261

ORSA Journal on Computing
Vol. 5, No. 3, Summer 1993

0899-1499 /93 /0502-0281 $01.25
© 1993 Operations Research Society of America

Parallel Asynchronous Hungarian Methods for the
Assignment Problem

DiMiTri P. BERTSEKAS / Department of Electrical Engineering and Computer Science, M. I. T., Cambridge, MA 02139;
E-mail: bertseka@lids.mit.edu.

DAVID A. CASTANON / Department of Electrical, Computer, and Systems Engineering, Boston University, Boston, MA
02215; E-mail: dac@tawny.bu.edu

(Received: March 1990; revised: November 1991; accepted: January 1992)

In this paper, we discuss the parallel asynchronous implemen-
tation of the Hungarian method for solving the classical assign-
ment problem. Multiple augmentations and price rises are si-
multaneously attempted starting from several unassigned
sources and using possibly outdated price and assignment
information. The results are then merged asynchronously sub-
ject to rather weak compatibility conditions. We show the valid-
ity of this algorithm and we demonstrate computationally that
an asynchronous implementation is often faster than its syn-
chronous counterpart.

We consider the classical problem of optimal assignment
of n persons to n objects, whereby given a benefit 4, that
person i associates with object j, we want to find
an assignment of persons to objects on a one-to-one basis,
that maximizes the total benefit. An important method for
solving this problem, still used widely, is Kuhn’s Hungar-
ian method.'® There are several discussions and imple-
mentations of this algorithm in the literature, some of
which are referred to as sequential shortest path
methods[f~15197242] The method maintains a price for
each object and an (incomplete) assignment of persons and
objects. At each iteration, it chooses an unassigned person
and computes a shortest augmenting path from this person
to the set of unassigned objects, using reduced costs as arc
lengths. An augmentation is then performed along the path
and the object prices are adjusted to maintain complemen-
tary slackness; the process is repeated until there are no
unassigned persons left.

The classical version of the Hungarian method is serial
in nature; only one shortest augmenting path is computed
at a time. In a recent paper, Balas, Miller, Pekny, and
Toth!!] introduced an interesting and original idea for par-
allelization of the Hungarian method. In particular, they
proposed the parallel construction of several shortest aug-
menting paths, each starting from a different unassigned
person. They have shown that if these paths are pairwise
disjoint, they can all be used to enlarge the current assign-
ment; to preserve complementary slackness, the object
prices should be raised to the maximum of the levels that

Subject classifications- Networks/Graphs.
Other key words: Flow algorithms

would result from each individual shortest path calcula-
tion. Balas et all!l described an implementation of their
parallel algorithm on the Butterfly Plus computer. Their
computational results indicate a modest speedup (of the
order of about 2) for the shortest path portion of their
algorithm.

An obstacle in the way of a substantial speedup using
the method of Balas et al. is the synchronization required at
the end of the parallel shortest path construction. To in-
crease concurrency, a substantial number of shortest aug-
menting paths must be constructed at each iteration. How-
ever, these paths cannot be incorporated in the current
assignment (and taken into account in subsequent shortest
path calculations) until the end of the iteration. As a result,
processors which have completed their computations must
wait idly for other processors to complete their compu-
tations. In this paper, we rectify this shortcoming by de-
veloping a theory of asynchronous parallel Hungarian
algorithms in which there is no concept of iteration and
processors can proceed with the computation of new short-
est paths regardless of the progress of other processors. We
prove the validity of the corresponding asynchronous im-
plementation and we demonstrate its merit by computa-
tional experimentation. As a special case, we recover both
the algorithm of Balas et al.!"] and their convergence result.
Our analysis extends nontrivially their analysis. Except for
the authors’ asynchronous implementation of the auction
algorithm,?! this is the first time that an asynchronous
parallel implementation of an assignment algorithm and a
Hungarian method in particular is suggested.

To place our results in perspective, there have been a
number of recent works discussing the development and
implementation of parallel algorithms for the assignment
problem. These works include parallel versions of Bert-
sekas’ auction algorithm.#¢8! Bertsekas and Castafion”!
develop a number of different parallel synchronous and
asynchronous implementations, which can be combined to
achieve significant speedups (4-10, depending on the num-
ber of objects and density of the problem) over the sequen-

Copyright © 2001 All Rights Reserved

262

Bertsekas and Castafion

tial performance of the auction algorithm. The versions of
the auction algorithm which correspond closely to the work
in this paper are the synchronous and asynchronous Jacobi
auction algorithms of Bertsekas and Castafion!?; in these
versions, multiple unassigned persons are processed in
parallel, in a manner similar to the muitiple augmenting
paths computed by our parallel Hungarian algorithms.

Other computational studies with parallel versions of the
auction algorithm include the work of Kempa, Kennington,
and Zaki'® on the Alliant FX/8 parallel processor;
Castafion, Smith and Wilson’s implementations of the
Gauss-Seidel version on different multiprocessor architec-
tures!'?]; the work of Phillips and Zenios,?2 and Wein and
Zenios***! on the Connection Machine for dense assign-
ment problems.

Other work on parallel Hungarian algorithms includes
the work of Kennington and Wang'” and Zaki®?®! on
parallel implementation of the Jonker and Volgenant!!’]
algorithm for dense assignment problems. In their work,
multiple processors are used to parallelize the shortest path
computation; however, only one shortest path at a time is
constructed. In contrast, our theory allows for the simulta-
neous construction of shortest paths from several unas-
signed persons, which would further enhance the available
parallelism. Thus the speedup obtained using our method-
ology is additional to whatever speedup the preceding
authors obtained; we too can parallelize each individual
shortest path calculation, although we have not chosen to
do so in our computational tests in order to isolate the
effects of simultaneous calculations of multiple shortest
paths.

In the next section we describe an asynchronous algo-
rithm that includes the classical Hungarian method as well
as the synchronous parallel algorithm of Balas et al!l'l as
special cases. In Section 2 we prove the validity of this
asynchronous method, showing that it terminates with an
optimal assignment in a finite number of steps, assuming
existence of at least one feasible assignment. In Section 3
we discuss the performance of various synchronous and
asynchronous implementations of a successive shortest path
algorithm on a shared-memory architecture. These results
provide insight into the potential advantages of asyn-
chronous algorithms, as well as the fundamental limita-
tions on the degree of parallelism that can be achieved with
the theory described in this paper.

1. The Parallel Asynchronous Algorithm

In the assignment problem that we consider, n persons
wish to allocate among themselves n objects, on a one-to-
one basis. Each person i must select an object from a given
nonempty subset A(i). There is a given benefit 4, that i
associates with each object j € A(i). An assignment is a set
of k person-object pairs S = {(i,, j;),..., (i, j)}, such that
0<k<mn,j,€Al,) forall m=1,...,k and the persons
i,..., i and objects j,..., j, are all distinct. The total
benefit of the assignment is the sum L} _,a, ~ of the
benefits of the assigned pairs. An assignment is called
complete (or incomplete) if it contains k = n (or k < n, re-
spectively) person-object pairs. We want to find a complete

assignment with maximum total benefit, assuming that
there exists at least one complete assignment.
The dual assignment problem is given by (see e.g. >#%12])

n 4]
minimize Z p,t Z T,
=1 1=1
subject to p, + 7, > a,,, V(i j) withj € A(i). (1)

Since we have 7, = max, ¢ ,{a,, — p,} at the optimum, the
dual variables 7, can be eliminated thereby obtaining the
following equivalent unconstrained problem

n n
minimize), p, +), max {a, - p}
=1 1=1 JEAWD)

subject to no constraints on pji=1...,n (2

We refer to p, as the price of object j. For a given price
vector p = (py,..., p,), the reduced cost of arc (i, j) is the
negative scalar r,, given by

r, = max {a;, —p,} —
me A1)

(a,, —p).
We say that a price vector p and an assignment S satisfy
complementary slackness (or CS for short) if the correspond-
ing reduced costs of the assigned arcs are zero,
0/

r,, = V@i, j) eSs.

4
A classical optimality condition states that an assignment-
price pair (5, p) solve the primal and dual problems, re-
spectively, if and only if S is complete and satisfies CS
together with p.

We now consider two operations that form the building
blocks of our asynchronous algorithm. They operate on an
assignment-price pair (5, p), and produce another assign-
ment-price pair (5, p); the pair (S, p) must satisfy CS, and
S must be incomplete.

The first operation is augmentation, which is familiar
from the theory of the Hungarian method. Here we have a
person-object sequence (i, jy, iy, Jo, I3, ..., ji, i,), called an
augmenting path, with the following properties.

(a) 7 and j are unassigned under S.

M) (i, j)ES foral m=1,... k.

(© j, € A, j, € AG,,_)), forall m=2,...,k, and j €
A(i).

dr, =r

th =0.

np =T = T
The augmentation operation leaves the price vector unaf-
fected (p = p), and yields an assignment S obtained from
S by replacing (i, j,), m=1,...,k with @, j),
Gy, jod oo G, i) G .

The second operation is called price rise. Here we have a
set of assigned person-object pairs

{(ill j]),--- (ikr]k)} cSs

Copyright © 2001 All Rights Reserved

263

Hungarian Methods for Assignment Problem

il
., J«}, and such that the scalar y given by

such that there is at least one arc (i, j) with i € {i}, ..
and j & {j,, ..

y = min{r, |(i, /) is an arc with i € {i}, ..., 1},
j & G i)

is positive. The operation consists of leaving S unchanged
(S = S) and setting

e G

= o g . 3
P p,+v ifjelj, ... i}

It can be seen that the following hold for the two opera-
tions just described:

(a) When an operation is performed on a pair (S, p) satisfy-
ing CS, it produces a pair (S, p) satisfying CS.

(b) As a result of an operation on (S, p) object prices cannot
decrease (i.e., p < p), and the price of an unassigned
object cannot change (i.e., p, = p, if j is unassigned
under S).

(¢) An object that is assigned prior to an operation remains
assigned after the operation.

We define a generic iteration on a pair (S, p) satisfying CS
to be either an augmentation, or several price rises in
succession followed by an augmentation. This definition
applies if S is incomplete otherwise the generic iteration
leaves (S, p) unaffected; we adopt this mathematical for-
malism for convenience in stating the subsequent asyn-
chronous algorithm and in conducting its analysis. One
way to implement the Hungarian method*®} consists of a
sequence of generic iterations starting from a pair (S, p)
satisfying CS. From this particular implementation it fol-
lows that if (S, p) satisfies CS, and S is an incomplete
assignment, then it is possible to perform a generic itera-
tion on (S, p).

A mathematically equivalent alternative implementation
of the Hungarian method is based on constructing a short-
est path from a single unassigned person to the set of
unassigned sources using reduced costs as arc lengths; see
e.g., [1, 11, 15]. In particular, at each iteration, given (S, p)
satisfying CS, the residual graph is considered, which is the
same as the bipartite graph of the assignment problem
except that the direction of the assigned arcs (i, j) € S is
reversed; the length of each arc is set to its reduced cost
with respect to p. Then an unassigned person i is selected
and the shortest path problem from i to the set of unas-
signed objects is solved. Let v, be the shortest distance
from i to object j, let

min
7 1s unassigned under S

f = arg vy,

let o =v; and let P be the corresponding shortest path
from i to j. The successive shortest path iteration consists
of the price change

ﬁ]=pl+max{0,z7—v]}, j=1,...,n, (4)

followed by an augmentation along the path P. The label-
ing process of the implementation, referred to earlier!'”),

amounts to the use of Dijkstra’s method for the shortest
path calculation. In particular, the price change of Equation
4 can be decomposed into the sequence of price changes of
the “permanently labeled” node sets in Dijkstra’s method,
and each of these price changes is a price rise operation in
the sense of Equation 3. Thus, a successive shortest path
iteration may be viewed as a generic iteration of the type
defined above.

We now provide a mathematical model for the asyn-
chronous algorithm. The assignment-price pair at the times

k=1,2,3,...

is denoted by (S(k), p(k)). (In the context of an asyn-
chronous algorithm, the time k should not be interpreted
literally; k simply indexes a sequence of physical times at
which algorithmic events of interest occur.) The initial pair
(5(1), p(1)) must satisfy CS. At each time k, a generic
iteration is performed on a pair (5(r,), p(7;)), where 7, is a
positive integer with 7, < k, to produce a pair (S(k), p(k)).
Note that, according to our definition of a generic iteration,
if the assignment S(r;) is already complete, the generic
iteration does nothing. If the iteration produces an aug-
menting path which is also an augmenting path with re-
spect to S(k), we say that the iteration (and the correspond-
ing augmenting path) is compatible, we set

p,(k + 1) = max{p,(k), p,(k)},

Vi=1,...,n, (5)
and we obtain S(k + 1) from S(k) by performing the aug-
mentation of the iteration. Otherwise, we say that the
iteration (and the corresponding augmenting path if any) is
incompatible; in this case we discard the results of the

iteration, that is, we set

S(k + 1) = S(k), p(k+ 1) =pk).

Although the above description of the algorithm requires
an infinite number of iterations, this is merely a mathemati-
cal convenience; in practice, the algorithm can be stopped
as soon as a complete assignment S(k) is obtained. We say
that the algorithm essentially terminates at a time t if t is the
first time k for which the assignment S(k) is complete.
Thus, the algorithm essentially terminates after at most n
compatible iterations (but according to the mathematical
model we used, the algorithm will continue to iterate after
essential termination without changing the assignment).

We note that the definition of the asynchronous algo-
rithm is not yet rigorous, because we have not yet proved
that a generic iteration can be performed at all times; for
this it is necessary that the pairs (S(k), p(k)) generated by
the algorithm satisfy CS. We will show this in the next
section, cf. Proposition 1.

The implementation of the asynchronous algorithm in a
parallel shared memory machine is quite straightforward.
A detailed description will be given in Section 3. The main
idea is to maintain a “master”” copy of the current assign-
ment-price pair in the shared memory. To execute an itera-
tion, a processor copies from the shared memory the
current master assignment-price pair; during this copy op-
eration the master pair is locked, so no other processor can

Copyright © 2001 All Rights Reserved

264

Bertsekas and Castanon

modify it. The processor performs a generic iteration using
the copy obtained, and then locks the master pair (which
may by now differ from the copy obtained earlier, because
it may have been modified by other processors in the
meantime). The processor checks if the iteration is compati-
ble, and if so it modifies accordingly the master assign-
ment-price pair. The processor then unlocks the master
pair, possibly after retaining a copy to use at a subsequent
iteration. The times when the master pair is copied and
modified by processors correspond to the indexes 7, and k
of the asynchronous algorithm, respectively, as illustrated
in Figure 1. Essential termination is detected by each pro-
cessor when the master pair contains a complete assign-
ment.

2. Validity of the Asynchronous Algorithm
We want to show that the asynchronous algorithm main-
tains CS throughout its course. We first introduce some
definitions and then we break down the main argument of
the proof in a few lemmas.

An alternating path with respect to an assignment S is a
sequence (iy, jy, ..., ix, ji, j) such that

=1,...,k,
k=

Gy ju) €8,

jm+1 € A(lm)l m = 11-- 1/

and j € A(i,). We say that the alternating path starts at J1
and ends at .

Define the cost length of the alternating path P =
(g, jar- oo igs i) BY
k=1 k
€)= T, 0= X o,

and, for a given price p, the reduced cost length of P by

k-1
R(p' P) = Z r'mjm+1 + r'ki'
m=1

These definitions are useful in relating the prices of the
start and end objects of an alternating path.

Processor 1 Processor 1

copies the Processor 1 executes modifies the

master parr (S,p} a generic iteration based master pair
on the copied pair (S, p)l

Ki

Pl

—

i

—~
Times when processors 2, 3, ..
modify the master parr (S,p)
Pgure 1. Operation of the asynchronous algorithm in a
shared memory machine. A processor copies the master
assignment-price pair at time 7, executes between times 1,
and k is a generic iteration using the copy, and modifies
accordingly the master assignment-price pair at time k.
Other processors may have modified unpredictably the
master pair between times 7, and k.

Lemma 1. Assume that (S, p) satisfies CS. Let P =
iy, jir -+ s ixs fro J) be an alternating path with respect to S.
Then

p;=p, + C(P) + R(p, P).

Proof. Since by CS we have Bypim = Ppn = MAX 4, fa,
- p;} for all m,

= (alm]m - p]m) - (alm/m-i»l - p}m+l)'
m=1,...,k—1,

Tii = (aik]k - pjk) - (u‘kf - p])

r‘m]m+1

Adding these relations, we obtain the result. Q.E.D.

Let (S, p) be a pair satisfying CS, and let j be an
assigned object under S. The distance of j with respect to
(S, p) is the minimum of the reduced cost lengths of alter-
nating paths starting at j and ending at some unassigned
object; if there is no such path, the distance of j is defined
to be . For all objects j that are unassigned under S, the
distance of j is defined to be zero. We denote for all k and

Jr
d;(k) = Distance of j with respect to (S(k), p(k)).

The object distances play a central role in our analysis
and are important for understanding how the algorithm
works. To get a sense of their significance, consider a pair
(S, p) satisfying CS, fix an object j which is assigned under
S, and let #(S) be the set of all alternating paths starting
at j and ending at an object which is unassigned under S.
By Lemma 1, the distance of j is

d

; min R(p, P) =

min {p;, — p, — C(P)},
PeP(5) Picey = Py

Pe.?,(s)

where j(P) is the end object of the alternating path P. Thus
we have

p] + d] min {p]'(p) - C(P)}r

PeZ(8)

and we see that the quantity p, + d, depends only on the
assignment S and the prices of the unassigned objects
under S (not on the prices of the assigned objects under S).
With a little thought it can be seen that, at least when all
problem data and the vector p are integer, {p,+dlj=
1,..., n} is the maximum set of prices that can be obtained
from (S, p) by executing price rise operations exclusively
(no augmentations). Thus p; +d, may be viewed as a
ceiling price that bounds from above the corresponding
prices p, obtained by a generic iteration; part (a) of the
following lemma shows this fact. The lemma also proves
two more properties: first, that if an object is part of an
augmenting path of a generic iteration, its price becomes
equal to the ceiling price prior to the iteration [Lemma
2(b)]; second, that the ceiling prices are monotonically non-
decreasing during the algorithm [Lemma 2(c)]. The former
property is important in showing that the parallel syn-
chronous version of the algorithm, that is, the algorithm of
Balas et al.!'} preserves CS. The latter property is important
in showing that the same is true for the asynchronous

copyright © 2001 Al RightsReserved

Hungarian Methods for Assignment Problem

algorithm.

Lemma 2. Let k > 1 be given and assume that the pairs (S(t),
p(t) satisfy CS for all t < k. Suppose that for all t < k, (5(),
p(t)) is the pair obtained by performing a generic iteration on a
pair (8(r,), p(1,)) with 7, < t, and that (S(t+ 1), p(t+ 1) is
obtained from (S(t), p(t)) according to the rules of the asyn-
chronous algorithm, [cf. Equation 5 and the related description].
Then:

(a) For all objects j and all t < k, there holds

p(D) <p(r) +d(r,). (6)

(b) Fort <k, if S(t + 1) # S(t) (i.e., iteration t is compatible),
and ; is an object which belongs to the corresponding aug-
menting path, then we have

p,(t) +d, (1) =p(t) =p(t+1). (7)

(c) For all objects j and all t < k — 1, there holds

p () +d (1) <p(t+1) +d(t+ D). (8)

Proof. (a) If j is unassigned under S(,), we have p(t) =
p,(r;) and the result holds. Thus, assume that j is as51gned
under S(r,). Since either p(t) = p(r,) or else (S(r,), p(t)) is
obtained from (S(7,, p(1,)) through a finite sequence of
price rises, it follows that (S(r,), p(t)) satisfies CS. Consider

any alternating path P from j to an object j, which is
unassigned under S(r,). By Lemma 1, we have

pi(r) = p,(r) + C(P) + R(p(7), P),
() = p,(t) + C(P) + R(p(t), P).

Since j is unassigned under S(r,), we have p;(r,) = p}(t)
and it follows that

p,(t) = p(r,) + R(p(r), P) — R(p(t), P)
< p,(7) + R(p(7), P).

Taking the minimum of R(p(r,), P) over all alternating
paths P, starting at j and ending at unassigned objects
under S(7,), the result follows.

(b and c¢) We prove parts (b) and (c) simultaneously, by
first proving a weaker version of part (b) (see relation (9)
below), then proving part (c), and then completing the
proof of part (b). Specifically, we will first show that for

< k, if S(t+ + 1) # S(¢#) and j is an object which belongs to
the corresponding augmenting path, then we have

p,(t) +d (1) <p(t) =p(t+1). 9

Indeed, if j is unassigned under S(t), relation (9) holds
since we have p(t) = §(t) and d(t) = 0. Assume that j is
assigned under S(t) Let the augmentlng path of iteration
t end at object j, and let P be the corresponding alternat-
ing path that starts at j and ends at j. We have, using
Lemma 1,

pt) = (1) + C(P),

pi(t) = p,(t) + C(P) + R(p(t), P).

Since j is unassigned under all S(7) with 7<t, we have

pi(t) = p;(t), and we obtain
p,() = p,(t) + R(p(t), P) > p,(t) + d (¢),

showing the left hand side of relation (9). Since d(t) >
this yields p,(t) < p(t), so p(t) = max{p,(t), p](ts = p](t
+ 1), completing the proof of 'relation).

We now prove part (c), making use of relation (9). Let us
fix object j. If j is unassigned under S(t + 1), we have
p () =p(t+1) and d(t) =dt+ 1) = 0, so the desired
relation (8) holds. Thus, assume that j is ass1gned to i
under S(t + 1), and let P = (j,i, ji, iy,..., jx i, j) e an
alternating path with respect to S5(t + 1), which is such that
j is unassigned under S(f + 1) and

R(p(t+ 1), P)=d(t + 1).
There are three possibilities:

1. All the objects j, ji,..., j, have the same assignment
under S(t) as under S(¢ + 1). In this case we have, using
Lemma 1,

pi(t +1) =p(t + 1) + C(P) + R(p(t + 1), P),
pi(t) = p,(t) + C(P) + R(p(t), P).

Since j is unassigned under S(t + 1), we have pi(t + 1)
= p;(t), so we obtain

p,(t + 1 + R(p(t + 1), P) = p(t) + R(p(t), P).

Since R(p(t + 1), P) = d](t + 1) and R(p(#), P) > d;(t),
we obtain

p(H+d B <pt+1)+d(t+1),

and the desired relation (8) is proved in this case.

2. Tteration ¢ is compatible and object j belongs to the
augmenting path of iteration ¢, in which case, by rela-
tion (9), we have

p(D)+d D) <pt+D<plt+D+d(t+1),

and the desired relation (8) is proved in this case as well.
3. Iteration t is compatible, and there is an object j,,
m € {1,..., k}, which belongs to the augmenting path of
iteration ¢, and is such that j and jy,..., j,_, did not
change assignment at iteration f; see Figure 2. Consider

pl p"
Does not belong to augmenting im is the first object in P that
path of iteration t changed assignment in iteration t
Agure 2. Decomposition of alternating path P used in the
proof of Lemma 3.

Copyright © 2001 All Rights Reserved

Bertsekas and Castafion

the following alternating paths with respect to S(t + 1)
P' = (4, j1iysees et bt)
P" = Gy b st bma1s oo s oo s J)-
We have
R(p(t + 1), P') = R(p(t), P') + (p, (¢t + 1) — p, (1))
—(p(t +1) =~ p(),

and since by relation (9), p, (t + 1) ~ p, () > d (1), we
obtain

R(p(t + 1), P) + p(t + 1) > R(p(t), P")
+d, (1) +p,(t). (10)
On the other hand, we have
R(p(t +1), P) =R(p(t + 1), P') + R(p(t + 1), P")
and since R(p(t + 1), P") > 0, we obtain
R(p(t +1),P) > R(p(t + 1), P'). (11
Combining Equations 10 and 11, we see that
R(p(t+1),P) + p(t+1) = R(p(t),P)
+d, (1) +p(t).

We have R(p(t), P') +d, () > d(t), and R(p(t +
1, P) = d(t + 1), so it follows that

pi(t +1) + di(t+1) >p(t) + d(t),

and the proof of part (c) is complete.

To complete the proof of part (b), we note that by using
Equations 6 and 8, we obtain

Pt <plr) +d (1) <p(D) +d (1),
which combined with relation (9) yields the desired rela-
tion (8). QE.D.

We need one more simple technical lemma. Let us de-
note:

r;(k): Reduced cost of arc (i, j) with respect to p(k),
#,,(k): Reduced cost of arc (i, j) with respect to p(k).

Lemma 3. Assume that the kth iteration is compatible. Then

@ p,(k) > pk) = 70K = 7 (k + 1),
® p&) = p(k) = r, (k) > r, (k + 1.

Proof. (a) Since p,(k) = max{p,(k), p,(k)} = p,(k + 1), we
have

a, = pk) =a, —plk+1),
and since p,(k + 1) > p,(k) for all m, we have

max {a,, — p,(k)} > max {a;, - p,(k+ D).
meAQ) me A(1)

Subtracting the preceding two relations, we get
Py (k) 2 7, (k+ 1.
(b) Very similar proof as for part (a). Q.E.D.

We can now prove that the asynchronous algorithm
preserves CS.

Proposition 1. All pairs (5(k), p(k)) generated by the asyn-
chronous algorithm satisfy CS.

Proof. By induction. Suppose all iterations up to the kth
maintain CS, and let the kth iteration be compatible. We
will show that the pair (S(k + 1), p(k + 1)) satisfies CS,
that is,

G,pesk+) =r(k+1)=0.
Let (i, j) € S(k + 1). There are two possibilities:

1. (i, j) belongs to the augmenting path of the kth iteration,
in which case 7, (k) = 0. By Lemma 2(b), we have p,(k)

> p(k), so by Lemma 3(a), rytk+ D <70k = 0.

2. (3, js does not belong to the augmenting path of the kth
iteration, in which case, by the CS property (cf. the
induction hypothesis), we have (i, /) € S(k) and 7, (k)
= 0.1f p(k) > p(k), by Lemma 3(b) we have , (k + 1)
<r,(k) =0 and we are done. Assume therefore that
p,(k) > p,(k), in which case there are two possibilities:
(@) We have (i,) € 5(r,), in which case ?,,(k) = 0. By
Lemma 3(a) we then obtain 7, (k + 1) < 7, (k) =0. (b)
We have (i, j) & S(r,). We will show that this case
cannot arise. In particular, we will assume that for some
(i, j) € 5(k) we have

G, j) &S(r) and p (k) > p (k)

and arrive at a contradiction, thereby completing the
proof. We first note that j must be assigned under S(7,),
for otherwise we would have

p,(0) = p(r) < p (),

contradicting the hypothesis p,(k) > p (k). Let ¢, be the
first iteration index such that 7, <f; <k and (i, j) €
S(t,). Then by parts (a) and (c) of Lemma 2, we have

ﬁ](k) < }7}(7}() + d](Tk) < pj(tl -1+ d](tl -1),
while by Lemma 2(b), we have
pty =1 +d (-1 = p,(t).

Since object prices cannot decrease, we have p(t) <
p,(k), and the preceding two inequalities yield pk) <
p,(k), arriving at a contradiction. Q.E.D.

Suppose now that the algorithm essentially terminates.
Then the assignment obtained is complete, and by Proposi-
tion 1, the corresponding assignment-price pair satisfies CS,
so the assignment must be optimal. To guarantee that the
algorithm essentially terminates, we impose the condition

Hm 7, = o,

k—

Copyright © 2001 All Righfs Reserved

267

Hungarian Methods for Assignment Problem

This is a natural and indispensable condition, stating that
the algorithm iterates with increasingly more recent infor-
mation.

Proposition 2. If lim, .7, = , the asynchronous algorithm
essentially terminates at some (finite) time with an optimal
assignment.

Proof. Since CS is maintained at each time k, there can be
at most n compatible iterations until essential termination
is reached. Thus, if the algorithm does not essentially
terminate, all iterations after some index k are incompati-
ble, and S(k) = S(k) for all k > k. On the other hand, since
lim, , .7, = ©, we have that 7, > k for all k sufficiently
large, so that S(r,) = S(k) for all k sufficiently large. This
contradicts the incompatibility of the kth iteration. Q.E.D.

The condition lim, _, .7, = ® is trivially verified in most
practical implementations; for example, when the time in-
terval from reading the current pair (5(t), p(t)) to attempt-
ing to modify the master pair (S(k), p(k)) after a shortest
path calculation is guaranteed to be bounded.

3. Computational Results

In order to evaluate the relative performance of parallel
synchronous and asynchronous Hungarian methods, we
developed three different variations of the successive short-
est path algorithm, the first two of which are synchronous
and the third is asynchronous. These variations differ in the
amount of work to be done by a processor in each iteration
before the results of the processor’s computation are used
to change the current assignment and prices. These varia-
tions are:

1. Single path synchronous augmentation. Here, at each itera-
tion, every processor finds a single shortest augmenting
path from an unassigned person to an unassigned object.
When the number U of unassigned persons becomes
less than the number of processors P, P — U processors
become idle.

2. Self-scheduled synchronous augmentation. Here, at each it-
eration, every processor finds a variable number of
shortest augmenting paths sequentially until the total
number of augmenting paths equals some threshold
number, which depends on the number of unassigned
persons and the number of processors.

3. Single path asynchronous augmentation. Here, at each itera-
tion, each processor finds a single shortest augmenting
path from an unassigned person to an unassigned object,
but the processors execute the iterations asynchronously.

In the subsequent subsections, we describe in greater
detail the above three algorithms, and we compare their
performance on a shared-memory Encore Multimax for
assignment problems with 1000 persons and varying den-
sity.

The three algorithms were based on a successive shortest
path algorithm which is similar to the sequential shortest
path portion of the code of Jonker and Volgenant!®! (re-
ferred to as the JV code) for sparse assignment problems
and the Hungarian part of Bertsekas’ assignment code.!

Our codes consist of three phases, which using Jonker and
Volgenant’s terminology!'”), are called: (1) column reduc-
tion phase, (2) reduction transfer phase, and, (3) successive
shortest paths phase.

The column reduction and reduction transfer phases are
initialization phases, which obtain an initial set of prices p
and an initial assignment S satisfying CS. A brief descrip-
tion of these two phases is as follows:

(a) S: empty.

(®) p, = maxg,c aipty J=L..., 0

(@ *(j) = min{i*j € A(D), a,,=p}, j=1,...,n
@ j*@

_ Jmin{jli*(j) =4} if {jli*(j) = i} is nonempty
0 otherwise
i=1,...,n.

(e) Fori=1,...,n,if j*(i) > 0, then S = S U (i, j*(i)).
() For(i,) € S, set p,=p, — maxX(;re a4y ~ Py}

The successive shortest paths phase is a straightforward
implementation of Dijkstra’s shortest path algorithm that
uses no special data structures such as D-heaps or R-heaps.

The augmenting row reduction phase of the JV codel'!
was not included in our code. This phase is not ordinarily
part of the Hungarian method but rather it consists of a
sequence of single-node relaxation iterationsl®’; equiva-
lently, it may be viewed as a sequence of naive auction
iterations (auction algorithm iterations where € = 01). By
experimentation, we found that this phase may require a
large percentage of the overall computations and may be
responsible for the assignment of a large number of objects.
We therefore felt that it would distort our conclusions on
the effect of multiple parallel shortest path constructions if
we were to include a naive auction or augmenting row
reduction phase in our code.

It is, however, interesting to know whether it is advanta-
geous to embed our parallel asynchronous methodology
within codes, such as the JV code, that combine a succes-
sive shortest path method with other methods. To this end
we have parallelized the successive shortest path portion of
the JV code using our ideas. With limited experimentation,
part of which is reported later in Table IV, we found that,
as expected, our approach, by speeding up the successive
shortest path phase, also speeds up the entire code. The
speedup depends on the ratio of the times required by the
naive auction and the successive shortest path portions. It
is also clear that by additionally parallelizing the naive
auction part of the JV code in a manner similar to our
asynchronous auction algorithm!?!, we can obtain further
speedup.

Synchronous Single-Path Augmentation Algorithm (88)

At each iteration of the synchronous single-path augmenta-
tion algorithm, each processor selects a different unas-
signed person and finds a shortest augmenting path from
that person to the set of unassigned objects. The algorithm
is synchronous because all of the processors use the same
assignment and price data: the ones produced by the previ-

Copyright © 2001 All Rights Reserved

Bertsekas and Castafion

ous iteration. Once a processor finds an augmenting path, it
checks for compatibility of this path versus the paths al-
ready incorporated in the assignment by other processors;
if the path is compatible, the assignment and prices are
updated as described in Section 2; otherwise, the path is
discarded. The processor then waits until all the other
processors complete their augmenting path computations
before starting a new iteration.

For a more precise description, let (S(k), p(k)) be the
assignment-price pair available at the start of the kth itera-
tion, and let M, be the minimum of the number of proces-
sors and the number of unassigned persons under S(k).
Then, each processor m = 1,..., M, selects a different per-
son i, from the queue of unassigned persons according to
S(k), and computes a shortest augmenting path P,, from i,
to the set of unassigned objects under S(k), and a corre-
sponding price vector p™(k). Without loss of generality,
assume that the order in which the processors complete
this computation is 1,2,..., M,. Then, (S(k), p(k)) is up-
dated as follows:

mentation algorithm is illustrated in Figure 3. In our imple-
mentation, the master pair (S(k), p(k)) and the temporary
pair (§', p') are stored in shared memory. The set of unas-
signed persons under S(k) is maintained in a queue; a lock
on this queue is used in order to guarantee that each
processor searches for an augmenting path starting at a
different person. Note the synchronization barrier at the
end of each iteration, and the sequential operation of copy-
ing the temporary assignments and prices to the permanent
assignment and prices. A single synchronization lock on
the temporary assignment and prices is used to guarantee
that the updates (13) are done in a sequential manner. Note
that, whenever an augmentation is deemed incompatible
with the temporary assignment, the unassigned person
associated with that augmentation is reinserted into the
unassigned persons queue.

The two principal drawbacks of the synchronous single-
person augmentation algorithm are the idle time spent by
each processor at the barrier while other processors are still
computing augmenting paths, and the overhead required

(5, p') = (S(k), p(k)) (12)
Dom=1,..., M,
If P, is an augmenting path with respect to ', update §’
by performing the corresponding augmentation and set
p,=max{p, p"(k)}, j=1,...,n (13)
End do
S(k+1)=5, plk+1):=p. (14)

The temporary pair (S, p') is maintained for checking
the compatibility of each new augmenting path with the
previous augmenting paths. After all processors have com-
pleted their compatibility check and attendant updating of
(S', p'), the master assignment-price pair is set to (5, p').

The overall logic of the synchronous single-person aug-

for copying the temporary assignments and prices onto the
permanent assignments and prices. The second drawback
can be alleviated by using additional processors, since less
iterations will be required for convergence. However, in-
creasing the number of processors will increase the vari-
ability of the computation times for the different augmen-

Compuite shortest (" Lock temporary Update temporary Unlock temporary
z::“ 29 ™\ assigi & prices assignments & prices assignments & prices
1
|
Unassigned |
Person . |
Queue :
4 — e e = e e = = o= ——— - v Copy temporary
assignments &
[| | l I Unassigned Persons 1 prices to permanent
€ = — o e e e - — — o e e jassignments & prices

Compute shortest

Lock temporary
f‘:a;’: ?“9’“9"'3"“' - (assagnmems & prices) »
M

Update temporary
assignments & prices

Unlock temporary
assignments & prices

- /

Agwrs 3. Design of Parallel synchronous single-path augmentation algorithm.

Copyright © 2001 All Rights Reserved

269

Hungarian Methods for Assignment Problem

tations in each iteration, and thus increase the overall
percentage of time that a processor spends waiting at the
barrier.

Table I illustrates the performance of the parallel syn-
chronous single-path augmentation algorithm for a 1000
person fully dense assignment problem with cost range
[1,1000] as a function of the number of processors used in
the Encore Multimax. The table gives the time required for
the successive shortest paths phase and the number of
incompatible augmentations as a function of the number of
processors used, as an average of three different runs. The
total number of unassigned persons at the beginning of the
successive shortest paths phase was 397; thus, the overhead
for incompatible augmentations is a small fraction of the
overall computation in these experiments. There was some
variability in the run times for different runs; this is due to
randomness in the order of completion of the individual
processors, which can lead to differences as to which aug-
mentations are declared incompatible.

Table I suggests that the synchronous single-path aug-
mentation algorithm can achieve a relatively limited
speedup. There are two potential reasons for this: the
synchronization overhead arising from processors waiting
at the barrier for other processors to complete their compu-
tations, and the sequential part of the computation which
arises at the last iteration when there is only one unas-
signed person remaining. In order to verify these hypothe-
ses, we measured the total number of seconds that each
processor spent waiting for other processors to complete
their computations averaged across processors (the average
wait time), and the number of seconds taken by the last
iteration assuming only one person was assigned at the last
iteration (this is called the sequential computation time); if the
last iteration involves more than one path, the sequential
computation time is zero. The sequential computation time
is an indication of the amount of sequential work in the
successive shortest paths phase which was not paralleliz-
able.

For the runs used to generate Table I, we found that the
average wait time of each processor when using multiple
processors was close to 17% of the single-processor compu-
tation time! This additional synchronization overhead re-
duces the multiprocessor efficiency of the asynchronous
algorithm. In addition, the sequential computation time
was also nearly 11% of the single-processor computation
time, further limiting the obtainable speedup. The last
augmenting path is typically one of the longest.

Table I. Run Times for the Synchronous
Single-Path Augmentation Algorithm

Number of 1 2 4 6 8
Pprocessors

Time (secs) 103.7 867 807 644 714

Rejected 0 4 26 26 44
augmentations

The numbers given represent an average over three runs with
the same problem.

It is interesting that the average wait time does not
increase significantly with the number of processors. The
reason is that, although there is increased variability in the
computation times of the different augmentations by differ-
ent processors, the number of times for which the proces-
sors need to be synchronized is reduced (because more
augmenting paths are found in parallel); these two effects
appear to cancel each other out, leading to a nearly con-
stant average wait time.

Seii-Scheduled Synchronous Augmentation Algorithm (388)

One of the main limitations in efficiency of the synchronous
single-path augmentation algorithm is the average wait
time incurred by each processor after finding an augment-
ing path. In order to reduce this limitation, the self-sched-
uled synchronous augmentation algorithm allows each pro-
cessor to find several augmenting paths before attempting
to synchronize the results with the computations of other
processors. Specifically, during each iteration, each proces-
sor selects a different unassigned person and finds a short-
est augmenting path from that person to the set of unas-
signed objects. The algorithm is synchronous because all of
the processors use the same assignment-price pair (S(k),
p(k)). Once a processor finds an augmenting path, it checks
for the compatibility of this augmentation versus augmen-
tations already found by other processors, and updates the
temporary pair (5', p') as in the synchronous single-path
augmentation algorithm. However, instead of proceeding
to a barrier and waiting for the remaining processors to
complete their computations, the processor checks whether
the total number of unassigned persons considered during
this iteration is less than a threshold T(k) (which is itera-
tion-dependent). If the number is less than T(k), the pro-
cessor retrieves another unassigned person, finds another
augmenting path, and repeats the processor; otherwise, the
processor proceeds to a barrier and waits for other proces-
sors to complete their computations.

Figure 4 illustrates the overall logic of the self-scheduled
synchronous augmentation algorithm. As before, our im-
plementation stores the permanent pair (S(k), p(k)) and
temporary pair (S', p') in shared memory. The set of unas-
signed persons in the assignment S(k) is maintained in a
queue (with a shared lock) and a synchronization barrier is
used at the end of each iteration k.

The iterations of the self-scheduled synchronous aug-
mentation algorithm are similar to those described in Equa-
tions 12-14. The only difference is that each processor can
modify the temporary assignments S’ and the temporary
prices p' more than once. The total number of augmenta-
tions at iteration k is determined by the threshold T(k),
which was chosen as follows: Let LU(k) denote the number
of unassigned persons at the beginning of iteration k, and
let P denote the number of processors. Then

udk) .
T(k) = max{ —5 ,P} if U(k) > P
Uck)

This is similar to the approach used in Balas et al.M"!

otherwise.

Copyright © 2001 All Rights Reserved

270

Bertsekas and Castanon

Compute shortest (Lock temporary
path aug forl—{ & pices ’_’
from { -

’ Yes)
Number
L?dde 18"’:0'3'7 Unlock temporary Augmentations
assignments & prices assignments & prices < Threshold?

Unassigned
Person
Queue

11

Compute shorlest [Lock temporary
path augi s | & prices
from 1y

No

\ Copy temporary
assignments &

Barner prices to permanent

i gl & prices

No

Number
Update ’9"‘§°‘a'Y Unlock temporary Augmentations
assignments & prices assignments & prices < Threshold?
Yes

/

Agure 4. Design of parallel self-scheduled synchronous augmentation algorithm.

Table 1I illustrates the performance of the parallel self-
scheduled synchronous algorithm for the same 1000 person
dense assignment problem with cost range [1,1000] used
previously, as a function of the number of processors used.
The table contains the time required for the successive
shortest paths phase of three different runs and the number
of incompatible augmentations, as well as the average
results. The total number of unassigned persons at the
beginning of the successive shortest paths phase was 397.
Here the incompatible augmentations represent a signifi-
cant fraction of the required work; this is easily seen by
comparing the single processor time in Table I with the one
in Table II, indicating an increase of nearly 90% additional
computation. The increase in incompatible augmentations
is indicative of the use of older assignment-price pair
information.

The results of Table II indicate that parallelization of the
self-scheduled synchronous algorithm is more efficient than
parallelization of the synchronous single-path algorithm, in
spite of the increased computation load associated with a
larger number of augmentations. This is due in large part
to the fact that the average wait times for the self-sched-
uled synchronous algorithm were nearly 40% smaller than
the comparable times for the synchronous single-path algo-
rithm, and this outweighted the larger number of augment-
ing paths computed.

Single-Path Asynchronous Augmentation Algorithm (AS)

One of the major factors which limited the speedup of the
previous parallel synchronous algorithms was the average
wait time incurred by each processor. The single-path asyn-
chronous augmentation algorithm was designed to reduce
this overhead by allowing processors to directly augment
the permanent assignment S(k) and modify the price vec-
tor p(k) without waiting for other processors to complete
their computations. In this algorithm, each processor selects
a different unassigned person, and finds an augmenting
path from this person to the set of unassigned objects. Once
a processor finds an augmenting path, it checks the com-

Table II. Run Times for the Self-Scheduled
Synchronous Augmentation Algorithm
Number of 1 2 4 6 8
Processors
Time (secs) 199.3 97.9 82.6 58.6 68.4
Rejected 112 100 103 101 103
augmentations

The numbers given represent an average over three runs with
the same problem.

patibility of the path with the current state of the network
(as described in Section 2), and augments the assignment
and raises the object prices if the augmentation is compati-
ble. The processor then obtains a copy of the current net-
work state, selects another unassigned person and proceeds
to find another augmenting path using the updated state of
the network.

Figure 5 illustrates the logic of the single-path asyn-
chronous augmentation algorithm. In contrast with the
previous synchronous algorithms, there is no barrier at the
end of each iteration where processors must wait for other
processors to complete their computations. Instead, each
processor locks the master copy of the current assignment-
price pair, modifies it according to the compatibility of its
augmenting path, and releases the lock on the master copy.
The processor then repeats the process with a new unas-
signed person.

Thus, the asynchronous algorithm maintains M + 1
copies (where M is the number of processors currently
used) of the assignment-price pair (S, p). In our implemen-
tation, a master copy is maintained in shared memory, and
local copies are maintained in the local memory of each
processor. In contrast, the synchronous algorithms dis-
cussed previously maintain 2 copies of (S, p) (permanent
and temporary), both in shared-memory.

Table III illustrates the performance of the single-path
asynchronous augmentation algorithm for the same 1000

Copyrnght © 2001 Al Rights Reserved

2n

Hungarian Methods for Assignment Problem

Update
Copy Unlock Compute shortest Lock assig:ments Unlock
assignments/Hm{assignments/ assignments/ path augmentation assignments/ & prices assignments/
prices prices to prices from 14 prices prices

local |

Unassigned |

Person . |
Queue .
L]

€ — - — = — I

I | l l Unassigned Persons

-+ — — - — — = = - = — = = = = = = = = = = .

- |
L

* !

1

Update
Copy Unlock Compute shorte;t Lock assiggmens Unilock
assngnments/ assignments/ path augmentation| ssignments/ 8 prces assignments/
prices to prices from 1 M prices prices
local 7

Fgure 5. Design of parallel asynchronous single-path augmentation algorithm.

Table IIl. Run Times for the Asynchronous
Single-Path Augmentation Algorithm
Number of 1 2 4 6 8
processors
Time (secs) 106.7 671 593 596 645
Rejected 0 13 30 44 58
augmentations

The numbers given represent an average over three runs with
the same problem.

person dense assignment problem described previously.
Again, the computation times reported are the times for the
successive shortest paths phase. Contrasting Table III with
the corresponding results in Tables I and II, we see that the
asynchronous algorithm tends to be faster than the corre-
sponding synchronous algorithms; however, the improve-
ment in run-time is greater for smaller numbers of proces-
sors. Note that the number of augmenting paths rejected
increases rapidly as the number of processors increases,
thereby increasing the computation load. Surprisingly, this
number is larger than the corresponding number for the
single-path synchronous augmentation algorithm (although
in principle the asynchronous algorithm is using more
recent information concerning the assignments and prices).

Although there is no synchronization barrier, there is
some delay associated with acquiring a lock on the master
copy of the assignment-price pair due to possible conflicts
with other processors which are also trying to write or copy
this pair. Thus, we define the average wait time per proces-
sor to be the total amount of time (averaged across proces-
sors) that a processor spent waiting to acquire access to
locked data structures. This time increases with the number
of processors and therefore limits the achievable speedup.

We found that the average wait time in the single-path
asynchronous algorithm was reduced considerably relative
to the corresponding synchronous algorithm, leading to

substantial reductions in computation time. However, this
computation advantage is often limited because of an in-
crease in sequential computation time in the asynchronous
algorithm. This increase is due to the asynchronous nature
of the algorithm; if computation of the last augmenting
path starts with ““old” data, the resulting augmenting path
may be incompatible, thereby requiring repetition of the
computation. Our empirical results show that the asyn-
chronous algorithms often have a longer sequential compu-
tation time than the synchronous algorithms, because the
synchronous algorithms guarantee that the last augmenting
path need only be computed once. We note that for the
asynchronous algorithm, there was substantially more vari-
ability in the sequential computation times between differ-
ent runs for the same problem when compared to those of
the synchronous algorithms.

Performance of Parallel Hungarian Algorithms for Sparse
Assignment Problems

The performance results in the previous subsections were
obtained using a dense 1000-person assignment problem.
For such problems, the ratio of the time required to find a
shortest path (from an unassigned person to the set of
unassigned objects) to the time required to make a copy
of the current assignment-price pair is large. As the density
of the assignment problem decreases, this ratio is likely to
decrease because the time required to make a copy of the
current assignment-price pair remains constant (depending
only on the number of objects), while the time required to
find a shortest path will decrease by exploiting sparsity. In
this subsection, we illustrate the effects of sparsity on the
relative performance of the three parallel Hungarian algo-
rithms discussed previously.

Figure 6 illustrates the speedup of the successive short-
est paths phase of the three parallel Hungarian algorithms
relative to the single-processor, single-path synchronous
algorithm, for a 1000 person, 30% dense assignment prob-

Copyright © 2001 All Rights Reserved

272

Bertsekas and Castafion

lem, cost range [1,1000]. When a single processor is used,
the self-scheduled synchronous augmentation algorithm is
the slowest because it must find additional shortest paths
(as a result of incompatibility problems). The asynchronous
algorithm is the fastest because of the reduced synchroniza-
tion overhead. Similarly, the self-scheduling synchronous
augmentation algorithm is faster than the synchronous
single-path augmentation algorithm because of the reduced
synchronization overhead.

Figure 7 illustrates the average wait time for each of the
algorithms in Figure 6. These curves illustrate the dramatic
reductions in synchronization overhead which can be
achieved by the asynchronous algorithm. The average wait
time of the asynchronous algorithm grows almost linearly
with the number of processors but is a small fraction of the
overall computation time (less than 10%).

Figure 8 illustrates the computation time in the succes-
sive shortest paths phase (averaged across three runs) of
the three algorithms for a 1000-person, 2% dense assign-
ment problem, with cost range [1, 1000]. As in Figure 6, the
asynchronous algorithm makes very effective use of a small
number of processors (< 2). However, as the number of
processors increases, the speedup achievable by the asyn-
chronous algorithm is much smaller than the speedup
achievable by the two synchronous algorithms. The princi-
pal reason for this is a relative increase in the average wait
time per processor for the asynchronous algorithm.

Figure 9 describes the variation of the average wait time
per processor as a function of the number of processors for
the three algorithms. As the figure illustrates, the average
wait times for the synchronous algorithms is bounded as
the number of processors increases, and is much smaller
than the corresponding times in Figure 7. In contrast, the
average wait time for the asynchronous algorithm grows

3~
g 2
=
e
Q
o
[=4
g
c
o
a
=1
el
> 14
23
w
o L) 1 A L] 1 v L
o 2 4 6 8 10

Number of Processors

Fgure 8. Speedup of the successive shortest paths phase
relative to the single-processor, single-path synchronous
algorithm as a function of the number of processors used
on the Encore Multimax. The problem has 1000 persons, a
30% density, and a [1,1000] cost range.

10 ~

@
0

©

L

o

v

=
R
g

=4

o

=3

[2]

S 64
[

8

8

=1

5]

£ 4
®

£

[

3

=

] 2 +
g

3

>

<

[v T T v
0 2 4 6 8

Number of Processors
Agure 7. Average wait time per processor for 1000 person,
30% dense assignment problem, with cost range [1, 1000],
as a function of the number of processors used on the
Encore Multimax.

x
1]
E
£ 2
=
jod
2
1]
c
w
=
o
Q
3
®
2 14
@ womn g SSS
0 L] v T v T v T -
0 2 4 6 8 10

Number of Processors
Rgure 8. Speedup of the successive shortest paths phase
relative to the single-processor, single-path synchronous
algorithm as a function of the number of processors used
on the Encore Multimax. The problem has 1000 persons, a
2% density, and a [1,1000] cost range.

almost linearly with the number of processors and is larger
than the corresponding time in Figure 7! These phenomena
are due to the reduced computation time for an augment-
ing path in the sparser (2% vs. 30%) network. The main
cause of average wait time in the synchronous algorithms
is the variability in computation time for different aug-
menting paths computed synchronously by each processor.
Thus, a reduction in the computation time of each aug-
menting path correspondingly reduces the average wait
time of each processor; as Figure 9 indicates, the average

Copyright © 2001 All Rights Reserved

Hungarian Methods for Assignment Problem

2
2]
©
=
a
1723
=
g
a
%
[
©
Qo
=
w
o
2
w
3
8 14
=1
w
k=4
Q
E
=
=
2
]
[=2]
I
2
<
0 had 13 L] v T v 1
0 2 4 6 8

Number of Processors
fipure 8. Average wait time per processor for 1000 person,
2% dense assignment problem, with cost range [1,1000] as
a function of the number of processors on the Encore
Multimax.

wait times of the synchronous algorithms are now smaller
than those of the asynchronous algorithm when six or more
processors are used.

The growth of the average wait time of the asynchronous
algorithm is due to the implementation of the algorithm on
the Encore Multimax and could be qualitatively different in
another parallel architecture. As Figure 5 illustrates, a max-
imum of one processor can be either reading or modifying
the master assignment-price pair at any one time. The
number of copies which must be made by the asyn-
chronous algorithm increases with the number of proces-
sors, and each copy must be made in a sequential manner.
In contrast, the synchronous algorithms need only make a
single copy of the assignment-price pair (into shared mem-
ory); thus, the synchronous algorithms are more efficient
when the time required to copy the assignment-price pairs
is significant compared to the total computation time of the
algorithm. This is the case for the 2% dense problem,
where the time required for synchronization of the
read /write operations is nearly 30% of the overall compu-
tation time.

Comparison with the JV Code

To quantify the benefit derived from our parallel asyn-
chronous methodology in the context of efficient assign-
ment algorithms that combine a successive shortest path
methodology with other methods such as auction, we par-
allelized the successive shortest paths phase of the JV code.
The results for a problem with 1000 persons, 20% density,
and [1,1000] cost range are given in Table IV, and indicate
that a significant speedup can be obtained, depending on
how time consuming the successive shortest paths phase is
relative to the naive auction phase.

Table IV. A Comparison of the Solution Times on
the Encore Multimax of the Sequential JV Code and the
Version of this Code Where the Successive Shortest Paths
Phase Has Been Parallelized Asynchronously
According to Our Methodology

I\4 Par. Asynch.JV Par. Asynch. JV
Sequential One Processor Four Processors

Total time 22.6 2343 16.2
Succ. sh. 18.06 18.83 11.6
path time

The problem has 1000 persons, 20% density, and [1,1000] cost
range. Note that the parallel JV code time with one processor is
slightly larger than the sequential JV code time because of some
additional overhead related to parallelization.

Acknowiedgments

This work was supported in part by the BM/C3 Technology
branch of the United States Army Strategic Defense Command,
and in part by National Science Foundation under Grant DDM-
8903385 and Grant CCR-9103804. The authors would like to thank
the Mathematics and Computer Science Division of the Argonne
National Laboratory for providing access to the Advanced Com-
puter Research Facility and training in the use of the Encore
Multimax.

References

1. E. BaLas, D. MILLER,]J. PEXNY and P. ToTH, 1991. A Parallel
Shortest Path Algorithm for the Assignment Problem, Journal
of the ACM, 38, 985-1004.

2. D.P. Bertsekas and D.A. CASTARON, 1991. Parallel Synchronous
and Asynchronous Implementations of the Auction Algorithm,
Parallel Computing 17, 707-732.

3. D.P. BErTsEKAS and J.N. TsITSIKLIS, 1989. Parallel and Distributed
Computation: Numerical Methods, Prentice-Hall, Englewood
Cliffs, NJ.

4. D.P. BERTSEKAS, 1979. A Distributed Algorithm for the Assign-
ment Problem, Laboratory for Information and Decision Sys-
tems Working Paper, M.I.T.,, Cambridge, MA.

5. D.P. BERTSEKAS, 1981. A New Algorithm for the Assignment
Problem, Mathematical Programming 21, 152-171.

6. D.P. BERTSEKAS, 1988. The Auction Algorithm: A Distributed
Relaxation Method for the Assignment Problem, Annals of
Operations Research 14, 105-123.

7. D.P. BERTSEKAS, 1990. The Auction Algorithm for Assignment
and Other Network Flow Problems: A Tutorial, Inferfaces 20,
133-149.

8. D.P. BERTSEKAS, 1991. Linear Network Optimization: Algorithms
and Codes, M.LT, Press, Cambridge, MA.

9. G. CARPANETO, S. MARTELLO and P. ToTH, 1988. Algorithms and
Codes for the Assignment Problem, Annals of Operations Re-
search 13, 193-223.

10. D.A. CASTARNON, B.5SMrTH and A. WiLsON, 1989. Performance of
Parallel Assignment Algorithms on Different Multiprocessor
Architectures, ALPHATECH report TP-1245, Burlington, MA.

11. U. Derics, 1985, The Shortest Augmenting Path Method for
Solving Assignment Problems—Motivation and Computa-
tional Experience, Annals of Operations Research 4, 57-102.

Copyright © 2001 All Rights Reserved

274

13.

14.

15.

16.

17.

18.

19.

Bertsekas and Castafion

- M. ENGQUIST, 1982. A Successive Shortest Path Algorithm for
the Assignment Problem, INFOR 20, 370-384.

F. GLOVER, R. GLOVER and D. KLINGMAN, 1982. Threshold As-
signment Algorithm, Center for Business Decision Analysis
Report CBDA 107, Graduate School of Business, University of
Texas at Austin.

M. HaLL, Jr., 1956. An Algorithm for Distinct Representatives,
American Mathematical Monthly 51, 716-717.

R. JONKER and A. VOLGENANT, 1987. A Shortest Augmenting
Path Algorithm for Dense and Sparse Linear Assignment Prob-
lems, Computing 38, 325-340.

D. Kempa, J. KENNINGTON and H. Zaki, 1991. Performance
Characteristics of the Jacobi and Gauss-Seidel Versions of the
Auction Algorithm on the Alliant FX/8, ORSA Journal on
Computing 3, 92-106.

J. KENNINGTON and Z. WANG, 1988. Solving Dense Assignment
Problems on a Shared Memory Multiprocessor, Technical Re-
port 88-OR-16, Department of Operations Research and Ap-
plied Science, Southern Methodist University, Dallas, TX.
HW. KunN, 1955. The Hungarian Method for the Assignment
Problem, Naval Research Logistics Quarterly 2, 83-97

E. LAWLER, 1976. Combinatorial Optimization: Networks and Ma-
troids, Holt, Rinehart & Winston, New York, p. 206.

20.

21.

22.

23.

24.

25.

26.

L.F. MCGINNs, 1983. Implementation and Testing of a Primal-
Dual Algorithm for the Assignment Problem, Operations Re-
search 31, 277-291.

C.H. PAPADIMITRIOU and K. STEIGLITZ, 1982. Combinatorial Opti-
mization: Algotithms and Complexity, Prentice-Hall, Englewood
Cliffs, NJ.

C. PrrLuips and S.A. Zenios, 1989. Experiences with Large Scale
Network Optimization on the Connection Machine, The Impact
of Recent Computing Advances on Operations Research, Elsevier
Publishing Co., New York, pp. 169-180.

R.T. ROCKAFELLAR, 1984. Network Flows and Monotropic Program-
ming, Wiley-Interscience, New York.

J. WEIN and S.A. Zenios, 1990. Massively Parallel Auction
Algorithms for the Assignment Problem, Proceedings of 3rd
Symposium on the Frontiers of Massively Parallel Computation,
College Park, MD, pp. 90-99.

]. WEIN and S.A. Zenios, 1991. On the Massively Parallel
Solution of the Assignment Problem, Journal of Parallel and
Distributed Computing 13, 228~236.

H. Zaxi, 1990. A Comparison of Two Algorithms for the
Assignment Problem, Report ORL 90-002, Department of Me-
chanical and Industrial Engineering, University of Illinois,
Urbana.

Copyright © 2001 All Rights Reserved

Copyright of ORSA Journal on Computing is the property of INFORMS: Institute for Operations
Research and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

