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Preface 

This text evolved from an introductory course on optimization under 
uncertainty that I taught at Stanford University in the spring of 1973 and 
at the University of Illinois in the fall of 1974. It is aimed at graduate students 
and practicing analysts in engineering, operations research, economics, 
statistics, and business administration. As a textbook it could be used, for 
example, in a one-semester first-year graduate course, which could cover 
primarily the first five chapters, the first half of Chapter 6, and parts of 
Chapter 8. It could also be used in a two-quarter graduate course, which 
would probably cover the whole text. Depending on the students’ back- 
grounds and interests, some material could be omitted or added by the 
instructor. 

The basic objective of the book is to provide a unified framework for 
sequential decision making under uncertainty and to stress the few funda- 
mental concepts underlying the treatment of uncertainty and the technique 
of dynamic programming. These concepts (risk, feedback, sufficient statistics, 
adaptivity, contraction mappings, and the principle of optimality) are 
emphasized and developed in a framework that is devoid, to the extent 
possible, of structural assumptions on the problem considered. This is 
accomplished by considering general dynamic systems defined over arbitrary 
state and control spaces. Thus our formulation allows the simultaneous 
treatment of several important classes of problems, such as stochastic 
control problems (popular in modern control theory) as well as problems of 
control of finite state Markov chains (popular in operations research and 
statistics). However, rigor is claimed only in the case where the underlying 
probability space is a finite or countable set, while other cases are treated in a 
formal manner. 

While most of the theoretical developments are carried out in a general 
framework, a large portion of the text is devoted to applications from 
specific problem areas. This serves the dual purpose of illustrating the 

xi 
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theoretical developments and of presenting material that is important in its 
own right. My objective has not been to develop any particular application 
area in great depth but rather to emphasize those aspects which are strongly 
related with the dynamic programming technique and associated concepts. 

The mathematical prerequisite for the text is a good knowledge of 
introductory probability theory and undergraduate mathematics. This 
includes the equivalent of a one-semester first course in probability theory 
together with the usual calculus, real analysis, vector-matrix algebra, and 
elementary optimization theory most undergraduate students are exposed 
to by their fourth year of studies. A summary of this material together with 
appropriate references is provided in the appendixes. An effort has been 
made to keep the mathematics at the lowest possible level consistent with 
rigor. However, it is inevitable that some mathematical maturity is required 
on the part of the reader so that he is able to think in relatively abstract 
terms. In addition, the last part of the text, which deals with infinite-horizon 
problems, is mathematically more sophisticated (particularly after Section 
6.3) than the first part and requires a firm grasp of some of the basic con- 
vergence concepts of analysis. Readers with a somewhat weak analysis 
background may find the developments of Sections 6 . U . 7  and Chapter 7 
difficult to follow. Familiarity with the notions associated with finite state 
Markov chain theory is not required, except in Chapter 8 and the last section 
of Chapter 7. Even there, however, Markov chain theory is used in a periph- 
eral manner, and the reader should be able to follow the development of the 
material after a reading of Appendix D perhaps supplemented by an hour 
or two of instruction. While prior courses or background on dynamic 
system theory, optimization, or control will undoubtedly be helpful to the 
reader, it is felt that the material in the text is reasonably self-contained. 

The nature of the subject of this book makes the choice of level of 
presentation rather difficult. The reason is that dynamic programming is a 
very simple and general technique, which nonetheless requires the extremely 
complicated machinery of measure-theoretic probability theory if it is to be 
presented in a mathematically rigorous way and within a general setting 
(i.e., in general spaces and in the presence of uncertainty). My choice has 
been to adopt a somewhat freewheeling style of mathematical presentation 
in the first five chapters, which deal with finite-horizon problems, a n d l o  
raise substantially the level of mathematical precision in the last thfee 
chapters, which deal with infinite-horizon problems. The developments in 
Chapters 1-5 are carried out in a very general setting. However, the mathe- 
matical framework is not entirely rigorous, as explained in Section 2.1. In 
Chapters 6 8  the class of problems under consideration is restricted. Limi- 
tations are placed on the probability space in the interest of keeping the 
mathematics simple. This approach, which may seem somewhat unorthodox, 
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was dictated by two basic considerations. First, since the validity of many 
of the concepts to be presented (principle of optimality, sufficient statistics, 
feedback, adaptivity, etc.) depends very little on structure, I felt that the 
reader should be given the opportunity to appreciate the power and gener- 
ality of these concepts without being impeded by irrelevant structural 
assumptions or complicated mathematical details. Second, 1 felt that 
mathematical precision is essential for the treatment of infinite-horizon 
problems, much more so than for finite-horizon problems. In addition, I 
wanted to provide a systematic and up-to-date treatment of infinite-horizon 
problems in the hope that this treatment will be of some value to the research 
community as well as to practicing analysts. 

The text starts with an introductory chapter on formulation of decision 
problems under uncertainty. The aim here is to provide a broad framework 
within which sequential decision problems under uncertainty can be appro- 
priately placed. The material in this chapter is of fundamental importance. 
However, it is not used in an essential manner in the remainder of the text, 
and the reader may proceed directly to Chapter 2 if he so wishes. 

Part I deals with finite-horizon problems. A single-model problem of 
broad applicability is employed throughout this part. The model is based on 
a state variable representation ofa dynamic system that is standard in modern 
control theory. Transition probability models can be embedded within the 
framework of the model utilized by means of a simple reformulation. The 
dynamic programming algorithm is developed and illustrated in several 
applications of independent interest. Linear quadratic stochastic control 
problems and inventory control problems are treated in considerable 
detail. Several additional topics from operations research, economics, and 
statistics are also considered. Problems with imperfect state information are 
treated as special cases of the basic model problem. Since implementation 
of optimal and suboptimal controllers for such problems often requires the 
use of estimators, I have added a sizable appendix covering least squares 
estimation and Kalman filtering. The emphasis throughout the text is on 
optimization of dynamic stochastic systems. However, in view of the 
limitations of the dynamic programming technique, the subject of suboptimal 
control is of undeniable importance. For this reason I have included material 
on suboptimal control with emphasis placed on those techniques that are of 
broad applicability. 

While Part I emphasizes conceptual aspects of sequential decision 
problems, Part I1 concentrates on the mathematical aspects of infinite- 
horizon problems. The coverage is quite thorough and includes discounted, 
undiscounted, and average cost problems. The basic model problems are 
set up in such a way that the underlying probability spaces are countable, 
thus eliminating all mathematical difficulties of a measure-theoretic nature. 
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However, the class of dynamic systems considered is much broader than the 
class of Markov chains with countable state space. For example, it includes 
all deterministic systems defined over arbitrary state and control spaces. 
This part also contains several new results developed either in the text or in 
the problem sections. 

The problems at the end of each chapter are of four basic varieties: drill 
problems, examples or counterexamples, problems illustrating additional 
results of specific application nature, and theoretical problems that extend 
and supplement the developments of the text. Some of the problems in the 
last category (particularly in Chapters 6 and 7) are quite difficult to solve, 
and hints as well as references have been supplied where appropriate. The 
serious reader will benefit a great deal by going over the theoretical problems, 
which constitute a significant component of the text. 
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Chapter I 

Introduction 

This chapter sets the stage for the remainder of this text. Rather than 
dealing with methods for analysis or solution of decision problems under 
uncertainty, it examines various approaches for formulating such problems. 
Since the subject is of fundamental importance and at the same time far from 
trivial, it is worth examiningeven in the context ofan introductory text. On the 
other hand, the material in this chapter is not used in a direct way later and it 
is not essential for the reader to have a firm grasp of it in order to proceed to 
subsequent chapters. 

Optimization problems under uncertainty possess several important 
characteristics that are not present in the absence of uncertainty, i.e., in 
deterministic optimization problems. The two most important such char- 
acteristics are the need to take into account risk in the problem formulation 
and the possibility of information gathering (feedback) during the decision 
process. 

To illustrate the first characteristic consider a problem of dividing an 
amount of capital x between two different investment opportunities A and B. 
Assume that A offers with certainty $1.499 per dollar invested. If the total 
profit is to be maximized and B offers with certainty $1.5 per dollar invested, 
then the capital x should be invested in its totality in B. Assume now instead 
that B offers $1.5 per dollar on the auerage but not with certainty. For example, 
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2 1 INTRODUCTION 

assume that B offers $0 per dollar with probability 0.8 and $7.5 per dollar 
with probability 0.2. Then if the average (expected) profit is to be maximized, 
again the whole capital should be invested in B. In fact, the same is true for 
any probability distribution on the return of B with expected value $1.5 per 
dollar invested. However, most investors would object to such an allocation. 
Not wanting to take any risk of losing part of their capital, some would invest 
exclusively in the sure opportunity A,  while others would invest at least a 
positive fraction of x in A.  This indicates that a problem formulation whereby 
expected profit is maximized may be inappropriate since in this formulation 
the risk associated with each allocation is not reflected at all in the cost 
functional and hence does not influence the optimal decision. At the same 
time, the question is posed as to what is an appropriate formulation of the 
problem. 

As a more dramatic example of the need to take into account risk in the 
problem formulation consider the following situation (the so-called St. 
Petersburg paradox). An individual is offered the opportunity of paying x 
dollars in exchange for participation in the following game. A fair coin is 
flipped sequentially and the individual is paid 2k dollars, where k is the number 
of times heads have come up before tails come up for the first time. The de- 
cision that the individual must make is whether to accept or reject participa- 
tion in the game. Now if he accepts, his expected (average) 
game is 

‘*I 1 c 2kf” 2k - x = co, 
k = O  

so that if his acceptance criterion is based on maximization 

profit from the 

of his expected 
profit, he is willing to pay any amount x to enter the game. This, however, is 
in strong disagreement with the behavior of individuals due to the risk ele- 
ment involved in entering the game and shows again that a different for- 
mulation of the problem is necessary. Some of the aspects of formulating 
decision problems under uncertainty so that risk is properlyDken into 
account are dealt with in the next two sections. 

A second important feature of many decision problems under uncertainty 
is the possibility of carrying out the decisions in stages while gathering infor- 
mation between stages about some of the uncertain parameters involved in 
the problem. This information may be used with advantage when making 
future decisions. The fundamental role of information gathering in problems 
of decision under uncertainty will become evident as we progress through this 
text. For the moment let us consider the following simple example: 

EXAMPLE A two-stage scalar dynamic system evolves according to the 
equations 

x, = uo + wg, x2 = x1 + u1. 
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The scalar wo is an uncertain parameter taking values 1 or - 1 with prob- 
ability ). The problem is to choose uo and u1 so as to minimize the expected 
absolute value of x2 : 

I t  is easy to see that the optimal value is 

and the optimal values of u 0 ,  u1 are those for which - 1  d uo + u1 d 1. 
Consider now the situation where uo and u1 are chosen sequentially in a 
way that x1 is known to the decision maker when selecting ul. Then clearly the 
optimal selection policy for uo and u1 is to take uo to be any scalar and to take 
u1  equal to -xl. With this selection policy the optimal cost is reduced to 
zero. The reduction was made possible by means of proper use of the in- 
formation received (i.e., the value of xl). Note that the optimal value of u1 
depends on the value of x l ,  i.e., it is a function of the information received. 
Note also that if there is no uncertainty, for example, if wo = 0 with prob- 
ability one, then the optimal cost is zero whether the value of x1 becomes 
known prior to selecting u 1  or not. This is a manifestation of the intuitively 
obvious fact that information gathering can be of no help when there are no 
uncertain parameters in the problem. 

1.1 The Problem of Decision under Uncertainty? 

A decision problem in one of its simplest and most abstract forms con- 
sists of three nonempty sets 9, N ,  and 0, a function f :  9 x JV -+ 0, and a 
complete and transitive relation <. on 0: 

9 the set of possible decisions 
Jf indexes the uncertainty in the problem and may be called the set of 

“states of nature” 
0 the set of outcomes of the decision problem 
f the function that determines which outcome will result from a given 

decision and state of nature, i.e., if decision d E 9 is selected and state 
of nature n E .Af prevails, then the outcome f (d ,  n )  E 0 occurs 

t As mentioned earlier, the concepts in this and subsequent sections in this chapter are not 
essential for the understanding of the remainder of the text. The reader may proceed directly 
to Chapter 2 if he so wishes. 
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< a relation determining our preference among the 0utcomes.t Thus 
for O,, O2 E 0, by 0,  < 0, we mean that outcome O2 is at least as 
preferable as outcome 0,. By completeness of the relation we mean 
that every two elements of 0 are related in the sense that given any 
0,, O2 E 0 either 0 ,  < 0 2 ,  but not 0, < 0,, or O2 < O,,  but not 
0, < O,, or both 0, < 0, and 0 ,  < 0,. By transitivity we mean 
that 0, < 0, and O2 < O 3  implies 0 ,  < O3 for any three elements 

EXAMPLE Consider the following situation. An individual may bet 
$1 on the toss of a coin or not bet at all. If he bets and guesses correctly, he 
wins $1 and if he does not guess correctly, he loses $1. Here 9 consists of 
threeelements {bet on heads, bet on tails, not bet}, N consists oftwo elements 
{heads, tails}, and 0 consists of three elements, the three possible final 
fortunes of the player {SO, $1, $2). The preference relation on 0 is the natural 
one, i.e., 0 < 1, 0 < 2, 1 < 2, and the values of the function f are given in 
Table 1.1 for each value of d and n. 

01, 0 2 ,  0 3  E 0. 

TABLE 1.1 

3 

H T Not bet 

H $2 $0 $ I  

T $0 $2 $ I  
.4. 

Now the relative order by which we rank outcomes is usually clear in any 
given situation. On the other hand, in order for the decision problem to be 
completely formulated we need a ranking among decisions that is consistent in 
a well-defined sense with our ranking of outcomes. Furthermore, in order to be 
able to apply mathematical methods for the analysis of the decision problem 
we would like to have this ranking determined by a numerical function 
F : 9  + R ( R  is the set of real numbers) such that 

(1) 

where the notation d ,  < d ,  implies that the decision d 2  is at least as preferable 
as the decision d , .  It is by no means clear what this ranking among decisions 

d ,  < dz  % F ( d , )  < F(d2) vd1, d2 E 9, 

t The symbol < in this chapter will be (somewhat loosely) used to denote a preference 
relation within either the set of outcomes or the set of decisions. The precise meaning should be 
clear from the context and hopefully the use of the same symbol to denote different preference 
relations will create no confusion to the reader. 
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should be or how one should go about determining and characterizing such a 
ranking. For example, in the gambling problem above different people will 
have different preferences as to accepting or refusing the gamble. There are a 
number of approaches and viewpoints for determing a ranking among 
decisions and this section deals with some of these. 

Payofl Functions, Dominant and Noninferior Decisions 

Let us consider the case where it is possible to assign to each element of 0 
a real number in such a way that the order between elements of 0 agrees with 
the usual order of the corresponding numbers. That is, there exists a real- 
valued function G :  0 + R with the property 

G ( 0 , )  Q G(O2) * 0 ,  4 0 2  YO,, 0 2  E 0. (2) 

Such a function does not always exist (see Problem 2). However, its existence 
can be guaranteed under quite gener 1 assumptions. In particular, one may 

far from unique, since if @ is any monotonically increasing function 0: R + R ,  
the composite function 0. G (defined by (@ . G ) ( O )  = @[G(O)] )  has the same 
property (2) as G. For instance, in the example given earlier a function 
G :  {O, 1, 2) + R satisfies.(2) if and only if G(0)  < G(1) < G(2) and there is an 
infinity of such functions. 

Now for any choice of G as in (2) we define the function J :  93 x JV + R 
by means of 

show that it exists if 0 is a countable \. se Also if such a function G exists, it is 

J(d ,  n)  = G C f ( d ,  n)l 
and call it a payoflfunction. 

Given a payoff function J it is possible to obtain a complete ranking of 
decisions by means of a numerical function in the special case ofcertainty (the 
case where the set JV of states of nature consists of a single element E). By 
defining 

F(d)  = J(d ,  E) 

we have 

d i  d d2 % F ( d i )  < F(d2) % f ( d i ,  6) d f ( d 2 ,  f i )  

and the numerical function F defines a complete ranking of decisions. 

partial order on 9 by means of the relations 
When JV contains more than one element, the order on 0 induces only a 

(3) d l  < d 2  % J ( d l ,  n)  < J ( d 2 ,  n)  

% f ( d  ,, n)  d . f ( d 2 ,  n)  

Vn E .N, 

Vn E JV. 
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In this partial order it is not necessary that every two elements of 9 be related, 
i.e., for some d, d' E 9 we may have neither d < d' nor d' < d.  If, however, for 
two decisions d, ,  d 2  E 9 we have d ,  < d, in the sense of (3), then we can con- 
clude that d 2  is at least as preferable as d ,  since the resulting outcome f ( d 2 ,  n)  
is at least as preferable asf(d, ,  n )  regardless @the state of'nature n that will 
occur. 

A decision d* E $3 is called a dominant decision if 

d < d *  V d E 9 ,  

where < is understood in the sense of the partial order defined by (3). 
Naturally such a decision need not exist. If, however, such a decision does 
exist, then it may be viewed as optimal. In most problems of interest to an 
analyst, however, there exists no dominant decision. For instance, in t e 
gambling example considered earlier a dominant decision does not exisAn 
fact, no two decisions are related in the sense of (3) for this example. 

In the absence of a dominant decision one can consider the set 9, c 9 
of all noninferior decisions, where d , ~ 9 ,  if for every d ~ 9  the relation 
d, < d implies d < d, in the sense of the partial order defined by (3). In terms 
of a payoff function J ,  noninferior decisions may be characterized by 

d, E 9, + there does not exist any d E 9 such that 
J ( d , ,  n)  d J(d ,  n)  V n  E I/̂  and 
J(d, ,  n) < J ( d ,  n) for some n E ~4.. 

Clearly it makes sense to consider only the decisions in 9, as candidates for 
optimality since any decision that is not in 9, is dominated by one that 
belongs to $3,. Furthermore, it may be proved that the set 9, is nonempty 
when the set 9 is a finite set, so that at least for this case there exists at least 
one noninferior decision. However, in practice the set 9, of noninferior 
decisions often is either difficult to determine or contains too many elements. 
For instance, in the gambling example given earlier, the reader may easily 
verify that every decision is noninferior. 

Whenever the partial order (3) fails to produce a satisfactory ranking 
among decisions, one must turn to other approaches to formulate the de- 
cision problem. Approaches that we shall examine assume a notion of a 
generalized outcome of a decision and introduce a complete order on the 
set of these generalized outcomes consistent with the original order on the 
set of outcomes 0. The complete order on the set of generalized outcomes in 
turn induces a complete order on the set of decisions. 

The Min-Max Approach 

The min-max (or max-min) approach takes the point of view that the 
generalized outcome of a decision d is the set of all possible outcomes 
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resulting from d: 

f(d, N )  = (0 E 0 I there exists n E N with f ( d ,  n )  = O}. 

In addition, it adopts a pessimistic attitude and ranks the setsf(d, N )  on 
the basis of their worst possible element. This is accomplished by introducing 
a complete order on the set of all subsets of 0 by means of the relation 

0, 4 0, % inf G ( 0 )  d inf G ( 0 )  YO,, 0, = 0, (4) 
O E B ,  O E B l  

where O,, 0, is any pair of subsets of 0 and G a numerical function con- 
sistent with the order on 0 in accordance with (2). From (4) we have a com- 
plete order on the set 9 by means of 

di 4 d2 % f(di, N )  4 f ( d 2 ,  

or in terms of a payoff function J ,  

infGCf(di7 n)I d infGCf(d2, n)l 
n E N  n E . N  

dl 4 d, % infJ(d,, n) < infJ(d,, n).  
n E N  ns.V 

Thus by using the min-max approach the decision problem is formulated 
concretely in that it reduces to maximizing over 9 the numerical function 

F ( d )  = inf J(d ,  n).  
n E . M  

Furthermore, it can easily be shown that the elements of 9 that maximize 
F(d)  above will not change if J is replaced by CD . J ,  where CD: R + R is any 
monotonically increasing function. Nonetheless, the min-max approach 
is pessimistic in nature and will often produce an unduly conservative de- 
cision. Characteristically in the earlier gambling example the optimal 
decision according to the min-max approach is to refuse the gamble. 

The second approach for formulating decision problems that we shall 
examine is considered in the next section. 

1.2 Expected Utility Theory and Risk 

It is often the case that in a given decision problem under uncertainty we 
have additional information concerning the mechanism by which states of 
nature occur. In particular we are often in a position to know that the states 
of nature occur in accordance with a given probabilistic mechanism, which 
may depend on the decision d adopted. To be specific, assume for convenience 
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that the set of states of nature A’” is either a finite or a countable set? and that 
for every decision d E 9 we know that states of nature occur according to a 
given probability distribution P( * Id) defined on N .  Now each decision 
d E 9 specifies the probability of each outcome via the function f (d,  - ) and 
the relation 

In this relation Pd(0) denotes the probability that the outcome 0 will occur 
when the decision d is adopted. One may view the probability measure Pd 
associated with each d E 9 as a “probabilistic outcome” (or “generalized 
outcome” to use the term of the previous section) corresponding to d,  since 
Pd specifies the probabilistic mechanism by which outcomes occur once d is 
selected. We shall also use the term lottery1 for a probability measure on the 
set of outcomes. In the gambling example given earlier, the decision “bet on 
heads” has as a generalized outcome the probability distribution (or 
lottery) (*, 0, i) on the set of outcomes 0 = ($0, $1, $2). The decision “bet 
on tails” has the same generalized outcome while the decision “not bet” has 
as a generalized outcome the probability distribution (0, 1,O). 

The basic idea of the expected utility approach is the following: We already 
have a complete ranking of the outcomes, i.e., the elements of 8. If we had a 
complete ranking of all lotteries on the set of outcomes (presumably con- 
sistent with the original ranking on 0 in the sense that if the outcome O1 is 
preferable to the outcome 02,  then the lottery assigning probability one to O1 
is preferable to the lottery assigning probability one to 02), then we could in 
turn obtain a complete ranking of all decisions in 9. This is true simply 
because we could rank any two decisions d l ,  d2  E 9 according to the relative 
order of their corresponding lotteries Pd,, Pd2, i.e., by means of the relation 

The fundamental premise of the expected utility approach is to assume at the 
outset that the decision maker has a complete ranking of all lotteries on the set of 
outcomes, i.e., the decision maker is in a position to express his preference 
between any two probability distributions on the set of outcomes. This in 
turn settles the question of ranking decisions in view of the preceding relation. 

t For the benefit of the advanced reader we mention that when .N is not countable it is 
necessary that a probability space structure be introduced on N and 0 as in Appendix C. 
Furthermore, it is necessary that the functionf(d, -) satisfy certain (measurability) assumptions 
in order that the probability measure Pd be well defined. 

$ The term “lottery” is associated with the conceptually convenient device of viewing 
outcomes as prizes of some sort and viewing a fixed probabilistic mechanism for winning a prize 
as a lottery. 
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Furthermore, if there exists a numerical function G by means of which pre- 
ferences on the set of lotteries can be expressed, 

Pdl 4 p d 2  G(Pd,) G G ( P d 2 ) ,  

then decisions can be ranked by means of a numerical function F ,  

dl  < d2 * F(di) G F(d2L 

where F(d)  = G(Pd) for all d E 9. 
The aspect of this formulation that is extremely appealing, however, from 

an analytical point of view is that the ordering of decisions can be expressed 
not only by a function G as above, but also by means of an essentially unique 
numerical function called the utilityfunction. This function, denoted U ,  maps 
the space of outcomes into the set of real numbers and satisfies 

di <d2%Pdl <Pd2=E{U[f(di,n)lId,} G E{uCf(d2,fi)lld2), ( 5 )  

where the expectations are taken with respect to the corresponding prob- 
ability distribution P( - Id) on X .  The problem of selecting an optimal 
decision is thus reduced to the problem of maximizing over 9 the expected 
value of the numerical function U .  

In order to clarify the problem formulation based on the approach of this 
section and to illustrate the advantages resulting from the introduction of a 
utility function let us consider the following example: 

INVESTMENT EXAMPLE Consider a problem of allocating one unit of 
capital between two investment opportunities A and B. Opportunity A yields 
$1.5 per dollar invested with certainty, while opportunity B yields $1 per 
dollar invested with probability f and $3 per dollar invested with prob- 
ability f. The problem is to decide on the fractions d and (1 - d) of the 
capital to be invested in opportunities A and B, respectively, where 0 G d ,< 1. 

In terms of the framework of the decision problem of Section 1.1, the 
set of decisions 9 consists of the interval [0, 11, i.e., the set of values that the 
fraction d invested in A can take. The set of states of nature JV consists of 
two elements n,, n 2 ,  where n, : B yields $ 1  per dollar invested, and n2 : B yields 
$3 per dollar invested. The set of outcomes 0 may be taken to be the interval 
[l, 31, which is the set of possible final fortunes of the investor resulting from 
all possible decisions and states of nature. The functionfthat determines the 
outcome corresponding to any decision d and state of nature n is given by 

1.5d + (1 - d) if n = n, 
1% + 3(1 - d) if n = n 2 .  f (d, n) = { 

The preference relation on the set of outcomes is the natural one, i.e., a final 
fortune O1 is at least as preferable as a final fortune O2 if 0, is numerically 
greater than or equal to O2 (i.e., O2 < 0, if O2 < 0,). 
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Let us first note that, since B has a higher expected rate of return, the 
decision that maximizes expected value of profit is to invest exclusively in 
opportunity B (d* = 0). On the other hand the optimal decision based on the 
max-min approach is to invest exclusively in A (d* = 1 )  since in this approach 
one maximizes profit based on the assumption that the most unfavorable 
state of nature will occur. Mathematically this can be verified by noting that 
d* = 1 maximizes over [0, 11 the function F(d)  given by 

F(d)  = min(l.5d + (1 - d),  1.5d + 3(1 - d ) } .  

Note that the approach of maximizing expected profit and the max-min 
approach lead to very different decisions. Yet it is safe to assume that many 
decision makers would settle on a decision that differs from both decisions 
mentioned above and that invests a positive fraction of the capital in both 
opportunities A and B. 

Now in the expected utility approach the fundamental assumption is that 
the decision maker has a complete ranking of all lotteries on the set of out- 
comes. In other words, given any two probability distributions on the in- 
terval of final fortunes [0,3] the decision maker can express his preference 
between the two, in the sense that he can point out the distribution in ac- 
cordance with which he would rather have his final fortune selected. Now the 
probability distribution on the set of final fortunes corresponding to a 
decision d is the one that assigns probability 3 to [ l S d  + (1 - d)] and prob- 
ability 3 to [ l S d  + 3(1 - d)]. According to the expected utility approach a 
decision d is optimal if its corresponding probability distribution is at least as 
preferable as all other distributions of the type described above. It should be 
clear, however, that a mathematical formulation of the corresponding op- 
timization problem is very cumbersome since it is difficult to visualize or 
conjecture the form of a numerical function by means of which these pro- 
bability distributions can be ranked. On the other hand, let us assume that a 
utility function U satisfying (5) exists (and it does exist under mild assump- 
tions). Then an optimal decision is one that solves the problem 

maximize E { U [ f ( d ,  n)]} 

subject to 0 < d < 1. 

n 

Substituting the data of the problem we have 

E { U [ f ( d ,  n)]} = + { U [ I S d  + (1 - d)] + U[1.5d + 3(1 - d)]) 

and the maximization problem above is formulated in a rather convenient 
form. 

n 
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As an example let us assume that the decision maker’s utility function is 
quadratic of the form 

U ( 0 )  = a0 - 02, 

where a is some scalar. We require that 6 < a so that U(0) is increasing in the 
interval [0, 31. This is necessary for the preference relation on the set of 
outcomes specified by the utility function to be consistent with the original 
preference relation. Solution of the maximization problem above yields 
the optimal decision d*, where 

0 if 8 < a  
d* = {(8 - a)/5 if 6 < a < 8. 

Note that for 6 < a < 8 a positive fraction of the capital is invested in op- 
portunity A even though it offers a return that is less than the average return 
of B. 

It is to be noted, of course, that different decision makers faced with the 
same decision problem may have different utility functions, so that before the 
problem can be numerically solved the form of the utility function must be 
specified. This can be done experimentally if necessary (see Problem 3). How- 
ever, the importance of the notion of a utility function satisfying ( 5 )  lies pri- 
marily with the fact that under relatively mild assumptions it exists and can 
serve as the starting point for analysis of the decision problem. The reason is 
that important conclusions about optimal decisions can often be obtained 
based on either incomplete knowledge of the utility function or fairly general 
assumptions on its form. Several examples of such situations will be given 
subsequently. 

We provide below the theorem of existence of a utility function for the 
case where the set of outcomes 0 is a finite set. For more general cases see 
the book by Fishburn [F3]. 

Consider the set 0 of outcomes and assume that it is a finite set, 0 = 
{ O , ,  0 2 , .  . . , ON}. Let 9 be the set of all probability distributions P = 
(pl, p 2 ,  . . . , pN) on 0, where pi is the probability of outcome Oi, i = 1, . . . , N .  
For any P,,  P2 E 9, P1 = (pi, . . . , p i ) ,  P ,  = (p: ,  . . . , p i ) ,  and any a E [0, 13, 
we use the notation 

aP, + ( 1  - a ) P , = ( a p :  + ( 1  - a ) p ; , . . . , a p i + ( l  - a ) p i ) ~ g .  

Let us make the following assumptions: 

There exists a complete and transitive relation < on 9. (For any 
P1, P 2  E 9 we write P ,  - P ,  if P ,  < P 2  and P ,  < P,,  and we write PI i P ,  
if P ,  < P ,  but not P ,  - P,). 

A. l  
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A.2 If P ,  - P,, then for all a E [0, 11 and all P E B 

aP, + (1 - a)P - aP, + (1 - a)P. 

A.3 If P1 i P,, then for all a E (0, 11 and all P E B 

U P ,  + (1 - a)P < UP, + (1 - a)P. 

aP ,  + (1 - a)P, - P,. 

A.4 If P ,  i P ,  < P 3 ,  there exists an a E (0, 1) such that 

Before proving the expected utility theorem let us provide a brief dis- 
cussion of the above assumptions. It is convenient for interpretation purposes 
to view each of the outcomes O , ,  O , ,  . . . , ON as a monetary prize. Consider 
any probability distribution P = ( p , ,  p , ,  . . . , p N )  on the set of outcomes. 
Imagine a pointer that spins in the center of a circle divided into N regions. 
We shall assume that the pointer is spun in such a way that when it stops it 
is equally likely to be pointing in any given direction. The region associated 
with each prize Oi, i = 1, . . . , N, occupies a fraction pi of the circumference of 
the circle. Then we associate with P the game (or lottery) whereby we spin 
the wheel and win the prize corresponding to the region within which the 
pointer stops. Now given any two probability distributions P, and P ,  and a 
scalar a E [0, 13 we can associate with the probability distribution 

aP, + (1 - a)P, 

the following game. A pointer is spun in the center of a circle divided in two 
regions, say 1 and 2, occupying respective fractions a and (1 - a) of its cir- 
cumference. Depending on whether the pointer stops in region 1 or region 2 
the game corresponding to P1 or P ,  is played and a prize is won accordingly. 

Assumption A.l requires that we are able to state our preference between 
games such as the above, which correspond to any two probability dis- 
tributions P ,  and P,. Furthermore, our preference relation must be tran- 
sitive, i.e., if P ,  < P ,  and P ,  < P 3 ,  then P1 < P,. This assumption forms 
the core of the expected utility approach. Assumptions A.2 and A.3 have 
obvious interpretations and both seem reasonable. Assumption A.4 is a 
continuity assumption requiring that if P1 i P ,  i P,, one is indifferent to 
the game associated with P2 and a game the outcome of which decides with 
respective probabilities c( and (1 - a) whether the game associated with P1 or 
P 3  will be played. This assumption is inconsistent with a worst-case viewpoint 
whereby one ranks lotteries according to the worst outcome that can occur 
with positive probability and has been the subject of some controversy. 
For example, consider the extreme situation where there are three outcomes 
O1 = death, 0, = receive nothing, and O3 = receive $1. Then it appears 
reasonable that any probability distribution that assigns a positive probability 
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to O1 (death) cannot be preferable or equivalent to any probability distri- 
bution that assigns a zero probability to O1. Yet Assumption A.4 requires 
that for some a with 0 < a < 1 we are indifferent between the status quo and 
agarnewhereby wereceive$l withprobability(1 - a)anddie with probability 
a. On the other hand it is possible to argue that if the probability of death a 
is extremely close to zero, then this might actually be the case. 

The following theorem is the central result of the expected utility theory. 
It states that a preference relation on the set of all lotteries satisfying Assump- 
tions A.1-A.4 can be characterized numerically by means of an essentially 
unique function, the utility function. It is worth pointing out that this 
result concerns an arbitrary preference relation on lotteries on the set o f  out- 
comes and is  thus completely decoupledfrom any decision problem that one may 
be considering. 

Theorem Under Assumptions A. 1-A.4 there exists a real-valued 
function U : 0 + R called utilityfunction, such that for all P,, P ,  E 9 

N N 

Pi < Pz k E { U ( O ) }  = C p ! U ( O i )  < pZU(0i) = E { U ( O ) } ,  (6) 
PI i =  1 i =  1 p2 

where we denote by Ep,  { . } the expectation with respect to the probability 
distribution Pi. Furthermore, U is unique up to a positive linear trans- 
formation, i.e., if U* is another function with the above property, there exist 
scalars s1 > 0, s,, such that 

U*(O) = SlU(0)  + s, vo E 0. 
Proof We first show the following statement: 

S If P ,  i P, and P ,  is such that P, < P ,  < P,, then there exists a 
unique scalar a E [O, 13 such that 

U P ,  + (1 - a)P, - P,. (7) 

Furthermore, if P; is such that P, < P, < P> < P 3  and a' corresponds to P', 
as in (7), then a 2 a'. 

Indeed if P ,  - P, i P,, then a = 1 is the unique scalar satisfying (7) since 
if for some 0 < a -= 1 we had 

aPl + (1 - a)P,  - P z  - aPl + (1 - a)P,, 

then Assumption A.3 would be contradicted. Similarly if P1 i P, - P,, 
then a = 0 is the unique scalar satisfying (7). Assume now that P1 < P, i P ,  . 
Then by Assumption A.4 there exists an a1 E (0, 1) satisfying (7). Assume that 
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a1 is not unique and there exists another scalar u2 E (0, 1) such that (7) is 
satisfied, i.e., 

(8) GIIP,  + (1 - ~ 1 ) P 3  - Pz - a2P1 + (1 - a,)P3. 

Let us assume that 0 < a, < a, < 1. Then we have 

Since P1 i P ,  we have by Assumption A.3 and (9) 
1 - a2 

P ,  = P 3 .  P ,  +- P ,  i ___ P ,  + - 
1 - a, 1 - a, 1 - a ,  1 - a1 

1 - a2 a2 - a1 a2 - a ,  

Again using A.3 and (10) we have 

N ~ P ,  + (1 - ~ 2 ) P 3  ( C C ~ P ,  + (1 - ~ r , ) P 3 .  

However, this contradicts (8) and hence the uniqueness of the scalar a in (7) 
is proved. 

To show that if P ,  < P,  < P, < P,, then a 2 a‘ assume the contrary, 
i.e., a < a‘. Then we have, using A.3, 

P2 - a’P1 + (1 - a’)P, 

M 

l-a+a’ 

+ 1 - a + a’ 

a 

= (1 - a + a’) 

< ( I  - a + + ’ )  
l-a+a’ 

= aP, + (1 - a)P3 - P 2 .  

Hence P, < P , ,  which contradicts the assumption P 2  4 P i .  It follows that 
a 2 a‘ and Statement S is proved. 

Now consider the probability distributions 

= (1, 0,. . . 7 o), P ,  = (0, 1, .  * .  9 o), . . . 7 P N  = (0, 0,. . 3 0, 1). 

Assume without loss of generality that P ,  < P ,  < . . . < PN and assume 
further that P ,  < PN (if P ,  - P2 - . . . - P N ,  the proof of the proposition 
is trivial). Let A , ,  A N  be any scalars with A ,  < AN and define 

u(0,) = A, ,  u(0N) = AN. 
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Let ai ,  i = 1, . . . , N, be the unique scalar ai E [0, 11 such that 

aiP1 + (1 - ai)PN - Pi, 

U(Oi) = A i  = a i A ,  + (1 - ai)AN, 

i = 1,. . ., N, (1 1) 

(12) 

We shall prove that the function U : 0 + R as defined above has the desired 
property (6). Indeed for any probability distribution P = (p,, . . . , pN) it is 
easily shown that P, < P < PN and thus we can define a(P) to be the unique 
scalar in [0, 11 such that 

and define 

i = 1, ..., N. 

a(P)Pl + [l - .(P)]PN - P. (13) 

From Statement S we obtain for all P, P' 

P < P' * a(P) 2 a(P'). (14) 
Now from (1 1) we have 

Comparing (13) and (1 5 )  we obtain 
N 

a(P) = Cpiai, 
i =  1 

and from (14) 
N N 

P, < P, * C p!ai 2 ,I p?ai. (16) 

From (12) we have mi = (AN - Ai)/(AN - A , ) ,  and substituting in (16) we 
obtain 

i =  1 I =  1 

N N 

P, < P,% Cp!Ai < Cp?Ai, 
i =  1 i =  1 

which is equivalent to (6), which was to be proved. 
It remains to show that the function U defined by (12) is unique up to a 

positive linear transformation. Indeed if U* were another utility function 
satisfying (6), then, by denoting U*(Oi) = A:, i = 1, . . . , N, by (11) and (6) 
we would have 

u*(oi) = Mi U*(Ol) + (1 - ai)u*(oN). 
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This implies 

from which 

This proves the theorem. Q.E.D. 

Returning now to the decision problem, once we assume the existence of a 
preference relation on the set of lotteries characterized by a utility function, 
we can rank decisions as follows. Given the probability distribution P( * Id) 
on the set of states of nature N, every decision d E 9 induces a probability 
distribution (or lottery) P d  on the set of outcomes 0. Under the assumptions 
of the expected utility theorem there exists a utility function U :  0 + R such 
that for any d,, d z  E 9 

p d l  4 p d z  * E iU(0)) G E iU(O) ) .  
p d  I P d z  

We have, however, 

E { U ( O ) )  = E { UCf(d ,  n)lIdl Vd E 9, 
P d  

where the expectation on the left is taken with respect to P d  and the expecta- 
tion on the right is taken with respect to the probability distribution P( * Id) 
on N. Hence 

p d ,  4 Pd,*E{U[f(~i~n)] ldi}  G E{U[f(dz,n)lldil .  

By ranking decisions d E 9 in accordance with the ranking of the corre- 
sponding probability measures P d ,  

we obtain a complete order on the set 9 induced by the utility function U .  
The optimal decision is found by maximization of the numerical function 
F :  $3 -+ R, where 

F ( 4  = E {UCf (d ,  4 1  Id) 

and the decision problem is formulated in a way that is amenable to mathe- 
matical analysis. 
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The Notion of Risk 

Consider a decision maker possessing a utility function U defined over 
an interval X of real numbers. We say that the decision maker is risk averse if 

E { W ) l  G WE{x}l  (17) 
P P 

for every probability distribution P on X for which the expectations above 
are finite. In other words, a decision maker is risk averse if he always prefers 
the expected value of the lottery over the lottery itself. Such behavior char- 
acterizes most decision makers. One may show that risk aversion is equi- 
valent to concavity of the utility function (see Appendix A for the definition 
and properties of concave and convex functions). On the other hand, we say 
that the decision maker is riskpreferring if the opposite inequality holds in 
(17), which is the case of a convex utility function. A gambler playing an 
unbiased roulette and receiving no reward or pleasure from gambling per se 
is a typical example of a risk preferring decision maker. Finally, a decision 
maker having a linear utility function is said to be risk neutral. 

The notion of risk is important since it captures a basic attribute of the 
attitudes of the decision maker and often characterizes important aspects of 
his behavior. An important and widely accepted measure of risk has been 
proposed by Pratt [P7]. In his formulation the function 

r(x) = - U”(x)/U‘(x) (18) 

[where U”, U’ denote the second and first derivative of U ,  respectively, and it 
is assumed that U’(x) # 01 measures locally (at the point x )  the risk aversion 
of the decision maker and is called the index of absolute risk aversion. It can 
be interpreted as follows. 

Let x be a gamble over the set of real numbers (i.e., a random variable) 
with given probability distribution and expected value X = E { x } .  Let us 
denote by y the amount of insurance the decision maker is willing to pay in 
order to avoid the gamble x, and instead receive the expected value X of the 
gamble. In other words, y is such that 

(19) U(X - y )  = E{U(x)l. 
Intuitively, y provides a natural measure of risk aversion. Proceeding formally 
we have by a Taylor series expansion around X, 

U(X - y )  = U(X) - yU’(X) + Ob),  (20) 
where by o(a) we denote a quantity that is negligible compared with the scalar 
a provided a is close to zero, i.e., [o(a)/a] = 0. Also we have 

E { U(X) }  = E { U(X) + (X - X)U‘(X) + %X - X)’U’’(X) + O [ ( X  - X)2]} 
= U(X) + +a2U”(X) + E {o [ (x  - X)23}, (21) 
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where n2 is the variance of x .  From (19)-(21), we have 

yU’(2)  = -+n2U”(2) + o(y)  + E {o[(x - X)2]}. 

From this equation and (18) it follows that the amount of insurance or risk 
premium y that the decision maker is willing to pay is proportional (to first 
order) to the index of absolute risk aversion r(2), thus justifying the use of r (x)  
as a measure of local risk aversion. Notice that in the preceding investment 
example the index r(y) is equal to 2/(u - 2y) and tends to decrease as u 
increases. This fact is reflected in the optimal investment, where an increasing 
fraction of the capital is invested in the risky asset as u increases. 

The index r (x)  often plays an important role in the analysis of behavior 
of decision makers. It is generally accepted that for most decision makers 
r (x)  is a decreasing or at least nonincreasing function of x, i.e., the decision 
maker more readily accepts risk as his wealth is increased. On the other hand, 
for the quadratic utility function U ( x )  = -3.’ + bx + c, the index r (x)  is 
equal to (b  - x) - ’  and is an increasing function of x (for x < b). For this 
reason the quadratic utility function is often considered inappropriate or at 
least accepted with reservation in economics applications, despite the an- 
alytical simplifications often resulting from its use. 

1.3 Some Nonsequential Decision Problems 

In this section we provide some examples of decision problems under 
uncertainty. In addition to illustrating the general approach of the previous 
section, some of these examples constitute applications that are important in 
their own right and will be useful later on. Their common characteristic is that 
the decision problems are formulated as single-stage problems as opposed to 
sequential decision problems, which are the subject of the remainder of this 
text. 

1.3.1 Quadratic Cost Functionalsf 

Many decision problems under uncertainty that are of interest involve 
the minimization of the expected value of a function that is quadratic in the 
decision variable. Not only do  such functionals arise naturally in many 
problems of interest but also there is an incentive in using a quadratic cost 
functional whenever this is reasonable. This is due to the great analytical 
simplification associated with such cost functionals as will be seen shortly. 
We consider below the simplest case. The results obtained have analogs in 

t We shall often be considering minimization of E (  - U}, where U is a utility function, 
instead of maximization of E { U }  and we shall refer to { - U} as a cost,functionu/. 
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more complicated cases involving sequential decision making. These cases 
will be considered in Chapters 3,4,6, and 8. 

Consider the problem of finding a vector u E R" (R" denotes m-dimen- 
sional Euclidean space) that minimizes the cost functional 

J ( u )  = E {&Ru + x'u}. 

In this relation R is an m x m symmetric random matrix, x an m-dimensional 
random vector, and prime denotes transposition. The joint probability 
distribution of R and x is given and we assume that the expected values 

R, x 

R = E { R } ,  = E { X ) ,  

are finite. Furthermore R is assumed to be a positive definite matrix. 
By taking the expectation with respect to R ,  x, we have 

J (u )  = iu'Ru + X'u, 

and the minimizing u is given by 

Thus the solution for this case is obtained analytically. Furthermore, the 
optimal vector u* depends linearly on the mean X. This linear dependence is 
characteristic of quadratic cost functionals. Note also that the solution u* is 
the same as the one that would be obtained if the problem were formulated 
as a deterministic problem (no uncertain parameters present) with all random 
quantities in the cost functional replaced by their expected values. This 
property is sometimes called the certainty equivalence principle. For single- 
stage problems it holds not only when the cost functional is quadratic but 
also for many other cost functionals. For example, it holds if the cost func- 
tional is linear with respect to the random quantities, such as in the cost 
functional 

where ri are random variables andf, given functions. On the other hand, as 
will be seen later, for quadratic cost functionals the certainty equivalence 
principle holds in satisfying form even in multistage decision problems, a fact 
that does not hold true for a wide class of cost functionals. 

Finally, consider the situation where the choice of u is made after ob- 
serving a random vector z that is probabilistically related to R ,  x ,  and further- 
more the conditional probability distribution P(R,  x I z )  is known for every z. 
Then clearly the optimal decision is given by 

u*(z) = - E { R  Iz}-' E { x ~ z )  
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and depends on z. Whenever R and z are independent and x, z are Gaussian 
random vectors, then E {x lz} is a linear function of z (a fact to be shown 
later) and the decision u* depends in turn linearly on z. 

1.3.2 Least-Squares Estimation of Parameters 

Assume that we wish to determine an estimate of the value of a random 
vector w E R" given a known measurement z E: R". The joint probability 
distribution function F(w, z) is known. We formulate this problem as follows. 

Given z, find a vector G(z) that minimizes over all vectors f i  E R" the 
quadratic cost functional 

J ( P )  = E { l b  - PIIZlZ>, 
where llxll denotes the usual Euclidean norm of a vector x (Ilxll = (x'x)'''). 
This cost functional is a reasonable one and at the same time it results in a 
conveniently simple solution. 

Assuming that all expected values appearing below are finite, we have 

J ( P )  = E{llw1I2 - 2w'P + 11P1121~> = E{llwllZlz) - 2EIwlzYP + IIPI12 
and minimization with respect to P yields the minimizing vector 

6 ( z )  = E {wlz}. 

The corresponding optimal value of the cost functional is given by 

JC@(z)l = E { l l w  - E{wIz}II~Iz}. 
The fact that the conditional mean E {w lz} is the optimal (least-squares) 

estimate of w given z is a fundamental result of parameter estimation theory. 
In general it may be difficult to obtain a convenient analytic expression for 
E {w lz}. If, however, the joint probability distribution of (w, z) is a Gaussian 
distribution, then it is passible to show that the conditional mean E {w lz}  is a 
linear function of z. This is a well-known result and will be proved in the 
appendix to Chapter 4. 

1.3.3 Inventory Control 

Consider a problem of ordering a quantity of a certain item to meet a 
stochastic demand for the item. The cost of purchasing or producing u units 
of the item is 

if u = 0, C(u) = 

where K 3 0 is a fixed cost and c =- 0 is cost per unit. The demand w is a 
random variable taking values in a bounded interval [0, b], where b > 0, 



1 . 3  SOME NONSEQUENTIAL DECISION PROBLEMS 21 

with given probability distribution. There is a holding cost h 2 0 per unit 
inventory left over at the end of the period under consideration and a de- 
pletion cost p 2 0 per unit demand that is unmet. The holding and depletion 
costs may have a variety of more specific interpretations depending on the 
particular problem at hand. 

Given an initial inventory x the problem is to determine the additional 
inventory u to be ordered so as to minimize the total expected cost: 

J(u)  = C(u) + E {p max(0, w - x - u )  + h max(0, x + u - w)}. (23) 

By denoting 

L(y) = p E  (max(0, w - y)} + h E (max(0, y - w ) } ,  (24) 

the expected cost is written 

K + cu + L(x + u )  if u > 0 
if u = 0. J ( u )  = 

We first note that L(y) is a convex function of y as can be easily seen from 
its definition. Hence the function G defined by 

G(Y) = C Y  + U Y )  

is also a convex function. Now let S be a value of y that minimizes cy + L(y) 
and s be the smallest value of y for which cy + LCy) = K + cS + L(S) (see 
Fig. 1.1). If c -= p ,  one may show that such values exist. This can be seen from 
the fact L'(y) = h, L'(y) = - p ,  where L' denotes the first 
derivative of L. Hence if c < p ,  we have l i m l , , l ~ m  G(y) = co and the existence 
of a minimizing scalar S is guaranteed. 
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We will show that a value of u that, for a fixed value of x ,  minimizes the 
expected cost is given by the equation 

S - x if x < s, 

0 if x 2 s. 
u* = { 

In other words, the optimal ordering policy is characterized by a “critical” 
level s below which a positive quantity must be ordered and by a “target” 
level S to which the total inventory ( x  + u*) should be raised when a positive 
order u* is placed. 

Indeed if x 2 s, then from Fig. 1.1 it follows that 

cx + L(x)  < K + c(x + u )  + L(x + u )  Vu > 0, 

or equivalently 
L(x )  d K + cu + L(x + u). 

In view of the form of the cost functional [cf. Eqs. (23) and (25)] the above 
relation shows that for x 2 s no ordering (u  = 0) is optimal. 

If x < s, then from Fig. 1.1 again it follows that 
K + cS + L(S) < L ( x )  + cx 
K + cS + L(S) < K + c(x + u )  + L(x  + u )  Vu > 0, 

or equivalently 

J ( S  - X )  = K + c(S - X )  + L(S) < L(x) 
J ( S  - X )  = K + c(S - X )  + L(S) Q K + cu + L(x + U) VU > 0. 

These relations in view of (25) show that for x < s, ordering S - x is optimal. 
Thus the optimality of u* as given by (26) has been proved. 

An inventory ordering policy of form (26) is usually called an (s, S )  policy. 
Note that if K = 0 and if S is the smallest minimizing value of cy + L(y)  (for 
example, if it is the unique minimizing value), then one has s = S and the 
optimal policy is characterized by a single critical level. Such a policy may be 
called a “degenerate” (s, S) policy. Inventory control will be reexamined in a 
sequential framework in Section 3.2. 

1.3.4 Choice between Risky und Secure Assets 

An individual with given initial wealth ci wishes to invest part of it in a 
risky asset offering a rate of return e, and the rest in a secure asset offering rate 
of return s > 0. We assume that s is known with certainty while e is a random 
variable with known probability distribution P. If x is the amount invested 
in the risky asset, then the final wealth of the decision maker is given by 

y = s(ci - x )  + ex = sci + (e - s)x. 
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The decision to be made by the individual is to choose x so as to maximize 

J(x)  = E { U(y)}  = E { U[sa + (e - s )x] )  

subject to the constraint x 2 0. We shall assume that U is a concave, mono- 
tonically increasing, twice continuously differentiable function with negative 
second derivative, and with index of absolute risk aversion denoted 

r(Y) = - U”(Y)/U’(Y). (27) 
We also assume that the probability distribution of e is such that all expected 
values appearing below are finite, and furthermore we assume that the utility 
function U is such that the maximization problem has a solution (necessary 
and sufficient conditions for this to occur are given by Bertsekas [B12]). 

Now given a, the amount x* to be invested in the risky asset is determined 
from the necessary condition 

if x* > 0, (28) dJ(x*)/dx = E { ( e  - s)U’[sa + (e - s)x*]} = 0 

dJ(x*)/dx d 0 if x* = 0. 

Now since CJ’ is everywhere positive it follows that if E {(e - s)} > 0, then 
we cannot have x* = 0 since 

dJ(O)/dx = E { (e  - s)}U’(sa) > 0. 

Hence 
E {(e - s)} > 0 + x* > 0, 

or in words, a positive amount will be invested in the risky asset if its expected 
rate of return is greater than the rate of return of the secure asset. 

Assume now that E { ( e  - s)} > 0 and denote by x*(a) the amount 
invested in the risky asset when the initial wealth is a. We would like to 
investigate the effect of changes in initial wealth a on the amount invested 
x*(a). By differentiating (28) with respect to a (using the implicit function 
theorem) we obtain 

E {(e - s)U”[sa + (e - s)x*(a)] [ s  + (e - s) dx*(a)/da]} = 0, 

from which 
E {s(e - s)U”[sa + ( E  - s)x*(a)]} 
E {(e - ~ ) ~ U ” [ s a  + (e - s)x*(a)]} ‘ 

- -  - 
dx*(a) 

da 

Since the denominator is always negative and the constant s is positive, the 
sign of dx*(a)/da is the same as the sign of E { (e  - s)U”[sa + (e - s)x*(a)]}, 
which by (27) is equal to 

f ( a )  = - E { ( e  - s)U’[sa + (e  - s)x*(a)]r[sa + (e  - s)x*(a)]}. 
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Now assume that the risk aversion index r(y) is monotonically decreasing, 
i.e., r(yl) > r (y2)  if y ,  < y , .  Then 

( e  - s)U’[sa + ( e  - s)x*(a)]r[sa + ( e  - s)x*(a)] dP(e) 
- SI, 

(e  - s)U’[sa + (e  - s)x*(a)] dP(e) 
+ SI, 

= -r(sa) dJ[x*(a) ] /dx  = 0, 

where we have utilized the fact that 

(e  - s)r[sa + (e  - s)x*(a)] < (e  - s)r(sa) 

with strict inequality if e # s. 
Thus we havef(a) > 0 and hence dx*(a)/da > 0 if r (x)  is monotonically 

decreasing. Similarly, we obtain dx*(a)/da < 0 if r (x)  is monotonically 
increasing. In words, the individual, given more wealth, will invest more (less) 
in the risky asset if his utility function has decreasing (increasing) index of 
absolute risk aversion. Aside from its intrinsic value, this result reaffirms the 
important role of the index of risk aversion in shaping significant aspects of a 
decision maker’s behavior. 

1.3.5 Investment Problems- Mean- Variance Analysis 

Consider an investor who wishes to allocate a certain amount of wealth A 
among n different risky investment opportunities offering corresponding 
rates of return e l , .  . . , en.  We assume that e l , .  . . , en are random variables 
with given joint probability distribution. If amount x i ,  i = 1, . . . , n, is 
allocated to investment opportunity i, the final wealth of the decision maker is 
a random variable y given by 

n 

y = C e i x i .  
i= 1 



1.3 SOME NONSEQUENTIAL DECISION PROBLEMS 25 

Let us consider the problem of selecting xlr . . . , x, so as to maximize 

where U is a utility function. The maximization is subject to x i  = A and 
other constraints on xl, . . . , x,, which we denote by (xl, . . . , x,) E X c R". 

This is a very significant problem and arises often in a practical setting. 
It has been studied extensively for many years and various approaches have 
been suggested for its formulation and solution. First of all, it should be 
mentioned that it is essential to consider the problem in terms of a nonlinear 
utility function, for if one were to formulate the problem as one of maximiza- 
tion of the expected revenue E {I;= e i x i }  subject, for example, to the con- 
straints x i  = A, x i  2 0, i = 1, . . . , n, the resulting optimal allocation 
would be to invest exclusively in the asset that gives the greatest expected 
return regardless of the risk that such an allocation would entail. This be- 
havior i.s, however, contrary to real-life observations, which clearly indicate 
that most people find it advantageous to diversify their investments in the 
presence of uncertainty. 

Now the solution process of a problem of the type described may be 
divided into three phases, which may partially overlap. The first phase is to 
collect and analyze data that will be used to determine the probability dis- 
tribution of the rates of return e l ,  . . . , en. The Second phase is to examine the 
probabilistic properties of the total return y = cy= eixi for various feasible 
allocations ( x l ,  . . . , x,), while the third phase is actually to determine an 
optimal allocation (x:, . . . , x,*) that maximizes the expected utility E { U(y)}.  
A major difficulty with the actual solution is that while the first two phases 
will ordinarily be carried out by specialists the last phase will by necessity 
involve the (usually nonspecialist) investor since he is the only one who, 
through his attitude toward risk (or equivalently through his utility function), 
will determine the character of the allocation that he prefers .It is of course 
conceivable that the investor could reveal to the specialist his utility function 
via experimentation and the specialist could in turn derive the optimal 
allocation by solving the corresponding maximization problem. However, 
aside from the fact that such a procedure is time consuming and meaningless 
to the nonspecialist investor, it has the further disadvantage that a separate 
problem must be solved for each investor and for each level of investment. 
A very popular alternative approach to the problem is the so-called mean- 
variance approach. In this approach each allocation ( x l , .  . . , x,) is char- 
acterized by the mean and the variance of the corresponding total return 
y = e i x i .  The investor is called upon to decide the combination of 
mean and variance that he prefers-a much more meaningful process to him. 
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The approach is also often very economical from the computational point of 
view as we shall explain shortly. 

The basic assumption of the mean-variance approach is that the objective 
E { U b ) }  can be expressed in terms of the mean 

E { Y )  = Y(xl?. . . ,xn) 

and the variance 

E{(Y - E { Y } ) ~ )  = 02(x1, . . . , x n )  

of the random variable y. This fact holds true if U is a quadratic utility function 
or if the distribution of y is characterized completely by its mean and variance 
for every x l ,  . . . , x, (for example, if y has a Gaussian distribution or more 
generally a two-parameter distribution). Under these circumstances the 
problem becomes one of maximizing 

E { u(y)I = CCY(x1, . . * 9 XA 02(x1, . . ., xn)] 

subject to the constraints on x l ,  . . . , x,, where G is the function expressing 
E { ~ ( y ) )  in terms of j ,  02. 

Now for most decision makers it seems reasonable that G should be 
increasing as 7 is increasing and decreasing as o2 is increasing. In other words, 
the decision maker prefers a large average return but wishes to avoid a 
large variance, which is associated with large risk-an attitude consistent 
with risk aversion. We assume that this is indeed so. Then if x:, . . . , x,* is a 
solution of the problem, it is clear that x:, . . . , x,* must also solve the problem 

minimize 

subject to 

a2(x1,. . . , x,) 

E x i  = A ,  ( x l , .  . . , x,)EX, Y(xl,. . . , x,) 2 m*, 
n 

i =  1 

where m* = j(x7,. . . , x:). 
Thus we need only look for possible solutions of problems of the form 

minimize 02(x1, . . . , x,) 

subject to c xi = A,  (xl, . . . , x,) E X ,  fix, . . . , x,) 2 m, 

where m is a scalar. This problem can be written 

n 

i =  1 

minimize X’QX 

subject to E x i  = A ,  x EX,  cCixi  >, m, 
n n 

i =  1 i =  1 
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where x = (x l , .  . . , xn), Fi = E {e i } ,  and Q is the covariance matrix of the 
vector (el, . . . , en): 

11. (el - c?~)'. . . (el - el)(e,, - c,,) 
Q =  E { [  (en - ?,,)(el - F l ) .  . . ( en  - Cn)2 

It is a problem that can be solved by standard nonlinear programming 
techniques. 

By solving the problem above repeatedly for various values of m we obtain 
a locus of pairs { lol(m),  j ( m ) } ,  where 1 0 1  is the standard deviation (square 
root of a2) as shown in Fig. 1.2. The pairs { I cr I (m), J(m)}  correspond to m via 
the optimization problem above. Usually a higher mean j j  is also associated 
with a higher 1 0 1  (higher risk), in which case the curve has a positive slope as 
shown in Fig. 1.2. 

.II 
FIGURE 1.2 

As a result of the preceding analysis the investment problem has been 
reduced to choosing a point on the mean standard deviation locus, a task that 
is relatively easy and meaningful to an investor. In this way the various tasks 
involved in the solution process can be separated. The probability distribu- 
tion of the returns of the risky assets will be determined by professionals, and 
the mean standard deviation locus will be determined via computational 
solution of the related optimization problems. Then the individual investor 
will be called upon to decide on a point on the mean standard deviation locus 
that will determine the amount he will invest in each opportunity. 

Important simplifications and computational economies result in the 
frequent case where the constraint set X is a cone with vertex at the origin, 
i.e., when X has the property that (Axl, . . . , Ax,,) E X for every 1 2 0 and 
(xl, . . . , x,,) E X .  This is the case, for example, when X = R" or when X is the 
positive orthant 

X = { ( x ~ ,  .. ., x,) Ix i  2 0, i = 1,. .., n}. 
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Under these circumstances one may formulate the minimization problem (29) 
in terms of the fractions of total investment 

ai = xJA,  i = 1,.  . . , n, 

rather than the actual amounts x l , .  . . , x, to be invested. Thus when X is a 
cone with vertex at the origin, the minimization problem (29) may be written 

minimize A2(a’Qa) 

subject to 1 ai = 1, a E X, 1 ?,ai 2 m/A.  

This problem may be solved for A = 1 and various values of m. The corre- 
sponding mean standard deviation locus may be viewed as the set of mean 
standard deviation pairs “per unit of total investment.” Given a pair { 1 IT 1, j }  
on this locus it is easy to see that the corresponding standard deviation and 
mean associated with a total investment of A monetary units will be A I IT I 
and A j ,  respectively. In this way a mean standard deviation locus constructed 
for a single level of total investment may be used for any level of investment. 
Thus the approach allows a once and for all computation, valid for every level 
of investment and hence for every investor. 

n n 

i =  1 i =  1 

1.4 A Model for Sequential Decision Making 

The class of decision problems considered in the first two sections of this 
chapter is very broad. In this text we are primarily interested only in a 
subclass of such decision problems. These problems involve a dynamic 
system. Such systems have an input-output description and furthermore in 
such systems inputs are selected sequentially after observing past outputs. 
This allows the possibility of feedback. Let us first give an abstract description 
of the type of problems with which we shall be dealing. 

Let us consider a system characterized by three sets U, W, and Y and a 
function S :  U x W + Y. We shall call U the input set, W the uncertainty set, 
Y the output set, and S the system function. Thus an input u E U and an un- 
certain quantity w E W produce an output y = S(u, w)  through the system 
function S (Fig. 1.3). Implicit here is the assumption that the choice of the 
input u is somehow controlled by a decision maker or device to be designed 
while w is chosen, say, by Nature according to some mechanism, probabilistic 
or not. 

In many problems that evolve in time, the input is a time function or 
sequence and there may be a possibility of observing the output y as it evolves 
in time. Naturally this output may provide some information about the 
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c IV 

uncertain quantity w, which can be fruitfully taken into account in choosing 
the input u by means of a feedback mechanism. 

Definition We say that a function n: Y + U is a feedback controller 
(otherwise called policy or decisionfunction) for the system if for each w E W 
the equation 

u = n[S(u, w)] 

has a unique solution (dependent on w) for u. 
Thus for any fixed w, a feedback controller n generates a unique input u 

and hence a unique output y (Fig. 1.4). In any practical situation the class of 

I V  

1 1  

.I’ = S(u. w )  

FIGURE 1.4 

admissible feedback controllers is further restricted by causality (present 
inputs should not depend on future outputs), and other practical requirements. 

Now given the system (U, W, Y, S) and a set of admissible feedback con- 
trollers II it is possible to formulate a decision problem in accordance with 
the theory of the previous section. We take ll as the decision set and Was the 
set of states of nature. We take as the set of outcomes the Cartesian product 
of U ,  W, and Y, i.e., 0 = (V x W x Y). Now a feedback controller R E  II 
and a state of nature w E Wgenerate a unique outcome (u, w, y), where u is the 
unique solution of the equation u = n[S(u, w)] and y = S(u, w). Thus we 
may write (u, w, y )  = f ( n ,  w), where f is the function determined by the 
system function S. 
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If G is a numerical function ordering our preferences on 0, J the corre- 
sponding payoff function for the decision problem above, and a min-max 
viewpoint adopted, then the problem takes the form of finding n E l7 that 
maximizes 

F ( n )  = inf J(n, w) = inf G(u,  w, y) 

where u and y are expressed in terms of n and w by means of u = n[S(u, w)] 
andy = S(u, w). 

If w is selected in accordance with a known probabilistic mechanism, i.e., 
a given probability measure that may depend on n, and the function S and 
the elements of l7 satisfy suitable (measurability) assumptions, then it is 
possible to formulate a decision problem by means of a utility function. 
Find n E I-I that maximizes 

F ( 4  = E { u ( u ,  w, Y)) 

where u and y are expressed in terms of n and w by means of u = n[S(u, w)] 
and y = S(u, w). 

W E  w W E  w 

n' 

We shall be mostly dealing with problems of this second type. 
Of course, on the basis of the formulation given one can say that problems 

of decision under uncertainty can be reduced to problems of decision under 
certainty-the problem of maximizing over l7 the numerical function F(n). 
However, it is important to realize that due to the feedback possibility the 
set n is a set offunctions (of the system output). This fact renders deterministic 
optimization techniques such as mathematical programming or Pontryagin's 
maximum principle inapplicable, and the only formulation that offers some 
possibility of analysis is the so-called method of dynamic programming 
(DP). In D P  the problem of minimizing F ( n )  is decomposed into a sequence of 
much simpler optimization problems that are solved backwards in time. 

A Discrete-Eme Sequential Decision Model 

In this text we are primarily interested in the analysis of DP techniques 
that are applicable to a specific but quite broad class of optimization pro- 
blems under uncertainty. This class of problems involves a dynamic system 
evolving in discrete time according to the equation 

Xk+i=fk(Xk,UkrWk)r k = o , 1 , . . - , N - l ,  (30) 

where xk denotes the state of system, u k  a control input, and wk an uncertain 
parameter or disturbance. The functionsf, are given and xk, uk, wk are ele- 
ments of appropriate sets (or spaces). The system operates over a finite 
number of stages N (a Jinite horizon). We shall mostly assume that wk is 
selected according to a probabilistic mechanism that depends on the current 
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state xk and control input u k ,  but does not depend on the values of the prior 
uncertain parameters w o ,  w l ,  . . . , wk- It will be assumed that the control 
inputs u k  are selected by a decision maker or controller that has knowledge of 
the current state xk (perfect state information). Thus a feedback controller of 
the form 

{ p O ( x O ) ,  p l ( x l ) ,  * .  . 9 pN- l ( x N -  1)) 

is sought. This feedback controller is a sequence of functions of the current 
state and can be viewed as a plan that tells us that when at time k the state is xk,  

then the control u k  = p k ( X k )  should be applied. This controller must satisfy 
various constraints [for example, pk(xk) E Uk for all x k ,  where Uk is a given 
constraint set] that depend on the problem at hand. 

In terms of our earlier model the system input is u = {u, ,  ul, . . . , u N -  
the uncertain quantity is w = { w o ,  w l ,  . . . , w N -  1}  (perhaps together with 
the initial state x o ,  if x o  is uncertain), the output is y = { x o ,  x l ,  . . . , x N } ,  and 
the system function S is determined in an obvious manner from the system 
equation (30). The class II of admissible feedback controllers is the set of 
sequences of functions 7c = {po ,  . . . , p N -  ]}, where pk is a function of the 
output y of the form &(y) = pk(xk). Furthermore, ,uk must satisfy constraints 
depending on the problem. 

We shall assume that the utility function has an additive structure of the 
form 

N -  1 

U(u, w, y )  = U N ( X N )  + 1 U k ( X k ,  uk, w k ) .  
k = O  

Thus the problem becomes one of finding an admissible n* = {&, . . . , pE- 
that maximizes 

1 N -  1 

J n  = J(p03 . . . 7 P N -  I )  = U N ( X N )  + 1 U k [ x k y  p k ( x k ) ,  w k ]  
k = O  

subject to the system equation constraints 

x k + l  = . f k [ x k ,  pk(xk), w k l ,  k = 0, 1, . . . 9 N - 1, 

and any other existing constraints on the feedback controller. We note that 
the description of the problem given above is intended to be informal. A 
precise definition together with examples will be provided in the next chapter. 

Dynamic programming is directly applicable to problems of this form. 
Furthermore, as will be shown later, various other dynamic optimization 
problems involving, for example, correlated disturbances, imperfect state 
information, and nonadditive cost function, can be directly reformulated into 
the problem described above (perhaps by introducing a more complex 
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structure). Finally it is possible to let the final time N go to infinity, which is 
the case of an inJinite time horizon. 

We finally should point out that while we refer to k as the time index and 
to system (30) as a discrete-time system, it is not necessary that the index k 
have a time interpretation. For example, consider the problem of finding 
quantities u o ,  . . . , u N -  of N products to be purchased so as to satisfy the 
constraint 

N -  1 

1 p k U k  = A 
k = O  

and minimize the cost 
N -  1 

1 gk(Uk), 
k = O  

where A, Po,  . . . , f l N -  are given scalars and g o ,  . . . , g N -  are given functions. 
By defining the system equation to be 

(31) xk+l = xk + fikuk, k = 0, 1,. . . , N - 1 ,  

with an initial state xo = 0, the problem becomes one of minimizing 
N -  1 

1 gk(Uk) 
k = O  

subject to the system equation (31) and the terminal state constraint x N  = A. 
Clearly this problem can be put into the framework considered in this section. 

Relation to Transition Probability Models 

It is to be noted that often the system equation is not given in form (30); 
rather one is given the set of transition probabilfiies P(xk+ Ixk, uk) of the 
system moving from state xk to state xk+ when the control input is uk. This 
is typically the case when the controlled system is a finite state Markov chain, 
or when the problem involves analysis of a decision tree [Rl]. In this case it is 
still possible to define a system equation of form (30) by letting the space of 
uncertain parameters wk be the same as the space of xk+ and by defining the 
system functionsf, to be of the form 

f k ( x k  9 uk 9 w k )  = wk 

and letting the probability distribution of wk be equal to the given transition 
probability distribution P(&+ Ixk, uk). The system equation is simply 
X k + l  = wk and the occurrence of a particular value of wk is equivalent to 
transition to the corresponding state xk+ 1. The transition probabilities de- 
pend on the current state xk and the control uk that is applied. 
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EXAMPLE Consider a controlled process that can be in one of two 
possible states 1 and 2. In other words S = { 1,2}, where S is the state space. 
Let there be two possible controls u1 and u' at each state, i.e., the control 
space is C = {u', u'}. Let the transition probabilities pi&") of moving from 
state i to statej when the control un is applied, i ,  j ,  n = 1, 2, be given by 

pll(ul)  = alr  plz(uz) = 1 - a', 

P21(U1) = P 1 ,  p z z ( u 2 )  = 1 - pz, 
where a,, u z ,  /I1, P2 E [0,1]. Then this controlled process may be represented 
by the system equation 

plz(u') = 1 - a,, 

PZZ(U')  = 1 - P,, 
pll(u2) = m a ,  

p21(u2) = P 2 ,  

x k + l  = w k ,  

where wk is a random variable taking the values 1 and 2 with probability 
distribution depending on x k  and u k  as follows: 

It is to be noted that we could also consider the reverse transformation 
whereby we start from the system equation xk+ = A(&, u k ,  wk) and con- 
struct an equivalent model specified by means of transition probabilities 
P(xk+ , Ixk, uk). The choice of model is clearly a matter of taste and does not 
affect in any way the results to be obtained. 

1.5 Notes 

Utility theory and its relation to decision making were first clarified by 
von Neumann and Morgenstern "31. For an extensive account of related 
results see the text by Fishburn [F3] and for a bibliography see the survey 
paper by the same author [F2]. The text [F3] also contains Savage's expected 
utility theory, which is based on the notion of subjective probability [S4]. 
Other sources describing the expected utility theory are Luce and Raiffa 
[L7], Blackwell and Girshick [B23], Owen [03], and DeGroot [Dl]. 
Blackwell and Girshick [B23] also describe Wald's statistical decision theory, 
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which formulates the decision problem as a game against Nature. The expected 
utility approach is by far the most popular approach for formulating prob- 
lems of decision under uncertainty. The min-max approach receives serious 
consideration occasionally. Another approach, which has not met with 
particular favor, is based on the min-max regret criterion of Savage [S3]. 

The material on quadratic cost functionals and least-squares estimation is 
standard. For detailed expositions see, for example, the work of Aoki [All ,  
Meditch [M6], the IEEE special issue [Ill,  and the references listed therein. 
Inventory policies of the (s, S )  form were considered and analyzed in a 
pioneering paper by Arrow et al. [A6], which stimulated a great deal of work 
on the subject. The material on the investment problem is taken from Arrow 
[A41 and Mossin [M8]. For detailed expositions of the mean-variance 
approach see Markovitz [M4] and Sharpe [S9]. 

For an excellent treatment of decision problems under uncertainty that 
involve dynamic systems see the work of Witsenhausen [W4]. 

Problems 

1. Show that there exists a function G :  0 -, R satisfying relation (2) of 
Section 1.1 provided the set 0 is countable. Show also that if the set of 
decisions is finite, there exists at least one noninferior decision. 
2. Let 0 = [ - 1, 13. Define an order on 0 by means of 

0,  i 02%1011 < 1021 or 0 ,  < O2 = lo,!. 
Show that there exists no real-valued function G on Lo such that 

01 0 2  % G(O1) < G(O2) t 1 0 1 , 0 2  E 0. 

Hint Assume the contrary and associate with every 0,  E (0, 1) a rational 
number r ( 0 , )  such that 

G(-O,) < do,) < G(0,) .  

Show that if 0,  # O,, then r ( 0 , )  # r ( 0 2 ) .  
3.  Experimental Measurement of Utility Consider an individual faced 
with a decision problem with a finite collection of outcomes 01, 02 ,  . . . , O N .  
It is assumed that the individual has a preference relation over the set of 
lotteries on the set of outcomes satisfying Assumptions A.l-A.4 of the ex- 
pected utility theorem, and hence a utility function over the set of outcomes 
exists. Suppose that 0,  < O2 < . . . < ON and furthermore that 0,  i O N .  

Show that the following method will determine a utility function. 
Define U ( 0 , )  = 0, U(0,) = 1. Let pi with 0 < pi < 1 be the probability for 
which one is indifferent between the lottery ((1 - pi), 0, . . . , 0, p i }  and Oi 

(a) 
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occurring with certainty. Then let U(Oi)  = pi. Try the procedure on yourself 
for Oi = $50i with i = 0, 1 , .  . . , 10. 

(b) Show that the following procedure will also yield a utility function. 
Determine U(ON-  1) as in (a) but set 

where p N p 2  is the probability for which one is indifferent between the lottery 
((1 - d N - 2 ) ,  0, . . . , pN- 2 ,  0) and O N - 2  occurring with certainty. Similarly 
set U(Oi) = f i i U ( O i + l ) ,  where fii is the appropriate probability. Again try 
this procedure on yourself for Oi = $50i with i = 0, 1 , .  . . , 10 and compare 
the results with the ones obtained in (a). 

(c) Devise a third procedure whereby the utilities U(O,),  U ( 0 , )  are 
specified initially and U(Oi), i = 3, . . . , N ,  is obtained from U(Oi-2), U(Oi- 1) 

through a comparison of the type considered above. Try the procedure for 
Oi = $50i, i = 0, 1,. . . , 10. 
4. Suppose that two people A and B desire to make a bet. Person A will 
pay $1 to person B if a specific event occurs and person B will pay x dollars to 
person A if the event does not occur. Person A believes that the probability of 
the event occurring is pA with 0 < p A  < 1, while person B believes that the 
corresponding probability is pB with 0 < pB < 1 .  Suppose that the utility 
functions U A  and UB of persons A and B are strictly increasing functions of 
monetary gain. Let CI, B be such that 

Show that if CI < /I, then any value of x between a and B is a mutually satis- 
factory bet. 
5. In the problems of Sections 1.3.1-1.3.5 identify a set of decisions, a set 
of states of nature, a set of outcomes, and a utility function (or cost function). 
6 .  In the inventory problem assume that the holding and depletion costs do 
not have the linear form considered but are such that the sum of the expected 
holding and depletion costs is a convex function of (x + u). Show under 
appropriate assumptions that the optimal ordering policy is of the (s, S )  
type. 
7. Consider a roulette wheel that is partitioned into k disjoint events 
A , ,  . . . , Ak such that the probability of occurrence of A i  is pi, i = 1 , .  . . , k, 
and If= pi = 1.  Suppose a person is given an amount of x dollars that he can 
allocate among the k events A , ,  . . . , A ,  and that he receives as his reward the 
amount xi that he has allocated to the event Ai  that actually occurs. The 
constraints are xi 2 0, If=l xi = x. Suppose that his utility function over 
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positive monetary rewards r is U(r)  = In r. Show that his preferred allocation 
is given by x i  = p i x ,  i = 1 ,  . . . , k. 
8. In an investment problem such as the one considered in Section 1.3.5 
assume that there are two investment opportunties with g1 = 1.5, 2’ = 1.8, 
and E { ( e ,  - el)’} = 0.5, E{(ez  - Z,)’} = 1, and E { ( e ,  - e , ) (e ,  - Z,)} = 0. 
Compute the mean standard deviation locus for a unit of capital invested 
and for the two cases where X = RZ and X = { ( x l ,  x 2 ) ( x l  2 0, x 2  2 O } .  
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Chapter 2 

The Dynamic Programming Algorithm 

2.1 The Basic Problem 

In this section we formulate the basic problem of optimal control of a 
dynamic system over a finite horizon with which we shall be dealing. The 
formulation is very general since the state space, control space, and uncer- 
tainty space are arbitrary and may vary from one state to the next. In parti- 
cular, the system may be defined over a finite or infinite state space. The 
problem is characterized by the fact that the number of stages of evolution of 
the system is finite and fixed (finite horizon), and by the fact that the control 
law is a function of the current state (perfect state information). However, 
problems where the termination time is not fixed or where the controller 
may decide to terminate the process prior to the final time can be reduced to 
the case of fixed termination time (see Problem 8). The situation in which the 
controller has imperfect state information can also be reduced to a problem 
with perfect state information as will be seen in Chapter 4. A variety of related 
problems can also be reduced into the form of the basic problem (see Section 
2.3 and the problem section). 

39 
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Basic Problem 

Given is the discrete-time dynamic system 

x k + l  = f k ( x k , u k , w k ) i  k = 0 , 1 , . . . , N -  1, (1) 
where the state x k  is an element of a space s k ,  k = 0, 1,. . . , N ,  the control 
u k  is an element of a space c k ,  k = 0, 1, . . . , N - 1, and the random “dis- 
turbance’’ w k  is an element of a space D k ,  k = 0, 1, . . . , N - 1. The control 
u k  is constrained to take values from a given nonempty subset U k ( X k )  of C k ,  

which depends on the current state x k  [ u k  E U k ( X k )  for all x k  E S k  and k = 0, 
1,. . . , N - 11. The random disturbance w k  is characterized by a probability 
measure Pk(  * I x k ,  u k )  defined on a collection of events in D k  (in the sense of 
Appendix C). This probability measure may depend explicitly on xk and u k  

but not on values of prior disturbances w k -  1, . . . , wo . We consider the class of 
control laws (also called “policies”) that consist of a finite sequence of func- 

for all x k  E s k .  Such control laws will be termed admissible. 

law IL = {po,  p i ,  . . . , p N -  1} that minimizes the cost functional 

tions IL = {Po, pi, . . . , P N -  I } ,  where p k :  S k  --f C k  and such that /Ak(Xk) E U k ( X k )  

Given an initial state x o ,  the problem is to find an admissible control 

subject to the system equation constraint 

x k +  1 = f k [ x k ,  /Ak(xk) ,  w k ] ,  = O, . . 3 - (3) 
The real-valued functions 

are given. 

Let us provide an example that illustrates the nature of the basic problem 
above. Many other examples will be given subsequently. 

INVENTORY CONTROL EXAMPLE Consider an N-period version of the in- 
ventory problem of Section 1.3. We assume that inventory can be ordered at 
the beginning of each of N time periods rather than just once. Naturally each 
inventory order is made with knowledge of the current stock so that instead 
of seeking optimal numerical values for the inventory orders we are now 
interested in an optimal rule that tells us how much to order for every level of 
current stock and for each time period. Let us denote 

g N : S N + R ,  g k : S k  X C k  X D k + R ,  k = 0 , 1 ,  ..., N -  1, 

x k  stock available at the beginning of the kth period 
u k  stock ordered (and immediately delivered) at the beginning of the 

kth period 
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wk demand during kth period with given probability distribution 
h holding cost per unit item remaining unsold at the end of the kth 

period 
c cost per unit stock ordered 
p shortage cost per unit demand unfilled 

We assume that w o ,  . . . , w N -  are independent random variables and that 
excess demand is backlogged and filled as soon as additional inventory 
becomes available. This is represented by negative stock in the system equa- 
tion, which is given by 

x k + l  = xk + uk - wk. 

The cost functional (representing expected loss) to be minimized is given by 

E 1 [ C U k  + p max(0, wk - xk - uk) + h x k  + u k  - wk)] . {::: I 
Here we assume that unfilled demand at the beginning of the Nth period is 
lost and the stock x N  that is left over has no value (i.e., the terminal cost is 
zero). 

The objective is to find an ordering policy { p o ,  . . . , p N -  1}, u k  = p k ( x k ) ,  

k = 0,. . . , N - 1, that minimizes the expected cost. Clearly this problem is 
within the framework of the basic problem of the previous section with the 
identifications 

g N ( X N )  = O, 

g k ( X k ,  uk, wk) = C u k  + p max(0, wk - xk - u k )  + h max(0, xk + uk - wk), 

f k ( x k ,  U k r  wk) = xk + ilk - wk, 

uk(xk)  = [o, 

Optimal Value of the Basic Problem 

It is to be noted that while the objective in the basic problem is to find an 
admissible control law that minimizes the cost functional J,(xo), it is not 
guaranteed a priori that such a minimizing control law exists. It is possible 
that J,(xo) can attain arbitrarily small values by suitable choice of the control 
law n, in which case we say that the opJimal value is - co and no control law 
attains this value.? It is also possible that the set of values that J,(xo) attains 
as n ranges over the set of admissible policies ll is bounded below but no 
optimal control law exists (in the same way that, for example, the scalar 
function e' is bounded below by zero but it is not minimized by any scalar t ) .  

t Such a situation will almost never occur in practice if our problem is well formulated. 
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The greatest lower bound of the set of real numbers {Jn(xo) ln  E n}, i.e., the 
set of all values of the cost function Jn(xo)  that can be attained by using 
admissible policies n E n, is denoted 

J*(xo)  = infJ,(xo) 

and is called the optimal ualue of the problem. When an optimal policy n* 
exists, we write 

J*(xo)  = J, , (xo)  = min Jn(xo) .  

When there does not exist an optimal policy we may be interested in finding an 
c-optimal policy, i.e., a policy it such that 

npn 

n e n  

J*(xo) < J,(xo) d J*(xo)  + E ,  

where E is some small number implying an acceptable deviation from op- 
timality. 

Note that the optimal value of the problem depends on the initial state xo. 
Naturally, different initial states may have different optimal values associated 
with them. We shall refer to the function J* that assigns to each initial state 
xo the corresponding optimal value J*(xo)  as the optimal ualuefunction. 

The Role of Information Gathering in the Basic Problem 

As indicated in the basic problem every control law { p o ,  pl ,  . . . , p,,- 1 }  

consists of functions of the current state. The physical interpretation of the 
associated process is that at each time k the controller (which may be a 
device or a decision maker, depending on the situation) observes the exact 
value of the current state x k  and applies a control pk(xk) as shown in Fig. 2.1. 
Subsequently the disturbance wk occurs and the next state xk+ is generated 
according to system equation (3). This state is observed by the controller, 
which subsequently applies the control pk+ I ( & +  1) specified by the function 
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pk+ and the process is repeated. Thus a control law {po ,  pl ,  . . . , pN- may 
be viewed as a plan that specifies the control to be applied at each time for 
every state that may occur at that time. 

It is important to realize that this mode of operation of the control law 
implies information gathering during the control process. The information 
received by the controller is the value of the current state at each time. Further- 
more, this information is utilized directly during the control process since the 
control at time k depends on the current state xk via the function pk. The 
effects of the'availability of this information by the controller may be sig- 
nificant indeed. The reason is that if this information were not available, then 
the controls applied would not depend on the current state, i.e., the control 
uk would have to be the same for every value of the state xk that may occur. 
As a result the cost functional would have to be optimized over all sequences 
of controls {u,,, u l , .  . . , u N -  I }  satisfying the constraints of the problem and 
the resulting optimal value would be higher than the optimal value of the 
basic problem. This fact is intuitively clear and is illustrated well by the ex- 
ample given immediately before Section 1.1. It may be proved mathematically 
by observing that the set of control laws that consist of constant functions 
(i.e., functions independent of the current state) is only a subset of the set of 
admissible control laws. As another example, the reader may consider the 
inventory control problem considered earlier in this section where the in- 
formation possessed by the inventory manager at the beginning ofeach period 
k is the current inventory stock xk. Clearly this information can be very 
important in deciding on the appropriate amount uk to be ordered at the 
kth period. 

It is to be noted, however, that it is not necessary that knowledge and 
utilization of the information provided by the value of the current state lead 
to a net reduction of the value of the cost functional. For instance, in deter- 
ministic control problems (where no uncertain disturbances are present), 
optimization of the cost functional over all sequences { u o ,  u l ,  . . . , uN- 1}  of 
controls leads to the same optimal value as optimization over all admissible 
control laws. This fact is illustrated in the example given prior to Section 1.1 
and will be further discussed in the following. The same fact may be true 
even in some stochastic control problems. An important class of such pro- 
blems is described in Problem 13. 

Theoretical Limitations of the Formulation of the Basic Problem 

Before proceeding with the development of the dynamic programming 
algorithm, it is necessary to clarify certain aspects of our problem and to 
delineate certain probabilistic elements in the formulation that do not lie on 
firm mathematical ground. 
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First of all, once an admissible control law { p o ,  pl, . . . , pN- 1}  is adopted, 

Stage 0 (1) The controller observes x o  and applies uo = po(xo).  
( 2 )  The disturbance wo is generated according to the given probability 

( 3 )  The cost g o [ x o ,  po(xo), wo]  is incurred. 
(4) The next state x 1  is generated according to the system equation 

the following underlying sequence of events is envisioned : 

measure Po( - I x o ,  po(x0)). 

x1 = f O C X 0 ,  P O ( X O ) ?  W o l .  

Stage k (1) The controller observes xk and applies uk = pk(Xk). 
(2) The disturbance wk is generated according to the given probability 

( 3 )  The cost g k [ X k ,  & ( X k ) ,  wk] is incurred and added to previous costs. 
(4) The next state xk+ is generated according to the system equation 

Pk( ' I x k ,  l (k (Xk) ) -  

x k  + 1 = f k C X k  7 pk(Xk)? w k l .  

Last Stage ( N  - 1) (1) The controller observes x N -  and applies 

UN- 1 = PN- i b N -  1). 

(2) The disturbance w ~ - ~  is generated according to the given pro- 

(3) The cost gN- l [ x N -  1, pN- 1(xN- 1), w N -  1 ]  is incurred and added to 

(4) The final state x N  is generated according to 

bability measure P N -  1( - IxN- 1, pN- l ( x N -  l)). 

previous costs. 

x N  = f N -  1 C x N -  1, P N -  l ( x N -  1 1 3  w N -  1 1 .  

(5) The terminal cost g N ( x N )  is incurred and added to previous costs. 
The above process is well defined and couched in precise probabilistic 

terms. Formidable complications, however, are introduced by the need to 
view the cost functional 

N- 1 

g N ( X N )  + 1 g k C X k ,  pk(xk), w k l  
k = O  

as a well-dejined random variable with well-defined expected value. The 
framework of probability theory requires that for each { p o ,  pl, . . . , pN- 1} we 
define an underlying probability space, i.e., a set R, a collection of events in R, 
and a probability measure on these events. Furthermore, the cost functional 
above must be a well-defined random variable on this space in the sense of 
Appendix C (a measurable function from the probability space into the real 
line in the terminology of measure-theoretic probability theory). In order for 
this to be true, additional (measurability) assumptions on the functions 
fk, gk, and pk may be required and it may be necessary to introduce additional 
structure on the spaces Sk, ck, and D k .  Furthermore, these assumptions may 



2.1 THE BASIC PROBLEM 45 

restrict the class of admissible control laws since the functions pk may be 
constrained to satisfy additional (measurability) requirements. 

Thus unless these additional assumptions and structure are specified, 
the problem we consider is formulated inadequately and the reader should 
view subsequent developments in the light of this fact. On the other hand, a 
rigorous formulation of the basic problem for general classes of state, control, 
and disturbance spaces is well beyond the mathematical and probabilistic 
framework of this introductory text and will not be undertaken here. None- 
theless we feel that these mathematical difficulties (at least for finite horizon 
problems) are mainly of a technical nature and do not affect in a substantial 
manner the basic results to be obtained and the basic structural properties of 
the problem with which we are concerned. For this reason we find it con- 
venient to proceed with formal derivations and arguments in much the same 
way as in most introductory texts and journal literature on the subject. 

We would like to stress, however, that under the assumption that the 
disturbance spaces Dk, k = 0, 1 ,  . . . , N - 1, are countable sets all the mathe- 
matical difficulties mentioned above disappear since for this case, with the 
only additionalassumption that the expected values of all terms in the expression 
of the cost functional (2 )  exist and arefinite for every admissible policy n, one 
can provide a sound framework for the problem. 

One easy way to dispense with all the difficulties of a probabilistic nature 
when the disturbance spaces Dk are countable sets is to rewrite all expected 
values in the cost functional as infinite sums in terms of the probabilities of 
the elements of Dk. Thus if w:, w:, . . . are the elements of Dk, 

andp:(xk, uk)denotes theprobabilityofwi, k = 0, 1 ,  . . . , N - 1 , i  = 1, 2, . . . , 
the value of the cost functional (2 )  corresponding to an admissible policy 
n could be written alternatively as 

Dk = {W:, W:, . . .}, 

Jn(X0) = J%O) ,  

where J:(xo)  is given by the last step of the recursive algorithm, which pro- 
ceeds backwards from stage N - 1 to stage 0: 

m 

J ? l ( x N - l )  = 1 P k -  1 C x N -  1, pN- l ( x N -  111 
i =  1 

[ g N [ f N -  l ( x N -  1, pN- l(XN- 1 h  wk- 111 
+ gN-l[XN-l, ~ N - l ( ~ N - 1 ) ~ ~ ~ - 1 1 1 ,  

m 

Jk,(xk) = 1 P : C x k ,  pk(Xk)I b k [ x k ?  pk(xk), w:l 
i =  1 

+ Jk,+ [.hc(xk, pk(xk), w:)]l? 
k = 0 , 1 ,  ..., N - 2 .  
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In these equations the form of JF- ' ( x N  - 1 )  is obtained once we substitute the 
system equation in the expression 

E { S N ( X N )  + S N - l C X N - l , p N - l ( X N - l ) r  W N - 1 1 )  
W N  - I 

which represents expected cost for stage N - 1 plus the expected terminal 
cost when the state at stage N - 1 is equal to x N -  and the policy n is used. 
Similarly Jk , (xk )  may be viewed as expected cost for the last N - k stages 
when the state at stage k is x k  and the policy n is used. In the above expressions 
we have written out the expected values explicitly in terms of the probabilities 
p : [ X k ,  p k ( X k ) ] .  When the sets Dk are known to be finite then all infinite sums 
may be replaced by finite sums. If one makes the additional assumption that 
all the infinite sums in the above expression are well defined and finite for 
every admissible policy, then one can work directly with the expression of the 
cost functional above and bypass any need for posing the problem in a pre- 
cise probabilistic manner. In this formulation the use of expectations be- 
comes merely a convenient shorthand notation. 

There is another way, more probabilistic in nature, to ensure that the cost 

corresponding to a control law n = {po,  pl ,  . . . , pN- 1 }  is well defined when 
Dk are countable sets. One may rewrite the value of the cost functional J,(xo) as 

(4) 1 N- 1 

Jn (xO)  = E g N ( X N )  + s"k[xk, c (k (xk ) ]  7 

* I .  .. . , XN { k=O 

where 

gk'kcxk 9 p k ( X k ) l  = E {gkcxk 9 pk(xk), w k l  I xk 9 p k ( X k ) } ,  
wk 

with the expectation above taken with respect to the probability distribution 
Pk( * J x k ,  p k ( x k ) )  defined on the countable set Dk. Then one may take as the 
basic probability space the Cartesian product of S1,  S 2 , .  . . , SN, where 

Sl = b 1  E S l I X 1  = f O C X 0 ,  PO(XO) ,  w019 wo E Do} .  

s k +  1 = { x k +  1 €Sk+ 1 Ixk+ 1 = fk [xk ,  p k ( x k ) ,  w k l ,  xk s k r  w k  € D k } ,  

k =  1,2 ,..., N -  1. 

The set sk is the subset of Sk of all states that can be reached at time k when the 
control law { p o ,  pl ,  . . . , pN-  1 }  is employed. The fact that Do, D1,. . . , D N -  

are countable sets ensures that sets s l , .  . . , sN are also countable (this is true 
in view of the fact that the union of any countable collection of countable 
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sets is a countable set). Now the system equation (3), the probability dis- 
tributions Pk( - lxkr pk(xk)), the initial state xo, and the control law {pol pi ,  
. . . , pN- l }  define a probability distribution on the countable set sl x 9, x 
. . . x sN and the expectation in (4) is defined with respect to this latter dis- 
tribution. In fact, it is easy to see that in this formulation the states {xo, xl ,  
x2 ,  . . . , xN} form a finite Markov sequence [P2] that can be described 
completely by the corresponding conditional probabilities P(xk + I xk), which 
depend on the control law { p o ,  pi, . . . , pN- 1 }  employed and the data of the 
problem. In light of this fact, the cost functional (4) may be written 

JJxo) = BoCxo, ~o(xo)l  + E BiCx,, ~ i ( x i ) l  
* I  i 

+ x2 E{. - -  + E~ {~N-i[xN-i,pN-i(xN-i)~ 

where the conditional probability distributions P(xk+ I xk),  depend on the 
control law 7c = { p o ,  pi ,  . . . , pN- l } .  This Markovian property lies at the 
heart of the dynamic programming algorithm. 

In conclusion the basic problem has been formulated in a mathematically 
rigorous way only for the case where the disturbance spaces D o ,  . . . , DN- 
are countable sets. In the absence of countability of Dk the reader should 
interpret subsequent results and conclusions only as plausible (imprecise) 
statements or conjectures. In fact, when discussing infinite horizon problems 
(where the need for precision is much greater) we shall make the countability 
assumption explicit. It is to be noted, however, that the advanced reader will 
have little difJiculty in establishing rigorously most of our subsequent results 
concerning specific applications in Chapters 3 and 4.  This can be done in a 
manner explained in the Notes to this chapter and in Problem 12. 

2.2 The Dynamic Programming Algorithm 

The problem of the previous section appears quite formidable since the 
cost functional (2) must be minimized over a class of functions of the current 
state. This fact together with the complexity of the cost functional make the 
use of variational optimization techniques impossible in almost every case. 
The dynamic programming (DP) technique decomposes the problem into a 
sequence of simpler minimization problems that are carried out over the 
control space rather than over a space of functions of the current state. 
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The DP technique rests on a very simple idea, the so-called principle ~f 
optimality. The name is due to Bellman, who contributed a great deal to the 
popularization of DP and to its transformation into a systematic tool. 
Roughly the principle of optimality says the following rather obvious fact. 

Suppose that {pg, p:, . . . , pg- 1 }  is an optimal control law for the basic, 
problem. Consider the subproblem whereby we are at state x i  at time i and 
wish to minimize the “cost-to-go” from time i to time N 

r N- 1 

Then the (truncated) control law {p:, p:+ . . . , pg- 1}  is also optimal for 
this subproblem. 

It is perhaps helpful to introduce the dynamic programming algorithm by 
means of an example : 

INVENTORY CONTROL EXAMPLE (continued) Consider the inventory 
control example of the previous section and let us utilize the following pro- 
cedure for determining the optimal inventory ordering policy starting with the 
last time period and proceeding backward in time. 

N - 1 Period Assume that at the beginning of period N - 1 the stock 
available is xN- 1. Clearly no matter what happened in the past the inventory 
manager should order inventory ug- = pg- l ( x N -  which minimizes over 
uN- the sum of the ordering, holding, and depletion costs for the last time 
period, which is equal to 

E { c u ~ - ~  + h max(0, x N - ~  + u N - ~  - w N - 1 )  

+ p max(0, w N - 1  - xN-1 - u N - 1 ) ) .  

W N - I  

Let us denote the optimal cost for the last period by JN- l(xN- 1 ) :  

J , - ~ ( X ~ - ~ )  = min E { C U ~ - ~  + h max(0, x ~ - ~  + U N - 1  - w N - 1 )  
U N - 1 3 0  W N - I  

+ p max(0, W N - l  - xN-1 - u N - 1 ) ) .  

Naturally J N -  is a function of the stock x N -  1. It is calculated for each x N -  
either analytically or numerically (in which case a table is used for computer 
storage of the function JN- l). In the process of calculating JN- we obtain the 
optimal inventory ordering policy pg- l ( x N -  1) for the last period, where 
p $ . - l ( x N - l )  2 0 minimizes the right-hand side of the above equation for 
each value of xN- 1. 

N - 2 Period Assume that at the beginning of period N - 2 the in- 
ventory is Now it is clear that the inventory manager should order 
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inventory u N - 2  = P L ; : - ~ ( X ~ - ~ ) ,  which minimizes not only the expected cost 
of period N - 2 butxather the 

(expected cost of period N - 2) + (expected cost of period N - 1, 
given that an optimal policy will be used at period N - 1). 

This however is equal to 

E {cuN-2 + h max(O,xN-, + u N - 2  - W N - J  
W N - 2  

+ p max(O, w N - 2  - X N - 2  - u N - 2 ) 1  + E { J N - l ( X N - l ) } .  
W N - 2  

Using the system equation x N -  = x N -  + u N -  - w N -  the last term in the 
above sum is also written E W N _ ,  { J N - 1 ( ~ N - 2  + u N - 2  - w ~ - ~ ) } .  

Thus the optimal cost J N -  2 ( x N -  2) for the last two periods, given that we 
are at state x N -  2 ,  is written 

J N - 2 ( x N - 2 )  = min E { c u ~ - ~  + h max(0, x N - 2  + u N - 2  - w N - 2 )  
U N - Z a O  W N - 2  

+ p max(0, W N - 2  - x N - 2  - u N - 2 )  

+ J N - I ( % - 2  + U N - 2  - W N - 2 ) ) .  

Again J N - 2 ( ~ N - 2 )  is calculated for every 

k Period Similarly we have that at period k and for initial inventory x k  

At the same time the 
optimal ordering policy pL;:- 2 ( x N -  2) is also computed. 

the inventory manager should order U k  to minimize 
(expected cost of period k) + (expected cost of periods k + 1, . . . , N - 1, 

given that an optimal policy will be used for these periods). 

By denoting by J k ( X k )  the optimal value, we have 

J k ( x k )  = min E { c u p  + h max(0, x k  f U k  - w k )  + p max(0, w k  - x k  - Uk) 
U k 2 0  W k  

+ J k + l ( X k  + u k  - w k ) )  ( 5 )  

which is actually the dynamic programming equation for this problem. 
The functions J k ( X k )  denote the optimal expected cost for the remaining 

periods when starting at period k and with initial inventory x k .  These func- 
tions are computed recursively backward in time starting at period N - 1 
and ending at period 0. The value Jo(xo) is the optimal expected cost for the 
process when the initial inventory at time 0 is xo . During the calculations the 
optimal inventory policy {,u$(xo), ,u*(xl), . . . , p i -  l (xN-  1)} is simultaneously 
computed from minimization of the right-hand side of ( 5 )  for every x k  and k. 

We now state the dynamic programming algorithm for the basic problem 
and show its optimality. 
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Proposition Let J*(xo) be the optimal value of the cost functional (2) in 
the problem of Section 2.1. Then 

J*(xo)  = Jo(xo), 

where the function J o  is given by the last step of the following dynamic 
programming algorithm, which proceeds backward in time from period 
N - 1 to period 0: 

J N ( X N )  = g N ( X N )  (6)  

J k ( X k )  = inf E { g k ( x k  9 uk 7 w k )  + J k  + 1 [ fk(xk,  uk 7 wk)] 1 (7)t 
u k e U k ( x k )  w k  

k = 0 , 1 ,  ..., N - 1 .  

Furthermore, if u t  = P t ( x k )  minimizes the right-hand side of (7)  for each x k  

and k the control law n* = { P O * , .  . . , p& 1}  is optimal. 
Proof The fact that the probability measure characterizing wk depends 

only on xk and uk and not on prior values ofdisturbances w o ,  . . . , wk- allows 
us to write the optimal value of the cost J*(xo)  in the form 

J*(xo) = inf J ( x 0 ,  P O ,  . . . , P N  - 1) 
PO.  .... P N -  I 

= inf [ E {goCxo. P O ( ~ O ) ,  w01 + E g lCx l ,  ~ ~ ( x ~ ) ,  w l l  + ... 
PO, .... PN-1 WO w1 i 

11l + E { g N -  l [xN- 1, P N -  1(xN- W N -  1 1  + g N ( X N ) }  . ' '  
W N - 1  

where the expectation over W k ,  k = 0, 1,. . . , N - 1, is conditional on xk 
and P k ( X k ) .  The above expression may also be written 

goCxo, P ~ ( X ~ ) ,  wOl + inf g l C x l ,  w1l + ... 
PO PI 

I' Both the DP algorithm and its proof are, of course, rigorous only if the basic problem is 
rigorously formulated. As explained in the previous section, this is the case when the disturbance 
spaces Dk. k = 0, 1, . . . , N - 1, are countable sets and the expected values of all terms in the 
expression of the cost functional (2) are well defined and finite for every admissible policy K. In 
addition, it is assumed that the expected value in (7) exists and is finite for all uk E Uk(xk)  and all 
xk  E S,. We further note that, although not explicitly denoted, the expectation in (7) is taken with 
respect to the probability measure characterizing wkr which depends on both .q and uk. We 
also write inf instead of min since the minimum of the expected value may not be attained. If the 
minimum is known to be attained by some tik E Uk(xk) then inf can be replaced by min. 
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In the above equations the minimizations indicated are over all functions 
pk such that ,uk(Xk)  E uk(xk) for all xk and k .  In addition, the minimization is 
subject to the ever-present system equation constraint 

x k +  1 = f k C x k ,  P k ( x k ) ,  w k l .  

Now we use the fact that for any function F of x ,  u, we have 

inf F[x ,  ,u(x)] = inf F(x,  u), 
P € M  U E  U(X) 

where M is the set of-all functions p ( x )  such that p(x )  E V ( x )  for all x .  

and introducing the functions Jk of (7) in (8) we obtain the desired result: 
By applying this fact in (8), using the substitution xk+ = f k ( X k r  U k ,  wk), 

J*(xo)  = Jo(x0). 

It is also clear that {p;, . . . , pg- is an optimal control law if pt (xk)  
minimizes the right-hand side of (7) for each xk and k .  Q . E . D .  

In the DP algorithm of the above proposition, ideally, we would like to 
be able to determine closed-form expressions for the " cost-to-go " functions 
J k .  This is possible in a number of important special cases. In any case even if 
a closed-form expression for Jk or the optimal control law bt cannot be 
obtained, one hopes to obtain characterizations O f J k  or pt that are of interest. 
We shall examine such cases in the next chapter. 

In the absence of an analytical solution one has to resort to a numerical 
solution of the DP equations. This may be quite difficult and expensive since 
the minimization in (7) must be carried out for each value of xk. Typically 
the state space is discretized and the minimization is carried out for a finite 
number of states xk . The computational requirements are proportional to the 
number of discretization points. Thus for complex multidimensional pro- 
blems the computational burden may be overwhelming even for the most 
potent of presently existing computers. More about the computational aspects 
of DP will be presented in Chapter 5. However, at this point it must be re- 
cognized that DP cannot provide a complete solution to every problem of 
the type we are considering. Nonetheless, it is the only general approach for 
attacking sequential optimization problems under uncertainty. 

We now provide an example that demonstrates the computational 
aspects of the DP algorithm. 

EXAMPLE 1 Consider an inventory control problem similar to the one 
of Section 2.1 but different in that inventory and demand are nonnegative 
integer variables. Furthermore assume that there is an upper bound on the 
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stock (xk + uk) that can be stored and also assume that the excess demand 
(wk - xk - uk) is lost. As a result the stock equation takes the form 

xk+ 1 = max(0, xk + uk - wk). 

Assume that the maximum capacity (xk + uk) for stock is 2 units, that the 
planning horizon N is 3 periods, and that the holding cost h and the ordering 
cost c are both 1 unit. The shortage cost p is assumed to be 3 units, and the 
demand wk has the same probability distribution for all periods, given by 

where xk, uk, wk can take the values 0, 1, and 2. 

Stage 2 We compute J2(x2) for each of the three possible states: 

~ ~ ( 0 )  = min E { u 2  + max(0, u2 - w 2 )  + 3 max(0, w2 - u2)) 
u 2 = 0 . 1 . 2  w2 

= min {u2  + O.l[max(O, u 2 )  + 3 max(0, -u2)]  
u 2 = 0 . 1 , 2  

+ 0.7[max(O, u2 - 1) + 3 max(0, 1 - u2)] + 0.2[max(O, u2 - 2) 

+ 3 max(0,2 - u?)]}. 

We calculate the expectation of the right-hand side for each of the three 
possible values of u2 : 

U Z  = 0 :  

~2 = 1: 

~2 = 2: 

E { - }  = 0.7 x 3 x 1 + 0.2 x 3 x 2 = 3.3, 
E { . }  = 1 +0.1 x 1 +0.2 x 3 x 1 = 1.7, 

E { . }  = 2 + 0.1 x 2 + 0.7 x 1 = 2.9, 

Hence we have by selecting the minimizing u 2 ,  

D JZ(0) = 1.7, ,uT(O) = 1. a 

There is no fixed cost (i.e., K = 0) and the initial stock xo is zero. 

case this algorithm takes the form 
Let us solve this problem by applying the DP algorithm (6), (7). For our 
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For x 2  = 1 we have 

J2(1) = min E {u2 + max(0, 1 + u2 - w2) + 3 max(0, w2 - 1 - u 2 ) }  

= min {u2 + O.l[max(O, 1 + u 2 )  + 3 max(0, - 1 - u2)] 

u2=0.1 wz 

u * = o .  1 

+ 0.7[max(O, u2) + 3 max(0, -u2)l  
+ 0.2[max(O, u2 - 1)  + 3 max(0, 1 - u,)]}, 

~2 = 0: 

u2 = 1: 

E { . }  = 0.1 x 1 + 0.2 x 3 x 1 = 0.7, 

E { . }  = 1 + 0.1 x 2 + 2 + 0.7 x 1 = 1.9. 

Hence 

D Jz(1) = 0.7, pr(1) = 0. 

For x2 = 2 we have 

J2(2) = E {max(O, 2 - w2) + 3 max(0, w2 
w2 

= 0.1 x 2 + 0.7 x 1 = 0.9, 

D JZ(2) = 0.9, ~ 3 2 )  = 0. 

Stage 1 Again we compute Jl(xl)  for each of the three possible states 
x 2  = 0, 1,2 using the values J2(0) ,  J2(1), J2(2) obtained in the previous stage: 

Jl(0) = min E {ul + max(0, u1 - wl)  + 3 max(0, w1 - u l )  
u 1 = 0 , 1 , 2  W I  

+ JzCmax(0, u1 - W l ) I l ,  
U I  = 0: E {  . }  = 0.1 x J 2 ( 0 )  + 0.7[3 x 1 + J2(0)]  

+ 0.2[3 x 2 + J2(0)] = 5.0, 

~1 = 1: E { - }  = 1 + O.l[1 + J2(l)] + 0.7 x JZ(0)  

+ 0.2[3 x 1 + Jz(0)] = 3.3, 

~1 = 2: E { . }  = 2 + 0.1[2 + J2(2)] + 0.7[1 + J2(1)] 
+ 0.2 x J2(0) = 3.82, 

D J,(O) = 3.3, pT(0) = 1, a 
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J l ( l )  = min E {ul + max(0, 1 + u1 - wl)  + 3 max(0, w 1  - 1 - ul) 
U , = O * l w * l  

+ J2[max(0, 1 + u1 - wl)]} 

U ,  = 0: E {  * }  = O.l[1 + J2(l)] + 0.7 x J2(0)  

+ 0.2[3 x 1 + J 2 ( 0 ) ]  = 2.3, 

E {  * } = 1 + 0.1[2 + J2(2)] + 0.7[1 + J 2 (  l)] ~1 = 1 : 

+ 0.2 x J2(0)  = 2.82, 
D Jl(l) = 2.3, pT(1) = 0, 4 

J1(2) = E{max(O,2 - wl) + 3 max(0, w1 - 2) + J,[max(O, 2 - wl)] 

D J1(2) = 1.82, p32) = 0. U 

= 0.1[2 + J2(2)] + 0.7[1 + J2(1)] + 0.2 x J2(0) = 1.82, 

Stage 0 Here we need only compute Jo(0)  since the initial state is known 
to be zero. We have 

Jo(0)  = min E {uo + max(0, uo - wo) + 3 max(0, wo - uo) 
u o = 0 , 1 . 2  wo 

+ J1  Cmax(0, uo - wo)l}, 

u0 = 0: E { - }  = 0.1 x Jl(0) + 0.7[3 x 1 + J1(0)] 
+ 0.2[3 x 2 + J,(O)] = 6.6, 

~0 = 1: E { * }  = 1 + O.l[1 + J1(l)] + 0.7 x Jl(0) 
+ 0.2[3 x 1 + Jl(0)] = 4.9, 

E { - }  = 2 + 0.1[2 + J1(2)] + 0.7[1 + J1(1)] U O  = 2: 
+ 0.2 x Jl(0) = 5.352, 

D JO(O) = 4.9, pO*(O) = 1. 4 

If the initial state were not known a priori we would have to compute in a 
similar manner Jo(  1) and J0(2) as well as the minimizing u o .  These calcula- 
tions yield 

D JO(1) = 3.9, = 0, 4 

D J0(2) = 3.352, &(2) = 0. U 

Thus the optimal ordering policy for each period is to order one unit if the 
current stock is zero, and order nothing otherwise. 

It is worth noting that DP can be applied (in a form that is of comparable 
simplicity to the one of the previous proposition) to problems where the cost 
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functional does not have the additive structure of the one of the basic problem 
but rather the form 

r / N -  1 

where u and are given scalars. This type of cost functional can be called a 
risk-sensitive cost ,functional since it corresponds to an exponential utility 
function expressing risk aversion or risk preference (depending on the sign of 
p) on the part of the decision maker. Such a cost functional is particularly 
interesting when the expression 

N -  1 

g N ( X N )  + 1 g k ( x k  9 uk 9 w k )  
k = O  

has a monetary interpretation. For the form of the D P  algorithm correspond- 
ing to this case as well as the case of a discounted cost functional see Problems 
6,7, and 9 at the end of this chapter. 

We finally point out that DP is fully applicable to deterministic problems 
involving no uncertain parameters. Such problems can be embedded within 
the framework of the basic problem simply by considering disturbance spaces 
Dk having a single element. Thus the algorithm of this section may be used 
for the solution of such problems. In addition, other algorithms of the D P  
type, which proceed forward in time (rather than backward), may be used 
for deterministic problems (see Kaufmann and Cruon [K6]). It is important 
to note that, in contrast to stochastic problems, using feedback in deter- 
ministic problems results in no advantage in terms of reduction of the value of 
the cost functional. In other words, minimizing the cost functional over the 
class of admissible control laws {p,,, . . . , pN- results in the same optimal 
value of the cost functional as minimizing over the class of sequences of 
control vectors { u o ,  . . . , uN- 1} with u k  E U k ( X k )  for all k .  This is true simply 
because if {&, . . . , pg- 1} is an optimal control law for a deterministic prob- 
lem¶ then the control sequence {u:, . . . , ug- where 

U ;  = /&x:), k = 0,.  . . , N - I ,  

and the states x:, . . . , x& are defined by 

X t + l  = f k ( X t ,  U t ) ,  XE = X o ,  k = 0, 1, ..., N - 1, 

also achieves the optimal value of the problem. For this reason we may 
minimize the cost functional over sequences of controls, a task that may be 
achieved by variational deterministic optimal control algorithms such as 
steepest descent, conjugate gradient, and Newton’s method. These algorithms, 
when applicable, are usually more efficient than DP. On the other hand 
D P  has a wider scope of applicability since it can handle dificult constraint sets 
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such as integer or discrete sets. Furthermore, D P  leads to a globally optimal 
solution as opposed to variational techniques, for which this cannot be 
guaranteed in general. 

Our main objective in this text is the analysis of stochastic optimization 
problems and the ramifications of the presence of uncertainty. For this reason 
we will pay little attention to deterministic problems. However, we offer here 
an example of a deterministic problem, the so-called optimal path problem, 
for which DP  is a principal method of solution and which demonstrates some 
of the computational aspects of DP  . 

EXAMPLE 2 Let { 1,2, . . . , N + l }  be a set of points and let Cij, 
i , j =  1 , . . . , N + 1, represent the cost of moving directly from point i to 
point j in one move. We assume that 0 < Cij < co and Cii = 0 for all i, j .  
We would like to find the optimal path from point i to point N + 1, i.e., the 
sequence of moves that minimizes total cost to get to the point N + 1 
starting from each of the points 1,2, .  . . , N .  

Now it is clear that an optimal path need not take more than N moves, so 
that we may limit the number of moves to N .  We formulate the problem as 
one where we require exactly N moves but allow degenerate moves’from a point 
i into itself: We denote for i = 1, . . . , N ,  k = 0, 1, . . . , N - 1, 

JN- l ( i )  optimal cost for getting to ( N  + 1) from i in one move, 

Jk(i) optimal cost for getting to ( N  + 1) from i in ( N  - k )  moves. 

Then the cost of the optimal path from i to ( N  + 1) is Jo(i). While it is possible 
to formulate this problem within the framework of the basic problem and 
subsequently apply the DP  algorithm, we bypass this formulation and write 
directly the DP  equation, which for our problem takes the intuitively clear 
form : 

optimal cost from i to ( N  + 1) in ( N  - k )  moves 
= min {Cij + optimal cost from j to ( N  + 1) in ( N  - k - 1) moves}, 

j = l ,  ..., N 

or 

Jk(i)  = min {Cij + J k +  l ( j ) } ,  k = 0, 1,. . . , N - 2, 
j = 1 . .  . , N  

with 

JN-l(i)  = Ci(N+ I ) ,  i = 1, 2, . . . , N .  

The optimal policy when at point i after k moves is to move to point j* ,  where 
j*  minimizes over all j = 1, . . . , N the expiession in braces above. Note that a 
degenerate move from i to i is not excluded. If the optimal path obtained from 
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the algorithm contains such degenerate moves this simply means that its 
duration is less than N moves. 

To demonstrate the algorithm consider the problem shown in Fig. 2.2a 
where the costs C,,, i # j (we assume C i j  = C,,), are shown along the con- 
necting line segments. The DP algorithm is shown in Fig. 2.2b with the “cost- 
to-go” J k ( i )  shown at each point i and index k together with the optimal path. 
The optimal paths are 

1 - 5 ,  2 4 3 4 4 - 5 ,  3 - 4 - 5 ,  4 -5 .  

5 -  

4 -  

3 -  

1 -  - 

I -  

5 

4.5 :y/ 

(11) 

FIGURE 2.2 

No e from the figure that the costs-to-go J k ( i )  are monotonically non- 
decreasing with k, which is easy to prove in general for optimal path problems 
of the type considered here. 

2.3 Time Lags, Correlated Disturbances, and Forecasts 

This section deals with various situations where some of the assumptions 
inherent in the basic problem formulation are not satisfied. We shall consider 
the case where there are time lags in the state and the control appearing in the 
system equation, i.e., the next state x k +  depends explicitly not only on the 
present state and control X k ,  u k  but also on past states x k -  I ,  x ~ - ~ ,  . . . , X k - n  



58 2 THE DYNAMIC PROGRAMMING ALGORITHM 

and controls u k -  1 ,  i k - 2 ,  . . . , i k - m .  We will consider the case where the 
disturbances w k  are correlated, and the case where at time k a forecast on the 
future uncertainties w k ,  w k +  . . . becomes available, thus updating the cor- 
responding probability distributions. The situation where the system evolu- 
tion may terminate prior to the final time either due to a random event or due 
to an action of the decision maker is covered in the problems. Generally 
speaking, in all these cases it is possible to reformulate the problem into the 
framework of the basic problem by using the device of state augmentation. 
The (unavoidable) price paid, however, is an increase in complexity of the 
reformulated problem. 

Time Lags 

First let us consider the case of time lags. For simplicity assume that there 
is at most a single period time lag in the state and control, i.e., assume a 
system equation of the form 

Thecase where there are time lags ofmore than one period is a straightforward 
extension of the single-period case. 

Now if we introduce additional state variables y k  and s k  and make the 
identifications y k  = x k -  1 ,  sk = u k -  the system equation (9) yields for 
k = l , 2  ,..., N - 1 ,  

By defining %k = ( x k ,  y k ,  s k )  as the new state we have 

%k + 1 = 7 k c a k  9 uk 9 wk)? 

where the system function is defined in an obvious manner from (10). 
By using (1 1) as the system equation and by making a suitable reformulation 
of the cost functional the problem is reduced to the basic problem without 
time lags. Naturally the control law {p,,, . . . , pN- 1 }  that is sought will 
consist of functions pk of the new state R k ,  or equivalently p,, will be afinction 
of the present state x k  as well as past state X k - l  and control U k - l .  The DP 
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algorithm (in terms of the variables of the original problem) is 

We note that similar reformulations are possible when time lags appear 
in the cost functional, for example, in the case where the expression to be 
minimized is of the form 

The extreme case of time lags in the cost functional is when it has the non- 
additive form 

Then in order to reduce the problem to the form of the basic problem the 
augmented state Z k  at time k must include 

and the reformulated cost functional takes the form 

The control law sought consists of functions pk of the present and past 
states xk, . . . , xo, the past controls uk- l , .  . . , uo,  and the past disturbances 
w k -  1, . . . , wo. Naturally we must assume that past disturbances are known 
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to the controller for otherwise we are faced with a problem with imperfect 
state information. The DP algorithm takes the form 

JN-l(XO,...,XN-IrUO,...,UN-2,WOr...,WN-2) 

inf E {gN(xO,  . . . 3 XN- 1, fN- 1(xN- 1 7  U N -  1, w N - l ) ,  
- - 

U N -  I E U N  - I ( X N -  I )  W N -  I 

U O ,  . . . 9 U N -  1, W O ,  * * .  9 w N -  I ) ) ,  

J k ( X 0 ,  * - . )  xk, u O ,  . . . )  u k - 1 ,  w 0 7  * * * 3 wk-1) 

= inf E {Jk+l(XO,...,Xk,fk(Xk,Uk,wk), 
U k E U k ( X k )  wk 

U o ,  . . . , U k ,  W o ,  . . . , W k ) } ,  k = 0,.  . . , N - 2. 

Similar algorithms may be written for the case where the control constraint 
set depends on past states or controls, etc. 

Correlated Disturbances 

We turn now to the case where the disturbances wk are correlated. Here 
we shall assume that the wk are elements of a Euclidean space and that the 
probability distribution of wk does not depend explicitly on the current state 
xk and control uk but rather it depends explicitly on the prior values of the 
disturbances w o ,  . . . , wk- By using statistical methods it is often possible 
to represent the process wo,  w l r  . . . , w N -  by means of a linear system 

y k + i  = Akyk + t k ,  

wk = C k y k +  1 9  

k = 0, 1,. . . 9 N - 1, Y o  = 0, 

where Ak, Ck are matrices of appropriate dimension and t k  are independent 
random vectors with given statistics. In other words, the correlated process 
w o ,  . . . , w N -  is represented as the output of a linear system perturbed by a 
white process, i.e., a process consisting of independent random vectors as 
shown below: 

-% y k + l  = Akyk + r k  * Ck wk. 

By considering now yk as additional state variables we have a new system 
equation 

By taking as the new state the pair 
vector &, we can write (12) as 

= (xk, yk) and as new disturbance the 

% k +  1 = &%k, U k r  t k ) .  
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By suitable reformulation of the cost functional the problem is reduced to the 
form of the basic problem. Note that it is necessary that yk ,  k = 1,  . . . , N - 1, 
can be observed by the controller in order for the problem to be one of perfect 
state information. This is, for example, the case when the matrix ck- is the 
identity matrix and wk- is observable. The DP algorithm takes the form 

When Ck is the identity matrix, the optimal controller is of the form 

Forecasts 

Finally let us consider the case where at time k the decision maker has 
access to a forecast yk that results in a reassessment of the probability dis- 
tribution of wk and possibly of future disturbances. For example, Y k  may be an 
exact prediction of wk or perhaps an exact prediction that the probability dis- 
tribution of wk is a specific one out of a finite collection of distributions. 
Forecasts that can be of interest in practice are, for example, probabilistic 
predictions on the state of the weather, the interest rate for money, demand 
for inventory, etc., depending on the nature of the problem at hand. 

Generally, forecasts can be handled by state augmentation although the 
reformulation into the form of the basic problem may be quite complex. We 
shall treat here only a simple situation. 

Consider the case where the probability distribution of wk does not depend 
on xk,  uk, wk- . . . , w o .  Assume that at the beginning of each period k the 
decision maker receives an accurate prediction that the next disturbance wk 

will be selected in accordance with a particular probability distribution out of 
a finite collection of given distributions {Pkll, . . . , Pkln}, i.e., if the forecast is i, 
then wk is selected according to P k l i .  The a priori probability that the forecast 
at time k will be i, i = 1, . . . , n, is p: and is given. Thus the forecasting process 
can be represented by means of the equation 

where y k +  can take the values 1, 2, . . . , n and ( k  is a random variable taking 
the values 1,2,. . . , n with probabilities p:", . . . , p:+' .  The interpretation 
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here is that when 
the probability distribution P k +  l i .  

system given by 

takes the value i, then w k +  will occur in accordance with 

Now by combining the system equation and (13) we obtain an augmented 

The new state is ?k = ( X k ,  y k )  and the new “disturbance” is Ek = ( w k ,  tk). The 
probability distribution of 6 k  is given in terms of the distributions P k ( i  and 
the probabilities p:, and depends explicitly on T k  (via y k )  but not on the 
prior disturbances 6,‘- . . . , G o .  Thus by suitable reformulation of the cost 
functional the problem can be cast into the framework of the basic problem. 
It is to be noted that the control applied at each time is a function of both the 
current state and the current forecast. The DP algorithm takes the form 

J N ( X N 7  Y N )  = S N ( X N ) ,  

n 

J k ( X k ,  y k )  = inf E g k ( X k , U k ,  wk)  + ~ P : + l J k + l [ f k ( x k ~  Ukr  wk), 
U k E u k ( X k )  W k  i =  1 

k = 0 , 1 ,  . . . ,  N - 1 ,  

where the expectation over w k  is taken with respect to the probability 
distribution P k l Y k ,  where y k  may take the values 1,2, .  . . , n. Extension to 
forecasts covering several periods can be handled similarly, albeit at the 
expense of increased complexity. Problems where forecasts can be affected by 
the control action also admit a similar treatment. 

It should be clear from the preceding discussion that state augmentation 
is a very general and potent device for reformulating problems of decision 
under uncertainty into the basic problem form. One should also realize that 
there are many ways to reformulate a problem by augmenting the state in 
different ways. The basic guideline to follow is to select as the augmented state 
at time k only those variables the knowledge of which can be of benejit to the 
decision maker when making the kth decision. For example, in the case of 
single period time lags it appears intuitively obvious that the controller can 
benefit from knowing at time k the values of X k ,  q - 1 ,  u k - l ,  since these 
variables affect the value of the next state x k +  through the system equation. 
It is clear though that the controller has nothing to gain from knowing at time 
k the values of x k - 2 ,  x k - 3 ,  . . . , u k -  2 ,  . . . , and for this reason these past 
states and controls need not be included in the augmented state although 
their inclusion is technically possible. The theme of considering as state 
variables in the reformulated problem only those variables the knowledge of 
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which would be beneficial to the decision making process will be predominant 
in the discussion of problems with imperfect state information (Chapter 4). 

Finally, we note that while state augmentation is a convenient device, it 
tends to introduce both analytical and computational complexities, which in 
many cases are insurmountable. 

2.4 Notes 

Dynamic programming is a simple mathematical technique that has been 
used for many years by engineers, mathematicians, and social scientists in a 
variety of contexts. It was Bellman, however, who realized in the early 1950s 
that D P  could be developed (in conjunction with the then appearing digital 
computer) into a systematic tool for optimization. Bellman contributed a 
great deal to focusing attention on the broad scope of DP. In addition, many 
mathematical results related to DP (particularly for the infinite horizon case) 
are due to him. His early books [B3, B4] are still popular reading. Other 
texts related to D P  are those by Howard [H16], Kaufmann and Cruon [K6], 
Kushner [KlO], Nemhauser “21, and White [W3]. For a rigorous treatment 
of sequential decision problems in general spaces see Striebel [S18a], 
Hinderer [H9], Blackwell et al. [B23a], and Freedman [F3a]. Risk-sensitive 
criteria (Problem 7) have been considered by Howard and Matheson [H17] 
in the context of finite-state Markov decision processes and by Jacobson [Jl] 
in the context of automatic control of a linear system. However, the fact that 
sequential decision problems with multiplicative cost functionals can be 
treated by DP has been noted by Bellman [B3] (see Problems 9 and 11). 

As mentioned in Section 2.1 the formulation of the basic problem and the 
subsequent developments are rigorous only for the case where the disturbance 
spaces are countable sets. Nonetheless, the DP algorithm can often be utilized 
in a simple way when the countability assumption is not satisfied and there are 
further restrictions (such as measurability) on the class of admissible control 
laws. The advanced reader will understand how this can be done by solving 
Problem 12, which shows that if one can find within a subset of control laws 
(such as those satisfying certain measurability restrictions) a control law that 
attains the minimum in the D P  algorithm, then this control law is optimal. 
This fact may be used to establish rigorously many of our subsequent results 
concerning specific applications in Chapters 3 and 4. For example, in linear- 
quadratic problems (Section 3.1) one determines from the D P  equations a 
control law that is a linear function of the current state. When wk can take 
uncountably many values it is necessary that admissible control laws consist 
only of functions pk ,  which are Bore1 measurable. Since the linear control 
law belongs to this class, the result of Problem 12 guarantees that this control 
law is optimal. 
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Problems 

1. Use the DP algorithm to solve the following two problems: 

(a) minimize Ci3,0 xi” + u! 
subject to xo = 0, x4 = 8, ui = nonnegative integer, 

x i+ l  = xi + ui,  i = 0, 1, 2, 3; 

subject to xo = 5, u i e  (0, 1, 2}, 
x i + l  = xi - u i ,  i = 0, 1, 2, 3, 

(b) minimize xi? + 224; 

2. Air transportation is available between n cities, in some cases directly 
and in others through intermediate stops and change of carrier. The air fare 
between cities i andj  is denoted Cij (Cij = Cji) and for notational convenience 
we write Cij = co if there is no direct flight between i andj. The problem is to 
find the cheapest possible air fare for going from any city i to any other city 
j perhaps through intermediate stops. Formulate a DP algorithm for solving 
this problem. Solve the problem for n = 6 and C12 = 30, CI3  = 60, C14 = 25, 
c 1 5  = c16 = 00, c 2 3  = c24 = c 2 5  = 00, c 2 6  = 50, c34 = 35, c 3 5  = 
c 3 6  = 00, (245 = 15, c46 = 00, c 5 6  = 15. 
3. Suppose we have a machine that is either running or broken down. If it 
runs throughout one week, it makes a gross profit of $100. If it fails during the 
week, gross profit is zero. If it is running at the start of the week and we per- 
form preventive maintenance, the probability that it will fail during the week 
is 0.4. If we do not perform such maintenance, the probability of failure is 0.7. 
However, maintenance will cost $20. When the machine is broken down at 
the start of the week it may either be repaired at a cost of $40 in which case it 
will fail during the week with a probability of 0.4 or it may be replaced at a 
cost of $150 by a new machine that is guaranteed to run through its first week 
of operation. Find the optimal repair, replacement, and maintenance policy 
that maximizes total profit over four weeks, assuming a new machine at the 
start of the first week. 
4. A game of the blackjack variety is played by two players as follows: 
Both players throw a die. The first player, knowing his opponent’s result, may 
stop or may throw the die again and add the result to the result of his pre- 
vious throw. He then may stop or throw again and add the result of the new 
throw to the sum of his previous throws. He may repeat this process as many 
times as he wishes. If his sum exceeds seven (i.e., he busts), he loses the game. 
If he stops before exceeding seven, the second player takes over and throws 
the die successively until the sum of his throws is four or higher. If the sum of 
the second player is over seven, he loses the game. Otherwise the player with 
the larger sum wins, and in case of a tie the second player wins. The problem is 
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to determine a stopping strategy for the first player that maximizes his pro- 
bability of winning for each possible initial throw of the second player. 
Formulate the problem in terms of DP and find an optimal stopping strategy 
for the case where the second player's initial throw is three. 

Hint Take N = 6 and a state space consisting of the following 15 states: 

x 1  : busted, 

X I + ' :  already stopped at sum i ( 1  Q i Q 7) ,  

x * + ~ :  current sum is i but the player has not yet stopped ( 1  Q i Q 7). 

The optimal strategy is to throw until the sum is four or higher. 
5. Min-Max Problems In the framework of the basic problem consider 
the case where the disturbances w o ,  w l ,  . . . , .wN- do not have a probabilistic 
description but rather are known to belong to corresponding given sets 
wk(xk, uk) c D k ,  k = 0, 1,. . . , N - 1, which may depend on the current 
value of the state xk and control uk. Consider the problem of finding a control 
law 7c = {po ,  . . . , p N -  with p k ( X k )  E U k ( X k )  V X k ,  k ,  which minimizes the 
cost functional 

Obtain a DP algorithm for the solution of this problem. 
6. Discounted Criteria 
the case where the cost functional is of the form 

In the framework of the basic problem consider 

where a is a discount factor with 0 c a c 1. Show that an alternate form of 
the DP algorithm is given by 

vN(xN)  = g N ( X N ) ,  

& ( x k )  = inf E { g k ( X k r  u k ,  wk) + a & + l [ f k ( x k ,  u k ,  wk)l} .  
Uk E Uk(xk)  

7 .  Risk-Sensitive Criteria 
sider the case where the cost functional is of the form 

In the framework of the basic problem con- 
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(a) Show that the optimal value J*(xo)  of the problem is equal to 
Jo(xo)  where the function J o  is obtained from the last step of the D P  algorithm 

J N ( x N )  = exp[gN(-uN)l. 

J k ( X k )  = inf E { J k  + 1 [.fk(xk 3 uk 7 wk)] exp[gk(xk 3 uk 7 w k ) l  1. 
U k  E u k ( X k )  W k  

Show that the algorithm above yields an optimal control law if one exists. 
(b) Define the functions h(xk)  = In Jk(Xk). Assume also that gk is a 

function of xk and uk only (and not of wk). Show that the above D P  algorithm 
can be rewritten 

&“XN) = g N ( X N ) ,  

g k ( X k 9  ilk) + E {exp h+ l [ fk (xk?  uk, w k ) l }  . 
W k  1 

8. Consider the case in the basic problem where the 
system evolution terminates at time i when a certain given value Ei of the 
disturbance at time i occurs, or when a termination decision ui is made by the 
controller. If termination occurs at time i, the resulting cost is 

Terminating Process 

+ gk(Xk7 u k ?  w k ) ?  
k=O 

where T is a termination cost. If the process has not terminated up to the 
final time N ,  the resulting cost is g N ( X N )  + c:,: g k ( X k ,  U k ,  wk). Reformulate 
the problem into the framework of the basic problem. 

9. 
cost functional is of the multiplicative form 

Hinr Augment the state space by introducing a “termination” state. 
In the framework of the basic problem consider the case where the 

E {gN(XN)’gN-l(XN-lrUN-l”N-~)’‘’gO(XO~UO, wO)} 
W k  

k=O. .... N -  1 

Devise an algorithm of the D P  type that is applicable to this problem under 
the assumption g k ( X k ,  uk, wk) 2 0 for all x k ,  uk, w k ,  and k. 
10. Assume that we have a vessel whose maximum weight capacity is z and 
whose cargo is to consist of different quantities of N different items. Let ui 
denote the value of the ith type of item, wi the weight of ith type of item, and x i  
the number of items of type i that are loaded in the vessel. The problem of 
determining the most valuable cargo is that of maximizing xr= x iu i  subject 
to the constraints cy’ x i  wi < z and x i  = 0, 1,2, . . . . Formulate this problem 
in terms of DP. 
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11. Consider a device consisting of N stages connected in series, where each 
stage consists of a particular component. The components are subject to 
failure and in order to increase the reliability of the device duplicate com- 
ponents are provided. For j = 1,2,. . . , N let (1 + mj)  be the number of 
components for the jth stage, let p,(mj) be the probability of successful oper- 
ation of the jth stage when (1  + mj)  components are used, and let c j  denote 
the cost of a single component at thej th  stage. Consider the problem of 
finding the number of components at each stage that maximize the reliability 
of the device expressed by 

P l h ) .  P z ( m 2 ) .  . . P&N) 
subject to the cost constraint cj”=l c j m j  < A ,  where A > 0 is given. For- 
mulate the problem in terms of DP. 
12. Consider a variation of the basic problem whereby we seek 

inf J n ( X o ) ,  
n e f i  

where is some given subset of the set of sequences { p o ,  p,, . . . , p N -  1) of 
functions p k :  S k  C k  with p k ( X k )  E U k ( X k )  for all x k  E S k .  Assume that 

n* = {p:, p:, * * .  3 11;- 11 

belongs to R and satisfies for all k = 0,1, . . . , N - I and x k  E S k  

j k ( x k )  = E { g k C x k ,  p : ( x k ) ,  w k l  + j k + l [ f k ( x k ,  pk*(xk) ,  w k ) l )  
wk 

= inf E { g k ( X k ,  u k ,  wk)  + j k + l [ f k ( X k ?  u k ,  w k ) l > ,  
U k E u k ( X k )  wk 

with JN(xN)  = g N ( X N )  and furthermore the functions J k  are real valued and 
the expectations above are well defined and finite. Show that 

j o ( x o )  = infJn(xo) = J,JX~). 
n e f i  

13. Semilinear Systems Consider a problem involving the system 

x k +  1 = A k X k  + f k ( u k )  + wk, 

where x k  E R”, fk are given functions, and Ak and w k  are random n x n 
matrices and n-vectors, respectively, with given probability distributions 
that do not depend on x k ,  u k  or prior values of and w k .  Assume that the 
cost functional is of the form 
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where c k  are given vectors and g k  given functions. Show that if the Optimal 
value for this problem is finite and the control constraint sets u k ( x k )  are 
independent of x k ,  then the “cost-to-go” functions of the DP algorithm are 
affine (linear plus constant). Assuming that there is at least one optimal 
policy, show that there exists an optimal policy that consists of constant 
functions pt, i.e., p : ( x k )  = const for all x k  E R”. 
14. A farmer annually producing x k  units of a certain crop stores (1 - u k ) x k  

units of his production, where 0 < u k  < 1, and invests the remaining U k X k  

units, thus increasing the next year’s production to a level x k +  given by 

The scalars w k  are independent random variables with identical probability 
distributions which do not depend either on x k  or u k .  Furthermore E { W k }  = 
w > 0. The problem is to find the optimal investment policy that maximizes 
the total expected product stored over N years 

N -  1 

W k  { k = O  
x N  + 1 ( l  - uk)Xk 

k = 0, 1 ,  .. . , N - 1 

Show that one optimal control law is given by: 

where 

15. Let x k  denote the number of educators in a certain country at time k and 
let y k  denote the number of research scientists at time k. New scientists 
(potential educators or research scientists) are produced during the kth 
period by educators at a rate Y k  per educator, while educators and research 
scientists leave the field due to death, retirement, and transfer at a rate 6, .  
The scalars Y k ,  k = 0, 1,. . . , N - 1, are independent identically distributed 
random variables taking values within a closed and bounded interval of 
positive numbers. Similarly 8 k ,  k = 0, 1, . . . , N - 1, are independent identi- 
cally distributed and take values in an interval [S, S’] with 0 < 6 < 6’ c 1. 
By means of incentives a science policy maker can determine the proportion 

is such that l/(E + 1) < W < l/E. 
Note that this control law consists of constant functions. 
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U k  of new scientists produced at time k who become educators. Thus the 
number of research scientists and educators evolves according to the equations 

The initial numbers x o ,  yo are known and it is required to find a policy 
{ p o * ( x O ,  YO), . . . 9 pg- 1 ( x N -  l r  Y N -  1)) with 

0 < c( < l ( f ( x k ,  y k )  < B < 1 ,  V X k ,  y k ,  k = 0, 1 ,  . . . , N - 1 ,  

which maximizes E;.,,6, { y N } ,  i.e., the expected final number of research 
scientists after N periods. The scalars a and f l  are given. 

(a) Show that the “cost-to-go” functions J k ( x k ,  y k )  are linear, i.e., for 
some scalars A , ,  pk 

J k ( X k ,  y k )  = l k X k  + p k y k .  

(b) Derive an optimal policy {p:, . . . , p& l }  under the assumption 
E {yk} > E { 8 k } ,  and show that this optimal policy can consist of constant 
functions. 

(c) Assume that the actual proportion of new scientists who become 
educators at time k is u k  + &k (rather than U k ) ,  where ck are identically distri- 
buted independent random variables that are also independent of Y k ,  8 k  

and take values in the interval [ - a ,  1 - B]. Derive the form of the “cost- 
to-go” functions and the optimal policy. 



Chapter 3 

Applications in Specific Areas 

3.1 Linear Systems with Quadratic Cost Functional 
-The Certainty Equivalence Principle 

In this section we consider the special case of a linear system 

X k f l  = A k X k  + B k U k  + wk, k = 0, 1,. . . , N - 1, 

where the objective is to find a control law {pz(xo) ,  . . . , p$- 1 ( x N -  1 ) }  mini- 
mizing the quadratic cost functional 

I N -  1 

E 
wk k = O  

( x ; Q N x N  + 1 ( X L Q k X k  + u ; R k U k )  . 
k = O ,  ..., N -  1 

In the above expressions xk E R", uk E R", and the matrices A k ,  Bk, Q k ,  Rk are 
given and have appropriate dimension. We assume that Qk are symmetric 
positive semidefinite matrices and Rk are symmetric and positive definite. 
The disturbances wk are independent random vectors with given probability 
distributions that do not depend on X k , U k .  Furthermore, the vectors wk 

have zero mean and finite second moments. The control uk is unconstrained. 
The problem above represents a popular formulation of a regulation prob- 

lem whereby we desire to keep the state of the system close to the origin. Such 
problems are common in the theory of automatic control of a motion or a 

70 
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process. The quadratic cost functional is often a reasonable one since it 
induces a high penalty for large deviations of the state from the origin but a 
relatively small penalty for small deviations. However, even in cases where 
the quadraticcost functional is not entirelyjustified, it is still used since it leads 
to an elegant analytical solution that can often be implemented with relative 
ease in engineering applications. A number of variations and generalizations 
of this problem also have similar solutions. For example, the disturbances wk 
could have nonzero means and the quadratic cost functional could have the 
form 

I N- 1 i k = O  

E ( X N  - X N ) I Q N ( x N  - X N )  + 1 [ ( x k  - x a ) ’ Q k ( x k  - zk) + u;Rkukl . 

This cost functional expresses a desire to keep the state of the system close to 
a certain given trajectory (Xo, X l ,  . . . , X N )  rather than close to the origin. 
The analysis of the corresponding problem is very similar to the one of the 
present section and is left to the reader. Another generalization is the case 
where Ak, Bk are independent random matrices, rather than being known. 
This case will be considered subsequently in this section. 

Applying now the DP algorithm we have 

J N ( X N )  = ~ ~ Q N x N ,  (1) 

J k ( x k )  = min E { X ; Q k X k  + u;Rkuk + J k + l ( A k X k  + B k U k  + wk)}. (2)  
uk 

It turns out that the “cost-to-go” functions J k  are quadratic and as a 
result the control law is a linear function of the state. These facts can be 
verified by straightforward calculation. By expansion of the quadratic form 
(1) in (2)  for k = N - 1, and by using the fact that E { w N -  1 }  = 0 to eliminate 
the term E { w k -  1 Q N ( A N -  1 x N -  + B N -  1 u N -  1)}, we have 

J N -  1 ( x N -  1 )  = x;-  1 Q N -  1 X N -  1 + min[uk- 1RN- 1 u N -  1 
U N  - I 

+ uk-1Bk- 1 Q N  B N -  1 u N - l  + &- 1Ak- ~ Q N A N -  I X N -  1 

+ ~ $ - I A ~ - I Q N B N - ~ U N - ~ I  + E { W ~ - I Q N W N - I } .  

By differentiating with respect to # N - l  and setting the derivative equal to 
zero, we obtain 

( R N - I  + Bk- ~ Q N B N -  I ~ N -  1 = - g ~ -  I Q N A N -  I X N -  1. 

The matrix multiplying u N P l  on the left is positive definite (and hence in- 
vertible), since RN- is positive definite and f l N -  1 Q N B N -  is positive semi- 
definite. As a result the minimizing control vector is given by 

u $ - I  = -(RN-1 + HN- 1 Q N B N- I ) - ’ ~ N -  I Q N A N -  I X N -  1. 
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By substitution into the expression for JN-l ,  we have 

J N - i ( x N - 1 )  = xi-iK~-ixN-i + E { w i - i Q N ~ N - i l ,  
where the matrix K N -  is obtained by straightforward calculation and is 
given by 

KN-1 = A L - ~ C Q N  - QNBN-I(BN-IQNBN-I + R N - I ) - ~ % - I Q N I A N - I  

+ Q N - I .  

The matrix K N -  is clearly symmetric. It is also positive semidefinite. This 
can be seen from the fact that from the calculation given above we have for 
every x E R" 

x'KN-,x = min[x'Q,-,x + U ' R N - ~ U  
U 

+ ( A N -  1~ + B N -  ~ u ) ' Q N ( A N -  1x + BN- lu)]. 

Since Q N -  1, R N -  1, and Q N  are positive semidefinite, the expression within 
brackets is nonnegative. Since minimization over u preserves nonnegativity 
if follows that x'KN- 1 x  2 0 for all x E R". Hence KN- is positive semi- 
definite. 

Now in view of the fact that J N -  above is a positive semidefinite quad- 
ratic function (plus an inconsequential constant term) we may proceed in an 
entirely similar manner and obtain from the DP equation (2) the optimal 
control law for stage N - 2. Similarly we show that J N - 2  is a positive 
semidefinite quadratic function, and proceeding sequentially we obtain the 
optimal control law for every k. This control law has the form 

p ? ( x k )  = L k X k ,  (3) 

(4) 

where the gain matrices L k  are given by the equation 

L k  = - ( B k K k + l B k  + R k ) - l B ; K k + l A k ,  

and where the symmetric positive semidefinite matrices K k  are given re- 
cursively by the algorithm 

K N  = Q N ,  ( 5 )  

K k  = A ; [ K k + l  - K k + l B k ( B ; K k + l B k  + R k ) - l B ; K k + i l A k  + Q k .  (6) 

The optimal value of the cost functional is given by 
N - 1  

J O ( x O )  = x b K O x O  + 1 E { W ; K k + l W k ) -  
k = O  

The attractive aspect of the solution of this problem is the relative ease 
with which the control law (3) can be computed and implemented in engineer- 
ing applications. The current state x k  is being fed back as input through the 
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FIGURE 3.1 

linear feedback gain matrix Lk as shown in Fig. 3.1. This fact accounts for the 
great popularity of the linear-quadratic formulation. As we shall see in 
Chapter 4 the linearity of the control law is still maintained even for problems 
where the state xk of the system is not completely observable (imperfect state 
information). 

The Riccati Equation and Its Asymptotic Behavior 

Equation (6) is called the discrete matrix Riccati equation since it is the 
discrete-time analog of (matrix) Riccati differential equations. It plays an 
important role in modern control theory. Its properties have been studied 
extensively and exhaustively. One interesting property of the Riccati equation 
is that whenever the matrices A,,  B,, Q,,  Rk are constant and equal to A, 
B, Q, R, respectively, then ask + - 00 the solution Kk converges (under mild 
assumptions) to a steady-state solution K satisfying the so-called algebraic 
matrix Riccati equation 

K = A‘[K - KB(B’KB + R)-’B’KIA + Q. (7) 
We shall shortly provide a proof of this important property, which will also 
be useful in Chapter 6. Based on this property, when one is faced with a 
problem involving the stationary linear system 

X k f l  = AX, + BUk + W k ,  k = 0, 1 , .  .., N - 1, (8) 
and the number of stages N is large, one can reasonably approximate the 
control law (3) by a linear stationary control law of the form {p*p*, . . . , p*}  
where 

p*(x) = Lx, (9) 
(10) L = -(B’KB + R)-’B’KA, 

and K is the steady-state solution of the Riccati equation (6) satisfying (7). 
This control law is even more attractive for implementation purposes in 
many engineering applications. 
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We now turn to proving convergence of the sequence of matrices {&} 
generated by the Riccati equation ( 5 )  and (6). We first introduce the notions 
of controllability and observability, which are of major importance in modern 
control theory. 

Definition A pair (A, B), where A is an n x n matrix and B an n x m 
matrix is said to be controllable if the n x nm matrix 

[B, AB, AZB, . . . , A"-'B] 

has full rank (i.e., has linearly independent rows). A pair (A, C), where A is 
an n x n matrix and C an rn x n matrix, is said to be observable if the pair 
(A', C') is controllable, where A' and C' denote the transposes of A and C,  
respectively. 

One may easily prove that if the pair (A, B) is controllable, then for any 
initial state x, there exists a sequence of control vectors'u,, ul,  . . . , u,- that 
force the state x, of the system 

xk+ 1 = Ax, + Buk 

to be equal to zero at time n. This is true simply because from the system 
equation we obtain 

(1 1) 

x ,  = A"x, + BU,-l + ABu,-,  + . * * + A"-lBUo 
or equivalently 

Now if (A, B) is controllable, the matrix [B, AB, . . . , A"-'B] has full rank and 
as a result the right-hand side of (12) can be made equal to any vector in R" 
by appropriate selection of (uo,  u l ,  . . . , u,- l). In particular, one can choose 
(u,, ul, . . . , u,- 1) so that the right-hand side of (12) is equal to - A"xo, which 
implies x, = 0. This property explains the name "controllable pair" and in 
fact is often used to define controllability. The notion of observability has an 
analogous interpretation in the context of estimation problems (see e.g., 
Meditch [M6]). 

Definition We say that an n x n matrix D is stable if limk+m Dkx = 0 
for every vector x E R" (or equivalently lim, a, Dk = 0). 

This definition is motivated by the fact that if D is a stable matrix, then 
the state x k  of the system xk+ = Dx,  tends to zero as k -, co for an arbitrary 
state xo. The notion of stability is, of course, of paramount importance in 
control theory. In the context of our problem it is important to be assured that 
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the stationary control law, Eqs. (9) and (lo), results in a stable system, i.e., the 
matrix (A + BL)  is a stable matrix, and hence, in the absence of input dis- 
turbance, the state xk of the closed-loop system resulting upon substitution 
of the control law (9), 

xk = ( A  + BL)xk-i = ( A  + BL)kXo, k = 0, 1,. . . , 
tends to zero as k -+ ax 

We now have the following proposition, which shows that, for a stationary 
system and constant matrices Q k ,  R k ,  under controllability and observability 
conditions the solution of the Riccati equation ( 5 )  and (6) converges to a 
positive definite matrix K for an arbitrary positive semidefinite initial matrix. 
By matrix convergence we mean that every element of the matrices of the 
sequence converges to the corresponding element of the limit matrix. In 
addition, the proposition shows that the corresponding control law, Eqs. (9) 
and (lo), results in a stable system. 

Let A be an n x n matrix, B an n x m matrix, Q an 
n x n symmetric positive semidefinite matrix, and R an m x m symmetric 
positive definite matrix. Consider the discrete-time Riccati equation 

Proposition 

P k f l  = A’[Pk - PkB(B’PkB + R)-’B’Pk]A + Q, k = 0, 1,. . . , (13) 
where the initial matrix Po is an arbitrary positive semidefinite symmetric 
matrix. Assume that the pair (A, B)  is controllable. Assume also that Q may 
be written as C’C, where the pair (A, C) is observable.? Then: 

(a) There exists a positive definite symmetric matrix P such that for 
every positive semidefinite symmetric initial matrix Po we have 

lim Pk = P. 
k-m 

Furthermore, P is the unique solution of the algebraic matrix equation 

P = A’[P - PB(B’PB + R ) -  ‘B’PIA + Q (14) 

within the class of positive semidefinite symmetric matrices. 
(b) The matrix 

D = A + BL, 

L = -(B’PB + R)-’B’PA, 

(15) 

(16) 

where 

is a stable matrix. 

t Notice that if r is the rank of Q, there exists an r x n matrix C of rank r such that Q = C‘C 
(see Appendix A). 
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Proof The proof proceeds in several steps. First we show convergence of 
the sequence generated by (13) when the initial matrix Po is equal to zero. 
Next we show that the corresponding matrix D of (15) is stable. Subsequently 
we show convergence of the sequence generated by (13) when Po is any 
positive semidefinite symmetric matrix, and finally we show uniqueness of the 
solution of (14). 

Initial Matrix Po = 0 Consider the optimal control problem of finding 
a sequence u o ,  u l ,  . . . , uk- that minimizes 

k -  1 c (x:Qxi + u:Rui) 
i = O  

(17) 

subject to 

x i + l  = Axi + Bui, i = 0, 1, ..., k - 1, (18) 
where xo  is given. The optimal value of this problem, according to the theory 
of this section, is 

xb  pk(o)xO 9 

where Pk(0) is given by the Riccati equation (13) with Po = 0. We have 

XbPk(O)XO < XbPk+ i(0)Xo V X o  E R", k = 0, 1, . . . , 
since for any control sequence (uo, u l ,  . . . , uk) we have 

k -  1 k 

1 (x:Qxi + u:Rui) < l ( x : Q x i  + u:Rui) 
i = O  i = O  

and hence 
k -  1 

xbPk(O)xo = min 1 (x:Qxi + ulRu,) 
u i , i = O .  ..., k -  1 i=O 

k 

< min c (x:Qxi + uiRui) = xbPk+1(0)X07 
u i , i = O ,  ..., k i = O  

where both minimizations are subject to the system equation constraint 
x i +  = Axi  + Bui.  Furthermore, for a fixed xo  and for every k ,  xbPk(O)Xo 
is bounded above by the cost corresponding to a control sequence that forces 
xo  to the origin in n steps and applies zero control after that. Such a sequence 
exists by the controllability assumption. Thus the sequence {xb  Pk(O)XO} 
is increasing and bounded above and therefore converges to some real 
number for every xo E R". It follows that the sequence (Pk(0)) converges to 
some matrix P in the sense that each of the sequences of the elements of Pk(0) 
converge to the corresponding elements of P. To see this take xo = (1,0, . . . , 0). 
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It follows that the sequence of first diagonal elements of Pk(0) converges to the 
first diagonal element of P .  Similarly by taking xo  = (0,. . . ,O ,  1,0, .  . . ,0)  
with the one in the ith coordinate, for i = 2, . . . , n, it follows that all the dia- 
gonal elements of Pk(0) converge to the corresponding diagonal elements of P.  
Next take xo  = (1, 1,0,. . . , 0) to show that the second elements of the first 
row converge. Similarly proceeding we obtain 

lim Pk(0) = P ,  

where Pk(0) are generated by (13) with Po = 0. Furthermore, the limit matrix 
P is positive semidefinite and symmetric. Now by taking the limit in (13) it 
follows that Psatisfies 

k -  m 

P = A’[P - PB(B’PB + R ) -  ‘B’PIA + Q. (19) 

(20) 

by direct calculation we can verify the following equality, which will be 
useful subsequently in the proof: 

(21) 

(22) 

Furthermore, if we define 

L = -(B’PB + R)-’B’PA, D = A + BL 

P = D’PD + Q + L‘RL. 

xk+ 1 = ( A  + BL)xk = DXk 

Stability of D = A + B L  Consider the system 

for an arbitrary initial state x o .  Since 

xk = DkXo, 

it will be sufficient to show that xk + 0 as k + co. Now we have for all k by 
using (21) 

X b +  lPXk+ 1 - x;Pxk = X;(D’PD - P)xk = -X;(Q + L’RL)Xk. 

Hence 
k 

x;+lPxk+I = XbPXo - C X i ( Q  L‘RL)Xi. (23) 
i = O  

Since the left-hand side of the equation is bounded below by zero it follows 
that 

x;(Q + L’RL)Xk + 0. 

Using the fact that R is positive definite and Q may be written as C‘C, we 
obtain 

lim Cxk = 0, lim Lxk = 0: (24) 
k - m  k + m  



78 3 APPLICATIONS IN SPECIFIC AREAS 

From (22) we have 

CAn-  ' 

C A n - 2  

C A  

C 

x k -  (25)  

By (24) the left-hand side tends to zero and hence the right-hand side tends to 
zero also. By the observability assumption, however, the matrix multiplying 
xk on the right side of (25) has full rank. It follows that xk + 0 and hence the 
matrix D of (21) is stable. 

Positive DeJiniteness of P Assume the contrary, i.e., that there exists 
some xo # 0 such that xbPxo = 0. Then from (23) we obtain 

x;(Q + L'RL)xk = 0 V k  = 0, 1, . . . , 

where xk = Dkxo.  This in turn implies [cf. Eq. (2411 

CXk = 0, Lxk = 0 V k  = 0, 1, .. .. 

Consider now (25) for k = 0. By the above equalities the left-hand side is zero 
and hence 

O =  

C A n -  ' 

C A  
C 

Since the matrix multiplying xo  above has full rank by the observability 
assumption we obtain xo  = 0, which contradicts the hypothesis xo # 0. 
Hence P is positive definite. 

Next we show that the sequence of matrices 
{pk(po)}  defined by (13) when the starting matrix is an arbitrary positive 
semidefinite matrix Po converges to P = Iimk+m Pk(0). Indeed, the optimal 
value of the optimal control problem of minimizing 

Arbitrary Initial Matrix Po  

k -  1 

x;POxk 1 (XiQXi UiRUi) (26) 
i = O  
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subject to (18) equals xb Pk(P0)Xo. Hence we have for every x o  E R" 

xb Pk(0)xO < xb pk(P0)xO. 

Consider now the cost (26) corresponding to the controller &ck) = uk = Lxk, 
where L is defined by (20). This cost is given by 

k -  I 

D'kP,Dk + 1 [D"(Q + L'RL)Di] 
i = O  

and is greater than xb Pk(Po)xo, which is, of course, the optimal value of (26). 
Hence we have for all k and x E R" 

1 k- 1 

X'Pk(0)X < X'Pk(P0)X < X' D ' k p ~ D k  + 1 [D"(Q + L'RL)D'] X .  (27) 
i = O  

Now we have proved 

lim Pk(0) = P,  (28) 
k +  m 

and we also have (using the fact that limk+w DfkPoDk = 0) 

(29) 

where the last equality may be verified easily using (21). Combining (27)-(29) 
we obtain 

lim P,(Po) = P ,  

I k -  1 

lim DfkP0Dk + 1 [D"(Q + L'RL)D'] 
k -  m i i = O  

= lim 1 [D"(Q + L'RL)Di] = P,  
k + m  c- i = O  I 

k +  w 

for an arbitrary positive semidefinite symmetric P o .  

of (14), we would have 
Uniqueness of Solution If P were another positive semidefinite solution 

lim Pk(P) = P. 
k - t m  

Since P is a solution of (14), however, it follows that 

Pk(g) = P V k  = 0, 1,. . . , 

and hence = P.  Q.E.D. 

We note that this proposition may be sharpened by substituting the 
controllability and observability assumptions by weaker assumptions of 
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stabilizability and detectability. We refer the reader to the work of Kucera 
[K9], Payne and Silverman [P4], and Wonham [W12] for an exposition of 
this refinement. 

Random System Matrices 

We consider now the more general case where the matrices A,  and Bk 
are not known but rather are independent random matrices over time and 
independent of wk . Their probability distributions are given and they are 
assumed to have finite second moments. This problem falls again within the 
framework of the basic problem by considering as “disturbance” at each 
time k the triplet (Ak, Bk, wk). The DP algorithm is written 

J N ( X N )  = X ; V Q N X N  9 

J k ( X k )  = min E { X i Q L X k  + u;Rkuk + Jk+l(AkXk + BkUk + wk)}. 
U k  W k . A k , B k  

Calculations very similar to those for the case where A k ,  Bk are not random 
show that the optimal control law is of the form 

pLk*(xk) = k x x  3 (30) 

(3 1) 

K N  = Q N ,  (32) 

(33) 

Finally we further pursue an observation made in Chapter 1 ,  which is 
related to the nature of the quadratic criterion. Consider the minimization 
over u of the quadratic form 

E { (ax  + bu + w)’}, 

where a,  b are given scalars and w is a random variable. The optimum is 
attained for 

where the gain matrices Lk are given by 

Lk = -[Rk + E { B ; K ~ + I B ~ } ] - ~  E{%Kk+iAk} ,  

and where the matrices K k  are given by the recursive equation 

Kk = E{A’Kk+iAk}  - E{A;Kk+iBk}CRk + E { % K k + i B k } l - l  

x E { B ; K k +  l A k }  + Q k .  

W 

U* = - ( u / ~ ) x  - ( l / b ) E { w } .  

Now u* is independent of the particular probability distribution of the ran- 
dom vector w and depends only on the mean E { w } .  In particular, the result 
of the optimization is the same as for the corresponding deterministic problem 
where w is known with certainty and equal to E { w } .  As mentioned in Section 
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1.3, this property is called the certainty equivalence principle and appears in 
various forms in many (but not all) stochastic control problems involving 
linear systems and quadratic criteria. For the first problem of this section 
( A k ,  Bk known), the certainty equivalence principle is expressed by the fact 
that the control law (3) is the same as the one that would be obtained from the 
corresponding deterministic problem where wk is not random but rather is 
known and equal to zero (its expected value). However, for the problem 
where A k ,  B k  are random the certainty equivalence principle does not hold 
since if one replaces Ak, Bk with their expected values in Eq. (33), the resulting 
control law need not be optimal. 

3.2 Inventory Control 

We consider now the N-period version of the inventory control problem 
considered in Sections 2.1 and 2.2. For simplicity we shall assume initially 
that thefixed cost K is zero. Furthermore, we will assume that excess demand 
at each period is backlogged and is filled when additional inventory becomes 
available. This is represented by negative inventory in the system equation 

x k + l  = xk f uk - W k ,  k = 0, 1, .. ., N - 1. 

We assume that the successive demands wk are bounded and independent, the 
unfilled demand at the end of the Nth period is lost, and the inventory 
leftover at the end of the Nth period has zero value. We shall also assume for 
convenience that the demands wo,  . . . , w N -  are characterized by identical 
probability measures. The results of this section can also be proved without 
this restriction by trivial modifications of the proofs given here. Under these 
circumstances the total expected cost to be minimized is given by the ex- 
pression 

The assumptions made in Section 1.3.3 (c > 0, h 2 0, p > c) will also be in 
effect here. 

By applying the DP algorithm for the basic problem we have 

J N ( x N )  = 0, (34) 

J k ( X k )  = min[cuk + L(xk + uk)  + E { J k + l ( x k  + u k  - wk)}] ,  (35) 
U k > O  

where the function L is defined by 

L(y) = p E {max(o, wk - y ) }  + h E{max(O, y - Wk)}. 
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We now show that an optimal control law is determined by a sequence of 
scalars {So, S1, . . . , SN- 1 }  and has the form 

For each k ,  the scalar Sk minimizes the function 
Gk@) = cy + L(y) + E { J k +  l b  - w ) } *  (37) 

It is evident from the form of the DP algorithm and the discussion of the 
single-period problem of Section 1.3.3 that the optimal control law is indeed 
of form (36) provided the cost-to-go functions Jk [and hence also the functions 
Gk of (37)] are convex, and furthermore lim,,,,, Gk(y) = co, so that the 
minimizing scalars S k  exist. 

Indeed, proceeding inductively we have that J N  is convex [cf. Eq. (34)]. 
By the single-period problem solution, an optimal policy at time N - 1 is 
given by 

Furthermore from the DP equation (35) we have 
c ( S N - 1  - x N - 1 )  + L ( S N - 1 )  if x N - 1  < S N - 1 ,  i LN- l(xN- 1) if X N - 1  3 s N - 1 ,  

J N -  l(xN- 1 )  = 

which is a convex function by the convexity of L and the fact that S N - l  
minimizes cy + L(y) (see Fig. 3.2). Thus given the convexity of JN we were 
able to prove the convexity of J N - l .  

Similarly one can see that iimlyl+m Gk(y) = a, since c < p ,  and we have 

c(sk - xk) + L(sk) + E { J k +  l(sk - wk)} if xk < s k ,  i L(xk)  -I- E { J k +  l(xk - w k ) }  if xk > S k r  
J k ( X k )  = 

where Sk minimizes c y  + L(y) + E {Jk+l (y  - w ) } .  Again the convexity of 
J k + l  [which implies convexity of L ( x )  + E {Jk+l (x  - w ) } ]  is sufficient to 
show the convexity of Jk and thus the optimality of the control law (36) is 
demonstrated. 

Positive Fixed Cost 

We now turn to the somewhat more complicated case where there is a 
nonzero fixed cost K > 0 associated with a positive inventory order. In other 
words, we consider the case where the cost for ordering inventory u 3 0 is 
given by 

if u = 0. C(u) = 
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FIGURE 3.2 

The DP algorithm takes the form 

with L defined as earlier by 

Consider again the functions G, 
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If we could prove that the functions Gk were convex functions, then based 
on the analysis of Section 1.3.3 it would follow that a policy of the (s, S) type 

would be optimal, where Sk is a value of y that minimizes Gk(y) and sk is the 
smallest value of y for which Gk(y) = K + Gk(Sk). Unfortunately when K > 0 
it is not necessarily true that Jk or Gk are convex functions. This opens the 
possibility of functions Gk having the form shown in Fig. 3.3. For this case the 

FIGURE 3.3 

optimal policy is to order (S - x )  in interval I, zero in intervals I1 and IV, and 
(3 - x) in interval 111. However, we will show that even though the functions 
Gk may not be convex they have the property 

(40) 

This property is called K-convexity and was first utilized by Scarf [SS] to 
show the optimality of multiperiod (s, S) policies. Now if (40) holds, then the 
situation shown in Fig. 3.3 is impossible; for if yo  is the local maximum in the 
interval 111, then we must have, for sufficiently small b > 0, 

and from (40) it follows that 
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which contradicts the construction shown in Fig. 3.3. More generally it is 
easy to show by essentially repeating the analysis of Section 1.3.3 [using part 
(d) of the lemma below] that if (40) holds, then an optimal policy takes the 
form (39). 

Definition We say that a function g :  R -, R is K-convex, where K 2 0, 
if 

Some properties of K-convex functions are provided in the following 
lemma. The last part of the lemma essentially proves the optimality of the 
(s, S) policy (39) when Gk satisfies (40). 

Lemma (a) A convex function g: R -, R is also O-convex and hence 
also K-convex for all K 2 0. 

(b) If gl(y) and g2(y) are K-convex and L-convex (K 2 0, L 2 0), re- 
spectively, then ag,(y) + pg2(y) is (crK + pL)-convex for all positive a and p. 

(c) If g(y) is K-convex, then E ,  {g(y - w ) }  is also K-convex provided 
E ,  { Jg(y - w ) l }  < 00 for all y. 

(d) If g: R -, R is a continuous K-convex function and g(y) + co as 
Iyl+ co, then there exist scalars s and S with s < S such that 

(0 g(S) < g(y), 'dY E R ;  
(ii) g(S) + K = g(s) < go4 VY < s; 

(iii) g(y) is a decreasing function on (- co, s); 
(iv) g(y) < g(z) + K for all y, z with s < y < z. 

Proof Part (a) follows from elementary properties of convex functions 
and parts (b) and (c) follow directly from the definition of a K-convex function. 
We shall thus concentrate on proving part (d). 

Since g is continuous and g(y) + 00 as I y I + co, there exists a minimizing 
point of g. Let S be such a point. Also let s be the smallest scalar z for which 
z 6 S and g(S) + K = g(z). For all y with y < s we have from the definition 
of K-convexity 

Since K + g(S) - g(s) = 0 we obtain g(s) - g(y) < 0. Since y < s and s 
is the smallest scalar for which g(S)  + K = g(s) we must have g(s) < g(y) and 
(ii) is proved. Now for y ,  < y2 < s we have 
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and by adding these two inequalities we obtain 

Cs(Y2)  - g(y,)l ,  
S - Y z  O>- 

Y 2  - Y l  

from which g(yl)  > g(yz)  thus proving (iii). To prove (iv) we note that it holds 
for y = z as well as for either y = S or y = s. There remain two other pos- 
sibilities, S < y < z and s -= y < S. If S < y < z, then by K-convexity 

and (iv) is proved. If s < y < S, then by K-convexity 

from which 

and g(s) 2 g(y). Noting that 

g(z) + K 2 g(S) + K = g($, 

it follows that g(z)  + K 2 g(y). Thus (iv) is proved for this case as well. 
Q.E.D. 

Consider now the function G N -  of (38): 

G N -  1 0 1 )  = CY + LoI). 

Clearly G N - 1  is a convex function and hence by part (a) of the previous 
lemma it is also K-convex. We have, from the analysis of the case where 
K = 0, 

(41) 
K + G N - 1 ( S N - 1 )  - c x  for x < s N - 1 ,  

G N -  1 ( x )  - cx for x 2 S N - 1 ,  
J N -  l ( x )  = 

where SN- minimizes G N -  l(y) and sN-  is the smallest value of y for which 
G N -  l ( y )  = K + G N -  l ( S N -  l ) .  Notice that since K > 0 we have sN-  # S N -  
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and furthermore the slope of G N -  at s N -  is negative. As a result the left slope 
of J N -  at sN- is greater than the right slope as shown in Fig. 3.4 and J N -  
is not convex. However, we will show that J N -  is K-convex based on the fact 
that GN- is K-convex. To this end we must verify that 

We distinguish three cases: 

Case 1 y 2 s ~ - ~  If y - b 2 s ~ - ~ ,  then in this region of values of 
z, 6, y the function JN- by (41), is the sum of a K-convex function and a 
linear function. Hence by part (b) of the lemma it is K-convex and (42) holds. 
If y - b < s N -  1, then in view of (41) we can write (42) as 

b 
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NOW if y is such that GN- l(y) 2 GN- l ( ~ N -  1), then by K-convexity of G N -  we 
have 

Thus (43) and hence also (42) holds. If y is such that GN- l(y) < GN- 1(sN-  1), 

then we have 

So for this case (43), and hence also (42), holds. 

Case 2 y < y + z < sN- 
is linear and hence (42) holds. 

In this region, by (41), the function J N -  

Case 3 y < sN-  < y + z For this case in view of (41) we can write (42) 
as 

or equivalently 

K + GN- 10, + Z) 2 G N -  ~ ( s N -  I), 

which holds true by the definition of s N -  1. 

We have thus proved that K-convexity and continuity of GN- together 
with the fact that GN-I(y) + co as lyl + 00 imply K-convexity of J N - 1 .  In 
addition, J N -  can be easily seen to be continuous. Now using the lemma it 
follows from (38) that GN-2 is a K-convex function. Furthermore, by using 
the boundedness of w N -  2 ,  it follows that GN-2 is continuous and, in addition 
CN-,(Y) + co as ly l  + 00. Repeating the argument above we obtain the fact 
that J N - 2  is K-convex and proceeding similarly we prove K-convexity and 
continuity of the functions Gk for all k, as well as that G,(y) + 00 as I y I + co. 
At the same time [by using part (d) of the lemma] we prove optimality of the 
multiperiod (s, S) policy of (39). 
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Optimality of policies of the (s, S) type can be proved for a number of 
problems that constitute variations and generalizations of the problem 
considered in this section. Problems 4-6 treat the cases where forecasts on the 
uncertain demand become available during the control process, the case 
where there is a one-period time lag in delivery of inventory, and the case 
where unfilled demand is lost rather than backlogged (i.e., the system equation 
is xk+ 1 = max[O, xk + uk - wk]). 

3.3 Dynamic Portfolio Analysis 

Portfolio theory deals with the question of how to invest a certain amount 
of wealth among a collection of risky or riskless assets. The traditional and 
widely used approach to this problem [M4, S S ] ,  has been the so-called mean- 
variance approach examined in Section 1.3, whereby the investor is assumed 
to be maximizing the expected value of a utility function that depends on the 
mean and the variance of the rate of return of the investment. Since this 
approach cannot be readily generalized to the case where investment takes 
place over several periods of time and in addition is based on assumptions 
that may not be satisfied in a given practical situation, there has been con- 
siderable effort toward the development of alternative approaches for port- 
folio selection. In one such approach, the investor is assumed to be maximiz- 
ing the expected utility of his final wealth. We shall discuss in this section some 
results related to this viewpoint. We will start with an analysis of a single- 
period model and then extend the results to the multiperiod case. 

Let xo denote the initial wealth (measured in monetary units) of the in- 
vestor and assume that there are n risky assets, with corresponding random 
rates of return el ,  ez, . . . , en among which the investor can allocate his wealth. 
The investor can also invest in a riskless asset offering a sure rate of return s. 
If we denote by ul, . . . , u, the corresponding amounts invested in the n risky 
assets and by (xo - u1 - . . . - u,) the amount invested in the riskless asset, 
the final wealth of the decision maker is given by 

n 

x1 = s(xo - u1 - ... - u,) + C e i u i ,  
i =  1 

or equivalently 

x1 = sxo + C ( e i  - s)ui. 
i =  1 

The objective is to maximize over ul,. . . , u,, 

E {w4, 
ei 

i =  1, ..., n 
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where U is a utility function for the investor. We assume that the expected 
value above is well defined and finite for all x , ,  ui .  We shall also assume that 
the domain of U is an open set D within which U is concave and twice con- 
tinuously differentiable. We shall not impose constraints on u,, . . . , u,. This 
is necessary in order to obtain the results in convenient form. However, we 
shall assume that the probability distribution of ei and the minimizing values 
of ui are such that the resulting values of x 1  as given by (44) belong to the 
domain of U .  A few additional assumptions will be madeduring the exposition 
of the results. 

Let us consider the above problem for every value of initial wealth and 
denote by uz = pi*(x0), i = 1, .  . . , n, the optimal amounts to be invested in 
the n risky assets, when the initial wealth is x , .  

We say that the portfolio {p'*(xo) ,  . . . , p"*(x0)} is partially separated if 

(45) 

where ai, i = 1, . . . , n, are fixed constants and h(x,) is a function of x ,  (which 
is the same for all i ) .  

When partial separation holds, the ratios of amounts invested in the risky 
assets are fixed and independent of the initial wealth, i.e., 

pi*(xo)  = a'h(x,), i = 1,. . . , n, 

pi*(xo)/pj*(xo)  = a i / d  for 1 < i , j  < n, 04 z 0. 

Actually in the cases we shall examine when partial separation holds, the 
portfolio {p1*(x0) ,  . . . , p"*(xo)} will be shown to consist of a f h e  (linear plus 
constant) functions of x o  that have the form 

(46) 

where a and b are constants characterizing the utility function U .  
In the special case where a = 0 in (46) we say that the optimal portfolio is 

completely separated in the sense that the ratios of the amounts invested in 
both the risky asset and the riskless asset are fixed and independent of initial 
wealth. We now show that when the utility function satisfies 

pi*(xo)  = ai[a + bsx,] ,  i = 1,. . . , n, 

- U'(x , ) /U"(x , )  = a + b x ,  v x , ,  (47) 

where U' and U" denote the first and second derivatives of U ,  respectively, 
and a and b are some scalars, then the optimal portfolio is given by 

(48) pi*(xo)  = d [ a  + bsx,] ,  i = 1,. . . , n. 

Furthermore, if J(xo)  is the optimal value of the problem 

Jb0) = min E { U ( x , ) } ,  
ui 
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then we have 
- J’(xo)/J”(xo) = (a/s) + bx,  v x ,  . (49) 

Let us assume that an optimal portfolio exists and is of the form 
pi’(x0) = ai(x0)[a + bsxo], 

where ai(xo), i = 1 ,  . . . , n, are some differentiable functions. We will prove 
that dai(xo)/dxo = 0 for all xo  and hence the functions ai must be constant. 

We have for every xo, by the optimality of pi*(xo) ,  for i = I ,  . . . , n, 

1 1  d ~ { ~ ( x ~ ) } / d u ~  = E U‘ sxo + C(ej  - s)aj(xo)(a + bsx,) (ei - s) = 0, i [ .i:1 

Differentiating the n equations in (50) with respect to xo yields 
- da’(xo) 

(el - s)’ . . (el - s)(e, - s) 

(en - s)(el - s) . . . (en - s)’ 
U”(x , ) (a  + bsxo) 

- - -  

i =  1 

Using relation (47) we have 
U’(X 1) 

a + b[sxo + I!=, (ei - s)a’(x,)(a + bsx,)] 

(a + bsx,) [ 1 + I:= (ei - s)ai(xo)b] 
‘ 

U”(x1) = - 

- U’(X 1 )  _ -  

Substituting in (51) and using (50) we have that the right-hand side of (51) is 
the zero vector. The matrix on the left in (51), except for degenerate cases, can 
be shown to be nonsingular. Assuming that it is indeed nonsingular we obtain 

dai(xo)/dxo = 0, i = 1 , .  . . , n, 
and ai(xo) = ai, where ai are some constants, thus proving (48). 

We now turn our attention to proving relation (49). We have 
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and hence 

(53) 

The last relation after some calculation and using (52) yields 

11 I (ei - s)aib s (a + bsx,). (54) 

By combining (53) and (54) we obtain the desired result : 

-J'(xo)/J"(xo) = ( a / ~ )  + bxo. 

The class of utility functions satisfying condition (47) is characterized by the 
fact that the inverse of the index of absolute risk aversion (sometimes referred 
to as the "risk-tolerance function") is affine in wealth. It can be easily shown 
that the following forms of utility functions satisfy this condition: 

exponential: for b = 0, 
logarithmic: ln(x + a) for b = 1, (55) 

power: [l/(b - l)](a + bx)'-(l ib) otherwise. 

Naturally in our portfolio problem only concave utility functions from this 
class are admissible. Furthermore if a utility function that is not defined over 
the whole real line is used, the problem should be formulated in a way that 
ensures that all possible values of the resulting final wealth are within the 
domain of definition of the utility function. 

It is now easy to extend the one-period result of the preceding analysis 
to the case of a multiperiod model. We shall assume that the current wealth 
can be reinvested at the beginning of each of N consecutive time periods. We 
denote 

xk the wealth of the investor at the beginning of the kth period, 
u: the amount invested at the beginning of the kth period in the ith 

ef the rate of return of the ith risky asset during the kth period, 
sk the rate of return of the riskless asset during the kth period. 
We have (in accordance with the single-period model) the system equation 

risky asset, 

n 

xk+ 1 = S k X k  + c (ef - sk)uf, k = 0, 1, . . . , N - 1. (56) 
i =  1 
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We assume that the vectors ek = (e t , .  . . , el), k = 0,. . . , N - 1, are inde- 
pendent random vectors with given probability distributions that result in 
finite expected values throughout the following analysis. 

The objective is to maximize E { U(xN)} ,  the expected utility ofthe terminal 
wealth x N ,  where we assume that U satisfies for all x 

- V’(X) /U”(X)  = u + bx. 

Applying the DP algorithm to this problem we have 

J&N) = U(xN), (57) 

From the solution of the one-period problem we have that the optimal policy 
at the beginning of period N - 1 is of the form 

pg- 1(xN- 1) = a N -  lCa + b s N -  1 X N -  1 1 ,  

where t l N -  is an appropriate n-dimensional vector. Furthermore, we have 

-Jk- l ( X ) / r ; -  1 ( X )  = (a/SN- 1) + bx. (59) 

Hence applying the result of this section in (58 )  for the next to the last period 
we obtain the optimal policy 

pg-2(XN-2) = a N - 2 [ ( a / s N - l )  + bsN-2XN-219 

where a N -  is again an appropriate n-dimensional vector. 
Proceeding similarly we have for the kth period 

d ( x k )  = ak[(a/sN- 1 ‘ ’ ‘ sk+ 1) + bskxkl (60) 

where ak, k = 0, 1,. . . , N - 1, are n-dimensional vectors that depend on the 
probability distributions of the rates of return e: of the risky assets and are 
determined by optimization of the expected value of the optimal “cost-to-go” 
functions Jk. These functions satisfy 

-J;(X)/J;(X) = ( U / S N - l  * * * S k )  + bx, k = 0, 1,. . . , N - 1. (61) 

Thus one can see that the investor, when faced with the opportunity to 
reinvest sequentially his wealth, uses a policy similar to that of the single- 
period case. Carrying the analysis one step further, one can see that if the 
utility function U is such that a = 0, i.e., U has one of the forms 

In x for b = 1 ,  
[l/(b - l)](bx)’-(’’*) for b # 0, b # 1 ,  
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then it follows from (60) that the investor acts at each stage k as if he were 
faced with a single-period investment characterized by the rates of return 
sk, e:, i = 1, . . . , n, and the objective function E { u(xk+ l ) } .  This policy 
whereby the investor can ignore the fact that he will have the opportunity to 
reinvest his wealth is called a myopic policy [M8]. 

Note that a myopic policy is also optimal when sk = 1, k = 0, . . . , N - 1, 
which is the case when wealth is discounted at the rate of return of the riskless 
asset (going rate of interest for money). Furthermore, it can be proved that 
when a = 0 a myopic policy is optimal even in the more general case where 
the rates of return sk ,  k = 0, 1, . . . , N - 1. are independent random variables 
[M8], and for the case where forecasts on the probability distributions of 
the rates of return e: of the risky assets become available during the invest- 
ment process (see Problem 7). 

It turns out that even for the more general case where a # 0 only a small 
amount of foresight is required on the part of the decision maker. It can be 
easily seen [compare (58)-(61)] that the optimal policy (60) at period k is the 
same as the one that would be used if the investor were faced with a single- 
period problem whereby he would maximize over u:, i = 1, . . . , n, 

subject to x k +  = skxk + C:= ( e f  - sk)uf. In other words, the investor 
maximizes the expected utility of wealth that results if amounts uf are invested 
in the risky assets in period k and the resulting wealth x k +  is subsequently 
invested exclusively in the riskless asset during the remaining periods 
k + 1, . . . , N - 1. This type of policy has been called a partially myopic 
policy [M8]. A partially myopic policy can also be shown to be optimal when 
forecasts on the probability distributions of the rates of return of the risky 
assets become available during the investment process (see Problem 7). 

Another interesting aspect of the case where a # 0 is that when sk > 1 
for all k ,  then as the horizon becomes longer and longer ( N  + 00) the policy 
in the initial stages approaches a myopic policy [compare (60) and (61)]. 
Thus we can conclude that for sk > 1 a partially myopic policy is asymptoti- 
cally myopic as the horizon tends to infinity. This fact holds for an even larger 
class of utility functions than the class we have considered, as shown by 
Leland [L3]. 

In conclusion we mention that while the model we have examined ignores 
certain important aspects of the corresponding practical situation (con- 
straints on investments, transaction costs, time correlation of rates of return, 
the possibility of intermediate consumption of wealth, market imperfections, 
etc.), it admits a closed-form solution for a large class of utility functions 
together with economic interpretations related to myopic and partially 
myopic policies that are undoubtedly of considerable interest. Thus while 
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neither the particular model that we have examined nor its various refinements 
have achieved the preeminence and popularity of the mean-variance model, 
the corresponding analysis and results provide unquestionably important 
insights into the process of portfolio selection. 

3.4 Optimal Stopping Problems-Examples 

Optimal stopping problems of the type we will consider in this and sub- 
sequent sections typically involve a control space that consists of a finite 
number of elements (actions), one of which induces a termination (stopping) 
of the evolution of the system. Thus at each stage the controller observes the 
current state of the system and decides whether to continue the process 
(perhaps at a certain cost) or stop the process and incur a certain loss. 

Asset Selling Problem 

As a first example, consider a person having an asset (say a piece of land) 
for which he is offered a nonnegative amount of money from period to period. 
Let us assume that these random offers w,,, w l r  . . . , w N -  are independent, 
identically distributed, and take values within some bounded interval. We 
consider a horizon of N stages and assume that if the person accepts the offer, 
he can invest the money at a fixed rate of interest r > 0, and if he rejects the 
offer, he-waits until the next period to consider the next offer. Offers rejected 
are not renewed and we initially assume that the last offer w N - l  must be 
accepted if every prior offer has been rejected. The objective is to find a policy 
for accepting and rejecting offers that maximizes the revenue of the person at 
the Nth period. 

Let us try to embed this problem in the framework of the basic problem by 
defining the state space, control space, disturbance space, system equation, 
and cost functional. We consider as disturbance at time k the random offer 
w k  and as corresponding disturbance space the real line. The control space 
consists of two elements u l ,  u2, which correspond to the decisions “sell” and 
“do not sell,” respectively. Concerning the state space we define it to be the 
real line, augmented with an additional state (call it T),  which is a “termination 
state.” The system moves into the termination state as soon as the asset is 
sold. By writing that the system is at a state x k  # T at time k we mean that the 
asset has not been sold as yet and the current offer under consideration is 
equal to x k .  By writing that the system is at state x k  = T at time k we mean 
that the asset has already been sold. With these conventions we may write a 
system equation of the form 

X k + 1  = f k ( X k , U k , W k ) r  k = O , . . . , N -  1, 

Xg = 0, 
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where x k  E R u { T }  and the functionfk is defined via the relations 

T if u k  = u'(sel1) or x k  = T, I w k  otherwise. x k + l  = 

The corresponding reward function may be written 
N -  1 

g N ( X N )  + 1 g k ( X k ?  u k ,  w k )  
W k  k = O  

k = O .  ..., N- 1 

where 

XN if XN # T, 
otherwise, g N ( X N )  = 0 I 

Based on this formulation we can write the corresponding DP  algorithm 
over the states x k :  

In Eq. (63) (1 + r )N-kxk (where x k  # T )  is the revenue resulting from decision 
u1 (sell) when the offer under consideration is xk, and E { J k +  1 ( w k ) }  represents 
the expected revenue corresponding to the decision u2 (do not sell). 

Actually the DP algorithm above could be derived by elementary reason- 
ing without resorting to the elaborate formulation given earlier-something 
that we shall often do in the future. Our purpose for providing this formula- 
tion was simply to demonstrate to the reader the type of structure that one 
must adopt in order to embed a stopping problem into the framework of the 
basic problem. 

Now from the D P  algorithm (62) and (63) we obtain the following optimal 
policy for the case where x k  # T :  

accept the offer w k -  = x k  if (1 + r ) N - k X k  > E { J k +  1 ( w k ) } ,  

reject the offer w k -  = x k  if (1 + r ) N - k X k  < E { J k +  1 ( w k ) } .  

When (I + r ) N - k X k  = ~ { ~ k + ~ ( w k ) }  both acceptance and rejection are 
optimal. 
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a1 

a2 

a v -  I 

0 

The result can be put into a more convenient form by some further 
analysis. Let us introduce the functions 

A 

- a1 

Reject 

I I - - 
1 3 A'-l N 

which represent discounted cost-to-go for the last N - k stages. It can be 
easily seen that 

vN(xN)  = X N  9 (64) 

h ( X k )  = m a x [ X k ,  (1 r ) - ' E { h + I ( W k ) } ] ,  k = 0, 1,. . . , N - 1. (65) 

By using the notation 

the optimal policy is given by 
accept the offer w k -  = x k  if x k  > a k ,  

reject the offer w k -  = x k  if x k  < q,, 

while both acceptance and rejection are optimal for x k  = tLk (Fig. 3.5). Thus 
the optimal policy is completely determined by the sequence ul,  . . . , uN- '. 

Now from the algorithm (64) and (65) we have 

Hence we obtain 
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where the function P is defined for all scalars A by 

P(1) = Prob{w c A}. 
Notice that the function P is nondecreasing and continuous from the left 
for all A. The difference equation for cik above may also be written 

with uN = 0. Let us first show that the solution of the above difference equa- 
tion is monotonically nonincreasing (as one would expect), i.e., 

o < U k + l  < U k ,  k = N - 2 , N - 3  ,..., (67) 

Indeed, we have 

Assuming that a k +  2 t l k + z ,  we will show.that 2 c(k+ and (67) will follow 
by induction. We have 

and a k  2 u k +  proving (67). 
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Now since we have 

< 1  
P(a)  1 

O G - G -  
l + r  l + r  

tla 2 0, 

it can be easily seen, using the monotonicity property (67), that the sequence 
{ak} generated (backwards) by the difference equation (66) converges 
(as k + - 00) to a constant E satisfying 

E(1 + r) = P(6)E + JEmw dP(w). 

This equation is obtained from (66) by taking limits as k -+ - 00 and by using 
the continuity from the left of the function P .  

Thus when the horizon tends to become longer and longer (i.e., N + 00) 

the optimal policy for every fixed k 2 1 approximates the stationary policy: 

accept the offer wk- = xk if xk > E ,  
reject the offer wk- = xk  if xk c 5. 

The optimality of such a policy for the corresponding infinite horizon problem 
will be shown in Chapter 6. 

Purchasing with a Deadline 

Let us consider another problem of similar nature. Assume that a certain 
quantity of raw material is required by a certain time. If the price of this 
material fluctuates, then there arises the problem of deciding, given the price 
at any time, whether to purchase at that price or wait a further period, during 
which the price may go up or down. 

Let us assume that successive prices are independent (the case of cor- 
related prices will be examined later) and that the cumulative distribution 
P(w) of the purchase cost w of the raw material is the same for each time period. 
The problem is to decide, given the current purchase price, whether to pur- 
chase or not to purchase the amount of raw material needed. The purchase 
must be made within N time periods. 

This problem has obvious similarities with the previous problem. Let us 
denote by 
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the price prevailing in the beginning of period k + 1. We have similarly as 
before the DP algorithm 

J N ( X N )  = X N ,  

. I k ( X k )  = min[xk, E { J k +  l ( w k ) } ] ,  

and the optimal policy is given by 
purchase if X k  < E { J k + l ( W k ) }  = Mk, 

X k  > E { J k +  1 ( W k ) }  = t l k .  do not purchase if 
We have similarly that the critical numbers a l ,  az,  . . . , u N -  can be 

obtained from the discrete-time equation 

uk = a k + l [ l  - p ( a k + l ) l  + Joak"w dP(w), 

~ 1 ~ -  = J wP(w) = E { w } .  
0 

Consider now a variation of this problem whereby we do not assume that 
the successive prices wo, . . . , w N -  are independent but rather that they are 
correlated and can be represented as 

w k  = y k + l  k = 0, 1, ..., N - 1, 

with 
y k + l  = l y k  + < k ,  Y O  = 0, 

where A is a scalar with 0 6 A < 1 and to, tl, . . . , C N -  are independent 
identically distributed random variables taking positive values with given 
probability distribution. As discussed in Section 2.3 the DP algorithm under 
these circumstances takes the form 

J N ( X N )  = xN 9 

J k ( X k )  = min[lxk, E { J k + l ( A X k  + < k ) } ] %  

where the cost associated with the purchasing decision is x k  and the cost 
associated with the waiting decision is E { J k +  1 ( h &  + ( k ) } .  

We shall show that in this case the optimal policy is also of the same type 
as the one for independent prices. Indeed, we have 

- 

JN- 1 ( x N -  1) = min[xN- 1, i x N -  + 51, 
where 4 = E { t N -  l}. As shown in Fig. 3.6 an optimal policy at time N - 1 
is given by 

purchase if x N -  < a N -  1, 
do not purchase if x N -  > a N -  1, 
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FIGURE 3.6 

- 
where t l N -  is defined from the equation u N -  = ActN- + 5, i.e., 

4. 
1 

1 - 1” 
C ( N -  1 = - 

and that J N - 1  is concave and increasing in x .  Using this fact in the DP 
algorithm one may easily show that 

and that J k  is concave and increasing in x for all k .  Furthermore, in view of 
the fact that 4 = E {tk} > 0 for all k,  one can show that 

These facts imply (as shown in Fig. 3.7) that the optimal policy for every 
period k is of the form 

purchase if xk c uk, 
do not purchase if x k  > tLk ,  

where the scalar u k  is obtained as the unique positive solution of the equation 

x = E { J k  + 1(lx + t k ) ) .  
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f- Purchase Do not purchase - Y 

"x 
FIGURE 3.7 

Note that Jk(x)  6 J k +  l ( x )  implies 
ak-1 d ak d ak+l Vk, 

and hence (as one would expect) the threshold price below which one should 
purchase is lower in the early stages of the process and increases as the 
deadline comes nearer. 

A number of variations on the theme of this section are of interest (see 
Problems). The main point to be recalled is that when only a finite number of 
actions (ul, . . . , u") are possible at each stage, the optimal control law pt(xk)  
is determined by a partition of the underlying state space Sk (minus the 
termination state) into n subsets S:, . . . , Si, with uy=! Si = Sk, each subset 
Si being associated with the corresponding action u'. In other words, the 
control law for all k has the form 

pt (xk)  = ui if xk E S:,  i = 1, . . f 9 n. 

In the examples we considered the state space was the positive half-line, and 
there were two actions available (accept-reject, or purchase-do not purchase). 
The partition of the state space Sk was determined in each case by the single 
number ak. 

3.5 Notes 

The certainty equivalence principle for dynamic linear-quadratic prob- 
lems was first discussed by Simon [SlO]. His work was preceded by that of 
Theil [T2], who considered a single-period case, and Holt et al. [Hl 11, who 
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considered a deterministic case. Similar problems were considered somewhat 
later (and apparently independently) by Kalman and Koepcke [K2], 
Gunckel and Franklin [G2], and Joseph and Tou [JS]. Since their work, the 
literature on linear-quadratic problems has grown tremendously. The 
special issue on the linear-quadratic problem of the I E E E  Transactions on 
Automatic Control [Ill contains most of the pertinent theory and variations 
thereof, together with hundreds of references. For a multidimensional version 
of Problem 3 see the paper by Jacobson [Jl]. The result of Problem 14 is also 
due to Jacobson [J2]. 

The literature on inventory control stimulated by the pioneering paper 
of Arrow et al. [A61 is also voluminous. The 1966 survey paper by Veinott 
[V3] contains 118 references. An important work summarizing most of the 
research up to 1958 is the book by Arrow et al, [A7]. The ingenious line of 
argument for proving the optimality of (s, S )  policies in the case of nonzero 
fixed costs is due to Scarf [SS]. However, his original proof contains some 
minor flaws. 

Most of the material in Section 3.3 is taken from the paper by Mossin 
[M8]. Some other interesting papers in the same area are by Hakansson 
[Hl-H4], Kamin [K4], Levhari and Srinivasan [L4], and Phelps [P5]. 

Problems 

1. Show the optimality of the control law given by (30)-(33) for the linear- 
quadratic problem where the matrices Ak, Bk are random. 
2. Linear-Quadratic Problems with Forecasts Consider the linear-quad- 
ratic problem first examined in Section 3.1 (Ak, Bk: known) for the case where 
at the beginning of period k there is available a forecast yk E { 1,2, . . . , n} 
consisting of an accurate predictian that wk will be selected in accordance 
with a particular probability distribution P k l y r .  (cf. Section 2.3). The vectors 
wk need not have zero mean under the distributions P k l y k .  Show that the 
optimal control law is of the form 

pk(Xk,yk) = - (B!kKk+lBk + R k ) - l B ! k K k + l [ A k X k  + E{WkIyk}l + akr 

where the matrices Ki, i = 1, . . . , N ,  are given by the Riccati equation 
(5) and (6) and ak are appropriate vectors in R". 
3. Consider (for simplicity) a scalar linear system 

X k + l  = akxk + b k U k  + wk, k = 0, 1,. . . , N - 1, 

where ak,  bk E R are given and wk is for each k a Gaussian disturbance with 
zero mean and variance 02. Show that the control law {p:, pLf, . . . , &- 
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that minimizes the risk-sensitive cost functional 

N- 1 

{ [ k = O  
E exp x i  + C (xz + mz) 

is linear in the state variable. We assume no control constraints and in- 
dependent disturbances. We also assume that the optimal value is finite 
for every xo.  Show by example that the Gaussian assumption is essential for 
the result to hold. 
4. Consider an inventory control problem similar to the multistage inven- 
tory problem of Section 3.2. The only difference is that at the beginning of 
each period k the decision maker, in addition to knowing the current in- 
ventory level xk, receives an accurate forecast that the demand wk will be 
selected in accordance with one out of two possible probability distributions 
P1, P,(large demand, small demand). The a priori probability of a large 
demand forecast is known (cf. Section 2.3). 

(a) Obtain the optimal inventory ordering policy for the case of a 

(b) Extend the result to the N-period case. 
(c) Extend the result to the case of any finite number of possible dis- 

tributions. 

single-period problem. 

Consider also the inventory control problem where the purchase costs 
c k ,  k = 0, 1, . . . , N - 1, are not known at the beginning of the process but 
instead they are independent random variables with a priori known pro- 
bability distributions. The exact value of the cost c k ,  however, becomes known 
to the decision maker at the beginning of the kth period, so that the inventory 
purchasing decision at time k is made with exact knowledge of the cost c k .  

Chxacterize the optimal ordering policy for this case. 
5. Consider the multiperiod inventory model of Section 3.2 for the case 
where there is a one-period time lag between order and delivery of inventory, 
i.e., the system equation is of the form 

Show that the optimal policy for this problem is an (s, S )  policy. 
6. Consider the inventory problem under the assumption that unfilled 
demand at each stage is not backlogged but rather is lost, i.e., the system 
equation is xk+ = max[O, xk + uk - wk] instead of xk+ = xk + uk - wk. 

Show that a multiperiod (s, S )  policy is optimal. 
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Abbreviated Proqf ( S .  Shreve) Let J N ( x )  = 0 and for all k 

Gk(y) = cy + E {h  max[O, y - wk] + p max[O, wk - y] 

+ J k +  l(max[o, y - wkl)}, 
J k ( X )  = -CX + min[Kd(u) + Gk(X + U)], 

ti30 

where d(0) = 0,6(u)  = 1 for u > 0. The result will follow if we can show that 
G k  is K-convex, continuous, and Gk(y) -, co as 1 y I + co. The difficult part is to 
show K-convexity since K-convexity of Gk+ does not imply K-convexity of 
E {Jk+ ,(max[O, y - w])}. It will be sufficient to show that K-convexity of 
Gk+ implies K-convexity of 

H(y) = p max[o, -yl  + Jk+  l(maxCO, yl), (68) 
or equivalently that 

W Y )  - H(Y - b)  
b 

K + H(y + z) 2 H ( y )  + z vz 2 0, b > 0, Y* 

By K-convexity of Gk+ we have for appropriate scalars sk+ and s k +  such 
thatGk+l(Sk+l) = minyGk+l(y)and + Gk+l(Sk+l) = Gk+l(Sk+l): 

and J k +  is K-convex by the theory of Section 3.2. 

0 Q y - b < y Q y + z For this region (69) follows from 
K-convexity of Jk + 1. 

Case 2 y - b < y < y + z Q 0 In this region H is linear and hence 
K -convex. 

Case 3 y - b < y Q 0 Q y + z In this region (69) may be written 
[in view of (68)] as K + J k +  l(y + z) > J k +  ,(O) - p(y + z). We will show 
that 

Case 1 

K +  J k + l ( Z )  > J k + l ( O )  - pz vz 2 0. (7 1) 
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If s k +  < 0 < z ,  then using (70), the fact p > c, and part (iv) of the lemma in 
Section 3.2, 

K f J k +  1(Z) = K - Cz + G k +  ~ ( z )  3 G k +  i(0) - pz = J k +  i(0) - PZ. 

Thus (71) is proved and (69) follows for the case under consideration. 

Case4 y - b < O < y < y + z  T h e n O < y < b . I f  

CH0.I) - H(O)I/y 2 CWY) - H(Y - b)l/b, (72) 
then since H agrees with J k +  on [0, co) and J k +  is K-convex, 

where the last step follows from (72). If 

CH(Y) - ~ ( O ) I / Y  < W ( Y )  - H(Y - b)l/b, 

WY)  - H(O) < ( ~ / b )  CWY) - WY - bll = ( ~ / b )  CWy) - H(O) + P(Y - b)]. 

(1 - (Y/b))CH(Y) - N0)I  < (Y/b)P(Y - b) = -PY( l  - cv/b)), 

m y )  - H(O) < -py.  

then we have 

It follows that 

and since b > y, 

(73) 
Now we have, using the definition of H, (71), and (73), 

H ( y )  - H(Y - b, = H ( y )  + H(O) - PY - H(O) + PCV - b) 
b b H(Y)  + z 

= H(Y) - PZ < H(O) - P(Y + z) 

< K + H ( y  + z). 

Hence (69) is proved for this case as well. Q.E.D. 
7. Consider the dynamic portfolio problem of Section 3.3 for the case where 
at each period k there is a forecast that the rates of return of the risky assets 
for that period will be selected in accordance with a particular probability 
distribution as in Section 2.3. Show that a partially myopic policy is optimal. 
8. Consider a problem involving the linear system 

x k + l  = A k x k  + B k U k ,  k = 0, 1,. . . , N - 1, 

where the n x n matrices A k  are given and the n x m matrices B k  are in- 
dependent random matrices and have given probability distributions 



PROBLEMS 107 

that do not depend on x k ,  uk .  The problem is to find the optimal control law 
{p$(xo) ,  . . . , pE- l ( x N -  ,)} that maximizes the cost functional E {U(c’xN)) ,  
where c is a given n-dimensional vector. We assume that U :  R + R is a 
concave utility function satisfying for all y 

- U’(y)/U”(y) = u + by, 

and that the control is unconstrained. Show that the control law consists of 
affine functions of the current state. 

Hint Reduce the problem to a one-dimensional problem, and use the 
results of Section 3.3. 
9. Consider the asset-selling problem of Section 3.4 for the case where 
successive offers are not lost but can be accepted at any subsequent time 
period. Determine the general form of the optimal policy. 
10. Suppose that an individual wants to sell his house and an offer comes in 
at the beginning of each day. We assume that successive offers are independent 
and an offer is x j  with probability p i ,  j = 1, . . . , n, where x j  are given non- 
negative scalars. Any offer not immediately accepted is not lost but may be 
accepted at any later date. Also, a maintenance cost c is incurred for each day 
that the house remains unsold. The objective is to maximize the price at which 
the house is sold minus the maintenance costs. Consider the problem when 
there is a deadline to sell the house within N days and characterize the 
optimal policy. 
11. Capacity Expansion Problem Consider a problem of expanding the 
capacity of a facility for production of a single type of nonstorable good or 
service over N time periods. Let us denote by xk the production capacity at 
the beginning of the kth period and by uk 2 0 the addition to capacity during 
the kth period. Thus capacity evolves according to 

xk+l = xk + uk, k = 0, 1, .  .., N - 1. 

The demand at the kth period is denoted wk and has a known probability 
distribution that does not depend on either xk or uk. Also successive demands 
are assumed to be independent and bounded. We denote: 

Pk(xk + uk - wk) penalty cost associated with capacity xk + uk and 
Ck(uk) expansion cost associated with adding capacity uk 

demand wk, 
S(xN) salvage value of final capacity x N .  

Thus the cost functional takes the form 
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(a) Derive the DP  algorithm for solving this problem. 
(b) Assume that S is a concave function with limx+m dS(x)/dx = 0, Pk 

are convex functions, and the expansion cost Ck is of the form 

where K 2 0, ck > 0 for all k .  Show that the optimal policy is of the (s, S )  type 
assuming cky + E {Pk(y  - wk)) 4 00 as IyI 4 a. 

(c) In (b) assume that forecasts on wk as in Problem 5 are available. 
Derive the optimal policy for this case. 
12. A Gambling Problem A gambler enters a game whereby he may at any 
time k stake any amount U k  2 0 that does not exceed his current fortune xk 
(defined to be his initial capital plus his gain or minus his loss thus far). He 
wins his stake back and as much more with probability p ,  where 4 < p < 1 ,  
and he loses his stake with probability ( 1  - p) .  Show that the gambling 
strategy that maximizes E {In xN}, where x N  denotes his fortune after N plays, 
is to stake at each time k an amount uk = (2p - I)&. 

(Note The problem is related to the portfolio problem of Section 3.3.) 
13. A collection of N 2 2 objects is 
observed randomly and sequentially one at a time. The observer may either 
select the current object observed, in which case the selection process is 
terminated, or reject the object and proceed to observe the next. The observer 
can rank each object relative to those he has already observed and the ob- 
jective is to maximize the probability of selecting the “best” object according 
to some criterion. It is assumed that no two objects can be judged to be equal. 
Let r* be the smallest positive integer r such that 

Optimal Termination of Sampling 

Show that an optimal policy requires that the first r* objects be observed. If 
the r*th object has rank 1 relative to the others already observed, it should be 
selected, otherwise the observation process should be continued until an 
object of rank 1 relative to those already observed is found. 

Hint We assume that if the rth object has rank 1 relative to the previous 
(r  - 1 )  objects, then the probability that it is best is r / N .  For k 2 r* let Jk(0) 
be the maximal probability of finding the best object assuming k objects have 
been selected and the kth object is not best relative to the previous (k  - 1 )  
objects. Show that 
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14. A Class of Nonlinear Quadratic Problems Within the framework of the 
basic problem consider the case of a quadratic cost functional of the form 

and an n-dimensional nonlinear system of the form 

x k + l  = A k X k  + B k U k  + m k  + f k ( X k ,  U k ,  w k ) ,  k = 0, 1,. . . , N - 1, 

where Ak,  Bk ,  mk,  and& are given. We assume for all k, x k ,  u k ,  

E { f k ( x k ,  u k ,  w k ) l x k ,  u k )  = 0, 
wk 

and that the covariance matrix 

F ( X k ,  u k )  = E { f k ( x k ,  u k ,  w k ) f k ( x k ,  u k ,  w k y l x k ,  u k )  
wk 

is a general quadratic function of x k ,  u k  for all k, i.e., F k  has a representation of 
the form 

n' 

F k ( X k ,  U k )  = p: + 1 P:($X; w : x k  + U ; N : X k  + * U ; M L U k  + X ; g L  + u;h;), 
i =  1 

where n' = [n(n + 1)/2], P:, W; ,  N:, M:  are given matrices of appropriate 
dimensions, g:, h: are given vectors, and P i ,  W:,  M: are symmetric. For 
any square matrix L denote by tr(L) the trace of L, i.e., the sum of the diagonal 
elements of L. Define for all k 
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Show that if the matrices R"k defined above are positive definite for all k, then 
the control law {p;, pf, . . . , defined by 

&Xk) = -R";'(A",xk + f i k ) ,  k = 0, 1,. . . , N - 1 ,  

is optimal. 
Hint Show by induction that the cost-to-go functions obtained from the 

DP algorithm are of the form 

J k ( X k )  = + & S k X k  + d ; x k  + e k ,  k = 0,. . . , N - 1. 



Chapter 4 

Problems with Imperfect 
State Information 

4.1 Reduction to the Perfect State Information Case 

We consider now an important class of sequential optimization problems 
that is characterized by a situation often appearing in practice. Again we have 
the discrete-time dynamic system considered in the basic problem of Chapter 
2 that we wish to control. However, we assume that the state of the system is 
no longer known at each stage to the controller (imperfect state information). 
Instead the controller receives some information at each stage about the 
value of the current state. Borrowing from engineering terminology, we shall 
loosely describe this information as noisy measurements of a function of the 
system state. The inability of the controller to observe the exact state could be 
due to physical inaccessibility of some of the state variables, or to inaccuracies 
of the sensors or procedures used for measurement. For example, in problems 
of control of chemical processes it may be physically impossible to measure 
exactly some of the state variables. In other cases it may be very costly to 
obtain the exact value of the state even though it may be physically possible 
to do so. In such problems it may be more efficient to base decisions on in- 
accurate information concerning the system state, which may be obtained at 
substantially less cost. In other situations, such as hypothesis testing problems, 

111 
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often of interest in statistics, the exact value of the state (true hypothesis) may 
be found only in an asymptotic sense after an infinite number of measurements 
(samples) has been obtained. Given that measurements are costly, a problem 
often posed is to determine when to terminate sampling so as to minimize 
observation costs plus the cost of error in the estimation of the system state. 
Thus in such situations not only is it impossible to determine the exact state 
of the system but the measurement process is the focal point of the decision 
problem itself. 

Problems with imperfect state information are, generally speaking, con- 
siderably more complex than problems with perfect state information both 
from the analytical and computational point of view. Conceptually, however, 
they are no different from problems with perfect state information, and in fact, 
as we will demonstrate shortly, they can be reduced to problems of perfect 
state information by means of a simple reformulation. 

First let us state the basic problem with imperfect state information with 
which we will be concerned. 

BASIC PROBLEM WITH IMPERFECT STATE INFORMATION Consider the basic 
problem of Section 2.1, where the controller instead of having perfect know- 
ledge of the state has access to observations z k  of the form 

ZO = ho(xo, 0 0 ) ~  z k  = h k ( X k ,  u k -  1, 0 k ) ,  k = 1, 2, . . . , N - 1. (1) 

The observation z k  belongs to a given observation space 2,; u k  is a random 
observation disturbance belonging to a given space V,, and is characterized 
by given probability measures Puo( - lxo), Puk( - J x k ,  U k -  I)r k = 1 ,  . . . , N - 1, 
which may depend explicitly on the state x k  and the control U k -  but not on 
prior observation disturbances u o ,  . . . , u k -  or any of the disturbances 
wo,  . . . , w k .  The initial state xo  is also random and characterized by a given 
probability measure Pxo.  The probability measure PWk( - I x k ,  u k )  of w k  is 
given and may depend explicitly on x k  and U k  but not on prior disturbances 
w o ,  . . . , w k -  1. The control u k  is constrained to take values from a given 
nonempty subset U k  of the control space c k .  It is assumed that this subset 
does not depend on x k  . 

Let us denote by the information available to the controller at time k 
and call it the information vector. We have 

(2) 

We consider the class of control laws (or policies), which consist of a 
finite sequence of functions 71 = {po ,  pl, . . . , pN- 1} where each function p k  

maps the information vector I k  into the control space C k  and 

I k  = (zo, 21,. . . , Z k ,  Uo, U1, . . . , u k - l ) ,  k = 1, 2 , .  . . , N - 1, 

I 0  = zo.  
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Such control laws are termed admissible. The problem is to find an admissible 
control law n: = { p o ,  pl, . . . , p N - l }  that minimizes the cost functional 

c N - 1  -l 

subject to the system equation 

x k + l  = f k C X k ,  pk(Ik), w k l ,  k = 0, 1, . * * 9 N - 1 ,  

and the measurement equation 

zo = ho(xo9 uo), 

zk = hk[xk, pk- l ( Ik- l ) ,  u k ] ,  k = 1, 2, . . . , N - 1 .  

The real-valued functions 

g N : S N + R ,  gk:Sk X Ck X D k - + R ,  k = 0 , 1 ,  ..., N -  1, 

are given. 

Notice the difference from the case of perfect state information. Whereas 
before we were seeking a rule that would specify the control uk to be applied 
for each state xk and time k ,  now we are looking for a rule that tells us the 
control to be applied for every possible information vector 1, (or state of 
information), i.e., for every sequence of measurements received and controls 
employed up to time k.  This difference, at least at the conceptual level, is 
actually more apparent than real as will be seen in what follows. 

Similarly, as for the basic problem of Section 2.1, the following sequence 
of events is envisioned in the problem above once an admissible policy 
n = { p o ,  p l ,  . . . , p N - l }  is adopted: 

Stage 0 (1) The initial state x o  is generated according to the given 
probability measure Pxo. 

(2) The observation disturbance uo is generated according to the pro- 
bability measure Puo( - I xo). 

(3) The controller observes zo = ho(xo, uo) and applies uo = po(lo) ,  
where lo = zo.  

(4) The input disturbance wo is generated according to the probability 

( 5 )  The cost go[xo ,  po(Zo), wo]  is incurred. 
(6) The next state x1 is generated according to the system equation 

Stage k (1) The observation disturbance u k  is generated according to 

measure Pwo( - I xo 3 Po(10)). 

x1 = f O C X 0 ,  P O ( Z O ) ,  W o l .  

the probability measure Puk( - Ixk, uk- 
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(2) The controller observes z k  = h k [ X k ,  p k -  l ( z k -  1), v k ]  and applies 

( 3 )  The input disturbance w k  is generated according to the probability 

(4) The cost g k [ x k ,  & ( I k ) ,  w k ]  is incurred and added to previous costs. 
( 5 )  The next state x k +  is generated according to the system equation 

Last Stage (N - 1) (1) The observation disturbance v N -  is generated 

(2) The controller observes zN-l  = h N - l [ ~ N - l ,  p N - z ( Z N - z ) ,  and 
where IN- = ( zo ,  . . . , zN- 1, u o ,  . . . , u N - J .  

(3) The input disturbance w N -  is generated according to the probability 

(4) The cost g N -  1 [ x N -  1, p N -  l(IN- 1), w N -  1 ]  is incurred and added to 

( 5 )  The final state x N  is generated according to 

uk = p k ( I k ) ,  where I k  = ( 2 0 ,  . . . , z k ,  uo, . . . , u k -  1). 

measure Pwk( * I x k ,  p k ( I k ) ) -  

x k +  1 = f k C X k ,  p L k ( l k ) ,  w k l .  

according to P,, - 

applies uN- = pN- l(IN- 

measure P w , - l ( *  IxN-1, p N - i U N - 1 ) ) .  

previous costs. 

- I x N -  1, u N -  J .  

x N  = f N -  1 C x N -  1, pN- l ( I N -  11, w N -  11. 

(6) The terminal cost g N ( x N )  is incurred and added to previous costs. 
Again the above process is well defined and the stochastic variables are 

generated by means of a precisely formulated probabilistic mechanism. 
Similarly, however, as for the perfect information case the cost functional 

N -  1 

is not in general a well-defined random variable in the absence of additional 
assumptions and structure. Again we shall bypass a rigorous formulation of 
the problem in view of the introductory nature of the text.? However, we 
mention that the cost functional can be viewed as a well-defined random 
variable if the space of the initial state So and the disturbance spaces D k  and 
V,, k = 0, 1,. . ., N - 1, are finite or countable sets. As we shall shortly 
demonstrate, the imperfect state information problem defined above may be 
converted by reformulation into a perfect state information problem. Once 
this reformulation is considered the problem may be rigorously posed in the 
manner described in Section 2.1. 

We now provide an example of a problem that fits the general framework 
introduced in this section : 

t For a recent treatment of the delicate mathematical questions involved in a rigorous and 
general analysis of the problem of this chapter we refer the reader to the monograph by Striebel 
[S18a]. 
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EXAMPLE 1 A machine can be in one of two states denoted 0 and 1. 
State 0 corresponds to a machine in proper condition (good state) and state 1 
to a machine in improper condition (bad state). If the machine is operated for 
one unit time, it stays in state 0 with probability 3 provided it started at 0, and 
it stays in state 1 with probability 1 if it started at 1, as Fig. 4.1 shows. The 

FIGURE 4.1 

machine is operated for a total of three units of time and starts at state 0. At 
the end of the first and second unit of time the machine is inspected and there 
are two possible inspection outcomes denoted G (probably good state) and B 
(probably bad state). If the machine is in state x = 0, the inspection outcome 
is G with probability 3;  if the machine is in x = 1, the inspection outcome is B 
with probability 3 :  

P(Glx = 0) = 2, 
After each inspection one of two possible actions can be taken: 

Action C continue operation of the machine. 
Action S stop the machine, do a complete and accurate inspection, and 

if the machine is in state 1 bring it back to the proper state 0. 

P(B(x = 0) = i, P(Glx = 1) = i, P(B~x = 1) = 2. 

There is a cost of 2 units for using a machine in state 1 for one time unit and 
zero cost for using a machine in state 0 for one time unit. There is also a cost 
of 1 unit for taking action S. 

The problem is to determine the policy that minimizes the expected costs 
over the three time periods. In other words, we want to find the optimal 
course of action after the result of the first inspection is known, and after the 
results of the first and second inspection (and, of course, the action taken after 
the first inspection) are known. 
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It is not difficult to see that this example falls within the general framework 
of the problem of this section. The state space consists of the two states 0 and 1, 

state space = (0, l}, 

and the control space consists of the two actions 

control space = { C ,  S } .  

The system evolution may be described by introducing a system equation 

X k + l  = W k ,  k = 0, 1, 

where for k = 0, 1 the probability distribution of wk is given by 

P(wk = O I X k  = 0, uk = c) = 5, P(wk = 1 Ixk = 0, uk = c) = 3, 
P(w, = O I X k  = 1, uk = c) = 0, 

P(wk = O I X k  = 0, uk = s) = $9 

P(wk = 1 l x k  = 1, u k  = c) = 1, 

P(wk = 1 Ixk = 0, uk = S )  = 3, 1 

P(wk = o ( x k  = 1, uk = s) = 3, P(wk = 1 I x k  = 1, uk = S) = 3. 
We denote by x o ,  x l ,  x 2  the state of the machine at the end of the first, second, 
and third time unit, respectively. Also we denote by uo the action taken after 
the first inspection (end of first time unit) and by u1 the action taken after the 
second inspection (end of second time unit). The probability distribution of 
xo is 

P(x0 = 0) = 3, P(x0 = 1) = 3. 

Concerning the observation process we do not have perfect state information 
since the inspections do not reveal the state of the machine with certainty. 
Rather the result of each inspection may be viewed as a measurement on the 
state of the system taking the form 

Z k  = U k ,  k = 0, 1, 

where for k = 0, 1 the probability distribution of u k  is given by 

P ( V k  = G l X k  = 0) = 2, 
P(uk = G l X k  = 1) = $, 

P(uk = B l X k  = 0) = $, 
P(uk = Blxk = 1) = 3. 

The cost resulting from a sequence of states x o ,  x 1  and actions uo,  u1 is 

d x o ,  uo) + g(x1, U l ) ,  

g(0,C) = 0, g(0,S) = 1, g(1, C )  = 2, g(1,S) = 1. 

where 
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The information vector at times 0 and 1 is 

and we seek functions po(Io), pl(Z1) that minimize 

E { S C X O ,  P0UO)l + 9cx1, P l ( I 1 ) I l  
XO. WO. W I  

00, V I  

= E { d x o ,  P O ( Z 0 ) l  + S C X l ,  P l ( Z 0 ,  z1, P O ( Z 0 ) ) l l .  (4) 
XO. WO. W I  

V O .  01 

We shall provide a complete solution of this problem once we introduce the 
related DP algorithm. 

Let us now show how the general problem of this section can be refor- 
mulated into the framework of the basic problem with perfect state informa- 
tion. Similarly, as in the discussion of the state augmentation device of 
Section 2.3, it is intuitively clear that we should define a new system the state 
of which at time k consists of all variables the knowledge of which can be of 
benefit to the controller when making the kth decision. Thus a first candidate 
as the state of the new system is the information vector I k .  Indeed we will 
show that this choice is appropriate. 

We have by definition [cf. Eq. (2)] for every k, 

I k + l  = ( I k ,  zk+l, u k ) ,  k = 0, 1,. . . , N - 2, 10 = Z o .  (5) 

These equations can be viewed as describing the evolution of a system of the 
same nature as the one considered in the basic problem of Section 2.1. The state 
of the system is I k ,  the control u k ,  and z k +  can be viewed as a random dis- 
turbance. Furthermore, we have, simply by the definition of I k ,  

P ( Z k +  1 z k +  1 I I k  3 u k )  = p ( z k +  1 E z k +  1 I I k ,  u k ,  ZO 3 z1, * * . 3 z k ) ,  

for any event z k +  (a subset of zk+ l). Thus the probability measure of z k +  

depends explicitly only on the state and control u k  of the new system ( 5 )  and 
not on the prior “disturbances” z k ,  . . . , z l .  It should be noted that the pro- 
bability measure of z k +  is completely determined from the statistics of the 
problem. We have for any event z k  + 

P ( Z k + l E z k + l I z k ~ U k )  = P[hk+l(Xk+l,Uk, V k + l ) E z k + l l l k , U k ] ,  

and the probability on the right is completely determined from the statistics 
of the problem (i.e., the probability measures of wk, . . . , wo, v k  + 1 ,  . . . , vo,  xo) 
and I k  and u k .  
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Now we turn to the reformulation of the cost functional in terms of the 
variables of the new system. We have for any admissible control law A = 

{PO 9 Pl? . . . 3  P N  - 1 1  

N -  1 

XO. W k .  Vk { k = O  

= E z k  [ i l g k [ l k ?  k = O  P k ( l k ) ] } ,  

J n  = E g N ( X N )  + 1 g k C X k r  P k ( z k ) ,  w k l  

k = O ,  .... N- 1 

k = O ,  ..., N -  1 

where the functions g k ,  k = 0,.  . . , N - 1, are defined by 

@ N - 1 C z N - 1 ?  P N - l ( I N - l ) ]  

= E { g N [ f N -  1 C X N -  l r  P N -   IN- I ) ,  w N -  1 1 1  
X N -  1. W N  - I 

+ g N -  1 C x N -  1 ,  PN- l ( I N -  11, w N -  1 1  [ I N -  1 ,  P N -  l ( I N - 1 ) )  (7) 

g k k C z k ,  P k ( l k ) l  = E { g k [ X k ,  P k ( l k ) r  w k l  I l k ,  P k ( l k ) } .  (8) 
Xkq w k  

The conditional probabilities P ( W k l I k ,  P k ( l k ) ) ,  k = 0, 1, . . . , N - 1, are 
determined from P ( w k  I x k ,  P k ( l k ) )  and P ( x k  I l k ) .  

Thus the basic problem with imperfect state information has been re- 
formulated to a problem with perfect state information that involves system 
( 5 )  and cost functional (6). By writing the DP algorithm for this latter problem 
we have 

J k ( l k )  = inf g k ( l k r  u k )  + E { J k +  l ( l k ,  z k +  1 ,  U k ) l z k ,  u k )  . 
U k E U k  [ Zkf 1 1 

Using (7) and (8) the algorithm can be written 

E 
UN - I E U N  - I XN - 1. W N  - I 

{ g N C f N -  l ( X N -  l r  U N -  1 ,  W N -  1 1 1  [ J N -  l ( I N -  1 )  = inf 

+ g N - 1 ( X N - 1 ,  U N - 1 ,  W N - 1 ) I z N - l ,  . N - l } ] ,  (9) 
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Equations (9) and (10) constitute the basic DP algorithm for the problem 
of this section. An optimal control law {&, py, . . . , pg- 1} is obtained by 
first solving the minimization problem in (9) for every possible value of the 
information vector I N -  , to obtain & l( IN- l). Simultaneously J N -  1(IN-  1) 

is computed and used in the computation of JN - J I N  - 2 )  via the minimization 
in (lo), which is carried out for every possible value of I N - 2 .  Proceeding 
similarly one obtains J N -  3 ( I N -  3) and pg- and so on until Jo(Zo) = Jo(zo) is 
computed. The optimal cost J* is then obtained from 

J* = E ( J O ( Z 0 ) ) .  
20 

Let us now demonstrate the DP algorithm (9) and (10) via the example 

EXAMPLE 1 (continued) We first use (9) to compute Jl(Zl) for each of 

given earlier : 

the eight possible information vectors I, = (zo, z,, uo). These vectors are 

I ,  = (G, G ,  C) ,  (G,  G,  S),  (4 G,  C),  (B, G,  S),  (G, B, C),  (G, 4 S),  

(4 B, C),  (4 B, S) .  

We shall compute for each Il  the expected cost associated with u1 = C and 
u1 = S and select as optimal the action with the smallest cost. We have 

cost of c = 2 x P(X1 = 1(11), cost ofS = 1, 

and therefore 

Jl(Zl) = min[2P(x, = 1 l Z l ) ,  11. 

The probabilities P(x l  = 1 I Z , )  may be computed by using Bayes’ rule and 
the data of the problem. Some of the details will be omitted. We have: 

For I ,  = (G, G ,  S )  

Hence 

D J1(G, G ,  S )  = +, py(G, G,  S )  = C .  4 

For I ,  = (B, G,  S )  

D 

P(xl = 1 ) B ,  G,  S )  = P(xl  = 1 IG, G ,  S )  = +, 

J1(B, G,  S )  = 5, pL:(B, G,  S )  = C .  4 
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For Il = (G, B, S )  

D J , (G ,  B, S )  = 1, pT(G, B, S )  = S. 4 

P(x, = l(B,B,S)=P(x,= lIG,B,S)=;, 

D J1(B, B, S )  = 1, p?(B, B, S )  = s. a 

For I ,  = (B,  B, S )  

For Il = (G,  G ,  C )  

P ( x ,  = 1, G ,  G ,  C) 1 
- -  - 

P(G, G ,  C )  5 ’  
P(xl = 1 JG,  G,  C )  = 

D J1(G, G ,  C )  = f ,  pT(G, G,  C )  = C.  a 

For I ,  = (B, G,  C )  
P(xl = 1 IB, G,  C) = g, 

D J1(B, G,  C )  = g, p?(B, G ,  C )  = C .  a 

For I ,  = (G, B, C )  
P(x~ = 1 IG, B, C) = A, 

D J , (G ,  B, C )  = 1, &(G, B, C )  = S .  a 

For I ,  = (B, B, C )  
P(x1 = 1 IB, B, C )  = 8, 

D J1(B, B, C )  = 1, pT(B, B, C )  = s. a 

Summarizing the results for the last stage the optimal policy is to con- 
tinue (ul = C )  if the result of the last inspection was G,  and to stop (u ,  = s) 
if the result of the last inspection was B. 

Here we use (10) to compute J o ( I o )  for each of the two pos- 
sible information vectors I. = (G), I ,  = (B). We have 

First Stage 

cost of c = 2P(x, = 1 IIO, C )  + E { J , ( I o , z , ,  C)llo, CI 
21 

= 2P(xo = 1 IZo, C) + P(z1 = GlZo, C ) J l ( I o ,  G ,  C )  

+ P(z1 = BIIO, W l U O ,  B, C),  

cost of s = 1 + E { J , ( Z O ,  z1, S ) I I o ,  SI 
21 

= 1 + P ( z ~  = G l I o ,  S ) J l ( I o ,  G ,  S )  + P ( Z 1  = BIIo, S ) J l ( I o ,  B, S),  
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and 

Jo(Zo) = min[2P(x0 = 1 I I , ,  C )  

For lo = ( G )  Direct calculation yields 

Using the values of J1 obtained in the previous stage 

D J,(G) = g, p:(G) = C .  4 

For I ,  = (B)  Direct calculation yields 

P(z1 = G ( B ,  C )  = g, 
P(zl = GIB, S )  = A, 

P(zl = BIB, C )  = g, 
P(z1 = BIB, S )  = &, 

P(x,  = 1 IB, C )  = $, 

and 

J,(B) = minC2 x + #,(B, G,  C) + gJ , (B ,  B, C) ,  1 + &J1(B, G, S )  

+ &JAB, B, S)l. 

Using the values of J1 obtained in the previous stage 

D 
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Summarizing, the optimal policy for both stages is to continue if the 

The optimal cost is 
result of the latest inspection is G and stop otherwise. 

J* = P(G)Jo(G) + P(B)J,(B). 

Since P(G)  = &, P(B)  = A, 

In the above example the computation of the optimal policy and the 
optimal cost by means of the DP  algorithm (9) and (10) was made possible by 
the great simplicity of the problem. It is easy to see that for a more complex 
problem and in particular one where the number of possible information 
vectors is large (or infinite) and the number of stages N is also large, the 
computational requirements of the DP  algorithm can be truly prohibitive. 
This is due to the fact that it is necessary to apply the algorithm over the space 
of the information vector l k ,  and, even if the control and observation spaces 
are simple (one dimensional or finite), the space of the information vector 
may be very complex and may have large dimension particularly for large 
values of k. This fact makes the application of the algorithm very difficult or 
computationally impossible in many cases. Not only is it necessary to 
carry out the D P  computation over spaces of large dimension but also the 
storage of the functions that constitute the optimal controller presents a 
serious problem since values of control input must be stored for each possible 
value of information vector I k  and for every k. Furthermore, the measure- 
ments zk obtained during the control process must be continuously stored by 
the controller. This rather disappointing situation motivates efforts aimed at 
the reduction of the data, which is truly necessary for control purposes. In 
other words, it is of interest to look for quantities that ideally would be of 
smaller dimension (can be characterized by a smaller set of numbers) than the 
information vector Ik and nonetheless contain all the information in I k  that 
is necessary for control purposes. Such quantities are called sufJicient statistics 
and are the subject of Section 4.2. 

4.2 Sufficient Statistics 

Referring to the DP algorithm of Eqs. (9) and (10) let us consider the 
following definition : 

Definition Let &( - ), k = 0, 1, . . . , N - 1, be functions mapping the 
information vector I ,  into some space M k ,  k = 0, 1, . . . , N - 1. We shall say 
that the functions So( - ), . . . , SN- - ) constitute a suficient statistic with 
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respect to the problem of the previous section if there exist functions H,,, 
. . . , HN- such that 

+ g N - l ( X N - l ,  u N - l ,  W N - l ) I I N - l ,  u N - l }  

V I N -  I r  U N -  1 E U N -  1 ,  (12) 

where J k  are the cost-to-go functions of the D P  algorithm (9) and (10). 

written in terms of the functions H k  as 
Since the minimization step of the D P  algorithm (9) and (10) can be 

it follows immediately from the above definition that an optimal control law 
need only depend on the information vector I k  via the suficient statistic S k ( I k ) .  

In other words if the minimization problem in (13) has a solution for every 
I k  and k, there exists an optimal control law that can be written 

p f ( l k )  = 17 ,* [Sk(1k)1 ,  = O, 1, . . . 9 - 1, (14) 

where pf is an appropriate function determined from the minimization (13). 
Thus if the sufficient statistic is characterized by a set of fewer numbers than 
the information vector I k ,  it may be easier to implement the control law in the 
form u k  = j i f [ S k ( I k ) ]  and take advantage of the resulting data reduction. 

While it is possible to show that many different functions constitute a 
sufficient statistic for the problem that we are considering [the identity 
function & ( I k )  = I k  is certainly one of them], we will focus attention on a 
particular one that is useful both from the analytical and the conceptual 
point of view in many cases. This sufficient statistic is the conditional pro- 
bability measure of the state x k ,  given the information vector I k ,  

S k ( 1 k )  = P x k ~ ~ k ,  k = 0, 1, . . . , N - 1. 

This function S k  maps the space of information vectors into the space of all 
probability measures on the state space. It is easy to see that the conditional 
probability measures Pxkl Ik  indeed constitute a sufficient statistic.? This is 

t Abusing mathematical language we make no distinction between the function sk and its 
value Sk(Ik), calling them both a sufficient statistic. 
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evident from definition (1 1) and (12) and the fact that the probability measures 
of w k  and u k  + depend explicitly only on x k ,  u k  and x k  + u k ,  respectively, and 
not on prior disturbances. 

Now the sufficient statistic PxkIrk is generated recursively in time and can 
be viewed as the state of a controlled discrete-time dynamic system. By using 
Bayes' rule we can write 

where @k is some function that can be determined from the data of the pro- 
blem, u k  is the control of the system, and z k +  plays the role of a random dis- 
turbance the statistics of which are known and depend explicitly on PxkIrk 
and u k  only and not on z k ,  . . . , zo.  For example, if the state space, control 
space, observation space, and disturbance space are the real line and all 
random variables involved possess probability density functions, the con- 
ditional density p ( x k +  Ilk+ 1)  is generated from p ( x k  Ilk), u k ,  and 
means of the equation 

z k + l  by 

- - P ( X k + l l z k ,  u k ) p ( z k + l l u k ,  x k + l )  

jzrn p ( x k +  1 1 I k ,  u k ) p ( z k  + 1 I u k ?  x k +  1) d X k +  1 ' 

In this equation all the probability densities appearing in the right-hand side 
may be expressed in terms of p ( x k  I I k ) ,  u k ,  and z k +  alone. In particular, the 
density p(&+ 1 I k ,  u k )  may be expressed through p ( x k  I I k ) ,  u k ,  and the system 
equation x k +  = f k ( x k ,  u k r  w k )  using the given density p ( w k  I&, u k )  and the 
relation 

m 

d w k l z k ?  u k )  = / - a p ( x k I I k ) p ( w k I x k ,  u k )  d x k .  

The density p ( z k  + I u k ,  x k +  1) is expressed through the measurement equation 
Z k +  1 = hk+ l(xk+ 1, u k ,  u k +  1 )  using the given probability density 

d U k + l  I u k ,  x k + l ) .  

By substituting these expressions in the equation for p ( x k +  Ilk+ 1) we obtain 
an equation of the form of (15). Other explicit examples of equations of the 
form of (15) will be given in subsequent sections. In any case one can see that 
the system described by (15) is one t h a t j t s  the framework of the basic problem. 
Furthermore, the controller can calculate (at least in principle) at time k the 
conditional probability measure P x k , I k .  Therefore, the controlled system (1 5) 
is one for which perfect information prevails for the controller. 
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Now the DP algorithm (9) and (10) can be written in terms of the suf- 
ficient statistic Pxkl Ik  by making use of the new system equation (15) as follows: 

- 
inf [ { S N C f N -  1 b N -  1, UN- 1 ,  W N -  1 1 1  

J N - l ( P X N - l I I N - I )  = " N - I E u N - I  X N - 1  , W N - ,  

f g N - l ( X N - l ?  u N - l ?  w N - l ) l z N - l ?  u N - l )  3 (16) 1 

which results from the minimization of the right-hand side of (16) and (17). 
This control law yields in turn an optimal control law {pg, . . . , pg- for 
the basic problem with imperfect state information by writing 

pk*(zk) = p k * ( P x k l l k ) ,  = O, . . * 9 N - 1. 

In addition, the optimal value of the problem is given by 

where J o  is obtained by the last step of the algorithm (16) and (17) and the 
probability measure of zo is obtained from the statistics of xo and uo and the 
measurement equation zo = ho(xo, uo). 

It should be evident to the perceptive reader that the development of the 
D P  algorithm (16) and (17) was based on nothing more than a reduction of the 
basic problem with imperfect state information to a problem with perfect 
state information that involves system (15), the state of which is P x k l f k ,  and 
an appropriately reformulated cost functional. Thus the analysis of this 
section is in effect an alternate reduction of the problem of Section 4.1 to the 
basic problem with perfect state information. A conclusion that can be drawn 
from the analysis is that the conditional probability P x k l f k  summarizes all the 
information that is necessary for control purposes at period k .  In the absence of 
perfect knowledge of the state the controller can be viewed as controlling the 
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“probabilistic state” PXklIk  so as to minimize the expected value of the cost-to-go 
conditioned on the information I k  available. 

The two reductions into the basic problem with perfect state information 
that we gave in this and the previous section are by far the most useful such 
reductions. Naturally there arises the question as to which of the two DP 
algorithms (9) and (10) or (16) and (17) is the most efficient. This depends on 
the nature of the problem at hand and, in particular, on the dimensionality of 
the conditional probability Pxkl Ik .  If PxklIk  is characterized by a finite set of 
numbers and may be computed with relative ease, then it may be profitable 
to carry out the DP algorithm over the space of the sufficient statistic Pxklrk.  
Such, for example, is the case where the state space for each time k is a finite 
set { X I , .  . . , x”} (i.e., the system is a controlled finite state Markov chain). 
In this case PxklIk consists of the n probabilities P(xk = xi I Ik), i = 1, . . . , N. 
Another case is when the conditional probability PXklIk is Gaussian and is 
therefore completely characterized by its mean and covariance matrix. 
Examples of these cases will be given in subsequent sections. If PXklIk  cannot 
be characterized by a finite set of numbers, then the DP algorithm (9) and (lo), 
which is carried over the space of the information vector I k ,  may be preferable, 
although actual calculation of an optimal control law is possible only in 
very simple cases due to the dimensionality problem. 

Let us now demonstrate algorithm (16) and (17) by means of an example. 

EXAMPLE 1 (continued) In the two-state example of the previous 
section let us denote 

p1 = P(x,  = 1 I Z l ) ,  p o  = P(X0 = 1110). 

The equation relating p l ,  p o ,  uo,  z1 [cf. Eq. (15)] is written 

P 1  = ao(P0, uo, Z J  

One may verify by straightforward calculation that Q0 is given by 

if uo = S ,  z 1  = G ,  

if uo = S ,  z1 = B, 
3 
5 
- 

P 1  = Oo(P0, uo, z1) = 
+ 2~~ if uo = C, z1 = G, 

7 - 4p0 

if uo = C,  z1  = B. 3 + 6Po 
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Algorithm (16) and (17) may be written in terms of po, pl, and above as 

Jl(pl) = min[2pl, 11, 

]o(p0) = min[2po + P(z l  = GIZo, C)JIC@o(~o, C,  Gll 

+ P(Z1 = B l ~ o ,  C)JlC@O(PO, c, B)1, 

+ P(Z1 = BIZ07 S ) J l C @ O ( P O ,  S ,  Bill. 
1 -t P(z1 = S)J1C@&o, S ,  G)1 

The probabilities entering in the second equation may be expressed in terms 
of p o  by straightforward calculation as 

P(Z1 = GlZo, C )  = (7 - 4pJ12, 
P(Z1 = GlZo, S )  = 7/12, 

Using these values we have 

P(zl = B l l o ,  C )  = (5 + 4po)/12, 
P(zl = BIZo, S )  = 5/12. 

12 

Now by minimization in the equation defining J , ( p , )  we obtain an optimal 
control law for the last stage 

Also by substitution of 
calculation we obtain 

and by carrying out the straightforward 

if $ < po < 1, 
(7 + 32p0)/12 if 0 ,< po < $, J O ( P 0 )  = 

and an optimal control law for the first stage 

Note that 

P(xo = llz, = C )  = $, 

P(z0 = G )  = 1 2 ,  

P(x0 = llzo = B)  = +, 

P(z0 = B) = &, 
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so that the formula for the optimal value 

yields the same optimal value as the one obtained in the previous section by 
means of the DP algorithm (9) and (10). 

We finally note that, regardless of its computational value, the representa- 
tion of the optimal control law as a sequence of functions of the conditional 
probability PxklIk  of the form 

CL?( lk )  = F?(Pxkjik). k = 0, 1, . . ., N - 1, 

is a conceptually useful device. An interesting interpretation of this equation 
is that the optimal controller is composed oftwo cascaded parts: an estimator, 
which uses at time k the measurement zk and the control uk- to generate the 
conditional probability Pxkl lk ,  and an actuator, which generates a control 
input to the system as a function of the conditional probability Pxk,,k (Fig. 4.2). 

W k  

I I 

Aside from its conceptual and analytical importance this interpretation has 
formed the basis for various suboptimal control schemes that separate a 
priori the controller into an estimator and an actuator and attempt to design 
each part in a manner that seems “reasonable.” Schemes of this type will be 
presented in the next chapter. 
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4.3 Linear Systems with Quadratic Cost Functionals 
-Separation of Estimation and Control 

In this section we consider the imperfect state information version of the 
problem examined in Section 3.1, which involved a linear system and a 
quadratic cost functional. We have the same discrete-time linear system 

x k + ]  = A k X k  -k B k U k  -/- wk, k = 0, 1, ..., N - 1, (18) 

and quadratic cost functional 

(1 9) 

but now the controller does not have access to the current system state. 
Instead it receives at the beginning of each period k an observation of the form 

(20) 

where z k  E R‘, Ck is a given s x m matrix, k = 0, 1, ; . . , N - 1, and vk E Rs is 
an observation noise vector with given probability distribution. Furthermore, 
the vectors u k  are independent random vectors and are assumed to be in- 
dependent from wk and xo as well. We make the same assumptions as in 
Section 3.1 concerning the input disturbances W k ,  and we assume that the 
system matrices Ak, Bk are known. 

It is clear that this problem falls within the framework of the basic pro- 
blem with imperfect state information of Section 4.1. We will analyze the 
problem by using the reduction and the DP algorithm of Section 4.1. 

I N -  1 

E { X k Q N X N  + 1 ( X ; Q k X k  + u H R k U k )  3 

k = O  

zk = C k X k  + u k ,  k = 0, 1 , .  . . , N - 1, 

From Eqs. (9) and (10) we have 

JN-l(ZN-l) = min E { ( A N - I ~ N - l  + B N - l ~ N - l  + wN-l )IQN 

X ( A N - I X N - ~  4- B N - I ~ N - I  + W N - I )  X ~ - I Q N - I X N - I  

+ u ~ - ~ R N - ~ u N - I I I N - I  . }I 
Using the fact that E { w N -  JZN- 1} = E { w N -  1} = 0, this expression can be 
written 

J N -  i ( I N -  1) = E { x X -  i(AX- I Q N A N -  1 + Q N -  1 ) x ~ -  i IIN- 1) 
X N -  I 

+ r n i n [ ~ k - ~ ( B ~ - , Q ~ B ~ - ~  + R N - l ) ~ N - l  
UN-l 
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The minimization yields the optimal control law for the last stage, 

ug- 1 = pg- l ( I N -  1) 

= - ( B ~ - ~ Q N B N - ~  + RN-l)-lBh-lQNAN-l E{XN-IIIN-I}, (22) 
and upon substitution in (21) we obtain 

J N - I ( I N - ~ )  = E { x h - i K ~ - i X ~ - i l ~ N - l )  
X N - l  

-I- E {CxN-l - E{XN-lIIN-l}]’PN-l[XN-~ 
X N - l  

- ~ ~ x N - l ~ ~ N - l ~ ~ ~ z N - l ~  + E {wk-iQNwN-i), (23) 
W N -  I 

where the matrices K N -  and PN- are given by 

PN-I = A~-IQNBN-I(RN-I + B;Y-~QNBN-,)-’BN-~QNAN-~, 
K N - 1  = A h - i Q N A N - 1  - P N - 1  + Q N - 1 .  

Note that the control law (22) for the last stage is identical to the cor- 
responding optimal control law for the problem of Section 3.1 except for the 
fact that xN- 
Notice also that expression (23) for the cost-to-go J N -  l(IN- l )  exhibits a 
corresponding similarity to the cost-to-go for the perfect information problem 
except for the fact that J N -  1(xN- 1) contains an additional middle term, which 
expresses a penalty due to estimation error. 

is replaced by its conditional expectation E {xN- I lIN- 

Now the DP equation for period N - 2 is 

J N - ~ ( I N - ~ ) =  Illin E { X ~ - ~ Q N - ~ X N - ~  + U ~ - ~ R N - ~ U N - ~  
U N -  2 X N  - 2 w N  - 2 

I J N -  I 
[ 

}I 

1 

+ JN-l(IN-l)IIN-Zr uN-2 

= min E { x L - ~ Q N - ~ X N - ~  + U ~ - ~ R N - ~ U N - ~  
U N - 2  [ X N - Z W N - 2  

+ ( A N - 2 X N - 2  + B N - 2 U N - 2  + W N - 2 Y K N - l ( A N - 2 X N - 2  

+ B N - 2 U N - 2  + wN-2)11N-2} 

f E { E {[XN-1 - E{XN-llIN-l}I’PN-l[XN-l 

- E { X N -  1 I IN- I}] 1 IN- 1) I IN- 2 9 uN- 2 

Z N - I  X N - 1  
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Note that we have excluded the next to last term from the minimization with 
respect to u N - 2 .  We have done so since this term will be shown to be inde- 
pendent of uN-2-a fact due to the linearity of both the system and the 
measurement equation. This property follows as a special case of the following 
lemma. 

Lemma Let g :  R" + R be any function such that the expected values 
appearing below are well defined and finite and consider the function 

fk(zk-lrZk,Uk-l) = E{gCXk - ~ ~ ~ k ~ ~ k - l ~ z k ~ u k - l ~ ~ ~ z k - l ~ z k ~ ~ k - l ~ ~  
Xk 

Then for every k = 1 ,2 , .  . . , N - 1, the function 

E {fk(lk-l, Z k r  u k - l ) l l k - l ?  uk-l} 
zk 

does not depend on u k -  i.e., 
- 

E{fk(lk-lrzk, u k - l ) l l k - l *  uk-l) = E{fk(lk-lrZk, ak-l)llk-l?uk-l}? 
Zk Zk 

for all 1,- 1, uk- i i k -  1. 

Proof Define for every i = 0, 1, . . . , N - 1, the vectors 

Then, in view of the linearity of the system equation, we have for all i, 

x i + l  = r i x o  + A ~ O ~  + ~ ~ i i ~  

where T i ,  A i ,  Ei are known matrices of appropriate dimension. These 
matrices are obtained from the system matrices Ai, Bi by straightforward 
calculation. Hence we have 

fk(lk-i,Zk, u k - 1 )  = E{drk-i(Xo - E{XoIlk-i,Zk, uk-i))+ A k - i  

x ("k- 1 - E {@k- 1 I l k -  1. zk, u k -  1>)1 I l k -  1, zki uk- 11% 

The measurement equations may also be written 

zi = Cir i - lxo  + CiAi-li5i-l + CiEi-liii-l + u i ,  i = 1,2,. . . , N - 1, 
z, = cox, + 0,. 

Now in view of these expressions the conditional probability distribution of 

zo, z1 - CIEoiio, . . . , zk - Ck&- 1iik- 1, and hence we have 
(Xo, 6k-i)giVen(Ik-1, Zk, Uk-,)dependsOnlk_1, Zk, U k - 1  throughthevectors 

fk(lk-l,ZkrUk-l)= hk(ZCl,Z1 - CIEOGO,*.*,Zk - CkEk-lCk-l) 
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for some function h k .  Thus for any I k -  1, u k -  we have 

E ( f k ( l k - 1 ,  z k ,  u k - l ) ~ z k - l ~ u k - l }  
z k  

= E { h k ( Z O , Z 1  - C I E O c O , . . . ? Z k  - C k E k - l G k - 1 ) 1 I k - 1 , u k - l ) .  
Zk 

Equivalently by using the equation 

z k  - C k E k - l f i k - 1  = C k r k - l X O  + C k A k - l G k - 1  + u k  

we obtain 

E ( f k ( I k - 1 ,  Z k ?  u k - l ) l z k - l ,  u k - l }  
Zk 

= E ( h k ( Z 0 ,  Z1 - -ClEoGo, .  . ., z k - 1  
X O . W k - l ~ U k  

- C k - l E k - 2 f i k - 2 ,  C k r k - l X O  + c k A k - 1 6 k - 1  + u k ) l z k - l ,  u k - 1 ) .  

Since the last expression above does not depend on U k -  the result follows. 
Q.E.D. 

sirnilarly as for the last stage 
Returning now to our problem, the minimization in Eq. (24) yields 

u ; - 2  = p g - 2 ( I N - 2 )  = - ( R N - 2  + B ' N - 2  K N -  1 B N - 2 ) - '  

X HN- 2 K N -  I A N -  2 E { X N  - 2 I IN- 21,  

and proceeding similarly we obtain the optimal control law for every stage 

D pLk*(Ik) = Lk E t X k  I I k }  4 (25) 

D L k  = -(& + B ; K k + i B k ) - ' B ; K k + l A k ,  U 

where 

and where the matrices K k  are given recursively by the matrix Riccati 
equation 

K N  = Q N  

K k  = A ; [ K k + i  - K k + l B k ( R k  + B ; K k + ~ B k ) - ~ % K k + l l A k  + Q k .  

Generalizing an observation made earlier, we note that the optimal con- 
trol law (25) is identical to the optimal control law for the corresponding 
perfect state information problem of Section 3.1 except for the fact that the 
state x k  is now replaced by its conditional expectation E { x k  I I k } .  

It is interesting to note that the optimal controller can be decomposed into 
the two parts shown in Fig. 4.3, an estimator, which uses the data to generate 
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1 - - Estimator 

FIGURE 4.3 

the conditional expectation E {xk I I k } ,  and an actuator, which multiplies 
E { x k  I I , }  by the gain matrix Lk and applies the control input uk = Lk E { x k  1 I , }  
to the system. Furthermore, the gain matrix Lk is independent of the statistics 
of the problem and in particular is the same as the one that would be used ifwe 
were faced with the deterministic problem where wk and xo  would be fixed 
and equal to their expected values. On the other hand it is known (see Section 
1.3 and the Appendix to this chapter) that the estimate +?(I) of a random n- 
vector x given some information (random vector) I ,  which minimizes a 
positive definite quadratic form of the expected value of the estimation error 

E { [ x  - a(I ) ] 'M[x  - +?(I)]}, M = positive definite symmetric, 
x, I 

is precisely the conditional expectation Ex { x  I I } .  Thus the estimator portion 
of the optimal controller is an optimal solution of the problem of estimating the 
state xk assuming no control takes place, while the actuator portion is  an optimal 
solution of the control problem assuming perfect state information prevails. 
This interesting property, which shows that the two portions of the optimal 
controller can be designed independently as optimal solutions of an estimation 
and a control problem, has been called the separation theorem for linear 
systems and quadratic criteria and occupies a central position in modern 
automatic control theory. 

Another interesting observation is that the optimal controller applies at 
each time k the control that would be applied if we were faced with the deter- 
ministic problem of minimizing the cost-to-go 

N -  1 

x ~ Q N x N  + 1 (x:Qixi + u:Riui) 
i = k  
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and the input disturbances w k ,  w k +  1 ,  . . . , w N -  and current state x k  were 
known and fixed at their conditional expected values, which are zero and 
E { x k  I I k } ,  respectively. This is another form of the certainty equivalence 
principle, which was referred to in Section 3.1. For a generalization of this 
fact to the case of correlated disturbances see Problem 1, the hint to which 
provides the clue for a short proof of the separation theorem. 

Implementation Aspects-Steady-State Controller-Stability 

As explained in the perfect information case, the linear form ofthe actuator 
portion of the optimal control law is particularly attractive for implementa- 
tion. In the imperfect information case, however, we are faced with the addi- 
tional problem of constructing an estimator that produces the conditional 
expectation E { x k  I I k } .  The implementation of such an estimator is by no 
means easy in general. However, in one important special case, the case where 
the disturbances w k ,  u k ,  and the initial state xo are Gaussian random vectors, a 
convenient implementation of the estimator is possible by means of the 
celebrated Kalman filtering algorithm [K 11. This algorithm provides the 
conditional expectation E { x k  I I,'}, which due to the Gaussian nature of the 
uncertainties turns out to be a linear function of the information vector 
I k , ?  i.e., the measurements zo,  z l , .  . . , z k  and the controls uo, u l , .  . . , t 4 k - l .  

The computations, however, are organized recursively so that only the most 
recent measurement z k  and control u k -  are needed at time k, together with 
E { x k -  I l k -  1} in order to produce E { x k  11,'). The form of the algorithm is the 
following (see the Appendix at the end of this chapter for a derivation of the 
algorithm) : 

E { X k + i l I k + i }  = A k E { X k l I k }  + B k u k  

f ~ k + l l k + l C ; + l N ~ ~ l [ Z k + l  - C k + l ( A k E { X k I I k }  + B k U k ) ]  

k = 0 , 1 ,  . . . ,  N -  1, 

(26) 

where the matrices are precomputable and given recursively by 

t Actually the conditional expectation E { x k  1 Ik} can be shown to be a linear function of I ,  
for a more general class of probability distributions of x,,, wkr vk that includes the Gaussian 
distribution as a special case, the class of so-called spherical/v inrlariant disrriburions [V6, B24). 
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with 

XOl0 = s - sc;(c,scb + No) - lCos .  

In this equation M k ,  N k ,  and S are the covariance matrices of wk, u k ,  and x o ,  
respectively, and we assume that w k  and u k  have zero mean, i.e., 

E { W k }  = E { V k }  = 0, 

M k  = E { W k W ; } ,  N k  = E { U k U ; } ,  k = 0, 1, ..., N - 1, 

s = E{Cxo - E{xo)lCx - E{xoIl’} .  

Simple modifications are required if w k ,  

Thus under the additional assumption of Gaussian uncertainties the 
implementation of the optimal controller is quite convenient. Furthermore, 
if the system and measurement equations and the disturbance statistics are 
stationary and the horizon tends to infinity, it can be shown under mild 
assumptions (see Section 3.1 and the Appendix to this chapter) that both 
the gain matrices L k  and the matrices C k l k  of the Kalman filtering algorithm 
(26)-(29) tend to steady-state matrices L and X, a fact that can be utilized to 
simplify greatly the implementation of the optimal controller by replacing 
the time-varying gain matrix (&+ I l k +  lC;+ 

Let us provide the equations for this steady-state implementation of the 
control law. Time indices will be dropped where they are superfluous due to 
stationarity. The control law takes the stationary form 

have nonzero means. 

by a constant matrix. 

p * ( l k )  = L 2 k ,  

where we use the notation 

E { X k I I k }  = 2 k ,  L = - ( R  + B’KB)-’B’KA, 

and K is the unique positive semidefinite symmetric solution of the algebraic 
Riccati equation 

K = A’[K  - KB(R + B’KB)-’B’K]A + Q. 
By the theory of Section 3.1 this solution exists provided the pair (A, B)  is 
controllable and the pair (A ,  F )  is observable where F is a matrix such that 
Q = F F .  The conditional expected value 2, is generated by the “steady- 
state” Kalman filtering equation (see the Appendix) 

= ( A  + B L ) R k  + z C ‘ N - ’ [ Z k + l  - C ( A  + B L ) R k ] ,  

where c is given by 

2 = c - ZC‘(CCC + N)-’Cc,  
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and C is the unique positive semidefinite symmetric solution of the algebraic 
Riccati equation 

C = A [ C  - CC'(CCC' + N ) - ' C Z ] A '  + M .  

As indicated in the Appendix, it follows from the theory of Section 3.1 that 
this solution exists provided the pair ( A ,  C )  is observable and the pair ( A ,  D )  is 
controllable, where D is a matrix such that M = DD'. 

Now by substituting zk+ with its value 

z k + l  = c x k + l  + vk+l = CAXk + CBL2k + cwk + vk+l ,  

the system equation and the Kalman filter equation can be written 

xk+ 1 = AX, + BLak + wk, 

2 k + l  = CC'N-'CAxk 4- ( A  + B L  - ZCfN- 'CA)2k  

EC'N-l(CWk + u k + l ) .  

These equations may be viewed as representing a 2n-dimensional dynamic 
system whose state is the vector [ x ; ,  a;]' and which is perturbed by vectors 
that depend on wk and uk+ 1. From the practical point of view it is important 
that this system is stable, i.e., the 2n x 2n matrix 

1 [ E c N - l c A  A + B L  - xC"- lCA 
A B L  

is a stable matrix. Indeed this can be shown under the preceding control- 
lability and observability assumptions (see the Appendix in this chapter). 
Thus the combined estimation and control scheme based on approximation 
of the optimal controller by a stationary controller results in a stable system 
as well as an implementation that is attractive from the engineering point of 
view. 

It is to be noted that in the case where the random vectors W k ,  vk, x o  are 
not Gaussian the controller 

j i * ( I k )  = LkR(Ik), k = 0, 1,. . . , N - 1, (30) 
is often used, where a ( I k )  is the linear least-squares estimate of the state xk 
given the information vector I k  (see the Appendix). It can be shown (see 
Problem 2) that the controller (30) is optimal in the restricted class of all 
controllers, which consists only of linear functions of the information vectors 
I k .  One can show (see the Appendix) that the estimate $ k ( I k )  is again provided 
by the Kalman filtering algorithm (26)-(29) simply by replacing E {xk I I k }  

by t k ( I k ) ,  and thus the control law (30) can be conveniently implemented. 
Thus in the case of non-Gaussian uncertainties the control law (30) may re- 
present an attractive suboptimal alternative to the optimal control law (25). 
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Nonetheless, using the control law (30) may result in a very substantial in- 
crease in the resulting value of the cost functional over the optimal value. 

Finally a case that deserves special mention involves the linear system (18) 
and linear measurement equation (20) and a nonquadratic cost functional. 
Under the assumption that the random vectors are Gaussian and independent 
it can easily be shown by using the sufficient statistic algorithm of Section 4.2 
that an optimal control law can be implemented in the form 

P * ( l k )  = /%CE{XkI I k } ] .  

In other words, the control input need only depend on the conditional ex- 
pected value of the state. This result holds due to the fact that the conditional 
probability measure Pxkl Ik  is Gaussian (due to linearity and Gaussian un- 
certainties) and furthermore the covariance matrix corresponding to PXklIk  is 
precomputable (via the Kalman filtering algorithm mentioned earlier) and 
cannot be influenced by the control input. 

4.4 Finite State Markov Chains-A Problem of Instruction 

Among problems with imperfect state information the class that involves 
a finite state system (finite state space) deserves particular attention. Not only 
is it a class of problems of general interest but also it admits a computationally 
tractable solution via the sufficient statistic algorithm of Section 4.2. As dis- 
cussed in that section, the basic problem with imperfect state information can 
be reformulated into a problem with perfect state information which involves 
a system the state of which is the conditional probability measure P x k l I k .  
When the state space contains only a finite number of states x l ,  x 2 ,  . . . , x", 
the conditional probability measures PXklIk  are characterized by the n-tuple 

where 

Thus for each period the state space for the reformulated problem is the 
simplex 

and the control input need only be a function of the current conditional 
probabilities p i ,  i = 1, . . . , n. In this way substantial data reduction is 
achieved since all the necessary information provided by the measurements 
is summarized in these conditional probabilities. The probabilistic state Pk 
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can be computed at each time by the optimal controller on the basis of the 
previous state p k -  1, the control u k -  1, and the new measurement z k .  The DP 
algorithm (16) and (17) can be used for the calculation of the optimal control 
law. 

Whenever the control and measurement spaces are also finite sets, it 
turns out that the cost-to-go functions J k ( P k ) ,  k = 0,1, .  . . , N - 1, in 
algorithm (16) and (17) have a particularly simple form, a fact first shown by 
Smallwood and Sondik [S13]. One may show that 

J k ( P k )  = min[P; a:, Pk a:, . . . , P; a?], 
where a:, at, . . . , a? are some n-dimensional vectors and P; a{ ,  j = 1, . . . , mk, 
denotes the inner product of P k  and a{. In other words, the functions 3, are 
“piecewise linear” and concaue over { ( p ’ ,  . . . , @’)[pi > 0, pi = l}. 
The demonstration of this fact is straightforward but tedious and is outlined 
in the hint to Problem 7. The piecewise linearity of J k  is, however, an important 
property since may be completely characterized by the vectors a:, . . . , a?. 
These vectors may be computed through the DP algorithm by means of 
special procedures, which in addition yield an optimal policy. We will not 
describe these procedures here. They can be found in references [S13] and 
[S14]. Instead we shall demonstrate the DP algorithm by means of examples. 
The first of these examples, a problem of instruction, is considered in this 
section. The second, a hypothesis testing problem, is treated in the next 
section and is of importance in statistics. 

A Problem of Instruction 

Consider a problem of instruction where the objective is to teach the 
student a certain simple item. The student may be at the beginning of each 
period in one of two possible states 

x1 item learned, 
xz item not learned. 

At the beginning of each period the instructor must make one of two decisions 

u1 terminate the instruction, 
u2 continue the instruction for one period and at the end of the period 

conduct a test the outcome of which gives an indication as to whether 
the student has learned the item. 

The test has two possible outcomes 

z1 student gives a correct answer, 
zz student gives an incorrect answer. 



4.4 FINITE STATE MARKOV CHAINS-A PROBLEM OF INSTRUCTION 139 

The transition probabilities from one state to the next if instruction takes 
place are given by 

2 
P ( x k + 1  = X ’ l X k  = x ’ )  = 1, P ( x k + l  = x ( x k  = x ’ )  = 0, 

P ( X k + 1 = X 1 1 X k = X 2 ) = t ,  P ( X k + l = X 2 1 X k = X Z ) = 1 - t ,  O < f <  1 .  

The outcome of the test depends probabilistically on the state of knowledge 
of the student as follows: 

P ( z k  = z1 I x k  = x ’ )  = 1, P ( z k  = z 2 1 x k  = x ’ )  = 0, 

P ( z k  = z l ( x k  = x 2 )  = r, P ( z k  = Z 2 1 X k  = x 2 )  = 1 - r, 0 < < 1. 

Concerning the cost structure we have that the cost of instruction and testing 
is Z per period and the cost of terminating the instruction is 0 and C > 0 if 
the student has learned or has not learned the item, respectively. The ob- 
jective is to find the instruction-termination policy for each period k, as a 
function of the test information accrued up to that period, which minimizes 
the total expected cost, assuming that there is a maximum of N periods of 
instruction. 

It is easy to reformulate this problem into the framework of the basic 
problem with imperfect state information. We can define a corresponding 
system and measurement equation by introducing input and observation 
disturbances w and u with probability distributionsexpressing the probabilistic 
mechanism of the process similarly as was described in the example of Section 
4.1. Subsequently we can use the sufficient statistic algorithm of Section 4.2 
and conclude that the decision whether to terminate or continue instruction 
at period k should depend on the conditional probability that the student has 
learned the item given the test results so far. This probability is denoted 

P k  = P ( x k  = x 1  I z O ,  z 1 , .  . , z k ) .  

In addition we can use the DP algorithm (16) and (17) defined over the space 
of the sufficient statistic pk  to obtain an optimal policy. However, rather than 
proceeding with this elaborate reformulation we prefer to argue and obtain 
directly this DP algorithm. 

Concerning the evolution of the conditional probability pk (assuming 
instruction occurs) we have by Bayes’ rule 
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From the probabilistic descriptions given we have 

~ ( z k + l ~ ~ O , . . . , z k , x k + l  = x ' ) = p ( z k + l l x k + l  = X I )  

1 if z k + l  = z l ,  
0 if z k + l  = z ,  2 

if z k + l  = zl, 

- - Y  if Z k + l  = z ,  2 

Substitution in (3 1) yields 

where the function @ is defined by 

or equivalently 

A cursory examination of this equation shows that, as expected, the condi- 
tional probability P k +  that the student has learned the item increases with 
every correct answer and drops to zero with every incorrect answer. We men- 
tion also that Eq. (32) is a special case of Eq. ( 1  5) of Section 4.2. The dependence 
of the function @ on the control uk is not explicitly shown since there is only 
one possible action aside from termination. 

We turn now to the development of the DP algorithm for the problem. 
At the end of the Nth period, assuming instruction has continued to that 
period, the expected cost is 

(34) 

At the end of period N - 1 ,  the instructor has calculated the conditional 
probability p N -  that the student has learned the item and wishes to decide 
whether to terminate instruction and incur an expected cost (1 - p N -  ,)C or 

J N h )  = ( 1  - P&- 
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continue the instruction and incur an expected cost I + E, ,  {JN(PN)} .  This 
leads to the following equation for the optimal expected cost-to-go : 

r 1 

Similarly the algorithm is written for every stage k by replacing N above by 
k +  1: 

I k ( P k )  = min (l - P k ) c ,  + E { ] k +  l C @ ( P k ,  Zk+ I ) ] } ] .  (35) [ Zk+ I 

Now using expression (33) for the function @ and the probabilities 

p ( z k + l  = z l I P k )  = P k  + (l - P k ) [ ( l  - f ) r  + t1 
= 1 - (1 - t)(l - r)(l - P k ) ,  

p ( z k + l  = z 2 1 P k )  = - P k  - (1 - Pk)[(1 - f ) r  + t ]  

= (1 - l)(l - r)(l - P k ) ,  

where 

In particular, by using (34), (36), and (37) we have by straightforward cal- 
culation 

JN- I(PN- 1) = mi" - PN- I)C, I + A N -  I(PN- 1 1 1  

= minC(1 - P ~ - ~ ) C ,  I + (1 - t)(l - P ~ - ~ ) C ] .  

Thus as shown in Fig. 4.4 if 

I + (1 - t)C < c, 

there exists a scalar aN- with 0 < aN- < 1 that determines an optimal 
policy for the last period : 

continue instruction if pN- 6 aN- 

terminate instruction if pN- > aN- 
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instruction instruction 

FIGURE 4.4 

It is easy to show (see Problem 8) using (37) that under condition (38) the 
functions A,@) are concave and “piecewise linear” (i.e., polyhedral) for each 
k and satisfy for all k, 

A,(1) = 0. (39) 

A,@) 2 A,@’) if 0 < p < p’ < 1, (40) 

Furthermore they satisfy for all k 

Ak- I@) < A,@) < Ak+ I@) v p  E [o, 11, k = 1,2, . . . , N - 2. (41) 

Thus from the D P  algorithm (36) and Eqs. (39)-(41) we obtain that the 
optimal policy for each period is determined by the unique scalars ak ,  which 
are such that 

(1 - ak)C = I + Ak(ak), k = 0, 1, ..., N - 1. 

An optimal policy for period k is given by 

continue instruction if p k  < ak, 

terminate instruction if pk > aka 

Now since the functions A,@) are monotonically nondecreasing with 
respect to k, it follows from Fig. 4.5 that 

a N - l  < a N - 2  < < ak < ak-1 < ... < 1 - (I/C),  
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t 

and therefore as N -, co the corresponding sequence {aN-i} converges to 
some scalar E for every fixed i. Thus as the horizon gets longer, the optimal 
policy (at least for the initial stages) can be approximated by the stationary 
policy 

continue instruction if P k  < E 

terminate instruction if Pk > E. 

It turns out that this stationary policy has a very convenient implementation 
that does not require the calculation of the conditional probability at each 
stage. From Eq. (33) we have 

(42) 

l o  if zk+l = z2. 

Furthermore, P k f  increases over P k  if a correct answer z1 is given and drops 
to zero if an incorrect answer z2 is given. Now define recursively the pro- 
babilities 

n 1  = @(o, z'), 712 = @(n1, zl), . . . 3 R k + l  = @((7Lk, zl), . . . 9 
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and let n be the smallest integer for which n, > Cr. It is clear that the stationary 
policy (42) can be implemented as follows : 

terminate instruction if n successive correct answers have been received, 
continue instruction otherwise. 

4.5 Hypothesis Testing-Sequential Probability Ratio Test 

In this section we consider a hypothesis testing problem characteristic of 
a class of problems that are of central importance in statistical sequential 
analysis. The decision maker must sequentially and at each period either 
accept on the basis of past observations a certain hypothesis out of a given 
finite collection as being true and terminate experimentation, or he must 
delay his decision for at least one period and obtain, at a certain cost, an 
additional observation that provides information as to which hypothesis is 
the correct one. We will focus attention on the simplest and perhaps the most 
important case, where there are only two hypotheses. The approach can be 
easily generalized to the case of more hypotheses but the corresponding 
results are not as elegant. 

Let z,, z,, . . . , zN- , be a sequence of independent and identically dis- 
tributed random variables taking values on a countable set 2. Suppose we 
know that the probability distribution of the Z ~ S  is eitherf, orfl and that we 
are trying to decide on one of these. Here for any element z E Z,f,(z) [fi(z)] 
denotes the probability of z occurring whenf, (fl) is the true distribution. At 
time k after observing z,, . . . , zk we may either stop observing and accept 
eitherf, orfl,  or we may take an additional observation at a cost C > 0. 
If we stop observing and make a choice, then we incur zero cost if our choice 
is correct, and costs Lo,  L ,  if we choose incorrectlyf, andf,, respectively. 
We are given the a priori probability p that the true distribution isf, and we 
assume that at most N observations are possible. 

It is easy to see that the problem described above can be formulated as a 
sequential optimization problem with imperfect state information involving a 
two-state Markov chain. The state space is {xo, x'}, where we use the notation 

xo true density isf,, 
x1 true density isf,. 

The system equation takes the simple form Xk+' = xk and we can write a 
measurement equation zk = vk, where vk is a random variable taking values 
in 2 with conditional probability distribution 
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Thus it is possible to reformulate the problem into the framework of the 
basic problem with imperfect state information and use the sufficient statistic 
DP algorithm of Section 4.2 for the analysis. This algorithm is defined over 
the interval [0, 11 of possible values of the conditional probability 

P k  = P(xk = xoIzO,. . . , zk). 

Similarly as in the previous section we shall obtain this algorithm directly. 
The conditional probability Pk is generated recursively according to the 

following equation (assumingfo(z) > O,,fl(z) > 0 for all z E Z) 

k = 0 , 1 ,  ..., N - 1 ,  (43) P k  f O ( z k  + 1 ) 
PkfO(Zk+l) + ( l  - Pk)fl(Zk+l)’ 

P k + l  = 

where p is the a priori probability that the true distribution isfo. The optimal 
expected cost for the last period is 

(45) j N -  1 b N - 1 )  = min[(l - P N -  l ) L O ,  PN-  lL1l ,  

where (1 - pN- l)Lo is the expected cost for acceptingf, and pN- lL1 is the 
expected cost for acceptingf,. Taking into account (43) and (44) we can obtain 
the optimal expected cost-to-go for the kth period from the equation 

(l - pk)LO, PkL1, 

where the expectation over Zk+l is taken with respect to the probability 
distribution 

where 
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An optimal policy for the last period (see Fig. 4.6) is obtained from the 
minimization indicated in (45): 

accept fo if PN-  2 p, 

accept fl if pN- < p, 

where p is determined from the relation (1  - p)Lo = pL1 or equivalently 

We now prove the following lemma. 

Lemma The functions A , :  [O, 11 -+ R of (47) are concave and satisfy 

Ak(0) = Ak(1) = 0 Vk = 0, 1, .  . . , N - 2, 

A k - l ( P )  Vp~[0,1], k = l , 2  ,..., N - 2 .  

Proof The last two relations are evident from (45)-(47). To prove con- 
cavity of A k  in view of (45) and (46) it is sufficient to show that concavity of 
J k +  implies concavity of A,  through relation (47). Indeed assume that Jk+ 
is concave over [0,1]. Let zl, z2,  z3,  . . . denote the elements of the countable 
observation space Z. We have from (47) that 
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Hence it is sufficient to show that concavity of J k +  implies concavity of each 
of the functions 

To show concavity of hi we must show that for every L E [0, 13, pl, p2 E [0, 11 
we have 

Ahi(p1) + (1 - A)hi(p2) 6 hiCAp1 + (1 - I)p21* 

Using the notation 

41 = PlfO(Z')  + (1 - Pl)f l (Z ' ) ,  5 2  = PZfO(Z') + (1 - PZ)fl(Z'), 

the inequality above is equivalent to 

(APl + (1 - 4PZ)fO(Zi) 
6 l k + l  

This relation, however, is implied by the concavity of I,+,. Q.E.D. 

Using the lemma we obtain (see Fig. 4.7) that if 

c + A,-zCLo/(Lo + L1)I < LOLl/(LO + Ll), 

then an optimal policy for each period k is of the form 

accept fo if Pk 3 ak, 
accept fl if Pk < bk, 
continue the observations if /?k < Pk < ak, 

where the scalars ak, Bk are determined from the relations 
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Hence as N + co the sequences {aN-i}, { / ? N - i }  converge to scalars E ,  8, re- 
spectively, for each fixed i, i = 1,2, . . . , and the optimal policy is approxi- 
mated by the stationary policy 

accept fo if pk 2 E, 

continue the observations if 8 < pk < E. 
accept fi if P k  < B, (48) 

Now the conditional probability pk is given by 

where p is the a priori probability thatf, is the true hypothesis. Using (49) the 
stationary policy (48) can be written in the form 

if Rk 2 A = (1 - p)d /p ( l  - d), accept fo 
accept fi if Rk < B = (1 - p)b/p(l - B), (50) 
continue the observations if B < Rk < A,  
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where the sequential probability ratio Rk is given by 

Rk = fO(zO) * * * fO(zk)/fl(zO). . . fl(zk). 
Note that Rk can be easily generated by means of the recursive equation 

R k + l  = [f~(~k+l)/fl(zk+l)l~k. 

A sequential decision procedure of form (50) is called a “sequential 
probability ratio test.” Procedures of this type were among the first formal 
methods of sequential analysis studied by Wald [Wl] and have extensive 
applications in statistics. The optimality of policy (48) for a problem involving 
an unlimited number of observations will be shown in Section 7.2. 

4.6 Sequential Sampling of a Large Batch 

This section deals with a problem of inspection of a large batch of items. 
Samples from the batch are taken sequentially at a cost C > 0 per item and 
inspected for defects. On the basis of the number of defective and nonde- 
fective items inspected one must decide whether to classify the batch as 
defective or nondefective or continue sampling. Let q, with 0 < q < 1, denote 
the quality of the batch, which represents the true proportion of defective 
items. We denote 

a(q) cost of accepting a batch of quality q, 
r(q) cost of rejecting a batch of quality q, 

f ( q )  a priori probability density function of q. 
We assume that a(q) and r(q) are nonnegative and bounded over [0, 13. 

The problem is to find a sampling policy that minimizes the expected value 
of the sum of the sampling costs and the acceptance-rejection costs. We shall 
assume initially that the maximum number of samples that can be taken is N 
and that sampling does not affect the composition of the batch. Subsequently 
we shall examine the limiting case where N is very large and tends to infinity. 

Clearly this problem is of a similar nature as the one of the previous section 
There are some important differences, however, which are perhaps worth 
going over. In both problems we have the same control space (accept, reject, 
or take another sample). The system and measurement equations in both 
problems can be taken to have the same form 

x k + l  = x k ,  z k  = uk. 

However, whereas in the problem of the previous section we had two hypo- 
theses (corresponding to the two densities fo ,fl) in the present problem es- 
sentially we have an infinity of hypotheses (one for each quality q E [0, 11). 
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Thus the state space is different in the two problems. The observation space 
is also different. In the previous section the observation space was countably 
infinite while in the present problem there are only two outcomes per sample 
(defective, nondefective), i.e., v k  takes only the two values 

defective with probability 4, 

nondefective with probability 1 - 4. 

The differences described above induce an important change in the treatment 
of the present problem since it is not convenient to employ as a sufficient 
statistic the conditional probability density of 4 given the measurements in 
view of infinite dimensionality. Fortunately enough there is another suf- 
ficient statistic, which turns out to be convenient in the present case thanks to 
the binary nature of the observation space. Assume that we are at time k and 
consider the pair (m, n), where m + n = k and m is the number of defective 
outcomes up to time k, and n the number of nondefective outcomes up to time 
k. A little thought should convince the reader that all the information that the 
statistician needs to know at time k for decision purposes is summarized in the 
pair (m,  n), and hence (m, n) can be viewed as a sufficient statistic in accordance 
with the definition of Section 4.2. The verification of this fact is left to the 
reader. We proceed below to state and analyze the DP algorithm in terms of 
the sufficient statistic (m, n). We obtain the algorithm directly rather than 
through a reformulation into the general problem of this chapter. Such a 
reformulation is of course possible. 

Given (m, n) the conditional probability density function of 4 can be 
calculated to be 

The conditional probability of obtaining a defective sample at time k + 1 
given that (m, n) with m + n = k has occurred can be calculated to be 

and, of course, the conditional probability of a nondefective sample is 
[1 - d(m, n)]. Note that the scalarsf(qlm, n) and d(m, n) may be computed 
a priori for each (m, n). 

Let us denote by Jk(m, n) the optimal cost-to-go of the process at time k 
given that sampling has produced the pair (m,  n) with m + n = k. At this 
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point the costs involved are 

Let us denote by g(m, n) the minimum of the acceptance and rejection costs 
given (m, n): 

The DP algorithm may now be written 

J d m ,  n) = g(m, n), 

Jk(m, n )  = min[g(m, n),  C + d(m, n)Jk+l(m + 1, n) 
(54) 

+ c1 - d(m, n)]Jk+l(m,  n + l ) ] .  (55) 

Note that J ,  is defined over the set Sk of pairs of nonnegative integers 
(m, n) with m + n = k. The sets Sk, which are, of course, finite, are shown in 
Fig. 4.8. Thus if the permissible number of samples N is not very large, the 
sets S o ,  S 1 ,  . . . , SN collectively contain relatively few points and the computa- 
tion of the optimal policy via the DP algorithm (54) and (55) is relatively easy. 
On the other hand when N is very large (and indeed there is a priori no reason 
why it should not be when the batch is large) computation (54) and (55) be- 
comes inefficient. Nonetheless we will see that under an assumption often 
satisfied in practice one can limit the maximum number of samples to be 
taken without loss of optimality. 

For any nonnegative integers m, n, N with m + n < N let us denote by 
J(m, n, N )  the optimal “cost-to-go” Jk(m, n) (k = m + n) obtained from al- 
gorithm (54) and (55) when the maximum sample size is N. In general, 
J(m, n, N) depends on N. If, however, the costs a(q) and r(q) and the pro- 
bability density function f ( q )  are such that for some integer m 

g(m,n) < C for allm,n with m + n 2 w, (56) 

then from (55) we obtain 

J(m, n, N) = g(m, n) for all m, n with m + n 2 m. 
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Under these circumstances acceptance or rejection takes place after at most 
N samples are taken, and the optimal sampling policy is the same for all 
N 2 N. This policy can be obtained through the DP algorithm (54) and (55 )  
provided the number of stages N satisfies N 2 m. As an example, let a(q) = 0 
if q -= 0.75; a(q) = 1 if q 2 0.75; r(q) = 0 if q > 0.25; r(q) = 1 if q < 0.25; 

f ( q )  = 1, C = 0.004. Then one has 

and one can verify that g(m, n) < 0.004 = C for m + n 2 10. Thus it is 
sufficient to solve the problem for N = 10. 

4.7 Notes 

Sequential decision problems with imperfect state information and the 
idea of data reduction via a sufficient statistic have been considered very early 
particularly in the statistics literature (see, e.g., Blackwell and Girshick [B23] 
and the references quoted therein). In the area of stochastic control the suf- 
ficient statistic idea gained wide attention following the 1965 paper by Striebel 
[SlS] (see also CS16, S191) although the related facts were known to most 
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researchers in the field by that time. For the analog of the sufficient statistic 
concept in sequential minimax problems see the work of Bertsekas and 
Rhodes [BlS]. 

For literature on linear quadratic problems with imperfect state infor- 
mation see the references quoted for Section 3.1 and Witsenhausen’s survey 
paper [W7]. The Kalman filtering algorithm [Kl] is a well-known and widely 
used tool. Detailed discussions that supplement our exposition of the Appen- 
dix can be found in many textbooks [J3, L8, M6, M7, Nl]. The result men- 
tioned at the end of Section 4.3 was pointed out by Striebel [SlS] (see also 
Bar-Shalom and Tse [Bl]). The corresponding result for continuous-time 
systems has been shown under certain assumptions by Wonham [Wl 11. For 
linear quadratic problems with Gaussian uncertainties and observation cost 
in the spirit of Problem 6 see the works of Aoki and Li [A31 and Cooper and 
Nahi [C4]. Problems 1 and 2, which indicate the form of the certainty equi- 
valence principle when the random disturbances are correlated, are based on 
an unpublished report by the author [B5]. 

The possibility of analysis of the problem of control of a finite state 
Markov chain with imperfect state information via the sufficient statistic 
algorithm of Section 4.2 was known for a long time. More recently it has been 
exploited by Eckles [E2], Smallwood and Sondik [S13], and Sondik [S14]. 
The proof of the “piecewise linearity” of the cost-to-go functions and an 
algorithm for their computation is given in references [S13] and [S14]. The 
instruction model described in Section 4.4 has been considered (with some 
variations) by a number of authors [AlO, K5, GI, S12]. 

For a discussion of the sequential probability ratio test and related sub- 
jects see the book by DeGroot [Dl], the lecture notes by Chernoff [C2], and 
the references quoted therein. The treatment provided here stems from 
Arrow et al. [A5]. The problem of Section 4.6 is treated by White w3] .  A 
similar class of problems that has received considerable attention is the class 
of the so-called two-armed bandit problems (see [Dl]). A simple special case 
is treated in Problem 10. 

Problems 

1. Consider the linear system (18) and measurement equation (20) of Section 
4.3 and consider the problem of finding a control law {&(Io), . . . , pft- 1 ( I N -  

that minimizes the quadratic cost functional 
r N -  1 

Assume, however, that the random vectors xo, wo, . . . , wN- 1,  u o ,  . . . , uN- 
are correlated and have given joint probability distribution and finite first 
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and second moments. Show that the optimal control law is given by 

(assuming the matrices A o ,  A l ,  . . . , A N -  are invertible). 
Hint Show that the cost functional can be written 

r N- 1 

where 

P k  = B ; K k + I B k  + R k .  

2. In Problem 1 show that the control law that minimizes the value of the 
cost functional among all control laws that consist of linear functions of the 
information vector is given by 

P k * ( l k )  = L k j k ( z k ) ,  

where j k ( I k )  is the linear least squares estimate of y k  given I k ,  i.e., the linear 
function of I k  that solves 

min E { b k  - y k ( z k ) l ' b k  - y k ( z k ) l ) .  
Yk('), Yk(.): h e a r  Yk. Ik 

3. Consider Problems 1 and 2 with the difference that the measurements z k  

are received with a delay of m 2 1 time periods, i.e., the information vector I k  

is given by 

(Zo, . . . , Zk-,,,, u g ,  . . . , U k -  1) if k 2 m, 
I . = {  ( u O , . . * , u k - l )  if k < m. 

Show that the conclusion of both problems holds for this case as well. 
4. Prove the result stated at the end of Section 4.3. 
5. Consider a machine that can be in one of two states, good or bad. Sup- 
pose that the machine produces an item at the end of each period. The item 
produced is either good or bad depending on whether the machine is in a 

where the gain matrices Lk are obtained from the recursive algorithm 

and the vectors yk are given by 
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good or bad state, respectively. We suppose that once the machine is in a bad 
state, it remains in that state until it is replaced. If the machine is in a good 
state at the beginning of a certain period, then with probability t it will be in 
the bad state at the end of the period. Once an item is produced we may 
inspect the item at a cost I, or not inspect. If an inspected item is found bad, 
the machine is replaced with a machine in good state at a cost R .  The cost for 
producing a bad item is C > 0. Write a DP algorithm for obtaining an optimal 
inspection policy assuming an initial machine in good state, and a horizon of 
N periods. Solve the problem for t = 0.2, I = 1, R = 3, C = 2, and N = 8. 
(The optimal policy is to inspect at the end of the third period and not inspect 
in any other period.) 
6. Consider the problem of estimating the common mean x of a sequence of 
Gaussian random variables z l r  z 2 ,  . . . , zN- 1, where zk = x + u k  and x, u l ,  
u 2 ,  . . . , uN- are independent Gaussian random variables with 

E { X }  = p, E{(X - p ) 2 }  ='Of,  E { U k }  = 0, E{U:} = 02. 

At each period k the sample zk may be observed at a cost C > 0 or else 
sampling is terminated and an estimate $(zl, . . . , zk- 1) is selected as a function 
of samples z l r  . . . , zk- observed up to that period. The cost for termination 
after observing the k first samples is 

kC + E {[X - A(Z1, . . . , Zk)l2} .  
X,ZI,....Zk 

The problem is to find the termination and estimation policy so as to minimize 
the cost. Show that the optimal termination time is independent of the 
particular values zl, . . . , z k  observed, and thus the problem may be solved by 
first determining E and then obtaining the optimal estimate 2 after taking E 
samples. 
7. Control of Finite-State Systems with Imperfect State Infbrmation 
Consider a controlled dynamic system that at any time can be in any one 
of a finite number of states xl, x2, . . . , x". When a control u is applied, the 
transition probability of the system moving from state xi to state xj is 
denoted p&). The control u is chosen from a finite collection of controls 
u l ,  u2, . . . , urn. Following each state transition an observation is made by the 
controller. There is a finite number of possible observation outcomes denoted 
2, z 2 , .  . . ,zq. The probability of the observation outcome z', 0 = 1,. . . , q, 
occurring given that the current state is j and the previous control was u is 
denoted by either rJ(u, 0) or rJ(u, z'). 

(a) Consider the process after k + 2 observations zo,  zl, . . . , zk+ have 
been made and controls uo,  ul, . . . , uk have been applied. Consider the con- 
ditional probability vectors 

1 Pk = {d~. . . , !$}? P k + l  = {pk+l,*..?P;+l}, 
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(b) Assume that there is a cost per stage denoted for the kth stage by 
gk(i, u,j) ,  associated with the control u and a transition from state xi to state x j .  

Consider the problem of finding an optimal policy minimizing the sum of the 
costs per stage over N periods. The terminal cost is denoted gN(xN). Show that 
the corresponding DP algorithm is given by 

J N - l ( P N - l )  = min [ i p k - 1  i p i J ( u ) ~ N - l ( i , u , j )  + ~ N w ) I  1 U E ( U ’ .  ..., urn) i =  1 j =  1 

J k ( P k )  = min [ i pt i Pixu)  b k ( i ,  u, j )  
uc(ul ,  .... urn) i= 1 j =  1 

(c) Show by induction that the functions JN- . . . , J o  are of the 
form 

J k ( P k )  = min[P;a:, Pka,2, . . . , pkap], 
where a:, a;, . . . , a? are some vectors in R” and Pka{ denotes the inner pro- 
duct of Pk and a{. 

Hint If J k +  is of the form above, show that 

- min[P;A:(u, e), . . . , P‘ k k (u, - I;= 1 c:= 1 Pt PiJW,(u, 0) 
9 

where A:(u, e), . . . , A? + I(u, 0) are some n-dimensional vectors depending on u 
and 8. Show next that 

where &(u) is the n-vector with ith coordinate equal to p i J ( u ) g k ( i ,  u, j ) .  
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Subsequently utilize the fact that any sum of the form 

min[Pkyl,. .., Pky,] + min[Pkjjl,. . ., Pkp,-], 
where yl, . . . , ys, jjl, . . . , j j s  are some n-dimensional vectors and s, S are some 
positive integers is equal to 

min{Pk(yi + j j j ) l i  = 1,. . . , s, j = 1,. . . , g}. 

8. Consider the functions Jk(p,) of Eq. (35) in the instruction problem. Show 
inductively that each of these functions is piecewise linear and concave of the 
form 

J k ( P k )  = min[a: + pklpk, + pip,, . . ., a? + p?pk], 
where a:, . . . , a?, pi ,  . . . , fikm'. are suitable scalars. 
9. Consider a hypothesis testing problem involving n hypotheses. The a 
priori probability of hypothesis i ,  i = 1, 2, . . . , n, being true is p i .  The cost of 
accepting erroneously hypothesis i is Li. At each sampling period an ex- 
periment is performed that has two possible outcomes denoted 0 and 1. The 
conditional probabilities of outcome 0 given that hypothesis i holds true is 
known and denoted aj. We assume ai # a j  for i # j. At each period one may 
perform another experiment at the cost C or terminate experimentation and 
accept one of the hypotheses. Provide a suitable D P  algorithm for finding the 
optimal sampling plan when the maximum number of possible experiments 
is N. 
10. Two-Armed Bandit Problem A person is offered N free plays to be 
distributed as he pleases between two slot machines A and B. Machine A pays 
a dollars with known probability s and nothing with probability (1 - s). 
Machine B pays f i  dollars with probability p and nothing with probability 
(1 - p). The person does not know p but instead has an a priori cumulative 
probability distribution F(p)  of p. The problem is to find a playing policy that 
maximizes expected profit. Let (m + n) denote the number of plays in B after 
k free plays (m + n < k) and let m denote the number of successes and n the 
number of failures. Show that a DP algorithm that may be used to solve this 
problem is given by 

1,- l(m, n) = max{sa, p(m, n)p>, m + n < N - 1, 

p(m, n)CB + Jk+l(m + 1, n)I + [1 - p(m, n)IJk+ l(m, n + 1)), 
m + n < k ,  

Jk(m, n) = max{s[a + Ik+l(m, n)] + (1 - S ) J ~ + ~ ( ~ ,  n), 

where 
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Solve the problem for N = 6, IX = /3 = 1, s = 0.6, dF(p)/dp = 1 for 0 < p < 1. 
(The answer is to play machine B for the following pairs (m, n):(O, 0), (1,0), 
(2,0), (3,0), (4,0), (5,0), (2, l), (3, l), (4, 1). Otherwise machine A should be 
played.) 
11. A person is offered 2 to 1 odds in a coin tossing game where he wins 
whenever a tail occurs. However, he suspects that the coin is biased and has an 
a priori cumulative probability distribution F(p) for the probability p that a 
head occurs at each toss. The problem is to find an optimal policy of deciding 
whether to continue or stop participating in the game given the outcomes 
of the game so far. A maximum of N tossings is allowed. Indicate how such a 
policy can be found by means of DP. 

Appendix Least-Squares Estimation-The Kalman Filter 

In this appendix we present the basic principles of least-squares estimation 
and their application in the problem of estimating the state of a linear dis- 
crete-time dynamic system using measurements that are linear in the state 
variable. 

The basic problem is roughly the following. There are two random vectors 
x and y taking values in Euclidean spaces R" and R", respectively. The two 
vectors are related through their joint probability distribution so that the 
value of one of the two provides information about the value of the other. For 
example, x may be the velocity of an automobile and y the result of an inexact 
measurement of this velocity, which is equal to x plus a random error that is, 
say, uniformly distributed over some interval. Now the situation that we 
examine is one where we get to know the value of y and we would like to 
estimate the value of x so that the estimation error is as small as possible in 
some sense. The criterion that we use is minimization of the expected value of 
the squared error between x and its estimate, which explains the term least- 
squares estimation. This criterion is reasonable as well as convenient from the 
analytical point of view. 

We begin with the problem of finding the least-squares estimate of a 
random vector x given the value of the measured random vector y. Next we 
consider the problem of finding the least-squares estimate of the random 
vector x within the class of all estimates that are linear in the measured vector 
y. Finally the results are applied to a special case where there is an underlying 
linear dynamic system the current state of which we would like to estimate 
using measurements that are obtained sequentially in time. Due to the special 
structure of this problem the computation of the state estimate can be or- 
ganized conveniently in a recursive algorithm-the Kalman filter. Through- 
out the exposition we will not make a notational distinction between a 
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random vector and particular sample values that it assumes. The precise 
meaning should be clear from the context. 

A. 1 Least-Squares Estimation 

Consider two jointly distributed random vectors x and y taking values in 
R" and R", respectively. In any particular occurrence of x and y we expect that 
the value of y provides information that may be used to update our a priori 
estimate or guess of x. For example, while prior to knowing y our estimate of 
x may have been the expected value E {x}, once the value of y is known we 
may wish to form an udpated estimate x(y )  of the value of x. This updated 
estimate depends, of course, on the value of y and thus we are in effect inter- 
ested in a rule that gives us the estimate for each possible value of y, i.e., we 
are interested in a function x( - ), where x(y) is the estimate of x given y. Such a 
function x( .): R" .+ R" we shall call an estimator. We are seeking an esti- 
mator that is optimal in some sense and the criterion we shall employ is 
based on minimization of 

where 11 - ( 1  denotes the usual norm in R"( llzl12 = z'z for z E R"). An estimator 
that minimizes the measure of error above over all x( . ): R" + R" will be 
called a least-squares estimator and will be denoted 52*( - ). It is clear that 
a*( - ) is a least-squares estimator if we have for every y E R" 

where the expectations are taken with respect to the conditional distribution 
of x given y for fixed values of y. 

The following proposition was proved in Section 1.3. We repeat the simple 
proof here. We shall assume in the proposition as well as throughout the 
Appendix that all the expected values appearing are well defined and jinite. 

Proposition A.l  The least-squares estimator i*( .)  is given by 

a*(),) = E {xly} Vy E R". (59) 
x 

Proof We have for every fixed z E R" 

This expression is minimized for z = Ex { x l y }  and using (58) the result 
follows. Q.E.D. 
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A.2 Linear Least-Squares Estimation 

While the least-squares estimate is simply the conditional expectation 
Ex {xly}, in general the function Ex {XI.} may be a complicated nonlinear 
function of y. As a result its practical computation and realization in a given 
application may be very cumbersome. This fact motivates us to consider 
estimators within a restricted class that may be realized with relative ease. 
An important such class is the class of lineart estimators, i.e., estimators of the 
form 

(60) 

where A is an n x m matrix and b is an n-dimensional vector. It is thus reason- 
able to consider the problem of finding a linear estimator of form (60) that 
minimizes the expected squared error (57). An estimator 

x(y) = A y  + b, 

2(y)  = A y  + 6 
where a, 6 minimize 

E { I ~ x  - A y  - b1I2} = E {(x - A y  - b)’(x - A y  - b)} 
x, Y x. Y 

over all n x m matrices A and vectors b E R” will be called a linear least- 
squares estimator. 

Prior to proceeding with the derivation of the linear least-squares esti- 
mator we show that when x, y are jointly Gaussian random vectors the con- 
ditional expectation Ex {x I y} is a linear function of y (plus a constant vector) 
and as a result for this case a linear least-squares estimator is also a least- 
squares estimator. 

Consider the random (column) vector z 

taking values in Rn+m, and assume that z is Gaussian with mean 

z = E { z }  = [ E {XI ] = E] 
E {YI 

and covariance matrix 

t A more precise term is “linear plus constant” or equivalently “affine” estimators. 
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We shall assume that C is a positive definite symmetric (n + m) x (n + m) 
matrix so that it possesses an inverse. This assumption is made for convenience. 
The result to be proved holds, however, without this assumption. Since z is 
Gaussian its probability density function is of the form (see, e.g., [M6], [P2]) 

p(z) = p(x, y) = c exp[ -+(z - Z)'C-'(z - ,?)I, 
where c is given by 

c = (2~)-("+'")/~(det C)-1/2r 

with det C denoting the determinant of C. Similarly the (marginal) probability 
density functions of x and y are of the form 

p(x) = c1 exp[-+(x - X)'~;:(X - x)], 

where c1 and c2 are appropriate constants. By Bayes' rule the conditional 
probability density function of x conditioned on y is given by 

P(Y) = c2 exPC-& - J)'qyl(Y - Y)l9 

P(X I Y) = Ax, Y)/P(Y) 
= (c/c2) exp{ -*[(z - Z)'C-'(z - 5) - (y - jj)'C,'(y - p)]}. (63) 

It is now easy to see that there exist a positive definite n x n matrix D, an 
n x m matrix A, a vector b E R", and a scalar s such that 

(z - ZyC-yZ - 2) - (y - jj)'C,'(y - j j )  

= (X - Ay - b)'D-'(x - Ay - b) + S. (64) 

This is evident since by substitution of the expressions for Z and C of (61) and 
(62), the left part of (64) becomes a quadratic form in x and y, which can be 
put in the form indicated in the right side of (64). In fact, by computing the 
inverse of C using the partitioned matrix inversion formula (Appendix A) one 
may verify that A, b, D, and s in (64) have the form 

A = CxyC,', b = X - C xy C-'- yy y, D = Cxx - ~ x y q y l ~ y x ,  s = 0. 

Now it follows from (64) and (63) that the conditional expectation Ex {x I y} is 
of the form A y  + b, where A is some n x m matrix and b E R". Thus we have 
proved the following proposition. 

Proposition A.2 If x ,  y are jointly Gaussian random vectors, then the 
least-squares estimate Ex {xly} of x given y is also a linear least-squares 
estimate of x given y. 

We note that this proposition holds not only for a Gaussian distribution 
of (x, y) but also for a much wider class of distributions, which contains the 
Gaussian distribution as a special case (see [VS], [B24]). 

We now turn to the characterization of the linear least-squares estimator. 
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Proposition A.3 Let x, y be random vectors taking values in R" and 
R", respectively, with given joint probability distribution. The expected 
values and covariance matrices of x, y are assumed to exist and are denoted 

E { x }  = i? E{yI = Y, (65) 

E { ( y  - Y)(y - j ) ' }  = x y y ,  (66) 

E { b  - J ) ( x  - X)'} = zyx = xiy9 (67) 

We assume also that the inverse X i y '  exists. Then the linear least-squares 
estimator of x given y has the form 

(68) 

(69) 

E { ( X  - X)(x - 2)') = x x x ,  

E {(x - X)b - J)'} = xxy ,  

q y )  = X + x x y x Y y l ( y  - j ) .  

E {[x - %)I [X - %Y)I'} = CXx - ~ x y x G 1 x y x .  

t(y) = A y  + 6,  

The corresponding error covariance matrix is given by 

x* Y 

Proof The linear least-squares estimator is defined as 

where A, 6 minimize the functionf(A, b) = E x , y  {Ilx - A y  - b1I2} over A 
and b. Taking the derivatives off(A, b) with respect to A and b and setting 
them equal to zero we have 

o = af/aA l R ,  i; = 2 E ( ~ ( 6  + Ay - xy}, (70) 
x .  Y 

0 = af/abIi,i; = 2 E (6 + A y  - x}. (71) 
x. Y 

From (71) we have 

b = X - Aj ,  

and substitution in (70) yields 

E { y [ A ( y  - j )  - (X - X)]'} = 0. (73) 
x. Y 

We now use the identity 

E { - J [ A b  - j )  - (X - X)]'} = - j  E { A ( y  - j )  - (X - X)}' = 0. (74) 
x9 Y x. Y 

Adding (74) and (73) yields 

E {(Y - J)CA(Y - j )  - (X - X)I'} = 0, 
x .  Y 

or equivalently 

xyyA' - xyx = 0, 
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from which 

A = C‘ YX C- YY = zxyz;l. (75) 
From (72) and (75) we obtain 

R(y) = Ay + 6 = x + XXYC,’(y - j ) ,  

which was to be proved. Equation (69) follows immediately upon substitution 
of the expression for R(y) obtained above. 

We list below some of the properties of the least-squares estimator as 
corollaries. 

Q.E.D. 

Corollary A.3.1 There holds 

= E {XI = E { W I .  
X Y 

Proof Immediate from (68). Q.E.D. 

Corollary A.3.2 The estimation error [x - a@)] is uncorrelated with 
both y and a@), i.e., 

E {YCX - %Y)I’I = 0, 

Proof The first equality is immediate from (70). The second equality is 
evident once we write R(y) in the form Ay + 6 and use the first equality and 
Corollary A.3.1. Q.E.D. 

Corollary A.3.2 is sometimes called the orthogonal projection principle. It 
states a property that characterizes the linear least-squares estimate and forms 
the basis for alternative treatments of the least-squares estimation problem 
using the so-called projection theorem (see [L8], Chapter 4). 

E {R(Y)[X - a ( ~ ) l ’ I  = 0. 
x. Y XP Y 

Corollary A.3.3 Consider in addition to x and y the random vector z 
defined by 

z = c x ,  

where C is a p x rn given matrix. Then the linear least-squares estimate b(y) 
of z given y has the form 

b(Y) = CR(Y), 

and the corresponding error covariance matrix is given by 
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Proof We have E {z} = 2 = CX and 

&, = E {(z - Z)(Z - Z)'} = CC,,C', 
2 

c,, = E {(z - Z)(Y - J) '}  = ccxy, 

cyr = c:, = cyxct. 
2, Y 

By Proposition A.3 we have 

2(Y) = z + czyc,'(y - J )  = cx + Ce,,c,'(y - J )  = CR(y), 

E {CZ - ~(Y)ICZ - ~(Y)I'I = czz - czyc,'cyZ = C(L - L y ~ ~ l ~ Y x ) C '  
x. Y 

= C E {[x - R(y)] [X - R(y)]'}C'. Q.E.D. 
x. Y 

Corollary A.3.4 Consider in addition to x and y an additional random 

(76) 

vector z taking values in RP of the form 

z = cy + U, 
where C is a p x rn with p < rn (nonrandom) given matrix with full rank and 
u is a (nonrandom) given vector in RP. Then the linear least-squares estimate 
A(z) of x given z has the form 

(77) R(z) = x + c,yc'(cxyyc')-'(z - cy - u), 

and the corresponding error covariance matrix is given by 

E {[x - R(z)][x - A(z)]'} = C,, - ~,yC(C~yyC)~lC~y,. (78) 
x. 2 

Proof We have by direct calculation 

From Proposition A.3 we have 
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where C,, = CC,,C has an inverse since Cyy is invertible and C has full 
rank. By substituting ‘ relations (79) into (80) the result follows. 

Notice that the error covariance matrix Ex, ,  {[x - R(z)] [x - R(z)]’} 
does not depend on the vector u, i.e., the choice of u cannot affect the quality 
of estimation. 

Corollary A.3.5 Consider in addition to x and y an additional random 
vector z taking values in RP, which is uncorrelated with y. Then the linear 
least-squares estimate R(y, z) of x given y and z (i.e., given the composite 
vector w, z’]’) has the form 

Q.E.D. 

A(y, 2) = R(Y) + A(z) - x, (81) 
where R(y) and R(z) are the linear least-squares estimates of x given y and 
given z, respectively. Furthermore, 

(82) E {[x - Rb, z)] [X - A b ,  z)I’> = E x x  - ~ x y ~ y Y 1 ~ y x  - & z ~ z Z I L  
x, Y, 

where 
Ex, = E {(x - X)(Z - Z)’}, Czx = E {(z - Z)(X - X)’}, 

x, 2 x, 

C,, = E {(z - Z)(Z - Z)’}, Z = E {z}, 
2 2 

and it is assumed that Czz is invertible. 
Proof Let 

w = [I], R = [3. 
We have by (68) that 

A(w) = x + CxwC;;(w - W). (83) 
Furthermore 

and since y and z are uncorrelated 

Substituting the above expressions in (83) we obtain 

R(w) = x + CxyCyYlo, - j )  + C,,C,’(z - 2) = $(y) + R(z) - x, 
and (81) is proved. The proof of (82) is similar by using the relations above 
and (69). Q.E.D. 
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Corollary A.3.6 Let z be as in the previous corollary and assume that 
y and z are not necessary uncorrelated, i.e., we may have 

c, = xiy = E {(y - J)(z - Z)l} # 0. 
Y. 

Then 

where A[z - I(y)] denotes the linear least-squares estimate of x given the 
random vector [z - 2(y)] and 2(y) is the linear least-squares estimate of z 
given y. Furthermore, 

E { [ z  - e(y)] [ Z  - 2(y)]'} E {[z - ~(Y)](x - x)'}. (85) 
[y.z I '  x, Y .  2 

Proof By Corollary A.3.2 the random vectors y and [z - 2(y)] are 
uncorrelated. Given this observation the result follows by application of the 
previous corollary. Q.E.D. 

Frequently one is faced with a situation whereby he wishes to estimate a 
vector of parameters x E R" given a measurement vector z E R" of the form 

z = c x  + u, 

where C is a given rn x n matrix and u E R" is a random measurement error 
vector. The (a priori) probability distribution of x and u is given. The following 
corollary gives the linear least-squares estimate A(z) and its error covariance. 

Corollary A.3.7 Let z, x, u, C be as above and assume that x and u are 
uncorrelated. Denote 

E{X} = x, 
E{u}  = 6, 

E{(X - X)(x - X)'} = ex,, 
E{(u - fi)(u - fi)'} = z,,, 

and assume further that C,, is a positive definite matrix. Then 

A(z) = x + zx,c'(ccxxc' + xu,)- ' ( z  - cx - fi), 
E {[x - A(z)] [x - R(z)]'} = c,, - zxxc'(ccxxc' + xu,)- 'CC,,. 

x. u 
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Proof Define y = [x', 0'1' E R"+m, C = [C,  I ] ,  j = [ j z ' ,  33' .  Then we 
have z = C y  and by Corollary A.3.3 

-w = [ I ,  019(z), 

E { C X  - W l  cx - W l ' l  = [ I ,  01 E{LY - fl4l LY - 9 ( Z ) l ' l  > [:I 
where j ( z )  is the linear least-squares estimate of y given z .  By applying Corol- 
lary A.3.4 with u = 0 and x = y we have 

9(z) = j + c y y C ' ( C x , " y c ) - ~ ( z  - C j ) ,  

E { b  - j ( z ) ] b  - jqz)]'} = Zyy - c,,c(Cc,,P)-'Cx:,,. 
By using the equations 

and C = [C, I ]  above and carrying out the straightforward calculation the 
result follows. Q.E.D. 

A.3 State Estimation of Discrete-Time Dynamic Systems 
-The Kalman Filter 

Consider now a linear dynamic system of the type considered in Section 
4.3 but without a control vector (uk = 0) 

xk+l = AkXk + wk, k = 0, 1, ..., N - 1, (86) 

where xk E R", wk E R" denote the state and random disturbance vectors, 
respectively, and the matrices Ak are known (nonrandom). Consider also 
the measurement equation 

z k  = CkXk + u k ,  k = 0, 1,. . ., N - 1, (87) 

where z k  E R", u k  E R" are the observation and observation noise vectors, 
respectively. 

We assume that x o ,  w o ,  w l , .  . . , w , , , - ~ ,  u o , .  . ., v N - l  are mutually in- 
dependent random vectors with given probability distributions. Furthermore, 
they have zero mean and finite second moments, i.e., 

E { X o )  = E { W k }  = E{uk} = 0, k = 0, 1,. . . , N - 1. (88) 

We use the notation 

s = E { x o x b } ,  Mk = E { W k W ; } ,  Nk = E { V k U b } ,  (89) 

and we shall assume that N k  is a positive definite matrix for every k. 
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a k - 1  = 

- - 
C O  0 
C l L O  0 

7 

C k - 1 L k - 2  

. . C k L k - l  2 
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Consider now the problem of finding the linear least-squares estimate of 
the random vectors x k +  or xk given the values ofz,, z l ,  . . . , z k ,  or equivalently 
given the random vector Z k  = [zb,  . . . , 261‘ E R(k+l)s .  Let us denote these 
estimates R k +  1Ik and 2 k I k ,  respectively. 

It is possible to provide with very little effort an equation for 2,‘lk by using 
the results already obtained. Indeed let us denote for each k 

For each i with 0 Q i Q k we have, by using the system equation, 

xk+ 1 = Liri, 

Li = [Ai . . . A , ,  Ai * * * A l ,  . . . , Ai, 13. 

where Li is the n x [n(i + l)] matrix 

As a result we may write 

Z k  = m k - l r k - 1  + &, 
where @ k -  is an [s(k + l)] x (nk) matrix defined by 

where the zero matrices above have appropriate dimension. Thus the problem 
has been reformulated in such a way that we may use Corollary A.3.7, the 
equations above, and the data of the problem to compute 

? k - l ( Z k )  and E ( c r k - 1  - 3 k - 1 ( Z k ) l C r k - l  - P k - l ( Z k ) l ’ ) -  

Subsequently we can obtain jZklk = a k ( z k )  as well as the corresponding error 
covariance matrix by using Corollary A.3.3, i.e., 

2klk = L k -  1 3 k -  l ( z k ) ,  

E { C ( X k  - 2 k J k ) ( X k  - ? k l k ) l )  

= L k - l E { [ r k - l  - 3 k - 1 ( Z k ) l [ r k - l  - 3 k - 1 ( Z k ) ] ’ ) L k - l -  

These equations may in turn be used to yield j l k +  11,‘ and an equation for the 
corresponding error covariance by again using Corollary A.3.3. 

The conclusion from the above analysis is that one can provide in 
a straightforward manner equations for the least-squares estimate of the 
state x k  and the corresponding error covariance by using the results already 
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obtained earlier. However, these equations are very cumbersome to use 
when the number of measurements is large. Fortunately enough the se- 
quential structure of the problem can be effectively exploited and the com- 
putations can be organized in a very convenient manner. The corresponding 
algorithm was originally proposed in the form given here by Kalman [Kl] 
although related ideas were known much earlier. The main attractive feature 
of the Kalman filtering algorithm is that the estimate 2k+ Ik can be obtained by 
means of a simple equation that involves the previous estimate 2klk-l and 
the new measurement zk but does not involve any of the past measurements 
z o ,  z l ,  . . . , zk-  1. In this way significant data reduction is achieved. We now 
proceed to derive the form of the algorithm. 

Suppose that we have computed the estimate ' k l k - l  together with the 
covariance matrix 

At time k we receive the additional measurement 

zk = CkXk + vk. 

We may use now Corollary A.3.6 to compute the linear least-squares estimate 
of xk given Z k -  = [zb,  z; ,  . . . , z;-  1] '  and z k .  This estimate is denoted gkIk 
and, by Corollary A.3.6, it is given by 

where &(Zk- 1) denotes the linear least-squares estimate of zk given Z k -  and 
Ak[zk - &.(Zk-1)] denotes the linear least-squares estimate of xk given 
[zk - 2k(Zk- l)]. Now we have by (86)-(89) and Corollary A.3.3, 

Also to calculate a k [ z k  - &(&- we use Corollary A.3.3 to obtain 

(93) 

The last term on the right above is zero by Corollary A.3.2 so that using (90) we 
have 

(94) 
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Using expressions (92)-(94) in Proposition A.3, we obtain 

$kCzk - 2 k ( z k - l ) l  = c k I k - l c ; ( c k z k I k - l c ;  + N k ) - l ( Z k  - C k 2 k l k - 1 ) ,  

and (91) is written 

9klk  = 2 k l k - l  + z k l k - l C ; ( C k C k l k - l C ;  + N k ) - l ( Z k  - c k 2 k l k - l ) .  a (95) 

By using Corollary A.3.3 we also have 

D ' k + l l k  = A k 2 k l k .  4 (96) 

Concerning the covariance matrix &+ I l k  we have from the system equation 
(86) and (88), (89), and Corollary A.3.3: 

D C k + l l k  = A k z k l k A ;  + M k .  a (97) 

where 

' k l k  = E { ( X k  - 2 k l k ) ( x k  - 9klk) '} .  

Now the error covariance matrix &lk may be computed via Corollary A.3.6 
similarly as 2 k l k  [cf. Eq. (91)]. We have from (85), (93), and (94) that 

E- ckIk = x k l k - l  - C k ( k - l C ; ( C k x k l k - l C ;  + N k ) - l C k C k l k - l .  a (98) 

D = 0, C0l-l = s, 4 (99) 

Equations (95)-(98) with the initial conditions [cf. Eqs. (88) and (89)] 

constitute the Kalmanjltering algorithm. This algorithm recursively generates 
the linear least-squares estimates 2 k +  1 Ik or R k I k  together with the associated 
error covariance matrices &+ 1 Ik or &lk.  

An alternative expression for Eq. (95) is 

2klk = A k - 1 2 k - l ( k - l  + x k l k C ; N ; l ( Z k  - C k A k - 1 2 k - I l k - 1 ) .  a (100) 

This expression is obtained from (95) and (96) by using the equality 

C k I k C k N ; '  = c k I k - l c ; ( C k c k I k - l C k  + N k ) - ' .  

This equality may be verified by using (98) to write 

C k I k C ; N ; l  = c C k I k -  1 - z k l k -  l C ; ( C k Z k l k -  lc; + N k ) - l C k C k l k -  llc;N;l 
= x k l k - l C ; [ N k l  - ( C k E k l k - 1 C ;  + N k ) - l C k x k l k - l C ; N ; l ]  

= x k l k -  l C b ( C k C k l k -  lc;  + N k ) -  ' 9  

where the last step follows by writing 

N;' = ( C k X k l k - l C ;  + N k ) - l ( C k x k l k - l C b  + N k ) N ; '  

= ( C k C k l k - 1 C ;  + N k ) - l ( C k z ; k J k - l C ; N ; l  + 1). 
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When the system equation contains a control vector uk and has the form 

xk+l = AkXk + BkUk + W k ,  k = 0, 1 , .  . . , N - 1 ,  

and we seek the linear least-squares estimate gklk of xk given zo,  z l , .  . . , zk 
and uo,  ul,. . . uk- it is easy to show that (100) takes the form 

2klk = A k -  l g k -  I l k -  1 + B k -  I U k -  1 

+ ZklkC;N;l(Zk - CkAk-]2k-] lk- l  - CkBk-1Uk-l). 

Equations (97)-(99) generating CkIk remain unchanged. Also if the mean of the 
initial state is nonzero, then the initial conditions (99) take the form 

201-1 = E I x , } ,  Cq-1 = s. 
Finally we note that (97) and (98) yield 

C k +  I l k  = A k [ C k I k -  1 - C k l k -  lC;(CkZklk- lc; + Nk)-’CkCklk- 11A; + M k ,  

(101) 

with the initial condition CoI - = S .  

in Section 3.1. Thus when A, ,  ck, N k r  and M k  are constant matrices 
Equation (101) is a discrete-matrix Riccati equation of the type considered 

A k = A ,  ck=c, N k = N ,  M k = M ,  k = 0 , 1 ,  ..., N -  1, 

we have, by invoking the proposition proved there, that the solution of (101) 
tends to a positive definite matrix C provided appropriate controllability 
and observability conditions hold. The conditions required are observability 
of the pair ( A ,  C) and controllability of the pair (A,  D), where M = DD‘. 
When k is large one may approximate the matrix in (1 10) by the con- 
stant matrix C to which converges as k -+ co. We have from (98) 

C = C - CC’(CCC’ + N ) - ’ C C ,  

and we may write (100) as 

2 k l k  = Agk-llk-1 + C C ” - ’ ( Z k  - CA2k-llk-1). (102) 

Since the “gain” matrix (CC‘N-  I )  multiplying the “correction” term 
is independent of the index k, the implementation of the (zk - C A 2 k - , I , -  

estimator (102) is considerably simplified. 

A.4 Stability Aspects of the “Steady-Scare” Kalman 
Filtering Algorithm 

Let us consider now the stationary form of the Kalman filtering equations 
(95) and (96): 

t k + , I k  = AgkIk- 1 + ACC’(CCC’ + N)-’(zk - CgkIk- 1). (103) 
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By using Eq. (103), the system equation 

xk+l  = A X k  + wk, 

and the measurement equation 

zk = cxk + V k ,  

we obtain 

e k + l  = [ A  - Axc‘ (Czc ’  + N)-’C]ek  + wk - A x c ’ ( c x c ’  + N ) - l U k ,  

(104) 

where e k  denotes for all k the “one-step prediction” error 

e k  = x k  - A k l k -  1. 

From the practical point of view it is important that the error equation 
(104) represents a stable system, i.e., the matrix 

A - AZC’(CCC’ + N)- ’C  (105) 

is a stable matrix. This fact, however, is guaranteed under the observability 
and controllability assumptions given earlier since X is the unique positive 
semidefinite symmetric solution of the algebraic Riccati equation 

x = A[x - xc’ (Cxc’  + N)- ’Cx]A‘  + M 

by the proposition proved in Section 3.1. Actually this proposition yields 
that the transpose of the matrix (105) is a stable matrix. This is, however, 
equivalent to the matrix (105) being a stable matrix, since for any matrix D 
we have Dk + 0 if and only if Drk + 0. 

Having established the stability properties of the error equation (104) we 
now proceed to examine the stability properties of the equation governing 
the estimation error 

S?k = x k  - A k l k .  

We have by a straightforward calculation 

e“k = [ I  - c@(cxe + N)-’C]ek - x@(cx@ + N ) - ’ U k .  (106) 

By multiplying both sides of Eq. (104) by [I - CC(CCC’ + N ) - ’ C ]  and 
using (106) we obtain 

t?k+l + x:@(cxc’ + N ) - l U k + l  

= [ A  - xc’(cxc + N)-’CA][S?k + xc‘(ccc’ + N ) - l U k ]  

+ [ I  - xc‘(cxe + N ) - ’ c ] [ w k  - AxC‘(CcC’ + N)- ’uk] ,  
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or equivalently 

i ? k + l  = [A - cc'(cc@ + N)-'CA]Ek 
+ [ I  - cc'(ccc' + N)-'C]w& - cc(ccc' + N)-'Uk+l. (107) 

The stability of matrix (105) guarantees that the sequence {ek}  generated by 
(104) tends to zero whenever the vectors wk and uk are identically zero for all k. 
Hence, by (106), the same is true for the sequence {zk}. It follows from (107) 
that the matrix 

A - ec'(ccc' + N ) - ' C A  (108) 

is stable and hence the estimation error sequence {i?,} is generated by a 
stable equation. 

Let us consider now the stability properties of the 2n-dimensional system 
of equations with state vector [xi, A:]': 

(109) 

A k + l  = zcN-'CAXk ( A  BL - %'N-'CA)Ak. (1 10) 

xk+ 1 = AX, + BLAk, 

This system was encountered at the end of Section 4.3. 

assumptions stated there are in effect. By using the equation 
We shall assume that the appropriate observability and controllability 

m N - '  = zc'(ccc + N ) - ' ,  

shown earlier, we obtain from (109) and (1 10) that 

(xk+ 1 - A k +  1) = [A - ZC(CCC' + N ) -  'CAI (Xk - A&). 

In view of the stability of matrix (108) it follows that 

lim(xk+l - A k + l )  = 0, (111) 
k-w 

for arbitrary initial states x,, and A. . From (109) we obtain 

X k +  1 = ( A  + BL)Xk + BL(Ak - Xk). (112) 

Since in accordance with the theory of Sections 3.1 and 4.3 the matrix 
(A + BL) is a stable matrix, it follows from (1 11) and (1 12) that we have 

lim xk = 0, 
k+W 

and hence by (1 1 l), 

lim Ak = 0. 
k+m 
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Since the equations above hold for any initial states xo and 2,, it follows that 
the system of equations (109) and (1 10) is a stable system, i.e., the matrix 

1 A B L  
% ' N - ' C A  A + BL - % Z ' N - ' C A  

is a stable matrix. 

A S  Purely Linear Least-Squares Estimators 

Consider two jointly distributed random vectors x and y taking values 
in R" and R", respectively, as in Sections A . l  and A.2. Let us restrict attention 
to estimators of the form 

X ( Y )  = AY, 

which are purely linear (rather than linear plus constant). Similarly, as in 
Section A.2 we consider the problem of finding the optimal least-squares 
estimator within this restricted class, i.e., an estimator of the form 

2 ( y )  = A y  

f ( A )  = E {Ilx - Ay1l2) 

where A^ minimizes 

x. Y 

over all n x m matrices A .  We refer to such an estimator as a purely linear 
least-squares estimator. The derivation of the form of this estimator is very 
similar to the one of Section A.2. 

By setting the derivative offwith respect to A equal to zero, we obtain 

0 = af/aAlz  = 2 E {y(Ay  - xy}, 

d = S,,S,', 

x. Y 

from which 

where 
s,, = E { X Y ' } ,  s,, = E {YY'I,  

and we assume that S,, is invertible. 
The purely linear least-squares estimator takes the form 

%4 = S,,S,'Y. (113) 

(1 14) 

The second moments of the corresponding error are given by 

E {CX - Wl cx - 2(y ) ] ' }  = s,, - sx,s,'~Y,. 
x. Y 

This equation is derived in an entirely similar manner as in Section A.2. 
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An advantage of the purely linear estimator is that it does not require 
knowledge of the means of x and y .  We only need to know the joint and 
individual second moments of x and y .  A price paid for this convenience, 
however, is that the purely linear estimator yields in general biased estimates, 
i.e., we may have 

E@(Y)} z E{X} .  
By contrast, in the linear least-squares estimator examined earlier, we always 
have E { i ( y ) }  = E {x} (cf. Corollary A.3.1). 

As a final remark, we note that from Eqs. (629, (69) and (1 13), (1 14) it can 
be seen that the equations characterizing the purely linear estimator may 
be obtained from those of the linear estimator by setting X = 0 , J  = 0 and 
writing S,, and S,, in place of C,, and C,,. As a result it is easy to see that 
there is an analog for the Kalman filtering algorithm corresponding to a 
purely linear least-squares estimator that is identical to the one described by 
Eqs. (95)-(99) and remains the same even if we do  not assume that 

E{x, }  = E { w k }  = E(uk} = 0, k = 0, 1,. . . , 
provided that all given covariance matrices are replaced by the corresponding 
matrices of second moments. 

A.6 Least-Squares Unbiased (Gauss-Markou) Estimators 

means of the equation 
Let us assume that two random vectors x E R" and z E R" are related by 

z = cx + u, (1 15) 

where C is a given m x n matrix and u a random measurement error vector 
uncorrelated with x, having known mean and covariance matrix 

(1 16) 

The vector z represents known measurements from which we wish to estimate 
the vector x. If the a priori probability distribution of x is known then we may 
obtain a linear least-squares estimate of x given z by using the theory of 
Section A.2 (cf. Corollary A.3.7). In many cases, however, the probability 
distribution of x is entirely unknown. In such cases it is possible to use the 
Gauss-Markov estimator, which we now describe. 

E{u} = 6, E{(u - E)(u - e)'} = zuu. 

Let us restrict attention to estimators of the form 

x ( z )  = A(z  - fi), 

?(z)  = A(z - I?), 
and seek an estimator of the form 
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where A^ minimizes 

over all n x rn matrices A. We have from (1 15)-(117) and the fact that x and u 
are uncorrelated, 

f ( A )  = E { I ~ x  - ACX - A(u - i j ) 1 I 2 }  
x. u 

= E{II(I - AC)xJI2} + E{(u - U)’A’A(u - ij)}, 
X U 

where I is the n x n identity matrix. Sincef(A) depends on the unknown 
statistics of x, we see that the optimal matrix A  ̂ will also depend on these 
statistics. We can circumvent this difficulty, however, by requiring that 

AC = I .  

Then our problem becomes 

minimize 
subject to AC = I .  (1 18) 

E{(u - ij)’A’A(u - ij)} 

Notice that the requirement A C  = 1 is equivalent to requiring that the 
estimator x(z)  = A(z - e) be unbiased in the sense that 

E{x(z)} = E{x} = X VZER”. 

This can be seen by writing 

E{x(z ) }  = E {A(Cx + u - C)} = A C E  {x} = ACZ = x. 
There remains the task of solving problem (1 18). Let a: denote the ith row of A. 
We have 

n n 

= 1 (u  - ij)’aia:(u - ij) = 1 a:(u - ij)(u - ijyai 
i =  1 i =  1 

Hence, problem (1 18) can also be written 
n 

minimize C a:Cuuai 

subject to C‘ai = ei ,  

i =  1 

i = 1,. . . , n, 
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where ei is the ith column of the identity matrix. The minimization can be 
carried out separately for each i, yielding 

iii = C"ilC(C'C,i'C)-'ei, i = I ,  ..., n, 
and finally 

A = (c 'C;1c)-1cX;l ,  

where we assume that the inverses of C,, and C'C,'C exist. 
Thus, the Gauss-Markov estimator is given by 

i ( z )  = (C'Xu;lc)- 1cCU;1(z - a). ( 1  19) 
Let us also calculate the corresponding error covariance matrix. We have 

E { [ x  - i ( z ) ]  [x - i ( Z ) ] ' }  = E { [ x  - A(z - a)]  [x - A(z - f i ) ] ' }  

= E{A(u - O)(u - fi)'A'} = ,-&,,"A' 
= (C'Cu;l C )  - c'C;"lC,, C ; T (  C'Ci"1C) - ', 

and finally 
E { [ x  - i ( z ) ]  [x - i ( z ) ] ' }  = (c'C,'c)- l .  ( 120) 

Finally, let us compare the Gauss-Markov estimator with the linear 
least-squares estimator of Corollary A.3.7. Whenever C,, is invertible the 
estimator of Corollary A.3.7 can also be written 

(121) 
This fact may be verified by straightforward calculation. By comparing 
Eqs. (119) and (121) we see that the Gauss-Markov estimator is obtained 
from the linear least-squares estimator by setting Z = 0 and C;: = 0, i.e., a 
zero mean and infinite covariance for the unknown random variable x. In this 
manner, the Gauss-Markov estimator may be viewed as a limiting form of the 
linear least-squares estimator. The error covariance matrix (120) of the 
Gauss-Markov estimator can also be obtained in the same manner from the 
error covariance matrix of the linear least-squares estimator. 

2(z)  = x + (C,;' + c'C,'c)- lC'X;l(z - cx - a). 

A.7 Deterministic Least-Squares Estimation 

x E R", z E R", and u E R" related by means of the equation 
As in the case of Gauss-Markov estimation, let us consider vectors 

z = c x  + u, 

where C is a known m x n matrix. The vector z represents known measure- 
ments from which we wish to estimate the vector x. However, we know nothing 
about the probability distribution of x and u and we are thus unable to 
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utilize an estimator based on statistical considerations. Under these cir- 
cumstances it is reasonable to select as our estimate the vector 2 that mini- 
mizes 

f(x) = IIZ - Cxll', 

i.e., the estimate that fits best the data in a least-squares sense. This estimate 
will, of course, depend on z and will be denoted 2(z). 

By setting the gradient offat 2(z) equal to zero, we obtain 

Vf I*(=) = 2C"C2(z) - z] = 0, 

from which 

2(z) = (c'c)-'c'z, (1 22) 

provided C'C is an invertible matrix. 
An interesting observation is that the estimate (122) is the same as the 

Gauss-Markov estimate given by (1 19) provided the measurement error has 
zero mean and covariance matrix equal to the identity matrix, i.e., V = 0, 
C,, = 1. In fact, if instead of llz - Cx)I ' we minimize 

(z - v - cxyC;"'(z - v - CX), 

then the deterministic least-squares estimate obtained would be identical 
to the Gauss-Markov estimate. If instead of llz - CxII' we minimize 

(x - EyC;;(x - X) + (z - V - CxyC,'(z - 0 - CX), 

then the estimate obtained would be identical to the linear least-squares 
estimate given by (121). Thus, we arrive at the interesting conclusion that the 
estimators obtained earlier on the basis of a stochastic optimization frame- 
work can also be obtained by minimization of a deterministic measure of 
fitness of estimated parameters to the data at hand. 



Chapter 5 

Computational Aspects 
of Dynamic Programming- 
Suboptimal Control 

5.1 The Curse of Dimensionality 

Consider the DP  algorithm for the basic problem 

J N ( X N )  = g N ( X N )  

As we have seen earlier it is possible in some cases of interest to obtain a 
closed-form solution to this algorithm or at least use the algorithm for the 
analysis of properties of the optimal policy. However, such cases tend to be 
the exception rather than the rule. In most cases it is necessary to solve 
numerically the DP  equations in order to obtain an optimal policy. The 
computational requirements for doing so are often staggering to the point 
that for many problems a complete solution of the problem by DP is un- 
thinkable at least with presently existing computers. The reason lies in what 
Bellman has called the “curse of dimensionality,” which arises particularly 
when the state space is an infinite set. Consider, for example, a problem in 
which the state space is R” and the control space R”. In order to obtain the 

179 
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function J N -  1 ( x N -  1) it is necessary first to discretize the state space. Taking, 
for example, 100 discretization points per axis results in a grid with 100” 
points. For each of those points now, the minimization of the right-hand 
side of (2) must be carried out numerically. Each minimization is carried over 
uk(xk) or over a grid of points covering uk(xk)-a nontrivial problem. 
Matters are further complicated by the requirement to carry out a numerical 
integration (the expectation operation) every time the function under mini- 
mization is evaluated, and by the possible presence of nondifferentiabilities 
introduced by discretization and interpolation. Computer storage also 
presents an acute problem. Thus for problems with Euclidean state and control 
spaces, D P  can be applied only if the dimension of these spaces is very small. 
When the control space is one-dimensional, things are sometimes greatly 
simplified, since in this case effective one-dimensional minimization tech- 
niques such as the Fibonacci search [LlO] may be used. Often the special 
structure of the problem can also be exploited to reduce the computational 
requirements. In other cases special computational algorithms can be used 
that take advantage of the particular features of the problem. This is particu- 
larly true of infinite-horizon problems. 

Various devices have been suggested to help overcome the computational 
and storage problem, particularly for deterministic problems, such as the 
so-called coarse grid approach, the use of Lagrange multipliers, Legendre 
polynomial approximations, and specialized techniques [B4, K6, L2, L9, 
N2, WlO]. These devices, though helpful for some problems, should be 
considered only as partial remedies, and in any case it is not our intention to 
discuss them at any length in this text. Instead we shall provide in the next 
section a simple discretization procedure for problems where an infinite 
state space is involved and we shall prove the validity of this procedure under 
certain reasonable assumptions. Subsequently we shall discuss various 
techniques for obtaining suboptimal control laws that are computationally 
efficient and hence of interest from a practical point of view. 

5.2 Discretization Procedures and Their Convergence 

In this section we consider a procedure for discretizing a DP  algorithm 
defined over an infinite state space. The procedure is not necessarily the most 
efficient computationally. It is, however, used widely (perhaps with slight 
modifications) and is simple and straightfoward. The basic idea is to approxi- 
mate the “cost-to-go” functions of the D P  algorithm as well as the corresponding 
policies by piecewise constant functions. We consider problems where the 
state spaces are compact subsets of Euclidean spaces and we introduce certain 
continuity, compactness, and Lipschitz assumptions. Under these assump- 
tions the discretization procedure is shown to be stable in the sense that it 
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yields suboptimal policies whose performance approximates arbitrarily 
closely the optimal as the discretization grids become finer and finer. The 
analysis and proofs are straightforward but rather tedious and may be skipped 
by the less mathematically inclined or otherwise uninterested reader. 

Consider the following DP algorithm: 
J N ( X )  = g N ( X ) ,  X E S N  c RsN (3) 

X E S k c R S k ,  k = 0 , 1 ,  ..., N -  1 .  (4) 

This algorithm is associated with the basic problem with perfect state 
information involving the discrete-time dynamic system 

( 5 )  x k +  1 = f k ( X k r  uk, wk),  k = 0, 1 , .  9 * 9 N - 1, 

with given initial state x o  and the cost functional 

I N -  1 

{ k = O  
E g N ( X N )  + g k ( X k ?  u k ,  wk)  . 

For the purpose of analytical convenience we are considering here maximiza- 
tion of the objective function rather than minimization. This, of course, does 
not affect the discretization procedures or the convergence results to be 
obtained. In the above equations the system state X k  is an element of a 
Euclidean space RSk, k = 0, 1 , .  . . , N .  Algorithm (3) and (4) is defined over 
given compact subsets S k  c Rsk, k = 0, 1 ,  . . . , N - 1 .  The control input u k  

is an element of some space c k ,  k = 0,1, . . . , N - 1. In what follows we shall 
assume that C k  is either a subset of a Euclidean space or a finite set. 

The input disturbance w k  is assumed to be an element of a set w k ,  k = 0, 1, 
. . . , N - 1. We assume for simplicity that each set w k  has ajni te  number (say 
I k )  of elements. This assumption is valid in many problems of interest, most 
notably in deterministic problems where the set w k  consists of a single ele- 
ment. In problems where the sets w k  are infinite, our assumption amounts to 
replacing the DP algorithm (3) and (4) by another algorithm whereby the 
expected value (integral) in Eq. (4) is approximated by a finite sum. For most 
problems of interest this finite sum approximation may be justified in the sense 
that the resulting error can be made arbitrarily small by taking a sufficiently 
large number of terms in the finite sum. The reader may also provide similar 
assumptions as the one made here under which the approximation is valid 
in the above sense and extend the result of this section to cases where w k  are 
compact sets in Euclidean spaces. We shall denote the probabilities of the 
elements of W, by p : ( X k ,  u k ) ,  i = 1 ,  . . . , I k .  

We shall consider two different sets of assumptions in addition to those 
already made. In the first set of assumptions the control space C k  is assumed 
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to be a finite set for each k. In the second set of assumptions the control space 
Ck is assumed to be a Euclidean space in which case discretization of both the 
state space and the control space is required. The reader may easily extend 
our analysis and results to cases where the control space is the union or the 
Cartesian product of a finite set and a Euclidean space. 

Assumptions A 

A.1 The control spaces ck, k = 0, 1, . . . , N - 1, are finite sets and 

u k ( x )  = Ck V X  E s k ,  k = 0, 1 , .  . . , N - 1. (6) 

A.2 The functionsf, and g k  satisfy the following conditions: 

u, w, - f , ( x ’ ,  u, w)ll < Lkllx - x’ll v x ,  X ’ E S k ,  u E C k ,  
W E W k ,  k = 0 , 1 ,  ..., N - 1 ,  (7) 

I g k ( X , U , W ) - g k ( X ’ , U , W ) I  < Mkllx-x’ll v X , X ’ E S k ,  u E C k ,  

W E W k ,  k = 0 , 1 ,  ..., N - 1 ,  (8) 

1 g N ( X )  - g N ( X ’ )  I M N  Ilx - X’II v x ,  x’ E S N  3 (9) 

where MN, M k ,  Lk, k = 0, 1,. . . , N - 1 are some positive constants and 
11 - 11 denotes the usual Euclidean norm. 

A.3 The probabilities p i ( &  u), i = 1 , 2 , .  . . , I , ,  of the elements of the 
finite set wk = { 1,2, . . . , I , }  satisfy the condition 

( p i ( x ,  u)  - p i ( x ’ ,  u)l < N k ( l X  - X’II v x ,  x’ E s k ,  E ck, i E w, 
k = 0 , 1 ,  ..., N - 1 ,  (10) 

where N k ,  k = 0, . . . , N - 1, are some positive constants. (This assumption 
is satisfied in particular if the probabilities p: do not depend on the state.) 
Assumptions B 

B.1 The control space ck, k = 0, 1, . . . , N - 1, is a compact subset of a 
Euclidean space. The sets u k ( x )  are compact for every x E S k ,  and in addition 
the set 

uk = u u k ( X ) ,  k = 0, 1,. . ., N - 1, (11) 
XSSk 

is compact. Furthermore, the sets u k ( x )  satisfy 

u k ( x )  u k ( x ‘ )  + {ul l l u l l  < pkllx - x ’ l l >  v& X f E S k ,  

k=0, 1 ,..., N - 1, (12) 
where Pk are some positive constants.? 

t The advanced reader may verify that (12) is equivalent to assuming that the point-to-set 
map x + U,(x)  is Lipschitz continuous in the Hausdorff metric sense. 
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B.2 The functionsf,, g k  satisfy the following conditions: 

I I fk(& u, w )  - f k ( x ’ ,  u’, w ) l l  < L k ( l l x  - X‘II + IIu - u’ll) vx? x’ E S k r  

U , u ‘ E U k ,  W E W k ,  k = 0, 1 ,..., N - 1, (13) 

I g k ( X ,  u, w )  - g k ( X ’ ,  u‘, w ) l  < m k ( l l x  - X’II + IIu - u’ll) vx, X ’ E  s k ,  

U , U ’ E U k ,  W E W k ,  k = 0, 1 ,..., N - 1, (14) 

I g N ( X )  - gN(X’ ) I  < mNIlx - X’II vx, x’ E SN, (15) 

where mN, m k ,  z k ,  k = 0, 1, . . . , N - 1, are some positive constants. 

finite set w k  = { 1 , 2 ,  . . . , I , }  satisfy the condition 
B.3 The probabilities p i ( x ,  u), i = 1 , .  . . , I , ,  of the elements of the 

I p : ( x ,  u)  - p L ( x ’ ,  u‘)l < w k ( l l x  - x’)I + IIu - U’II) vx,  x’ E S k r  

U , U ’ E U k ,  i E W k ,  k = 0 , 1 ,  ..., N -  1, (16) 

where m k ,  k = 0, 1, . . . , N - 1, are some positive constants. 
Prior to considering discretization of the dynamic programming algorithm 

we establish the following property of the “cost-to-go” functions Jk: S k  + R 
of (3) and (4). 

Proposition 1 Under Assumptions A or B the functions J k :  S k  -+ R, 
given by (3) and (4) satisfy 

I J k ( X )  - J k ( X ‘ ) I  < A k l l X  - X’I( V x , x ‘ E S k ,  k = 0, 1,. .., N ,  (17) 

where Ak,  k = 0, 1, . . . , N ,  are some positive constants. 

with AN = M N .  For k = N - 1 we have that for each x ,  x’ E S,- 1 ,  

Proof Under Assumptions A we have by (9) that (17) holds for k = N 

I J N -  1 ( x )  - J N - l ( x ‘ ) l  
I N - I  

max 1 { g N -  1 ( x ,  u, i) + J N C f N -  1 ( x ,  u, i)]}pk- 1 ( x ,  u )  = I  U E C N - I  i = l  
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Now we use the fact that if a: S -P R, p: S + R are real-valued functions over 
a compact subset S of a Euclidean space satisfying for some constants 
p a ,  pP,  and all t l ,  f2 E S, 

la(t1) - a(t2)l G P a l l t l  - t 2 I L  Iml) - B(t2)l G PPlltl - t 2 I L  

then the product function a( - )/?( - ) satisfies for all t , ,  t2 E S 

Ia(tl)P(tl) - a(t2)P(t2)1 G P z  max I m l  + Pp max IWl Il l1 - t2II. (18) [ t s s  t € S  1 
Then the earlier estimate is strengthened to yield 

I J N - l ( x )  - JN- l (X‘ ) I  < A N - I l l x  - X’II V x - x ’ E S N - l r  

where AN- is given by 
A N - 1  = I N - 1 ( M N - 1  + L N - l A N  + B N - l N N - l ) ,  

B N -  1 = max{ I g N -  1(x, u, w ) l l x  SN- 1, C N -  1, WN- 1 } 

+ max{IJNCfN-l(X,U,W)lIIXESN-l,UECN-l, W E  W N - I } .  

Thus the result is proved fork = N - 1 and similarly it is proved for every k. 
We turn now to proving the result under Assumptions B. Again the result 

holds fork = N with AN = RN. Fork = N - 1 we have for each x,x‘ E SN- 
l J N - l ( x )  - JN- l (X‘ ) I  

I N - l  

max 1 { g N -  1(x, u, i )  + JNCfN- 1(x, u, i)])pk- 1(x, u )  = I  UEUN-I(X) i = l  

Now using (18), B.2, B.3, and the above equality it is straightforward to show 
that 

IJN-  1(x) - JN-  l(x‘)l 

I N - l  

G 

- g N -  1(x’, u, ibk- 1(x’, u)] 
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We now proceed to describe procedures for discretizing algorithm (3) 
and (4) under Assumptions A and B. 

Discretization Procedure under Assumptions A 

We partition each set S k  into nk mutually disjoint sets S:, S i ,  . . . , S;. 
such that Sk = Uz S:,  and select arbitrary points x i  E S i ,  i = 1, . . . , nk. 
We approximate the DP algorithm (3) and (4) by the following algorithm, 
which is defined on the finite grids Gk,  where 

Gk = {x;, X i ,  . . . , xik} ,  k = 0, 1 , .  . . , N .  (20) 

g N ( X )  if XEGN, (21) 
(22) 

(23) 

We have 

&(x) = 
{gN(xk) if x E S k ,  i = 1 ,2 , .  . . , n N ,  

if x E Gk,  max E {gk(x,  u, w )  + j k  + Cfk(x, u, w)I) 
U € C k  w 

jk(xi) if XES:,  i = 1,2 ,..., nk, k = 0, 1 ,..., N - 1.  (24) 

The algorithm above corresponds to computing the “cost-to-go ” functions 
j ,  on the finite grid by means of the DP algorithm (21) and (23), and extending 
their definition on the whole compact set S k  by making them constant on each 
section Si of S k  (see Fig. 5.1). Thus j k  may be viewed as a piecewise constant 
approximation of J k  . An alternative way of viewing the discretized algorithm 
(21) and (23) is to observe that it corresponds to a stochastic optimal control 
problem involving a certain finite state system (defined over the finite state 
spaces Go,  . . . , GN) and an appropriately reformulated cost functional. 

j k ( X )  = 

where 

Strengthening the above estimate and using (18) and our assumptions we 
obtain 

where 

and the result is proved for k = N - 1.  Similarly the result is proved under 
Assumptions B for all k .  Q.E.D. 
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FIGURE 5.1 

Carrying out the DP algorithm (21)  and (23)  involves a finite number of 
operations. Simultaneously we obtain an optimal control law as a sequence 

Po(x), i i I ( X ) ,  . . . 9 P N -  1(x), 

of functions f i k  : Gk Ck : 

defined on the respective grids G k ,  k = 0, . . . , N - 1, where j&(X:) maximizes 
the right-hand side of (23)  when x = x : ,  i = 1 ,2 ,  . . . , nk.  We extend the 
definition of this control law over the whole state space by defining for every 
X E S k , k = 0 , 1 ,  ..., N -  1 ,  

pk(x) = /&(xi) if X E S : ,  i = I , .  . . , nk.  (25)  

Thus we obtain a piecewise constant control law { p o ,  pl, . . . , pN- defined 
over the whole space (see Fig. 5.2). The value of the cost functional corre- 
sponding to { p o ,  pl, . . . , pN- 1} is denoted Jo(xo)  and is obtained by the last 
step of the algorithm 

J N W  = S N ( X ) ,  x E S N  (26)  

XESk,  k = 0 , 1 ,  . . . ,  N - 1 .  (27)  

Jk(x) = J!? { g [ x ,  pk(x), w1 + j k  + I[.&(.u. p6(.‘). M’)l 
H’ 

Denote by d, the maximum “radius” of the sets S:: 

d, = max max su IIx - $ 1 1 .  
k = O , l ,  .... N i = l ,  ..., n k x e  B & 
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We shall be interested in whether J^k and j ,  converge in some sense to J k  for 
each k as d,  tends to zero. 

Discretization Procedure under Assumptions B 

sumptions A. In addition, finite grids Hk of points in Uk are selected: 
Here the state spaces S k  are discretized in the same way as under As- 

Hk = { U : ,  ..., U p }  C u k ,  k = 0, 1,. . . , N - 1. (29) 

We assume that 

V , ( x : )  n H ,  # Vi  = 1 , .  . . , n k r  k = 0, 1 , .  . . , N - 1, (30) 

where 0 denotes the empty set. We now approximate algorithm (3) and (4), by 
the following algorithm: 

I N ( x !  if x E G N ,  (31) 
(32) 

j N ( X )  = 
g N ( X h )  if XES;, i = 1, .. . , n N ,  

max J? { g k ( X ,  u, w) f j k +  1 [ f k ( &  u, w)]} if x E Gk, (33) 
U€Uk(X)nHk W 

J^k(x;) if XES:, i = 1,2 ,..., n k ,  k = 0, 1 ,..., N - 1.  (34) 

Similarly as under Assumptions A we obtain a control law {Po,  . . . , P N -  
defined on the grids G k ,  k = 0, 1, . . . , N - 1, that is extended over the whole 
state space to yield the control law {pol pl, . . . , pN- by means of the 

[. j k ( X )  = 
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piecewise constant approximation (25). The corresponding value j ( x o )  of 
the cost functional is given by equations identical to (26) and (27). 

Again we are interested in the question whether s k  and j k  converge in 
some sense to Jk for each k as both d, and d, tend to zero, where 

d, = rnax max sug llx - xhll, (28‘) 
k=O. 1 ..... h’ i =  1 ..... n k  X E  k 

rl, = max max max min IIu-ii’11. (35) 
A=(). I . . . . . \ -  I i = 1 .  .... IIk U € u k ( X & )  U ’ E U k ( X i ) n H k  

This question is answered in the affirmative in the next proposition. 

There exist positive constants Y ~ ,  \jk. k = 0, 1. . . . , N 
(independent of the grids G o ,  . . . , G,, H,, . . . , H N -  used in the discretiza- 
tion procedure) such that under Assumptions A 

(36) 

Proposition 2 

I J k ( X )  - jk(x)l < U k d ,  

I J k ( X )  - j k ( x ) l  < U k d s  V X E S k ,  k = 0, 1 , .  . . , N ,  (37) 

V X  E s k ,  k = 0, 1, . . . , N ,  

and under Assumptions B 

l J k (X )  - s k ( X ) l  < &(d, + d,) 

I J k ( X )  - j k b )  I < &(ds + d,) 

V X  E s k ,  

V X  E s k ,  

k = 0, 1, . . . , N ,  

k = 0, 1 ,  . . . , N ,  

(38) 

(39) 

where J k ,  j k ,  j k r  d,, d, are given by (3) and (4), (21)-(24) [or (31)-(34)], (26) 
and (27), (28) and (35), respectively. 

Proof We first prove the proposition under Assumptions A. We have 
by (21) and (22) that JN(x) = j,(x) for all x E GN while for any x E Sk, 

I J N ( x )  - J ~ V ( X ) I  = I g d X )  - g N ( X k ) I  Q M,llx - xkll Q M N d , .  (40) 

Hence (36) holds for k = N with a, = M,. Also JN(x) = JN(x) Vx ES,, 
and hence (37) also holds for k = N. To prove (36) for k = N - 1 we have by 
(23) for any i = 1,2,  . . . , nN- 
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where the last step follows by (40). Also for any x E S i -  l ,  i = I ,  . . . , t i N -  1, 

we have using (41) and Proposition I ,  

IJN-  1(x) - j N -  lWl 

= IJN-  1(x) - j N -  l h -  1) l  

< I J N -  1(x) - J N -  l ( 4 -  1 ) l  + IJN-  l b k -  1 )  - 1,- lbi- 1) l  

< A N - 1 1 1 ~  - xh- 111 + aNds < ( A N - 1  + aN)ds.  

Hence (36) holds for k = N - 1 with aN- = AN-  + aN, and similarly it is 
shown to hold for all k .  

To prove (37) fork = N - 1 let x E S i -  1. We have by (24) and the previous 
inequality. 

IJN-  1(x) - J N -  I (X)l  < I J N -  1(x) - j N -  l (X) l  + 1.L- l (X)  - 1,- l ( 4 l  

d ( A N -  1 + aN)d, + ljN-l(xL- 1 )  - J N -  I(x)l. (42) 
Fornotationalconveniencewe writepN- l(x) = pN- ,(xi- 1 )  = p i -  [cf.(25)]. 
By using (23), (27), and (1 8), we have 

I j N -  l b i -  1 )  - J N -  I (X) l  

I N - l  

,< 1 J~ gN- , ( x i -  A- l , j ) p i -  l ( x i -  1, A- 1)  

I N - I  

- 1 .qN- l(x, p i -  l , j ) p i -  l(x. p i -  1) 

+ 1 ' k l j N ~ ~ N -  l ( x i -  P i -  l , j ) ~ p i -  , ( x i -  P i -  1)  

- 1 J N [ f N -  l(x, A- l , j ) ~ p i -  l(x, p i -  1 )  

j =  1 

j =  1 

I N -  I 

j =  1 

IN- I 

w E WN- 1l)llx - x i -  111 + 1 c l b i -  1, P i -  l 7 . i ) l  
j =  1 
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- max E {gN- I(&- 1, u, W) + J N C j N - i ( x k -  1, u, W)I> 
UEUN-I(X:-1)nHN-l W 

. 
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From the above inequality, Proposition 1, (36), (37) as proved for k = N ,  
and conditions A.2 and A.3, we easily obtain 

where dN is a positive scalar not depending on the grid G N -  1. Using the above 
inequality in (42), 

Thus (37) holds for k = N - 1 with aN- = A N -  + aN + SN. Similarly (37) 
is shown to hold for all k. 

We now turn to proving (38) and (39) under Assumptions B. Similarly, as 
in the case of Assumptions A, (38) and (39) hold for k = N with /?, = R,. 
To prove (38) for k = N - 1 we have by (33), for any i = 1,2,  . . . , nN- 

We use the triangle inequality and strengthen it further as in (41), obtaining 

where BN- is given by (19). The last step in the above algebra is obtained in a 
straightforward manner by using Assumptions B, Proposition 1, and the 
definition of d,. Also we have for any x E Sk- i = 1 , . . . , nN- 1, 

Using (43) we have that (38) holds for k = N - 1 with 
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Similarly (38) is shown to hold for all k. Once (38) is proved, (39) follows in 
exactly the same manner as under Assumptions A. Q.E.D. 

Proposition 2 demonstrates the validity (under mild continuity assump- 
tions) of discretization procedures based on piecewise constant approxima- 
tions of the functions obtained in the DP  algorithm. The bound on the ap- 
proximation error is proportional to the size of the discretization grid 
utilized and tends to zero as the grid becomes finer and finer. 

5.3 Suboptimal Controllers and the Notion of Adaptivity 

As discussed earlier, the numerical solution of many sequential opti- 
mization problems by DP  is computationally impractical or infeasible due to 
the dimensionality problem. For this reason in practice one is often forced 
to use a suboptimal policy that can be more easily calculated and imple- 
mented than the optimal policy and hopefully does not result in a substantial 
increase of the value of the cost functional over the optimal value. There are a 
number of suboptimal approaches for sequential optimization and it is quite 
difficult to classify and analyze them in a unified manner. For example, one 
obvious approach is to simplify or modify the model so that the DP  algorithm 
is either computationally feasible or possesses an analytical solution. Such 
simplifications include replacing nonlinear functions by linear and, perhaps, 
quadratic approximations, eliminating or aggregating certain variables in the 
model, neglecting small uncertainties and low-level correlations, etc. No 
general guidelines can be given for such an approach, and we will not be 
further concerned with it. On the other hand we shall discuss in the next two 
sections some approaches for suboptimal control that are of general ap- 
plicability and are often considered in practice. Some other techniques are 
referred to in the last section. We first define the notion of adaptiuity, which 
constitutes a desirable property for any suboptimal controller. 

Let us take as our basic model the problem with imperfect state informa- 
tion of Section 4.1. This problem includes as a special case the problem with 
perfect state information of Section 2.1 except for the fact that the control 
constraint set U k  is not state dependent (simply take the measurement equa- 
tion to be of the form z k  = x k  for all k) .  Now a good part of the difficulty in 
solving the problem by DP  can be attributed to the fact that exact or inexact 
measurements of the state are taken during the process, and the control 
inputs depend on these measurements. If no measurements were taken, the 
problem would be reduced to finding a sequence { u t ,  u:, . . . , u;E- such 
that u: E u k ,  k = 0, . . . , N - 1, which minimizes 

N- 1 

{ k = O  
g N ( X N )  + 1 g k ( x k ?  u k ,  wk)  J(u0,  u1, . . . , U N -  1) = E 

XO, W k  
k = O ,  1, .... N-1 
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subject to the constraints 

x k +  1 = f ( x k ,  u k ,  wk)- 

This is an essentially deterministic problem, which can be solved by deter- 
ministic optimization techniques. For example, if the state and control spaces 
are Euclidean, optimal control and mathematical programming methods 
can be efficiently used for solution of the problem. A control sequence 
{u:, u:, . . . , ug- 1} minimizing the cost functional (44) is called an optimal 
open-loop control sequence, and the optimal value JZ of the cost (44) is called 
the optimal open-loop value: 

J t  = inf J ( u O , U l , . . . , u N - l ) .  
urelJ*. k = O ,  .... N -  1 

Now if J* denotes the optimal value of the basic problem with imperfect 
state information of Section 4.1 we have 

This is true simply because the class of controllers that do not take into 
account the measurements (consist of functions that take a single constant 
value independent of the current information vector) is a strict subset of the 
class of admissible controllers for the problem of Section 4.1. The difference 
(JZ - J*) can be called the value ofinformation supplied by the measurements. 
[When the cost functional includes directly costs for measurement, a more 
descriptive term for (JZ - J*) would be the value of the option of taking 
measurements.] The whole point for taking measurements (i.e., using feedback) 
is precisely to reduce the optimal cost from J:  to J*. Now it is evident that any 
suboptimal control law 71 = { p o ,  pl, . . . , p N -  1 }  that takes into account the 
measurements should be considered acceptable only if the corresponding 
value of the cost functional J ,  satisfies 

J* < J ,  < J: ,  (45) 

for otherwise the information supplied by the measurements is used with 
disadvantage rather than advantage. 

Definition An admissible control law 71 = { p o ,  p l ,  . . . , p N - l }  that 
satisfies (45) will be called quasi-adaptive. If the right-hand side of (45) is 
satisfied with strict inequality, the control law 71 will be called adaptive. 

In other words an adaptive controller is one that uses the measurements 
with advantage. Of course, an optimal controller for the problem is quasi- 
adaptive but some of the suboptimal controllers commonly used in practice 
are not in general quasi-adaptive. One such example is the so-called naive 
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feedback controller, which will be examined in the next section. In the same 
section we shall examine another suboptimal control scheme, the so-called 
open-loop feedback controller, which turns out to be always quasi-adaptive. 

5.4 Naive Feedback and Open-Loop Feedback Controllers 

The naive feedback controller (NFC) is a control scheme based on an idea 
that has been used with considerable success for many years. It is also called 
certainty equivalent controller and its conception and justification dates to 
the origins of feedback theory when feedback was employed as a device that 
compensated for uncertainties and noise in the system. Traditionally servo- 
mechanism engineers when faced with the design of a controller for an un- 
certain system, assumed away or neglected the uncertainty by fixing the un- 
certain quantitities at some typical values (for example, their expected values) 
and designed a feedback control scheme for the corresponding deterministic 
system on the basis of certain considerations (stability, optimality with re- 
spect to a criterion, etc.). They relied on the feedback mechanism to com- 
pensate for uncertainties and noise in the system. The NFC draws from that 
idea. It applies at each time the control input that would be optimal if all the 
uncertain quantities were fixed at their expected values, i.e., it acts as if a form 
of the certainty equivalence principle, discussed in Sections 1.3, 3.1, and 4.3, 
were holding. 

We take as our model the basic problem with imperfect state information 
of Section 4.1 and we further assume that the probability measures of the 
input disturbances w k  do not depend on x k  and u k .  We assume that the state 
spaces and disturbance spaces are convex subsets of corresponding Euclidean 
spaces so that the expected values 

x k  = E { X k l l k ) ,  w k  = E { W k ) r  

belong to the corresponding state spaces and disturbance spaces. 

by the following rule: 
The control input f i k ( l k )  applied by the NFC at each time k is determined 

(a) Given the information vector I k ,  compute 

x k  = E { x k  I I k ) .  

(b) Solve the deterministic problem of finding a control sequence 
{ i i k ,  i i k +  . . . , iiN- that minimizes 

N- 1 

g N ( X N )  f g k ( X k ,  u k ,  w k )  
i = k  
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subject to the constraints? 
- 

U i E  u i ,  X i + l  = f ; ( X i ,  U i ,  El), i = k,  k + 1, ..., N - 1, x k  = x k .  

(c) Apply the control input 

b k ( l k )  = $ k .  

Note that if the current state x k  is measured exactly (perfect state information), 
then step (a) is unnecessary. The deterministic optimization problem in step 
(b) must be solved at each time k as soon as the initial state x k  = E { & I l k }  

becomes known by means ofan estimation (or perfect observation)procedure.$ 
A total of N such problems must be solved in any actual operation of the NFC. 
Each one of these problems, however, is a deterministic optimal control 
problem and is often of the type for which powerful deterministic optimization 
techniques such as steepest descent, conjugate gradient, Newton’s method 
[LlO] are applicable. Thus the NFC requires the solution of N such problems 
in place of the solution of the DP algorithm required to obtain an optimal 
controller. Furthermore, the implementation of the NFC requires no storage 
of the type required for the optimal feedback controller-often a major 
advantage. 

The implementation of the NFC given above requires the solution of N 
optimal control problems in an “on-line” fashion, i.e., each of these problems 
is solved as soon as the necessary information x k  = E { x , ‘ l l k }  becomes 
available during the actual control process. The alternative is to solve these 
problems a priori. This is accomplished by determining an optimal feedback 
controller for the deterministic optimal control problem obtained from the 
original problem by replacing all uncertain quantities by their expected values. 
It is easy to verify (based on the equivalence of open-loop and feedback 
implementation of optimal controllers for deterministic problems) that the 
implementation of the NFC given earlier is equivalent to the following 
implementation : 

be an optimal controller for the deter- 
ministic problem 

Let {&x0), . . . , p i -  1 ( x N -  

N -  1 

minimize g N ( X N )  + 1 g k [ X k ,  P k ( X k ) ,  w k l  Over all {PO 9 . . . 9 P N -  1 )  
k = O  

subject to P k ( x k )  E U k r  v x k  E s k ,  x k +  1 = f k c x k ,  P k ( x k ) ,  E k l ,  

k = 0 , 1 ,  ..., N - 1 .  

t We assume that there exists an optimal sequence {a,, ti,, . . . , 12,- Furthermore, if 
multiple solutions exist for the minimization problem, some rule is used to select one of them 
in an unambiguous way. 

3 In practice, often one uses a suboptimal estimation scheme that generates an “approxi- 
mate” value of .i = E { x k l l k } .  
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Delay l ' =  I - - 1 

Then the control input flk(1k) applied by the NFC at time k is given by 

as shown in Fig. 5.3. 
In other words an alternative implementation of the NFC consists ofjinding 

a feedback controller {p:, p f ,  . . . , p$- 1}  that is optimal for a corresponding 
deterministic problem, and subsequently using this controller for control of the 
uncertain system (modulo substitution of the state by its expected value) in the 
spirit of traditional servomechanism design. Either of the definitions given for 
the NFC can serve as a basis for its implementation. Depending on the nature 
of the problem one method may be preferable to the other. 

The NFC often performs well in practice and results in a value of the cost 
functional that is close to the optimal value. In fact for the linear-quadratic 
problems of Sections 3.1 and 4.3, it is identical to the optimal controller 
(certainty equivalence principle). However, it is possible that the NFC is not 
quasi-adaptive (performs strictly worse than the optimal open-loop con- 
troller), as the following intriguing example shows. 

EXAMPLE Consider the following two-dimensional, two-stage linear 
system with scalar controls and disturbances : 

flk(Ik) = pflcE{xk I r k } l  = p f l ( x k )  
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and with initial state xh = xi  = 0. The controls u o ,  u1 are unconstrained and 
the disturbances wo, w1 are independent random variables with identical 
distribution. They take the values +1 and -1 each with probability +. 
Perfect state information prevails. 

Case 1 Consider the cost functional 

where 11 * )I denotes the usual Euclidean norm. Since this is a quadratic cost 
functional and certainty equivalence holds, we expect that the NFC is an 
optimal controller for this problem. Indeed, let us first compute the optimal 
controller by the DP algorithm. We have 

J2(x2) = Ilx21121 

J,(x,) = min E {J,c(x: + u1 + +wl, x: + + J Z w l ) l }  
u1 W l  

= min E{(x: + u1 + +w112 + (x: + f J Z w 1 1 ~ )  
UI w1 

By minimization we obtain the optimal controller and “cost-to-go” for 
stage 1: 

pT(x1) = -4, 
and 

Jl(X1) = Cx:)‘ + E {(+w1)2 + = cX:l2 + 1. 
W I  

Also 

= min E {J,C(X; + uo + +wo, x i  + + f i w 0 ) l )  

= E {(xi + +JZWO)2 + $} = (Xi)2 + 2. 

J* = JO(O) = 2. 

uo wo 

wo 

Thus we obtain the optimal cost corresponding to the initial state xo = 0: 

Furthermore, applying any control uo at stage 0 is optimal. 
The NFC may be obtained by means of the second implementation scheme 

described earlier whereby we consider the problem of obtaining an optimal 
feedback controller for the deterministic problem resulting when wo and w , 
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are replaced by their expected values Go = Wl = 0. The DP algorithm for 
this deterministic problem is given by 

f 2 b 2 )  = IIX211’~ 

f l (x l )  = min f,[(x: + ul, x:)] = (x:)~, 

fo(xo) = min Jl[(xA + uo,  xg)] = (xi)’, 

and one can easily see that the NFC is identical to the optimal controller. This 
is, of course, due to certainty equivalence. Thus iff denotes the cost corre- 
sponding to the NFC, we have 

J * =  j = 5  

u1 

u1 

4. 

We also calculate the optimal open-loop value J:, i.e., the optimal cost 
attained by an open-loop controller. Since (in view of xo = 0) the final state 
xz is given by 

we have 

J ;  = min E { [ u o  + u1 + %wo + w,)12 + %wo + wl)’}. 
uo, UI WO. w1 

One may easily see that any pair (uo,  ul) with uo + u1  = 0 attains the mini- 
mum above and computation of the expected value yields 

J :  = $. 

rhus for this problem we have 

J*  = f < J:, 

and the NFC is adaptive. 

Case 2 Consider now the cost functional 

E {Ilx2ll>. 
WO. WI 

The NFC is obtained from the DP algorithm for the corresponding deter- 
ministic problem. Straightforward calculation yields 

J2(x2) = I b 2 l L  

fl(xl)  = min f2[(x: + ul, xt)] = Ix: I, 

fo(xo) = min f ,  [(x; + uo, xi)] = I xi  I. 
UI 

uo 
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The NFC is the same as for Case 1 : 

fil(xl) = -xi, fio(xo) = any scalar. 

This is due to the fact that minimizing llx2 1 )  is equivalent to minimizing llx2 1 1 ’  
in the absence of uncertainty. With this controller and given that xo = 0, 
the final state x2 is equal to 

and the corresponding value of the cost functional is 

The optimal open-loop value is obtained from 

J ;  = min E { ( [uo  + u1 + +(wo + w1)12 + %w0 + W~)~)”~I. 
UO. U I  WO. W I  

Any pair (uo ,  ul) with uo + u1 = 0 attains the minimum above and computa- 
tion of the expected value yields 

J ;  = +a. 
Thus we have 

5; < j 

and the NFC is not quasi-adaptive. Actually for this case one may verify that 
the optimal cost corresponding to an optimal feedback controller is 

J* = J* - 1 
0 - 2 J 3  

so that for this case the open-loop optimal value is equal to the optimal value. 

This example is rather astonishing in view of the well-rooted conviction 
among engineers that feedback designs tend to compensate for uncertainties 
and noise in the system and hence are preferable to open-loop designs. The 
statement is true, of course, if one uses optimal feedback obtained through a 
problem formulation that explicitly takes into account the uncertainty. It is 
not necessarily true if one uses a feedback controller obtained from an op- 
timization problem where uncertainties are not explicitly considered. 

Open-Loop Feedback Controller 

The open-loopfeedback controller (0LFC)is similar to the NFC except that 
it takes explicitly into account the uncertainty about xk, wk, . . . , wN- when 
calculating the control input to be applied at time k.  
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The OLFC applies at  each time k a control input j i k ( l k ) ,  which is deter- 

(a) Given the information vector 1, compute the conditional prob- 

(b) Find a control sequence { i i k ,  i i k + l , .  . . , i iN-  1 }  that minimizes 

mined by the following procedure: 

ability measure Pxk,,k.  

subject to the constraints 

U ~ E  U i ,  xi+l = L ( X ~ ,  ~ i ,  w i ) ,  i = k, . . . , N - 1.t 
(c) Apply the control input 

P k ( l k )  = i i k .  

The operation of the OLFC can be interpreted as follows: At each time k 
the controller uses the new measurement received to calculate the con- 
ditional probability P x k I I k .  However, it selects the control input as if no 
further measurements will be received in the future. 

Similarly to the NFC, the OLFC requires the solution of N optimal 
control problems in any actual operation of the system. Each of these prob- 
lems may again be solved by deterministic optimal control or mathematical 
programming techniques. The computations are a little more complicated 
than those for the NFC since now the cost functional includes the expectation 
operation with respect to the uncertain quantities. The main difficulty in the 
implementation of the OLFC is the computation of P x k l I k .  In many cases one 
cannot compute Pxkl Ik  exactly, in which case some “reasonable” approxima- 
tion scheme must be used. Of course, if we have perfect state information, this 
potential problem does not arise. 

We now prove that the OLFC is quasi-adaptive. 

Proposition The value of the cost functional JE corresponding to an 
OLFC E = { P o ,  , E l , .  . . , jiN-l} satisfies 

J* < J, < Jg. (46) 

Proof $. We have 

t Similarly as for the NFC, we assume that an optimal solution to this problem exists and 

$ We assume throughout the proof that all expected values appearing are well defined and 
ambiguities resulting from multiple solutions are resolved by some rule. 

finite and the minimum in (50) is attained for every I , .  
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where the function J ,  is obtained from the recursive algorithm 

Consider also the functions J;(Ik), k = 0, 1, . . . , N - 1, defined by 

c N -  1 

The minimization problem indicated in this equation is precisely the one 
that must be solved at time k in order to calculate the control input F k ( I k )  of 
the OLFC. Clearly J;(Ik) can be interpreted as the calculated open-loop 
optimal cost from time k to time N when the current information vector is I,. 
It is easy to see that we have 

We shall prove that 

Then from (47), (51), and (52) it will follow that 

which is the relation to be proved. We shall show (52) by induction. 
By the definition of the OLFC and (50) we have 

and hence (52) holds for k = N - 1. Assume 
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Then from (49), (53), and (50) we have 

I k ( l k )  = E { g k [ X k  v P k ( l k ) ,  w k l  
X k .  W k s  V k  + 1 

The second inequality follows by interchanging expectation and minimization 
(notice that we have always E{min[ - 1 )  < min[E{ } ] )  and by “integrating 
out” vk+ The last equality follows from the definition of OLFC. Thus (52) is 
proved for all k and the desired result is shown. 

It is worth noting that by (53) the calculated open-loop optimal cost from 
time k to time N, & . ( l k ) ,  provides a readily obtainable performance bound for 
the OLFC. 

The above proposition shows that the OLFC uses the measurements with 
advantage even though it selects at each period the present control input as if 
no further measurements will be taken in the future. Of course, this says 
nothing about how closely the resulting value of the cost functional approxi- 
mates the optimal value. The general opinion, however, is that the OLFC is a 
fairly satisfactory mode of control for many problems, although future 
experience will undoubtedly shed more light on this question. 

Concerning the comparison of the NFC and the OLFC one should note 
that even though the NFC may not be quasi-adaptive, it may be considerably 
easier to implement than the OLFC. On the other hand, the OLFC, in con- 
trast to the NFC, can be used even for problems that are not defined over 
Euclidean spaces and is thus a more general form of suboptimal control. In 

Q.E.D. 
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general, the two controllers cannot be compared on the basis of their corre- 
sponding values of cost functional. The example and the proposition of 
this section show that the OLFC may perform better than the NFC. The 
example in Problem 4 shows that the opposite may also be true. Both con- 
trollers may exhibit some rather counterintuitive behavior due to their sub- 
optimality. An example of such behavior is given in Problem 5. 

5.5 Partial Open-Loop Feedback Controllers and the 
Efficient Utilization of Forecasts 

As discussed in Section 5.4, the OLFC utilizes past measurements in the 
computation of the conditional probability measure PxklIk  but calculates the 
control input j i k ( l k )  on the basis that no measurements will be taken in the 
future. A form of suboptimal control that is intermediate between the optimal 
feedback controller and the OLFC is provided by what we shall call the 
partial open-loop feedback controller (POLFC). This controller utilizes past 
measurements to compute PXklIk but calculates the control input on the basis 
that some (but not all) of the measurements to be taken will in fact be taken in 
the future. This suboptimal controller, as we shall explain below, is char- 
acterized by better performance bounds than the OLFC and is particularly 
useful in problems where forecasts of future input disturbances become 
known during the control process. 

Consider the basic problem with imperfect state information of Section 
4.1. Let us assume that each measurement z k  consists of two separate measure- 
ments Z k ,  &, which are elements of appropriate spaces and are given by 

where h k ,  h k  are given functions and i j k ,  i ik are random observation dis- 
turbances characterized by given probability measures that depend explicitly 
only on x k  and u k -  and not on prior observation disturbances i j k -  1, i j k -  1, 

. . . , ijo, ij0 or any of the input disturbances. 
Roughly speaking, the POLFC computes the conditional probability 

measure Pxklrk ,  where I k  = (zo,  . . . , z k ,  uo,  . . . , u k -  1 ) ,  and then calculates the 
optimal policy for the truncated optimization problem over the remaining 
periods k ,  k + 1, . . . , N under the assumption that the measurements 
Z k +  1, . . . , ZN- will be taken, but the measurements &+ 1, . . . , ZN- will not. 
The rationale for such a procedure is that in some cases it may be much easier 
to compute the optimal policy as a function of the measurements Z k + l ,  

. . . ,ZN- only, rather than as a function of zk+ 1, . . . , ZN - and &+ 1, . . . , ,?N - 1. 

Such situations occur, for example, when Z k  represents an exact measurement 
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of the current state and ,?k represents forecasts on future input disturbances, 
as will be explained later. 

We define now precisely the POLFC, denoted {&(Io),  . . . , jiN- l ( Z N - l ) } ,  
by specifying the rule by means of which the control input ,i&(Ik) at time k 
is calculated : 

(a) Given the information I ,  compute the conditional probability 
measure Pxk, ,k .  

(b) Define the following partial information vectors : 

I:+ 1 = ( z k +  1 ,  u k h  

I : + 2  = ( z k + l ,  z k + 2 ,  u k ?  u k + l ) ,  

I: - 1 = ( z k  + 1 ,  z k  + 2 9 * . . 7 ZN - 1 ,  u k  9 . . . 1 u N  - 21, 

and consider the problem of finding a control u k  E U k  and functions p!(Zf), such 
that &I!) E U i  for all I ;  and i, that minimize the cost functional 

r N -  1 

+ g k ( X k ,  u k ?  w k ) l l k  

subject to the constraints 

X k +  1 = f k ( X k 7  u k ?  w k ) ,  

x i + l  = f i [ x i ,  &I!), w i ] ,  i = k + 1,. . . , N - 1. 

Let { & ,  j$+ 1 ,  . . . , &- be an optimal policy for this problem.? 
(c) Apply the control input 

P k ( l k )  = uk. 

Note that if the measurements z k ,  k = 0, . . . , N - 1, are vacuous (provide 
no information about the current state as, for example. in the case where the 
values of the functions T;k do not depend on x k ) ,  the POLFC is identical to the 
OLFC. If the measurements F k  are vacuous, then the POLFC is identical 
with the optimal feedback controller. 

Now let us consider the problem of minimizing the cost functional over 
all admissible controllers of the form {po( lo) ,  . . . , p N -  l ( lN-  1)}, where the 
partial information vectors 1, are defined by 

10 = {zo}, 1, = {ZO,. . . 7 z k ,  u0,. . . 7 u k - l } .  

t Similarly as for the NFC and OLFC we assume that such a policy exists and that a certain 
rule is used to resolve ambiguities resulting from multiple solutions. 
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This problem is obtained from the basic problem assuming that the 
measurements i k  are not taken. If J* is the corresponding optimal value, we 
clearly have 

where J* and J:  are the optimal value and optimal open-loop value of the 
basic problem. 

The following proposition is analogous to the proposition of the previous 
section and admits an entirely similar proof. 

Proposition The value of the cost functional JE corresponding to a 
POLFC ?I = { P o ,  ,iil,. . . , PN- satisfies 

J* < J ,  < J* < J,*. 

It should be mentioned that while again it is not clear that the POLFC 
approximates closely in terms of performance the optimal controller, the 
upper bound (I* - J * )  on the deviation of the value of the cost over the 
optimal is smaller than the corresponding bound ( J t  - J*)  for the OLFC. 
On the other hand, surprisingly, it is possible that the POLFC performs 
worse than the OLFC in a given situation. One example of such behavior 
has been constructed by E. Alleman-a student in one of the author's classes- 
but is too complicated to be presented here. 

We now turn to the application of the POLFC idea to a specific class 
of problems involving forecasts on future input disturbances. Consider the 
basic problem with perfect state information where the probability measures 
of the input disturbances wk do not depend on xk or uk, k = 0, 1, . . . , N - 1. 
Furthermore, assume that at each time the controller in addition to knowing 
the value of the current state xk has access to a forecast 

Each element 8 of the forecast f k  represents an appropriate noisy measure- 
ment of the future input disturbance w i ,  i = k ,  . . . , N - 1. These forecasts 
can be utilized to update at each time the probability measures of future 
input disturbances. 

It should be realized that the presence of the forecasts transforms the 
problem in effect into one of imperfect state information, which involves a 
system of the form 
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The state of this system is 

:k = (xk? W k r  w k +  1 ,  . * .  9 W N -  1 1 ,  

and the system functionA is defined in an obvious way from the system 
equation xk+ = fk(xk, uk, wk). The cost functional can also be easily re- 
formulated in terms of the variables of system (54), and the measurement 

obtained by the controller at each time k can be viewed as a measurement of 
state 2, of system (54). 

Now a sufficient statistic for the problem of imperfect state information 
outlined previously is provided by (xk ,  Pwk, ..., w N -  I I I k ) ,  where Pwk, ..., w N -  l l I k  
is the joint conditional probability measure of the future disturbances 
wk, . . . , w N -  In many cases wk, . . . , w N -  are independent under the con- 
ditional probability measure, in which case Pwk, ..., w N -  , I I k  is characterized by 
PwklIk ,  . . . , PwN-  I .  We shall assume this independence in what follows. 
Thus the optimal feedback controller must be obtained from a DP  algorithm 
that is carried over either the spaces of the information vectors 1, or over the 
space of the sufficient statistic (xk, PWklIk ,  . . . , P w N -  I I I k ) .  Clearly the com- 
putation of this optimal controller is extremely difficult except for special 
cases such as the one considered in Section 2.3. 

When, however, the POLFC philosophy is adopted things may be con- 
siderably simplified. According to the scheme outlined earlier in this section, 
at each time k the state x k  and P w k ~ ~ k ,  . . . , PWN- , i tN-  are obtained, and the 
optimization problem of part (b) of the definition of the POLFC is solved to 
obtain the control input j i k ( l k ) .  This problem consists of finding {,&(Xk), 

i i k +  1 ( x k +  I ) ,  . . . , ,&- l ( x N -  1)}, with Pi(xi) E U i ,  i = k ,  . . . , N - 1, that mini- 
mize 

c N -  1 -l 

subject to the system equation constraints 

x i +  1 = f i [ x i ,  &(xi), wi],  i = k ,  . . . , N - 1. 

Now the above problem is one of perfect state information and may be much 
easier to solve than the original problem. For example, it may possess an 
analytical solution or be one dimensional in the state variable. In this way 
the implementation of the POLFC may be feasible while the implementation 
of the optimal controller may be impossible. 
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Summarizing the above discussion the POLFC for the perfect state in- 
formation problem with forecasts operates as follows : 

(a) An optimal feedback policy is computed at the beginning of the 
process on the basis of the a priori statistics of the input disturbances and 
assuming no forecasts will be available in the future. 

(b) Each time a forecast becomes available the statistics of the future 
input disturbances are accordingly updated. The optimal feedback policy is 
revised to take into account the updated statistics but is computed on the 
basis that these statistics are final and will not be updated by means of future 
forecasts. 

It is to be noted that this mode of operation does not require a detailed 
statistical modeling of the forecasting process. The only requirement is to be 
able to compute the updated probability measures P w k l I k , .  . . , P w N - , I I k  
of future disturbances given the forecasts up to time k. This is particularly 
convenient in practice since forecasts may be of a complicated and unpre- 
dictable nature, such as marketing surveys, unforeseen “inside” information, 
unpredictable changes in the economic environment, and subjective feelings 
of the decision maker. 

As an example, consider a dynamic inventory problem such as the one 
considered in Section 3.2 where forecasts on future demands become avail- 
able during the process. The POLFC calculates an initial multiperiod (s, S) 
policy based on the a priori probability distributions of future demands. As 
soon as new forecasts are obtained and these distributions are updated the 
current (s, S) policy is abandoned in favor of a new one calculated on the 
basis of the updated demand distributions. The new (s, S) policy is again 
updated as soon as new forecasts become available and so on. In this way 
a reasonable and implementable policy is adopted while the optimal policy 
would perhaps be impossible to calculate or implement. 

As another example, consider an asset selling problem similar to the one 
of Section 3.4 where we assume that forecasts on future price offers become 
available during the sale process. The POLFC approach suggests the cal- 
culation and adoption of an initial policy, characterized by cutoff levels 
al, . . . , aN- for accepting and rejecting an offer, based on the initial prob- 
ability distribution of offers. As soon as, say at time k, forecasts become 
available and the probability distribution of future offers is updated, new 
cutoff levels ak, . . . , aN- are calculated, which specify a new policy to be 
followed until the next forecasts become available. The resulting expected 
revenue from using the POLFC is larger than that which would result if the 
decision maker were to stick to the initial policy and disregard the forecasts. 
It is safe to presume that many decision makers, guided by intuition rather 
than detailed planning, would in fact adopt a policy similar to the one sug- 
gested by the POLFC. 
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5.6 Control of Systems with Unknown Parameters 
-Self-Tuning Regulators 

We have been dealing so far with systems having a known state equation. 
In practice, however, one is frequently faced with situations where the system 
equation contains parameters that are not known exactly. One possible 
approach, of course, is to conduct experiments and estimate the unknown 
parameters from input-output records of the system. This procedure, how- 
ever, can be quite time consuming. Furthermore, it may be necessary to re- 
peat the procedure if the parameters of the system change with time as is often 
the case in many industrial processes. 

The alternative is to formulate the stochastic control problem in a way 
that unknown parameters are dealt with directly. It is very easy to show that 
problems involving unknown system parameters can be embedded within 
the framework of our basic problem with imperfect state information by 
using state augmentation. Indeed, let the system equation be of the form 

xk + 1 = fk(x& 3 0, U k  w k ) ,  

where 8 is a vector of unknown parameters with a given a priori probability 
distribution. We introduce an additional state variable y k  = 8 and obtain a 
system equation of the form 

By defining .ck = ( X k ,  yk)  as the new state, we obtain 

:k+ 1 = jxk(:?k, U k r  W k ) ,  

whereA is defined in an obvious manner from (55).  The initial state is 

I, = (xo, 8). 

With a suitable reformulation of the cost functional, the resulting problem 
becomes one that fits our usual framework. 

It is to be noted, however, that since y, = 0 is unobservable we are faced 
with a problem of imperfect state information even if the controller receives 
an exact measurement of the state x k .  Furthermore, the parameter vector 8 
usually enters the state equation in a manner that makes the augmented 
system (55)  nonlinear. As a result, in the great majority of cases it is practically 
impossible to obtain an optimal controller by means of a DP algorithm. 
Suboptimal controllers are thus called for and in this section we discuss in 
some detail a form of the certainty equivalent controller that has been used 
with success in some problems involving linear systems with unknown 
parameters. 
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Certainty Equivalent Control of’ Linear Systems 
with Unknown Parameters 

Consider a linear system of the form 

xk+l = Ak(8)xk + Bk(@k + w k *  

The matrices Ak and Bk depend on an unknown parameter vector 8, which is 
an element of a Euclidean space. The functional form of Ak( - ) and &( - ) is 
known. The cost functional is quadratic of the form 

The disturbances wk are independent and perfect state information prevails. 
If the parameter vector 8 were known, the corresponding optimal control 

law would be given by 

d ( x k ~  e, = Lk(8)xk? 
where 

Lk(e) = - CRk + Bk(8)’Kk+ l ( e ) B k ( e ) l -  ‘ B k ( e ) ’ K k +  l(e)Ak(e), (56) 

and K k +  1(8)  is given by the Riccati equation, which corresponds to A,(@, 

When 8 is not known we are faced with a problem of imperfect state in- 
formation as explained earlier. The information vector is = { x o ,  . . . , xk, 
u o ,  . . . , uk- 1 }  and the corresponding NFC (certainty equivalent controller) is 
given by 

where 

Bk(8), Qk, and Rk (Cf. Section 3.1). 

f i k ( l k )  = L k ( B k ) X k  9 

At each time k the NFC computes the conditional expectation 8, and then 
calculates the gain L k ( 8 k )  from Eq. (56)  once the matrix & + I ( & )  has been 
obtained from the corresponding Riccati equation. In practice the com- 
putation 6f 8, may present formidable difficulties and for this reason usually 
one computes an approximation of 8, by means of a conveniently imple- 
mentable estimator. We now discuss in some detail a simple special case. 

Self- Tuning Regu lat ors 

n + l), . . . , by the equation 
Consider a scalar controlled process described for k = (m + n), (m + 

yk+tn+l + alyk+m + * ”  + anyk+m+l-n = b l U k  f ” ’  + b n U k - n + l  + ek* (57) 
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The scalars Y k ,  Uk are considered to be the output and the input, respectively, 
of the process at time k. There is a delay of rn 2 0 time intervals between the 
time that the input is applied and the time at which it affects the process. 
The scalar stochastic disturbances ek are independent over time and have 
zero mean. The parameters a l , .  . . , a,, b l , .  . . , bn are unknown and it is 
assumed that bl # 0. The algorithms to be presented can be easily modified if 
some of the parameters are unknown and the remaining are known. 

The process described above when there is no control (i.e., bi = 0) is known 
as an autoregressive process of order n and is a widely used model of linear 
processes. A more general model is obtained if we replace e k  in Eq. (57) by 
ek + clek- + + C,f?k- , .  Control algorithms similar to the ones that will 
be presented shortly can also be developed for such more general models. In 
order to keep the exposition simple, however, we shall restrict ourselves to 
the process (57). 

Equation (57) may be written in a different form, which is more convenient 
for our purposes. We have from (57) 

a l ( Y k + m  + a l Y k + m - l  + * * *  + % y k +  m - n )  

= a l ( b 1 u k - l  + ' . '  + b n u k - n )  + a l e k - 1 .  (58)  
We may eliminate Y k + , , ,  by subtracting (58)  from (57). We obtain 

2 
Y k + m +  1 + (a2 - a l ) Y k + m -  1 + * ' * + (an - a,%- l ) Y k + m +  1 --I - a l a n y k + m - n  

= b l U k  + (b2 - a l b 1 ) u k -  1 + ' '  ' + (b, - albn- 1 ) U k - n +  1 

- U 1 b , U k - ,  -k e k  - U l e k - 1 .  

Proceeding similarly we can obtain an equation of the form 

Y k + m + l  + a l y k  + * * .  + a n Y k - n + l  = B O ( u k  + B l u k - 1  + . ' .  + 8 l u k - l )  + c k  

(59) 
where I = n + rn - 1, and f?k is a linear combination of the disturbance 
vectors ei. The coefficients a l ,  . . . , u,, Po, . . . , Bl in (59) are determined from 
the coefficients a,, . . . , a,, b,, . . ., b, by means of the elimination process 
described above. Furthermore, it is easy to see that we have Po = bl # 0. 
Note that when there is no time delay (i.e., rn = 0) Eqs. (57) and (59) coincide. 

The problem that we are concerned with is to find a suitable control law 

depending on the past inputs and outputs, which are assumed to be observable 
without error. We utilize the quadratic cost functional 

k ( l k )  = ~ ( k ~ O , . . . , Y k , U O , . . . , U k - l )  

Thus, the objective of control is to keep the output of the process near zero. 
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If the parameters a l ,  . . . , a,, b , ,  . . . , b,, in Eq (57) were known, the optimal 
control law could be obtained by reformulating our problem into the form 
of the basic problem with perfect state information via state augmentation, 
and by subsequently applying the DP algorithm. We shall bypass, however, 
this reformulation and obtain the optimal control law directly. Since the 
system is linear, the criterion is quadratic, and the disturbances are inde- 
pendent, certainty equivalence holds. The optimal control law is the same as 
the one that would be obtained if the disturbances ek are set equal to their 
expected value z k  = 0, and the system equation is given by [cf. (57)] 

n fl 

Y k + m + l  + x a i . v k + m + l - i  = x b i U k + l - i r  
i =  1 i =  1 

or equivalently by [cf. (59)] 

Y k + m + l  + a l y k  + " '  + ' % Y k - n + l  = P O ( u k  + P l u k - 1  + " '  + P l u k - 1 ) .  

By using the equation above in the cost functional (60) it follows immediately 
that the optimal control law for the corresponding deterministic problem is 
given by 

By certainty equivalence the same control law is optimal for the stochastic 
problem assuming that the parameters a l ,  . . . , a,,, P o , .  . . , fll are known. 
Note that this control law does not depend on the time index k or the number 
of stages N. 

When the parameters a,, . . . , a,, Po.  . . . , PI are unknown, then an approxi- 
mate form of the NFC is given by 

I I n  

where 1, = ( y o , .  . . , y k ,  uo ,  . . . , u k -  1 )  and ~'i,. . . , E:, f l ! ,  . . . , fl: are esti- 
mates of the parameters a l , .  . . , a,, P o , .  . . , P I  based on the inputs and out- 
puts available up to time k. 

If it were possible to construct an estimation scheme such that the esti- 
mates CC:, flf converge to the true parameters a i ,  p i ,  then the suboptimal con- 
troller defined by (61) would become asymptotically optimal. In fact, for 
this purpose it is sufficient that 

lim 8: = P i ,  i = 1 , .  . . , I ,  
k+  m 

lim $/fl! = ai/Po, i = 1,. . . , n. (63) 
k - + m  
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A suboptimal controller of the form (61) equipped with an estimation 
scheme for which (62) and (63) hold (with probability one) is referred to as 
a self-tuning regulator. Such regulators have many advantages. They are 
very simple to implement (provided the estimation scheme is simple), and 
they become optimal in the limit. Furthermore, not only they do  not require 
a priori knowledge of the parameters of the process, but in addition they adjust 
appropriately when these parameters change-a frequent occurrence in many 
processes. 

At the present time the analysis of the question as to when a regulator of 
the type described above has the self-tuning property is not complete. Future 
research will undoubtedly shed more light on this question. However, it 
appears that for many practical problems it is possible to construct simple 
self-tuning regulators. 

Let us describe briefly a simple estimation scheme that can be used.in 
conjunction with the control law (61). The scheme is based on the method of 
least squares and has been used with success in several applications. One may 
show that due to the employment of the feedback control law (61) it is possible 
that the least squares estimation scheme may encounter subtle difficulties if 
we try to estimate all the parameters a l , .  . . , a n ,  P o , .  . . ,P,  (see Problem 7). 
On the other hand we note that for purposes of control we do not need to 
estimate both Po and a i ,  i = 1, . . . , n. Rather, from (61) it follows that we 
need only estimate the ratios ailPo, i = 1,  . . . , n. This will be done by keeping 
Po fixed at some nonzero value P o ,  and by estimating ai, i = 1,. . . , n, to- 
gether with Pi, i = 1,. . . , 1. Let us define the (n + /)-dimensional column 
vectors 

6' = (a1,. . . , a,, P1,. . . , PJ', 
z k  = ( - J ' k , * * * r  -yk-n+lrPOUk-1,...r8Ouk-I)I, 

where Po has a fixed nonzero value assumed equal to Po for the purposes of 
estimation. Then Eq. (59) is written 

y k  = P 0 u k - m -  1 + 2 L - m -  16' + 2 k - m -  1. 

The least squares estimate of 6 at time k is denoted by 8, and is the vector that 
minimizes 

k 

(e - O)T(O - 8) + 1 hi - f l O u i - , , -  , - --I-,,, - ,t)12, 
i = m +  1 + I  

where 8 is an initial estimate of 6' and P is a positive definite symmetric 
matrix. It is possible to show that the least squares estimate 8, can be gener- 
ated recursively by the equations 

O k +  1 = Ok + gkbk - b O u k - m -  1 - z L - m -  18k)r 
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where the vectors g k  E R("+') satisfy 

g k  = P k Z k - m -  + & - m -  l P k Z k - m -  l ) - ' ,  

and the (n + 1 )  x (n  + I )  matrices P k  satisfy 

p k +  1 = p k  - g k d ( l  + Zh-m- l P k Z k - m -  1). 

The initial conditions are 

O m + l  = 8, P,+r = P .  

A proof of the validity of these equations may be found in most texts on 
parameter estimation theory (see, e.g., [M7]). 

When estimation is carried out by the least squares method described 
above, the control law (61) takes the form 

This control law does not always have the self-tuning property 

1 1 
lim - 8, = - 0. 

However, both analysis and simulations indicate that if Po is chosen judi- 
ciously and the order n of the model and the size m of the delay adequately 
represent those of the real process, then the self-tuning property can often be 
achieved. In practice one can settle on appropriate choices for Po,  n, and m by 
experimentation and simulation. 

A detailed analysis of the regulator (61) equipped with the least squares 
estimation scheme described above would take us beyond the scope of the 
text and will not be undertaken. We mention that the main result, proved by 
Astrom and Wittenmark [A91 under a mild assumption on the process, is that 
if the estimates 8, converge to some vector 8, then a self-tuning regulator i S  

obtained, i.e., 

k - m b O  P O  

1 1 
- 0 = - 8 .  
P o  Po 

Since the estimates 8, do in fact converge in many cases, the result is quite 
reassuring. It is also a rather remarkable result in view of the fact that the 
fixed scalar P o  need not be equal to the true parameter Po.  Furthermore, even 
if Po = Po,  it is by no means obvious that we should have 8 = 0 since the 
least squares method ordinarily will give in the limit biased estimates of the 
true parameters. We shall demonstrate the result for a simple special case. 
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First-Order Process 

Consider the process 

yk+l  + = B u k  + e k *  (64) 
Let B denote the fixed scalar used in the least squares estimation procedure 
(i.e., our earlier Po), and let i i k  denote the estimate of a at time k. Then &k 

minimizes over a, 
k 

PO(R - ~ 0 ) ~  + (Y i  + ayi- 1 - 8.i- 
i =  1 

where Eo is an initial estimate of a and po  some positive scalar. By setting the 
derivative at Ek of the expression above equal to zero, we obtain 

k 

P O ( &  - 60) + 1 yi- 1bi + &yi- 1 - Bui- 1 )  = O, 
i= 1 

from which 

Now the controls ui-  are given by [cf. (61)] 

ui- 1 = (ai- 1/B)Yi- 1 .  (66) 
By substitution of (66) in (64), we obtain the form of the closed-loop system, 

Y . =  , rj-1 -- a)y i - l  + e i - l .  

By using Eqs. (66) and (67) in (65), we obtain 

Let us assume that the estimates converge to some scalar E ,  

lim Ek = E. (69) 
k- .  m 

Assume further that 
k 

lim C y ? - l  = co, (70) 
k+m i=l 

lim C!= 1 ei- 1Yi- 2 1 = 0. 
k+m PO + z= 1 Y i -  1 
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Relation (70) will hold with probability one if the variance of the disturbance 
ek is nonzero. Relation (71) can be expected to hold since the random variable 
yi- , depends only on the disturbances ei-  2 ,  ei- 3 ,  . . . , and is therefore 
independent of ei-  Since ei-  has zero mean it follows that when yi.. has 
finite first and second moments and we assume that expected values are 
equal to the limit of the corresponding average sums (an ergodic assumption), 
then (71) holds. Notice that relations (69) and (70) imply also 

Now Eq. (68) may be written 

By taking the limit as k -, 00 and using (69)-(72), we finally obtain 
PE/F - a = 0 or equivalently 

which is precisely the self-tuning property. Thus, we have proved that if the 
estimates i k  converge [cf. (69)] a self-tuning regulator is obtained. The proof 
for more general processes follows a similar line of argument as the one given 
above. 

5.7 Notes 

The problems caused by large dimensionality have long been recognized 
as the principal computational drawback of DP. A great deal of effort by 
Bellman and his associates, and by others, has been directed toward finding 
effective techniques for alleviating these problems. A fairly extensive dis- 
cussion of the computational aspects of DP can be found in the book by 
Nemhauser “21. Various techniques that are effective for solution of some 
deterministic dynamic optimization problems by DP can be found in 
references [K6], [LZ], [L9], and [WlO]. Finally we note that a class of two- 
stage stochastic optimization problems, called “stochastic programming 
problems,” can be solved by using mathematical programming techniques 
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(see Problems 1, 2, references [Vl], [B7], [BlO], and the references quoted 
therein). The discretization and convergence results of Section 5.2 are due to 
the author [BlS]. 

The literature abounds with precise and imprecise definitions of ad- 
aptivity. The one adopted here is due to Witsenhausen [W4] and captures 
the idea that a controller should be called adaptive if it uses feedback with 
advantage. 

The example of Section 5.3 showing that the naive feedback controller 
may perform worse than the optimal open-loop controller is due to Wit- 
senhausen p h a u  and Witsenhausen, Tl]. For an interesting sensitivity 
property of the naive feedback controller see the paper by Malinvaud [M2]. 
The idea of open-loop feedback control is due to Dreyfus [D6], who dem- 
onstrated its superiority over open-loop control by means of some examples 
but did not give a general result. The result and its proof were given recently 
by the author [B8] in the context of minimax control. Suboptimal controllers 
other than the NFC and OLFC have been suggested by a number of authors 
[T3-T5, C1, D5, D7, C5, S1, S2, S15, S20, P6, Al, A9, B17, M9, W9]. The 
typical approach under imperfect state information is to separate the sub- 
optimal controller into two parts-an estimator and an actuator-and use a 
“reasonable” design scheme for each part. The concept of the partial open- 
loop feedback controller is apparently new. Self-tuning regulators received 
wide attention following the paper by Astrom and Wittenmark [A9]. For 
some recent analysis see Ljung and Wittenmark [LS]. 

Whenever a suboptimal controller is used in a practical situation it is 
desirable to know how close the resulting cost approximates the optimal. 
Tight bounds on the performance of the suboptimal controller are necessary 
but are usually quite hard to obtain. For some interesting results in this 
direction, see the papers by Witsenhausen [WS, W61. 

As a final note we wish to emphasize that the problem of choice of a 
suitable suboptimal controller in a practical situation is by no means an 
easy one. It may be necessary to conduct extensive simulations and experi- 
ment with several schemes before settling on a reasonably practical and 
reliable mode of suboptimal control. 

Problems 

1. The purpose of this problem is to show how certain stochastic control 
problems can be solved by (deterministic) mathematical programming 
techniques. Consider the basic problem of Chapter 2 for the case where there 
are only two stages (N = 2) and the disturbance set for the initial stage Do 
is a finite set Do = {w:, . . ., wb}. The probability of wb, i = 1,. .., r, is 
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denoted pi and does not depend on x o  or uo.  Verify that the optimal value 
function Jo(xo) given by 

+ ~ z C f l c f o ( x o ~  uo,  wb), u1, W l l 1 ) l  
is equal to the optimal value of the problem 

i = l ,  ..., r 

subject to zi 2 E {glCfo(xo, uo, wb), u;, w1l 
WI 

+ g2CfiCfo(xo, uo, wb), uf, W l l l l ~  
uo E Uo(xo), 4 E ~ , C f o ( x o ,  uo ,  w i l l .  

Show also how a solution of the mathematical programming problem above 
may be used to yield an optimal control law. 
2. Consider the problem of minimizing over x 

subject to hi(x) = 0, i = 1, . . . , s, l,(x) 6 0, j = 1, . . . , p ,  where x E R", y E R", 
q is a given vector in R", r E Rk is a random vector taking a finite number of 
values r l , .  . . , r, with given probabilities p l , .  . . , p , ,  g ,  hi ,  l j  are given con- 
tinuously differentiable real-valued functions, f : R" -+ Rk is a continuously 
differentiable mapping, and A is a given k x rn matrix. Show that this problem 
may be viewed as a two-stage problem that fits the framework of the basic 
problem of Chapter 2. Show also how the problem can be converted to a 
deterministic problem that can be solved by standard mathematical pro- 
gramming techniques. 
3. Consider a problem with perfect state information involving the n- 
dimensional linear system of Section 3.1 : 

xk+l = Akxk + Bkuk + W k ,  k = 0, 1,. . ., N - 1, 

and a cost functional of the form 
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where c E R" is a given vector. Show that the DP  algorithm for this problem 
can be carried over a one-dimensional state space. 
4. Consider a two-stage problem with perfect state information involving 
the scalar system 

xo = 1, X I  = xo + uo + wo, x 2  = f ( x 1 ,  u1). 

The control constraints are uo,  u1 E (0, - 1). The random variable wo takes 
the values + 1 and - 1 with equal probability 4. The functionfis defined by 

f( 1,O)  = f( 1, - 1) = f (  - 1,O) = f( - 1, - 1) = 0.5, 

f ( 2 , O )  = 0, f(2, - 1) = 2, f(0, - 1) = 0.6, f (0 ,O)  = 2. 
The cost functional is 

(a) Show that one possible OLFC for this problem is defined by 

and the resulting value of the cost is 0.5. 
(b) Show that one possible NFC for this problem is defined by 

0 if x 1  = k 1, 2, 
P O ( X 0 )  = 0 ;  Pl (X1)  = - 1  if x 1  = o, (74) 

and the resulting value of the cost is 0.3. Show also that the NFC above is an 
optimal feedback controller. 
5. Consider the system and cost functional of Problem 4 but with the 
difference that 

f(0, -1) = 0. 

(a) Show that the controller (73) of Problem 4 is both an OLFC and an 
NFC and that the corresponding value of the cost is 0.5. 

(b) Assume that the control constraint set for the first stage is (0)  rather 
than (0, - l}. Show that the controller (74) of Problem 4 is both an OLFC 
and an NFC and that the corresponding value of the cost is 0. 
6. Consider the linear quadratic problem of Section 4.3 where in addition 
to the linear measurements there are some nonlinear measurements received 
at each time k of the form 

Tk = h k ( X k ,  g k ) .  

The random observation disturbances Ck are independent random variables 
with given probability distributions. What is the POLFC that ignores the 
presence of Tk? 
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7. Consider the first-order process 

y k + l  + = P'k + ek 
examined at the end of Section 5.6. Assume that a control law of the form 
f i i ( I i )  = (CC/i/B)yi is utilized and E, p minimize 

k 

Show that [CC + (CCy/fl)], ( p  + y) also minimize the expression above, where y 
is any scalar. (This problem indicates a possible instability in the least- 
squares estimation scheme if both tl and P are estimated.) 



Part II  

Control of Uncertain Systems 
over an Infinite Horizon 

General Remarks on Infinite Horizon Problems 

The second part of this text is devoted to sequential optimization problems 
of the type considered in previous chapters but with two basic differences. 
First, the number of stages is assumed to be infinite, and second, the system is 
assumed to be stationary, i.e., the system equation and the random disturbance 
statistics do not change from one stage to the next. In addition, the cost per 
stage is assumed stationary (except perhaps for the presence of a discount 
factor). 

The assumption of an infinite number of stages is, ofcourse, a mathematical 
formalization since it is never satisfied in practice. Nonetheless, it constitutes 
a reasonable and analytically convenient approximation for problems 
involving a finite but very large number of stages. The assumption of station- 
arity is often satisfied in practice and in other cases it constitutes a reasonable 
approximation to a situation where the system parameters vary very slowly 
as time progresses. However, problems involving a nonstationary system or 
a nonstationary cost per stage can be reduced to the stationary case by means 
of a simple reformulation. This reformulation is discussed in Chapter 6 
(Section 6.7). 

219 
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Infinite horizon problems, as a general rule, require considerably more 
sophisticated mathematical analysis than their corresponding finite horizon 
counterparts. The analytical difficulties are of a twofold nature. First, the 
consideration of an infinite horizon introduces the need for analysis of limit- 
ing behavior, for example, the convergence of the DP algorithm and the cor- 
responding optimal policies. This analysis is often nontrivial and at times 
reveals surprising possibilities. Second, a rigorous consideration of the 
probabilistic aspects of problems involving uncountable disturbance spaces 
requires the sophisticated machinery of measure-theoretic probability theory. 
The resulting analytical difficulties are considerably more severe than those 
of finite horizon problems and are far beyond the introductory scope of this 
text. For this reason and given that the need for precision is much greater in 
infinite horizon problems than in their finite horizon counterparts we shall 
exclusively restrict ourselves to the case where the disturbance space is a 
countable set. The advanced reader may consult the works of Blackwell [B20], 
Strauch [S17], and Hinderer [H9] for more general expositions. 

It should be noted, however, that under the infinite horizon and station- 
arity assumptions one may obtain results of mathematical and conceptual 
elegance not to be found in finite horizon problems. Also the implementation 
of optimal policies for infinite horieon problems is often much simpler. For 
example, often the optimal policy can be selected to be stationary, i.e., the 
optimal rule for applying controls need not change from one time period to 
the next. In addition, in many cases of interest there are available powerful 
computational methods for calculation of such optimal policies. 

Traditionally there have been three classes of infinite horizon problems 
of major interest : 

(a) In the discounted case the cost functional takes the form 
N -  1 

J,(xo) = N - c a  lim { z o a k g [ x k ,  pk(Xk)r w k l ] ,  
k = O ,  1, ... 

where J,(xo) denotes the cost associated with an initial state xo  and a policy 
n = { p o ,  pl, . . .}, and a is a scalar with 0 < a < 1, called the discountfactor. 

The discounted problem is by far the simplest infinite horizon problem 
particularly when the cost per stage g(x, u, w)  is bounded above and below. 
This case is examined in Sections 6.1-6.3. The case where g may be unbounded 
either above or below is examined in Sections 6.4-6.6 and is very similar to the 
undiscounted case where a = 1. 

(b) In the undiscounted case the cost functional takes the form 
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i.e., there is no discount factor (a = 1). This case is the subject of Chapter 7. 
Minimization of J,(xo)  above makes sense, of course, if J,(xo)  is 

finite for at least some admissible policies R and some initial states xo. In 
many problems of interest it turns out that J,(xo)  = + co, but the limit 

(c) 

is finite for every policy R = {po ,  p 1 , .  . .} and initial state x o .  Under these 
circumstances it is reasonable to try to minimize the expression above, which 
may be viewed as an average cost per stage associated with policy R. Such 
problems are the subject of Chapter 8. However, for this case we shall 
restrict our attention mostly to problems involving a finite state and control 
space, i.e., the system considered is a controlled finite state Markov chain. 
Some results from the theory of Markov chains will be developed in Chapter 8 
and Appendix D as necessary. 



Chapter 6 

Minimization of Total Expected 
Value-Discounted Cost 

In this chapter we consider a class of infinite horizon problems that 
involves a discounted cost functional. The introduction of a discount factor is 
often justified, particularly when the cost per stage has a monetary inter- 
pretation. From the mathematical point of view the presence of the discount 
factor guarantees the finiteness of the cost functional provided costs per 
stage are uniformly bounded. 

Let us define the problem we shall be considering in this chapter. 

PROBLEM (D) Consider the stationary discrete-time dynamic system 

xk+ 1 = f ( x k ,  uk, wk), k = 0, 2, . . . 9 (1) 

where the state xk, k = 0, 1,. . . , is an element of a space S ,  the control 
uk, k = 0, 1, . . . , an element of a space C,  and the random disturbance 
Wkr k = 0, 1, . . . , an element of a space D. It is assumed that D is a countable 
set. The control uk is constrained to take values in a given nonempty subset 
f&k) of C,  which depends on the current state Xk[Uk  E v(xk) ,  for all xk E S, 
k = 0, 1 , .  . .]. The random disturbances wk, k = 0, 1 , .  . . ,have identical 
statistics and are characterized by probabilities f( - Ixk,  uk) defined on D, 
where f ( w k l x k ,  U k )  is the probability of occurrence of W k ,  when the current 
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state and control are x k  and u k ,  respectively. The probability of w k  may 
depend explicitly on x k  and u k  but not on values of prior disturbances 

Given an initial state xo, the problem is to find a control law, or policy, 
w k -  1,. . . , W O .  

n = {Po,  P I , .  . .} where P k : s  c, P k ( X k ) E  u ( x k ) ,  for all x k  E S ,  k = 0, 1 , .  . . , 
that minimizes the cost functional? 

(2) 1 J n ( x O )  = lim E 1 a k g [ X k ,  P k ( X k ) ,  w k l  
N+CC W k  r k = O  - 

k = O .  1, ... 

subject to the system equation constraint (1). The real-valued function 
g :  S x C x D -+ R is given, and the discount factor a satisfies 0 < a < 1 .  

For any x o  E S and policy n the cost J, (xo)  given by (2) represents the limit 
of the (discounted) expected finite horizon costs and these costs are well 
defined as discussed in Section 2.1. Another possibility would be to minimize 
over n 

W k  E { $ t k g C x k  7 P k ( x k ) ,  w k l } *  

k = O .  1, ... 
The rigorous introduction of such a cost functional would require the con- 
struction of a probability measure on a set of events in the space of all se- 
quences { w o ,  w l , .  . .} with elements in D (see Kushner [ K l O ] )  and is well 
beyond the probabilistic framework of this text. However, we mention here 
that, under the assumptions we shall be using, the expression given above is 
equal to J,(xo) as given by (2) for every xo  E Sand policy n. This may be proved 
by using the so-called monotone convergence theorem (see, e.g., Halmos 
[H5] and Royden [RS]), which allows the interchange of limit and ex- 
pectation under assumptions that in our case are satisfied. It is also interesting 
to answer the question as to whether it is possible to reduce further the value 
of the cost functional by considering " history-remembering " policies of the 
form bo(I0), P ~ ( I ~ ) ,  . . .I, where 

I k  = (XO,UO,X1,Ulr...,Uk-l,Xk) 

is the history of the system up to time k (or information vector as in Section 4.1). 
The answer is negative within our framework (see Strauch [S17]), and as a 
result we shall not deal further with this possibility of enlarging the set of 
admissible policies. 

It is to be noted that, while we allow an arbitrary state and control space, 
we have made a restrictive assumption in requiring that the disturbance space 
D is a countable set. This assumption was mostly made in order to avoid 

t In what follows we always assume that g(x. 11, w )  is nonnegative or nonpositive for all 
x, u, w and hence the limit is well defined as a real number or f cc. 
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the extremely complicated mathematical difficulties associated with the need 
to restrict the class of admissible policies so that 1::; akg[xk, pk(xk), wk] is 
guaranteed to be a well-defined random variable for each N. The count- 
ability assumption eliminates these difficulties as discussed in Section 2.1. 
Our assumption, however, is satisfied in many problems of interest, most 
notably for deterministic optimal control problems and problems of optimal 
control of a Markov chain with finite or countable number of states. Also 
for many problems of interest where our assumption is not satisfied, our 
main results still may be proved under other appropriate assumptions, usually 
by following the same line of argument as the one given here. For analysis 
related to problems involving uncountable disturbance sets the advanced 
reader may consult Blackwell [BZO], Hinderer [H9], and Strauch [ S l 7 ] .  

In the first three sections of this chapter we shall be operating under the 
following assumption : 

Assumption B (Boundedness) The function g in the cost functional 
(2 )  satisfies 

0 < g(x, u, w )  < M V(x, u, w )  E S x C x D, (3) 

where M is some scalar. 

Notice that (3) could be replaced by an inequality of the form 

M2 < g(x, u, W )  < M i ,  

where M1, M 2  are arbitrary scalars, since addition of a constant r to g merely 
adds ( 1  - a)- lr to the cost functional. The assumption above is not as re- 
strictive as it may seem at first sight. First, it holds always for problems where 
the spaces S, C,  and D are finite sets. Second, the assumption of finiteness of D 
is implicitly made each time a computational solution to the problem is 
sought. In addition, during the computations the effective state and control 
spaces will ordinarily be finite or bounded sets and relation (3) will usually 
hold. In other cases, it is often possible to reformulate the problem so that it is 
defined over bounded but arbitrarily large regions of the state space and the 
control space over which relation (3) holds. In any case the assumption will be 
somewhat relaxed in Section 6.4, where g will be allowed to be unbounded 
either from below or from above. 

Let us denote by II the set of all admissible policies 71, i.e., the set of all 
sequences of functions 71 = {po,  p l ,  . . .} with pk : S -+ C,  &(x) E V ( x )  for all 
x E S, k = 0, 1, . . . . Then the optimal value function J* given by 

J*(x) = inf J,(x) Vx E S 
n e n  

is well defined as a real-valued function under Assumption B. In fact, one may 
show that J* is uniformly bounded above and below. 
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A class of admissible policies of particular interest to us is the class of 
stationary admissible policies of the form II = {p, p, . . .}, where p: S -, C, 
p(x)  E V ( x ) ,  x E S .  For such policies the rule for control selection is the same 
at every stage. The cost associated with an admissible stationary policy 
{p, p, . . .} and an initial state x E S will also be denoted by J,(x), i.e., for 
7c = {p, p, . . .} we write 

Similarly as for J* we have that J ,  is well defined as a real-valued function 
under Assumption B. A statement that the stationary policy {p*, p*, . . .} is 
optimal will mean throughout this chapter that {p*,  p*, . . .} is admissible 
arid we have J * ( x )  = J,,.(x),fiw a//  x E S .  

The next section gives a characterization of the optimal value function J* 
and provides some convergence and existence results. Section 6.2 describes 
computational methods for Problem (D), under the assumption that the 
state, control, and disturbance spaces are finite sets. The results obtained in 
Sections 6.1 and 6.2 are interpreted by means of the notion of a contraction 
mapping in Section 6.3. In Section 6.4 we relax Assumption B and consider 
costs per stage that are unbounded above or below. In Sections 6.5 and 6.6 we 
consider a problem involving a linear system and a discounted quadratic cost 
functional and an inventory control problem with discounted cost. Finally, 
in Section 6.7 we consider problems involving a nonstationary or periodic 
system and cost per stage. We show that such problems can be embedded 
within the framework of Problem (D), which involves a stationary system and 
cost per stage. Consequently we are able to obtain in a simple manner results 
for nonstationary problems that are analogous to those for the stationary 
case. 

6.1 Convergence and Existence Results 

Consider for every positive integer N the following N-stage problem 
obtained from the infinite horizon problem defined earlier by means of 
truncation. This problem is to find a policy nN = { p o ,  pl, . . . , p N -  1} with 
pk(Xk) E u(xk), vxk E S that minimizes 

(4) 

subject to the system equation constraints. The optimal value of this problem 

I N- 1 

J,,(XO) = E { k50 akg[xk 9 pk(xk), w k l  
Wk 

k = O ,  1. .... N - 1  
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for each initial state x o  is denoted J$(xo)  and is given by (cf. Chapter 2, 
Problem 6 )  

J$(xO) = J N ( X O ) ,  ( 5 )  

where for every N ,  J N ( x O )  is given by the Nth step of the algorithm 

J , ( x )  = 0 V X E S  (6) 

V X E S ,  k = 0 , 1 ,  . . . ,  N - 1 .  (7) 

The expectation above is, of course, taken with respect to the given dis- 
tribution P( 9 Ix, u), which depends on x ,  u.  

Notice that in the DP algorithm (6) and (7) we have reversed the indexing 
of the optimal value functions so that now the algorithm proceeds from lower 
to higher values ofindices k in contrast with finite horizon algorithms. We have 
also dropped time indices where they are redundant due to stationarity. These 
notational conventions are convenient for infinite horizon problems and will 
be adopted throughout the remainder of the text. 

WeshallalsodenoteforanyfunctionsJ: S -+ R, p :  S + C w i t h p ( x ) ~  U ( x ) ,  
V x  E S ,  for which the expected values below are well defined : 

T ( J ) ( x )  = inf E { g ( x ,  u, w) + ~ J [ f ( x ,  u, w)l) ,  (8) 

T , ( J ) ( x )  = E { S C X ,  A x ) ,  w l  + aJCf(x9 A x ) ,  411. (9) 
U E U ( X )  w 

W 

In these relations T ( J ) ( .  ) and T,(J)( - ) are functions defined on the state 
space S ,  and T, T, may be viewed as mappings that transform a function J on S 
into another function [T(J)  or T,(J)]  on S .  In terms of the notation above 
algorithm (6) and (7) can be written 

Jo(x)  = 0, (10) 

J k ( x )  = T k ( J o ) ( x ) ,  (11) 

T k ( J ) ( x )  = T [ T k - ' ( J ) ] ( x ) ,  

k = 0, 1, .  . . , 

where T k  is defined for all k and J :  S -+ R by 

TO(J) = J ,  

i.e., T k  is the composition of the mapping Twith itself k times. 
We have the following lemma. 

Lemma 1 For any bounded functions J :  S + R, J' : S + R, such that 

J ( x )  < J' (x)  V X E S ,  
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and for any function p :  S + C with p(x )  E V ( x ) ,  Vx E S we have 

T k ( J ) ( x )  < Tk(J‘ ) (x )  
T ; ( J ) ( x )  < T;(J’)(x) 

VX E S,  
V X  E S ,  

Proof For any x ,  u, w we have J [ f ( x ,  u, w)] < J ‘ [ f ( x ,  u, w)], from which 
we obtain 

k = 0, 1, . . . , 
k = 0, 1 ,  . . . . 

E Mx, u, w) + uJCf(x ,  u, w)lI  < E M x ,  u, w) + d ’ C f ( x ,  u, w)X. 

From this relation we obtain T ( J ) ( x )  < T(J’ ) (x ) ,  Vx E S by taking the in- 
fimum of both sides with respect to u E U(x) ,  and the first inequality is proved 
fork  = 1. Similarly, it is proved for all k. A similar argument proves also the 
second inequality. Q.E.D. 

W W 

For any two functions J :  S + R ,  J ’ :  S + R ,  we write 

J < J’ if J ( x )  < J’(x)  Vx E S .  

With this notation Lemma 1 is stated as 

J < J‘* Tk(J) < Tk(J’), k = 1, 2 , .  . . , 
k = 1 ,  2 , .  . . . J < J’* T;(J) < T;(J’), 

Denote also by e :  S + R the function taking the value 1 identically on S :  

e (x)  = 1 Vx ES. (12) 

(13) 

(14) 

The following proposition shows that the optimal value function JN(xO)  
of the N-stage truncated problem converges to the optimal value of the 
infinite horizon problem. Not only that, but the proposition goes further and 
shows that the DP algorithm (6) and (7) and (10) and (11) converges to the 
optimal value function J* o f  the infinite horizon problem for an arbitrary 
bounded starting function J ,  . 

Proposition 1 (Convergence of the DP Algorithm) The optimal value 
function J* of Problem (D) satisfies 

(15) 

where M is the upper bound in (3). Furthermore, for any bounded function 
J :  S + R there holds 

We have from (8) and (9) for any function J : S -, R and any scalar I’. 

T(J + re) (x)  = T ( J ) ( x )  + ur 

T,(J + re) (x)  = T,(J)(x) + ur 

Vx E S ,  

Vx E S .  

0 < J*(x)  < M/(1 - a) vx E s, 

J*(x) = lim T k ( J ) ( x )  Vx E S. (16) 
k- 00 
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Proof From (3) we have for any initial state X E S  and every policy 
{ P O ?  P l ? .  . .I ,  

By taking infima over {po ,  pl, . . .} of both sides, 

J*(x) < JN(x) + [aN/( 1 - a)]M VX E S, N = 0, 1, . . . , 

where JN is defined for all N by (6) and (7) [or (10) and (1 l)]. By combining this 
relation with (6) we obtain (15). Also in view of (3), 

JN(X) < J*(x) vx E S .  

Combining the two inequalities above we obtain 

J*(x) = lirn JN(x) VX E S. (17) 
N+ m 

Now for an arbitrary bounded function J :  S + R let r be a scalar such that 

( J  - re)(x) < 0, ( J  + re)(x) 2 0, Vx E S ,  

where e is the unit function defined by (12). We have by Lemma 1, 

Tk(J - re)(x) < Jk(X) < Tk(J + re)(x) Vx E S ,  (18) 

and by (13) 

Tk(J + re)(x) = Tk(J - re)(x) + 2akr = Tk(J)(x) + akr 

Taking superior and inferior limits in (18) and using (17) we obtain 

VXES. (19) 

lirn sup T ~ ( J  - re)(x) < J*(x) < lim sup T ~ ( J  + re)(x), 
k+m k+m 

(20) lim inf Tk(J - re)(x) < J*(x) < lirn inf Tk(J + re)(x). 
k+w k+m 

On the other hand from (19) we have 

lim sup Tk(J - re)(x) = lim sup Tk(J + re)(x) = lim sup Tk(J)(x), 
k+m k+ m k - a ,  

lim inf Tk(J - re)(x) = lim inf Tk(J + re)(x) = lirn inf Tk(J)(x). 
k -  m k+  m k + m  

Using the above relations in inequalities (20) we obtain 

J*(x) = lim sup Tk(J)(x) = lim inf Tk(J)(x) 
k - m  k+  m 

and hence 
J*(x) = lim Tk(J)(x) Vx E S. Q.E.D. 

k+m 
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Now given any stationary policy 71 = {p, p, . . .} where p: S -+ C with 
p ( x )  E U(x) ,  Vx E S, we can consider the problem that is the same as Problem 
(D) except for the fact that the control constraint set contains only one 
element for each state x, the control p(x) ,  i.e., a control constraint set of 
the form 8(x) = { p ( x ) } ,  Vx E S .  Clearly this problem falls within the frame- 
work of Problem (D) and since there is only one admissible control law (the 
policy {p, p, . . .}) application of Proposition 1 yields the following corollary: 

Corollary 1.1 The value J,(x) of the cost functional (2) corresponding 
to an admissible stationary policy {p, p, . . .} when the initial state is x 
satisfies 

0 I J,(x) I M/(1 - a). (21) 

J,(x) = lim Ti(J)(x) Vx E S. (22) 

Furthermore, for any bounded function J :  S -+ R there holds 

k-+m 

The next proposition shows that the function J* is the unique solution of 
a certain functional equation. This equation provides the means for obtaining 
a stationary optimal control law. 

Proposition 2 (Optimality Equation-Necessary and Sufficient Con- 
dition for Optimality) The optimal value function J* satisfies 

J * ( x )  = inf E {g(x, u, w) + a J * [ f ( x ,  u, w)]} Vx E S (23) 
UPU(X)  w 

or equivalently 

Furthermore, J* is the unique bounded solution of the above functional 
equation. In addition, if p* : S -+ C is a function such that p*(x)  E U(x) ,  Vx E S, 
and p * ( x )  attains the infimum in the right-hand side of (23) for each x E S, 
then the stationary policy {p*, p*, . . .} is optimal. Conversely if {p*, p*, . . .} is 
an optimal stationary policy, then p*(x)  attains the infimum in the right-hand 
side of (23) for all x E S. 

Proof Let J o  be the function that is identically zero on S [Jo(x)  = 0, 
Vx E S]. We have by (3) and (6),  (7) [or (10) and (1 l)] 

J*(x )  = T ( J * ) ( x )  vx E S. 

J ~ ( x )  < T(JO)(x)  < ... < Tk(J0) (x )  < Tk+' (J0) (x )  d . * *  < J*(x)  VX ES. 

Hence for all k and x E S, 

Tk"(Jo) (x)  = inf E { g ( x ,  u, w) + aTk(Jo)[ f (x,  u, w)]) 
U € U ( X )  w 

d inf E {g(x, u, w )  + a J * [ f ( x ,  u, w)]}. 
U S U ( * )  w 
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Taking the limit as k -, m and using (16) we obtain 

J*W < inf E { g ( x ,  u, w) + crJ*[f (x ,  u, w ) ] } ,  (24) 
U€U(X) w 

or equivalently 

J*(x)  < T(J*)(x)  vx E s. (25) 

It follows from (25) that 

J*(x )  d T(J*)(x)  6 T2(J*) (x )  < . . * < Tk(J*)(x)  d Tk"(J*)(x) d . . . . 

By taking the limit as k -+ m and using limk+m Tk(J*) (x )  = J*(x)  (Prop- 
osition l), we obtain 

J*(x)  < T ( J * ) ( x )  < . ' .  < Tk(J*)(x)  < . . . d J*(x) .  

Hence J * ( x )  = T(J*)(x) .  

solutions of (23) we would have for all k 
To show uniqueness simply observe that if JT,  JT were two bounded 

JT(x)  = Tk(JT)(x), J t ( x )  = Tk(JT)(x) vx E s. 
By Proposition 1, however, we have 

lim Tk(J:)(x)  = lim Tk(JT)(x) = J*(x) Vx E S.  
k-m k - a ,  

Hence J :  = J :  = J* .  In order to prove the last part of the proposition let 
us state the following corollary, which follows from the part of Proposition 2 
already proved by the same reasoning we used to obtain Corollary 1.1 from 
Proposition 1. 

Corollary 2.1 Let {p, p, . . .} be an admissible stationary policy. Then 

Furthermore, J ,  is the unique bounded solution of the above functional 
equation. 

Now if p * ( x )  minimizes the right-hand side of (23) for each x E S,  then we 
have for all x E S ,  

J*M = E {SCX, P* (X) ,  w l  + aJ*Cf(x, P * ( X ) ,  w)l>. 
W 

Hence by the uniqueness part of the corollary we must have J*(x)  = J,.(x) 
for all x E S.  and it follows that {p* .  p*.  . . .} is optimal. Also if {p* .  p*, . . .} 
is optimal, then we have J* = J,* and from the corollary J,. = TJJ,.). 
Hence J* = T,,(J*), which implies that p*(x)  attains the infimum in (23) for 
all x E S.  Q.E.D. 
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Note that Proposition 2 implies the existence of an optimal stationary 
policy when the infimum in the right-hand side of (23) is attained for all x E S.  
On the other hand, if the infimum is not attained, there arises the question 
whether one may approximate as closely as desired the optimal value J*(x)  
corresponding to an initial state x by employing a stationary policy. The 
answer is affirmative (see Problem 12). 

We finally show the following relation, which holds for any bounded 
function J : S + R : 

SUP I T k ( J ) ( x )  - J*(x )  I < ak S U ~  I J ( x )  - J*(x)  1 ,  k = 0, 1, . . . . 
X E S  X E  

This relation is a special case of the following result: 

Proposition 3 For any two bounded functions J :  S + R, J’: S -, R, 
and for all k = 0, 1, , . . there holds 

y g  ITk(J)(x) - Tk(J’)(x)(  < Olk su IJ(x) - J ’ ( x ) l .  
XE Y 

Proof It is sufficient to prove the result for k = 1 since repeated use of the 

We have for any x E S ,  u E U(x) ,  
inequality with k = 1 yields the desired result. 

E M X ,  u, w) + aJ[I f (x ,  4 w)l> = E { d x ,  4 w) + d ” f ( x ,  u, w)l> 
W W 

+ a E { J C f ( x ,  u, w)l - J ” f ( x ,  4 w)l )  
W 

< E M x ,  4 w) + aJ’Cf(x,  4 411 
W 

+ a su IJ(x) - J’(x) l .  
X E  g 

Taking the infimum of both sides over u E U(x) ,  we obtain 

T ( J ) ( x )  - T(J’ ) (x )  < a sug IJ(x) - J’(x)l v x  E s. 
X E  

A similar argument shows that 

and hence 

I T ( J ) ( x )  - T ( J ‘ ) ( x ) )  < a sup IJ(x) - J’(x)I v x  E S .  
X € S  

By taking the supremum of the left side over x E S the result follows. Q.E.D. 
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As earlier, we have 

Corollary 3.1 For any two bounded functions J :  S --* R, J’: S --* R, 
and any admissible stationary policy {p, p, . . .}, we have for all k = 0, 1, . . . , 

;y I Tk,(J)(x) - Tk,(J’)(x) I < tlk sup I J(x) - J’(x)  I .  
x o s  

The main conclusion from the propositions established earlier is that the 
optimal value function J* is bounded and is the unique bounded solution of 
the functional equation (23). This equation yields an optimal stationary 
control law provided the infimum in its right-hand side is attained. Further- 
more, the DP algorithm yields in the limit the function J* starting from an 
arbitrary bounded function J and the rate of convergence is at least as fast as 
the rate of a convergent geometric progression (Proposition 3). Thus the DP 
algorithm may be used for actual computation of at least an approximation 
to J*.  This computational method together with some additional methods 
will be further examined in the next section. The remainder of this section is 
devoted to two examples, in which we do not state explicitly that the dis- 
turbance space is countable. The conclusions and results obtained are rigorous 
only for a countable disturbance space. 

Asset Selling Example 

Consider the asset selling problem of Section 3.4. When the problem is 
viewed over an infinite horizon it is essentially a discounted cost problem with 
discount factor a = 1/( 1 + r )  [cf. Eq. (3.65)]. If we assume that the offers x are 
bounded, then the analysis of the present section is applicable and the optimal 
value function is the unique solution of the functional equation 

J * ( x )  = max[x, (1 + r1-l E {J*(w)}l. 

The optimal policy is obtained from this equation and has the following 
form. If current offer 2 (1 + r ) - ’  E ,  {J*(w)} = a, sell and otherwise do not 
sell.ThecriticalnumberE = (1 + r ) -  Ew {J*(w)}isobtainedasinSection3.4. 

W 

Component Replacement Example 

A certain component of a machine tool can be in any one of a continuum 
of states, which we represent by the interval [0, 13. At the beginning of each 
period the component is inspected, its current state x E [0, 13 determined, and 
a decision made whether or not to replace the component at a cost R > 0 
by a new one at state x = 0. The expected cost of having the component at 
state x for a single period is C(x), where C( - ) is a nonnegative bounded and 
increasing function of x on [O, 11. The conditional cumulative probability 



6.1 CONVERGENCE AND EXISTENCE RESULTS 233 

distribution F(z1x) of the component being at a state less or equal to z at 
the end of the period given that it was at state x at the beginning of the period 
is known. Furthermore, for each y E [0, 13 we have 

1 

JlldF(zlxl) < S, dF(zlx2) for 0 < x 1  < x2 < 1. 

This assumption implies that the component tends to turn worse gradually 
with usage, i.e., for each y E [0, 11 there is greater chance that the component 
will go to a final state in the interval b, 11 when at a worse initial state. 
Assuming a discount factor a E (0, 1 )  and an infinite horizon, the problem is to 
determine the optimal replacement policy. 

Except for the countability assumption, the problem clearly falls within 
the framework of this section and the optimal value function J* is the unique 
bounded solution of the functional equation 

J*(z) dF(z(O) ,  C(x) + a 

An optimal replacement policy is given by: 

Replace if R + C(0) + a J*(z) dF(z  10) < C(x) + a J*(z) dF(z Ix). Jo Jo 
Do not replace otherwise. 

Now consider the DP algorithm 

Jo(x) = 0, 

T(Jo)(x) = min[R + C(O), C(x)], 

Since C(x) is increasing in x we have that T ( J o ) ( x )  is nondecreasing in x and 
in view of our assumption on the distributions F(z1x) the same is true for 
Tz(Jo)(x). Proceeding similarly it follows that Tk(Jo)(x) is nondecreasing in 
x and so is the limit 

J*(x) = lim Tk(Jo)(x). 

It follows under our assumptions that the function C(x) + a Jh J*(z) dF(z  I x) 
is nondecreasing in x. This is simply a reflection of the intuitively clear fact 

k -  w 
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I 
R C(0) + a JOJ*(-J tlE’(zlOJ 

I 
I 
I 
I I - - 

0 I 

Do n o t  Replace 
replace 

_:* Y 

FIGURE 6.1 

that the optimal cost cannot decrease as the initial state increases, i.e., we 
start at a worse initial state. Thus an optimal policy takes the form 

Replace if x 2 x* 
Do not replace if x < x*, 

where x* is the smallest scalar for which 

R + C(0) + CI JolJ*(z) dF(zI0)  = C(x*) + ct 

as shown in Fig. 6.1. 

6.2 Computational Methods-Successive Approximation, 
Policy Iteration, Linear Programming 

This section presents three alternative approaches for solving the in- 
finite horizon, discounted cost Problem (D). In order that these approaches 
be implementable in a computer it is necessary that the state space and con- 
trol space be finite sets. When these spaces are infinite, it is necessary to replace 
them with finite sets by means of some discretization procedures. A dis- 
cretization procedure analogous to the one given in Section’ 5.2 may be 
employed (see Bertsekas [BlS] or Problem 2) and it possesses similar stability 
properties under analogous assumptions. The first approach, successive 
approximation, is essentially the DP  algorithm and yields in the limit the 
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optimal value function and an optimal policy as discussed in the previous 
section. Some variations aimed at accelerating the convergence are discussed 
in addition. The other two approaches, policy iteration and linear program- 
ming, terminate in a finite number of iterations (when the spaces involved are 
finite sets). However, they require solution of linear systems of equations or of 
a linear program of dimension as large as the number of points in the state 
space. When this dimension is very large their practicality is questionable. 

Throughout this section we shall assume that the spaces S ,  C ,  and D in 
Problem ( D )  are Jinite sets. Under these circumstances, Assumption B can be 
made to hold by adding a suitable constant tog if necessary. When Sand D are 
finite, the problem becomes one of control of a finite state Markov chain, and 
for this case one can represent the mappings T and TP of (8) and (9) in a 
standard form, which is perhaps more convenient both from the point of view 
of conceptual understanding and from the point of view of computation. 

Let S consist of n states denoted by 1,2, . . . , n :  

S = {1,2, ..., n } .  

Let us denote by piJ(u) the transition probability: 

pij(u) = P(xk+l = j l x k  = i ,  uk = u)  V i , j E S ,  U E  U(i). 

Thus pij(u) is the probability that the next state will be j given that the current 
state is i and control u E V ( i )  is applied. These transition probabilities may 
either be given a priori or they may be calculated from the system equation 

x k +  1 = f ( x k ,  u k ,  w k )  

and the known probability distribution P( * Ix, u )  of the input disturbance 
wk. Indeed, we have 

p i j (u )  = PCWju) I i ,  u l ,  
where Wju)  is the (finite) set 

w. ju)  = { w  E D I f ( i ,  u, w )  = j } .  

Now let us use the notation 

a(i, u )  = E {g(i ,  u, w)} V i  E S ,  u E U(i), 
W 

where the expectation is taken with respect to the given probability dis- 
tribution P( - I i ,  u). Then the basic expression 

E {g(i ,  u, w)  + crJ[f(i ,  u, w ) ] }  V i  E S 
W 
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may be written in terms of p&) and g as 
n 

~ ( i ,  u )  + a 1 p i j ( u ) ~ ( j )  ~i E S .  
j= 1 

As a result the mappings Tand T, of (8) and (9) can be written for any function 
J : S - + R a s  

n 

These expressions are often convenient to work with. Notice that the func- 
tions J, T,(J): S -, R, may be represented by the n-tuples (or n-dimensional 
vectors) of their values J(l), . . . , J(n), T,(J)(l), . . . , T,(J)(n) 

J =  

If for a p :  S + C with p(i) E U(i), i = 1, . . . , n, we form the transition prob- 
ability matrix 

- 1  ~1 1 b(1)l . . . plnC/41)1 

p.1 CAnll . . . ~ n n C ~ ( n ) l  

and consider the n-dimensional vector g, defined by 

BCn, d n ) l  
then we can write in vector notation 

T, (J )  = a,, + aP, J. 
The value function J, corresponding to a stationary policy {p ,  p, . . .} is 

by Corollary 2.1 the unique solution of the equation 

J, = T,(J,) = 8, + aP, J, . 
Hence for any admissible stationary policy {p, p, . . .} the corresponding 
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function J, may be found as the unique n-dimensional vector that solves 
the system of n linear equations 

( I  - aP,)J, = g P ,  
or equivalently 

J, = (I - uP,)-'g,, 

where I denotes the n x n identity matrix. The invertibility of the matrix 
I - UP,, is assured since we have proved that the system of equations re- 
presenting the equation J, = T,(J,) has a unique solution for any possible 
value of the vector Q,, (cf. Corollary 2.1). 

Successive Approximation 

Here we start with an arbitrary bounded function J: S -, R and succes- 
sively compute T(J), Tz(J) ,  . . . , where the mapping T is defined by (8). By 
Proposition 1 we have 

lim Tk(J)(x) = J*(x) Vx E S.  
k + m  

Furthermore by Proposition 3, IJ*(x) - Tk(J)(x)l is bounded by a multiple 
of a geometric progression for all x E S. It is also of interest to note that the 
successive approximation method will yield an optimal policy after a finite 
number of iterations (see Problem 14). The successive approximation scheme 
can be considerably sharpened and improved by taking advantage of the 
special structure of the problem as we describe below. 

Suppose that we have computed J, T(J), T2(J), . . . , Tk(J). The following 
proposition provides upper and lower bounds for J*, which are obtained 
from J, T(J), . . . , Tk(J). These bounds converge monotonically to J*. 

Proposition 4 Let J :  S + R. Then for all x E Sand k = 0, 1, . . . , 
Tk(J)(x) + c k  < Tk"(J)(x) + ck+l 

< J*(x) < Tk+'(J)(X) + z k + l  < Tk(J)(x) + z k ,  (26) 

where for all k = 0, 1,. . . , 

U 
Ek = - max[Tk(J)(x) - Tk-'(J)(x)]. 

1 - u X € S  
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Furthermore, the error bounds (26) are optimal in the following sense: 

ck+ = max{c 1 Tk(J)  + (c/a)e < T k +  ' ( J )  + ce < J * } ,  

Z k + l  = min{ElJ* < T k + l ( J )  + Ee 6 Tk(J)  + (i;/a)e}, 

(29) 

(30) 

where e is the unit function on S [e(x) = 1, Vx E S]. 

Proof Denote 

y = min[T(J)(x) - J ( x ) ] .  
X E S  

We have 

J + ye < T(J).  

Applying T to both sides, using the monotonicity of T and (1 3), 

T ( J )  + aye < T2(J),  

J + (I  + a)ye < T ( J )  + aye 6 T'(J) .  

T ( J )  + (a  + a2)ye < ~ ' ( 5 )  + d y e  < T3(J) ,  

(32) 

and because of (3 l), 

(33) 

This process can be repeated, first applying T to obtain 

(34) 

and then using (3 1) to write 

J + ( I  + a + a2)ye < T ( J )  + (a + a2)ye < T 2 ( J )  + a2ye < T3(J) .  (35) 

After k steps this results in the inequalities 

Taking the limit as k + 00 we obtain 

J + (cl/a)e < T(J)  + c l e  < T2(J)  + acle < J*, 

T k + l ( J )  + ck+le < J*, 

(37) 

where c1 is defined by (27). Replacing J by Tk(J)  in this inequality, we have 

which is the second inequality in (26). 
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From (33) we have 

and consequently 

ac1 < c2. 

Using this in (37) yields 

and replacing J by T k -  '(J) we have the first inequality in (26). 
To prove (29) we replace J by Tk(J)  in (37) and obtain 

Tk(J) + (Ck+l/a)e < Tk+l(J) ck+le < J*, 

which implies that C k + l  is a member of the set on the right side of (29). If c 
is any other member of this set, we have 

c - - 1 < Tk+'(J)(X) - Tk(J)(x) VXES, (: ) 
and so 

1-Ci  1 - a  
c < min[Tk+l(J)(x) - Tk(J)(x)] = ~ c k +  1 3  a x c s  o! 

which shows c < ck+ '. 
The last two inequalities in (26) and Eq. (30) follow by an analogous 

argument. Q.E.D. 

Notice that the error bounds (26) may be easily computed as a by-product 
of the computations in the successive approximation method. In practice 
these bounds are extremely helpful and speed up the convergence con- 
siderably. Some properties of these bounds are given in Problem 7. Additional 
error bounds that are useful in successive approximation methods are given in 
Problems 3 and 4. 

We now consider a computational example that illustrates the utility of 
the error bounds of Proposition 4. 

EXAMPLE 1 Consider a problem where there are two states and two 
controls 

s = {1,2}, c = (u1, u'} .  
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.% !A 
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3 3 
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3 '><I .% 2 

(a )  ( b )  
FIGURE 6.2 (a)u  = u ' . ( b ) u  = LI*.  

The transition probabilities corresponding to the controls u 1  and u2 are 
as shown in Fig. 6.2, i.e., we have the transition probability matrices 

The transition costs are as follows: 

and the discount factor is u = 0.9. The mapping T is given by 

2 

u ' )  + u 1 p,,{u')JG), 
j =  1 

2 

g(i, u') + u c pi,<u2)JG)}, i = 1,2. 

The scalars c k  and ?k of (27) and (28), respectively, are given by 

j =  1 

u 
ck = - min{Tk(J)(l) - Tk-'(j)(1), Tk(J)(2) - Tk-'(J)(2)}, 

I - u  

C? 
?k = - max{Tk(J)(l) - Tk-'(J)(l), Tk(J)(2) - Tk-'(J)(2)}. 1 - u  

The results of the successive approximation method starting with the zero 
function J o  [Jo(l) = J0(2)  = 01 are shown in Table 6.1 and illustrate the 
power and practicality of the error bounds. 
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TABLE 6.1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

0.00000 
0.5oooO 
1.28750 
1.84438 
2.41391 
2.89573 
3.34321 
3.73972 
4.09937 
4.42 180 
4.71256 
4.97398 
5.20938 
5.421 18 
5.61183 
5.78340 
5.93782 
6.07680 
6.20188 

0.00000 
1.00000 
1.56250 
2.22063 
2.74459 
3.24692 
3.68517 
4.08583 
4.44362 
4.76689 
5.05727 
5.3 1886 
5.55418 
5.76602 
5.95665 
6.12823 
6.28265 
6.42163 
6.54670 

5.00000 
6.35000 
6.85625 
7.12962 
7.23214 
7.28750 
7.30826 
7.31947 
7.32367 
7.32594 
7.32679 
7.32725 
7.32743 
7.32752 
7.32755 
7.32757 
7.32758 
7.32758 

9.50000 
8.37500 
7.76750 
7.53969 
7.41667 
7.37054 
7.34563 
7.33628 
7.33124 
7.32935 
7.32833 
7.32794 
7.32774 
7.32766 
7.32762 
7.32760 
7.32759 
7.32759 

5 . 5 m  
6.62500 
7.23250 
7.46031 
7.58333 
7.62946 
7.65437 
7.66372 
7.66876 
7.67065 
7.67167 
7.67206 
7.67226 
7.67234 
7.67238 
7.67240 
7.67241 
7.67241 

10.00000 
8.65000 
8.14375 
7.87038 
7.76786 
7.71250 
7.69 174 
7.68053 
7.67633 
7.67406 
7.67321 
7.67275 
7.67257 
7.67248 
7.67245 
7.67243 
7.67242 
7.67242 

Another possibility for accelerating the convergence of the successive 
approximation method is to modify the basic mapping Tin the following way. 

Let us denote by 1,2,. . . , n the points of the state space S, i.e., 

s = {1,2 ) . . . )  n}. 

Given a function J: S + R ,  define the mapping F by 

v x  E s, F(J) (x )  = T,(J) (x)  

where the mapping T, is defined recursively by 

T,(J)(x)  = J ( x )  v x  E s, 
min E {g(x ,  u, w )  + aT(J) [ f ( x ,  u, w ) l }  

U E U ( X )  w 

if x = i +  1, 

T ( J ) ( x )  otherwise, 
T + I ( J M  = 

or equivalently 

T [ T ( J ) ] ( x )  if x = i + 1, 
otherwise. T +  , ( J ) ( x )  = 

(38) 

(39) 
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In words, for the state x = i + 1 we have that T +  l(J)(i + 1) is obtained from 
T ( J )  by minimization over u as in (40), but for all states x # i + 1, we have 
T +  l(J)(x) = T(J)(x). The function F ( J )  is obtained from J after minimization 
has been carried out for every state. The difference with the computation of 
T(J)  is that at each new minimization the “current” function T ( J )  is used in 
(40) in place of J .  A moment’s reflection should convince the reader that the 
computation of F ( J )  is as easy as the computation of T(J). We may consider 
now the successive approximation method whereby we compute J ,  F(J), 
F2(J) ,  . . . . The following propositions show that the method is valid in the 
sense that Fk(J)(x) + J*(x) as k + co and in addition in many cases it is 
characterized by better convergence properties than the earlier method. 

Proposition 5 Let J: S -, R, J’: S -, R, be two bounded functions. 
Then for any k = 0, 1, . . . , 

max I F k ( ~ ) ( x )  - Fk(J’)(x)  1 < ak max I J(x) - J’(x) I. (42) 
x s S  xss 

Furthermore we have 

F(J*)(x) = J*(x) vx E s, (43) 

lim Fk(J)(x) = J*(x) Vx E S .  
k -  w 

< a max I J(x) - J’(x) I .  
x s s  

Proceeding similarly we have for every i a n d j  d i, 

IT.(J)o’) - T(J”j)I d a maxIJ(x) - J’(x)l, 

and for i = n the above relation is equivalent to (42) for k = 1. Relation (43) 
follows immediately from definition (38)-(41) and the fact that J* = T(J*). 
Relation (44) follows immediately from (42) and (43). 

x s s  

Q.E.D. 
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Proposition 6 If J :  S + R satisfies 

then 

T k ( J ) ( x )  < Fk(J) (x )  < J * ( x )  

Proof The proof is immediate by using definition (38)-(41) and the 
monotonicity property of T. Q.E.D. 

The preceding proposition provides the main motivation for employing 
the mapping F in place of T in the successive approximation method. A 
similar result may be proved for functions J : S + R satisfying J* < T ( J )  < J 
for all x E S. Additional results applicable to the mapping F and the related 
successive approximation method are given in Problems 3 and 4. We now 
provide a computational example. 

EXAMPLE 1 (CONTINUED) Consider the example examined earlier in 
this section. The mapping F is given by 

F(J)(i) = T2(J)(i), 

VX E S ,  k = 1,2, . . . . 

i = 1, 2, 

where 

I 2 2 

Tl(JI(1) = min g(1, u') + a 1 P~XU')JU) ,  g(1, u 2 )  + 

TI(Jl(2) = JP), 

T 2 ( J ) ( 1 )  = Tl(J)(l)? 

1 P l j ( u 2 ) J U )  7 { j =  1 j =  1 

2 2 

g(2, u') + a 1 P ~ ~ ( U ' ) T ~ ( J ) O ' ) ,  g(2, u 2 )  + j =  1 1 p 2 j ( u 2 ) T 1 ( J ) ~ ) } *  
j =  1 

One may show (Problem 3) that 

u2 < [F(J + re)(i) - F(J)(i)]/r < u, i = 1,2, r z 0, 

and thus by the result of Problem 3 we have the error bounds 

Fk(J)( i )  + ck < J*(i) < Fk(J)( i )  + ? k ,  i = 1,2, 

where 
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TABLE 6.2 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 

0.00000 
1.51531 
3.16788 
4.35204 
5.19911 
5.80504 
6.23847 
6.54852 
6.77030 
6.92895 
7.04243 
7.12361 
7.18167 
7.2232 I 
7.25292 
7.27418 
7.28938 
7.30026 
7.30804 

0.00000 
2.33373 
3.84690 
4.93594 
5.7 1495 
6.27219 
6.67080 
6.95594 
7.15990 
7.30580 
7.41017 
7.48482 
7.53823 
7.57643 
7.60375 
7.62330 
7.6 3 7 2 8 
7.64728 
7.65444 

5.71995 
6.14207 
6.47943 
6.72088 
6.89359 
7.01 7 14 
7.10552 
7.16874 
7.21396 
7.24630 
7.26944 
7.28600 
7.29784 
7.30630 
7.3 1236 
7.3 1670 
7.31980 
7.32201 

10.65312 
9.99341 
9.23554 
8.69239 
8.30387 
8.02594 
7.82714 
7.68493 
7.58320 
7.51043 
7.45838 
7.42115 
7.39451 
7.37546 
7.36183 
7.35208 
7.3451 I 
7.34012 

6.52841 
6.82109 
7.06332 
7.23672 
7.36075 
7.44947 
7.5 1294 
7.55834 
7.5908 1 
7.61404 
7.63066 
7.64255 
7.65105 
7.65713 
7.66148 
7.66479 
7.66682 
7.66841 

11.46159 
10.67243 
9.8 1943 
9.20823 
8.77102 
8.45827 
8.23456 
8.07453 
7.96006 
7.87817 
7.8 1960 
7.77370 
7.74773 
7.72629 
7.71095 
7.69998 
7.692 13 
7.68652 

The results of the successive approximation method starting with the zero 
function J o  [Jo(l) = J0(2) = 01 are shown in Table 6.2. 

A comparison of Tables 6.1 and 6.2 reveals that the values Fk(Jo)(l) and 
Fk(Jo)(2) converge to J*(l) and 5*(2) faster than Tk(Jo)(l) and Tk(Jo)(2) as 
predicted by Proposition 6. However, the error bounds Fk(Jo)(i) + ck and 
Fk(Jo)(i) + converge much slower than the corresponding error bounds 
Tk(Jo)(i)  + ck and Tk(Jo)(i) + Ek.  Thus the faster convergence property of the 
mapping F is counterbalanced by the fact that the corresponding error bounds 
are not as tight as those associated with the mapping T. This disadvantage 
may be somewhat rectified by changing the successive approximation 
iteration so that instead of operating with F on the current iterate function, 
say J k ,  we operate on the average of the error bounding functions, i.e., by 
considering the iteration 

where 
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TABLE 6.3 

0 
1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
1 1  
12 
13 
14 
15 

0 . m  0.00000 
7.58454 8.42204 
8.31052 8.70017 
1.24195 7.52229 
7.19141 7.54122 
7.34007 7.69411 
7.3441 7 1.6888 1 
1.32590 7.66956 
7.32545 7.67038 
7.32780 1.67277 
1.32185 7.61366 
7.32156 7.67231 
7.32755 7.67238 
7.32759 7.67242 
1.32159 1.61242 
1.32759 7.67241 

2.63 158 
6.08192 
6.12606 
6.85185 
7.28071 
7.29913 
1.31888 
1.31973 
7.32695 
1.327 I4 
7.32746 
1.32747 
1.32758 
1.32158 
7.32758 

12.53150 
10.65312 
7.76983 
1.53098 
7.39936 
1.38982 
1.33292 
1.331 17 
7.32865 
7.32856 
1.32766 
1.32164 
1.32760 
7.32760 
1.32159 

3.46908 
6.41 8 17 
l.Oo040 
7.20165 
7.63482 
7.64316 
7.66255 
7.66466 
1.61 193 
1.61195 
7.61221 
7.61229 
1.67241 
1.61241 
7.61241 

13.31500 
10.98338 
8.04418 
1.88019 
7.75341 
1.73386 
1.61658 
7.6761 1 
1.61362 
1.67338 
1.61241 
7.67247 
1.61243 
1.61243 
7.61241 

and J o  is arbitrary. The results of the computation for Jo(l) = J0(2 )  = 0 are 
given in Table 6.3 and are considerably more favorable than those of Table 
6.2. These computational results, however, are far too limited in scope to 
allow any general conclusions. Note that a similar modification of the succes- 
sive approximation method based on the mapping T does not lead to any 
improvement, as Problem 7 shows. 

The Policy Iteration Algorithm 

The policy iteration algorithm (otherwise called policy improvement 
algorithm) operates as follows. An initial admissible stationary policy 
no = {po, po, . . .} is adopted and the corresponding value function J p o  = J,, 
is calculated. Then an improved policy n' = { p l , p l ,  ...} is computed, 
resulting in a decrease of the value of the cost, and the process is repeated. 

The algorithm is based on Corollary 2.1 of Section 6.1 as well as the 
following proposition. 

Proposition 7 Let n = {p, p,  . . .} be an admissible stationary policy 
and J,(x)  = J,(x) be the corresponding value of the cost functional (2) when 
the initial state is x. Let 11: S + C,  p(x) E V(x), Vx E S, be a function satisfying 

EkICXl iw, w l  + LyJ,Cf(x, m, 411 
W 

= U E U ( X )  min E w M X ,  u, w) + LyJ,Cf(x, u, w)11. (45) 
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Then if J, (x)  is the value of the cost corresponding to X = {p, ,ii, . . .} when the 
initial state is x, we have 

J p ( x )  < J, (x)  V X E S .  (46) 
Furthermore, if the policy n is not optimal, strict inequality holds in (46) for 
at least one state x E S .  

Proof From Corollary 2.1 and (45) we have for every x E S ,  

J , (x)  = E {SCX, Ax), wl + uJ,Cf(x, PW. w)N 
W 

2 E{sCx, li(x), WI + mJ,Cf(x, iw, W)l} = Tp(J,)(x). 
W 

Applying repeatedly T, on both sides of the above inequality and using the 
monotonicity of and Corollary 1.1, we obtain 

J ,  3 T,(J,) > . . . > T ~ ( J , )  > . 2 lim T ~ ( J , )  = J , ,  
k + m  

proving (46). If J ,  = J , ,  then from the inequality above we have J ,  = T,(J,) 
and from (45) we have T,(J,) = T(J,), so that J ,  = T(J,) and hence J ,  = J* 
by Proposition 2. Hence n = {p, p, . . .} must be optimal. It follows that strict 
inequality holds in (46) for some x E S if n: is not optimal. Q.E.D. 

Policy Iteration Algorithm 

Step  1 Guess an initial admissible stationary policy 
no = { P O ,  po, . . .}. 

n' = {pi, pi, . . .}, 

Step 2 Given the admissible stationary policy 

compute the corresponding value function J,,(x) using the successive 
approximation algorithm or the linear system of equations 

(I - uP,,)J,, = g,,, 
as described in the beginning of this section. 

If JPt = J P x - , ,  stop-n' is optimal. 

Step 3 Obtain a new admissible policy n'" = {pi+', pi+', . . .} sat- 
isfying for all x E S 

E {SCX, Pi+ l(X), wl + uJ,,Cf(x, Pi+ l(x), w)l> 
W 

= min E { g ( x ,  u, w) + cd,iCf(x, U, w)]} = T(J,i)(x). 
U € U ( X )  w 

Return to Step 2 and repeat the process. 
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Since the collection of all possible stationary policies is a finite collection 
(by the finiteness of S and C) and an improved policy is generated at every 
iteration, it follows that the algorithm will find an optimal stationary policy 
in a finite number of iterations and thereby terminate. This property of the 
policy iteration algorithm is its main advantage over successive approxi- 
mation, which in general converges in an infinite number of iterations. On the 
other hand, finding the exact value of J,, in Step 2 of the algorithm requires 
solution of the system of linear equations representing J P i  = Tpi(JPi). The 
dimension of this system is equal to the number of points of the state space S 
and thus when this number is very large the method is not very attractive. 

We note that when the successive approximation method is used for 
carrying out Step 2 we may utilize error bounds similar to those described 
earlier in this section. We note also that one may construct a generalized 
policy iteration algorithm for the case where S ,  C ,  and D are not necessarily 
finite sets (see Problem 13). 

We now demonstrate the policy iteration algorithm by means of the 
example considered earlier in this section. 

EXAMPLE 1 (CONTINUED) 

Step 1 Let us select an initial policy no = ( p a ,  po,  . . .}, where 

pO(1) = u l ,  pO(2) = u2. 
Step 2 We obtain J p 0  through the equation J , ,  = T,o(J,o) or equivalently 

J,o(l) = g(1, u ’ )  + ~P,,(u’)J,o(l) + “P12(u1)J,o(2), 
J,@) = g(2, u2) + ap21(u2)J,o(l) + ap22(u2)J,0(2). 

Substituting the data of the problem, 
J ,o ( l )  = 2 + 0.9 x $ x J , o ( l )  + 0.9 x a x J,0(2), 
Jp(2) = 3 + 0.9 x 4 x J ,o( l )  + 0.9 x $ x J,0(2). 

Solving this system of linear equations for Jp0(l), JMO(2) we obtain 
J , o ( l )  N 24.12, J,0(2) 25.96. 

Step 3 We now find pl(l), p’(2) satisfying T, , (Jv0 )  = T(JPo).  We have 
T(JMo)(l) = min(2 + 0.9($ x 24.12 + x 25.96), 

0.5 + 0.9($ x 24.12 + 
= min(24.12, 23.45) = 23.45, 

T(JPo)(2) = min(1 + 0.9($ x 24.12 + 4 x 25.96), 
3 + 0.9(4 x 24.12 + $ x 25.96)) 

x 25.96)} 

= min(23.12,25.95} = 23.12. 
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The minimizing controls are 

p('(1) = U2, p'(2)  = U1. 

Step 2 We obtain JP1 through the equation JPI = TP1(JP1): 

JJl) = gu, UZ) + @Pll(UZ)JP1(1)  + @P,Z(UZ)J,1(2), 

JJ2) = g(2,  U') + @PZl(U1)JpI (1 )  + @PZZ(U1)JpI(2). 
Substitution of the data of the problem and solution of the system of equa- 
tions yields 

Step 3 

J,,i(l) N 7.33, J,1(2) N 7.67. 
We perform the minimization required to find T(J,I): 

T(JPI)(1) = min(2 + 0.9($ x 7.33 + $ x 7.67), 
0.5 + 0.9(* x 7.33 + 2 x 7.67)) 

= min(8.67, 7.33) = 7.33, 
T(JP1)(2) = min{ 1 + 0.9($ x 7.33 + $ x 7.67), 

3 + 0.9($ x 7.33 + 2 x 7.67)) 
= min(7.67. 9.83) = 7.67. 

Hence we have JPI = T(JP1),  whichimplies that {p', p', . . .} is optimal and 
J,i = J * :  

p*(l) = u', p*(2) = u', J*(1) N 7.33, J*(2) N 7.67. 

Linear Programming 

As discussed earlier we have 
J < T(J)  = J Q J* = T(J*). 

Thus if we denote by 1,2, .  . . , n the elements of the state space S ,  it is clear 
that J*( l), . . . , J*(n) solve the following maximization problem (in A', . . . , An): 

n 

max C Ai 
i =  1 

subject to 
jli < T(JJ(i), i = 1 , .  . ., n, 

where the function J A :  S -, R is defined by 

Ja(i) = A i ,  i = 1, . . . , n. 

If we denote by ul, uz, . . . , urn the elements of the control space, the problem 
above is written 

n 

max 2 jli 
i =  1 
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subject to 

Ai Q E {g(i, uk, w) + crJn[f(i, uk, w)] I i ,  uk} ,  i = 1, . . . , n, uk E V(i). 
W 

Using the notation given in the beginning of this section this linear program 
may be written in terms of transition probabilities p&) as 

n 

max 1 ii 
i =  1 

subject to 
n 

ii Q g(i, uk)  + cr 1 pi j (uk)I j ,  i = 1,2,. . . , n, uk E U(i)  
j =  1 

This is a linear program with n variables and as many as n x m constraints. 
As n increases, its solution becomes more complex and for very large n and 
m (in the order of several hundreds) the linear programming approach 
becomes impractical. 

For the example considered in this section the linear programming prob- 
lem above takes the form 

maximize A l  + I ,  

subject to I1 Q 2 + 0.9($I, + *I,), 
1, Q 1 + o.9($A1 + +A,), 

I1 < 0.5 + o.9($A1 + $A,), 
A, Q 3 + 0.9(+A1 + $1,). 

6.3 Contraction Mappings 

In this section we introduce the notion of a contraction mapping on the 
space of all bounded functions over the state space S.  A basic fact about such 
mappings is that they possess a unique fixed point-a classical result of 
analysis. Furthermore the fixed point may be found in the limit by successive 
application of the mapping on any bounded function over S ,  i.e., by a method 
of successive approximation. It turns out that the mappings 17; T,, and F 
considered in the past two sections [cf. (8), (9), (38)-(41)] are contraction 
mappings and that the corresponding results that we proved draw essentially 
their validity from the contraction property together with the monotonicity 
property of Lemma 1. 

The connection with the theory of contraction mappings is very valuable 
from both the conceptual and the practical points of view. This is particularly 
so since it turns out that the contraction and monotonicity properties are 
present in several dynamic programming models other than Problem (D) and 
by themselves guarantee the validity of results and algorithms similar to 
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those obtained in the past two sections. The corresponding theory is developed 
in some detail in Problem 4. Here we present only the notion of a contraction 
mapping and show that some of our earlier results concerning Problem 1 
are special cases of a general result on fixed points. 

Let B(S) denote the set of all bounded real-valued functions on S. With 
every function J: S + R that belongs to B(S) we associate the scalar 

(For the benefit of the advanced reader we mention that the function 11 - 1) 
may be shown to be a norm on the linear space B(S) and with this norm B(S) 
becomes a complete normed linear space, i.e., a Banach space [R5]). The 
following definition and theorem are specializations to B(S) of a more 
general notion and result (see, e.g., references [L5] and [L8]). 

Definition A mapping H: B(S) + B(S) is said to be a contraction 
mapping if there exists a scalar p < 1 such that 

IIHW - H(J')ll < PIIJ - J'IL V J ,  J'E B(S), 

where ( 1  - 1) is as in (47). It is said to be an m-stage contraction mapping if there 
exists a positive integer m and some p < 1 such that 

IIH"'(J) - H"'(J')II < pIlJ - J'IJ, V J ,  J' E B(S), 

where H"' denotes the composition H . . . H of H with itself m times. 

The main result concerning contraction mappings is as follows. 

Contraction Mapping Fixed Point Theorem If H :  B(S) + B(S)  is a 
contraction mapping or an rn-stage contraction mapping, then there exists a 
unique fixed point of H, i.e., there exists a unique function J* E B(S) such that 

H(J*)  = J*. 

Furthermore, if J is any function in B(S) and H k  is the composition H . . Hof 
H with itself k times, then 

lim IIHk(J) - J*(I = 0, 
k-cu  

i.e., the function H k ( J )  converges uniformly to the function J*. 

Proof See reference [L5] or [L8]. 

Now consider the mappings T and defined by (8) and (9). Proposition 3 
and Corollary 3.1 show that T and Tp are contraction mappings ( p  = a). 
As a result, the fact that the successive approximation method converges to 
the unique fixed point of T follows directly from the contraction mapping 
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theorem. Notice also that by Proposition 5, the mapping F defined by (38)- 
(41) is also a contraction mapping with p = a and the convergence result of 
Proposition 5 is again a special case of the fixed point theorem. 

Several additional results on contraction mappings of the type considered 
in DP  are pointed out in the problem section (Problem 4). In particular, the 
computational methods of the previous section are special cases of more 
general procedures that are applicable to such contraction mappings. 

6.4 Unbounded Costs per Stage 

In this section we consider Problem (D) but relax Assumption B by allow- 
ing costs per stage that are unbounded above or below. The complications 
resulting from relaxation of the boundedness assumption are substantial and 
the analysis required is considerably more sophisticated than the one under 
Assumption B. The main difficulty is that Proposition 1 and the results that 
depend on it need not be true anymore. We shall assume that one of the 
following two assumptions is in effect in place of Assumption B. 

Assumption P (Positivity)? The function g in the cost functional (2) 
satisfies 

V(x, u, w) ES x C x D. (48) 

Assumption N (Negativity) The function g in the cost functional (2) 

V(x, u, w) E S  x C x D. 

0 d g(x, u, w) 

satisfies 
g(x, u, w) d 0 (49) 

In problems where reward or utility per stage is nonnegative and total 
discounted expected reward is to be maximized, we may consider minimiza- 
tion of negative reward thus coming within the framework of Assumption N. 

It is to be noted that (48) could be replaced by 

M < g(x, u, w) 

while (49) could be replaced by 

g(x, u, w) < M 

V(x, u, w) E S x C x D, 

V(x, u, w) E S x C x D, 

where M is some scalar. When g is either bounded above or below we may add 
a scalar to g so that either (48) or (49) is satisfied. An optimal policy will not 
be affected by this change since, in view of the presence of the discount factor, 

t Problems corresponding to Assumption P are sometimes referred to in the research 
literature as negative DP problems [S17]. In these problems the objective function is maximized 
and the reward per stage is negative. Similarly problems corresponding to Assumption N are 
sometimes referred to as positive DP problems [B21, S171. 
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the addition of a constant r tog merely adds (1 - a)- l r  to the cost associated 
with every policy. 

One complication arising from allowing unbounded costs per stage is that 
the value J,(xo) of the cost functional (2) for some initial states xo and some 
admissiblepoliciesn = {po ,  pl, . . .}may be + co (in thecaseofAssumptionP) 
or - co (in the case of Assumption N). Consider the following simple example. 

EXAMPLE Let the system equation be 

xk+l = pxk + uk, k = 0, 1, 2 , .  . ., 

where xk, u k  E R ,  k = 0, 1, . . . , and f i  is a positive scalar. The control con- 
straint is l U k l  < 1, i.e., U(X) = { u l l u l  < I}. Consider the cost functional 

N- 1 

J , (X~) = lim C ctk(Xkl, 

where a < 1 is the discount factor. Consider the policy it = {PIP, .. .}, 
where P(x) = 0 for all x E R.  Then 

N + m  k = O  

N- 1 

and hence 
J,(xo) = co if xo # 0, afi 2 1, 

and J5(xo) is finite otherwise. It is also.possible to verify that when afi 2 1 
the optimal value J*(xo)  is equal to + 00 for Ixo 1 > l/(fi - 1) and is finite 
for Ixol < 1/(B - 1). 

We shall conduct our analysis with the notational understanding that 
the cost J,(x,)corresponding to an initial state xo and a policy n or the optimal 
cost J*(xo) corresponding to an initial state xo may take the values + co or 
- co (depending on whether we operate under Assumption P or N). In other 
words, we consider J,( - ), J*( - ) to be extended real-valued functions. 

The results to be presented provide characterizations of the optimal value 
function J* as well as optimal stationary policies. They also provide con- 
ditions under which the successive approximation method yields in the limit 
the optimal value function J*. In the proofs we shall often need to inter- 
change expectation and limit in various relations. This interchange is valid 
under the assumptions of the following theorem. 

Monotone Convergence Theorem Let P = (pl, p z  , . . .) be a probability 
distribution over a countable set S denoted by S = { 1,2, . . .}. Let { h N }  be a 
sequence of extended real-valued functions on S such that 

Vi,  N = 1 ,  2 , .  . . . 0 < hN(i) < l~N+~(i)  
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Let h:  S + [0, + a] be the limit function 

h(i) = lim hN(i). 
N+m 

Then 

Proof We have 
m m 

By taking the limit, we obtain 
W m 

so that it remains to prove the reverse inequality. Now for every integer 
M 2 1 we have 

m M M 

and by taking the limit as M -+ co the reverse inequality follows. Q.E.D. 

Optimality Equation-Conditions for Optimality 

Proposition 8 Under either Assumption P or N the optimal value 
function J* of Problem (D) satisfies 

or in terms of the mapping T of (8) 

J* = T(J*). (50b) 
Proof Let n = { p o ,  pl,. . .} be an arbitrary admissible policy, and 

consider the value J,(x) of the cost functional corresponding to n when the 
initial state is x .  We have 

J, (x)  = E { g [ x ,  c l O ( X X  w l  + KCf (x ,  P O ( X ) ,  w)I}, (51) 
W 

where for all z E S ,  
N -  1 

vn(z) = lim E { C akgCxk, Pk(xk), w k l  
N 4 m  Wk k = l  

k =  1, 2. ... 
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In this equation we have x 1  = z ,  and xk+ is generated from X k r  p&)r wk 

via the system equation (1). In other words, V,(z) is the cost from stage 1 to 
infinity using n when the initial state x 1  is equal to z.  We have clearly 

V,(z) 2 d * ( z )  vz E s. 
Hence from (51) 

J,M 2 E {gCx, po(x), w l  + aJ*Cf(x,  P O ( X ) ,  w)Il 
W 

Taking the infimum over all admissible policies we have 

inf J,(x) = J*(x) 2 inf E {g(x ,  u, w) + a J * [ f ( x ,  u, w)]} = T(J*)(x) .  
II u e U ( x )  w 

Thus it remains to prove that the reverse inequality also holds. 
Let xo E S be any initial state for which we have 

Notice that this inequality will always hold under P. Under (52). given any 
scalars c2 > 0 let 2 = {,Go, ,GI ,  . . .} be a policy such that 

E{sCxo ,  Po(x), w l  + aJ*Cf(xo, Bo(xo), W ) l l  
W 

G inf E { g ( x o ,  u, w) + a J * [ f ( x o ,  u, w)l1 + &Ir (53) 
U C U ( X 0 )  w 

and 

E { J f  ' C f b o  7 ,Go(xo), 411 G E {J*Cf(xo 3 Po(xo), 41 1 + E z  9 (54) 
W W 

where 

6 = {,GI, f i 2 ,  . * .I. 
Such a policy clearly exists when the problem is deterministic, i.e., D consists 
of a single element. It can also be shown to exist in the general case (see 
Problem 8). We have by (53) and (54) 

J&O) = E {gCx07 fio(xo), w l  + aJ*,Cf(xo, Bo(xo), w)l> 
W 

G E { S C X O ,  fio(xo), W I  + aJ*Cf(xo, ,Go(xo), w)11 + 

G inf E {g(xo ,  u, w) + aJ*Cf(xo ,  u, w)]) + el + aEZ. 

W 

UEU(X0) w 
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Since 

we obtain 
J*(xo) < J*(x,), 

J*(xo) < inf E {g (xo ,  u, w) + a J * [ f ( x o ,  u, w)]} + cl + aEZ, 
U C U ( X 0 )  w 

Since cl, cZ > 0 are arbitrary, we obtain 

J*(xo) < inf E {g(xo, u, w) + aJ*[ f ( xo ,  u, w)l> = T(J*)(xo) ,  (55)  
u e U ( x 0 )  w 

for all initial states xo E S for which (52) holds. 
If (under N) xo E S is such that 

inf E { g ( x o ,  u, w) + aJ*Cf(xo, u, w)l) = -03, 
U O U ( X 0 )  w 

then 

inf E { g ( x o ,  u, w)} = - 03 or inf E { J * [ f ( x o ,  u, w)]} = -a. 
U C U ( X 0 )  w U € U ( X O )  w 

In the first case we have clearly J*(xo) = - 03 and ( 5 5 )  holds. In the second 
case given any M > 0 one may find a EE V ( x o )  such that 

It follows, using the result of Problem 8, that we may also find a policy 
El  = {ill, &,. . .} such that 

E{J,,[f(xo, u",W)l> < - M .  
W 

Consider a policy of the form ii = {Po ,  &, &, . . .}, where fio(xo) = u". Then, 
since under N we have Ew {g[xo, po(x0), w]} < 0, it follows that 

J*(xo) < JE(xo) = E{g[xo, fio(xo), w] + a J d , [ f ( x O ,  Po(x0), w)]} < -aM. 

Since M > 0 is arbitrary, it follows that J*(xo) = - 03 and thus inequality 
(55 )  is established for all xo E S for which (52) does not hold. Hence (55 )  holds 
for all xo E S and the proposition is proved. 

W 

Q.E.D. 

Similarly as in Corollaries 1.1, 2.1, and 3.1 we have: 

Corollary 8.1 Let a = {p, p, . . .} be an admissible stationary policy. 
Then under Assumption P or N we have 

J,(x) = E {gCx, P ( X ) ,  wl + @J,Cfk A x ) ,  w)l} 
W 

or in terms of the mapping T, of (9) 

J, = T,(J,). 
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Contrary to the case of Assumption B the optimal value function J* under 
Assumption P or N need not be the unique solution of the functional equation 

J ( x )  = T ( J ) ( x )  = inf E {g(x ,  u, w) + a J [ f ( x ,  u, w)]}. (56) 
U P U ( X )  w 

Consider the following examples. 

EXAMPLE 1 Let S = [0, + 00) (or S = (- co, 01) and 

g(x ,  u, w) = 0, f ( x ,  u, w) = x/u ,  

J ( x )  = p x  VXES 

v x ,  u, w. 

Then for every /?, the function J given by 

is a solution of (56) and hence T has an infinite number of fixed points in this 
case, although there is a unique fixed point within the class of bounded 
functions-the zero function Jo(x )  = 0 Vx E S ,  which is the optimal value 
function for this problem. More generally it can be shown by using Pro- 
position 9 that if there exists a bounded function that is a fixed point of T, 
then that function must be equal to the optimal value function J* (see 
Problem 15). 

EXAMPLE 2 Let S = [0, + 00) (or S = (- co, 01) and 

g(x,  u, w) = (1 - $)x, f ( x ,  u, w) = x/& v x ,  u, w. 

Then the reader may verify that the functions J(x )  = x ,  J ( x )  = x + x 2 ,  and 
J(x )  = x - x2 are all solutions of (56). 

It is to be noted also that when a = 1 (a case to be examined in the next 
chapter), Eq. (56) may have an infinity of solutions even within the class of 
bounded functions. This is clear since if a = 1 and J(  - ) is any solution of (56), 
then J(  - ) + r, where r is any scalar, is also a solution. 

The optimal value function J*, however, has the property that it is the 
smallest (under Assumption P) or largest (under Assumption N) fixed point 
of T in the sense described in the following proposition. 

Proposition 9 (a) Under Assumption P if 3:  S -+ (- 00, + co] is 
bounded below and satisfies .f = T( j ) ,  then J* ,< J. 

(b) Under Assumption N if 3 : S + [ - 00, + co) is bounded above and 
satisfies 

Proof (a) Under Assumption P let r be a scalar such that . f (x )  + r 2 0 
for all x E S. For any sequence { & k }  with &k > 0, let it = { F 0 ,  PI, . . .} be an 
admissible policy for which we have for every x E S and k, 

(57) 

= T ( j ) ,  then j < J*. 

E { g [ x ,  b k ( X ) ,  w1 + a J [ f ( x ,  p k ( X ) ,  w)l> ,< T ( J ) ( x )  + & k .  
W 
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Such a policy exists since T ( j ) ( x )  > - m for all x E S. We have for any 
initial state xo E S, 

Now using (57) and the assumption 1 = T ( j )  we obtain 

Combining these inequalities we obtain 

/ N - 1  \ 

Since the sequence {ck} is arbitrary (except for &k > 0) we may select { & k }  so 
that limN,m 1t:d ak&k is arbitrarily close to zero, and the result follows. 
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(b) Under Assumption N, let Y be a scalar such that J(x)  + r < 0 for 
all x E S. We have for every initial state xo E S ,  

f N -  1 

I 
I 

N -  1 

> inflim sup E f f N [ J ( x N )  + r ]  + 1 a k g [ x k ,  p k ( x k ) ,  w k l  

2 lim sup inf E B"[.J(x,) + r ]  + 1 a k g [ x k ,  P k ( X k ) ?  w k l  , 

k = O  

N -  1 

N - t w  R W k  i k = O  

A N - t m  W k  i 
(58)  

where the last inequality follows from the fact that for any sequence ( h ~ ( 1 ) )  
of functions of a parameter A we have 

inf lim sup hN(A) > lim sup inf hN(A). 
A N - m  N - m  A 

This inequality follows by writing 

h N ( 1 )  3 inf h N ( 1 )  

and by subsequently taking the limit superior of both sides and the infimum 
over 1 of the left-hand side. 

a 

Now we have by using the assumption J" = T( j ) ,  

I N -  1 

a N J ( x N )  + c a k g [ X k ,  p k ( x k ) ,  w k l  
k = O  

T N - 2  

Z W k  

= J(xo). 

Using this equality in (58) we obtain 

J*(xo) > J(x0)  + lim aNr = J(xo). Q.E.D. 
N - t  m 
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Similarly as earlier we have the following corollary : 

Corollary 9.1 Let a = {p, p, . . .} be an admissible stationary policy. 

(a) Under Assumption P if J :  S -+ ( -  00, + co] is bounded below,and 

(b) Under Assumption N if 3: S -, [- 00, + co) is bounded above and 
satisfies j = T,(j), then J ,  6 j .  

satisfies 1 = T,(j), then < J,. 
Under Assumption N, Proposition 9 yields also the following corollary, 

which constitutes a necessary and sufficient condition for optimality of a 
stationary policy. 

Corollary 9.2 (Necessary and Sufficient Condition for Optimality under 
Assumption N) In order for an admissible stationary policy a* = {p*, p*, 
. . .} to be optimal under Assumption N it is necessary and sufficient that 

J,* = T,*(J,*) = T(J,*), 

or equivalently 

Proof Assume that the above condition holds. Then since J, .  is a fixed 
point of T we have by Proposition 9 that J , .  6 J*, which implies that n* is 
optimal. Conversely if a* is optimal, we have J* = J, .  and hence we obtain 
q*(J,,*) = J , .  = J* = T(J*) = T(J,,), which proves the desired result. 

Q.E.D. 

The sufficiency part of the above corollary need not be true under As- 

EXAMPLE Let S = (- co, + a), V(x) = (0, 11 for all x E S, 

sumption P, as the following example shows. 

g(x, u, w) = 1x1, f(x, u, w) = a-lux 

for all (x, u, w) E S x C x D. Let p*(x)  = 1 for all x E S. Then J,.(x) = + co 
if x # 0 and J,.(O) = 0. Furthermore we have J , .  = q*(J,.) = T(J,,) as 
the reader can easily verify. It is also easy to verify that J*(x)  = 1 x I and hence 
the policy {p*,  p*, . . .} is not optimal. 

On the other hand under Assumption P we have a different optimality 
condition, which, in view of its importance, we state as a proposition. 
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Proposition 10 (Necessary and Sufficient Condition for Optimality 
under Assumption P) In order for an admissible stationary policy 7c* = 

{p*, p*, . . .} to be optimal under Assumption P it is necessary and sufficient 
that 

J* = T,*(J*) = T(J*) ,  

or equivalently 

J*(x)  = E {gCx, p*(x), W I  + @J*Cf(x, p*(x), W ) l )  
W 

< E {g(x ,  u, w )  + a J * [ f ( x ,  u, w ) ] }  Vx E S, u E U(x) .  
W 

Proof We have by Corollary 8.1 that J,* = T,*(J,*). If the above con- 
dition holds, i.e., J* = T,,(J*), then we obtain from Corollary 9.1 that 
J , .  < J*,  which implies optimality of n*. Conversely if 7c* is optimal, we 
have J* = J,* and hence we obtain T,*(J*) = T,*(JM*) = J, .  = J* = T(J*), 
which proves the desired result. Q.E.D. 

Again the sufficiency part of the proposition need not be true under 
Assumption N as the following example shows. 

EXAMPLE L e t s =  C = ( - . c o , O ] , U ( x ) = C f o r a l l x ~ S ,  

g(x, u, w )  = f ( x ,  u, w )  = u 

for all (x ,  u, W ) E S  x C x D. Then J*(x)  = -co for all x ES, and every 
admissible policy 7c* = {p*, p*, . . .} satisfies the condition of the proposition 
above. On the other hand, for p*(x)  = 0 for all x E S we have J,,(x) = 0 
for all x E S and hence {p*, p*, . . .} is not optimal. 

It is worth noting that Proposition 10 implies the existence of an optimal 
stationary policy under Assumption P when U ( x )  is a finite set for every 
x E S.  This result need not be true under Assumption N (an example for the 
related case where CI = 1 is given in Problem 10 of Chapter 7). 

The Successive Approximation Method 

We now turn to the question of whether it is possible to obtain the optimal 
value function J* (in the limit) by means of the DP algorithm. Let Jo denote 
the zero function on S, i.e., 

J,(x) = 0 VXES. 

Then under Assumption P we have 

J o  < T(J0)  < T2(Jo)  < . . . < Tk(Jo) < . . . , 
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while under Assumption N we have 

J o  2 T ( J 0 )  2 T 2 ( J o )  2 . . . 2 Tk(Jo)  2 . . . , 
In either case the limit function 

J , ( x )  = lim T k ( J o ) ( x )  V x  E S (59) 
k - w  

is well defined provided we allow the possibility that J ,  can take the value 
+a (under Assumption P) or -a (under Assumption N). We shall be 
interested in the question whether 

J ,  = J* .  (60) 
This question is, of course, of computational interest but it is also of analytical 
interest since, if one knows that J* = 1imk+, Tk(Jo) ,  then one can infer 
properties of the unknown function J* from properties of Tk(Jo) that are 
functions defined in a concrete algorithmic manner. 

When the costs per stage are bounded (i.e., under Assumption B) we 
proved that (60) always holds. It turns out that when costs per stage are 
unbounded it may happen that (60) fails to 'hold. While we shall prove that 
(60) holds under Assumption N, when Assumption P is in effect, the example 
of Problem 9 shows that it may happen that J, # J * .  In what follows we 
shall provide additional assumptions that guarantee that (60) holds under 
Assumption P. We have the following proposition. 

Proposition 11 (a) Let Assumption P hold and assume that 

J,( .x)  = T(J , ) (x )  vx E S .  

Then if J : S -, R is any bounded function we have 

lim T k ( J ) ( x )  = J*(x )  Vx E S.  
k - t m  

(b) Let Assumption N hold. Then if J :  S -, R is any bounded function, 
we have 

lim T k ( J ) ( x )  = J*(x) V X E S .  (62) 
k - m  

Proof (a) Since under Assumption P we have 

Jo  < T(J0) < . . . < Tk(Jo) < * . . < J*, 

it follows that 1imk-, Tk(Jo)  = J ,  < J * .  Since J ,  is also a fixed point of T 
by assumption we obtain from Proposition 9 that J* < J , .  It follows that 

J ,  = J* (63) 
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and hence (61) is proved for the case J = J , .  It remains to prove (61) for every 
bounded J : S + R. The proof proceeds similarly as in the proof of Proposition 
1.  Let r be a scalar such that 

J - re d J , ,  J o  d J + re, 
where e is the unit function on S [e(x) = 1, Vx E S]. We have for all k and Y E S, 

(64) 

(65) 

Tk(J  - re)(x) < Tk(Jo)(x) < Tk(J + re)(x), 

Tk(J + re)(x) = Tk(J - re)(x) + 2akr = T k ( J ) ( x )  + akr. 

and 

It follows from these two relations that 

lim Tk(J - re)(x) = lim Tk(J + re)(x) = lim Tk(Jo)(x) = J*(x). (66) 
k - a ,  k-oo k - a ,  

Since 
lim Tk(J + re)(x) = lirn T~(J)(x) Vx E S, (67) 
k - m  k - c c  

we obtain (61). 
(b) We shall prove that under Assumption N we have 

J,(x) = lirn Tk(J,)(x) = J*(x) .  
k - t m  

Then (62) follows from (64)-(67). Under Assumption N we have 

J ,  2 T(J,) 2 * .  . 2 T k ( J o )  2 * * * 2 J*.  

It follows that 

J,(x) = lim Tk(Jo)(x) 2 J*(x) t'x E S. (68) 
k - m  

Also from relation Tk(J,) 2 J , ,  by applying T to both sides, we obtain 
Tk+'(Jo)  2 T(J,)  and taking the limit as k + co 

J ,  2 T(J,). 

On the other hand, for any x E S, u E V ( x )  we have 

E M X ,  u, w )  + ~ T k ( J 0 ) C f ( X ,  u, w)l )  2 J a b ) .  
W 

Taking the limit of the left side as k + co and using the fact that Tk(J,J 
converges monotonically to J ,  we have 

Taking the infimum over u E V(x) we obtain 

T(J, ) (x)  2 J , ( x )  vx E s. 



6.4 UNBOUNDED COSTS PER STAGE 263 

Combining (69) and (70), 

J ,  = T(J,). 

Hence by Proposition 9 

J, < J*. 

Combining this inequality with (68) we obtain J ,  = 1imk+, Tk(Jo) = J* 
and the result follows. Q.E.D. 

We now proceed to obtain conditions that guarantee that J ,  = T(J,) 
under Assumption P. As part (a) of Proposition 11 shows, J ,  = T(J,) 
is a sufficient condition for the equality J ,  = J* to hold. It is also a necessary 
condition in view of relation 

(71) 

(72) 

(73) 

J ,  d T(J,)  d J*. 

Tk- ' ( J o )  < Tk(Jo) < * . * < J ,  < J*. 

Tk(Jo) < T k +  ' ( J o )  < . . . < T(J,) < J*. 

This last relation follows once we observe that 

By applying T throughout and using J* = T(J*), 

By taking the limit as k -, co, (71) follows. 
We prove two propositions providing conditions for J ,  = T(J,). The 

first admits an easy proof but requires a restrictive assumption. The second is 
a little harder to prove but requires a much weaker assumption. 

Proposition 12 Let Assumption P hold and assume that the control 
constraint set U(x) is a finite set for every x E S. Then 

J ,  = T(J,) = J* = T(J*). 

Proof From (73) we have for all x E S 

and taking the limit in (74), J, < T(J,). Suppose that there existed a state 
2 E S, such that 

Jrn(2) < T(J,)(f). (75) 
Using the finiteness of U(2)  let Uk be the minimizing control in (74). Since 
U(2) is finite there must exist some 6 E U(2)  such that uk = 6 for all k in some 
infinite subset Y' of the positive integers. By (74) we have for all k E Y' 

T k +  '(Jo)(2)  = E {g(2,6, w )  + aTk(Jo) [ f @ ,  6 , w ) l )  < T(J,)(Z). 
W 
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It follows that J , ( Z )  = T(J,)(%), contradicting (75). Q.E.D. 

The following proposition strengthens Proposition 12 in that it requires a 
compactness rather than a finiteness assumption. We recall (see Appendix A) 
that a subset X of an n-dimensional Euclidean space R" is said to be compact 
if every sequence {xk} with xk E X contains a subsequence {Xk}ksy that con- 
verges to a point x E X. Equivalently X is compact if and only if it is closed 
and bounded. The empty set is (trivially) considered compact. Given any 
collection of compact sets, their intersection is a compact set (possibly empty). 
Given a sequence of nonempty compact sets X,, X2,  . . . , xk, . . . such that 

x1 3x23"' 3 X k 3 X k + 1 3 " ' ,  

their intersection 
fact it follows that iff: R" + [- co, + co] is a function such that the set 

xk is both nonempty and compact. In view of this 

FA = { x E R " I ~ ( x )  < I I }  

is compact for every I I  E R, then there exists a point x* minimizingf, i.e., there 
exists an x* E R" such that 

f(x*) = inf f(x). 
x o R "  

To see this, take a sequence {A,} such that i k  + infxERnf(x) and & 2 & + I  

for all k. If infxcR,f(x) -= + 03 such a sequence exists and the sets 

 FA^ = {X E R" I f (X)  < &} 

are nonempty and compact. Furthermore, FAk 3 F L k +  for all k and hence the 
intersection np= F A ,  is also nonempty and compact. Let x* be any point in 
r)T= , F ~ , , .  Then 

f b * )  < 4 Qk = 1,2, . . . ,  

and taking the limit ask + co we obtainf(x*) < inf,,,, f(x), proving that x* 
minimizes f ( x ) .  

Proposition 13 Let Assumption P hold and assume that the sets 
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are compact subsets of a Euclidean space for every x E S ,  il E R, and for all k 
greater than some integer E .  Then 

(77) J ,  = T(J,) = J* = T(J*). 

Furthermore there exists a stationary optimal policy. 

there existed a state 2 E S such that 
Proof Similarly as in Proposition 12 we have J ,  < T(J,). Suppose that 

J m ( 3  < T ( J a J 4 .  (78) 

Clearly we must have J,(Z)  < +co. For every k 2 k consider the sets 

uk[z, 5,(2)] = {u  E u(x)l E{g(% u, w) + aTk(J,')[f(z?,  u, w)]} < Jm(2)}* 
W 

Let also u k  be a point attaining the infimum in 

i.e., u k  is such that 

Tk+'(Jo)(g)  = E{g(a, uk, W) aTk(Jo)[ f (Z ,  uk, W)]} < J, (g) .  
W 

Such minimizing points uk exist by our compactness assumption. For every 
k > k consider the sequence {ui} im,k.  Since Tk(Jo)  < Tk+l (JO)  d . . .  d J ,  
it follows that 

E {g(n, ui, W )  + a T k ( J o ) [ f ( g ,  ui, w)I> 
W 

< E {g(% ui, w) + aTi(Jo) [f(% ui ,  w)]} d J,(K) Vi 2 k .  
W 

Hence { u i } i m , k  c u,"?, J,(Z)], and since uk[T ,  J,(2)] is compact, all the 
limit points of {ui}im,k belong to uk[i??, J,(?)] and at least one such limit point 
exists. Hence the same is true of the limit points of the whole sequence 
{ui}im,i. It follows that if u" is a limit point of {ui}im,r;, then 

OD 

u" E n u k [ % ,  J,(%)]. 
k = k  

This implies by (76) that for all k 2 E 
J , (n)  2 E {g(% 4 W) + aTk(Jo) [f(% 6, w)]} > T k +  ' ( Jo ) (Z ) .  

W 

Taking the limit as k -+ co we obtain 

J,(?) = E is(?, u", w) + .J,Cf(% u", w)ll. 
W 

Since the right-hand side is greater or equal to T(J,)(%), (78) is contradicted. 
Hence J ,  = T(J,) and (77) is proved. 
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To show that there exists an optimal stationary policy observe that (77) 
and the last relation imply that G attains the infimum in 

J*(f) = inf E {g(f, u, w)  + aJ*[ f (2, u, w ) ] }  
ueU(3)  w 

for a state f E S with J*(f) < + co. For states f E S such that J*(2)  = + co 
every u E U(2) attains the infimum above. Hence by Proposition 10 an 
optimal stationary policy exists. Q.E.D. 

The reader may verify by inspection of the proof that actually Proposition 
13 may be proved under the weaker assumption that the sets U k [ f ,  J,(f)] are 
compact for all f E S such that J, (2)  < + co, and all k greater than some 
index k. 

Another fact that may be verifiedfrom the proofis that ifpk(2), k = 0,1, . . . , 
attains the infimum in the relation 

T k +  ' ( J 0 ) ( f )  = inf E(g(2, u, w )  + aTk(Jo)  [ f (2, u, w ) ] } ,  
U E U ( X )  w 

then if p*(f) is a limit point of {pk ( f ) } ,  V f  E S ,  the policy n* = {p*, p*, . . .} 
is optimal. Furthermore, {pk(%)} has at least one limit point for every f E S 
for which J*(f) < + co. Thus the successive approximation method under the 
assumptions of Proposition 12 or 13 yields in the limit not only the optimal value 
function J* but also an optimal stationary policy. 

6.5 Linear Systems and Quadratic Cost Functionals 

Consider the case where in Problem (D) the system is linear: 

X k + l  = AX, + BUk -k W k ,  k = 0, 1,.  . . , 
where xk E R", uk E R" for all k and the matrices A, B are known. As in Sections 
3.1 and 4.3 we assume that the random disturbances wk are independent with 
zero mean and finite second moments. The cost functional is quadratic and 
has the form 

where Q is a positive semidefinite symmetric n x n matrix and R is a positive 
definite symmetric m x m matrix. The problem clearly falls under the frame- 
work of Assumption P. 

Our approach will be to consider the ordinary D P  algorithm, i.e., obtain 
the functions T(Jo), T2(Jo), . . . , as well as the pointwise limit function 
J, = 1imk-, Tk(Jo).  Subsequently we show that J, satisfies J, = T(J,) 
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and hence, by Proposition 11, J ,  = J * .  The optimal policy is then easily 
obtained from the optimal value function J* via the DP  functional equation 
using Proposition 10. 

As in Section 3.1 we have 

J0(x) = 0 V X  E R”, 

T(J,)(x) = inf(x’Qx + u’Ru) = x’Qx Vx E R”, 
U 

T2(Jo)(x)  = inf E{x’Qx + u‘Ru + u(Ax + Bu + w)’Q(Ax + Bu + w)} 
u w  

= x’K,x + uE{w‘Qw} V X E R ” ,  
W 

k -  1 

Tk+’(J0)(x) = X ‘ K k X  + ~ l ~ - ~  E{w’K,w}  V X  ER”, k = 1,2 , .  . . , 
W m = O  

where the matrices K O ,  K , ,  K 2 ,  . . . are given recursively by 

Kk+l = A’[ctKk - u2KkB(UB’KkB + R)-’B’Kk]A + Q, k = 0, 1 , .  . . . 

Now by writing I? = R/u and A = &A the preceding equation may be 
written 

Kk+1 = A’[Kk - K,B(B’KkB + I?)-’B’Kk]A + Q, 

and is of the form considered in Section 3.1. By making use of the result 
shown there we have 

Kk -+ K 

provided the pairs (A, B) and (2, C), where Q = C’C, are controllable and 
observable, respectively. Since A = &A, controllability and observability 
of (A, B) or (A ,  C )  are clearly equivalent to controllability and observability 
of (A, B) or (A, C).  The matrix K is positive definite and it is the unique 
solution of the equation 

K = A’[& - u 2 K B ( ~ B ’ K B  + R)-’B’K]A + Q (79) 

As a result of the preceding analysis we have that the pointwise limit of the 
within the class of positive semidefinite symmetric matrices. 

functions Tk(Jo) is given by 

J, (x)  = lim Tk(Jo)(x) = x’Kx + c, 
k -  m 

where 
k -  1 

c = lim 1 ~ ~ - ~ E { w ’ K , w ) .  
k-m ,,,=o W 
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This limit is well defined since the scalars ck, where 

ck = 1 c i k - m  E { w l K , w } ,  
k -  1 

W m = O  

satisfy the equation 

ck+l = UCk + aE{W'KkW} .  
W 

Since ci < 1 and Kk K it follows that ck + c,  where 

c = [./(1 - a)] E { w ' K w } .  
W 

Now using (79)-(81) one can easily verify that for all x E S 

J , (x)  = T ( J , ) ( x )  = min x'Qx + u'Ru + ci E { J , ( A x  + Bu + w ) }  (82)  

and hence by Proposition 11, J ,  = J*.  Another method for proving that 
J ,  = T(J,) is to show that the assumption of Proposition 13 is satisfied, 
i.e., that the sets 

s W 1 

I L uk(x, A) = U E{X'QX U'RU + ciTk(J0)(AX + BU W ) }  < A 

are compact. This can be easily verified using the fact that Tk(Jo)  is a quadratic 
function and R is positive definite. The optimal policy is obtained by mini- 
mization in (82) and has the form n* = {p*, p*, . . .}, where p* is given by 

p*(x) = -ci(ciB'KB + R ) -  'B'KAx 'dx E R". 

The linearity and stationarity of this policy makes it very attractive for 
engineering applications. A number of generalized versions of the problem of 
this section, including the case of imperfect state information, are treated 
in the problem section. 

6.6 Inventory Control 

Let us consider an infinite horizon version of the inventory control 
problem of Section 3.2 where costs per stage are discounted. Inventory stock 
evolves according to the equation 

(83) 

Again we assume that the successive demands wk are independent and bounded 
and have identical probability distributions. We shall assume for simplicity 

xk+l = xk + uk - wk, k = 0, 1,. ... 



6.6 INVENTORY CONTROL 269 

that there is no fixed cost. A similar analysis may be carried out for the case 
of a nonzero fixed cost. The function to be minimized is given by 

Jn(xo) = lim E [iln*lcpk(xk) + p max(O, wk - xk - pk(xk)) 
h'+m Wk k = O  

k = O .  1 .  ... 

The DP algorithm is given by 
Jo(x) = 0, 

Tk+ ' ( J ~ ) ( X )  = inf E {cu + p max(0, w - x - u )  + h max(0, x + u - w )  
ocu  w 

+ crTk(J,)(x + u - w ) } .  (85)  

(86) 

Let us first show that 

J*(xo) = inf Jn(xo) < + co Vx,  E S.  
n 

Indeed consider the policy it = {B, B, . . .}, where ,ii is defined by 

0 if x 2 0, 
if x < 0. ' ( X I =  { - x  

Since wk is nonnegative and bounded it follows that the inventory stock 
xk when the policy it is used satisfies 

-wk-l d xk d maX[O, Xo], k = 1, 2,. . . , 

and is bounded. Hence fi(xk) is also bounded. Hence the cost per stage 
incurred when 6 is used is bounded, and in view of the presence of the dis- 
count factor we have 

Since J* d J * ,  (86) follows. 

Tk(Jo)  are real-valued convex functions. Indeed we have 

J*(xo) < +co VXOES. 

Next let us observe that under the assumption c < p, the functions 

(87) 

which implies that Tk(Jo)  is real valued. Convexity follows easily by induction 
as shown in Section 3.2. Consider now the sets 

Jo d T(J0) < . . . < Tk(Jo) d . . . d J*,  

{cu + p max(0, w - x - u )  + h max(0, x + u - w)  

+ crTk(J,)(x + u - w)}  d 1 . I 
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These sets are bounded since the expected value above tends to +a as 
u + + 00. Also the sets uk(x, A) are closed since the expected value in (88) 
is a continuous function of u [recall that Tk(Jo) is a real-valued convex and 
hence continuous function]. Thus we may invoke Proposition 13 and assert 
that 

J, (x)  = lim Tk(Jo) (x )  = J*(x) Vx E S .  
k - m  

It follows from the convexity of the functions Tk(Jo) that the limit function 
J* is a real-oalued convexfunction. Furthermore we have from Proposition 8 
the optimality equation 

J*(x)  = inf E {cu + p max(0, w - x - u)  + h max(0, x + u - w) 
u > o  w 

+ crJ*(x + u - w)}. 

An optimal stationary policy n* = { P * ~  p*, . . .} can be obtained from the 
above equation as in Sections 1.3 and 3.2. We have 

S* - x if x < S*, 
otherwise, 

where S* is a minimizing point of 

with 
G*(Y) = C Y  + U Y )  + E {J*b - w)), 

L(y)  = p E {max(O, w - y)} + h E {max(O, y - w)}. 

It is easy to see that if p > c, we have liml,,l+m G*(y)  = + co so that such a 
minimizing point exists. Furthermore by utilizing the observation made at 
the end of Section 6.4 it follows that minimizing points S* of C*(y) may be 
obtained as limit points of sequences {&}, where for each k the scalar Sk 
minimizes 

W 

W W 

Gk(y) = C Y  + Lb) E {Tk(J0)(Y - W ) >  
W 

and is obtained by means of the successive approximation method. 
In the case where there is a positive fixed cost (K > 0) the same line of 

argument may be used. Similarly we prove that J* is a real-valued K-convex 
function. A separate argument is necessary to prove that J* is also continuous 
(see references [B3] or [I2]). Once K-convexity and continuity of J* is 
established the optimality of a stationary (s*, S*)  policy follows from the 
equation 

J*(x)  = min E {C(u) + p max(0, w - x - u)  + h max(0, x + u - w) 
u20 w 

+ aJ*(x + u - w)}, 

where C(u) = K + cu if u > 0 and C(0) = 0. 
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6.7 Nonstationary and Periodic Problems 

The standing assumption so far in this chapter has been that the problem 
involves a stationary system and a stationary cost per stage (except for the 
presence of the discount factor). Problems where the system or the cost per 
stage are nonstationary arise occasionally in practice or in theoretical studies 
and are thus of some interest. It turns out that such problems can be em- 
bedded by means of a simple reformulation within the framework of Problem 
(D) for which stationarity prevails. Once this reformulation is considered, one 
easily obtains results analogous to those of Sections 6.1 and 6.4. 

Consider a nonstationary system of the form 

and a cost functional of the form 

In the above equations, for each k ,  x k  belongs to a space S k ,  u k  belongs to a 
space C k  and satisfies u k  E u k ( x k )  for all x k  E S k ,  and w k  belongs to a countable 
space D k .  The sets s k ,  c k ,  U k ( X k ) ,  Dk may differ from one stage to the next. 
The random disturbances w k  are characterized by probabilities P k (  - I x k ,  u k ) ,  

which depend on x k ,  u k  as well as the time index k. The set of admissible 
policies n is the set of all sequences = { p o ,  p,, . . .} with pk: S k  + Ck with 

D k  + R are given and are assumed to satisfy one of the following three 
assumptions, which are analogous to Assumptions B, P, and N considered 
earlier in this chapter: 

Assumption B’ The functions g k  satisfy for all k = 0, 1 ,  . . . , 

p k ( x k )  E U k ( X k )  for all x k  E S k  and k = 0, 1, . . . . The functions g k  S k  x C k  x 

0 < g k ( X k ,  u k ,  w k )  < M v ( x k ,  u k ,  w k ) E S k  Ck D k ,  

where M is some scalar. 

Assumption P’ The functions g k  satisfy for all k = 0, 1, . . . , 

0 < g k ( X k ,  u k ,  w k )  v ( x k ,  u k ,  w k ) E S k  C k  D k *  

Assumption N‘ The functions g k  satisfy for all k = 0, 1, . . . , 
g k ( X k ,  u k ,  w k )  < 0 v ( x k ,  u k ,  w k ) E S k  Ck D k .  

We shall refer to the problem formulated above as the nonstationary problem 
(NSP). 
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Let us now convert the NSP to a stationary problem that fits within the 
framework of Problem (D). In order to simplify the notation we shall assume 
that the state spaces Si, i = 0, 1,. . . , the control spaces C i ,  i = 0, 1,. . . , 
and the disturbance spaces Di,  i = 0, 1, . . . , are all mutually disjoint. This 
assumption does not involve a loss of generality since, if necessary, we may 
relabel the elements of Si, Ci, and Di without affecting the structure of the 
problem. Define now a new state space S,  a new control space C,  and a new 
(countable) disturbance space D by 

m m m 

S =  USi,  C =  U C i ,  D =  u D i .  
i = O  i = O  i = O  

Introduce a new (stationary) system 

2 k + 1  = f ( a k ,  u"k, Gk), k = 0, 1,. . . , (91) 

where 2 k  E S, i i k  E C, "tk E D ,  and the system function f: S x C x D --* S is 
defined by 

f (2,  6, G) = fi(2, 6, 6) if 2 € S i ,  u"€Ci,  G E  D i ,  i = 0, 1,. . . . 
For triplets (2, u", G), where for some i = 0, 1, . . . we have 2 E Si but u" 4 Ci, or 
G 4 D i ,  the definition off is immaterial-any definition is adequate for our 
purposes in view of the control constraints to be introduced. The control 
constraint is taken to be u" E U(2) for all 2 E S ,  where U( ) is defined by 

U(2) = Ui(2)  if 2 E S i ,  i = 0, 1, . . . . 

The disturbance ii, is characterized by probabilities P( 6 12, u") such that 

P ( G E D ~ ~ ~ E E S ~ , U " E C ~ )  = 1, 
P ( G $ D ~ I ~ ? E S ~ , U " E C ~ )  = 0, 

i = 0, 1 ,..., 
i = 0, 1 ,.... 

Furthermore for any wi E D i ,  x i  E Si, ui E Ci, i = 0, 1 ,  . . . , we have 

P ( W i l X i ,  U i )  = P i ( W i I X i ,  U i ) .  

We also introduce a new cost functional 

where the (stationary) cost per stage g :  S x C x D -, R is defined by 

g(2,  u", 6) = gi (2 ,  u", G) if R E & ,  u"€Ci,  GEQ, i = 0, 1,. , . . 
For triplets (2, u', G), where for some i = 0, 1, . . . we have 2 E Si but u" 4 Ci or 
6 4 Di,  any.definition of g is adequate provided 0 < g(2,  fi, G) < M for all 
(2, u", G) when Assumption B' holds, 0 < g(2,u", G) when P' holds, ,and 
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g(Z,ii ,  i?) < 0 when N' holds. The set of admissible policies l=i for the new 
problem consists of all sequences ii = {,Lo, ,Ll,  . . .} where f i k :  S + C and 
j i k ( 2 )  E U ( 2 )  for all Z E S and k = 0, 1, . . . . 

The construction given above defines a problem that clearly fits the 
framework of Problem (D). We shall refer to this problem as the stationary 
problem (SP). 

It isimportant to understand thenature oftheintimateconnection between 
the NSP and the SP formulated above. Let n = {po ,  pl, . . .} be an admissible 
policy for the NSP. Also let ii = {Po, /I1, . . .} be an admissible policy for the 
SP such that 

f i i (Z )  = pi (Z)  if Z E S ~ ,  i = 0, 1,. . . . (93) 

Let x o  E So be the initial state for the NSP and consider the same initial state 
for the SP, i.e., Z0 = xo E S o .  Then the sequence of states {Zi} generated in the 
SP will satisfy Zi E S i ,  i = 0, 1, . . . , with probability one, i.e., the system will 
move from the set So to the set S1, then to S 2 ,  etc., just as in the NSP. Further- 
more, the probabilistic law of generation of states and costs is identical in the 
NSP and the SP. As a result it is easy to see that for any admissible policies 
A and ii satisfying (93) and initial states x o ,  Zo satisfying xo = Zo E S o ,  the 
sequence of generated states in the NSP and the SP is the same ( x i  = , f i ,  Vi) 
provided the generated disturbances wi and Gi  are also the same for all 
i (w i  = Gi,  Vi ) .  Furthermore, if 7c and ii satisfy (93), we have J,(xo)  = J f f ( , f 0 )  
if x o  = Zo E S o .  Let us also consider the optimal value functions for the NSP 
and the SP 

J*(xo)  = inf J,(xo) ,  xo  E S o ,  
n s n  

Then it follows from the construction of the SP that 

where 

if Zo = x i e S i ,  i = 0, 1 ,.... (95) 

Note that in this equation the right-hand side is defined in terms of the data 
of the NSP. As a special case of this equation we obtain 

j*(z0) = j* (z0,  0) = J * ( X ~ )  if go = x o  E so. (96) 
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Thus the optimal value function J* of the NSP can be obtainedfrom the optimal 
value function j* of the SP. Furthermore, if it* = {fit, f i y , .  . .} is an optimal 
policy for the SP, then the policy n* = {&, p:, . . .} defined by 

pf(xi) = fif(xi) Vxi E S i ,  i = 0, 1 , .  . . , (97) 

is an optimal policy for the NSP. Thus optimal policies for the SP yield 
optimal policies for the NSP via (97). Another point to be noted is that if 
Assumption B’ (PI, N‘) is satisfied for the NSP,  then Assumption B ( P ,  N )  in- 
troduced earlier in this chapter is satisjied for the SP. 

The observations above indicate clearly that one may analyze the NSP 
by means of the SP. In fact every result given in Sections 6.1 and 6.4 when 
applied to the SP yields a corresponding result for the NSP. We shall con- 
tent ourselves with providing the form of the optimality equation for the 
NSP in the following proposition. 

Proposition 14 Under Assumption B’ (P’, N’) there holds 

J*(x,)  = j*(x0, 0) Vx0 E So,  

where for all i = 0, 1 ,  . . . the functions j*( - , i) map Si  into [0, 00) ([0, 003, 
[ - 00, O]),  are given by (95), and satisfy 

J*(xi ,  i )  = inf E { g i ( x i ,  u i ,  wi )  + J * [ f ; : ( x i ,  uir wi), i + 11) 
U i € U i ( X i )  w, 

V x i e S i ,  i = 0, 1,. . . . (98) 

Under Assumption B’ the functions j*( - , i ) ,  i = 0, 1, . . . , are the unique 
bounded solutions of the set of equations (98). Furthermore, under Assump- 
tion B’ or P’, if pF(.xi) E U i ( x i )  attains the infimum in (98) for all x i  E S i .  and i, 
then the policy TC* = (&, p t .  . . .) is optimal for the NSP. 

Proof Apply Propositions 2,8, and 10 to the SP. Then the result follows 
immediately by making use of definitions (94)-(96). Q.E.D. 

Notice that an optimal policy for the NSP will normally be nonstationary 
even though the SP may possess an optimal stationary policy. Furthermore, 
such an optimal policy is in general impossible to obtain in practice even if the 
state spaces Si, i = 0, 1 ,  . . . , are finite sets, in view of the fact that an infinite 
number of functions p: are involved. However, there are special cases where 
important simplifications occur. We proceed to examine two such cases. 

Eventually Stationary Problems 

Within the framework of the NSP consider the case where the spaces 
S i ,  C i ,  Di, the sets Ui( - ), the probability distributions Pi( - ( x i ,  ui), and the 
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functionsf;: and gi  remain unchanged after some index E ,  i.e., 
- - 

S .  = S .  = S ,  Ci = Cj  = C,  D i  = D j  = D Vi , j  3 E, [ I  

Ui( - ) = U j ( .  ) = U ( .  ), Pi( - Ix, u)  = Pj( - Jx, u) V i ,  j 2 E,  
f . =  [ J  f . = J  g i = g . = i j ,  J V i , j > E .  

Notice that finite horizon problems may be embedded within the framework 
of the above problem by taking the function ij identically equal to zero. We 
shall assume that the spaces S i ,  C i ,  D i ,  i = 0, 1,. . . , - 1, are mutually 
disjoint and disjoint from S ,  C ,  D ,  respectively. Then we may define a new 
state space, control space, and disturbance space by 

- - -  

E -  1 E -  1 P- 1 

S =  U S i v S ,  C =  U C i v C ,  D =  U D i v D ,  

and similarly as earlier we may obtain an equivalent stationary problem. The 
optimality equation for this problem reduces to the system of ( E  + 1) 
equations 

i = O  i = O  i = O  

V x i e S i ,  i = 0, 1, ..., E - 1,  

J*(x) = inf E {g(x, u, w )  + a J * [ f ( x ,  u, w)]) vx ES, 

where j * ( x )  = J*(x. k )  for all .Y E Si; = S. If the infimum on the right-hand side 
of the above equations is attained for all xi, i = 0, 1 , .  . . , E - 1, and x, 
then under Assumptions B’ and P’ there exist (eventually stationary) optimal 
policies of the form n* = {p:, p:, . . . , p f ,  p f ,  . . .}. 

u e U ( x )  w 

Periodic Problems 

Assume within the framework of the NSP that there exists an integer 
p 2 2 (called the period) such that for all integers i and j with Ii - j l  = Ap, 
1, = 1,2, . . . , we have 

Si = S j ,  Ci = Cj ,  Di = D j ,  Vi( .) =I Uj( .), 

f i = f j ,  g i = g j ,  Pi(-)x,u)=Pj(.)x,u) V(X,U)ESi x ci. 
We assume that the spaces Si,  Ci ,  D i ,  i = 0, 1,. . ., p - 1, are mutually 
disjoint. Then we may define a new state space, control space, and disturbance 
space by 

P- 1 P- 1 P- 1 

i = O  i = O  i = O  
s =  U S ( ,  C =  U C i ,  D =  u D i .  
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As done earlier, we may obtain an equivalent stationary problem. The 
optimality equation for this problem reduces to the system of p equations 

These equations may be used to obtain (under Assumption B’ or P )  a periodic 

of the right-hand side is attained for all x i ,  i = 0, 1, . . . , p - 1.  
Concerning the algorithmic solution of periodic problems, we mention 

that when all spaces involved are finite sets then an optimal policy may be 
found through a finite number of arithmetic operations by means of the 
policy iteration algorithm or linear programming. The form of these al- 
gorithms may be obtained by applying them to the corresponding SP, the 
state, control, and disturbance spaces of which are now the finite sets S ,  C ,  
and D. 

Finally, we provide the form of the successive approximation method 
with starting functions equal to zero: 

policy of the form {p:, . . . , p p -  * *  1, po, . . . , ,up*- l,. . .} whenever the infimum 

j o ( x i ,  i) = o V X ~ E S ~ ,  i = 0,1, ..., p - 1. 

The (k + 1)st iteration of the successive approximation method is given by 

Under Assumptions B’ and N’ we have (by applying Q-oposition 1 or 1 1  to 
the corresponding SP) 

lim jk(Xi, i) = j * ( x i ,  i) v x i  E si, i = 0, . . . , p - 1 ,  
k + c o  
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while under Assumption P‘ the same equations hold provided the sets 

are compact subsets of Euclidean spaces for all xi E S i ,  i E R ,  and k greater 
than some integer 5 (Proposition 13 applied to the SP). Under the same com- 
pactness condition an optimal periodic policy is guaranteed to exist. 

6.8 Notes 

The discounted problem with bounded cost per stage is by far the simplest 
and most well-behaved infinite horizon problem. This is due to the contrac- 
tion property induced by the presence of the discount factor. Many authors 
have contributed to its analysis, most notably Bellman [B3], Howard [H15], 
and Blackwell [BZO]. Contraction type properties were first exploited in a 
DP  setting by Shapley [SS] in a paper on multistage games. The mapping F 
of Section 6.2 and the corresponding algorithms are given by Kushner [KlO], 
where the connection with Gauss-Seidel iterations is pointed out (see also 
Hastings [H7]). The linear programming approach of Section 6.2 was pro- 
posed by DEpenoux [D3]. The error bounds given in Section 6.2 and Prob- 
lem 3 are improvements on results of McQueen [M5] and Denardo rD2] 
(see [B14]). The convergence results and discretization procedures of Prob- 
lem 2 are taken from Bertsekas [BlS]. The essential structure of the dis- 
counted cost problem with bounded cost per stage was captured in the ab- 
stract framework intraduced in an important paper by Denardo [D2] (see 
Problem 4). This framework contains many other interesting problems similar 
to Problem (D), such as the so-called Markov-renewal or semi-Markov 
decision problems [J4, H16, R4] or minimx discounted cost problems (see 
Problems 1 and 6). Denardo’s framework relies strongly on contraction 
properties and is thus generally inapplicable to problems of the type examined 
in Section 6.4 and in Chapter 7. A related framework that does not employ 
contraction assumptions and is applicable to problems such as those of 
Section 6.4 and Chapter 7 was developed recently by the author (see Problem 
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9 in Chapter 7 and [B13] and [B16]). For analysis of discounted cost prob- 
lems involving linear systems and convex cost functionals see references [Bl 11 
and [K8]. For analysis related to problems with imperfect state information 
see references [DS], [SS], and [Sll]. The form of the generalized policy 
iteration algorithm of Problem 13 is apparently new. 

Discounted cost problems with unbounded cost per stage are similar to 
undiscounted cost problems, which will be examined in the next section. 
Important works in this area are those of Dubins and Savage [DS], Blackwell 
[B21], and particularly Strauch [S17] (see Hinderer [H9] for an account). 
These authors considered explicitly the thorny measurability questions 
arising from uncountable disturbance spaces. The analysis of Section 6.4 is 
mostly a synthesis of results given in these references. Propositions 9a and 13 
are new results [B13, B161. The result of Proposition 13 can be generalized to 
the case where the sets U,(x, 2) of (76) are compact subsets of an arbitrary 
topological space. For generalizations of the analysis of Section 6.4 see 
Problem 9 in Chapter 7 and [B13] and [B16]. 

It is to be noted that in our formulation of the problem of this chapter we 
have specified that the initial state x, is fixed and given. Thus whenever the 
optimal cost J*(xo) corresponding to xo is finite, it can be attained within any 
E > 0 by an admissible policy TI,(x,), i.e., given any E =- 0 there exists an 
admissible TI,(x,) such that 

Jn,&O) G J*(xo) + E.  

The policy n,(x0) will depend on xo and it does not necessarily follow that 
given any E > 0 there exists an admissible policy TI, (independent of xo) such 
that 

Jnr(xo) < J*(x,) + E vx, E s. 
Neither does it follow that policy TI, can be taken to be stationary unless 
Assumption B is satisfied (Problem 12). A considerable amount of research 
has been directed toward clarifying these fine points and the advanced 
reader is referred to references [B21], [B22], [Ml], [02], and [S17] for 
related analysis and counterexamples (see also Problems 22-25). 

The results on linear quadratic problems are well known (see, e.g., 
Kushner [KlO]). The inventory control problem has been analyzed by 
Bellman [B3] (see also Iglehart [I2]). For some recent results see Kalymon 
[K3]. The line of argument adopted here is new. 

The treatment of nonstationary and periodic problems by means of 
reduction to the stationary case is apparently new. Earlier works on the 
subject [F4, H9] do not take advantage of the possibility of this reduction. 
The results on periodic linear-quadratic problems and inventory control 
(Problems 18 and 20) seem to be new. 
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The formulation of Problem (D) excludes the possibility of constraints 
on the state xk of the form xk  E X c S .  Such constraints can be taken into 
account under Assumption P by adding to the cost per stage g the indicator 
function 6(x  1 X )  of the set X :  

if X E X ,  i" +00 if X E X .  
6 (XIX)  = 

This formulation, however, requires that g can take the value + 00. Nonethe- 
less all the results of Section 6.4 shown under Assumption P may be proved 
for g satisfying 

i.e., when g is allowed to take the value + co (see Problem 10). For an analysis 
and treatment of state constraints see references [B9] and [Bl 11 or Problem 
13 in Chapter 7. 

Finally, we note that even though the problem of this chapter excludes 
specifically the possibility of an uncountable disturbance space, it may still 
serve as the starting point of analysis of a problem with uncountable dis- 
turbance space. This can be done by reducing such a problem to a deter- 
ministic problem (i.e., one where the disturbance space consists of a single 
element) with state space a set of probability measures. The basic idea of this 
reduction is demonstrated in Problem 21. The advanced reader may con- 
sult the work of Witsenhausen [WS] and see how a related reduction can be 
effected for a very broad class of finite horizon problems. 

Problems 

1. Provide analogs for the results and algorithms of Sections 6.1 and 6.2 for 
the problem of minimizing 

N -  1 

over all polices n = {po ,  p l ,  . . .} with pk(Xk) E v (xk)  vxk E S, where a E (0, l), 
g satisfies Assumption B, xk is generated by xk+ = f [ x k ,  &(xk)? wk], 
and W ( x ,  u)  is a given nonempty subset of D for each ( x ,  u)  E S x C .  
2. The purpose of this problem is to provide discretization procedures and 
related convergence results analogous to those of Section 5.2. Consider the 
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functional equation for J* : S + R : 

J*(x) = max E {g(x, u, w )  + d * [ f ( x ,  u, w ) ] )  
usc  w 

where 0 < a < 1 and g , f ,  S ,  C,  and w satisfy continuity, compactness, and 
finiteness assumptions analogous to Assumptions A of Section 5.2. Let 
S', S2,  . . . , Sn be mutually disjoint sets with S = uy= S', select arbitrary 
points xi  E S', i = 1, . . . , n, and consider the discretized functional equation 

max E {g(x ,  u, w )  + a j * C f ( x ,  u, w)I) 

if x = x i ,  i = l ,  ..., n, 1 j*(xi) if XES', i = 1,. . ., n. 

Show that both equations have unique solutions J* and j* within 

U E C  w 

j * ( x )  = 

(a) 
the class of all bounded functions J :  S + R and furthermore 

lim sup I J*(x) - .l*(x) 1 = 0, 
d.+O x s S  

where 

d,  = max sug[lx - x i [ [ .  
i = l .  ..., n X E  

(b) Provide a discretization procedure and prove a similar result under 
assumptions analogous to Assumption B of Section 5.2. 

Hint: Use the results already proved in Section 5.2. 
3. Let S be a set and B(S) be the set of all bounded real-valued functions on 
S. Let T: B(S)  -+ B(S) be a mapping with the following two properties: 

(1) T(J)  < T(J') for all J ,  J' E B(S) with J d J'. 
(2) For every scalar r # 0 and all x E S 

al  < [T(J + re) (x)  - T ( J ) ( x ) l / r  d a,, 

where a l ,  a2 are two scalars with 0 < a1  d a2 < 1. 
(a) Show that T is a contraction mapping on B(S) and hence for every 

J E B(S) we have 

lim Tk(J) (x )  = J*(x)  Vx E S ,  
k + m  

where J* is the unique fixed point of Tin B(S). 
(b) Show that for all J E B(S), x E S ,  and k = 1,2, . . . , 

Tk(J)(X)  ck d T k + l ( J ) ( X )  ck+l  < J*(X) 

d Tk' l (J) (X)  + c k + l  d Tk(J ) (x )  + z k ,  
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where for all k 

1 - a2 a2 sup[Tk(J ) (x )  xss  - T*'(J)(x)]}. 

A geometric interpretation of these relations for the case where S consists of a 
single element is provided in Fig. 6.3. 

FIGURE 6.3 

(c) Show that the mapping F defined by (38)-(41) satisfies 
a" < [F(J + re) (x)  - F(J)(x) ] / r  < a, 

where n is the number of elements in S. 
Hint :  Use a line of argument similar to the one of Section 6.2. 
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4. Let S be a set, let B(S) be the set of all bounded real-valued functions on 
S, let C be another set, and for each x E S let V(x)  be a given nonempty subset 
of C. Assume that we are given a mapping H: S x C x B(S) + R having the 
monotonicity property 

(M) J < J’ * H ( x ,  u, J) < H ( x ,  u, J’) VJ, J’ E B(S), (x, u)  E S x C ,  

and the contraction property 

l H ( x ,  u, J) - H ( x ,  u, J’)I d aJIJ - J’IJ 

where a is some scalar with 0 c a c 1 and 

VJ, J’ E B(S),  (x, u)  E S x C ,  (C) 

llJ - J’I( = suplJ(x) - J’(x)l. 
X € S  

Let M denote the set of all functions p: S + C with p ( x )  E V ( x )  Vx E S. For any 
p E M define the mapping T, by 

T,(J)(x) = HCx, p(4, 51 Vx E S, 

and the mapping T by 

T ( J ) ( x )  = inf H ( x ,  u, J) Vx E S. 

We assume that T(J), T,(J) E B(S) for all J E B(S), p E M. Show the following: 
(a) There exists a unique function J* E B(S), and for each p E M a unique 

function J, E B(S) such that 

U E  U ( x )  

J* = T(J*), J, = T,(J,). 

Furthermore, 

(IJ* - Tk(J)IJ + 0, (IJ, - Ti(J)(I + 0 V J € B ( S ) .  

(b) There holds 

J*(x)  = inf J,(x) Vx E S ,  
# E M  

and if for some p E M we have T,(J*) = J*, then J, = J*. Furthermore if there 
exists a function J E B ( S )  such that limb+ (Tp0 . . . T , , ) ( J ) ( x )  exists and is a 
real number for all x E S and all sequences { i l k } .  p h  E M .  Vk. then 

lim(T,;.. T,,)(J)(x) = lirn(T,;.. T,,)(J)(x) VJEB(S), X E S ,  
k - w  k+w 

p k € M ,  k = 0, 1 ,..., 

J*(x) = inf lim (Two . . . T,,)(J)(x) VJ E B(S), x E S.  
p i ~ M  k+w 

i = O .  1, ... 

(c) Prove (a) and (b) when the contraction assumption (C) is replaced by 
the assumption that there exists a scalar a with 0 c a c 1, a scalar 1, > 0, 
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and an integer m 2 1 such that 

ll(T,,T,,.** TPm-,)(J) - (T,,,T,;-. L-,)(J’)I l G allJ - J’IL 
V J ,  J ‘ E B ( S ) ,  P o , .  - * , Pm-1 E M ,  

IIT,(J) - T,(J’)ll G LllJ - J’IL (C’) 

VJ, J’ E B(S), p E M .  

(d) Assume that S is a finite set, S = {1,2, .  . . , n}. Under Eqs. (M) and 
(C’) show that {J*(l), . . . , J*(n)}  is a solution of each of the following prob- 
lems : 

min i ~ ( i ) ,  max i J(i) .  
T(J)( i )  4 J ( i )  i =  1 TCJ)(i)> 4 i )  i =  1 

i = l ,  ..., n I =  1 .  ... ( n 

(e) Assume that S and C are finite sets and Eqs. (M) and (C’) hold. 
Consider the following generalized policy iteration algorithm: 

(1) 
(2) 
Repeat the process until J,c + = J,E for some index &. 

Start with an initial po E M .  
Given p i  calculate JWi and p i + ’  E M  such that TPi+ l(J,i) = T(J,,i). 

Show that the algorithm will yield J* after a finite number of iterations. 

that T,JTk-’ (J) ]  = Tk(J)  and p k  E M. Show that 
(f) Assume that Eqs. (M) and (C) hold. Let J E B ( S )  and let p k  be such 

llJ* - J P r I I  G C2ak/(l - a)lllT(J) - Jll. 
Show also that 

llJ* - Tk(J)II d bk, 

where bk is defined recursively by 

Hints:  (a) Show that 

11 T,,(J) - T,,(.J’)ll d allJ - J’II 
11 T(J)  - T(J’)II G allJ - J’II 

V J ,  J’ E B(S), p E M ,  

VJ, J‘ E B(S), 

and use the contraction mapping fixed point theorem. 
(b) Use the fact that J ,  2 T(J,) 2 ... 2 Tk(J,) 2 ... to show that 

inf,, J , ( x )  2 J * ( x ) .  To prove the reverse inequality, for any F: > 0, let p E M 
be such that 

J*(x) 2 T,,(J*)(x) - & V X E S .  
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Use the contraction assumption and the above inequality to show that for 
all k = 1 ,2 , .  . . , 

T!(J*)(x)  2 T!+'(J*)(X) - Uk& 

J*(x) 2 J,(x) - [&/(1 - u)] 

v x  E s, 
and conclude that 

v x  E s. 
Use the above argument to show that 

J*(x) = inf lim (Tp0. . . T,,)(J*)(x) Vx E S.  
pi. i=O.l. ... k - t m  

(c) Show that 

11 Tr(J)  - Tr(J')II < U I ~ J  - J'II V J ,  J' E B(S), p E M ,  

II T"(J) - T"(J')II < allJ - J'll VJ, J' E B(S). 

(f) Show that the following relations hold: 

5. Consider a problem similar to that of Section 6.1 except for the fact that 
when we are at state xk there is a probability p, where 0 < p c 1, that the 
next state xk+ will be determined according to xk+ = f ( x , ,  uk, wk) and a 
probability (1  - p) that the system will move to a termination state where it 
stays permanently thereafter at no cost. Show that even if u = 1 (no dis- 
counting) the problem can be put into the discounted cost framework. Use the 
results of Problem 4 to analyze the case where p depends on u and 

0 < inf p(u) < sup p(u) < 1 .  
u c c  uec 

6. Consider a problem similar to Problem (D) under Assumption B except 
for the fact that the discount factor u depends on the current state xk, the 
control uk, and the disturbance wk, i.e., the cost functional has the form 

(N- 1 -l 
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with a(x, u, w )  a given function satisfying 

0 < inf{a(x, u, w ) l x  E S ,  u E C,  w E D }  

< s u p { c c ( x , u , w ) J x E S , U E C , W E D }  < 1. 

Show that the results and algorithms of Sections 6.1 and 6.2 have direct 
counterparts for such problems. 
7. Let J :  S + R be any bounded function on S and consider the successive 
approximation method of Section 6.2 with a starting function J :  S + R of 
the form 

where r is some scalar. Show that the bounds T k ( J ) ( x )  + ck, T k ( J ) ( x )  + '?k 
on J*(x)  of Proposition 4 are independent of the scalar r for all x E S .  Show 
also that if S consists of a single element 2 (i.e., S = {Z}), then 

J ( x )  = J(x )  + r V X E S ,  

T(J)(j?) + c1 = T(J)(Z) + 2,  = J*(Z).  

8. Consider Problem (D) under Assumption P or N. Show that for any 
probability distribution {pl, p 2 , .  . .} defined on { x ' ,  x 2 , .  . .}, a countable 
subset of S ,  we have 

m 

Hint :  If J*(xi) is equal to + co (under Assumption P) or - co (under 
Assumption N) for some i for which p i  > 0 the result is evident. So assume 
J*(xi) # _+ co for all i. We have 1s piJ*(x i )  < inf, 1 g  piJ,(xi)  so it 
remains to prove the reverse inequality. For a given E > 0 consider for each 
x i  an admissible policy of the form 

such that 
no(xi) = {Bo( * ), P W ,  * 1, P W ,  * ), * . .I, 

m m 

Notice that no(xi) represents a different policy for each x i  and $(xi,  x j )  re- 
presents the control applied when the initial state is x i  and the state at timej 
is x i .  

Let Assumption P hold and consider a sequence { E k }  with &k > 0, Vk,  
and l k m , l  ck = E .  Write 

m m 

m 
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where 

Show that one may find a policy of the form 

such that 
m m 

and with f i l ,  pj satisfying f i l (x l )  E U(xl )  Vxl E S,  and pf(xl ,  x j )  E U(xj), 
Vx,, x j  E S , j  = 2,3, . . . . Note that the values of pj depend on x 1  and xi but 
not on xi. Notice also that the policy 7cl is not an admissible policy according 
to our definition since the control pj(xl ,  x j )  applied at timej 2 2 depends on 
the state x 1  (which has occurred at time 1) as well as the current state x j .  

Similarly proceeding, show that one may find a policy of the form 

=k = { f i O ( ' ) , f i l ( ' ) , . . . , f i k ( ' ) ,  p I :+ l (xk , ' ) ,CLI :+2(xk , ' ) , . . . } ,  

such that 

where 

m k m k -  1 

Consider the policy ?r = {Po, E l ,  . . .} and use the above inequalities to show 
that 

m m 

i= 1 i= 1 
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Under Assumption N show that for each N there exists an admissible 
policy of the form zN = {fro, f i y , .  . . , fii, p, p, . . .} such that 

Show that 
m m m 

Hence there exists an N such that 
._ 

1 PiJ,,(X') < c PiJ*(X') + 3E. 
i =  1 i =  1 

For detailed proofs see Theorems 4.3 and 4.4 of Strauch [S17] or Hinderer 

9. Let S = [0, a), C = U(x)  = (0, a), be the state and control spaces, 
respectively, let the system equation be 

~ ~ 9 1 .  

xk+ 1 = (2/a)xk + u k ,  k = 0, 1, . . . , 
where a is the discount factor, and let 

dxk ,  u k )  = xk + u k  

be the cost per stage. Show that for this deterministic problem Assumption P 
is satisfied and that J*(x) = co Vx E S,  but Tk(Jo)(0) = 0 for all k [ J o  is the 
zero function, Jo(x) = 0 Vx E S] .  
10. Verify that all the results of Section 6.4 proved under Assumption P 
hold if the cost per stage g satisfies 

0 < g(x, u, w)  < + co V(x, u, w )  E S x c x D. 

11. Consider Problem (D) for the case of a deterministic problem involving 
a.linear system 

xk+l = Ax, + Buk, k = 0, 1, ..., 

where the pair (A, B) is controllable and x k  E R", u k  E R". Assume no con- 
straints on the control and a cost per stage g satisfying 

0 < g(x, u )  V(x, u )  E R" x R". 

Assume furthermore that g is continuous in x and u, and that g(x,, u,) -+ + co 
if {x,} is bounded and Iu,( -+ +a. 
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(a) Show that for a discount factor a E (0, 1) the optimal cost satisfies 
0 < J*(x) < + 00, Vx E R". Furthermore there exists an optimal stationary 
policy and 

lim Tk(Jo) (x )  = J*(x)  Vx E R". 
k - a ,  

(b) Show that the same holds true except perhaps for J*(x)  < +co 
when the system is not linear but rather is of the form = f ( x k ,  uk), 
withf: R" x R" + R" being a continuous function. 

Prove the same results assuming that the control is constrained to lie 
in a compact set U c R"(U(x) = U ,  Vx E R") in place of the assumption 
g(x,,  u,) + + 00 if {x,} is bounded and 1 u, 1 + + 00. 

Hint: Show that Tk(Jo)  is real valued and continuous for every k and 
use Proposition 13. 
12. Under Assumption B let p :  S + C be such that p(x)  E U ( x )  Vx E S ,  and 

(c) 

T,(J*)(x)  = E { S C X ,  A x ) ,  wl  + mJ*Cf(x, p ( 4 ,  w ) l )  
W 

= J*(x)  + E v x  E S.  

Show that 

J*(x)  d J,(x) d J*(x) + [ E / (  1 - a)] Vx E S.  

Hint: Show that T:(J*)(x)  < J * ( x )  + 1. k - 1  i 
r = O  a&.  

13. Generalized Policy Iteration Algorithm The purpose of this problem is 
to provide a policy iteration algorithm for the case where the state space and 
the control space are not necessarily finite sets. Under Assumption B let 
{p, p, . . .} be an admissible stationary policy and let 1,: S + R be such that 

SUP I j&) - J,W I < 7. 

su JJ' (x)  - T ( j , ) ( x ) (  < 6 .,B 

x o s  

Let J': S + R be such that 

and assume that 

Show that for all x E S there holds 

J*(x) d J,(x) d J*(x)  + [(S + ~)/(1 - a)] + y. (102) 
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Consider the following policy iteration algorithm, for fixed y, S ,  c > 0. 
(1) Start with an admissible stationary policy no = {po, po, . . .}. 
(2)  Given {pi, pi, . . .} find J,i: S + R such that (Jpi(x) - J,i(x)I < pi 

(3) Find pi+': S + C with p i + l ( x )  E V(x) for all x E S such that 
for all x E S. 

T,,+ QPi)(x) < T ( J , ~ ) ( x )  + 6a' vx E S. 

If SUP, ,~J  T,i+ I(Jpi)(x) - J,i(x)l < E stop. Otherwise replace pi by pi+' and 
go to Step 2. 

Show that the algorithm will terminate after a finite number of iterations 
(say k) and that 

uk-'6 + & 

1 - u  J*(x)  < JJX)  < J*(x)  + + y o l k - '  v x  E s. 

Hint: To show inequality (102) use the fact that for any fl > 0 there 
exists a k such that for all x E S 

1 T k + ' ( J p ) ( x )  - J*(x)J < p. 

Then use the inequalities 

I Jp(4 - J*(x )  I < lJ,(X) - T(J,)(x)I + I T(J,)(x) - TZ(J,)(x)1 

+ * * * + I Tk"(J,)(X) - J*(x)l 

X €  ! < su lJ,(x) - T(J,)(x)l(l + u + . - .  + ak) + p 

to show that 

vx E s. 

To show that the policy iteration algorithm will terminate in a finite 
number of iterations, assume the contrary, i.e., we have 

for all i and the algorithm generates an infinite sequence of policies {d}. 
Show first that for all x E S and i = 0, 1, . . . , we have 

T,i+l(J,i)(x) < T(J,i)(x) + (6 + 2ya)u' < J,i(x) + (6 + 2yu)a'. 
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Use this inequality to show that for all x E S and i, k ,  
k- 1 

T:i+ I(J,i)(x) < T(J, i ) (x)  + (6 + 2y~r)~r' 1 04, 
j = O  

and conclude that for all x E S and i = 0, 1, . . . , 

J*(x)  < J,i+ I ( x )  d T(J, i ) (x)  + ,lai, 

where 

1 = (6 + 2ya)/(l - a). 

Show that for all x E S and i = 1,2 ,  . . . , 
J*(x)  < J,i(x) ,< T' (J ,~ ) (X)  + iai-'L, 

and conclude that 

lim SUP 1 J,i(x) - J*(x)  1 = 0. 
i-m x s S  

Use this equality to reach a contradiction. 
14. The purpose of this problem is to show that the successive approxi- 
mation method of Section 6.2 will yield an optimal policy after a finite number 
of iterations when S ,  C ,  and D are finite sets. Under Assumption B let 
J :  S -+ R be a function such that for some E > 0 and all x E S we have 

IJ(x) - J*(x)l ,< E.  

Let p(x) be such that for all x E S we have p ( x )  E V ( x )  and 

T,(J)(x) = E { S C X ,  A x ) ,  W I  + uJCf(x ,  pL(x), w)l>  
W 

(a) Show that for all x E S 

I T,(J) (x)  - J(x )  I d (1 + COE. 

I T,(J)(x) - J,WI d C 4 1  + 4/(1 - 4IE. 

J*(x) < J,(x) < J*(x) + [ 2 E / ( 1  - a)]. 

(b) Using the above inequality show that for all x E S ,  

(c) Show that for all x E S ,  

(d) Assume that the state, control, and disturbance spaces are finite sets. 
Show that the successive approximation method after some index will yield 
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an optimal policy at every iteration, i.e., for any starting function J : S + R 
there exists an index k such that if p* is such that 

7',,4Tk(J)] = T k f l ( J )  and k 2 k, 

then {p*, p*, . . .} is optimal. 
15. Under Assumption P or N show that if 3:  S + R is a bounded function 
satisfying 
16. Prove the following strengthened version of part (b) of Proposition 9: 
Under Assumption N if 3:  S + [ - 00, 00) is bounded above and satisfies 
1 < T ( j ) ,  then 3 < J*. 
17. Linear-Quadratic Problems with Nonstationary Disturbances Con- 
sider the linear-quadratic problem of Section 6.5 with the only difference that 
the disturbances wk have zero mean but their covariance matrices are non- 
stationary and uniformly bounded over k. Show that the optimal control law 
remains unchanged. 
18. Periodic Linear-Quadratic Problems Consider the linear system 

= T(J), then 3 = J*. 

X k + l  = AkXk + B k U k  + W k ,  k = 0, 1,. . . ., 
and the quadratic cost functional 

CN- 1 

where the matrices above have appropriate dimensions, Qk and Rk are 
positive semidefinite and positive definite, respectively, for all k, and 0 < a < 1. 
Assume that the system and cost functional are periodic with period p (cf. 
Section 6.7), that the controls are unconstrained, and that the disturbances 
are independent, have zero mean, and finite covariance matrices. Assume 
further that the following (controllability) condition is in effect. 

Given any initial state x0 there exists a finite sequence of controls {p0, 
is1, .  . . , u,} such that K,, = 0 where x,, is generated by - 

- 
xk+l = AkXk + B&i&, k = 0, 1,. . . , r .  

Show that there is an optimal periodic policy 7c* of the form 

* * *  n* = {Po*, p:, . . ., pp-1, P o ,  P l ,  . . . Y & - l ,  f * .I, 
where PO* ,  . . . , p:- are given by 

p;(x) = - ~ ( U B : K ~ + ~ B ~  + R i ) - ' B I K i , , A i x ,  i = 0,. . . , p - 2, 

pP-1(x )  * = -a(aBb-,KOB,-,  + RP-1)- 'Bb-1KoAp-1x 
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and the matrices K O ,  K,, . . . , K,- , satisfy the coupled set of p algebraic 
Riccati equations given by 

Ki = A : [ a K i + ,  - a2Ki+,Bi(aB:Ki+,Bi  + R i ) - ’ B : K i + , ] A i  + Q. 1 9  

i = O , l ,  ..., p - 2 ,  
K,- , = A;-  ,[aK0 - a Z K o B p -  ,(ctBp- ,K0B,-  

+ Rp-l)-’Bp-lKo]Ap-l + QP-,. 

Hint: Use Eqs. (99) and the compactness condition (10 1). 
19. Discounted Linear-Quadratic Problems with Imperfect State Informa- 
tion Consider the linear-quadratic problem of Section 6.5 with the difference 
that the controller, instead of having perfect state information, has access to 
measurements of the form 

Similarly, as in Section 4.3, the disturbances V k  are independent, have identical 
statistics, zero mean, and finite covariance matrix. Assume that for every 
admissible policy II the matrices 

E { [ x k  - E { X k I I k } l [ X k  - J ! ? { X k I l k } l ’ l n }  

are uniformly bounded over k, where is the information vector defined in 
Section 4.3. Show that the optimal policy is n* = {p*, p*, . . .}, where ,u* is 
given by 

Show also that the same is true if wk,  vk are nonstationary with zero mean and 
covariance matrices that are uniformly bounded over k. 

Hint: Combine the theory of Sections 4.3 and 6.7. Use the compactness 
condition of Proposition 13. 
20. Periodic Inventory Control Problems In the inventory control problem 
of Section 6.6 consider the case where the statistics of the demands wk, the 
prices c k ,  and the holding and the shortage costs are periodic with period p. 
Show that there exists an optimal periodic policy of the form n* = {p:, 

. . . ,  P p -  1, P o ,  * *  
. 1  Pf- 1 , .  . .I, 

S: - x if x 6 S:, 
i = O , l ,  ..., p -  1 ,  otherwise, 

where S:, . . . , Sf- , are appropriate scalars. 
Hint Use Eqs. (99) and the compactness condition (101). 



PROBLEMS 293 

21. Consider the problem of this chapter under Assumption B for the case 
where the sets S ,  C ,  and D are finite sets. Using the notation of Section 6.2 
consider the controlled system 

P k + i  = PkP,,,, k = 0, 1 , .  ., 
where P k  is a probability distribution over S viewed as a row vector, and P,, 
is the transition probability matrix corresponding to a function pk: C + S 
with pk(i) E U(i) for all i E S.  The state is P k  and the control is pk. Consider also 
the cost functional 

N- 1 

Show that the optimal value function and an optimal policy for the deter- 
ministic problem involving the system and the cost functional above yield 
the optimal value and an optimal policy for the problem of this chapter. 
22. Let Assumption P hold and assume that n* = {p:, py, . . .} E ll 
satisfies J* = T,;( J*)  for all k .  Show that n* is optimal, i.e., J,, = J*. 
23. Under Assumption P show that given d > 0 there exists a policy 
ng€II  such that J, , (x)  < J*(x)  + &' for all X E S .  and that for c( < 1 the 
policy xE can be taken stationary. 

Hint: Let { d k }  be a sequence such that 8, > 0 for all k and 
ork€,  = 8. For each x E S let .,+[XI = { p ~ [ x ] ,  &[XI,. . .} E n be such 

that J n k [ x l ( ~ )  < J * ( x )  + bl,. Define ,iik(X) = p k [ x ]  ( x )  and let ng = { p o ,  p , ,  . . .}. 
24. Under Assumption P show that if there exists an optimal policy, i.e., 
a policy x* E ll such that J,, = J*, then there exists an optimal stationary 
policy. 
25. Use the following counterexample to show that the result of Problem 24 
may fail to hold under Assumption N if J*(x)  = - m for some x E S .  Let 

p(w = OIx = 0, u )  = *, p(w = l l x  = I ,  u )  = 1. Show that J*(O) = -a, 
J*( 1 )  = 0, and that the admissible nonstationary policy {p:, p:, . . .} with 
p t ( 0 )  = - ( 2 / ~ r ) ~  is optimal. Show that any admissible stationary policy 
{p, p, . . .} satisfies J,(O) = [2 / (2  - a)]p(O), J,(l) = 0 (see [B22] ,  [DS], 
[ 0 2 ]  for related analysis). 

S = D = (0, l } , , f ( ~ ,  U, N') = W, g(x .  U, W) = U, U(0) = (-m, 01, U(1) = {0}, 



Chapter 7 

Minimization of Total Expected 
Value - Undiscounted Cost 

In this chapter we consider infinite horizon problems with undiscounted 
cost functionals. The basic problem we consider is identical with Problem (D) 
of the previous chapter except for the absence of the discount factor. Again we 
assume stationarity of the system and the cost per stage. However, non- 
stationary or periodic problems may be treated by reduction to the stationary 
case similarly as in Section 6.7. 

PROBLEM (U) Consider the stationary discrete-time dynamic system 

x k + l  = f ( x k ,  uk, wk)?  = O, 1, ... 9 (1) 

where the state xk, k = 0, 1, . . . , is an element of a space S, the control 
uk, k = 0, 1,. . . , is an element of a space C, and the random disturbance 
wk, k = 0, 1, . . . , is an element of a space D. It is assumed that D is a countable 
set. The control uk is constrained to take values in a given subset v(xk)  of C 
that depends on the current state xk [ U k  E v(xk),  k h k  E S,  k = 0, 1, . . .]. The 
random disturbances wk, k = 0, 1, . . . , have identical statistics and are 
characterized by probabilities P( - I xk, uk) defined on D, where P(wk 1 xk,  uk) 
denotes the probability of wk occurring when the current state and control 

294 
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are xk and uk, respectively. The probability of wk may depend explicitly on 
x k  and uk but not on values of prior disturbances wk- 1,  . . . , wo. 

Given an initial state x o ,  the problem is to find a control law, or policy, 
= { P o ,  pi, . . .}, where pk: S c, ,b!k(xk) E u(xk) for all xk E S ,  k = 0, 1,. . , 

that minimizes the cost functional 

(2) I Jz(x0) = lim E 1 gCxk, p k ( x k ) ,  w k l  
N + w  wk i"- k = O  

k = O ,  1 ,  ... 

subject to the system equation constraint (1). The real-valued function 
g :  S x C x D + R is given. 

One of the main difficulties introduced by the absence of the discount 
factor is that now the value of the cost functional (2) may be infinite for some 
(possibly all) initial states even when costs per stage are bounded. For this 
reason Problem (U) makes sense in the case where g 2 0 only when the opti- 
mal value function 

J*(x)  = inf J,(x) V x  E S 
n 

takes finite values for at least some initial states, for otherwise every ad- 
missible policy is optimal. This type of difficulty is of the same nature as the 
one we encountered in connection with discounted problems with unbounded 
costs per stage (Section 6.4). As in Section 6.4 we shall allow the possibility 
that the functions J ,  and J* may take the value + 00 or - co, i.e., they may 
be extended real valued. 

As in the previous chapter we need to impose assumptions on the cost 
per stage function g that guarantee that the limit in (2) exists in the sense that 
it is a real number or kco. We shall be considering the following two 
assumptions, which closely parallel the corresponding assumptions P and N 
of Section 6.4. 

Assumption P The function g in the cost functional (2) satisfies 

0 < g(x ,  u, w)  V(x ,  u, w) E S x C x D. 

Assumption N The function g in the cost functional (2) satisfies 

g ( x ,  u, w) < 0 V(x,  u, w)  E S x C x D. 

There is, however, an important difference between the assumptions 
above and those of Section 6.4. While in Section 6.4 the assumptions made 
could be replaced by the assumption that g(x ,  u, w) is bounded below or 
above without affecting the results obtained, this is not true anymore for 
Problem (U)-a complication due again to the absence of the discount 
factor. 
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Nonetheless, the results to be obtained in the next section for Problem (U) 
under Assumptions P and N are very similar to those of Section 6.4. Once 
we develop these results we shall examine some special cases in Sections 
7.2-7.4. 

7.1 Convergence and Existence Results 

As in the previous chapter we shall consider mappings Tfl operating 
on functions J that are defined on S and take values in [0, +a], when 
working under Assumption P, and in [ - “o, 01 when working under Assump- 
tion N. The mapping T is defined by 

T ( J ) ( x )  = inf E {g(x ,  u, w) + JCf (x ,  u, W)l), (3) 
u e U ( x )  w 

and the mapping 
71 = {P,  p, . . .I by 

is defined for every admissible stationary policy 

(4) 

Again we write for any two functions J ,  J’ mapping S into [0, +a] or 

J < J’ if J ( x )  < J’(x)  Vx E S .  

T,(J)(x)  = E { S C X ,  A x ) ,  w1 + J C f k  P ( 4 ,  W)N- 
W 

c- a, 01, 
Clearly we have the monotonicity relations 

J < J’ =. T ( J )  < T(J‘), T,(J) < TJJ’). ( 5 )  

We again denote by J*(x )  the optimal value of Problem (U) when the 
initial state is x ,  and by J,(x)  the value of the cost functional (2) corresponding 
to an admissible stationary policy {p ,  p, . . .} and an initial state x .  

The following result can be proved by an almost verbatim repetition of 
the proof of Proposition 8 in Section 6.4. 

Proposition 1 (Optimality Equation) Under either Assumption P or 
N the optimal value function J* of Problem (U) satisfies 

J*(x)  = inf E {g(x ,  u, w) + J * [ f ( x ,  u, w)]} Vx E S ,  (6) 
UEU(X) w 

or in terms of the mapping T of (3), 

J* = T(J*). (7) 

Corollary 1.1 Let { p ,  p, . . .} be an admissible stationary policy. Then 
under Assumption P or N we have 

J,W = E { d x ,  d x ) ,  wl + J,Cf(x,  A x ) ,  W)lL (8) 
W 



7.1 CONVERGENCE AND EXISTENCE RESULTS 2!n 

or equivalently in terms of the mapping T, of (4) 

J ,  = T,(J,). (9) 

The following propositions and corollaries may be proved by essentially 

Proposition 2 (a) Under Assumption P if]: S -, [0, + a31 is a function 

(b) Under Assumption N if 1: S -, [ - 00, 01 is a function that satisfies 

Corollary 2.1 Let II = {p, p, . . .} be an admissible stationary policy. 
(a) Under Assumption P if 1: S -, [0, + a11 is a function that satisfies 

1 = 7',,(]), then J ,  < 1. 
(b) Under Assumption N if J: S -, [ - oo,O] is a function that satisfies 

1 = T,(]), then 3 d J , .  

Corollary 2.2 (Necessary and Sufficient Condition for Optimality 
under Assumption N) In order for an admissible policy II* = {p*, p*, . . .} 
to be optimal under Assumption N it is necessary and sufficient that 

repeating the proofs of the corresponding results of Section 6.4. 

that satisfies 1 = T(j ) ,  then J* < 3. 

J" = T(J"), then d J*.  

J,* = T,*(J,,*) = T(J,*), 

or equivalently 

J,*(x) = E {gCx, P*(X), WI + J,*Cf(x, P*(X), w)l} 

d E {g(x ,  u, w) + J , * [ f ( x ,  u, w)]} 

W 

v x  E S ,  u E U X ) .  (10) 
W 

Proposition 3 (Necessary and Sufficient Condition for Optimality under 
Assumption P) In order for an admissible policy n* = {p* ,  p*, . . .} 
to be optimal under Assumption P, it is necessary and sufficient that 

J* = T,*(J*) = T(J*), 

or equivalently 

J*(x)  = E {gCx, P * ( X ) ,  WI + J*Cf(x ,  P * ( X ) ,  W)ll 
W 

d E {g(x ,  u, w) + J * [ f ( x ,  u, w)]} v x  E S ,  u E U X ) .  (1 1) 
W 

Successive Approximation- Policy Iteration- Linear Programming 

We turn now to the question of convergence of the DP algorithm to the 
optimal value function J*. Similar results as those of Section 6.4 may be 
obtained. Let J o  be the zero function on S, i.e., 

J,(x) = 0 vx E S .  
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Consider the D P  algorithm that generates T(Jo), T2(Jo),  . . . , Tk(Jo), . . . . 
Each of the functions Tk(Jo) represents the optimal value function for a 
corresponding finite horizon problem with k stages. We have under Assump- 
tion P that 

J o  < T(J0) d . . . < Tk(Jo)  < . . . , 

J o  2 T(J0) 2 . . . 2 Tk(Jo)  

J,(x) = lim Tk(Jo) (x )  Vx E S ,  (12) 

while under Assumption N 
* .  . . 

In either case the pointwise limit function J , ,  where 

k-.  m 

is well defined as a function from S into [0, + 001 under Assumption P or 
into [- co, 01 under Assumption N. As in Section 6.4, we have 

Let Assumption P hold and assume that J ,  = T(J,). 
Then 

Proposition4 (a) 

J ,  = J * .  

(b) Let Assumption N hold. Then 

J ,  = J * .  

As in the corresponding discounted case it need not be true that J ,  = J* 
under Assumption P(a counterexample is provided by Problem 9 of Chapter 6 
by setting a = 1). As in Section 6.4 we have the following sufficient condition 
for J ,  = J*. 

Proposition 5 Let Assumption P hold and assume that the sets 

are compact subsets of a Euclidean space for every x E S, A E R, and for all k 
greater than some integer E .  Then 

J ,  = T(J,) = J * .  

Furthermore, there exists an optimal stationary policy. 

Note that when U ( x )  is a finite set for every x E S the assumption of the 
above proposition is satisfied. 

Propositions 4 and 5 form the basis for a successive approximation 
method for computing in the limit the optimal value function J*. An 
alternative method for computing J* under Assumption N is based on the 
following proposition. A related result under P is given in Problem 16. 
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Proposition 6 Under Assumption N if 1: S -, [- co, 01 is a function 
such that j < T ( f ) ,  then f < J*. 

Proof Since j d J o  we have 

T k ( f )  d Tk(Jo), 

from which, using the fact that limk+w T k ( J o ) ( x )  = J , ( x )  = J*(x) ,  we obtain 

lim sup T ~ ( ~ ) ( X )  < J * ( x )  vx E S .  
k+  w 

On the other hand, we have f d T ( f )  implying j ( x )  < lim supk+a, T k ( j ) ( x )  
for all x E S ,  and the result follows. Q.E.D. 

Based on the preceding proposition we have that if S is a finite set, 
S = { 1,2, . . . , n}, and C is also a finite set, C = { u ' ,  . . . , urn}, then J*(l), . . . , 
J*(n) solve the linear programming problem (cf. end of Section 6.2) 

n 

max CAi 
l i d 0  i =  1 

subject to 

n 

Ai < g(i, uk) + 1 pij(uk)ilj i = 1, 2, . . . , n, uk E V(i) ,  
j =  1 

where the notation corresponds to that of Section 6.2. 
Under Assumption P it is possible to use a policy iteration algorithm 

in an effort to find J* and an optimal stationary policy. The algorithm is 
motivated by the following proposition, which parallels Proposition 7 
of Section 6.2. A similar proposition cannot be proved under Assumption N 
in the absence of additional assumptions. 

stationary policy. If (11, ,ii, . . .} is another admissible policy such that 
Proposition 7 Let Assumption P hold and let {p, p, . . .} be an admissible 

then 
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d J,(xo) 

and the result is proved. Q.E.D. 

Notice that the proposition states that the policy { p ,  p ,  . . .} is no worse 
than {p, p, . . .} but does not guarantee a strict improvement. When J;: = J ,  
the most that one can obtain is that 

J ,  = T(J,). 

In the discounted case with bounded costs per stage, the above equality 
implied optimality of {p, p, . . .}, but this is not necessarily true under our 
present assumptions. Nonetheless, we shall be able to use Proposition 7 
to construct a policy iteration algorithm in Section 7.4. 

7.2 Optimal Stopping 

Consider a situation where at each state x of the state space there are two 
possible actions available. We may either stop (control u ' )  and pay a terminal 
cost t (x) ,  or pay a cost c(x)  and continue the process (control u z )  according 
to the system equation 

(14) 

The objective is to find the optimal stopping policy that minimizes the 
total expected costs over an infinite number of stages. It is assumed that the 
input disturbances wk in (14) have the same probability distribution for all k ,  
which depends only on the current state x k .  

X k + l  = fc(xk, wk), k = 0, 1,. . . . 

Proof Using the hypothesis and the facts J ,  = TJJ,), J ,  2 0 (by 
Assumption P) we have, for any initial state xo, 
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In order to put this problem within the framework of Problem (U) 
we introduce an additional state s (termination state) and we complete the 
system equation (14) as in Section 3.4 by letting 

xk+l = s if uk = u1 or xk = s. 

No further cost is incurred once the system reaches the termination state. 
In other words if the termination action is taken, the system is driven to 
the termination state s, and if the system is already in the termination state, 
it remains there permanently (i.e., s is an absorbing state). 

We shall assume in this section that 

t(x) 2 0, c(x) 2 0 vx E s. (15) 
The case where t ( x )  < 0 and c(x) < 0 for all x E S is treated in Problem 10. 
Actually whenever there exists an E > 0 such that c(x) 2 E for all x E S, 
the results to be obtained apply also to the case where 

inf t(x) > - 00, 

i.e., when t(x) is bounded below by some scalar rather than bounded by zero. 
The reason is that if c(x) is assumed to be greater than E > 0 for all x E S,  
any policy that will not stop within a finite expected number of stages results 
in infinite cost and can be excluded from consideration. As a result if we 
reformulate the problem and add a constant r to t ( x )  so that t(x) + r 2 0 
for all x E S, the optimal cost J*(x) will be merely increased by r,  while optimal 
policies will remain unaffected. 

Now under our assumptions the problem clearly falls within the frame- 
work of Problem (U) provided the disturbance space D is a countable set. 
Furthermore, Assumption P is satisfied by virtue of (15). The mapping T 
of (3) takes the form 

X E S  

T(J)(x) = minCt(x), c(x) + E { J [ f , ( x ,  w)X1 Vx E S, (16) 
W 

where t ( x )  is the cost of the termination action i t 1  and c(x) + E ,  {J[f,(x, w)]} 
is the cost of the continuation action u 2 .  To be precise we should also define 
T(J)(s)  = 0 where s is the termination state. However, in what follows 
the value of various functions at s is immaterial and will not be explicitly 
considered. 

By Proposition 1 the optimal value function J* satisfies 

J* = T(J*). 

Since the control space has only two elements, by Proposition 5 we have 

lim Tk(J,)(x) = J*(x) Vx E S, (17) 
k-m 
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where J o  is the zero function (Jo(x)  = 0, Vx E S). By Proposition 3, there 
exists a stationary optimal policy {p* ,  p*, . . .} described as follows: 

Stop if t(x) < c(x) + E {J* [ f , (x ,  w)]}. 

Continue if t(x) 2 c(x)  + E {J*[fc(x ,  w)]}. 

Let us denote by S* the optimal stopping set (which may be empty) 

W 

W 

r 

and by s* its complement in S: 

s* = (x E SIX 4 S*} = x E S ( t ( x )  2 c(x)  + E {J*[fc(x, w)]} . r W 1 
The set S* is the, set of states where stopping is optimal. Consider also the sets 

and their complements in S, 

s k  = x s I t(x) 2 c(x) + E { Tk(JO) [fr(x, w)]} a { W I 
The stopping sets S1, S1, . . . , s k ,  . . . determine the optimal policy for finite 
horizon versions of the stopping problem and are determined via the 
successive approximation method. Since we have 

Jo < T(J0) < . . . < Tk(Jo) < f * * < J*, 

it follows that 
S1 c ... c Sk c ... c S* and S ,  =I ... 3 3, 3 ... 3 S*. 

Now for any state I E S k  we have for all k, 

t(2) 2 c(I) + E {Tk(J,)[f ,(Z, w)]}, k = 0, 1, . . . , 
W 

and by taking limits and using (17) we obtain 

t ( 3  2 42) + E {J*Cf,(f, W)N, 
W 

from which 2 E S*. Hence 
W 

S* n s,, 
k =  1 
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which, in conjunction with the fact, that s k  =I s* for all k, yields 
cc 

s* = n s k ,  
k =  1 

or equivalently 
m 

s* = u s k .  
k =  1 

In other words, the optimal stopping set S* for the injnite horizon problem 
is equal to the union of all thejnite horizon stopping sets Sk. 

Notice that in the case where the state space is a h i t e  set, (18) shows that 
the successive approximation method will determine the optimal stopping 
set in a finite number of iterations. Also when the state space is a finite set, 
some additional results of analytical and computational importance may be 
proved for the optimal stopping problem. These results will be developed 
in the context of a more general problem in Section 7.4. The remainder of 
this section is devoted to examples. 

ASSET SELLING EXAMPLE Consider the asset selling example of Sections 
3.4 and 6.1 (see also Problem 3.10) where the rate of interest r is zero and 
there is instead a maintenance cost c > 0 per period for which the house 
remains unsold. We have the following equation for the optimal cost: 

J*(x)  = max x, - c  + E { J * ( w ) }  . (19) [ . .  1 
In this equation x takes values in a bounded interval of the form [0, MI, 
where M is some positive scalar that bounds the possible offers from above. 
Notice that in this particular case we consider maximization of total expected 
reward and the termination reward x is positive. Hence assumption (15) is 
not satisfied. Since, however, the termination cost is bounded, our analysis 
of this section is still applicable [cf. the discussion following (15)]. 

Now from (19) we obtain an optimal stationary policy of the form 

If the current offer exceeds - c  + E ,  {J*(w)} ,  sell the asset; otherwise 

The threshold level - c  + E ,  {J*(w)}  may be obtained in a similar 

do not sell. 

manner as in Section 3.4. 

HYPOTHESIS TESTING EXAMPLE-SEQUENTIAL PROBABILITY RATIO TEST 

Consider the hypothesis testing problem of Section 4.5 for the case where 
thenumber of possible observations is unlimited. The state space is S = [0,1], 
i.e., the space of the sufficient statistic 

P k  = P(xk = xoIzO, 21,. . 9 zk) 



304 7 MINIMIZATION OF TOTAL EXPECTED VALUE 

augmented with a termination state s, which will not be explicitly considered 
in the expressions below. To each state p E [0, 11 we may assign the termina- 
tion cost 

t(p) = minC(1 - PILO,  pL11, 

i.e., the cost associated with optimal choice between the distributions fo and 
f,. The mapping T of (16) takes the form 

where the expectation over z above is taken with respect to the probability 
distribution 

P(Z)  = PfO(4 + (1 - PlfI(4 vz E z. 
The optimal value function J* satisfies 

(1 - p)Lo, pL1,  c + 
and is obtained in the limit through the equation 

J*(p) = lim Tk(Jo)(p) V p  E [O, 11, 
k -  w 

where J o  is the zero function on [0, 11. 
Now consider the functions Tk(Jo), k = 0, 1,. . . . It is clear that 

. < Tk(Jo) < . . . < min[(1 - p ) ~ ~ ,  p ~ , ] .  J~ < T(J,) < 
Furthermore, in view of the analysis of Section 4.5 we have that the function 
Tk(Jo) is concave on [0, 11 for all k.  Hence the pointwise limit function J* 
is also concave on [0, 11. In addition, we have clearly from (20) that 

J*(p)  < min[(l - p)Lo, &I. J*(O) = J*(1) = 0 and 

It follows from (20) and Fig. 7.1 that [provided c < LoL,/(Lo + L,)] there 
exist two scalars Cr, f i  with 0 < B < Cr < 1 that determine an optimal stationary 
policy of the form 

Accept fo if p 2 Cr. 
Accept fl if p < fi. 
Continue the observations if f i  < p < Cr. 

In view of the optimality of the stationary policy above, the employment of 
the sequential probability ratio test described in Section 4.5 is justified when 
the number of possible observations is large and tends to infinity. 
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7.3 Optimal Gambling Strategies 

A gambler enters a certain game played as follows. The gambler may 
stake at any time k any amount uk 3 0 that does not exceed his current 
fortune xk (defined to be his initial capital plus his gain or minus his loss 
thus far). He wins his stake back and as much more with probability p and 
he loses his stake with probability (1 - p). Thus the gambler’s fortune 
evolves according to the equation 

(21) X k f l  = x k  + wkuk, k = 0, 1,. . . 3 

where wk = 1 with probability p and wk = - 1 with probability (1 - p). 
Several games, such as playing red and black in roulette, fit the description 
given above. 

The gambler enters the game with an initial capital xo and his goal is to 
increase his fortune up to a level X. He continues gambling until he either 
reaches his goal or loses his entire initial capital, at which point he leaves the 
game. The problem is to determine the optimal gambling strategy for 
maximizing the probability of reaching his goal. By a gambling strategy we 
mean a rule that specifies what the stake should be at time k when the gam- 
bler’s fortune is xk for every x k  with 0 < xk < X .  

The problem may be cast within the framework of Problem (U) where 
we consider maximization in place of minimization. Let us assume for 
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convenience that fortunes are normalized so that X = 1. The state space 
is the set [0, 13 u {s}, where s is a termination state to which the system 
moves with certainty from both states 0 and 1 with corresponding rewards 
0 and 1. When xk  # 0, x k  # 1, the system evolves according to Eq. (21). The 
control constraint set is specified by 

o < u k < x k ,  o < u k <  1 - x k .  

The reward per stage when xk # 0, xk # 1 ,  is zero. Under these circumstances 
the probability of reaching the goal is equal to the total expected reward. 
Assumption N holds since the problem under consideration is equivalent to a 
problem of minimizing expected total cost with nonpositive costs per stage. 

The mapping T of (3) takes the form 

T ( J ) ( x )  = 

T(J ) (O)  = 0, 

sup cpJ(x + u )  + ( 1  - p)J(x - u)] v x  E (0, l), 
o s u < x  

O<u<l-x 

T(J)(l) = 1 

for any function J :  [0, 11 -+ [0, +a] .  Actually for this problem one 
restrict attention to functions J taking values in the interval [O, 11 
J(0) = 0, J(1)  = 1. 

Consider now the case where 

i.e., the game is unfair to the gambler. A discretized version of the case where 
3 < p < 1 is considered in Problem 15. When 0 < p < 9 it is intuitively clear 
that if the gambler follows a very conservative strategy and stakes a very 
small amount at each time, he is all but certain to lose his capital. For example, 
if the gambler adopts a strategy of betting l/n at each time, then it may be 
shown [A8, p. 1821 that his probability of attaining the target fortune of 
unity starting with an initial capital i/n, 0 < i < n, is given by 

If 0 < p < 4, n tends to infinity, and i/n tends to a constant, the probability 
above tends to zero, thus indicating that placing consistently small bets is a 
bad strategy. 

From the preceding discussion one is led to consider a policy of placing 
large bets and in particular the so-called bold strategy whereby the gambler 
stakes at each time k his entire fortune xk or just enough to reach his goal, 
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whichever is least. In other words the bold strategy is the stationary policy 
n* = {p*, p*, . . .} with p* given by 

We shall prove that the bold strategy is indeed an optimal policy. To this 
end it is sufficient, by Corollary 2.2, to show that for every initial fortune 
x E [0, 11 the value of the reward fortune J,*(x) corresponding to the bold 
strategy {p*,  p*, . . .} satisfies the sufficiency condition 

or equivalently 

J,.(O) = 0, J,*(l) = 1, 

Vx E (0, l), u E [0, x] n [0, 1 - x]. 

J,*(x) 2 pJ,*(x + u)  + (1  - p)J,*(x - u )  

(23) 

Now by using the definition of the bold strategy and the fact that 

J,* = 7 J J p * )  

(cf. Corollary 1.1) we obtain that the function J p r  must satisfy 

J,*(O) = 0, J,*(l) = 1, (24) 

J ,  ( ) - 
if O < x < + ,  
if + < x < 1. 

* x  - 
p + (1 - p)Jp.(2x - 1) 

We prove the following lemma showing that J,. is uniquely defined from the 
above relations. 

Lemma For everyp, with 0 < p < 9, there is only one bounded function 
on [0, 11 satisfying (24), and (25), the function J p * .  Furthermore, J,.  is 
continuous and strictly increasing on [O, 13. 

Proof Suppose that there existed two bounded functions J ,  : [0, 13 -, R ,  
J , :  [0, 13 -, R such that Ji(0)  = 0, Ji(l) = 1, i = 1, 2, and 

Then we have 

Jl(W - J2(2x) = (J,(x) - J,(X))/P if 0 < x < +, (26) 

if + < x < 1. (27) J,(2x - 1) - J,(2x - 1 )  = (J,(x) - J2(x))/l - p 
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Let z be any real number with 0 < z < 1. Define 

if O < z < + ,  

if 0 < z k - 1  < +, 
if 4 < z k - 1 <  1, zk = {;::I: - 1 

for k = 1,2, . . . . Then from (26) and (27) it follows (using p < 3) that 

IJ1(zk) - J 2 ( z k ) l  2 I J l ( z )  - J2(z)1/(1 - P)k = 2, . . .  . 

Since J l ( Z k )  - J 2 ( z k )  is bounded it follows that J l ( z )  - J2(z) = 0, for 
otherwise the right-hand side of the inequality would tend to +m.  Since 
z E [0,13 is arbitrary we obtain J1 = J 2 .  Hence J,. is the unique bounded 
function on [0, 11 satisfying (24) and (25). 

To show that J,* is strictly increasing and continuous we consider the 
mapping T,*, which operates on functions J : [0, 11 -, [0, 11 and is defined by 

(28) 
P J ( W  + (1 - p)J(O)  if O < x < f ,  
pJ(1) + (1 - p)J(2x - 1)  if f < x < 1, 

T,*(J)(O) = 0, T,dJ)(l) = 1. 

T,*(J)(x) = { 

Consider the functions J o  , TpI(J0), . . . , T$(Jo), . . . , where J o  is the zero func- 
tion (Jo(x) = 0 for all x E [0, 13). We have 

J,.(x) = lim T:,(J,)(x) Vx E [O, 11. (29) 
k - c a  

Furthermore, the functions T$(Jo) can be shown to be monotonically 
nondecreasing in the interval [0, 13. Hence, by (29), J,* is also monotonically 
nondecreasing. 

Consider now for n = 0, 1, . . . the sets 

S ,  = {x E [0, 13 Ix = k2-", k = nonnegative integer}. 

The following fact may be verified in a straightforward manner concerning 
the functions Tk,,(Jo), k = 0, 1, . . . : 

Tz*(Jo)(x) = T:*(Jo)(x) Vx E S,- 1, m 2 n 2 1. 

As a result of the above equality and (29), 

J,.(x) = T;*(J,)(x) Vx E Sn-l, n 2 1.  
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A further fact that may be verified by using induction and (28) and (30) is 
that for any nonnegative integers k, n for which 0 < k2-" -= (k  + 1)2-" < 1 ,  
we have 

(31) 

Since any number in [0, 13 can be approximated arbitrarily closely from 
above and below by numbers of the form k2-" and since J,. has been shown to 
be monotonically nondecreasing it follows immediately from (3 1) that J,. is 
continuous and strictly increasing. Q.E.D. 

p" < J,*[(k + 1)2-,] - J,*(k2-") < ( 1  - p)". 

We are now in a position to prove the following proposition. 

Proposition 8 The bold strategy is an optimal stationary gambling 

Proof We shall prove the sufficiency condition 

policy. 

J,*(x) 2 pJ,*(x + u )  + ( 1  - p)J,*(x - u )  

Vx E [0, I ] ,  u E [0, x ]  n [0, 1 - x] .  (23) 

In view of the continuity of J,. established in the previous lemma it is 
sufficient to establish (23) for all x E [0, 11 and u E [O, x ]  n [0, 1 - x ]  that 
belong to the union u."=o S,  of the sets S,  defined by 

S ,  = { z  E [0, 11 Iz = k2-", k = nonnegative integer}. (32) 

We shall use induction. By using the fact that J,,(O) = 0, J,.& = p ,  J,.( 1 )  = 1, 
we can show that (23) holds for all x and u in So and S1. Assume that (23) 
holds for x ,  u E S,  and n 2 1. We will show that it holds for all x, u E S, ,  

with u E [0, x ]  n [O, 1 - x ]  there are four pos- 
sibilities: 

(1) x + u < 3, 
(2) x - u 2 +, 
(3) x - u < x < + < x + u ,  
(4) x - u < + < x < x + u .  

For any x ,  u E S,+ 

We shall prove (23) for each of the cases above. 

pothesis 
Case 1 If x ,  u E S,+ 1, then 2x E S,, 2u E S,, and by the induction hy- 

J,*(2x) - pJ,*(2x + 2u) - ( 1  - p)J,*(2x - 2u) 2 0. 

J,*(x) - pJ,*(x + u )  - ( 1  - p)J,.(x - u )  = p[J,*(2x) - pJ,*(2x + 2u) 

(33) 

If x + u < 3, then by (25) 

- ( 1  - p)J,*(2x - 2u)] 
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and using (33) the desired relation (23) is proved for the case under con- 
sideration. 

Case 2 If x, u E S,+ ,, then (2x - 1) E S, ,  2u E S,,  and by the induction 
hypothesis 

J,*(2x - 1) - pJ,*(2x + 2u - 1) - (1 - p)J,*(2x - 2u - 1) 2 0. 

J,*(x) - pJ,*(x + u) - (1 - p)J,*(x - u) 

If x - u > +, then by (25) 

= p + (1 - p)J,*(2x - 1) - p c p  + (1 - p)J,*(2x + 2u - l)] 

-(1 - p ) [ p  + (1 - p)J,*(2x - 2u - l)] 

= (1 - p)[J,*(2x - 1) - pJ,*(2x + 2u - 1) 

-(1 - p)J,*(2x - 2u - l)] 2 0, 

and (23) follows from the above relations. 

Case 3 Using (25) we have 

J,*(x) - pJ,*(x + u) - (1 - p)J,.(x - u) 

= pJ,*(2x) - p c p  + (1 - p)J,*(2x + 2u - l)] - p(l - p)J,*(2x - 2u) 

= p[J,*(2x) - p - (1 - p)J,*(2x + 2u - 1) - (1 - p)J,*(2x - 241. 

Now we must have x 2 a, for otherwise u < a and x + u < 3. Hence 2x 2 $ 
and the sequence of equalities above can be continued as follows: 

J,*(x) - pJ,*(x + u )  - (1 - p)J,*(x - u) 

= p c p  + (1 - p)J,*(4x - 1) - p - (1 - p)J,*(2x + 2u - 1) 

-(1 - p)J,*(2x - 241 = p(l - p)[J,.(4x - 1) 

-J,*(2x + 2u - 1) - J,*(2x - 241 = (1 - p)[J,*(2x - +) 

-pJ,*(2x + 2u - 1) - pJ,*(2x - 2u)]. 

Since p < (1 - p), the last expression is greater than or equal to both 

(1 - p)[J,*(2x - +) - pJ,*(2x + 2u - 1) - (1 - p)J,*(2x - 2u)] 

(1 - p) [J,*(2x - 4) - (1 - p)J,*(2x + 2u - 1) - pJ,*(2x - 241. 

and 

Now for x, u E S , + ~  and n 2 1, we have (2x - +)ES, ,  (2u - $)ES, if 
(2u - +) E [0, 13, and (+ - 2u) E S, if (i - 2u) E [0, 11. By the induction 
hypothesis the first or the second of the above expressions is nonnegative, 
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depending on whether 2x + 2u - 1 2 2x - 
u 2 a or u < d. Hence (23) is proved for Case 3. 

or 2x - 2u 2 2x - f, i.e., 

Case 4 The proof resembles the one for Case 3. Using (25)  we have 

J,*(x) - pJ,.(x + u)  - ( 1  - p)J,*(x - u )  

= p + (1 - p)J,*(2x - 1 )  - p [ p  + (1 - p)J,*(2x + 211 - I ) ]  

- ( 1  - p)pJ,*(2x - 2u) = p ( l  - p )  + (1 - p)[J,*(2x - 1 )  

-pJ,*(2x + 2u - 1 )  - pJ,.(2x - 2u)l. 

We must have x < 2 for otherwise u < 
,< + ,< 2x - f ,< 1 and using (25)  we have 

and x - u > f. Hence 0 < 2x - 1 

( 1  - p)J,*(2x - 1 )  = ( 1  - p)pJ,*(4x - 2) = p[J,*(2x - +) - p ] .  

Using the relations above we obtain 

J,*(x) - pJ,*(x + u)  - ( 1  - p)J,*(x - u )  

- p ( l  - p)J,.(2x - 2u) 

- ( 1  - p)J,*(2x - 2u)l. 

p[(1 - 2p)[1 - J,*(2x + 2u - l ) ]  + J,*(2x - 3) 
-pJ,*(2x + 2u - 1) - (1 - p)J,*(2x - 2u)l 

= p(1  - p )  + p[J,.(2x - +) - p ]  7 p ( l  - p)J,.(2x + 2u - 1 )  

= p [ (  1 - 2p) + Jg*(2x - 3) - ( 1  - p)J,*(2x + 2u - 1 )  

The relations above are equal to both 

and 
p [ ( 1  - 2p)[1 - JJ2X - 2 4 1  + J,.(2x - +) 

-(1 - p)J,*(2x + 2u - 1 )  - pJ,*(2x - 2u)l. 

Since 0 < JJ2x  + 2u - 1) < 1 and 0 < JJ2x  - 2u) < 1 ,  the expressions 
above are greater than or equal to both 

p[J,*(2x - f) - pJ,*(2x + 2u - 1) - (1 - p)J,*(2x - 2u)l 

p[J,*(2x - +) - (1 - p)J,*(2x + 2u - 1 )  - pJ,*(2x - 2 4 1  

and 

and the result follows as in Case 3. Q.E.D. 

We note that the bold strategy is not the unique optimal stationary 
gambling strategy. For a characterization of all such optimal strategies see 
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Dubins and Savage [D8, p. 901. Several other gambling situations where 
strategies of the bold type are optimal are described in reference [D8, 
Chapters 5 and 61. 

7.4 The First Passage Problem? 

In this section we shall make the following assumptions within the frame- 

C.l The state space S, the control space C,  and the disturbance space 

work of the problem of this chapter: 

D are finite sets. The state space is denoted by 

S = (0, 1,. . . )  n}. 
C.2 The state 0 is an absorbing state, i.e., 

x k  = 0 * x A + ,  = 0 VU,EC, W ~ E  D. 

Furthermore there is no cost incurred while the system is in the absorbing 
state, i:e., 

E(g(0, u, w)lx = 0, u }  = 0 vu E U(0). 

C.3 There exists a positive integer rn such that for every admissible 

for 

policy n = { p o ,  pl, . . .} there holds 

P(x,  = O(xo = i, x )  > 0 all i = 1, 2 , .  . . , n, 

where P(x ,  = Olxo = i, n) denotes the probability that at time m the system 
will be in the absorbing state given that the policy n is used and the initial 
state is i. 

In the problem above control continues until the system passes through 
the absorbing state for the first time. At this point the system operation 
essentially terminates. Thus the objective in the problem is to reach the 
absorbing state with the least possible cost. One may easily show using C.3 
that termination will occur with probability one for every policy employed. 
It is also possible to show that if P(x,  = 0 Jxo = i, a) > 0, for some integer m, 
then we have P(x,. = OIx, = i ,  n) > 0 for some integer rn' with rn' < n, i.e., 
it is possible to reach the absorbing state within n steps. As a result we may 
take m = n in C.3, and furthermore C.3 is equivalent to the seemingly weaker 
condition that for each n: there is an rn such that P(x,  = OIx, = i, n) > 0, 
i = 1,2, . . . , n. While Assumption C.3 is somewhat restrictive we shall be 
able to relax it somewhat later in this section. 

t This section requires some familiarity with the basic notions associated with finite state 
Markov chains. A summary together with references is given in Appendix D. 
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Under C.l-C.3 one may prove a number of important results that are 
not available under either Assumption P or N. In fact, it turns out that 
it is not necessary to  assume Assumption P or N ,  i.e., the costs per stage g need 
not be either nonnegative or nonpositive. The basic reason is that under 
C.l-C.3 the mapping T of (3) is an m-stage contraction mapping over the 
set of all functions J: S -, R with J(0) = 0, where m is the positive integer 
in C.3. In other words (see Section 6.3) we have for some p < 1 and for any 
two functions J, J': S --f R with J(0)  = J'(0) = 0, 

II T"(J) - T"(J')II < PllJ - J'IL 
or equivalently 

max I Tm(J)( i )  - T"(J')(i)l < p max IJ(i) - J'( i ) l .  

Furthermore, for any admissible stationary policy II = {p, p, . . .} the 
mapping T,, of (4) is also an m-stage contraction mapping, i.e., 

i = O ,  1 ,  .... n i = O ,  1 ,  .... n 

IIT;(J) - ~;(J')lI G P,,llJ - J'IL 
for some p,, < 1 and every two functions J, J' : S + R with J(0) = J'(0) = 0. 
These facts, which are proved in the proposition below, have important 
analytical and computational consequences. 

all J, J' : S --f R with J(0)  = J'(0) = 0 we have 
Proposition 9 Under C.l-C.3 there exists a scalar p < 1 such that for 

max 1 T"(J)(i) - T"(J')(i)I < p max IJ(i) - J'( i ) l ,  (34) 
i = O , l ,  ..., n i = O , l ,  ..., n 

Tk(J)(0) = Tk(J')(0) = 0, k = 0, 1,. . . . 
Proof For any u E U(i), i = 0, 1, . . . , n, let us denote by pi,&) the transi- 

tion probability 

Piju) = pCW;j~)lx = i ,  ~1 

W&J) = {w E D l f ( i ,  u, w )  = j } .  

(35) 

where Wju) c D is the set 

(36) 

In other words p i @ )  is the probability that the next state will be j given that 
the present state is i and the control u is applied as explained in the beginning 
of Section 6.2. Denote also 

& u )  = E { g ( i , u ,  w) l i ,u } ,  i = 0, 1, ..., n. (37) 
W 
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We have by C.2, 

poJ(u) = 0 Vj = 1 ,  . . . , n, u E U(O), poo(u) = 1 Vu E U(O), (38) 

g(0, u)  = 0 vu E U(0). (39) 

By (3), C.l, C.2, and (37-39) we have for any two functions J ,  J’: S -, R with 
J(0)  = J’(0) = 0, 

n 

(40) 1 
1 (41) 

T(J)(i) = min g(i, u )  + 1 pi,(u)J(j) , 

T(J‘)(i) = min g(i, u )  + &+,(j)~’(j) , 

T(J) (O)  = T(J’)(O) = 0. 

i = 1, .  . . , n, 
j= 1 

u s U ( i )  [ j= 1 

n 

u s U ( i )  [ 
i = 1 , .  . . , n, 

Let p(i), p’(i) attain the minimum in (40) and (41), respectively. We have 
n 

Combining the above two inequalities we obtain 

where for each i, Fo(i) is equal to the value p(i) or p’(i) that yields the larger 
value of I;= p i j  1 J(j) - J’G) I. 

By repeating the argument above we obtain that for every k and some 
,&- : S  + C with ilk- l(i) E V(i),  i = 1,. . . , n, we have 

By using the vector notation 

and the matrix notation 
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we may write (42) as 

E ,  < Pk-1Ek-1 ,  k = 1, 2 , .  . . , 

where the inequality is coordinatewise. Using the fact that p i j  is nonnegative 
wehaveE,< P , - , P , - , ~ ~ ~ P o E O , a n d f o r k = m w e o b t a i n  

Em < Pm-1Pm-2 . ' .  P o E o .  

Now the matrix Pm- 1 P m - 2  . . . Po is the m-step transition probability matrix 
corresponding to a policy of the form ?t = { p m -  j i m - 2 ,  . . . , P o ,  p, p, . . .}, 
where Po, . . . , j im-  have been defined above and p is any function satisfying 
p(i) E U(i )  for all i (see Appendix D). Note that E is admissible. 

Thus the inequality above is equivalent to the following inequality, 
which holds for every i = 1, . . . , n: 

Hence 

max I T"(J)(i) - T"(J)(i)I 
i = l ,  ..., n 

1 i = l ,  ..., n 
< [ max P(xm = j l x o  = i, 51) max IJ(i) - J'(i)l. 

i = l ,  ..., n j = l  

By C.3 we have 
n 

p = max 1 P(x, = j l x o  = i, Z) < 1 ,  
i =  1, .... n j =  1 

and (34) follows. Q.E.D. 

By employing our usual device of restricting the control constraint 
set so that there is only one admissible policy we obtain for every admissible 
stationary policy { p .  p, . . .} and any two functions J ,  J ' :  S -, R with J ( 0 )  = 

J'(O), the following relation : 

max I T,"(J)(i) - Tr(J')(i)I < p p  max IJ(i) - J'(i)l, 
i = O .  l . . . . , n  i = O ,  1 ,  .... n 

where pp is a constant depending on p and satisfying pp < 1. However, it is 
possible to obtain a stronger result for the problem of this section, which 
we state below. The proof is obtained by essentially repeating the proof of 
Proposition 9 and is left to the reader. 
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Corollary 9.1 Let II = { p o ,  pl, . . .} be an admissible policy. Then 
under C.l-C.3, we have for all J ,  J’ : S -, R with J (0 )  = J’(0) = 0, 

< p, max IJ(i) - J’( i ) l ,  
i = O .  1 .  ..., n 

(43) 

where 
n 

p, = max CP(X, = J l x ,  = i ,n) < 1. 
i = l ,  ..., n j = 1  

Having established the rn-stage contraction properties of Proposition 9 
and Corollary 9.1 we are able to state a number of important analytical and 
computational results for the first passage problem under C. 1-C.3. The 
following proposition guarantees the convergence of the successive approxi- 
mation method to the optimal value function J* starting from an arbitrary 
function J :  S + R with J(0)  = 0. Also J* and J, can be obtained as unique 
fixed points of the equations J = T(J)  and J = T,(J), respectively. 

Proposition 10 Let C.l-C.3 hold. Then for any function J: S -P R 
withJ(0) = 0, 

J*(x) = lim T ~ ( J ) ( x )  V x  E S ,  
k-+m 

and for every admissible stationary policy {p, p, . . .}, 

J,(x) = lim T i ( J ) ( x )  V x  E S.  
k - m  

Furthermore, J* and J ,  are unique solutions of the equations J = T(J)  and 
J = T,(J), respectively, within the class of functions J :  S + R with J(0) = 0. 
In addition if p*(i) attains for i = 1, . . . , n the minimum in the right-hand side 
of the equation 

J*(i) = min a(i, u )  + pi ju)J*( i ) ] ,  i = 1,. . . , n, 
UE U(i )  [ j =  1 

then n* = {p*,  p*, . . .} is an optimal stationary policy. 
The proof of Proposition 10 may be obtained through arguments similar 

to those used in Section 6.1 or by simple modifications of proofs of corre- 
sponding results of Problem 4 in Chapter 6 and is left to the reader. As 
indicated also by Problem 4 in Chapter 6, it is possible to compute optimal 
stationary policies under C.l-C.3 by using the method of policy iteration 
or linear programming (cf. Section 6.2). The development and proof of 
validity of these algorithms is left again as an exercise for the reader. 



7.4 THE FIRST PASSAGE PROBLEM 317 

We now consider the first passage problem under a different set of 

C.1’ Same as C.l. 

C.2 Same as C.2. 

C.3 

assumptions. 

There exists a stationary admissible policy it = {ji, ,ii,. . .} and a 
positive integer rn such that 

P(x,  = OJxo = i, E )  > 0 Vi  = 1,2,. . . ,n, (44) 

where P(x,  = OJx, = i, 5) denotes the probability that at time rn the system 
will be in state x = 0 given that the policy Ic is used and the initial state is i. 

C.4 There holds 

g(i ,  u, w )  > 0 Vu E V(i), i = 1, ..., n, w E D. (45) 

Notice that C.3‘ is a much less restrictive assumption than C.3 since 
now we require that (44) hold for a single stationary policy ?I rather than for 
every policy as in C.3. For example, C.3 will not hold in a finite state version 
of the stopping problem of Section 7.2 since by using the policy that continues 
operation at every stage regardless of the current state, the absorbing 
(termination) state will never be reached. On the other hand C.3’ is satisfied 
for the stopping problem of Section 7.2 since (44) holds for the policy Ic 
that terminates at every state i = 1,2, . . . , n. For this policy (44) is satisfied 
with rn = 1. Notice, however, that by (45) we require now that expected costs 
per stage corresponding to the states i = 1,2, . . . , n are strictly positive. 

We now introduce the following definition. 

Definition An admissible stationary policy z = {p ,  p, . . .} will be 
called a proper policy if there exists a positive integer rn such that 

P ( x , = O ( x , = i , 7 r ) > O  v i =  1,2 ,..., n, (46) 

where P ( x ,  = Olx, = i ,  z) denotes the probability that at time rn the system 
will be in the absorbing state x = 0 given that the policy a is used and the 
initial state is i. 

By C.3’ there exists at least one proper policy. Let us denote for any 
p:  S + C by P, the transition probability matrix 

. . .  1 0 
~10[/-41)1 PII[P(~)I * * ~ 1 n M 1 ) l  0 1  

~ n o G 4 n ) l  ~ n 1 I N n ) l  * . . ~ n n M n ) l  
(47) 
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where pij is the transition probability defined by (35) and (36). The first row 
of P ,  has the form (1,0, . . . , 0) in view of the fact that x = 0 is an absorbing 
state [cf. (38)]. Note that by Corollary 9.1 if n = {p, p, . . .} is proper, then 
by restricting the control constraint set so that there is only one admissible 
policy, namely n, we obtain a problem for which C.l-C.3 applies. Then 
application of Proposition 10 yields: 

Corollary 10.1 If n = {p, p, . . .} is a proper policy, then 

J ,  = {J,(O)? J#), . . . 7 J,(n)l 

satisfies J ,  = T,(J,) or equivalently 

J ,  = g, + P , J , ,  

where P ,  is matrix (47) and g, is the vector 

Furthermore, J ,  is the unique function J : S + R satisfying J = T,(J) and 
J ( 0 )  = 0. In addition, for every function J : S + R with J (0 )  = 0, we have 

lim T,k(J)(i) = J,(i), i = 0, 1,. . . , n. 
k + m  

(49) 

It is important to realize that in view of Assumption C.4’ we are essentially 
interested in proper policies only, for if n is not a proper policy, then there 
exists a state i from which the absorbing state will never be reached using n. 
Since the expected cost incurred per stage will be bounded below by a positive 
number [by (45) and finiteness of the state space] we will have J,(i) = + a, 
while with every proper policy the corresponding cost will be finite. This 
observation is the key to understanding the results to be obtained. In fact 
this observation yields immediately the following result. 

Proposition 11 Under C. 1’-C.4’ there exist optimal stationary policies. 
Each one of these policies must be a proper policy. 

Proof Under C.l’-C.4 Assumption P is satisfied and since the control 
space is finite there exist optimal stationary policies by Proposition 5. 
Also by C.3‘ there exists a proper policy E = {ji, ji, . . .} and by Corollary 10.1 
we have 0 Q Jp( i )  < +a, Vi.  Hence 0 Q J*(i) < +a, Vi.  Since for every 
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stationary policy that is not proper the associated cost is infinite for some 
initial states, such a policy cannot be optimal. Q.E.D. 

7.4 THE FIRST PASSAGE PROBLEM 

We now arrive at our main result. 

Proposition 12 Under C.l’-C.4‘ in order for a proper policy 7c* = 

(50) 

{ p * ,  p*, . . .} to be optimal it is necessary and sufficient that 

J,* = T,*(J,*) = T(J,*), 

or equivalently 
n 

J p * ( i )  = g,*(i) + 1 ~ i j C ~ * ( i ) I J p * c i )  
j = O  

= min E {g ( i ,  u, w) + J , . [ f ( i ,  u, w)]}, i = 0, 1,. . . , n. 
ueU( i )  w 

Proof Necessity of (50) is clear from the theory of Section 7.1 (Proposi- 
tion 1 and Corollary 1.1). To prove sufficiency we have that for any optimal 
proper policy 71 = {p, ji, . . .} the condition J,* = T(J,*) implies 

J,* < T,(J,,) < T~(J,.) < . . . < lim T ~ ( J , * ) .  
k + m  

By using (49) and the optimality of the proper policy ?i we obtain 

J,*(i) < lim q;(J ,*) ( i )  = J, ( i )  = J*(i) Vi E S .  
k - tm 

Hence n* is optimal. Q.E.D. 

A related result is the following. 

Proposition 13 Under C.l’-C.4’ the optimal value function J* is the 
only real-valued function with J (0 )  = 0, J(i) 2 0, i = 1, . . . , n, that satisfies 
the equation J = T(J). 

Proof Let J : S -, R be a real-valued function with J ( 0 )  = 0, J ( i )  2 0, 
such that J = T(J). Let p be such that J = T,(J). By Corollary 2.1 we have 
J ,  < J and hence {p, p, . . .} is a proper policy. Hence by Corollary 10.1 
we have J, = J. Thus 

and by Proposition 12, {p, p, . . .} is optimal or equivalently J = J, = J*. 
Q.E.D. 

It is possible to combine Proposition 12 with Proposition 7 to show 
the validity of the policy iteration algorithm for the first passage problem 
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under Assumption C.l'-C.4'. Indeed if R = {p, p, . . .} is a proper policy 
and ji is such that ji(i) E V(i), i = 0, 1, . . . , n, and 

T,(J,) = UJ,), 
by Proposition 7, we have 

J p ( i )  < J,(i), i = 0, 1,. . . , n, 

and {ji, ji, . . .} is proper. If we had J, = J,, then in view of the relations 

J, = Tp(J,) < TqJ,) = T(JJ  < T,(J,) = J,, 

we would obtain T(J,) = J, and by Proposition 12, R = {p, p, . . .} would be 
optimal. Hence either R = {p, p, . . .} is optimal or ?f = {ji, ji, . . .} is a strictly 
better proper policy. It follows that by policy iteration we can obtain an 
optimal proper policy in a finite number of steps provided that we start 
with a proper policy. 

7.5 Notes 

The material of Section 7.1 is very similar to that of Section 6.4. For 
further discussion see the references cited in Chapter 6. The gambling 
problem and its solution are taken from the fascinating work of Dubins and 
Savage [D8]. The first passage problem was first formulated by Eaton and 
Zadeh [El]. The presentation given here differs somewhat from presenta- 
tions in other sources [D4, K10, Pl] in that it makes direct use of the general 
results of Section 7.1. A policy of the type described in Problem 7 is called 
a one-stage lookahead policy [R4, p. 1381. The general framework and the 
results of Problem 9 are due to the author [B13, B161. The results of Problems 
13 and 14 are also due to the author [B6, B9]. 

Problems 

1. Do Problems 8.22-25, and I 1  [except for part (a)] of Chapter 6 for the 
case of Problem (U) of this chapter (i.e., a = 1). 
2. Let Assumption P hold and consider the case S = D = {1,2, . . . , n}, 
x k  + = wk . The mapping T is represented as 

n 

T ( J ) ( ~ )  = inf C piJu)Cg(i, u, j) + JG)], i = I, . . . , n, 
uEU(i)  j =  1 

where piJu) denotes the transition probability that the next state will be j 
when the current state is i and control u is applied. Assume that piJu) and 
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g(i, u, j )  are continuous on V(i) for all i , j  and that the sets V(i) are compact 
subsets of R" for all i .  Show that we have limk,, Tk(Jo)(i) = J*(i), where 
Jo( i )  = 0, i = 1,.  . . , n. Show also that there exists an optimal stationary 
policy. 
3. Consider the problem of finding a scalar sequence { u o ,  u l , .  . .} satisfying 
C;=o uk < c, uk 2 0, V k ,  and maximizing g(uk), where c > 0 is given 
and g(u)  2 0 for all u 2 0, g(0) = 0. Assume that g is monotonically non- 
decreasing on [0, m). Show that the optimal value of the problem is J*(c), 
where J* is a monotonically nondecreasing function on [O. m) satisfying 
J*(O) = 0 and 

J*(x) = sup { g ( u )  + J*(x  - u ) }  VXXE [O, m). 
O Q u Q x  

4. Deterministic Linear-Quadratic Problems Consider the deterministic 
linear-quadratic problem involving the system 

X k + l  = AXk + BUk, 

and the cost functional 
m 

J&o) = 1 xb Q X k  + l(k(Xk)lRpk(Xk)- 

It is assumed that R is positive definite symmetric, Q is of the form C'C, and 
that the pairs (A, B), (A, C) are controllable and observable, respectively. 
Use the theory of Sections 3.1 and 7.1 to show that the stationary policy 
II* = {p*, p*, . . .} with 

k = O  

p*(x) = -(B'KB + R)-'B'KAx 

is optimal, where K is the unique positive semidefinite symmetric solution 
of the algebraic Riccati equation (cf. Section 3.1) 

K = A'[K - KB(B'KB + R)- 'B'KIA + Q. 

Provide a similar result under an appropriate controllability assumption 
for the case of a periodic deterministic linear system and a periodic quadratic 
cost functional (cf. Section 6.7). 
5. Prove Proposition 10 in Section 7.4. Also devise a policy iteration 
algorithm for the first passage problem under conditions C. 1 -C.3 and 
show that it will yield an optimal stationary policy in a finite number of 
iterations. 
6. Consider the first passage problem under Assumptions Cl'-C.4'. Show 
that if J :  S + R is a function with J ( i )  2 0, i = 0, 1, . . . , n, and J ( 0 )  = 0, 
then limk,, T k ( J ) ( i )  = J*(i), i = 0. . . . , n. 



322 7 MINIMIZATION OF TOTAL EXPECTED VALUE 

i = 1,2, .  . . , n 

7. Consider the stopping problem under C.l’-C.4 and let B be the set 
of states 

n 

t(i) Q c(i) + 1 p i j t ( j )  
j =  1 

Assume that pU = 0 if i E B and .j # B. Show that an optimal policy is to 
stop if and only if the current state is in B. 
8. Consider the first passage problem under C.l’-C.4’. Let n = {p, p, . . .}, 
n’ = {p’, p’, . . .} be two proper policies. Define ji as 

p ( i )  if J,(i) d JJi), 
p’(i) if J,(i) > JJi). 

ji(i) = 

Show that {ji, ji, . . .} is proper and that 

J,&) Q min{J,(i), J,,(i)}, i = 0, 1, . . . , n. 

9. Let S and C be two sets, and let F ( S )  be the set of all functions J:S -+ 

[ - x, + m]. Consider a mapping H : S x C x F ( S )  + [ - m, + m] having 
the following properties: 

(a) J d J’ 
(b) 

H(x, u, J )  < H(x, u, J’),  V(x, u )  E S x C,  J ,  J’ E F(S).  
If { J k }  is any sequence with J k  E F(S),  J k  Q J k + ’  for all k and such 

that J(x) = limk+m Jk(x) for all x E S, then 

lim ~ ( x ,  u, J ~ )  = ~ ( x ,  u, J )  V(x, u )  E s x C .  
k + m  

(c) Thereexistsa scalar ct > 0 such that for all scalars r > 0 and functions 
J E F(S)  there holds 

H(x, u, J )  < H(x  + u, J + re) < H(x, u, J )  + ctr V(x, u)  E S x C,  

where e(x) = 1 for all x E S. 
For each x E S let V(x) be a given nonempty subset of C. Let M be the set 

of all functions p : S + C with p ( x )  E U(x), Vx E S. Define the mappings 
T : F ( S )  + F(S),  7 : F(S)  + F ( S )  by 

T(J)(x) = infH[x, p(x), 51, T(J)(x) = s u p ~ [ x ,  p(x), J ]  Vx E S ,  
C E M  c ~ M  

and for every p E M the mapping T,: F ( S )  + F(S),  

T,(J)(x) = H[x, p(x), J ]  vx E S. 
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Let J o  E F(S) be a function such that Jo(x) > - x for all x E S and 

Jo(x) 6 H(x, u, J o )  V(x, u )  E s x c. 
Let ll be the set of all sequences of functions z = { p o ,  p l r . .  .}, where 
& E M, k = 0, 1, . . . , Define for all x E S 

J,W = lim (T," T,, * * * TPk)(J0)W? 

J*(x) = infJ,(x), 

J,(x) = lim T ~ ( J ~ ) ( X ) ,  

k-oo 

J*(x) = sup J,(x), 
x€n ,En 

JJX) = Iim Tk(~,)(x). 
k-m k - +  oc 

Show that 

(a) Tk(Jo)(x) = inf, (T,,T,, . . . TWk- ,)(Jo)(x), Vx E s. 
(b) T"(Jo)(x) = SUP, (Two T,, . . . TNk. , ) (Jo) (x) ,  VX E S .  
(c) J* and j* are fixed points of T and respectively, i.e., 

J* = T(J*), 

(d) J' E F(S), J' 2 J o ,  J' 2 T(J ' )  * J' 2 J*, 

Define for each p E M, the function J,, E F by 

J,(x) = lim T;(J,)(x) Vx E S .  

1* = T(J*).  

J' E F(S), J' 2 J , ,  J' 2 T ( J ' )  * J' 2 J*. 
(e) 

I -  x 

Show that 

J ,  = T,(J,), 
J,,  = J* O T , ( J * )  = T(J*). 
J ,  = J* 0 T,(J,)  = T(J,). 

(f) Show that if there exists a n* E n such that J , ,  = J* then there exists 
a p* E M such that Jut = J*. 

( g )  j* = J , .  
(h) Assume that there exists a positive integer E such that for all k 2 E,  

x E S, J. E R,theset , 
uk(x, 1) = (11 E U(x)lH[x, u, Tk(Ji3)] d 2) 

is a compact subset of a Euclidean space. Then 

J* = T(J*) = J ,  = T(J,), 

and there exists an optimal stationary policy z* = {p*, p*, . . .}. 
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Hints: (a) For any fixed k and any E > 0 let pi E M, i = 0, . . . , k - 1, 
be such that 

T~~[T~-'-'(J,)] < T k - i ( ~ o )  + Ee. 

Use property (c) to show that 
k -  1 

inf(T,, . . . T , ~ -  , ) ( J ~ )  < T k ( ~ o )  + 1 aiee. 
n i = O  

(b) For each i = 0, 1, . . . , k - 1 consider a sequence {py} c M such 
that 

Iim T,JT~-~-'(J,)] = T'-'(J,), 
n-a3 

T,p-'-'(J,)] < T,:+IITk-'-'(Jo)], n = 0,1, 

Show that 

supn (T,, T,, . . . T ~ ~ -  , ) ( J , )  3 Iim (T,;IO T,:! . . . T , ; K - , ~ ) ( J ~ )  = T'(J,). 
n i - m  

i=O ....... k -  1 

(c)-(h) Adapt the proofs of corresponding results in Section 6.4. See 
references CB13, B16] for more detailed analysis and proofs. 
10. Consider the stopping problem of Section 7.2 under the assumption that 

t (x )  < 0, c(x)  < 0 v x  E S .  

Consider the mapping T defined by 

T ( J ) ( x )  = min t (x) ,  c(x)  + E {JCfc(x, w)Il . [ W 1 
(a) Show that the optimal value function J* satisfies 

J* = T(J*), J* = lim T k ( ~ o ) ,  
k + c c  

where Jo(x)  = 0, Vx E S. Verify also that if S is a finite set, then J* may be 
obtained by linear programming. 

(b) Consider the case where c(x)  = 0, V x  E S. Show that 
J* = lim Tk(t), 

where Tk{t) denotes the function obtained after k applications of the mapping 
T on the function t( * ). 

(c) L e t s =  {1,2 ,... },f ,( i ,w)=i+ l , c ( i ) = O f o r a l l i ~ S , w ~ D , a n d  
t(i) = - 1 + (l/i) for all i E S. Show that J*(i) = - 1 for all i and that there 

k+m 
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does not exist an optimal policy for this problem (even though the control 
space is a finite set). 
11. Let zo,  zl,. . . be a sequence of independent and identically distributed 
random variables taking values on a countable set Z. We know that the 
probability distribution of the z i s  is one out of n distributionsf,, f2, . . . , f,, 
and we are trying to decide which distribution is the correct one. At each 
time k after observing zl, . . . , z k  we may either stop the observations and 
accept one of the n distributions as correct, or take another observation at a 
cost c > 0. The cost for acceptingf, given thatfj is correct is L,, i,j = 1, . . . , n. 
We assume Lij > 0 for i # j, Lii = 0, i = 1, . . . , n. The a priori distribution 
of fl, . . . , fn is denoted 

n 

Po = {P;,P;,..*,P;>, Pb 20, CPb = 1. 
i =  1 

Show that the optimal cost J*(Po) is a concave function of P o .  Characterize 
the optimal acceptance regions and show how they can be obtained in the 
limit by means of a successive approximation method. 
12. Show that a finite horizon problem with N stages that falls within the 
framework of the basic problem of Chapter 2 can be viewed as a (stationary) 
first passage problem (not necessarily with finite state, control, and dis- 
turbance space) for which assumptions similar to C.2 and C.3 of Section 7.4 
are satisfied. Show also that a contraction condition such as (34) holds for 
this problem. 

Hint: If S o ,  S , , .  . . , SN are the state spaces for the stages 0, 1,. . . , N, 
define a new state space S by S = { (x ,  k ) l x  E Sk, k = 0, 1, . . . , N }  u { T } ,  
where T is a termination (absorbing) state to which the system is driven with 
certainty from every state in { ( x ,  N) I x E S,} similar to the constructions of 
Section 6.7. 
13. Infinite Time Reachability Consider the stationary system 

x k + l  = f ( X k , U k , W k ) ,  k = 0 ,  l , * * * ?  

of the problem of this chapter, where the disturbance space D is an arbitrary 
(not necessarily countable) set. The disturbances 'y, can take values in a 
subset W(x,, uk) of D that may depend on xk and uk. This problem deals with 
the following question: Given a nonempty subset X of the state space S, 
under what conditions does there exist an admissible policy {p,,, pl, . . .} 
with p&k)  E V(x,) for all xk E S and k = 0, 1, . . . , such that the state of the 
(closed-loop) system 

xk  + 1 = f c x k  9 p k ( x k ) ,  w k l  (51) 

belongs to the set X for all k and all possible values w k  E W [ x k ,  p k ( x k ) ] ,  i.e., 

(52) X k  E x VWk E w [ X k ,  p k ( X k ) ] ,  k = 0, 1, . . . . 
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The set X is said to be injinitely reachable if there exists an admissible policy 
{ p o ,  pl ,  . . .} and some initial state xo E X for which relations (51) and (52) 
are satisfied. It is said to be srrongly reachable if there exists an admissible 
policy {p,,, pl . . .} such that for all initial states xo E X relations (51) and (52) 
are satisfied. 

Consider the function R mapping any subset 2 of the state space S into a 
subset R ( 2 )  of S defined by 

R ( 2 )  = {x I there exists u E U ( x )  such that f ( x ,  u, w) E 2, Vw E W(x,  u ) }  n Z .  

(a) Show that the set X is strongly reachable if and only if R ( X )  = X .  
Given X consider the set X *  defined as follows: xo E X *  if and only if 

xo E Xandthereexistsanadmissiblepolicy { p u g ,  p l , .  . .} suchthat (51)and(52) 
are satisfied when xo is taken as the initial state of the system. 

(b) Show that a set X is infinitely reachable if and only if it contains a 
nonempty strongly reachable set. Furthermore, the largest such set is X *  
in the sense that X *  is strongly reachable whenever nonempty and if 8 c X is 
another strongly reachable set, then 8 c X*. 

(c) Show that if X is infinitely reachable, there exists an admissible 
stationary policy {p, p, . . .} such that if the initial state xo belongs to X * ,  then 
all subsequent states of the closed-loop system xk+ = f [ x k ,  p(xk), wk] are 
guaranteed to belong to X * .  

(d) Given X consider the sets R ( X ) ,  . . . , Rk(X) ,  . . . , where R k ( X )  denotes 
the set obtained after k applications of the mapping R on X .  Show that 

m 
x *  c n R ~ ( x ) .  

k =  1 

(e) Given X ,  consider for each x E X and k = 1 , 2 , .  . . the set 

uk(x)  = {U I f ( X ,  U, W )  E Rk(X) ,  V W  E W(X, U)}. 

Show that if there exists an index E such that for all x E X and k 2 E the set 
U,(x) is a compact subset of a Euclidean space, then X *  = r)p= Rk(X) .  

Hint: Use the results of Problem 9. See Bertsekas [B9] for detailed 
proofs. 
14. Injinite Time Reachability for Linear Systems Consider the linear 
stationary system 

X k + l  = AX, + B U k  + G W k ,  

where x k  E R", uk E R", wk E R', and the matrices A, B, G are known and have 
appropriate dimensions. The matrix A is assumed invertible. The controls 
uk and the disturbances wk are restricted to take values in the ellipsoids 
U = {uIu'Ru < I }  and W = {wl W'QW < l}, respectively, where R and Q are 
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positive definite symmetric matrices of appropriate dimensions. Show that in 
order for the ellipsoid X = {xIx ’Kx  < l}, where K is a positive definite 
symmetric matrix, to be strongly reachable (in the terminology of Problem 
13), it is sufficient that for some positive definite matrix M and for some 
scalar p E (0, 1) we have 

- B G Q - 1 ~ ’  + BR-’B’ A + M ,  (53) l 1  K = A’ (1 - j3)K-l - ~ [ P 

(54) 

Show also that if (53) and (54) are satisfied, the stationary policy {p*, p*, . . .}, 
where 

1 
K -  ’ - - GQ- ’ G’: positive definite. 

B 

P*(x)  = - ( R  + B’FB)-’B’FAx = Lx,  

F = (1 - B)K-’  - - [ - B BGQ-lGtll  
achieves reachability of the ellipsoid X = {xIx ’Kx  < l}. Furthermore, 
the matrix ( A  + BL) is a stable matrix. (For a proof together with a compu- 
tational procedure for finding matrices K satisfying (53), (54) see Bertsekas 

15. Gambling Strategies for Favorable Games A gambler plays a game 
such as the one of Section 7.3 but where the probability of winning p satisfies 

< p < 1. His objective is to reach a final fortune n, where n is a positive 
integer with n 2 2. His initial fortune is a positive integer i with 0 < i < n 
and his stake at time k can take only integer values uk satisfying 0 6 uk < 
xk, 0 < t f k  < n - xk, where xk is his fortune at time k .  Show that the strategy 
that always stakes one unit is optimal [i.e., p*(x)  = 1 for all integers x with 
0 < x < n is optimal]. 

Jp*(i) = [((I - p) /p) ’  - 11 [(( 1 - p)/p)” - 13- ’, 

C B ~ ,  1191.) 

Hint: Use Proposition 10 to show that 

J,,.(i) = i/n, 

0 < i < n, + < p < 1, 

O < i < n, p = + 
(or see Ash [A8, p. 1821 for a proof). Then use the sufficiency condition of 
Corollary 2.2. 
16. Under Assumption P show that if 3:  S -, [0, + 301 is a function such 
that T(1)  < 1, then J* < 1. Devise a mathematical programming procedure 
for solving the problem when S ,  C ,  and D are finite sets. 



Chapter 8 

Minimization of Average 
Expected Value 

The results of the previous chapter are applicable to problems where the 
infimum of the total expected value of the cost functional may be either 
finite or infinite for any given initial state. While for several classes of problems 
this infimum is finite for at least some initial states, in many problems under 
the positivity assumption P the total expected value of the cost functional is 
infinite for every initial state and every admissible policy. Under these 
circumstances the framework adopted in the previous chapter is clearly 
inadequate since within this framework every policy is optimal. On the other 
hand, in many situations it turns out that while the total expected value 

(1) I 
I 

lim E 
N + a ,  r k = O  - 

1 g C X k ,  p k ( x k ) ,  w k l  

corresponding to every admissible policy {po ,  pl, . . .} and initial state x o  
is infinite, the limit 

(2) 

exists and is finite for every initial state and admissible policy. This is true 
in particular if the state space S ,  the control space C,  and the disturbance 

lim 
N+CU 

E Cr: 1 g C X k ,  p k ( x k ) ,  w k l  

328 
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space D are finite sets, i.e., the system controlled is a finite state Markov 
chain. Expression (2) may be viewed as expected cost per stage and is a 
reasonably meaningful criterion for optimization. This chapter will deal with 
a problem similar to the problem that was the subject of the previous chapter 
except for the fact that the expected cost per stage (2) is minimized in place 
of the total expected cost of ( 1 ) .  Furthermore, in the first three sections we 
shall restrict ourselves to the case of finite state space, control space, and 
disturbance space. For this reason it is perhaps convenient to switch at the 
outset to a notation that is better suited to finite state systems and is described 
in the problem formulated below. 

Let S = { 1, . . . , n}  denote the state space.? To each state i E S and each 
control u in the finite control space C there corresponds a set of transition 
probabilities pi,(u),j = 1 ,  . . . , n, where p,(u) denotes the probability that the 
next state will b e j  given that the present state is i and control u is applied. 
These transition probabilities specify completely the system together with 
the statistical description of the uncertainty as discussed in Sections 1.4 and 
6.2. Each time the system is in state i E S and control u E C is applied, we 
incur an expected cost denoted a(i, u). The objective is to minimize over all 
admissible policies K = {po,  p l ,  . . .} with pk : S -P C, pk(i) E V(i), V i  E S ,  the 
average cost per stage 

(3) 
N -  1 

N-03 { k = O  
J n ( X 0 )  = lim ( l / N )  E 1 pk(XR)l 

for any given initial state xo E S. 
Let us now provide a preliminary discussion of the problem that motivates 

some of the results to be obtained in the next section. Given any stationary 
admissible policy K = {p, p, . . .} let us denote by P, the transition probability 
matrix having elements p i j b ( i ) ]  : 

P I I [ P ( ~ ) I  * * *  ~ l n b ( 1 ) l  

(4 )  
P n l  b ( n ) l  * * * ~ n n C ~ ( n ) l  

By the definition of p i j  we have 

n 

p i j b ( i ) ]  2 0 Vi , j ,  1 p i j b ( i ) ]  = 1 V i .  
j =  1 

t In the first three sections of this chapter we shall make use of some of the notions and 
results associated with finite state Markov chains. A summary of these results together with 
references is provided in Appendix D. 
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The matrix P ,  may be used to express the rn-step transition probabilities 
corresponding to a stationary policy TC = {p, p, . . .} : 

p(xk + m = j I xk = i, 4, 
i.e., the probability that the state will b e j  at time ( k  + rn) given that the state 
is i at time k and the policy 7~ is used. We have 

p i j b ( i ) l  = &k+ = j lxk = i ,  4, 
and it is an elementary matter to show (see Appendix D) that 

[Pr ] i j  = P(Xk+m = j ( x k  = i, n), 

where [ P r I i j  is the element of the ith row and jth column of the matrix 
P r  (i.e., P ,  raised to the rnth power). 

Let us now consider the value of the cost functional J,(xo) of (3) .  As 
before we use the notation 

J,(i) = J,(i), i = 1, . . . , n, 

for stationary policies n = { p ,  p, . . .}. Denote 

With this notation it is easy to see that 
N- 1 

The following result shows that J ,  is well defined. It is a standard result on 
transition probability matrices and it is provided here only for the sake of 
the following discussion, rather than for obtaining any concrete results. 
Its proof may be found in [K7]. 

Lemma 1 
p i j  satisfying 

For any n x n stochastic matrix P, i.e., a matrix with elements 

n 

p i j  B 0, i , j  = 1, . . . ,  n, C p i j  = 1, i = 1 ,..., n, 
j =  1 

we have 
N- 1 

N + m  k = O  
(7) 
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where P* is a stochastic matrix with the following properties: 

(a) P* = PP* = P*P = P*P*. 
(b) ( I  - P + P*) is an invertible matrix, where I denotes the n x n 

Denoting now 

identity matrix. 

N- 1 

P,* = lim ( 1 / ~ )  1 P:, 
N+ m k = O  

and using Lemma 1, we have from (6 )  that 

J ,  = P,*g,. (9) 

Thus for every admissible stationary policy the corresponding average cost 
per stage is well defined and conveniently characterized by the above equa- 
tion. Consider also the vector 

h, = ( I  - P, + P,*)-'(I - P,*)g,, 

( I  - P, + P,*)h, = ( I  - P,*)g,, 

(10) 

(1 1) 

P,*h,, = 0. (12) 

(13) 

where the inverse above exists by part (b) of Lemma 1. We have 

and multiplying both sides by P,* and using part (a) of Lemma 1 we obtain 

Using (12) and (9) we may write (1 1) as 

J ,  + h, = g ,  + P,h,. 

This equation is satisfied by every admissible stationary policy 7c = {p, p, . . .} 
and corresponds to the familiar functional equations satisfied by the cost 
corresponding to stationary policies in the discounted and undiscounted 
total cost cases of the previous two chapters. In those cases the average cost 
per stage J ,  was zero whenever the total cost was finite and the corresponding 
functional equation had the form 

h, = g ,  + aP,h,, 

where 0 < CI < 1 in the discounted case and u = 1 in the undiscounted case. 
As a result of the preceding discussion we have that with every admissible 

stationary policy 7c = {p, p, . . .} there is associated a vector of average costs 
per stage J, defined by (8) and (9) and satisfying the functional equation (13). 
An interesting question is whether there exists a stationary policy {p*, p*, . . .} 
that is optimal in the sense 

J,* Q J , ,  VP, 
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where this inequality is considered to be componentwise [i.e., we write 
J,* < J ,  if J,*(i) < J,(i) for each initial state i E S]. The answer to this 
question is affirmative (see [B19, D41) but we shall not prove this fact. 
Instead we shall concentrate on the important and frequently encountered 
case where the optimal cost vector J,. is of the form 

J,. = Ie,  (14) 

where I is a scalar and e is the unit vector on R", i.e., 

e = [l, 1, ..., 13'. 

Equation (14) will hold, for example, if the matrix P$ of (8) corresponding 
to {p*, p*, . . .} has identical rows. When (14) holds the optimal cost per 
stage is the same for every initial state. In the next section we provide con- 
ditions that ensure that (14) holds. Furthermore, under these conditions we 
show that optimal stationary policies {p*,  p*, . . .} can be obtained from the 
optimality equation 

(15) 

where M is the (finite) set of all functions p :  S + C with p(i)  E U(i), i = 1,. . . , n, 
and the minimization is considered to be componentwise. Some connections 
with the discounted cost problem are also established in the next section. 
Subsequent sections provide computational algorithms for obtaining an 
optimal policy. The last section treats a problem involving a linear system 
and a quadratic cost functional. 

JPr + h,. = g,. + P,.h,. = min(g, + P,h,.), 
,EM 

8.1 Existence Results 

Our first result provides a condition for existence of a stationary optimal 
policy satisfying a certain optimality equation. This condition is not readily 
verifiable but is implied by other more natural conditions, which we shall 
provide subsequently. 

Proposition 1 Assume that there exists a function h:  S + R and a 
constant 3, such that 

n 1 I + h(i) = min g(i, u )  + 1 p,,(u)h(j) Vi  = 1, . . . , n. (16) 

Then if p*(i) attains the minimum in (16) for every i = 1, . . . , n, the stationary 
policy n* = {p*, p*, . . .} is optimal. Furthermore, the optimal value of the 
cost functional J J i )  of (3) is equal to I for every i = 1, . . . , n, i.e., 

(17) 

ueU( i )  [ j =  1 

I = J,*(i) = inf n J,(i) Vi = 1, 2, . . . , n. 
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Proof For any admissible policy n = {po ,  p l ,  . . .}, and any initial state 
xo E S let E { a  Ixo, n}, E { - I X k - 1 ,  U k -  1 ,  n} denote conditional expectation 
given the policy n is used and xo or x k -  and u k -  = &’- 1) have 
occurred, respectively. We have for any k 2 1, 

E { h ( x k ) l x O ,  = E { h ( X k ) l X k -  1, u k -  1 ,  1x0, . 
X k  x k - I , u k - I  XI. 1 

It follows that for every N 2 1, 

We have 

n 

n 

(19) 

1 2 min 8 ( x k -  1 ,  u )  + C p x k -  ,,,(u)hO’) - g ( x k -  1 ,  uk -  1 )  
uEU(Xk-1 )  [ j =  1 

= A + h ( x k -  1 )  - g ( x k -  1 ,  u k -  I ) ?  

with equality above when n = {p*,  p*, . . .} (by the definition of p*). Hence 
from (18) and (19) we have for every N 2 1,  

CN- 1 

or equivalently 

with equality if n = {p*,  p*, . . .}. Taking the limit as N + a, we obtain 

1 N - 1  

A G l im(l/N)E{ c 8 ( x k ,  u k ) I x O ,  = Jn(xO), 
N + m  k=O 

for every xo E S and every admissible policy n. Furthermore equality holds 
above when n = {p*, p*, . . .} and the result follows. Q.E.D. 

We note that the result of the previous proposition depends on the 
finiteness of the state space only to the extent that h is a bounded function, 
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and indeed an extension of it can be shown to hold for an arbitrary state 
space [R3] assuming that h is bounded. 

Now given a stationary policy 7~ = { p ,  p ,  . . .} we may consider as in the 
past two chapters a problem where the constraint set U(i )  is replaced by the 
set o(i) = {p(i)),  i.e., O(i) contains a single element, the control p(i). Since for 
the resulting problem there is only one admissible policy, the policy { p ,  p, . . .}, 
application of Proposition 1 yields the following corollary. 

Let n = {p, p, . . .} be an admissible stationary policy. 
Assume that there exists a function h,: S -, R and a constant 1, such that 

Corollary 1.1 

n 

Then the value of the cost functional (3) corresponding to rt is the same 
for every initial state and is given by 

J,( i )  = 2, Vi = 1, 2 , .  . . , n. 

We now turn to obtaining conditions that guarantee the existence of 1 
and h satisfying (16). At the same time we shall be able to establish a connec- 
tion with the discounted cost problem of Chapter 6. 

Consider the discounted cost functional 

Let us denote by J,( i )  the optimal value of this cost functional corresponding 
to a and the initial state i E S. We have from the results of Chapter 6 that J,( - ) 
is the unique solution of the optimality equation 

J,(i) = min g(i, u )  + a 1 pi,(u)Ja(jj , 
n 1 i = 1, . . . , n. (20) 

UE U(i) [ j =  1 

Let s be an arbitrary state in S and let us define 

h,(i) = J,(i)  - J,(s),  i = 1, . . . , n. (21) 

We have, by using (21) to eliminate J,(i) from (20), 
n 1 

1 
ha(i) + Jab),= min g(i, u)  + a C piju)[hao') + J,(s)] 

j =  1 

n 

u ~ U ( i )  [ 
= aJ,(s) + min ~ ( i ,  u)  + a C pi ju)h , ( j )  

u E U(i) [ j =  1 

from which 
n 

(1 - a)J,(s) + h,(i) = min u)  + c1 C p, ju)h,( j )  
U E  U(i) j =  1 
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It follows from (22) and the finiteness of S and C that if for some sequence 
{a,} with 0 < a, < 1 and a, -+ 1 we have 

lim (1 - a,)Jam(s) = I ,  (23) 

(24) 

(i.e., the limits above exist), then the constant I and the function h :  S -+ R 
defined by (23) and (24) satisfy 

m - t m  

lim ham(i) = h(i), i = 1, . . . , n 
m- m 

n 1 1 + h(i) = min ~ ( i ,  u )  + 1 p,,(u)h(j) , i = 1, .  . . , n, 
u ~ U ( i )  [ j =  1 

and condition (16) is satisfied. The following proposition states that a 
sufficient condition for existence of a sequence {a,} such that the limits in 
(23) and (24) exist is that the differences [J,(i) - J,(s)] are uniformly bounded 
over a. 

Proposition 2 Assume that there exists a constant L such that for some 
state s E S we have 

IJ,(i) - J,(s)l d L Vi  E S,  a E (0, 1). (25) 
Then : 

(a) There exists a constant X and a function h :  S -+ R satisfying (16). 
(b) For some sequence a, -+ 1 we have 

h(i)  = lim [J,,(i) - Jam(s)],  i = 1, . . . , n. 
m-oo 

(c) 
Proof Let { u k }  be any sequence such that c(k -+ 1. By (25) the sequences 

{Jak(i)  - J,,(s)} are bounded. Hence there exists a subsequence of {ak} ,  
say {a,}, such that {Jam(i)  - Jam(s)} converges to a limit h(i) for each i E S,  
and part (b) is proved. Now by Proposition 6.1 and finiteness of the state space 
and control space we have 

lima+l (1 - a)J,(i) = A, V i  = 1, .  . . , n. 

IJ,m(S)I d M(1 - am)- ' ,  

where M is some constant. Hence the sequence {( 1 - a,) I Jam(s) 1 } is bounded. 
Thus there exists a subsequence of {a,}, say {a,.} such that 

( 1  - a,,)Jam.(s) -+ 1. 

From (22) we have 
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Taking the limit above and interchanging limit and minimization [using the 
finiteness of U(i)] we obtain 

n 1 1 + h(i)  = min B(i, u )  + 2 pi,(u)h(j) , 
ueU( i )  [ j =  1 

and part (a) is proved. 
+ 1 

and every subsequence of {ak}, say {am}, such that limm+m (1  - am)Jam(s) 
exists, we have 

lim (1  - am)Jam(s) = 1, 

where A is the optimal value of the problem [by part (a) and Proposition 13. 
It follows that limk-m (1  - ak)Jak(s) = A and hence lima-l ( 1  - a)Ja(s) = 2. 
Now if IJ,(i) - J,(s)l is uniformly bounded for some s it is also uniformly 
bounded for every s E S and hence by repeating the proof for every s E S we 
obtain lima-l (1 - a)J,(i) = 1 for all i E S. Q.E.D. 

We are now ready to state and prove the following proposition, which 
combined with Proposition 1 provides one of the main results of this section. 

Recall that to every admissible stationary policy {p, p, . . .} there corre- 
sponds a transition probability matrix P, defined by (4). For any positive 
integer m we shall denote by p;@) the element in the ith row andjth column 
of the matrix PI: (P, raised to the mth power): 

To prove (c) note that by the proof of (a) and (b) for any sequence 

m-m 

The scalar p;(p) is the probability that the state will b e j  after m stages when 
the initial state is i and the stationary policy n = {p, p, . . .} is used: 

p t @ )  = P(xm = j Jxo = i, n). 

For any two states i, s E S let us denote by Kis(p)  the smallest index k 
for which xk = s when xo = i and the stationary policy n = {p, p, . . .} 
is used: 

Kis(p)  = inf{klx, = s, xo = i, xi # s for 1 < j < k}. 

We call Kis(p)  thejrst  passage t ime from i to s associated with p. For each 
i, s, and p, Kis(p) may be viewed as a random variable taking positive integer 
values or the value + co with probabilities 

4: = P(Kis(p)  = k) = P(xk = s, xi # s, 1 < j < k l x ,  = i ,  n), 
m 

P(K, , (p)  = 03) = 1 - c q:s. 
k =  1 
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We define the meanjrst  passage time E {Kis(p)}  associated with p by 

otherwise. 

One may show (see Appendix D) that for any given state s E S, 
E{Kis (p ) }  < 00 V i  E S =- p z ( p )  > 0 for some mi 2 1 Vi E S,  (26) 

where pz was defined above. Furthermore, if the stochastic matrix P, 
corresponds to an irreducible Markov chain (see Appendix D), then we have 
E {Ki,(p)} < CO for all i ,  j E S.  

Proposition 3 Suppose that there exists a state s E S such that for every 
admissible stationary policy n = {p, p, . . .} and every state i E S we have 

E{Kis(p)}  < 00. (27) 

Then there exists a constant 3, and a function h : S -, R satisfying (16), i.e., 
n 1 I + h(i) = min &, u) + Cpi,(u)h(j)  , i = 1 , .  . ., n. 

ucU(i)  [ j =  1 

Proof We assume without loss of generality that 

0 < #(i, u )  < M Vi E S ,  u E C, (28) 

where M is a constant. This is true since, by the finiteness of S and C, g(i, u )  is 
bounded, and furthermore the addition of a constant to g(i, u )  merely adds the 
same constant to the cost functional (3) for every admissible policy. Let a 
be any discount factor, 0 < a < 1, and {pa, pa, . . .} a policy that minimizes 
the corresponding discounted cost. We have, for every i E S, 

By (28), the first term on the right is less than or equal to M E {Kis(pa)}.  The 
second term is equal to 

g C x k  3 / d x k ) 1  I xKt.(p.) = s = E {aK's'Cm'}Ja(s),  I E { a K i ~ ( P . 4 }  E { f a k - K i d / k ) -  

k = K i s ( , d  

which is in turn less than or equal to Ja(s). Hence if Q is an integer such that 
E {Kis (p ) }  < Q for all i and p, we obtain 

or 
JAi) < M E { K i s ( P a ) }  + JAs) G MQ + Ja(s) ,  

J,(i) - J&) < MQ. (30) 
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Also by (29), 

J,(i) 2 J,(s) E{aKis(pD)}, 

or equivalently 

J,(s) - J,(i) < [l - E{aKis(pa)}]J,(s). (31) 

By Proposition 1 in Chapter 6 we have 

while using the fact that 0 c a -= 1, we have 

where Q is the integer for which E { K , , ( p ) }  < Q. From (31)-(33) we obtain 

Q-  1 

i = O  
J,(s) - J,(i) 6 [(l - aQ)/(l - a)]M = 1 a'M 6 QM.  (34) 

Combining (30) and (34), 

IJ,(i) - J,(s)l < M Q  V i  E S,  a E (0, 1) 

and the result follows by Proposition 2. Q.E.D. 

Condition (27) is satisfied in particular if every stationary policy gives rise 
to an irreducible Markov chain (see Appendix D). It is to be noted that from 
the preceding proof it is evident that it is sufficient that (27) holds only for 
stationary policies that minimize the expected discounted cost for some 
discount factor. It is possible to obtain other conditions that guarantee the 
existence of I and h such that (16) holds. One such condition is the following. 

Weak Accessibility Condition For any two states i,j E S there exists an 
admissible stationary policy IL = {p, p, . . .} and an integer rn such that 

pz{p) = P(x ,  = j l x o  = i ,  n) > 0. (35) 

Proposition 4 Suppose that the weak accessibility condition holds. 
Then there exists a constant I and a function h :  S + R satisfying (16), i.e., 

n 1 I + h(i) = min g(i ,  u) + C pi,{u)h(j) , i = 1 , .  . . , n. 
UE U ( i )  [ j =  1 

Proof See the Appendix to this chapter. 
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Combination of Propositions 1 and 3 or Propositions 1 and 4 yields: 

Theorem Under the assumption of Proposition 3 or under the weak 
accessibility condition there exists a constant I and a function h :  S -, R 
such that 

n 1 I + h ( i ) =  min g(i ,u)+ C p i J ( u ) h ( j )  , i =  1 , .  . . , n .  (16’) 

Furthermore, the optimal value of the cost functional J,(i) of (3) is equal to I 
for every i = 1, . . . , n, i.e., 

u E U ( i )  [ j= 1 

n 1 I + h ( i ) =  min g(i ,u)+ C p i J ( u ) h ( j )  , i =  1 , .  . . , n .  (16’) 

Furthermore, the optimal value of the cost functional J,(i) of (3) is equal to I 
for every i = 1, . . . , n, i.e., 

u E U ( i )  [ j= 1 

I = inf J,(i), i = 1, . . . , n. 
n 

In addition if p*(i) attains the minimum in the right-hand side of( 16’) for every 
i = 1, . . . , n, then the stationary policy n* = {p* ,  p*, . . .} is optimal. 

The conditions listed above are probably the weakest known that 
guarantee that the optimal average cost per stage is independent of the 
initial state. It is clear, of course, that some sort of accessibility condition 
must be satisfied by the transition probability matrices corresponding to 
stationary policies or at least to optimal stationary policies. For if there 
existed two states none of which could be reached from the other no matter 
which policy we use, then it can be only by accident that the same optimal 
cost per stage will correspond to each one. An extreme example of this type 
of situation is to consider a problem where the state is forced to stay the same 
regardless of the control applied, i.e., each state is absorbing. Then the 
optimal average cost per stage for each state i will be minuEu(i, &, u )  and 
this cost may be different for different states. 

Finally, we state the following corollary of Proposition 3, which is 
obtained in the same way as Corollary 1.1. 

Corollary 3.1 Let 7r = {p, p, . . .} be an admissible stationary policy 
and assume that there exists a state s E S such that E{K, , (p ) }  c co for all 
i E S. Then there exists a constant I, and a function h,: S -, R such that 

(36) J,(i) = I,, i = 1 , .  . . , n, 
and furthermore 

n 

1, + h,(i) = SCi, ,u(i)I + 1 pij[,u(i)]hp(j), i = 1 , 2 ,  . . . , n. (37) 

Equation (37) represents a system of n linear equations with (n + 1) 
unknowns-the scalars I , ,  h,(l), h,(2), . . . , h,(n). We may add one additional 
equation to this system by requiring that 

j= 1 

h,(s) = 0. (38) 
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This can be done since if {A,, h,(l), . . . , h,(n)} is a solution of (37) so is 
{Ap ,  h,(l) + r, . . . , h,(n) + r}, where r is any scalar. Corollary 3.1 states 
that under the assumption E{Kis(p)}  < 00, system (37) and (38) has at 
least one solution. We now show that the same assumption guarantees that 
the system of equations (37) and (38) has a unique solution. 

Proposition 5 For any admissible stationary policy R = {p, p, . . .} for 
which there exists an s E S such that E {Kis@)}  < 00 for all i E S, the system 
of equations (37) and (38) has a unique solution. 

Proof Let (1, h(l), . . . , h(n)} and {A’, h’(l), . . . , h‘(n)} be two solutions. 
We have 1 = I’ = 1, by Corollary 1.1. Hence from (37) we obtain for every 
m 2 1, 

h - h’ = P,(h - h‘) = Py(h - h’), 

or equivalently 
n 

h(i) - h’(i) = 1 pz{p)[h(j)  - h’(j)] Vi  = 1,. . . , n. 
j =  1 

From (26) and for a fixed i we obtain for some mi 2 1 and E~ > 0, 

p 3 p )  2 Ei  > 0 

and from (38), h(s) - h’(s) = 0. Hence 
n 

IhG) - h’(i)l < 1 P?(P)IhO’) - h’0’)I 

= CP?(P)IW - h’O’)l 

j =  1 

j + s  

< (1 - ci) max I h(j)  - h’(j) 1. 
J 

Thus we obtain 

max I h(j) - h’(j) I < (1 - E )  max I h(j) - h’(j) 1, 
i i 

where 
E = min[E,:. . . , en] > 0. 

Hence h(j)  = h’(j) for all j .  Q.E.D. 

We close this section with an example. 

MACHINE REPLACEMENT EXAMPLE Consider a machine that can be in 
any one of n states, S = { 1,2, . . . , n}. The implication here is that state i 
is better than state i + 1, i = 1,2,. . . , n - 1, and state 1 corresponds to a 
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machine in perfect condition. The operating cost per unit time for which the 
machine starts in state i is denoted gi, and we assume 

(39) 0 < g1 < 92 < ... < gn. 

p . .  V = 0 if j < i ,  (40) 

p i i <  1, i =  1 ,..., n, (41) 

During a time period of operation the transition probabilities satisfy 

i.e., the machine cannot go to a better state with usage. We also assume 
that 

n n 

i < i'* c p i j  < c p i f j  Qk = 1, 2, .  . . ,n. (42) 

At the beginning of each period the state of the machine is determined and a 
decision is made whether to replace the machine at a cost R > 0 with a new 
machine that is in state 1 or to continue operation. Thus there are two 
possible controls-replace and do not replace. The problem is to find a 
policy that minimizes the average cost per period. 

It is to be noted that the hypothesis of Proposition 3 is not satisfied for 
this problem. Indeed, consider the policy that never replaces. Then assump- 
tions (40) and (41) imply that for this policy the only state that can be reached 
from every other state is the state n. Consider also the policy that replaces 
the machine at every state. Then, assuming pln = 0, state n cannot be reached 
from any state i # n. Notice also that one cannot guarantee in the absence 
of further assumptions that the weak accessibility condition stated after 
Proposition 3 is satisfied. We shall be able, however, to argue in terms of 
Proposition 2. 

Consider the corresponding discounted problem with a discount factor 
a < 1.  Then we have 

j = k  j = k  

It follows that 

It is possible to show (as in the second example of Section 6.1) that in view 
of (39)-(42), we have for all c1 E (0, l), 

0 < J,(i) - Ja(l), i = 1, 2, .  . . ,n. 



342 8 MINIMIZATION OF AVERAGE EXPECTED VALUE 

Furthermore J,(i) - J,(l) is nondecreasing in i. Hence by Proposition 2 
there exists a scalar 1 and a nondecreasing function h(i), i = 1, . . . , n, such 
that 

n n 1 1 + h(i) = min R + g1  + pljh(j), gi + 1 pi jh( j )  , i = 1,2,. . .,n, [ j =  1 j =  1 

and the policy that chooses the minimizing action above is average cost 
optimal. Let 

i* = max ilg, + ip i jh( j )  < R + g1 + tpljh(j)}. 

Then the policy that replaces if the current state is greater than i* and does 
not replace otherwise is optimal. 

{ j =  1 j =  1 

8.2 Successive Approximation 

Since, as seen in Chapter 6, the method of successive approximation 
may be used for computing the optimal discounted cost function J ,  of (20) 
and furthermore under the assumption of Proposition 2 we have 

lim(1 - a)J,(i) = 1, i = 1,2 , .  . .,n, 
a- 1 

one expects that a limiting form (as a + 1) of the successive approximation 
method may be used for the average cost problem. Indeed, this is the case 
under an assumption that we shall introduce shortly. Prior to proceeding 
with precise formulations and results let us provide a heuristic discussion 
that indicates the appropriate limiting form of the successive approximation 
method. 

Let J :  S + R be any function on S ,  a E (0, 1) be a discount factor, and 
consider the following mapping T,, which is familiar from Chapter 6: 

n 1 T,(J)(i) = min S(i, u )  + a 1 piJ(u)~(j) , i = 1, . . . , n. 
ueU( i )  [ j =  1 

As discussed in Section 6.2, the successive approximation method for the 
a-discounted problem consists of the iteration 

T;+'(J)(i) = min g(i, u )  + a i p , j u ) T * ( J ) ( j ) ] ,  i = 1, . . . , n. (44) 
u s U ( i )  [ j =  1 

We have 

lim T;(J)(i) = J,(i), i = 1, . . . , m, 
k - m  
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for an arbitrary function J: S + R, where J, is the a-discounted optimal 
value function. Since we may have Tt(J)(i) + 03 as k + 03 and a + 1 we 
shall rewrite-(44) in terms of quantities that have finite limits as k + co and 
a +  1. 

For any fixed state s E S let us denote, for all i and k, 

ha, k ( i )  = T t ( J ) ( i )  - Tk(J)(s). (45) 
Using the notation above we may write (44) as 

n 1 [T:+’(J)(s) - a7%J)(s)1 + h a , k + l ( i )  = min !%i, u )  + 1 P i A U ) h a , k O ’ )  . 
j =  1 

(46) 

(47) 

u e U ( i )  [ 
Let us denote, for all i = 1, 2, . . . , n and k, 

H a , k ( i )  = h a , k ( i )  + [T:(J)(s)  - aT:-’(J)(s)l, 

h a , k ( i )  = H a , k ( i )  - H a & ) ,  

From (45) and (47) we have 

i = 1, 2, . . . , n. (48) 
Now we may write (46) [or, equivalently, (44)] as 

n 

(49) 1 H a , k +  l ( i )  = min &i, u, + a 1 Pi,iU)ha,kO’) 5 

u s U ( i )  [ j =  1 

with ha, k( i )  defined by 

h a . k ( i )  = H a , k ( i )  - H a , k ( s ) -  (50) 

Algorithm (49) and (50) with a starting function ha,o: S -, R satisfying 
ha, o(s) = 0 may be viewed as an alternative implementation of the successive 
approximation algorithm (44) and may equally well be used for solution 
of the a-discounted problem. In the limit algorithm (49) and (50) will yield 
function5 ha and H a  via the relations 

h,(i) = lim h a , k ( i ) ,  

H,(i) = lim H a , k ( i ) ,  

i = 1, 2, . . . , n, 

i = 1, 2, . . . , n. 

(51) 

(52)  

k- .  m 

k + w  

In addition we will have [cf. (45) and (47)] 

h,(i) = J,(i) - J,(s), 

H a ( s )  = (1 - a)Ja(s), 

i = 1, 2, . . . , n, (53) 

(54) 

from which the optimal values J,( l), J,(2), . . . , J,(n) may be recovered. 
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Now if we formally take the limit as u + 1 in algorithm (49) and (50) and 
denote 

hk(i) = lim ha,k(i), 

Hk( i )  = lirn Ha,k(i) ,  

a- 1 

01’1 

we obtain the algorithm 
n 

(57) 

(58)  

1 Hk+ l(i) = min g(i, u, + 1 pi,iu)hk(j) 7 

u ~ U ( i )  [ j =  1 

hk(i) = Hk(i) - H k ( S ) ,  

where h,: S -+ R is a function with h,(s) = 0. Let us suppose for a moment 
that the algorithm yields functions H and h via 

h(i) = lim hk(i), 

H( i )  = lirn Hk(i). 

k -  m 

k + m  

(59) 

Then assuming that the limit with respect to u and k may be interchanged, 

lirn ha(i) = lirn lirn ha&) = lirn lirn ha,k(i) = lirn hk(i), 

lim Ha(i)  = lim lirn ffa,k(i) = lirn lim HaVk( i )  = lirn Hk(i), 

a+ 1 a - 1  k-m k-m a+1 k + m  

a+ 1 a’l k + m  k - m  a-rl k -  m 

we obtain from (53), (54), (59), and (60): 

h(i) = lim[Ja(i) - Ja(s)],  i = 1, 2, . . . , n,  

i =  1 , 2  ,..., n. 

01’1 

H(s)  = lim(1 - u)J,(s), 
a+ 1 

However, by Proposition 2 these imply, under the corresponding assump- 
tions, that the quantity H(s)  obtained from algorithm (57) and (58) is equal to 
the optimal average cost per stage of the problem and the function h enters 
in the optimality equation (16). 

The conclusion from this informal discussion is that algorithm (57) and 
(58)  is the natural candidate as a successive approximation method for the 
problem of this chapter and, under appropriate assumptions, should yield 
in the limit the optimal average cost per stage. 

The validity of this conjecture is established in the following proposition. 
In fact, we need not require that h,(s) = 0 since by (58 )  we will have h k ( S )  = 0 
for all k 2 1 even if h,(s) # 0. 
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Proposition 6 Assume that there exists an E > 0 and a positive integer 
m such that for some state s E S and all admissible policies n = {po, pl, . . .} 
we have 

(61) 

where PPr ,  k = 0,.  . . , m, denotes the transition probability matrix corre- 
sponding to pk as in (4) and [P,, P,,- . + . PpOlis denotes the element in the 
ith row and sth column of the matrix PPm . . . P,, . Consider the algorithm 

[P,, P,,- . . . Ppo]is 2 E > 0 Vi = 1,2, . . . , n, 

n 

(62) 

i = 1 ,2 ,  . . . , n, k = 0, 1,  . . . , 1 u)  + 1 pi@)hk(j) , 
u E U ( i )  j =  1 

where ho: S -, R is an arbitrary function. Then the limits 

h(i) = lim hk(i), 

H(i)  = lim Hk(i), 

i = 1, 2, .  . . , n, 

i = 1, 2, . . . , n, 

k+m 

k-m 

exist and we have 

H(s) = 1 = inf Jn(i), i = 1, 2, . . . , n, (66) 
n 

i.e., 1 is the optimal average cost per stage of the problem. In addition, 
I, and h satisfy 

g(i, u )  + j =  1 pil(u)h(j)]. (67) 

Proof Let pk(i) E U(i)  attain the minimum in (62) for every k and i. 
Denote for all k 

Hk(l)  gC1, pk(l)l 

Hk = [ Hk(n) ] h k = r y j  hk(n) g P k = [  g[n, pk(n)l ] 
We have 
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and hence 

where e is the unit vector e = [l, 1,.  . . , 13'. From the relations above we 
obtain 

Since this relation holds for every k b 1, by iterating we obtain 

Write 

Then (68) yields 

Now we have for all k by hypothesis [P , , - ,  - . . P,,_,  , I i s  b E > 0, and by 
(63), q k ( S )  = 0. Hence from (69) 

i i 
max qkG) < (1 - &) max qk-m- 1G) - [Hk+ - Hk-m(S)l. (70) 

Using a similar argument, from (68) we also obtain 

min qku) 2 (1 - dmin 4 k - m -  1G) - C H k +  1 ( 4  - H k - m ( S ) I *  (71) 
j i 

From (70) and (71) we have 

which implies that for all k greater than some index and some B > 0 we have 

max q k o )  - min qkG) < B(1 - E ) ~ / ( " ' + ~ ) .  

i j 

Since &(S) = 0, it follows that 

I h k  + l(i) - hk(i) I = I qk(i) I < max q k ( j )  - min &(j) < B( 1 - E ) ~ / ( ~ +  l) ,  

j j 
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This in turn implies that {hk(i)} converges to some real number h(i): 

h(i) = lim hk(i), i = 1, 2, . . . , n. 
k-cc 

From (62) we see that the sequence {Hk} also converges to a vector H E R”, 
and we have 

n 

(72) 1 ~ ( i )  = min g(i, u)  + Cpiju)h(j) , 
ueU( i )  [ j =  1 

as well as 

h(i) = H(i) - H(s). (73) 
From (72) and (73) we have 

H ( s )  + h(i) = min g(i, u )  + pi,(u)h(i)], 
U E  U(i) [ j=  1 

and by Proposition 1, H(s)  = A = inf, J,(i). Q.E.D. 
As for discounted problems, one may obtain upper and lower bounds 

on the optimal average cost per stage A via the successive approximation 
algorithm. 

Proposition 7 Under the assumption of Proposition 6 for algorithm 
(62) and (63) there holds 

Hk(s) + ck < Hk+l(S) + ck+l < A < Hk+l(S) + ?k+l < Hk(s) + ck, (74) 
where for all k 2 1, 

ck = min[Hk+,(i) - Hk(i)], 

c k  = max[H,+,(i) - Hk(i)]. 
i 

i 

(75) 

(76) 

Proof Let pk(i)  attain the minimum in (62) for each k and i. We have 
n 
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Taking the minimum over i we obtain 

H k - , ( s )  + c k - 1  < H k ( S )  + c k .  

A similar argument shows that for all k 

H k ( S )  + t k  < H k -  1(s) + E k -  1. 

Since ck tends to zero by Proposition 6 we have {Hk(s)  + ck}  + 1 and since 
{ H k ( S )  + c k }  is a nondecreasing sequence it follows that H k ( S )  + ck 6 1. 
Similarly Hk(s) + Ek 2 1 and the result is proved. Q.E.D. 

We now demonstrate the successive approximation algorithm and the 
error bounds (74) by means of an example. 

6.2. We have 
EXAMPLE 1 Consider an undiscounted version of the example of Section 

s = {1,2], c = {u', u2}, 

and 

g(1, u') = 2, g(1, u2) = 0.5, 532, u') = 1, g(2, u2) = 3. 

Letting s = 1 be the reference state, algorithm (62) and (63) takes the form 
c 2 

Letting s = 1 be the reference state, algorithm (62) and (63) takes the form 

and the constants ck, i$ of (75) and (76) are given by 

The results of the computation starting with h,(l) = h,(2) = 0 are shown in 
Table 8.1. 
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TABLE 8.1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.5oooO 
0.25000 
0.37500 
0.3 1250 
0.34375 
0.32813 
0.33594 
0.33203 
0.33398 
0.33301 
0.33350 
0.33325 
0.33337 
0.33331 
0.33334 
0.33333 

0.5oooO 
0.87500 
0.68750 
0.78125 
0.73438 
0.75781 
0.74609 
0.75195 
0.74902 
0.75049 
0.74976 
0.75012 
0.74994 
0.75003 
0.74998 
0.75001 
0.75000 

0.62500 
0.68750 
0.7 1875 
0.73438 
0.742 19 
0.74609 
0.74805 
0.74902 
0.74951 
0.74976 
0.74988 
0.74994 
0.74997 
0.74998 
0.74999 
0.75000 

0.87500 
0.8 1250 
0.78125 
0.76563 
0.75781 
0.75391 
0.75195 
0.75098 
0.75049 
0.75024 
0.75012 
0.75006 
0.75003 
0.75002 
0.75001 
0.75000 

8.3 Policy Iteration 

The policy iteration algorithm for solving the average cost problem is 
similar to those described in the past two chapters. Given a stationary 
policy one obtains an improved policy by means of a minimization process 
until no further improvement is possible. We shall assume throughout that 
there exists a state s E S such that for every admissible stationary policy 
n = {p, p, . . .} we have 

E {Kis(p) }  < co vi = 1, . . . , n, 

as in Proposition 3. 
Let nk = {pk, pk, . . .} be an admissible stationary policy obtained at the 

kth iteration of the algorithm. We determine the average cost per stage I,, 
corresponding to nk by solving the system of (n + 1) equations 
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This system has a unique solution by Proposition 5. Subsequently we find 
a policy nk+l = {pk+l ,  p k + l ,  . . .} where pk+l( i )  is such that 

n 

&i, pk + '(ill  + C p i j L k  + '(i)Ih,kO') 
j =  1 

u e U ( i )  [ j =  1 

n 

(79) 1 = min a(i, u )  + Cpi,(u)hPk(j) , i = 1,. . . , n, 

where we set pk+'(i)  = pk(i) if pk(i) attains the minimum above. Let j l , k + I  

and hpk+ I(i), i = 1,  . . . , n, be the unique solution of the system of equations 
n 

A,,k+i -k h,++i(i) = a[i, pk+'(i)] -k 1 pij@k+'(i)]hpk+ lo), i = 1, . . . , n, 
j =  1 

hpk+ I(S) = 0. 

We claim that 
A,,, 2 A,k+l. 

Indeed, by switching to vector-matrix notation and using (77)-(80), we can 
write 

and 

where e = [l, 1, . . . , 11' and I is the n x n identity matrix. By multiplying 
both sides of the vector inequality by the matrix Ppk+l the inequality is 
preserved since Ppk+ I  has nonnegative elements, and we have 

A,ke -k h,k = grk -k P,kh,k 2 g,k+ I  + Ppk+ I  hpk, (81) 

A,ke 2 Q,k+ I  + (P,k+ 1  - I)h,k, 

A,kP,,k+le 2 Ppk+lgpk+l + (Pi,+, - Ppk+l)hpk. 

Since P,k+ l e  = e, we obtain 

Apke 2 Ppk+lgpk+l + (P;k+l - PCk+l)hCk. 

Similarly we have for every i 2 0, 

A,ke 2 PLk+ I g p k +  I + (P??I - PLk+ l)hpk. 

Hence by summing over i we obtain for every N 2 1, 

Since (P;k+l - I)hpk is bounded we have limN+m(l/N)(P$+l - I)h,k = O 
and furthermore 
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by (6). Hence from (82) we obtain 

Apke 2 lirn(l/N) 1 P~k+lgpk+I  = l p k + l e ,  
N+CO r1 i = O  ) 

and (80) is proved. 
Thus the policy { p k + ’ ,  p k + ’ ,  . . .} obtained via (79) is as good or better 

than the policy {pk ,  p”, . . .}. Now consider the generated sequence {A,,}. 
Since it is a nonincreasing sequence and furthermore the set of all stationary 
policies is finite, we must have for some 1 and some index E ,  

A,,, = 1 Vk 2 E .  (83) 

p k  = p* Vk 3 k, (84) 

If, in addition, we have for some policy IL* = {p*, p*, . . .}, 

then a* must be optimal in view of construction (77) and (79) and Proposition 
1. Relation (84) can be guaranteed if different policies have different average 
costs per stage associated with them. Another assumption that, as we prove 
below, guarantees (84) is when for all k 3 E the matrices 

N -  1 

p,*. = lim (1/N) 1 PLk 

of (7) have identical rows each element of which is positive. This occurs if 
under each transition probability matrix p,,k the resulting Markov chain is 
irreducible (see Appendix D). Indeed under these circumstances if f l k  is the 
(row) vector consisting of the row elements of P;l[;, 

N+CQ i = O  

f l k  

4% = [ 8,1 
then from (81) we have 

IZpkflk+le + P k + I h p k  2 flk+lgpk+I + flk+lPpk+1hpk, (85) 
and by Lemma 1 we obtain flk+Igpk+l = i , k + l  and f l & + l P p k + l  = f lk+l .  
Thus (85) is equivalent to 

Since the elements of f l k +  are positive we have equality above if and only 
if equality holds in (81) or equivalently pk(i) attains the minimum in (79). 
Thus relation (83) implies that p”(i) attains the minimum in (79). Hence (84) 
holds and p k  is optimal. 

We state the last conclusion from the preceding discussion as a propo- 
sition. 

A p k  2 A , k + l .  
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Proposition 8 Assume that for every admissible stationary policy 
{p, p, . . .} the transition probability matrix P, gives rise to an irreducible 
Markov chain. Then the policy iteration algorithm will yield an optimal 
policy in a finite number of iterations. 

We now demonstrate the policy iteration algorithm by means of the 
example of the previous section. 

EXAMPLE 1 (CONTINUED) Let 

pO(1) = ul ,  pO(2) = u2. 

We take s = 1 as the reference state and we obtain Ape, hFO(l), hWo(2) from 
the system of equations 

+ h,o(l) = 8(1, u ' )  + P11(u1)h,o(1) + P12(u1)h,o(2), 

4 0  + h,o(2) = 8(5 u2) + Pz1(u2)h,o(l) + P2z(u2)h,o(2), 
h,o(l) = 0. 

Substituting the data of the problem 

1,o = 2 + *h,0(2), L,o + h,o(2) = 3 + $h,o(2), 

from which 
D 1,o = 2.5, h,o(l) = 0, h,o(2) = 2. q 

We now find pl(l), p'(2) by the minimization indicated in (79). We 
determine 

The minimization yields 

D Dl(1) = u2, p'(2) = ul. 
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By substitution of the data of the problem, we obtain 

D A,, = 0.75, h,i(l) = 0, h,1(2) = -$. Q 

We find p2( l), p2(2) by determining the minimum in 

p2(1) = p'(1) = u2, pZ(2) = pl(2) = u1, 

and hence the policy above is optimal and the optimal average cost per 
stage is A,,, = 0.75. 

8.4 Infinite State Space-Linear Systems with Quadratic 
Cost Functionals 

The standing assumption in the preceding sections has been that the 
state space is finite and thus the underlying system is a controlled finite 
state Markov chain. Once one removes the finiteness assumption on the 
state space many of the results presented in the past three sections no longer 
hold. For example, while one could restrict attention to stationary policies 
for finite state systems this is not true anymore where the state space is 
infinite. For instance, the following example (due to Ross [R4]) shows that 
for a countable state space the optimal policy may be nonstationary. (This 
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fact is true even if one expands the class of admissible policies to admit 
randomized policies [R4].) 

EXAMPLE Let the state space be S = { 1,2,3, . . .} and let there be two 
control actions C = {u', u'}. The transition probabilities under u' and u2 
are specified by 

pici+ l)(ul) = pii(u2) = 1. 

In other words, the system is deterministic and application of u1 moves the 
state from i to (i + l), while application of u2 leaves the state unchanged. 
The costs per stage are 

g(i, u ' )  = 1, g(i, u2) = I/i, i = 1,2, 3 , .  . . . 
In other words, at state i we may either move to state (i + 1) at the cost 
of one unit or stay at i at a cost l/i. 

Now for any stationary policy n = {p, p, . . .} other than the policy for 
which p(i) = u1 for all i, let n(n) be the smallest integer for which 

p[n(n)] = u2. 

Then concerning the average cost per stage corresponding to this policy we 
clearly have 

J,(i) = l/n(n) > 0 

For the policy where p(i) = u1 for all i we have J,(i) = 1 for all i. Since the 
optimal cost per stage cannot be less than zero, it is clear that 

Vi < n(n). 

inf J,(i) = 0, i = 1, 2, . . . . 
n 

However, the optimal cost is not attained by any stationary policy, so that 
no stationary policy is optimal. On the other hand consider the non- 
stationary policy n* that on entering state i chooses u2 for i consecutive 
times and then chooses u'. If the starting state is i, the sequence of costs 
incurred is 

1 1 1 1 1 1 
- 1 , - -  + 2 '  . . .  . 
i +  1 '  i +  l ' i +  1 ' " ' '  9 . ,  1, ~ - 

+ 2 '  
- 1 1  

i ' i  "" 1 
_ _  

i times ( i  + I )  times 

The average cost corresponding to this policy is 

2m 
Jz*(i) = lim = 0 ,  i =  1 ,2 ,3  ,.... 

m-+m ZF= 1 (i + k) 
Hence the nonstationary policy n* is optimal while, as shown above, no 
stationary policy is optimal. 
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Generally speaking the analysis of average cost optimization problems 
involving an infinite state space presents considerable difficulties and as yet 
there exists little in the way of a complete and powerful theory. However, 
certain particular special cases can be satisfactorily analyzed and one such 
case is the average cost version of the linear-quadratic problem examined 
in Chapters 3,4, and 6. 

Consider an undiscounted version (a = 1)  for the linear-quadratic 
problem of Section 6.5 involving the system 

X k + l = A X k + B U k + W k ,  k = 0 , 1 ,  ..., (86) 

and the cost functional 

J,(Xo) = lim (1/N) E 1 [ X ; Q x k  + p k ( X k ) l R p k ( X k ) l  (S7) 
N +  w k = O .  wk 1, ... {:I: I 

We make the same assumptions as in Section 6.5, i.e., that wk are independent 
and have zero mean and finite second moments. We also assume that the 
pair (A, B) is controllable and that the pair (A, C), where Q = C‘C, is ob- 
servable. Under these assumptions it was shown in Section 3.1 that the 
Riccati equation 

KO = 0, (88) 

(89) Kk+l = A‘[Kk - KkB(B’KkB + R)-’B’K,]A + Q, 

yields in the limit a matrix K, 
K = lim Kk,  

k - c o  

which is the unique solution of the algebraic Riccati equation 

K = A’[K - KB(B’KB + R ) -  ‘B’KIA + Q (91) 

within the class of positive semidefinite symmetric matrices. 
Now the optimal value of the N-stage costs 

has been derived earlier and was seen to be equal to 

Thus using (90) and the fact that 
N -  1 

lim ( 1 / ~ )  1 E { w ’ K , ~ }  = E {w’Kw}, 
N - t m  k = O  
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the optimal finite horizon costs tend in the limit as N 00 to 

1 = E { W ’ K W } .  (93) 
In addition, the N-stage optimal policy in its initial stages tends to the station- 
ary policy 

(94) P*(x)  = -(B’KB + R)-’B’KAx.  

Furthermore, a simple calculation shows that, by the definition of A, K, and 
p*(x), we have 
A + x’Kx = min E { x ’ Q x  + u‘Ru + ( A x  + Bu + w)’K(Ax + Bu + w ) } ,  

while the minimum in the right-hand side of the above equation is attained 
at u* = p*(x) as given by (94). 

Now by repeating the proof of Proposition 1 of this chapter, we obtain 

U 

1 < (1/N) E {&KxNIxo, n} - (1/N)xbKxO 

with equality if n = {p*, p*, . . .}. Hence if n is such that E { x ~ K x N I x O ,  n} 
is uniformly bounded over N, we have by taking the limit above. 

1 < J,(x) Vx E R”, 

with equality if n = {p*, p*, . . .}. Here the stationary policy {p*, p*, . . .} 
as given by (94) is optimal over all policies n with E { X ~ K X ~  ( x o ,  n} bounded 
uniformly over N. 

8.5 Notes 

The average cost problem was first formulated and analyzed by Howard 
[H15]. Several authors have contributed subsequently to the problem 
[B2, B25, L1, R4, S7, V2, V4], most notably Blackwell [B19]. 

In our approach to the results of Section 8.1. we follow Ross [R4]. This 
approach is generalizable to situations where the state space is infinite. 
For alternative expositions see references [D4], [KlO], and [PI]. The result 
of the appendix was shown by Bather [B2]. The successive approximation 
method of Section 8.2 was devised by White p 2 ] .  The error bounds of 
Proposition 6 are due to Odoni [Ol]. Related results for more general 
situations have been given recently in references [H8] and [H12]. The policy 
iteration algorithm can be generalized for problems where the optimal 
average cost per stage is not the same for every initial state (see [B19], [V2], 
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and [D4]). For a computational approach based on linear programming see 
[M3] and [D4]. For an analysis of average cost Markovian decision problems 
involving exponential risk-sensitive cost functionals, see the paper by 
Howard and Matheson [H17]. For analysis of infinite horizon versions of 
inventory control problems such as the one considered in Section 3.2, see 
references [13], [H13], [H14], and [VS]. 

Problems 

1. Assume that for some state s we have that J,(i) - J,(s) is uniformly 
bounded for a E (0, 1). Show that for a sequence {ak} with ak --t 1, ak E (0, l), 
and a sequence of a,-optimal policies {pak} ,  we have p,,(i) = p*(i) for all i 
and all k sufficiently large, where p* is average cost optimal. 
2. Show that if for some sequence {ak} with ak E (0, l), ak + 1, and a 
sequence of a,-optimal policies {pQk}  we have pak(i) = p*(i) for all i and all k 
sufficiently large, then p* is average cost .optimal. 
3. Optimal Control of Deterministic Finite State Systems Consider a 
stationary deterministic control system 

xk+i =f(Xk,Uk), k = 0 , 1 , .  .., 

where the state xk belongs to a finite state space S = { 1,2, . . . , n }  and the 
control u k  is constrained in a subset u(xk) of a finite control space C. We say 
that the system is completely controllable if given any two states i ,  j E S there 
exists a sequence of admissible controls that drives the state of the system 
from the state i to the statej within at most (n  - 1) steps. For a completely 
controllable system and a given initial state xo = i consider the problem of 
finding an admissible control sequence {uo,  u l , .  . .} that minimizes 

N- 1 

Jz( i )  = lim (l/N) 1 dxk, uk), 
N- m k = O  

where g: S x C -+ R is given. Show that an optimal control sequence exists 
and that the optimal cost is the same for every initial state. Show also that 
there exist optimal control sequences that after a certain time index are 
periodic. 
4. Consider a stationary inventory control problem of the type considered 
in Section 3.2 but with the difference that the stock xk can only take integer 
values from 0 to some integer M. The amount of the order u k  can take integer 
values with 0 < u k  < M - xk and the random demand w k  can only take 
nonnegative integer values with P(wk = 0) > 0 and P(wk = 1) > 0. Un- 
satisfied demand is lost so that stock evolves aqcording to the equation 
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xk+ = max(0, xk + uk - wk). The problem is to find an inventory policy 
that minimizes the average cost per stage. Show that there exists an optimal 
stationary policy and that the optimal cost is independent of the initial stock 
X O .  

Appendix Existence Analysis under the Weak 
Accessibility Condition 

In this appendix we provide a proof of Proposition 4 of Section 8.1. 
In fact, we shall prove a more general result that contains Proposition 4 
as a special case. The analysis requires a high degree of mathematical 
sophistication and is directed toward the advanced reader. 

Consider a controlled process in discrete time with a finite state space 
S = (1, 2, . . . , n} .  We assume that for any state i E S ,  the next transition is 
controlled by choosing a probability vector p i  = ( p i l ,  p i 2 ,  . . . , p in)  from a 
closed convex set Di E R". Any selection p i  E D i ,  i = 1,2, . . . , n, defines the 
rows of a stochastic matrix P E D = D1 x D2 x . . x D,. The cost of each 
transition is prescribed by functions ci(pi), i = 1, . . . , n, each assumed 
convex and continuous on the corresponding set D i .  Thus when the current 
state is i and probability vector pi E Di is selected, the cost incurred is ci(pi). 
If P E D is used at each time, the corresponding average expected cost is 
P*c, where 

P* = lim ( 1 / ~ )  (1 + P + P2 + . . + pN- '}, 
N + m  

and c is the vector with coordinates c l (p l ) ,  . . . , cn(pn), where p l , .  . . , p,, are 
the rows of P. Since the components of c depend continuously on the rows 
of P, the cost c(P) is bounded over D and we have 1 J*(i)I < ix) with 

J* = infP*c, 

where minimization above is considered separately for each coordinate of 
P*c. 

P E D  

We shall rely on the following accessibility assumption : 

For any pair of states i ,  j E S, there exists a matrix P E D and a positive 
integer r such that p i j  > 0, where p i j  is the element in the ith row and j th  column 
of the matrix P' (P to the rth power). 

Based on this assumption we shall prove that there exists a vector h E R" 
and a constant 1 such that 

1e + h = min{c + Ph}, 
PED 
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where the minimization above is assumed to be componentwise. By this we 
mean that the scalar I and the column vector h = (hl,  h 2 , .  . . , h,,)' E R" 
satisfy for each i = 1, 2, . . . , n, 

I + hi = min{ci(pi) + p i h } ,  

where p i h  denotes the inner product of the row vector p i  (ith row of the 
stochastic matrix P) and the column vector h, i.e., pih is the ith coordinate 
of the vector Ph. 

The problem described above is similar in nature to the one considered 
in the first three sections of this chapter. A control u is identified with its 
corresponding transition probability vector pi(u)  = Cpil(u), pi2(u), . . . , pi,(u)]. 
There is an important difference, however, in that while here the set of ad- 
missible probability vectors Di is assumed to be a closed convex set, in the 
problem considered earlier in the chapter the set of admissible controls U(i)  
and hence also the set of corresponding probability vectors were assumed to 
be finite. In order to utilize the result of this appendix in proving Proposition 4 
we shall need to construct a version of the problem of Sections 8.1-8.3. 
where randomization on the set of admissible controls V(i)  is allowed. 

Within the framework of the problem of Sections 8.1-8.3 let i be any 
state (i = 1,2,. . . , n) and let ul ,  u2,  . . ., umi denote the elements of the 
admissible control set V(i).  Consider the case where at each state i it is possible 
to select, instead of a control u E V(i),  a probability distribution q = (q l ,  q2, 
. . . ,qm' )  over the set U(i). Such a probability distribution will be referred to as 
a randomized control. The set of all randomized controls is denoted Qi.  If 
the current state is i and the randomized control q is selected, the prob- 
ability that the next state will be j is 

P, E D ,  

m, 

1 qrpiAur), j = 1,2, . . I , n, 

and the corresponding transition probability vector is 

r =  1 

m, m, m, 

= 1 qrpil(ur), 1 q r p i ~ u r ) ,  . . . 3  1 qrpin(ur)]* 
[r=l r=l  r =  1 

The set of all possible transition probability vectors as q ranges over Qi is 
denoted Di:  

Di = {Pi(q)Iq E Q i ) .  

The set Di is clearly the convex hull of the finite set of probability vectors 
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and hence it is a closed convex set. With each state i and each probability 
vector p i  E D i ,  we associate a transition cost 

I qrpi(ur) = p i ,  q E Qi . 

The cost ci(pi) is the least possible expected transition cost associated with 
randomized controls q E Qi that result in a transition probability vector 
equal to p i .  From known facts of the theory of convex functions [R2] it 
follows that ci( ) as defined above is a polyhedral convex continuous 
function over the polyhedron D i .  In fact, ci is the convex hull [R2, p. 361 of 
the (extended real-valued function) Zi  defined by 

g(i, ur) if p i  = pi(ur), r = 1,. . . , mi, 
otherwise. E i ( p i )  = 

The extreme points of the epigraph [R2] of ci correspond to a subset of the 
finite set of points {pi(ul), . . . , pi(umi)} and the same is true for the extreme 
points of the epigraph of any function of the form ci(pi) + pih ,  where h is any 
vector in R" and p i h  denotes the inner product of p i  and h. 

Consider now the problem of this appendix with Di and ci(pi) defined 
as above and suppose that we are able to prove that (96) holds, i.e., 

I + hi = min{c,&i) + p i h } ,  i = 1,. . . , n. 
P i P D i  

Then in view of the construction of ci and Di the minimum on the right-hand 
side above will be attained at one (or possibly more) of the generating points 
pi(u'), pi(u2), . . . , pi(umi) of the set D i ,  which correspond to nonrandomized 
controls. As a result, in view of the definition of ci and Di we will have 

J 

n I ~ ( i ,  u )  + C pi,(u)hj , 
j =  1 

Thus the condition of Proposition 1 of Section 8.1 
result of Proposition 4 will follow. Thus in order 

i = 1, ..., n. 

will be satisfied and the 
to prove Proposition 4 

it is sufficient to prove Eq. (96) within the generalized framework of this 
appendix. 

Consider now the nonlinear operator M :  Rn + R" defined by 

M x  = min{c + P x } ,  x E R" 
P E D  

(97) 
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Define for all x = (xl, . . . , x,) E R", 

(1x11 = maxxi - minxj. (98) 
i e S  j s S  

Since IIx - yl( = 0 if and only if x and y differ by a multiple of the unit 
vector e = [l, 1, . . . , 11, (98) defines a norm on the collection of all subsets 
of R" elements of which differ by a multiple of the unit vector (i.e., 11 - 11 is a 
seminorm on R" and a norm on the corresponding quotient space of equiva- 
lence classes). Now suppose that some vector h E R" is a jxed  point of M in 
the sense that 

IIMh - hll = 0. (99) 

Then it follows that 

1e + h = Mh = min{c + Ph}, 

for some scalar 1. Hence proving (96) is equivalent to proving that there 
exists at least one fixed point of M in the sense of (99). 

We begin by deriving some useful properties of the operator M defined 
by (97). For any x E R" we define H(x) = max{xi(i E S}. Similarly we 
define L(x) = min{xi( i E S}. Then llxll = H(x) - L(x). We have the following 
lemma. 

P e D  

Lemma A.1 For any x, y E R" and a, f i  E R :  

(1) H(Mx - My) < H(x - y). 
(2) llMx - MYll < Ib - Yll. 
(3) IIM(a4 - M(Py)ll < lal  IIX - Yll + la - PI IIYII. 
Proof (1) Let P, Q E D be such that 

Mx = c(P) + Px and 

Then Mx < c(Q) + Qx and Mx - My < Q(x - y). Since Q is a stochastic 
matrix and x - y < H(x - y)e, we obtain Mx - My < H(x  - y)e from 
which H(Mx - My) < H(x - y). 

My = c(Q) + Qy. 

(2) We have 

I(Mx - My[) = H(Mx - My) + H ( M y  - M x )  

< H(x - y )  + H(y  - x) = Ilx - yll. 

(3) From part (2), IIM(ax) - M(Py)II < llax - PyII, and we have 

llax - PYll = I t +  - Y) + (a - BMI < lal IIX - yll + la - PI Ilyll, 

from which the result follows. Q.E.D. 



362 8 MINIMIZATION OF AVERAGE EXPECTED VALUE 

Lemma A 3  Let (0,) be a nondecreasing sequence with 0 < 8, < 1. 
Consider the sequence { z ( k ) }  defined by 

z(k) = min{c + BkPz(k - l)}, 
P E D  

with z(0) = 0. Then { Ilz(k)l(} is a bounded sequence. 

Proof We recall that ci(Pi) is bounded for p i  E Di, i = 1, . . . , n. Since 
llz(k)ll cannot be affected by adding the same constant to every transition 
cost ci(pi), we may assume that for some p E R we have 0 < ci(pi) < B for all 
pi E D i ,  i = 1, . . . , n. Then it is easy to verify that {z (k) }  is a nondecreasing 
sequence, i.e., 

z(k + 1) 2 z(k), k = 0, 1,. . . , . (101) 

Now under the accessibility assumption there exists a stochastic matrix 
Q E D with elements qij, i, j = 1, . . . , n that defines an irreducible Markov 
chain, i.e., a chain for which every state communicates with every other state. 
This is a consequence of the accessibility assumption and the convexity of D, 
since we can arrange that 

qij > 0 if pij > 0 for some P E D, (102) 

by allowing P to participate in a convex combination forming Q .  Thus if 
P(i,j) E D is a stochastic matrix under whichj is accessible from i, the matrix 
Q = ( l/n2) I;= P(i, j) defines an irreducible Markov chain. We now 
associate with Q a set of mean transition times. For each pair of distinct 
states i , j  E S we denote by T~~ the expected number of steps required to reach 
j from i when Q is used as a stationary policy. Then, by considering the first 
step, we have 

qj = 1 + x q i l q j ,  i , j  = 1,. .., n, i z j. 
l # j  

Finally, prior to establishing the result of the lemma, we prove by 
induction that 

z i k )  < Bzij + zAk) Vi # j, k 2 0. (104) 

Indeed (104) holds for k = 0. Assume (104) holds for k = k. Since c(Q) < /3e 
and t& + < 1, we have 

z(k + 1) < c(Q) + &+ ,Qz(k) < fie + Qz(k). 

Thus 

zi(k + 1) < B + 1 qiIzl(k) + qijzjik). 
I # j  
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Using (104) and then (103) we obtain 

Using (101) it follows that 

zi(k + 1) < p ~ i j  + z,{k + I), 
i.e., (104) is proved for k = k + 1 and the induction proof of (104) is complete. 

Now we easily obtain that the sequence {llz(k)ll} is bounded since (104) 
implies 

IIz(k)ll < max{pzijIi,j E S, i # j } .  Q.E.D. 

We are now in a position to prove the existence of a fixed point of M in the 
sense of (99) and hence that (96) holds for some 1 E R and h E R". Consider 
the sequence 

y(k) = min{c + (1 - (l/k))Py(k - l)}, 

y(0) = 0. 

k = 1 , 2 , .  .., 
P E D  

(105) 

Let also 

y(k) = y(k) - LLy(k)]e, k = 0, 1, . . . , (106) 
where LLy(k)] = min{yi(k)I i E S}. Then LW(k)] = 0, 11 jj(k)(I = maxiEs ji(k), 
and 

0 < y"iW < Ilflk)ll = IlY(k)ll. (107) 
The sequence { Ily(k)ll} is bounded by Lemma A.2, and by (107) the sequences 
{qi(k)}, i = 1, . . . , n, are also bounded. 

Proposition The sequence {$(k)} has a limit point h E R" such that 
llMh - h(l = 0. Hence there exists a scalar 1 such that 

b + h = Mh = min{c + Ph}. 
P E D  

Proof As explained above, each sequence {j$(k)}, i = 1,. . ., n, is 
bounded and hence there exists a convergent subsequence of {y (k) } .  Let 

h = lim j7(kr), 
r+w 

where { j j ( (k , )}  is the convergent subsequence. We also have, in view of (106), 
that 

lim Ilh - flkr)ll = 0. 
r-tm 
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Now by using part (3) of Lemma A.1 we have 

Let B be a bound for IIy(k)ll, i.e., IIy(k)ll < B for all k. Then (109) implies that 

Combining (1 11) and (1 12) we obtain 

B 
IlMh - hll < I I f lkr+ l )  - flkr)ll + 2llflk) - hll + -9 

and taking the limit as r -, 00 and using (110) we obtain J JMh - hJJ = 0, 
Q.E.D. 

and hence IIy(k + 1) - y(k)JJ + 0 as k + 00. Hence 

(1 10) 

(111) 

We have for the vector h of (108) that 

IIMh - hI/ < IIMh - jj(k + 1111 + IIfikr + 1) - fikr)II + IIjj(kr) - hll. 

By using part (3) of Lemma A. l  and (106) we obtain 

Combining (1 1 1) and (1 12) we obtain 

and taking the limit as r -, 00 and using (110) we obtain JJMh - hJJ = 0. 
Q.E.D. 
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Appendix A 

Mathematical Review 

The purpose of this and the following appendixes is to provide a list of 
mathematical and probabilistic definitions, notations, relations, and results 
that are used frequently in the text. For detailed expositions the reader may 
consult the references listed in each appendix. 

A.1 Sets 

If x is a member of the set S, we write x E S. We write x 4 S if x is not a 
member of S. A set S may be specified by listing its elements within braces. 
For example, by writing S = {xl, x2, . . . , x,} we mean that the set S consists 
of the elements xl , .  . . , x,. A set S may also be specified in the form 

S = {XlP(X)} 
as the set of elements satisfying property P. For example, 

S = { x l x : r e a l , O < x <  1) 

denotes the set of all real numbers x satisfying 0 < x < 1. 
The union of two sets S and T is denoted by S v T and the intersection of 

S and T is denoted by S n T. The union and intersection of a sequence of 

367 
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sets S , ,  S2, . . . , S k ,  . . . is denoted by Sk and nkrn,' sk, respectively. If 
S is a subset of T, i.e., if every element of S is also an element of T, we write 
S c T or T 3  S. 

Finite and Countable Sets 

A set S is said to be jinite if it consists of a finite number of elements. It is 
said to be countable if one can associate with each element of S a nonnegative 
integer in a way that to each pair of distinct elements of S there correspond 
two distinct integers. Thus according to our definition a finite set is also 
countable but not conversely. A countable set S that is not finite may be 
represented by listing its elements xo, xl ,  x 2 , .  . . , i.e., S = {xo, xl, x 2 , .  . .}. 
If A = { a o ,  a l ,  . . .} is a countable set and S,,, S,,, . . . are each countable 
sets, then the union uF=o S,, (otherwise denoted U P E A  S,) is also a countable 
set. 

Sets of Real Numbers 

If a and b are real numbers or + 00, - co, we denote by [a ,  b ]  the set of 
numbers x satisfying a < x < b (including the possibility x = +co, or 
x = -a). A rounded, instead of square, bracket denotes strict inequality 
in the definition. Thus (a,  b ] ,  [a,  b), and (a, b )  denote the set of all x satisfying 
a < x < b, a < x < b, and a < x < b, respectively. 

If S is a set of real numbers bounded above, then there is a smallest real 
number y such that x < y for all x E S. This number is called the least upper 
bound or supremum of S and is denoted sup{x I x E S}. Similarly the greatest 
real number z such that z < x for all x E S is called the greatest lower bound or 
injimum of S and is denoted inf{x Ix E S}. If S is unbounded above, we write 
sup{xIx~S}  = +co and if it is unbounded below, inf{xIxES} = -a. 
If S is the empty set, then by convention we write inf{xlx ES} = +co and 
sup{xIxES} = -a. 

A.2 Euclidean Space 

The set of all n-tuples x = (xl, . . . , x,) where xl, . . . , x, are real numbers 
constitutes the n-dimensional Euclidean space denoted R". The elements of R" 
are referred to as n-dimensional vectors or simply vectors when confusion 
cannot arise. The one-dimensional Euclidean space R' consists of all the real 
numbers and is denoted R. Vectors in R" can be added by adding their cor- 
responding components. They can be multiplied by a scalar by multiplication 
of each component by the scalar. The inner product (or scalar product) of two 
vectors x = (xl , .  . . , x,), y = kl, .  . ., y,) is denoted x'y and is equal to 
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x i y i .  The norm of a vector x = ( x l ,  . . . , x,) E R" is denoted IJxIJ and is 

A set of vectors a l ,  a 2 ,  . . . , ak is said to be linearly dependent if there exist 
Aiai = 0. If no such set of 

equal to (x'x)'/' = (I;= xZ)l/'. 

scalars A l ,  A 2 ,  . . . , A,', not all zero, such that 
scalars exists, the vectors are said to be linearly independent. 

A.3 Matrices 

An m x n matrix is a rectangular array of numbers, called elements, ar- 
ranged in m rows and n columns. The element in the ith row andjth column of 
a matrix A is denoted by a subscript ij, such as a i j ,  in which case we write 
A = [a i j ] .  A square matrix (one with m = n )  with elements aij  = 0 for 
i # j and aii  = 1, for i = 1, . . . , n, is said to be an identity matrix. The sum of 
two m x n matrices A and B is written as A + B and is the matrix whose 
elements are the sum of the corresponding elements in A and B. The product 
o f a  matrix A and a scalar A, written as AA or AA, is obtained by multiplying 
each element of A by A. The product AB of an m x n matrix A and an n x p 
matrix B is the m x p matrix C with elements ci j  = c;=l aikbkj .  If b is an 
n x 1 matrix, i.e., an n-dimensional column vector, and A is an m x n matrix, 
then A b  is an m-dimensional (column) vector. 

The transpose of an m x n matrix A is the n x m matrix A' with elements 
aij = a j i .  A square matrix A is symmetric if A' = A .  A square n x n matrix A is 
nonsingular if there is an n x n matrix called the inverse of A ,  denoted by A -  
such that A - ' A  = I = A A - ' ,  where I is the n x n identity matrix. A square 
n x n matrix A is nonsingular if and only if the n vectors that constitute its 
rows are linearly independent or equivalently if the n vectors that constitute 
its columns are linearly independent. 

Partitioned Matrices 

It is often convenient to partition a matrix into submatrices by drawing 
partitioning lines through the matrix. For example, the matrix 

a l l  a 1 2  a 1 3  a14 
I 

- 1 -  - - - - 

a31 a 3 2  I a 3 3  a34 

may be partitioned into 

A = [ : : :  :;:I 
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where 
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A11 = Call a1219 A12 = [a13 a1419 

For a partitioned matrix A = [ B  I C] we use interchangeably the notation 
[B, C ]  or [ B C ] .  The transpose of the partitioned matrix A above is 

Partitioned matrices may be multiplied just as nonpartitioned matrices 
provided the dimensions involved in the partitions are compatible. Thus if 

then 

AllBll + A12B21 Al l&,  + A12B22 
A21Bll + A22B21 AZlBl2 + A22B22 

AB = [ 
provided the dimensions of the submatrices are such that the products 
AijBjk, i , j ,  k = 1 , 2  above can be formed. 

Rank of a Matrix 

The rank of a matrix A is equal to the maximum number of linearly 
independent row vectors of A. It is also equal to the maximum number of 
linearly independent column vectors. An m x n matrix is said to be of full 
rank if the rank of A is equal to the minimum of m and n. A square matrix is of 
full rank if and only if it is invertible (i.e., nonsingular). 

Positive Definite and Semidejnite Matrices 

A square symmetric n x n matrix A is said to be positive semidefinite 
if x'Ax 2 0 for all x E R". It is said to be positive definite if x'Ax > 0 for all 
nonzero x E R". The matrix A is said to be negative semidefinite (definite) if 
( - A )  is positive semidefinite (definite). 

A positive (negative) definite matrix is invertible and its inverse is also 
positive (negative) definite. Conversely, an invertible positive (negative) 
semidefinite matrix is positive (negative) definite. If A and B are n x n 
positive semidefinite (definite) matrices, then the matrix 1A + p B  is also 
positive semidefinite (definite) for all 1 > 0 and p > 0. If A is an n x n 
positive semidefinite matrix and C is an m x n matrix, then the matrix CAC' 
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is positive semidefinite. If A is positive definite, C has full rank, and m < n, 
then CAC' is positive definite. 

An n x n positive definite matrix A can be written as CC' where C is a 
square invertible matrix. If A is positive semidefinite and its rank is m, then it 
can be written CC'. where C is an n x m matrix of full rank. 

Matrix Inversion Formulas 

The following formulas expressing the inverses of various matrices are 
often very useful. Let A and B be square invertible matrices and C be a matrix 
of appropriate dimension. Then, if all the inverses below exist, 

( A  + CBC')-' = A-'  - A-'C(B-'  + C'A-'C)- 'C'A-' .  

The equation can be verified by multiplying the right-hand side by A + CBC' 
and showing that the product is the identity matrix. 

Consider a partitioned matrix M of the form 

M = [ A  C D '  "1 
Then we have 

-QBD-' 
t---------- 

-D-~CQ I D-' + D - ~ C Q B D - '  

where 

Q = ( A  - BD-'C)- ' ,  

provided the matrices D and Q are invertible. The proof is obtained by 
multiplying M with the expression for M - '  given above and verifying that 
the product yields the identity matrix. 

A.4 Topological Concepts in R" 

Convergence of Sequences 

A sequence of vectors x o ,  xl,. . . , x k , .  . . in R", denoted {x , } ,  is said to 
converge to a limit vector x if JIx, - x I I  + 0 as k + co (that is, if given E > 0, 
there is an N such that for all k 2 N we have llx, - X I [  c E). If {x,} converges 
to x, we write x ,  + x or lim,+m x, = x. As can be easily verified we have 
Ax, + By, + A x  + By if x, + x, y ,  + y ,  and A,  B are matrices of appropriate 
dimension. 
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A point x is said to be a limit point of a sequence {xk} if there is a subse- 
quence of {xk}  that converges to x, i.e., if there is an infinite subset K of the 
nonnegative integers such that { X k } k s K  converges to x. 

A sequence of real numbers {rk}  that is monotonically nondecreasing 
(nonincreasing), i.e., satisfies rk < rk+ (rk 2 rk+ 1) for all k, must either con- 
verge to a real number or be unbounded above (belowk in which case we 
write 1imk,, rk = + 00 ( -  00). Given any bounded sequence of real numbers 
{ T k }  we may consider the sequence {sk}, where s k  = sup{ri I i 2 k } .  Since this 
sequence is monotonically nonincreasing and bounded it must have a limit 
called the limit superior of { r k }  and denoted lim rk .  We define similarly 
the limit inferior of {rk}  and denote it lim inf,,, rk.  If {rk}  is unbounded above, 
we write lim SUPk+m rk = + 00 and if it is unbounded below, we write 
lim inf,,, rt = -a. We also use this notation if rt E [ - XI, XI] for all k. 

Open, Closed, and Compact Sets 

A subset S of R" is said to be open if for every point x E S one can find an 
E > 0 such that {z I IJz - X I [  < E }  c S. A set S is closed if and only if its comple- 
ment in R" is open. Equivalently S is closed if and only if every convergent 
sequence {xk}  with elements in S converges to a point that also belongs to S. 
A set S is said to be compact if and only if it is both closed and bounded (i.e., it 
is closed and for some M > 0 we have llxll < M for all x E S). A set S is 
compact if and only if every sequence {xk}  with elements in S has at 
least one limit point that belongs to S. Another important fact is that if 
S o ,  S1,. . . , s k ,  . . . is a sequence of nonempty compact sets in R" such that 
Sk 3 S k +  for all k, then the intersection S k  is a nonempty and compact 
set. 

Continuous Functions 

A function f mapping a set S1 into a set S2 is denoted by f: S1 + S2 .  A 
function f : R" + R" is said to be continuous iff ( x k )  + f (x) whenever xk + x. 
Equivalently .f' is continuous if given x E R" and E > 0, there is a 6 > 0 such 
that whenever jly - xII -= 6 we have II,f(y) - f(x)ll < E.  The function 

is continuous for any two scalars al ,  a2 and any two continuous functions 
fl, fz:  R" --* R". If S1, S2,  S3 are any sets and fl:Sl + S 2 ,  f z : S 2  + S ,  are 
functions, the function fz . fl : S1 + S3 defined by ( fz fl)(x) = fz[ fl(x)] is 
called the composition of fl and fz . If fl : R" --* R" and f2 : R" + RP are con- 
tinuous, then fz . fl is also continuous. 
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A.5 Convex Sets and Functions 

A subset C of R" is said to be convex if for every xl ,  x2 E C and every 
scalar u with 0 Q u Q 1 we have ax, + (1 - u)x2 E C. In words, C is convex if 
the line segment connecting any two points in C belongs to C. A function 
f :  C + R defined over a convex subset C of R" is said to be conuex if for every 
xl, x2 E C and every scalar u with 0 Q u Q 1 we have 

fCux1 + (1 - 4x21 G C!f(Xl) + (1 - aIf(x2). 

The function f is said to be concaue if (-1) is convex. Iff: C -+ R is convex, 
then the sets rA = {x I x E C,  f(x) Q A} are also convex for every scalar A. An 
important property is that a real-valued convex function on R" is always a 
continuous function. 

Iff,,f2,. . . , f, are convex functions over a convex subset C of R" and 
ul ,  u2, . . . , a, are nonnegative scalars, then the function alfi + . . . + urn fm 
is also convex over C. Iff: R" + R is convex, A is an m x n matrix, and b is a 
vector in R", the function g: R" + R defined by g(x) = f(Ax + b) is also 
convex. I f f :  R" + R is convex, then the function g(x) = E ,  {f(x + w ) } ,  
where w is a random vector in R", is a convex function provided the expected 
value is well defined and finite for every x E R". 

For functions f :  R" -, R that are differentiable there are alternative 
characterizations of convexity. Thus if Vf(x) denotes the gradient offat x, i.e., 

Vf(x) = [af(x)/dx', . .., af(x)/ax"]', 
the functionfis convex if and only if 

f(y) 2 f(x) + Vf(x)'(y - x), for all x, y E R". 

If V2f(x) denotes the Hessian matrix offat x, i.e., the matrix 

V2f(X) = [d2f(x)/dx' ax'] 

the elements of which are the second derivatives offat x, thenfis convex if 
and only if Vzf(x) is a positive semidefinite matrix for every x E R". For 
detailed expositions see references [H6], [HlO], and [R6]. 



Appendix B 

On Optimization Theory 

Given a real-valued function f :  S + R defined on a set S and a subset 
X c S, by the optimization problem 

minimize f(x) 
subject to x E X, 

we mean the problem of finding an element x* E X (called a minimizing ele- 
ment or an optimal solution) such that 

f ( x * )  ,< f ( x )  vx EX. 

Such an element need not exist. For example, the scalar functionsf(x) = x 
andf(x) = ex have no minimizing elements over the set of real numbers. The 
first function decreases without bound to - 00 as x tends toward - co while 
the second decreases toward 0 as x tends toward -co but always takes 
positive values. Given the range of values thatf(x) takes as x ranges over X, 
i.e., the set of real numbers 

{f(x)lx E XI 
there are two possibilities: 

(a) The set { f ( x )  Ix E X} is unbounded below (i.e., contains arbitrarily 
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small real numbers) in which case we write 

inf{f(x)IxEX} = -a or inff(x) = -a. 
X E X  

(b) The set {.f(x)lx E X} is bounded below, i.e., there exists a scalar M 
such that M < f(x) for all x E X. The greatest lower bound of { f ( x ) I x  E X} 
we denote by 

inf {f(x) I x E X} or inf f(x). 
x e X  

In either case we call infxEx f(x) the optimal value of problem (B.1). If a 
minimizing element x* exists, then 

f(x*) = inff(x), 
X E X  

in which case we also write 

f(x*) = minf(x) = inff(x), 
x e x  X E X  

and use the notations minxExf(x) and infxEx f(x) for the optimal value inter- 
changeably. 

A maximization problem of the form 

maximize f(x) 
subject to x E X, 

may be converted into the minimization problem 

minimize -f(x) 
subject to x E X, 

in the sense that both problems above have the same optimal solutions and 
the optimal value of one is equal to minus the optimal value of the other. 
This optimal value for the maximization problem is denoted supxEx f(x). 
When a maximizing element is known to exist we also write interchangeably 
maxx E x f(4. 

Existence of Optimal Solutions 

We are often interested in verifying the existence of at least one minimizing 
element in problem (B.1). Such an element clearly exists when X is a finite set. 
When X is not finite the existence of a minimizing point in problem (B.l) is 
guaranteed iff: R" -+ R is a continuous function and X is a compact subset 
of R". This is the Weierstrass theorem. By a related result existence of a 
minimizing point is guaranteed iff: R" -+ R is a continuous function, X = R" 
andf(x) -+ +a if llxll -+ +a. 



376 B ON OPTIMIZATION THEORY 

Necessary and SufJicient Conditions for Optimality 

Such conditions are available when f is a differentiable function on R" 
and X is a convex subset of R" (possibly X = R"). Thus if x* is a minimizing 
point in problem (B.l), f: R" + R is a continuously differentiable function on 
R" and X is convex we have 

Vf (x*)'(x - x*) 3 0 vx E x, (B.2) 
where Vf (x*) denotes the gradient off at x*. When X = R", i.e., the minimiza- 
tion is unconstrained, the necessary condition (B.2) is equivalent to the 
familiar condition 

Vf  (x*)  = 0. 03.3) 

When f is in addition twice continuously differentiable and X = R", an 
additional necessary condition is that the Hessian matrix V2f  (x*)  is positive 
semidejnite at x*. An important fact is that i f f :  R" + R is a conuex function 
and X is convex, then (B.2) is both a necessary and a sufJicient condition for 
optimality of a point x*. 

Minimization of Quadratic Forms 

Let f: R" + R be a quadratic form 

f ( x )  = ~ x ' Q x  + b'x, 

where Q is a symmetric n x n matrix and b E R". If Q is a positive definite 
matrix, thenfis a convex function. Its gradient is given by 

V f ( x )  = QX + b. 

By (B.3), a point x* is a minimizing point off if and only if 

Vf  (x*) = Qx* + b = 0, 

which yields 
x* = -Q-'b. 

For detailed expositions see references [A2], [LlO], and [Zl]. 



Appendix C 

On Probability Theory 

This appendix lists selectively some of the basic probabilistic notions we 
shall be using. Its main purpose is to familiarize the reader with some of the 
terminology we shall adopt. It is not meant to be exhaustive and the reader 
should consult references [A8], [Fl], [P2], and [P3] for detailed treatments 
particularly regarding operations with random variables, conditional prob- 
ability, Bayes’ rule, etc. For an excellent recent treatment of measure theoretic 
probability theory see the textbook by R. B. Ash, “Real Analysis and Prob- 
ability,” Academic Press, 1972. 

Probability Space 

A probability space consists of 

(a) a set R, 
(b) a collection 9 o f  subsets of R, called events, which includes R and has 

the following properties: 

(1) If A is an event, then the complement 1 = {w E Rlo $ A} is also an 
event. (The complement of R is the empty set and is considered to be an 
event.) 

(2) If A,, A2 are events, then A l  n A 2 ,  A l  u A2 are also events. 
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(3) If A,, A , ,  . . . , Ak, . . . are events, then u ~ =  , Ak and np' , A ,  are also 
events. 

(c) a function P( * ) assigning to each event A a real number P(A), called 
the probability of the event A ,  and satisfying 

(1) P(A)  2 0 for every event A. 
(2) P(R)  = 1. 
( 3 )  P (A  , u A,)  = P(A ,) + P(A,)  for every pair of disjoint events A ,, A , .  
(4) ~ ( U k m , ~  A ~ )  = P(&) for every sequence of mutually disjoint 

events A l ,  A,, . . . , A k ,  . . . . 
The function P is referred to as a probability measure. 

Convention for Finite and Countable Probability Spaces 

The case of a probability space where the set R is a countable (possibly 
finite) set is encountered frequently in this text. Where we specify that R is 
finite or countable we implicitly assume that the associated collection of events 
is the collection of all subsets of R (including R and the empty set). Under 
these circumstances the probability of all events is specified by the probability 
of the elements of R (i.e., of the events consisting of single elements in R). Thus 
if R is a finite set R = {w, ,  a,, . . . , a,,}, the probability space is specified by 
the probabilities p , ,  p , ,  . . . , p,,, where pi denotes the probability of the event 
consisting of mi above. Similarly if R = {a1, w,,  . . . , wk, . . .}, the probability 
space is specified by the corresponding probabilities p , ,  p , ,  . . . , P k ,  . . . . In 
either case we refer to (PI, p , ,  . . . , p,) or (p,, p , ,  . . . , P k ,  . . .) as a probability 
distribution over R. 

Random Variables 

space is a function x : R -+ R such that for every scalar. ,I the set 
Given a probability space (R, E P), a random variable on the probability 

{OERlX(O) d A} 
is an event, i.e., belongs to the collection F. 

variables xl, x2 , .  . . , x, each defined on the same probability space. 

random variable x is defined by 

An n-dimensional random vector x = (xl, . . . , x,) is an n-tuple of random 

The distribution function (or cumulative distribution function) F :  R -+ R of a 

F(z) = P({o  E Rlx(w) d z} ) ,  

i.e., F(z) is equal to the probability that the random variable takes a value less 
than or equal to z. 
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The distribution function F : R" + R of a random vector x = ( x l ,  x2,.  . . , 
x,) is defined by 

F ( ~ ~ , ~ Z ~ . . . , ~ , ) = ~ ( { ~ ~ ~ I ~ ~ ( ~ ) ~ ~ ~ ~ X ~ ( ~ ) ~ Z ~ , . . . ~ X , ( ~ ) ~ Z ~ } ) .  

Given the distribution function of a random vector x = ( x l ,  . . . , x,) the 
(marginal) distribution function of each random variable xi is obtained from 

Fi(zi) = lim F(zl, z 2 ,  . . . , z,). 
z, + m. j #  i 

The random variables x l ,  . . . , x,  are said to be independent if 

F(z1, . . * , zn) = Fl(z1). F 2 ( ~ 2 )  . . . Fn(zA7 

for all scalars z l r  . . . , z,. 

is defined as 
The expected value of a random variable x with distribution function F 

m 

E b} = S_,z d F ( z )  

provided the integral above is well defined. 
The expected value of a random vector x = ( x l , .  . . , x,) is the vector 

The covariance matrix of a random vector x = (xl, . . . , x,) with expected 
value E { x }  = (al , .  . . , a,) is defined to be the n x n symmetric positive 
semidefinite matrix 

E { x )  = ( E { x d ,  E(x217 .. * 9 E{xnJ)- 

1 E { ( x ~  - ~ 1 ) ' )  * * *  E { ( x ~  - X ~ ) ( X ,  - X,)) 
Q x =  [ 

E {(x,  - X , ) ( X ~  - %I)} . * . E {(xn - Q2} 

provided the expectations above are well defined. 
Two random vectors x and y are said to be uncorrelated if 

where ( x  - E { x ) )  above is viewed as a column vector and ( y  - E{y)) '  is 
viewed as a row vector. 

The random vector x = (xl, .. . ,x , )  is said to be characterized by a 
piecewise continuous probability density function f :  R" + R iff is piecewise 
continuous and 

F(z1,. . . , z,) = f' f z  . . . sI,f 0 1 1 7 .  a *  7 Y n )  dY1*  * .dyn, 
- m  - m  

for every z l ,  . . . , z ,  . 
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Conditional Probability 

We shall restrict ourselves to the case where the underlying probability 
space R is a countable (possibly finite) set and the set of events is the set of all 
subsets of R. 

Given two events A and B we define the conditional probability of Bgiven A 
by 

P(A n B)/P(A)  if P(A) > 0, 
if P(A)  = 0. P(BIA) = 

If B,, B,, . . . are a countable (possibly finite) collection of mutually exclusive 
and exhaustive events (i.e., the sets Bi are disjoint and their union is R) and A 
is an event, then we have 

i 

From this one may prove that 

P(A)  = 1 P(Bi)P(A 1 Bi). 

This is called the theorem of total probability. From the expressions above 
we obtain for every k 

i 

P(Bk I A )  = P(A Bk)/P(A) = P(Bk)P(A I B k ) / c i  P ( B i ) P ( A  I B i ) ,  

provided P(A) > 0. The relation above is referred to as Bayes' rule. 
Consider now two random vectors x and y on the (countable) probability 

space taking values in R" and R", respectively [i.e., x(w) E R". y ( o )  E R" for 
all w E R]. Given two subsets X and Y of R" and R", respectively, we denote 

P(X  I Y )  = P ( { o  I x ( 4  E x> I (0 I Y(W)  E Y } ) .  

For a fixed vector w E R" we define the conditional distribution function 
of x given w by 

f l z  I w )  = P({w I x ( w )  G z> I {w I Y ( 4  = w } ) ,  

and the conditional expectation of x given w by 

E ( X I W 1  = z W z I w ) ,  
JR" 

provided the integral above is well defined. Note that E { x  I w }  is a function 
mapping w into R". Similarly one may define the conditional covariance of x 
given w ,  etc. 

If w,,  w,, . . . are the elements of R, let us denote 

zi = x(wi),  wi = y ( o i ) ,  i = 1, 2, . . . . 
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Also for any vectors z E R", w E R", let us denote 

P(z )  = P((OlX(0)  = z } ) ,  P(w)  = P ( { o ( y ( w )  = w}). 

WehaveP(z) = Oifz # z i , i  = 1,2  ,..., andP(w) = Oifw # w i , i  = 1,2  ,.... 
Denote also 

P(zIw) = P({wIx(w) = z}I{wIy(4 = wl).  

Then if P(w) > 0, Bayes' rule yields 

P(Z, I w) = P(Z~)P(W I z i ) / C j ~ ( z j ) ~ ( w / z j ) ,  i = 1, 2. . . . . 

P(z1w) = 0 if z # z i ,  i = 1 ,2  ,..., 

where P(w/z)  = P({o/y(w)  = w}  I ( w l x ( w )  = 2 ) ) .  



Appendix D 

On Finite State Markov Chains 

A square n x n matrix Cpij] is said to be a stochastic matrix if all its ele- 
ments are nonnegative, i.e., p i j  2 0, i ,  j = 1, . . . , n, and the sum of the elements 
of each of its rows equals unity, i.e., 

Stationary Finite State Markov Chains 

Suppose we are given a stochastic n x n matrix P together with a finite 
set S = { sl, . . . , s"} called the state space with elements sl, . . . , S" called 
states. The pair ( S ,  P )  will be referred to as a stationaryjnite state Markov 
chain. We associate with (S, P )  a process whereby an initial state xo E S is 
chosen in accordance with some initial probability distribution 

p i j  = 1 for all j = 1, . . . , n. 

Subsequently a transition is made from state xo to a new state x1 E S  in 
accordance with a probability distribution specified by P as follows. The 
probability that the new state x 1  will be si is equal to p i j  whenever the initial 
state x o  is si, i.e., 

P ( X ,  = sjlxo = si) = p i j ,  i , j  = 1, .. ., n. 
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Similarly subsequent transitions produce states x 2 ,  x 3 ,  . . . in accordance with 

(D.1) P(xk+ l  = sjlxk = si) = p i j ,  i, j = 1,. . . , n. 

The probability that after the kth transition the state xk will be equal to s j  
given that the initial state x o  is equal to si is denoted 

pfj = P(xk = sj lxo = si), i , j  = 1, ..., n. P.2) 
These probabilities may be easily calculated to be equal to the elements of the 
matrix Pk (P raised to the kth power), in the sense that pfj is the element in the 
ith row and jth column of Pk: 

Pk = C p f j ] .  (D.3) 
Given the initial probability distribution p o  of the state x o  (viewed as a row 
vector in R”), the probability distribution of the state xk after k transitions 

Pk = bl, pkz, * * . 9 p i )  

(viewed again as a row vector) is given by 

pk = p o p k ,  k = 1,2, .... 03.4) 

This relation follows immediately from (D.2) and (D.3) once we write 
n n 

p’k = c P ( x k  = S j l X O  = si)pb = x p f j p b .  
i =  1 i =  1 

Nonstationary Finite State Markov Chains 

Suppose we are given instead of a single stochastic matrix P a sequence 
{Pk} of stochastic n x n matrices Po,  P1, . . . . We refer to the pair (S, {Pk}) as 
a nonstationaryjnite state Markov chain and we associate with it the following 
process. The initial state x o  E S is chosen in accordance with an initial dis- 
tribution p o  = (p:, p i ,  . . . , p;).  Subsequently a transition is made to a state 
x t  E S in accordance with 

P ( x l  = sj lxo = si)  = pi,{0), i, j = 1, . . . , n, 

where pi,(0) is the element in the ith row and jth column of the stochastic 
matrix Po (Po = CpijO)]). Subsequent transitions produce states in accordance 
with 

P ( x k + l  = S j l X k  = Si) = pijk), i , j  = 1, ..., n, 
where pijk)is the element in the ith row and jth column of Pk. The probabilities 

pfj = P(xk = sj lxo = si), i, j = 1, . . . , n, 
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can be calculated to be equal to the elements of the matrix P O P ,  . . . P k -  : 

POPI " ' p k - 1  = [&I. 
Given the initial probability distribution p o  of the state xo the probability 
distribution Pk = ( p i ,  . . . , p i )  of xk is given by 

Pk=PoPoP1".Pk-1, k = l , 2  , . . . .  

We subsequently restrict ourselves to stationary Markov chains. 

Classijication of States of a Markov Chain 

Given a stationary finite state Markov chain ( S ,  P )  we say that two states 
x i  and xi communicate if there exist two positive integers k ,  and k 2  such that 
p$ > 0 and psi > 0. This definition does not exclude the possibility of a state 
communicating with itself. 

Let s" c S be a subset of states such that: 

(a) All states in s" communicate with each other. 
(b) If si E s and sj  $3, then p f j  = 0 for all k .  

Then we say that s" forms an ergodic class of states. 
If S forms by itself an ergodic class (i.e., all states communicate with each 

other), then we say that the Markov chain is irreducible. It is possible that 
there exist several ergodic classes. It is also possible to prove that at least one 
ergodic class must exist. States that do not belong to any ergodic class are 
called transient. Transient states are characterized by the fact that 

lim pfi = 0 if and only if si is transient. 
k + m  

In other words, if the process starts at a transient state the probability of 
returning to the same state after k transitions diminishes to zero as k tends to 
infinity. 

It is easy to see from the definitions given that during the process of tran- 
sition between states once an ergodic class is entered then the process remains 
within this ergodic class for every subsequent transition. Thus if the process 
starts within an ergodic class, it stays within that class. If it starts at a transient 
state, it eventually (with probability one) enters an ergodic class after a 
number of transitions and subsequently remains there. 

Limiting Probabilities 

defined by 
An important property of any stochastic matrix P is that the matrix P* 

N- 1 
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exists [in the sense that the sequences of the elements of ( 1 / N )  1::; Pk con- 
verge to the corresponding elements of P*]. The elements p$  of P* satisfy 

n 

~ $ 2 0 ,  C p $ = l ,  i = l ,  ..., n, 
j =  1 

i.e., P* is a stochastic matrix. 

such that sk E s, 
If s c S is an ergodic class and si, s j  E 5, then it may be proved that for all k 

P 2  = P$ > 0, 
so that $a Markov chain is irreducible, the matrix P* has identical rows. Also 
if sJ is a transient state, we have 

p . .  - - 0 ViES,  

so that the columns of the matrix P* corresponding to transient states are 
identically zero. 

First Passage Times 

after exactly k 2 1 transitions given that the initial state is si, i.e., 
Let us denote by qfj  the probability that the state will be s j  for the first time 

q f j  = P(xk = Sj ,  X ,  # SJ, 1 < m < k I X o  = Si). 

Denote also for fixed i and j ,  

K , ~  = min{k 2 1 Ixk = sj ,  xo = si}. 

Then K, , ,  called the jirst passage time from i toj ,  may be viewed as a random 
variable. We have for every k = 1,2, . . . , 

P(K. .  = k )  = qk. 
IJ IJ ’  

and we write 
W 

P(K,, = CO) = P(xk # Sj,  Vk = 1 ,  2,. . . I X g  = Si) = 1 - 1 qfj .  
k =  1 

Of course, it is possible that qf, < 1. This will occur, for example, if 
si cannot be reached from si in which case qf, = 0 for all k = 1, 2, . . . . The 
meanjirst passage time from i to j is the expected value of Kij: 

if l q f j  -= 1. 
k =  1 



386 D ON FINITE STATE MARKOV CHAINS 

It may be proved that if si and sj  belong to the same ergodic class, then 

E { K i j }  < co. 

Ifs'andsjbelongtotwodifferentergodicclasses,then E { K i j }  = E { K j i }  = 00. 

If si belongs to an ergodic class and sJ is transient, we have E { K i j }  = 00. 

Interpretation of Accessibility Conditions 

sk E S such that 
In Chapter 8 we utilized the condition that there exists a special state 

E { K i k }  < 00 VS' E S .  (D.5) 
Now in view of the preceding discussion the state sk cannot be transient 
and thus it must belong to an ergodic class. Furthermore, there cannot be more 
than one ergodic class since if some state sJ belonged to a different ergodic 
class than the one of sk we would have E{Kjk} = co. Thus there must exist 
a single ergodic class and sk must belong to it. Conversely, condition (D.5) 
always holds when a single ergodic class exists and sk belongs to it. In con- 
clusion assuming existence of a state sk such that (D.5) holds is equivalent to 
assuming the existence of a single ergodic class. 

Assume now that we have a collection of n x n transition probability 
matrices P ( p )  parameterized by the elements p of some set M. Let us denote 
by E {Ki@)} the mean first passage time for going from si to s j  when the 
transition probability matrix is P(p) .  Then clearly from the discussion given 
earlier it follows that the condition 

there exists sk E S such that E {Kik(,u)} < 0 for all si E S ,  p E M ,  

is equivalent to assuming that, for every p, P(p)  gives rise to a Markov chain 
with a single ergodic class and sk belongs to that class. In particular, the 
condition above is satisfied if the Markov chain corresponding to P(p)  is 
irreducible for every p E M. For detailed expositions see references [C3] 
and [K7]. 
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