementing a limited lookahead policy is the selection
of the cost-to-go approximation at the final step. It may appear important
at first sight that the true cost-to-go function be approximated well over
the range of relevant states; however, this is not necessarily true. What
is important is that the cost-to-go differentials (or relative values) be ap-
proximated well; that is, for an n-step lookahead policy it is important to
have

Jein(¥) = Tin(X) = Jien(X) — Jiinx"),

for any two states x and x' that can be generated n steps ahead from the
current state. For example, if equality were to hold for all x, x', then
Ji+n(x) and J . (x) would differ by the same constant for each relevant x
and the n-step lookahead policy would be optimal.

The manner in which the cost-to-go approximation is selected depends
very much on the problem solved. For example, in some games like chess,
the approximate cost-to-go in a certain position (state) involves a heuristic
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in the DP algorithm (4.13) and (4.14) are nontrivial but they can be carried
out off-line, and in any case are much less than what would be required
to compute the optimal controller. The feasibility and the benefits of the
overall approach have been demonstrated by simulation for FMS of realistic
size in [K8]. See also [T6] and [K7].

Computer Chess

Chess-playing computer programs are one of the more visible successes
of artificial intelligence. Their underlying methodology provides an interesting
case study in the use of suboptimal control. It involves the idea of limited
lookahead, but also illustrates some DP ideas that we have not had much
opportunity to look at in detail. These are the idea of a forward search,
an important memory-saving technique that is common in artificial intelligence
applications and was discussed in Section 1.4, and the idea of alpha—beta
pruning, which is an effective method for reducing the amount of calculation
required to find optimal game strategies.

The fundamental paper on which all computer chess programs are
based was written by one of the most illustrious modern-day applied math-
ematicians, C. Shannon [S16]. It was argued by Shannon that whether the
starting chess position is a win, loss, or draw is a question that can be
answered in principle, but the answer will probably never be known. He
estimated that, based on the chess rule requiring a pawn advance or a
capture every 50 moves (otherwise a draw is declared), there are on the
order of 10'® different possible sequences of moves in a chess game. He
concluded that to examine these and select the best initial move for White
would require 10® years of a “‘fast’’ computer’s time. As an alternative,
Shannon proposed a limited lookahead of a few moves and evaluating the
end positions by means of a scoring function that suitably takes into account
the material balance, mobility, pawn structure, and other positional factors.
The convention here is that White is favored in positions with high score,
while Black is favored in positions with low score.

Consider first a one-move lookahead strategy for selecting the first

move in a given position P. Let M, ..., M, be all the legal moves that
can be made in position P by the side to move. Denote the resulting
positions by M,P, M,P, ..., M,P, and let S(M,P), . .., S(M,P) be the

corresponding scores. Then the move selected by White (Black) in position
P is the move with maximum (minimum) score. This is known as the
backed-up score of P and is given by

max{S(M,P), ..., S(M,P)}, if White is to move in

BS(P) = ' position P,
(P) min{S(M,P), ..., S(M,P)}, if Black is to move in

position P.
This process is illustrated in Figure 4 3.
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VAV AN AN VA AN

Figure 4.6 Traversing a tree in depth-first fashion. Checkmarks show the points
where scores of terminal positions and backed-up scores of intermediate positions
are evaluated.

in Figure 4.7. The substantial memory savings afforded by this forward
method of calculation is very useful in search problems with a large number
of terminal states, as discussed also in Section 1.4

The efficiency of the minimax algorithm can be substantially improved
by using the alpha-beta pruning procedure (denoted a—f for short), which
can be used to forgo some calculations involving positions that cannot affect
the selection of the best move. To understand the a—3 procedure, consider
a chess player pondering the next move at position P. Suppose that the
player has already exhaustively analyzed one relatively good move M, with
corresponding score BS(M,P) and proceeds to examine the next move M,.
Suppose that as the opponent’s replies are examined a particularly strong
response is found, which assures that the score of M, will be worse than
that of M,. Such aresponse, called a refutation of move M,, makes further
consideration of move M, unnecessary (i.e., the portion of the search tree
that descends from move M, can be discarded). An example is shown in
Figure 4.8.

The a-g procedure can be generalized to trees of arbitrary or irregular
depth and can be incorporated very simply into the minimax algorithm.
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Problem I: Total Expected Cost Infinite Horizon Problem. Consider
the stationary discrete-time dynamic system

Xk+1 =f(xk’uk’wk), k= 07 11 2’ eeey (5'1)
where the state x,, k = 0, 1, . . ., is an element of a space S, the control
u,, k = 0,1, ..., is an element of a space C, and the random disturbance
we, k = 0,1, ..., is an element of a space D. It is assumed that D I1s a

countable set. The control u, is constrained to take values in a given
nonempty subset U(x,) of C, which depends on the current state
x, [u, € U(xy), forall x, € S, k = 0,1, ...]. The random disturbances
we, k =0, 1,. . ., have identical statistics and are characterized by probabilities
P(:|x,, u,) defined on D, where P(w;|x,, u,) is the probability of occurrence
of w,, when the current state and control are x, and u,, respectively. The
probability of w, may depend explicitly on x, and «, but not on values of
prior disturbances wy_;, . . ., Wg.

Given an initial state x,, the problem is to find a policy = = {u,,
i, ...} where ;S = C, w(xp) € Ul(xy), for all x, € S, k = 0,

1, ..., that minimizes the cost functionalf
N-1
J.(x) = lim E {2 arglxy, ma(xe), wk]} (5.2)
N—ooo  wy k=0
k=0.1,. .

subject to the system equation constraint (5.1). The real-valued function
g:§ X C x D — R is given, and the scalar « is positive.

Note that, while we allow an arbitrary state and control space, we
require that the disturbance space be a countable set. This is necessary
to avoid the mathematical complications discussed in Section 1.1. Our
assumption, however, is satisfied in many problems of interest, notably for
deterministic optimal control problems and problems of control of finite
and countable state Markov chains. For other problems, our main results
can typically be proved (under additional technical conditions) by following
the same line of argument as given here [B23].

The cost J,(x,) given by (5.2) represents the limit of finite horizon
costs. These costs are well defined as discussed in Section 1.1. Another
possibility would be to minimize over 7 the expected infinite horizon cost

FE {2 aglxe, pe(xy), wk]}.

wi k=0
k=0,1,. .

Such a cost functional would require a far more complex mathematical
formulation (a probability measure on the space of all disturbance sequences;

T In what follows we always assume that g(x u, w) is either nonnegative for all x, u,

and w or nonpositive for all x, #, and w, so the limit in (5.2) is well defined as a real number
or *oo,












182 Infinite Horizon Problems: Theory Chap. 5

k — 2 by
(TIL.-TIL.H st Tﬂ-k—l)('])(x) = Tui[( TF-.'+1 ct Tﬂ-h—l)(")](x)
and represents the cost of the policy for the k-stage, a-discounted problem
with initial state x, cost per stage g, and terminal cost o'l
The following monotonicity property plays a fundamental role in the
developments of this chapter.

Lemma 1. For any functions J:S — R, J':S — R, such that
J(x) < J'(x), forallx € §,
and for any function u:S — C with u(x) € U(x), fora x € S, we have
TXJ)(x) < THI")(x), x €S, k=1,2,..,
TN <Ty(J)x), x€S8, k=12,...
Proof. The proof follows from the interpretations given previously of

T"(J)(x) and T%J)(x) as k-stage problem costs. (As the terminal cost
function increases uniformly so will the k-stage costs.) Q.E.D.

For any two functions J:S — R, J':S — R, we write
J=<J, if J(x)=<J'(x) forallx € S.
With this notation, Lemma 1 is stated as
J<J >THI) < T, k=1,2,...,
J<J >TLJ) < T, k=1,2,..

Denote also by e¢:§ — R the unit function that takes the value 1
identically on S:

e(x) =1, forallx € §S. (5.12)

We have from (5.8) and (5.9) for any function J:S — R and any scalar r,
and all x € §,

TJ + re)(x) = T(J)(x) + ar,
T.(J + re)(x) = T,(J)(x) + ar
More generally, by induction we can show the following lemma.

Lemma 2. For every k, function J:S — R, stationary policy

{m, m, . ..}, and scalar r, we have
TH(J + re)(x) = THU)(x) + o*r,  forallx € S, (5.13)
To(J + re)(x) = TL(J)(x) + o'r, forallx € S. (5.14)

The following proposition shows that the DP algorithm (5.6) and (5.7)
or (5.10) and (5.11) converges to the optimal cost function J* for an arbitrary
bounded starting functionJ. This will follow as a consequence of Assumption
D, which implies that the “‘tail”’ of the cost E{X;~ y a*g(x;, uy, w,)} diminishes
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x. Then for any bounded function J:S — R there holds
J,(x) = lim T (J)(x), xES. (5.21)
koo

The next proposition shows that J* is the unique solution of a functional
equation. This equation, called Bellman’s equation, provides the means
for obtaining a stationary optimal policy.

Proposition 2: Bellman’s Equation, Necessary and Sufficient Condition
for Optimality (a) The optimal cost function J* satisfies

J*(x) = min E{g(x, u, w) + aJ*[f(x, u, w)l}, xX€ES, (5.22)

ueU(x) w
or equivalently
J*(x) = T(J*(x), x€ES.

Furthermore, J* is the unique bounded solution of this equation.
(b) A stationary policy {u*, u*, . . .} is optimal if and only if w*(x)
attains the minimum in (5.22) for all x € S; that is,

T(J*)(x) = T,(J*)(x), x € S.
Proof. (a) From (5.16) we have

k
Jo<J¥<J, + <IM“ )e.

- &

Applying the mapping T in this relation and using Lemma 2, we obtain

M k+1
Jk+l = T(J*)<Jk+| + (1 (i a) e.

Since J,,, converges to J* (Proposition 1), we obtain J* = T(J*) by taking
the limit as kK — oo in the preceding relation.
To show uniqueness simply observe that if J is bounded and satisfies
J = T(J) then J = lim_.. TX(J), so by Proposition 1 we have J = J*,
(b) To show this part, let us state the following corollary, which follows
from the part of Proposition 2 already proved by the same reasoning we
used to obtain Corollary 1.1 from Proposition 1.

Corollary 2.1. Let {u, u, . . .} be a stationary policy. Then
Ju(0) = E{glx, m(x), w] + aJ, [flx, u(x) w)l}, X E S, (5.23)

or equivalently
J.(x) = T,(J,)(x), xES.
Furthermore, J, is the unique bounded solution of this equation.

Now if w*(x) minimizes the right side of (5.22) for each x € §, then
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equation (5.22). This equation yields an optimal stationary policy provided
the minimum in its right side is attained. Furthermore, the DP algorithm
yields in the limit the function J* starting from an arbitrary bounded function
J, and the rate of convergence is at least as fast as the rate of a convergent
geometric progression (Proposition 3). Thus the DP algorithm may be used
for actual computation of at least an approximation to J*. This computational
method together with some additional methods will be examined in the
next section. The remainder of this section is devoted to two examples.

Asset Selling Example

Consider the asset selling problem of Section 2.4. When the problem
is viewed over an infinite horizon, it is essentially a discounted cost problem
with discount factor & = 1/(1 + r) [cf. Eq. (2.65)]. If we assume that the
offers x are bounded, then the analysis of the present section is applicable,
and the optimal value function is the unique solution of Bellman’s equation

J*(x) = max[x, (1 + )" E{J*(w)}].
The optimal policy is obtained from this equation and has the following
form. If current offer = (1 + r)~' E{J*(w)} = @, sell; otherwise, do not

sell. The critical number @ = (1 + r)~' E{J*(w)} is obtained as in Section
2.4,

Component Replacement Example

A certain component of a machine tool can be in any one of a continuum
of states, which we represent by the interval [0, 1]. At the beginning of
each period the component is inspected, its current state x € [0, 1] is
determined, and a decision is made on whether or not to replace the component
at a cost R > 0 by a new one at state x = 0. The expected cost of having
the component at state x for a single period is C(x), where C(-) is a
nonnegative bounded and increasing function of x on [0, 1]. The conditional
probability distribution F(z|x) of the component being at a state less or
equal to z at the end of the period, given that it was at state x at the beginning
of the period, is known. Furthermore, for each nondecreasing function
J:[0, 1] = R, we have

1 1
f J(2) dF(z]x)) < J J(z) dF (z|x,), for0<x, <x,<1

This assumption implies that the component tends to turn worse gradually
with use; that is, for each y € [0, 1] there is greater chance that the
component will go to a final state in the interval [y, 1] when at a worse
initial state. Assuming a discount factor « € (0, 1) and an infinite horizon,
the problem is to determine the optimal replacement policy.

The problem clearly falls within the framework of this section, and
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It follows under our assumptions that the function C(x) + « fo J*(z) dF (z]x)
is increasing in x. This is simply a reflection of the intuitively clear fact
that the optimal cost cannot decrease as the initial state increases (i.e., we
start at a worse initial state). Thus the optimal policy takes the form

Replace if x=x*
Do not replace  if x < x*,
where x* is the scalar for which

| 1
R + C(0) + ajo J*(z) dF(z]0) = C(x*) + afo J*(z) dF(z|x*),

as shown in Figure 5.1.

5.2 COMPUTATIONAL METHODS: SUCCESSIVE
APPROXIMATION, POLICY ITERATION, ADAPTIVE
AGGREGATION, LINEAR PROGRAMMING

This section presents alternative approaches for solving the infinite horizon
problem (5.1) under Assumption D. The first approach, successive ap-
proximation, is essentially the DP algorithm and yields in the limit the
optimal cost function and an optimal policy, as discussed in the previous
section. We will describe some variations aimed at accelerating convergence.
Two other approaches, policy iteration and linear programming, terminate
in a finite number of iterations (assuming the spaces involved are finite
sets). However, when the number of states is large, these approaches are
impractical because of large overhead per iteration. Adaptive aggregation
is a new approach [B20] that bridges the gap between successive approximation
and policy iteration, and in a sense combines the best features of both
methods.

Throughout this section we assume that Assumption D holds and that
the spaces S, C, and D underlying the problem are finite sets. Thus we
are dealing in effect with control of a finite state Markov chain.

Let S consist of n states denoted by 1, 2, .. ., n:
S={l,2,...,n}L
Let us denote by p;(u) the transition probability
pi(u) = P(xpyy = jlxg = i up = u). 1jJES ueU®).

Thus p; () is the probability that the next state will be j given that the
current state is i and control u € U(i) is applied. These transition probabilities
may either be given a priori or calculated from the system equation

Xpor = fOxe, g, wy)

and the known probability distribution P(:|x, u) of the input disturbance
w,. Indeed, we have

py(u) = PIWy ()i, ul,
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or equivalently

J,=U~-aP,) 'g,,
where I denotes the n X n identity matrix. The invertibility of the matrix
I — aP, is assured since we have proved that the system of equations
representing the equation J, = T,(J,) has a unique solution for any vector
g, (cf. Corollary 2.1).

Successive Approximation and Error Bounds

Here we start with any n-dimensional vector J and successively com-
pute T(J), T*(J), . . ., where the mapping 7 is defined by (5.8). By Proposi-
tion 1, we have

lim TX(J)(i) = J*(i), ies.

ko0
Furthermore, by Proposition 3, [J*(i) — T*(J)(i)| is bounded by a multiple
of a geometric progression for all i € §. It is also of interest to note that
the successive approximation method will yield an optimal olicy after a
finite number of iterations (see Problem 14). The method can be substantially
improved thanks to the availability of certain error bounds, as we now
proceed to explain.

As an aid in understanding the nature of these bounds, note that the
cost of a stationary policy {u, &, . . .} is expressed as

J ) = gli, u@d] + D, ! E{glx,,ux)llx, = i}.
k=1

We first observe that

5 §
o =a 2 ak =3, a*Eglre, m(xd)] | x
k=0 k=t
where
B = min guli,n(®)], B = max guli,p(i)].

By usmg the preceding relations and by lettmg e be the unit vector e =
[1,1, , 1}, we can bound the cost function Ju as follows:

v (2) = (12)

These bounds will now be applied in the context of the successive ap-
proximation method. Suppose that we have a vector J and we compute

r,(J) =g, + aP,J.
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and, because of (5.31),

J+ (A +ayesTWJ)+ayes<T 2(J). (5.33)
This process can be repeated, first applying 7 to obtain
T(J) + (o + oP)ye < T(J) + o’ye < T’(J), (534

and then using (5.31) to write
J+ (U +a+adyesTU) + (« + o’)ye

< TXJ) + a*ye < T’(J). (5.35)
After k steps, this results in the inequalities

k P
J + (2 ai)ye =TWJ) + (2 ai)ye

i=0 i=1

k
< TZ(J) + (2 at'),ye < e << Tk-H(J)_

Taking the limit as k — oo, we obtain
J+ ( )e < TWJ) + cie < T’(J) + ace < J*, (5.36)

where ¢, is defined by (5.29). Replacing J by TX(J) in this inequality, we
have
T'J) + crpie < J*,
which is the second inequality n (5.28).
From (5.33), we have

oy < min[ T(J)(i) — T(J)D)],

€S
and consequently
ac; < ¢,
Using this in (5.36) yields
TWJ) + cie < TX(J) + cpe,

and replacing J by T*7!(J), we have the first inequality in (5.28). An
analogous argument shows the last two inequalities in (5.28). Q.E.D.

Notice that the error bounds (5.28) may be easily computed as a by-
product of the computations in the successive approximation method. The
following example demonstrates their nature.

Example
Consider a problem where there are two states and two controls
S =112}, C = {u', u}.
The transition probabilities corresponding to the controls «' and «* are as shown
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Another possibility is to solve instead a system of smaller dimension obtained
by lumping together the states of the original system into a smaller set of
aggregate states. More specifically, for a fixed stationary policy {u, u,
.. .}, we partition the state space § into m disjoint subsets §;, S;, . . .,
Sm»
S=85USU- U S,
called aggregate states. Suppose that we have an estimate J of J, and
that we postulate that over the states s of every aggregate state S; the
variation J,(s) — J(s) is constant. This amounts to hypothesizing that for
some m-dimensional vector y we have
J,—J =Wy,
where the ith column of the n X m matrix W has unit entries at coordinates
corresponding to states in S; and all other entries equal to zero. From the
equations T,(J) = g, + aP,Jand J, = g, + aP,J,, Wwe have
I-aP)J,-J)=T,J) - J.
This is the variational form of the equation J, = T,(J,) discussed earlier
and can be used equally well for evaluating J,. Let us multiply both sides
with the transpose W' and use the equation J, — J = Wy. We obtain
W = aP,)Wy = W(T,()) - J),
and this equation can be solved for y, giving
y=[W{U - aP)W]"'W(T,(J) - J).
Therefore, by substitution in the equation J, — J = Wy, we have
J,=J+ W[WU - aP)WI"'W(T,(J) — J),
and, by applying T, to both sides,
J.=T,J,) =T,(J) + «P,W[W'(I — aP,)W]"'W'(T,(J) — J).

We can conclude therefore that, if the variation of J,(s) — J(s) is
roughly constant over each aggregate state, then a good approximation for
J, is given by

J,=T,(J) + aP,W[W'(I — aP )WY 'W'(T,(J) = J).

To obtain this approximation, given J, we need to:

1. Compute T,(J).
2. Delineate the aggregate states (i.e., define W).
3. Solve for the vector y in the system
W'l - aP, )Wy = W(T,(J) - J) (5.47)
and approximate J, using
J,=T,(J) + aP Wy,

A key point is that the dimension of (5.47) is m (the number of
aggregate states), which can be much smaller than n (the dimension of the
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Figure 5.3 Interpretation of the adaptive aggregation method. In this example
the aggregate states are S; = {1 2,3}, S, = {4, 5}, and S; = {6}. The aggregate
Markov chain has transition probabilities p;; = ¥(ps + p»), P2 = ¥pis +
Pw), Pz = 0, Pu = Pz + Ps3)s P = $Dass Prs = Dss P = 0, P52 = Pse and
P+ = 0 An aggregation step can be interpreted as a policy evaluation step
involving the aggregate Markov chain.

The key issue is how to identify the aggregate states S,, . . ., S, In
a way that the error J, — J is of similar magnitude on each one. One way
to resolve this is to group states according to magnitude of the differences
T.(J)(i) — J(i). By this we mean that for each state i, we set i € §, if
T, (@) — J(@) = ¢, and

i€eS, if T,() —J@ — ¢ — (k — DA E©,A]
where

¢ = min[ 7,00 — J@)], T = max[ TG — J@O). A== -
This choice is based on the conjecture that, at least near convergence,
T,(J)(i) — J(@i) will be of comparable magnitude for states i for which
J, (i) — J(i) is of comparable magnitude. This is certainly true if P is the
identity matrix, but it turns out to be true also in other situations exemplified
by the case when the Markov chain has more than one ergodic class, which
is precisely the type of problem where the successive approximation method
converges slowly. We refer to [B20] for detailed analysis and computational
results. In particular, for problems involving several ergodic classes it is
important to carry out several (pure) successive approximation steps before
carrying out a single aggregation step. This has the effect of making both
J.() — J() and T,(J)(i) — J(i) of comparable magnitude within each

ergodic class prior to the aggregation step.
It is worth noting that the aggregate states can change from one
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and by taking the limit as N — oo
J.(x)= lim Jy(x), x € S.

N—oo

Taking minima over 7 € I1, we obtain J*(x) = limy_, .. Jy(x), and combining
this relation with (5.54) we obtain (5.53).
For every admissible u, we have
T,(Un) =N
and by taking the limit as N — oo and using the monotone convergence
theorem and (5.53), we obtain
T,(J*)=J*.
Taking minimum over w, we obtain T(J*) = J*, which combined with the

inequality J* = T(J*) shown earlier proves the result under Assumption
N. Q.E.D.

Similarly as in Corollaries 1.1, 2.1, and 3.1, we have:

Corollary 8.1. Let 7 = {u, u, ...} be a stationary policy. Then
under Assumption P or N, we have

J.(x) = E{glx, p(x), w] + o, [f(x, u(x), w)}
or, in terms of the mapping 7, of (5.9),
J,=T,J,) (5.55)

Contrary to the case of Assumption D, the optimal cost function J*
under Assumption P or N need not be the unique solution of Bellman’s
equation

J(x) = T(J)x) = min E{g(x, u, w) + aJ[f(x, u, w)l} (5.56)

uelU(x) w

Consider the following example.

Example 2
Let S = [0, +o0) (or § = (~co<, 0]) and
glx,u,w) =0, fx,u,w) = g.
Then for every 8 the function J given by
J(x) = Bx xES

is a solution of (5.56) and hence T has an infinite number of fixed points in this
case. Note, however, that there is a unique fixed point within the class of bounded
functions, the zero function J,(x) = 0, which is the optimal cost function for this
problem. More generally, it can be shown by using the following Proposition 9
that if @ < 1 and there exists a bounded function that is a fixed point of T, then
that function must be equal to the optimal cost function J* (see Problem 15). When
a = 1, Eq. (5.56) may have an infinity of solutions even within the class of bounded
functions. This is clear since if @ = 1 and J(-) is any solution of (5.56), then
J(Y + r where r is any scalar, is also a solution.
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where the vector g € R" and the matrix M are given. Let s; be the ith row
sum of M, that is,

n
S = 2 mg,
i=1

and let @, = min; 5;, @, = max; s;. Show that if the elements m; of M are
all nonnegative and a, < 1 then the conclusions of parts (a) and (b) hold.

(e) Consider the Gauss—Seidel method for solving the system J = g + aPJ,
where 0 < a < | and P is a transition probability matrix. Use part (d) to
construct bounds that are sharper than the ones implied by the inequality
of part (c).

. Minimax Problems. Provide analogs for the results and algorithms of Sections

5.1 and 5.2 for the minimax problem where the cost is
N-1

. k
J.(x) = lim max 2 a'glxy, m(xe), wel,
N—soo wk€Wixk, k()] k=0
k 0,l,..

g satisfies Assumption D, x, is generated by xy.; = flxp,ue(xi),we], and
W(x, u) is a given nonempty subset of D for each (x, u) € § x C. (Compare
with Problem 5, Chapter 1.)

. Consider a problem similar to that of Section 5.1 except for the fact that when

we are at state x, there is a probability 8, where 0 < 8 <C 1, that the next state
x;.; will be determined according to x;.; = f(xi, ux, w;) and a probability
(I — B) that the system will move to a termination state where it stays permanently
thereafter at no cost. Show that even if « = | (no discounting) the problem
can be put into the discounted cost framework.

. Consider a problem similar to Problem 1 under Assumption D except for the

fact that the discount factor a depends on the current state x., the control u,,
and the disturbance w,, that is, the cost functional has the form

N-1
J”'(x(]) = hm E {2 aﬂ,kg[xkﬂ :u‘k(xk): “’k]}s
N—oo k=0
A=0.1...

where

Ui = alxg, mo(xo), wolalxy, wi(xy), wil -+ alxy, m(x1), wil,
with a(x, u, w) a given function satisfying

0 < min{a(x, u, w)lx € S,u € C,w € D}
< max{a(x,u, w)x €S, u e C,we D} < 1.

Show that the results and algorithms of Sections 5.1 and 5.2 have direct coun-
terparts for such problems.

. Let J:S —> R be any bounded function on § and consider the successive

approximation method of Section 5.2 with a starting function J: 5 — R of the
form

Jx) =J(x) + r, XES,

where r is some scalar. Show that the bounds T*(J)(x) + ¢, and T*(J)(x) +
¢, on J*(x) of Proposition 4 are independent of the scalar r for all x € S. Show
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where the pair (A, B) is controllable and x, € R", u, € R”. Assume no
constraints on the control and a cost per stage g satisfying
0 =< g(x, u), (x,u) ER" X R".

Assume furthermore that g is continuous in x and u, and that g(x,, u,) = +

if {x,} is bounded and |u,| = +ec.

(a) Show that for a discount factor @ < 1 the optimal cost satisfies 0 < J*(x)
< +4oo, for all x € R". Furthermore, there exists an optimal stationary
policy and

lim T*(Jo)(x) = J*(x), x €R".
k—oo

(b) Show that the same holds true except perhaps for J*(x) < +oo when the
system is of the form x.,, = f(x, ux), with fiR" X R™ — R" being a
continuous function.

(¢) Prove the same results assuming that the control is constrained to lie in a
compact set U C R™ (U(x) = U) in place of the assumption g(x,, u,) —
+oo if {x,} is bounded and |u,| — +oo. Hint: Show that T*(J,) is real
valued and continuous for every k and use Proposition 14.

Under Assumption P, let u be such that u(x) € U(x), for all x € S, and

T,UH(x) < T(J*)x) + €, x€E€S.
Show that, if &« < 1,
€

1l -«

Hint: Show that TZ(J*)(x) = J*()_c) + Zk4 dle. Alternatively, let J=J +

[e/(1 — a)le, show that T,(J) < J, and use Corollary 9.1.

Generalized Policy Iteration Algorithm. The purpose of this problem is to
provide a policy iteration algorithm for the case where the state space and the
control space are not necessarily finite sets. Under Assumption D, let {u,
W, . . .} be an admissible stationary policy and let .7,L:S — R be such that

J.(x) < J*x) + , x€ES.

max|J,(x) = J,(x)| <4y.
xES
Let J':S — R be such that
max|J'(x) = T(J,)(x)| <&
xES
and assume that
max|J'(x) — J,(x)| <e.
xES
Show that for all x € S there holds

8+ €
+ v. (5.90)

J*(x) = J,(x) < J*(x) +
l -«

Consider the following policy iteration algorithm, for fixed vy, 8, € > 0.

I. Start with an admissible stationary policy 7° = {u’, ’, . . .}.
2 Given {u, ', ..}, find J, § — R such that [J:(x) — J(¥)| < yo for
all x € §.












238 Infinite Horizon Problems: Theory Chap. 5

where we assume that for all i, j we have M; = 0 and

m; 2 2 M;<l1
j=1
(a) Let
_ m; Mn
o= 'ir])axn 1= M,

s L i =]
20 if i #J

and define, for all i and j,

= _ gl — o
I W
— (1 — a)(M; — 8,)
M“=8'f+—_l—r;1,- 4
Show that, for all { and j,
IMy=a<l,  M;=0,
J=1
and that a solution {J; | i = 1, ..., n} of (5.91) is also a solution of the

equations

(b) Provide a version of this result applying to an equation like (5.91) that
involves minimization over a control set, and relate it to an infinite horizon
problem like the one of Section 5.2.

21. Let Assumption P hold and assume that =* = {ug, u¥, ...} € II satisfies
J* = T,.(J*) for all k. Show that #* is optimal; that is, J» = J*.

22, Under Assumption P, show that, given € > 0, there exists a policy 7, € II
such that J, (x) < J*(x) + € for all x € §, and that for a < | the policy =,
can be taken stationary. Give an example where o = 1 and for each stationary
policy = we have J,.(x) = oo, while J*(x) = 0 for all x. Hint: See the proof
of Proposition 8.

23. Under Assumption P, show that if there exists an optimal policy (a policy
m* € Il such that J,. = J*), then there exists an optimal stationary policy.

24. Use the following counterexample to show that the result of Problem 23 may
fail to hold under Assumption N if J*(x) = —oo for some x € S. Let § =
D = {0, 1}, flx, u, w) = w, g(x, u. w) = u, UQ) = (—o=, 0], U(1) = {0},
pw = Olx = 0, u) = %, and p(w = 1|x = 1, u) = 1 Show that J*(0) =
—oo, J*(1) = 0, and that the admissible nonstationary policy {ud, uf, ...}
with p#(0) = —(2/a)* is optimal. Show that any admissible stationary policy
{m, m, ...} satisfies J,(0) = [2/Q2 — &)]u(0), J, (1) = 0 (see [B29], [D9], and
[O3] for related analysis).

25. Show that the result of Problem 22 holds under Assumption N if S is a finite
set, « = 1, and J*(x) > —oo for all x € §. Construct a counterexample to
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5.4 and assert that
J.x) = lim T*J))(x) = J*(x), x€S.

k-—>o0
It follows from the convexity of the functions T*(J,) that the limit function
J* is a real-valued convex function. Furthermore, we have from Proposition
8 of Section 5.4 the optimality equation

J*(x) = min E{cu + p max(0, w — x — u) + hmax(0, x + u — w)

u=0 w
+ aJ*(x + u — w)}.
An optimal stationary policy 7% = {u*, u*, . . .} can be obtained from this
equation as in Section 2.2. We have
w18 —x, if x = S*,
wHE) = {0, otherwise,

where $* is a minimizing point of
G*(y) = ¢y + L(y) + E{J*(y — w)},

with
L(y) = p E{max(0, w — y)} + h E{max(0, y — w)}.

It is easy to see that if p > ¢ we have lim,,.. G*(y) = +oc so that such
a minimizing point exists. Furthermore, by utilizing the observation made
near the end of Section 5.4, it follows that minimizing points S* of G*(y)
may be obtained as limit points of sequences {S,}, where for each & the
scalar §, minimizes

Guy) = cy + L(y) + a E{TUo)(y — w)}

and is obtained by means of the successive approximation method.

It turns out that the critical level $* has a simple characterization.
It can be shown that $* maximizes the expression (I — a)cy + L(y) over
v, and it can be essentially obtained in closed form (see Problem 25 and
[H8], Ch. 2).

In the case where there is a positive fixed cost (K > 0), the same line
of argument may be used. Similarly, we prove that J* is a real-valued K-
convex function. A separate argument is necessary to prove that J* is also
continuous (this is intuitively clear and is left for the reader). Once K-
convexity and continuity of J* are established, the optimality of a stationary
(s*, S*) policy follows from the equation

J*(x) = min E{C(u) + p max(0,w — x — u) + h max(0, x + u — w)

u=0 w
+ aJ*(x + u — w)},
where C(u) = K + cu if u > 0 and C(0) = 0.
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Figure 6.1 Derivation of the sequential probability ratio test.

cost at initial state x, of an N-stage stopping problem whereby at the Nth
stage the terminal cost is zero if stopping has not already occurred.
Another interesting N-stage problem (already considered in more general
form in Section 2.5) is one whereby the terminal cost is #(xy) (i.e., termination
is forced at the Nth stage if it has not already occurred). The corresponding
successive approximation method progressively calculates T™(f)(x), for all
x€ S, N=20,1,.... However, this method is not valid in general in
the sense that T™(f)(x) need not converge to J*(x) as N — oo for any x.
To see this, consider a case where the continuation cost ¢(x) is zero for
all x, while the termination cost #(x) is bounded below by € > 0. Then we
will have TN(¢)(x) = € for all x while J*(x) = 0 for all x since the policy
that always continues at no cost will be optimal. It would appear, however,
that if the problem is such that optimal policies terminate eventually with
probability one then the pathology described will not occur and T™(r) will

converge to J*. One way to guarantee this ({[R6]) is to assume that for some
€ > 0 we have

c(x) = e, forallxe § (6.15)

in which case, as discussed earlier, we can also relax the positivity assumption
on ¢ to one of boundedness from below. For a different set of assumptions,
see Example 4 at the end of the next section.

Proposition 1. In the problem of this section assume (6.15) and that
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with probability one under every policy. Actually, it is sufficient to assume
that (6.21) holds for all stationary policies m; see Problems 12 and 13.

Under this assumption, one may prove a number of important results
that are not available under either Assumption P or N. In fact, it turns
out that it is not necessary to assume Assumption P or N (i.e., the costs
per stage g need not be all either nonnegative or nonpositive). The basic
reason is that the mapping T defining the DP algorithm is an m-stage con-
traction mapping over the set of all functions J:§ — R with J(0) = 0,
where m is the positive integer in (6.21) (see Section 5.3).

Proposition 2. There exists a scalar p < 1 such that for all J,
J':S — R with J(0) = J'(0) = 0 we have

max |[T"J)i) — T"J")@)| < p max [J@) — J'G)l, (6.22)
i=0,1,...,n i=0,1,...,n
where
T(J)(i) = min [é’(i» u) + 2 Pij(H)J(j)], i=1,2,...,n,
ueU() j=1
TJ)0) = 0.
Proof. Letm, = {ug, 15 . . -, Mm—1} b€ such that

"J") = (T,T,,...T,, . )J).
By subtracting this equation from the inequality
"J)=<(T,T,, ...T,,.)J),
we obtain, for every i,
")) = T™UIW) < (T, ... T, YI)@) = (T, ... T, )J)E). (6.23)

The two terms on the right are m-stage costs corresponding to initial state
i, policy m,,, and terminal costs J(x,,) and J'(x,,), respectively. Therefore,
the right side of (6.23) equals

ﬁ:ll’(xm = jlxo = i, mII() — T ()], (6.24)
i-
and we obtain, for all i,
T7J)G) — TMJ)G) < ilP(x,,, = Jlxo = i, m,)max|J(s) — J'(s)|.
= 5
/ By reversing the roles of J and J', we similarly obtain, for some policy
ﬂms

T™J"G) — T"J)i) < D, P(x,, = JxXo = i, @ )max|J(s) — J'(s)|.

J=1
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Furthermore, J, is the unique real-valued J satisfying J = T,(J) and
J(0) = 0. In addition, for every real-valued J with J(0) = 0, we have

lim THU)G@) = J,0), i=0,1,...,n (6.30)

k—co

Since Assumption P holds, by Proposition 10 in Section 5.4 we haye
that a stationary policy {u*, u*, . . .} is optimal if and only if u*(x) attains
the minimum in Bellman’s equation; that is,

T.(J*) = TJ*) (6.31)
The following proposition provides an alternative necessary and sufficient
condition.

Proposition 4. Let 7* = {u*, u*, ...} be a stationary policy with
J,+()) < oo for all i. In order for #* to be optimal, it is necessary and
sufficient that

T/,L"‘(Jp,*) = T("y.*)’ (6.32)
or equivalently

gli, w1 + 2 plu*OWV,.())
j=0 "
= min [g(i, u) + X, p;J ()] i=0,1,...,n
ueuQ) J=0

Proof. Necessity of (6.32) follows from (6.31). Conversely, for any
optimal proper policy # = {i, &, . . .} the condition J,. = T(J,.) implies
using (6.30) (which can be used because J,. is assumed real-valued)

Jpo < Tz, < T3, < -+ < limTe(J,) = Jz = J*
k—

Hence 7* is optimal Q.E.D.

Another result is the following:

Proposition 5. The optimal cost function J* is the only real-valued
function J with J(0) = 0, J(i) = 0,i = 1, . . ., n, that satisfies the equation
J = T(J).

Proof. Let J:§ — R be a real-valued function with J(0) = 0,
J(i) = 0, such that J = T(J). By Proposition 9 of Section 5.4, we have
J = J*¥, so there remains to show the reverse inequality. Let {u*, u*, .. .}
be an optimal proper policy. Then we have

J T sT.J)<s <sTLU)<--.

Using (6.30), it follows that J < J,.. Since p* is optimal, we obtain
J=<J*¥ Q.E.D.

This result can be used to show the following strengthened version
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Deteriorating and Improving Cases

It is evident that great simplification results from optimality of the
index rule (6.37) since optimization of a multiproject problem has been
reduced into n separate single-project optimization problems. Nonetheless,
solution of each of these single-project problems can be complicated. Under
certain circumstances, however, the situation simplifies.

Suppose that for all i, x’, and w' that can occur with positive probability
we have either

m'(x") < m'[f(x', w')] (6.57)
or

m'(x") = m'[fi(x’, whl. (6.58)
Under (6.57) [or (6.58)], projects become more (less) profitable as they are
worked on. We call these the improving and deteriorating cases, respectively.

In the improving case the nature of the optimal policy is evident:
Either retire at the first period or else select a project with maximal index
at the first period and continue engaging that project for all subsequent
periods.

In the deteriorating case the form of the optimal policy is less evident
but actually turns out to be simpler. To see what happens, note that (6.58)
implies that if retirement is optimal when at state x' then it is also optimal
at each state f'(x’, w'). Therefore, for all x’ such that M = m'(x") we have,
for all w',

Jx M) =M, Jf&,w), Ml =M
From Bellman’s equation
Ji(x', M) = max[M, R(x) + a EJf(x" w'), M]}]

we obtain
m'(x’) = R(x") + a m'(x")
or
o Ri i
mixy = K (6.59)
l -«

The optimal policy in the deteriorating case in now evident from (6.59):

Retire if M > max R)
1 -

and otherwise engage the project i with

maximal one-step reward R'(x).

Example

Treasure Hunting. Consider a search problem involving N sites. Each site i may
contain a treasure with expected value v;,. A search at site i costs ¢; and reveals
the treasure with probability g; (assuming a treasure is there). Let P; be the probability
that there is a treasure at site i. We take P; as the state of the project corresponding
























276 Infinite Horizon Problems: Applications Chap. 6

next state is exponentially distributed with parameter v;(u); that is, the probability
density function of 7 is

p(r) = vi(u) e ", T=0.
Furthermore, 7 is independent of earlier transition times, states. and controls.
The parameters v;(«) are uniformly bounded in the sense that for some v we
have

vi(u) < v, for all i, u.
The state and control at any time ¢ are denoted by x(¢) aqd u(t),
respectively, and stay constant between transitions. The cost is given by

E {f: e P glx(1), u(®)] dt}, (6.74)

where g is a given function and 8 = 0 is a given scalar discount parameter.
The parameter v,(u) will be referred to as the rate of transition associated
with state i and control «. It can be verified that the corresponding average
transition time is

1

viu)’

E{r} = J; viu) e V" dr =

so v{u) can be interpreted as the average number of transitions per unit
time.

We first consider the case where the rate of transition is the same
for all states and controls; that is,

vi(u) = v, forall i, u.
We then show how models with state- or control-dependent transition rates

can be reduced to this case by means of a process called uniformization.
Assume that v (u) = v for all i and « and denote

t,:  The time of occurrence of the kth transition (7, = 0 by convention).
Ty = ty — t_1: the kth transition time interval.
x, = x(#;): the state after the kth transition [x(f) = x, for
<t <ty
uy = u(ty)' the control for the kth transition [u(f) = u, for t, < t < t,,4].

A little thought should convince the reader that this problem is essentially
the same as one where transition times are fixed. The intuitive reason is
that the control cannot influence the cost through the transition time intervals.
More specifically, the cost (6.74) corresponding to a sequence {Ges wlk =
0, 1, ...} can be expressed as

> E{,[ * e P'g[x(r), u(t)]dt} =3 E{f
k-0 2 ,

tk+1

4 k

e ” dt} E{g(x;, u)}.

(6.75)
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is statistically identical to the new process leaving state i at the faster rate
v, but returning back to i with probability (1 — v;(x))/v. Equivalently,
transitions are real (lead to a different state) with probability v;(u)/v < 1.
By statistical equivalence, we mean that, for any given policy =, initial
state x,, time ¢, and state i, the probability P{x(z) = i|mr, x,} is identical for
the original process and its uniform version. We give a proof of this fact
in Problem 22 for the case of a finite number of states (see also [L4], [S14],
and [R8] for further discussion). In what follows we will illustrate the ideas
by examples from queueing theory.

To summarize, we can convert a continuous-time Markov chain problem
with transition rates v;(u), transition probabilities p;(«), and cost

E {f: e Palx(d), u(d] dt},

into a discrete-time Markov chain problem with discount factor

14
= 6.80
*= ey (6.80)
where v is a uniform transition rate chosen so that
vi(u) < v, forall i, u (6.81)
The transition probabilities are
vi(u e . .
T)p;j(u), if i#],
pi(u) = | — V,(ll), it =] (6.82)
14
and the cost per stage is
gli,u) = e g, u), foralli u. (6 83)
Bellman’s equation in particular takes the form
J(@i) = min [g(i, u) + v — v,()JG)
B + Vuevn) (6,84)

+ v Pu(ll)f(.l)]-

Queueing Applications

Example 2

M/M/1 Queue with Controlled Service Rate. Consider a single-server queueing
system where customers arrive according to a Poisson process with rate A. The
service time of a customer is exponentially distributed with parameter w (called the
service rate). Service times of customers are independent and are also independent
of customer interarrival times. The service rate u can be selected from a closed
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The effective discount factor is

<

™
+
w

and the cost per stage is
1
B+v
Bellman’s equation takes the form [cf. (6.84)]
1

[e(@) + q(u)).

J(O) = B+ [c(0) + (v — MJ(0) + AJ(1)]
J@) = ! min [c(t) + g(pu) + nJG@ — 1) (6.85)
B+ Vuem

+ @ - A-—wJO+NGE+ D], i=1,2,...

An optimal policy is to use at state i the service rate that minimizes the expression
on the right. Thus it is optimal to use at state i the service rate

p*(i) = arg minl} {a(w) — pAM}, (6.86)

where A(i) is the optimal cost differential
AG@Y =J@GE) — JGiE - 1), i=1,2, ...

[When the minimum in (6.86) is attained by more than one service rate u we choose
by convention the smallest.] We will demonstrate shortly that A(i) is monotonically
nondecreasing. It will then follow from (6.86) (see Figure 6.7) that the optimal
service rate u*(i) is monotonically nondecreasing; so as the queue length increases,
it is optimal to use a faster service rate.

To show that A(/) is monotonically nondecreasing, we use the successive

approximation method to generate a sequence of functions J;, where the starting
function is

Jo@) =0, i=0,1,...,
and, for k = 0, 1, . .. [cf. (6.89)],

Tier©) = —— [c(0) + v — NKO) + AJDL,
B+v
1 . . .
Jinai) = B+ TEIB [c(i) + q(p) + uJi — 1) (6.87)
+ @ - A= pwJ(i) + A (i + 1)), i=1,2,...
Fork=0,1,...andi =1,2,...let

AE) = J(@) = J @ = 1),
For completeness of notation, define also Ji(—1) = J(0) and A,(0) = 0. From the

theory of Section 5.4 (see Proposition 14, and compare with Problem 10 of Chapter
5), we have J (i) — J(i) as k — oo. It follows that we have

lim A(i) = AG), i=1,2,...
k—roo

Therefore, it will suffice to show for every & that A(i) is monotonically nondecreasing.
For this we use induction. The assertion is trivially true for k = 0. Assuming that
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Transition probabilities for uniform version

Figure 6.10 Continuous-time Markov chain and uniform version for Example
5 when customers are routed to the first queue. The states are the pairs of
customer numbers in the two queues.

where S, is the set of states for which routing a new customer to queue 1 results
in at least as favorable cost-to-go as routing the customer to queue 2,

Sy = {0 HUGE + 1,/)) < JG,j+ D) (6.96)
This optimal policy can be characterized better by some further analysis.
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Linear—-Quadratic Problems with Nonstationary Disturbances. Consider the
linear—quadratic problem of Section 6.1 with the only difference that the dis-
turbances w, have zero mean, but their covariance matrices are nonstationary
and uniformly bounded over k. Show that the optimal control law remains
unchanged.

Periodic Linear—Quadratic Problems. Consider the linear system
Xk = Akxk + Bkuk + wy, k= 0, l, ceey
and the quadratic cost functional
N-1
J(xe) = lim E {2 o x;Qux, + Mk(-\’k)'RAlLk(xk)]}.
N-

—oo wk k=0

where the matrices have appropriate dimensions, Q, and R, are positive semi-
definite and positive definite, respectively, for all k£, and 0 < a« < 1. Assume
that the system and cost functional are periodic with period p (cf. Section 5.5),
that the controls are unconstrained, and that the disturbances are independent,
have zero mean, and finite covariance matrices. Assume further that the following
(controllability) condition is in effect.
_ Given any initial state x,, there exists a finite sequence of controls
{ug, uy, . .., u,;} such that x,,, = 0, where x,,, is generated by
;k+l :Ak;k'i’Bk.I;k, k=0,1,..., r.
Show that there is an optimal periodic policy @* of the form
W*z{"'(,)k’/“‘;k"'" I"‘:—h#'())k’ﬂf*""ﬂ‘:‘l’ '}5
where u§, . . ., u¥_ | are given by
w¥(x) = —a(aB/K,.\B; + R)"'B!K, A;x, i=90,..,p—2,
#':—I(-x) = _a(aB,:—lKOBp—l + Rp—l)—lB,;—lKoA -1,
and the matrices Ky, K, . . ., K,_, satisfy the coupled set of p algebraic Riccati
equations given by
K, = A/leK,,, ~ a:KiﬂBi(anK B, + R‘)—IB:’K«H]AI' + 0,
i=0,1. p-2
Kp—l = A;_)[QKO - azKon;](aB", 1K()Bp 1 + Rp |)_IB;, K0]Ap_1 + Qp*l-

. Discounted Linear—Quadratic Problems with Imperfect State Information.

Consider the linear-quadratic problem of Section 6.1 with the difference that
the controller, instead of having perfect state information, has access to mea-
surements of the form

Zk=CXk+ Ui k=0, 1,....

As in Section 3.2, the disturbances v, are independent and have identical statistics,
zero mean, and finite covariance matrix. Assume that for every admissible
policy 7 the matrices

E{[\A - E{XAIIA}][XA - E{kuIA}]'ITT}

are uniformly bounded over k, where I, is the information vector defined in
Section 3.2. Show that the optimal policy is 7* = {u*, u*, .. .}, where u* is
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achieves reachability of the ellipsoid X = {x|x'Kx = 1}. Furthermore, the matrix
(A + BL) is a stable matrix. (For a proof together with a computational
procedure for finding matrices K satisfying (6.102) and (6.103), see [B9] and
[B12]).

12. In the context of the first passage problem of Section 6.4, assume that there
exists m > 0 such that

P(x,, = Olxo = i, m) >0 (6.104)
forall i = 1, ..., nand stationary policies 7. Show that this relation also
holds for all nonstationary policies 7. Hint: Argue by contradiction. Assume

that there exists a nonstationary 7 = {ug, s, - . .} and an initial state i such
that (6.104) does not hold for any m. Define, for k = 1,2, ...,
S(@) = (P& = jixo = i, m) > 0}.
Let S.. be the set of states that belong to infinitely many sets S,(/), and for
each j € S.., let u/ be such that simultaneously u, = w’ and j € S(i) for
infinitely many integers k. Consider any stationary policy u such that u(j) =
w(j) for j € S... Show that (6.104) is violated for # = {u, u, . . .}.
13. Consider the first passage problem of Section 6.4.
(a) Suppose that for some stationary policy 7 there exist m > 0 and € > 0
such that for all i
P(x, = Olxy = i, m) = €.
Show by induction that for all k
Py =0xo =i, m=1—- (1 — &F
and therefore P(x; = Ojxo =i @) —> las k— o
(b) Under Assumption N show that either the optimal cost is —oo for some
initial state, or else, under every policy, the system eventually enters with
probability one a set of cost-free states and never leaves that set thereafter.
(¢) Under Assumption P, show that if there exists an optimal nonstationary

policy for each initial state that is proper in the sense of (6.26), then there
exists an optimal stationary policy that is proper.

14. A gambler engages in a game of successive coin flipping over an infinite horizon.
He wins one dollar each time heads comes up, and loses m > 0 dollars each
time two successive tails come up (so the sequence TTTT loses 3m dollars).
The gambler at each time period either flips a fair coin or else cheats by flipping
a two-headed coin. In the latter case, however, he gets caught with probability
p > 0 before he flips the coin, the game terminates, and the gambler keeps his
earnings thus far. The gambler wishes to maximize his expected earnings.
(a) Show that there is a critical value # for m below which it is optimal to

flip the fair coin at all times.

(b) Assume that m > m and argue that it is then optimal to try to cheat if the
last flip was tails and to play fair otherwise. Hint: This is a first passage
problem; however, the assumptions of Section 6.4 are not quite satisfied.

15. Gambling Strategies for Favorable Games. A gambler plays a game such as
the one of Section 6.6, but where the probability of winning p satisfies } <
p < 1. His objective is to reach a final fortune n, where n is a positive integer
with n = 2. His initial fortune is a positive integer i with 0 < { < n, and his




















































































































































































APPENDIX D

On Finite State Markov
Chains

A square n X n matrix [p;] is said to be a stochastic matrix if all its
elements are nonnegative, that is, p; = 0,4, j = I, ..., n, and the sum
of the elements of each of its rows equals unity, that is, =7, p,, = 1 for
ali =1,..., n

Stationary Finite State Markov Chains

Suppose we are given a stochastic n X n matrix P together with a
finite set § = {l, ..., n} called the state space. The elements of S are
called states. The pair (S, P) will be referred to as a stationary finite state
Markov chain. We associate with (S, P) a process whereby an initial state
X, € S is chosen in accordance with some initial probability distribution

Po = (Do5 Pos -+ PO)-
Subsequently, a transition is made from state x, to a new state x, € § in
accordance with a probability distribution specified by P as follows. The

probability that the new state will be j is equal to p; whenever the initial
state is i; that is,

P(x. =j|x0=i)=p,-j, ij= 1...‘.,”..

Similarly, subsequent transitions produce states x,, x5, . . . in accordance
with

POy = jloe =J) = py.  L,j=1..,n (D.1)
The probability that after the kth transition the state x, will be equal to j,

356






























366 References

[K5] Kaufmann, A., and Cruon, R., Dynamic Programming. Academic Press,
New York, 1967.

[K6] Kemeny, J. G., and Snell, J. L., Finite Markov Chains. Van Nostrand-
Reinhold, New York, 1960.

[K7] Kimemia, J., Gershwin, S. B., and Bertsekas, D. P., Computation of production
control policies by a dynamic programming technique, in Analysis and Op-
timization of Systems (A. Bensoussan and J. L. Lions, eds.), Springer-Verlag,
New York, 1982, pp. 243-269.

[K8] Kimemia, J., Hierarchical control of production in flexible manufacturing
systems, Ph.D. thesis, MIT, Department of Electrical Engmeenng and Computer
Science, April 1982.

[K9] Kleinman, D. L., On an iterative technique for Riccati equation computations,
IEEE Trans. Aut. Control, AC-13 (1968), 114-115.

[K10] Kumar, P. R., A survey of some results in stochastic adaptive control, STAM
J. Control Optimization 23 (1985), 329-380.

[(K11] Kumar, P. R., Optimal adaptive control of linear—-quadratic—Gaussian systems,
SIAM J. Control Optimization 21 (1983), 163-178.

[K12] Kumar, P. R., and Lin, W., Optimal adaptive controllers for unknown Markov
chains, IEEE Trans. Aut. Control AC-27 (1982), 765~774.

[K13] Kumar, P. R., and Varaiya, P. P., Stochastic Systems: Estimation, Identi-
fication, and Adaptive Control. Prentice-Hall, Englewood Cliffs, N.J., 1986.

[K14] Kushner, H. J., Introduction to Stochastic Control. Holt, Rinehart and
Winston, New York, 1971.

[K15] Kushner, H. J., Optimality conditions for the average cost per unit time

problem with a diffusion model, SIAM J. Control Optimization 16 (1978),
330-346.

[L1] Lasserre, J. B., A mixed forward—backward dynamic programming method
using parallel computation, J. Optimization Theory Appl. 45 (1985), 165-168.

[L2] Levy, D., The Chess Computer Handbook. B. T. Batsford Ltd., London,
1984.

[L3] Lin, W., and Kumar, P. R., Optimal control of a queueing system with two
heterogeneous servers, IEEE Trans. Aut. Control AC-29 (1984), 696—703.

[L4] Lippman, S., Applying a new device in the optimization of exponential queuing
systems, Operations Res. 23 (1975), 687-710.

[L5] Liusternik, L., and Sobolev, V., Elements of Functional Analysis. Ungar,
New York, 1961,

[L6] Ljung, L., On positive real transfer functions and the convergence of some
recursions, IEEE Trans. Aut. Control AC-22 (1977), 539-551.

[L7] Ljung, L., System Identification: Theory for the User. Prentice-Hall, Englewood
Cliffs, N.J., 1986.

[L8] Ljung, L., and Soderstrom, T., Theory and Practice of Recursive Identification.
MIT Press, Cambridge, Mass., 1983.






























376

Transient states, 357

Transition graph, 7

Traveling salesman problem, 32, 34, 37
Two-armed bandit problem, 142

U

Uncorrelated random variables, 354
Uniformization of Markov chains, 276,
278-280, 299, 336

A

LY
¢ AMBRIDGH CR2IST

Index

v

Viterbi decoder, 28-31

A

Weierstrass theorem, 350

DO Y RIEAEEE R,

b

AR

LB s
] ' ],
\















