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Abstract. In this paper we discuss the parallel asynchronous implementation of the classical primal- 
dual method for solving the linear minimum cost network flow problem. Multiple augmentations and 
price rises are simultaneously attempted starting from several nodes with possibly outdated price and 
flow information. The results are then merged asynchronously subject to rather weak compatibility 
conditions. We show that this algorithm is valid, terminating finitely to an optimal solution. We also 
present computational results using an Encore MULTIMAX that illustrate the speedup that can be 
obtained by parallel implementation. 
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1. Introduction 

Consider a directed graph with node set A /and  arc set A. Each arc (i, j )  has 
a cost coefficient a~j. We denote by fij the flow of an arc (i, j). The minimum 
cost flow (or transshipment) problem is 

minimize ~ aqfq 
(i,j)~.a 

subject to 

(LNF) 

~_, fij - ~ fji = si, V i e ) q ' ,  (1) 
{jt(i,j)EA} {j[(j,i)eA} 

bij ~_ f i j  ~- clj, V (i, j)  e A ,  (2) 

where a~j, bq, cij, and s~ are given integers. We assume that there exists at most 
one arc in each direction between any pair of nodes, but this assumption is made 
for notational convenience and can be easily dispensed with. 

*This work supported in part by the BM/C3 Technology branch of the United States Army Strategic 
Defense Command. 
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A classical and still frequently used method for solving this problem is the 
primal-dual method due to Ford and Fulkerson [12, 13]. The basic idea is to 
maintain a price for each node and a flow for each arc, which satisfy complemen- 
tary slackness. The method makes progress toward primal feasibility by successive 
augmentations along paths with certain properties and by making price changes 
to facilitate the creation of paths with such properties (see the description in the 
next section). The paths and the corresponding price adjustments can also be 
obtained by a shortest path computation (see the next section). The search for 
the augmenting path may be initiated from a single node or from multiple (or all) 
nodes with positive surplus [1, 4]. The method is also known as the "sequential 
shortest path method," and it is closely related to an algorithm of Busaker and 
Gowen [11], which also involves augmentations along certain shortest paths. 

In this paper we propose parallel asynchronous versions of the primal-dual 
method where several augmenting paths are simultaneously constructed, each 
starting from a different node. This is the first proposal for a parallel (synchronous 
or asynchronous) primal-dual method for the transshipment problem (other than 
the obvious suggestions of parallelizing the algebra of the serial version; see 
[7] for a recent survey of parallel algorithms for network optimization, which 
contains an extensive reference list). Our proposal has been motivated by the 
synchronous parallel sequential shortest path algorithm introduced by Balas et 
al. [2] for the case of an assignment problem. They have shown that if the 
augmenting paths are pairwise disjoint, they can all be used to modify the current 
flow; to preserve complementary slackness, the node prices should be modified 
according to the "max-rule," that is, they should be raised to the maximum of 
the levels that would result from each individual shortest path calculation. In [5], 
we have shown the validity of an asynchronous parallel implementation of the 
Hungarian method, which is an extension of the synchronous parallel Hungarian 
method of Balas et al. [2]. The potential advantage of asynchronous algorithms 
is that they often work faster than their synchronous counterparts because they 
are not penalized by synchronization delays (see [6] and also [9] for an extensive 
discussion of related issues). In particular, computational experiments with 
assignment problems on the Encore Multimax shared-memory multiprocessor [5] 
show that asynchronism often results in faster execution. 

In addition to showing the finite termination of our parallel asynchronous 
primal-dual method to an optimal solution, we discuss combinations of the 
primal-dual method with single node relaxation (coordinate ascent) iterations, 
and we similarly show that the combined algorithms work correctly in a parallel 
asynchronous context. Our results can be used to develop parallel versions of 
efficient minimum cost network optimization codes such as the RELAX algorithm 
of [8]. 

Note that it is by no means obvious why the max-rule works in a synchronous 
setting and, afortiori, in an asynchronous setting. For this reason the proofs 
of algorithmic validity of [2, 5] for the case of the assignment problem have 
been challenging and complicated. Similarly, our finite termination proof for the 
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minimum cost flow problem is long and nontrivial. 
In the next section we describe synchronous and asynchronous parallel versions 

of the primal-dual algorithm and in Section 3 we prove their validity. The primal- 
dual method can be substantially accelerated by combining it with single node 
relaxation iterations of the type introduced in [3]. In Section 4 we show how such 
combinations can be implemented in a parallel asynchronous setting. Finally, in 
Section 5 we briefly discuss both synchronous and asynchronous implementations 
on shared-memory architectures, and discuss computational results obtained 
on an Encore MULTIMAX. The results illustrate the potential advantages of 
asynchronous computation for these methods. 

2. The parallel asynchronous primal-dual method 

We introduce some terminology and notation. We denote by f the vector with 
elements f~j, (i, j) E ,A. We refer to b~j and c~j, and the interval [b~j, cij] as 
the flow bounds and the feasible flow range of arc (i, j ) ,  respectively. We refer 
to si as the supply of node /. We refer to the constraints (1) and (2) as the 
conservation of  flow constraints and the capacity constraints, respectively. A flow 
vector satisfying both of these constraints is called feasible, and if it satisfies just 
the capacity constraints, it is called capacity-feasible. If there exists at least one 
feasible flow vector, problem (LNF) is called feasible and otherwise it is called 
infeasible. For a given flow vector f ,  we define the surplus of node i by 

a~= ~ f j , -  ~., fij+8~. (3) 
{jl(j,i)eA} {jl(i,j)eA} 

We introduce a dual variable pi for each node i, also referred to as the price 
of  node i. A flow-price vector pair (f,  p) is said to satisfy the complementary 
slackness conditions (CS for short) if f is capacity-feasible and 

f i j  < eij ==)" Pi < aij -t- pj V (i, j) �9 .4, (4a) 

bij < flj ~ P~ > aij + pj  V (i, j) �9 .4. (4b) 

For a pair (f ,  p), feasibility of f and CS are the necessary and sufficient conditions 
for f to be optimal and p to be an optimal solution of a certain dual problem 
(see e.g., [16] or [91). 

The primal-dual method maintains a pair (f,  p) satisfying CS, such that f is 
capacity-feasible. The method makes progress towards optimality by reducing 
the total absolute surplus ~iE~r Igil by an integer amount at each iteration, as 
we now describe. 

For a given capacity-feasible f ,  an unblocked path P (with respect to f )  is 
a path (il, i2 . . . .  , ik) such that for each m = 1 . . . .  , k - 1, either (ira, ira+l) is 
an arc with fimi~+l < cim~+, (called a forward arc) or (ira+l, ira) is an arc with 
bim+lim < fi,~+l,im (called a backward arc). We denote by P+ and P -  the sets of 
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forward and backward arcs of P, respectively. The unblocked path P is said to 
be an augmenting path if 

9il > 0 ,  gik <0.  

An augmentation along an augmenting path P consists of increasing the flow of 
the arcs in P+ and decreasing the flow of the arcs in P -  by the common positive 
increment 6 given by 

{gil, -gi~, {Cm,~ - finn I (m, n) �9 P+}, 8 min 

- I(m, n) �9 P - } } .  (5) {fm  

Given a price vector p, the reduced cost of arc (i, j )  is given by 

rq = aij + pj - pi. (6) 

If (f, p) is a pair satisfying the CS condition (4) and P is an unblocked path 
with respect to f ,  the cost length of P is defined by 

c<)= E (7) 
(i,j)EP + (i , j)eP- 

and the reduced cost length of P is defined by 

R(p, P) = Z r l j -  Z rq. (8) 
(i , j)eP + (i,j)EP- 

Note that by CS, we have rij _> 0 for all (i, j )  �9 P+ and rij < 0 for all (i, j )  E P - ,  
so R(p, P) >__ O. For a pair of nodes i and j,  let 7~ij(f) be the set of unblocked 
paths starting at i and ending at j, and let 

= / minee~,,~(f)R(p, P) if 7~q(f) is nonempty 
v i i ( f ,  P) (9) 

( oo otherwise. 

If there exists at least one node j with gj < 0, the distance of i is defined by 

d i =  [ min{~lgj<~ vii(f, p) if g, _> 0 (10) 

to otherwise, 

and, otherwise, the distance dl is defined to be oo. It is well known that if the 
problem is feasible, we have d~ < oo for all i with gi > 0, that is, there exists an 
augmenting path starting at each node that has positive surplus. 

The typical primal-dual iteration starts with a pair (f, p) satisfying CS and 
generates another pair (f ,  if) satisfying CS as follows. 
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Typical iteration of the serial primal-dual method 

Choose a node i with gi > 0. [If no such node can be found, the algorithm 
terminates. There are then two possibilities: (1) gl = 0 for all i, in which case 
f is optimal since it is feasible and satisfies CS together with p; (2) g~ < 0 for 
some i, in which case problem (LNF) is infeasible.] If d~ = ee the algorithm 
terminates, since then there is no augmenting path from the positive surplus 
node i to any negative surplus node, and the problem is infeasible. If d i <  oe, 
let j And P be the minimizing node with 97 < 0 and corresponding augmenting 
path in the definition of the distance di [cf. (9), (10)], that is, 

= arg rain vii(f, p), (11) 
{JlgJ <0} 

= arg rain R(p, P). (12) 

Change the node prices according to 

~j = pj + max{0, di - vii(f, p)}, V j E .h/, (13) 

and perform an augmentation along the path P, obtaining a new flow vector f .  

We note that the primal-dual iteration can be executed by a shortest path 
computation. To see this, consider the residual graph, obtained from the original 
by assigning length ri~ to each arc (i, j )  with fij = cij, by replacing each arc 
(i, j )  with fij = c/~ by an arc (j, i) with length -r i j ,  and by replacing each arc 
(i, j )  with bit < fij < c/j with two arcs (i, j )  and (j, i) with length zero [the 
reduced cost of (i, j), cf. the CS condition (4)]. Then the augmenting path P 
is a shortest path in the residual graph, over all paths starting at the node i and 
ending at a node j with 9j < 0. Note that by the CS condition, all arc lengths 
are nonnegative in the residual graph, so Dijkstra's method can be used for the 
shortest path computation. 

The results of the following proposition are well known (see e.g. [1, 4, 15, 
16]) and will be used in what follows: 

PROPOSITION 1. I f  problem (LNF) is feasible, then a node ~ and an augmenting 
path -P satisfying (11) and (12) exist. Furthermore, if (f,  ~) is a pair obtained by 
executing a primal-dual iteration on a pair ( f ,  p) satisfying CS, the following hold: 

(a) I f  f consists of integer flows, the same is true for -f. 
(b) (f,  ~ )and  (f ,  p) satisfy CS. 
(c) Let P be the augmenting path of  the iteration. Then 

R(~, P) = O, 

that is, all arcs of  P have zero reduced cost with respect to ~. 
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(d) ~j = pj for all j with 9j < O. 

By Proposition 1, if initially f is integer and the pair (f, p) satisfies CS, the 
same is true after all subsequent iterations. Then at each iteration, the total 
absolute surplus ~ i e x  Ig l will be reduced by the positive integer 26, where 6 is 
the augmentation increment given by (5). Thus only a finite number of reductions 
of ~ e x  19~[ can occur, implying that the algorithm must terminate in a finite 
number of iterations if the problem is feasible. 

We now introduce a parallel synchronous version of the primal-dual algorithm. 
To simplify the statement of this and the subsequent asynchronous algorithm, we 
assume that the problem is feasible; as in the serial version, infeasibility can be 
detected when no augmenting path can be constructed starting at some positive 
surplus node, or when there is no node with positive surplus, but there is a node 
with negative surplus. 

The algorithm terminates when all nodes have zero surplus. Each iteration 
starts with a pair (f, p) satisfying CS. Several augmenting paths are constructed 
in parallel, and these paths are used to generate another pair (f ,  ~) as follows. 

Typical iteration of parallel synchronous primal-dual method 

Choose a subset I = {il . . . .  , ira} of nodes with positive surplus. For each 
in, n = 1 , . . . m ,  let ~(n) and P(n) be the price vector and augmenting path 
obtained by executing a primal-dual iteration starting at iN, and using the pair 
(f, p). Then generate sequentially the pairs (f(n),  p(n)), n = 1 , . . . ,  m, as 
follows, starting with (f(O), p(O)) = (f, p): 
For n = O, . . . ,  m - 1, if P(n + 1) is an augmenting path with respect to f (n) ,  
obtain f ( n  + 1) by augmenting f (n)  along P(n + 1), and set 

pj(n + 1) = max{pj(n), ~j(n)}, Y j e M. 

Otherwise set 

f ( n + l )  = f(n) ,  p(n-t-1) =p(n).  

The pair (f ,  ~) generated by the iteration is 

f = f ( m ) ,  ~=p(m). 

The preceding algorithm can be parallelized by using multiple processors to 
compute the augmenting paths of an iteration in parallel. On the other hand the 
algorithm is synchronous in that iterations have clear "boundaries." In particular, 
all augmenting paths generated in the same iteration are computed on the basis of 
the same pair (f, p). Thus, it is necessary to synchronize the parallel processors 
at the beginning of each iteration, with an attendant synchronization penalty. 
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The parallel asynchronous primal-dual algorithm tries to reduce the synchro- 
nization penalty by "blurring" the boundaries between iterations and by allowing 
processors to compute augmenting paths using pairs (f, p) which are out of date. 

To describe the parallel asynchronous algorithm, let us denote the flow-price 
pair at the times 

k = 1, 2, 3 . . . .  

by (f(k), p(k)). [In a practical setting, the times k represent "event times," 
that is, times at which an attempt is made to modify the pair (f, p) through an 
iteration.] We require that the initial pair (f(1), p(1)) satisfies CS. The algorithm 
terminates when during an iteration, a feasible flow is obtained. 

kth iteration of parallel asynchronous primal-dual method 

A primal-dual iteration is performed on a pai L (f(Tk), p('rk)), where ~-k is a 
positive integer with ~-k < k, to produce a pair (f(k), ~(k)) and an augmenting 
path Pk. The iteration (and the path Pk) is said to be incompatible if Pk 
is not an augmenting path with respect to f(k); in this case we discard the 
results of the iteration, that is, we set 

f ( k +  1) = f(k), p ( k + l )  =p(k).  

Otherwise, we say that the iteration (and the path t~ is compatible, we obtain 
f (k  + 1) from f(k) by augmenting f(k) along Pk, and we set 

pj(k + 1) = max{pj(k), ~j(k)}, V j e A/'. (14) 

We note that the definition of the asynchronous algorithm is not yet rigorous, 
because we have not yet proved that (f(k),  p(k)) satisfies CS at all times prior 
to termination, so that a primal-dual iteration can be performed. This will be 
shown in the next section. 

The implementation of the asynchronous algorithm in a parallel shared memory 
machine is quite straightforward. The main idea is to maintain a "master" copy 
of the current flow-price pair in the shared memory; this is the pair (f(k), p(k)) in 
the preceding mathematical description of the algorithm. To execute an iteration, 
a processor copies from the shared memory the current master flow-price pair; at 
the start of this copy operation the master pair is locked, so no other processor 
can modify it, and at the end of the operation the master pair is unlocked. The 
processor performs a primal-dual iteration using the copy obtained, and then 
locks again the master pair (which may by now differ from the copy obtained 
earlier). The processor checks if the iteration is compatible, and if so it modifies 
accordingly the master flow-price pair. The processor then unlocks the master 
pair, possibly after retaining a copy to use at a subsequent iteration. The times 
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Processor I Processor 1 
copies the Processor 1 executes modifies the 
master pair (f,p) a generic iteration based master pair 

on the copied pair ( f 'P) I 
L .  

tt t t  k 
Times when processors 2, 3 .... 
modify the master pair (f,p) 

Figure 1. Operation of the asynchronous algorithm in a shared-memory machine. A processor copies 
the master flow-price pair at time ~'k, executes between times ~-~ and k a generic iteration using the 
copy, and modifies accordingly the master flow-price pair at time k. Other processors may have 
modified unpredictably the master pair between times rk and k. 

when the master pair is copied and modified by processors correspond to the 
indexes ~k and k of the asynchronous algorithm, respectively, as illustrated in Fig. 
1. This implementation is similar to the one of our asynchronous Hungarian 
algorithm for the assignment problem described in [5]. 

We finally note that any sequence of flow-price pairs generated by the syn- 
chronous parallel algorithm can also be viewed as a sequence ( f ( k ) ,  p ( k ) )  gen- 
erated by the asynchronous version. In particular, in a synchronous algorithm, 
suppose that m processors participate in a given iteration, copy the current 
flow-price pair (f, p) at a common time corresponding to a synchronization 
point, and update the master copy of the flow-price pair to (7, ~) at a sub- 
sequent common time corresponding to another synchronization point. Let 
( f ( k  + ~z), p ( k  + n ) ) ,  n = 1, . . . ,  m ,  be the successive updates of the master copy 
resulting from this synchronous iteration. We may view these updates as also 
generated by the asynchronous algorithm, with 

( f ( k ) ,  p ( k ) )  = ( f , p ) ,  ( f ( k  + m ) ,  p ( k  + m ) )  = Cf, p)  

~'k+~ = k, V n = O, . . . , m - 1 .  

Thus, our subsequent proof of validity of the asynchronous algorithm applies 
also to the synchronous version. 

3. Validity of the asynchronous algorithm 

We want to show that the asynchronous algorithm maintains CS throughout its 
course. We first introduce some definitions and then we break down the main 
argument of the proof in a few lemmas. 
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LEMMA 1. Assume that (f ,  p) satisfies CS. Let P = (il, i2, . . . ,  ik) be an unblocked 
path with respect to f. Then 

Pik = pil + R(p, P) - C(P).  

Proof. Using (7) and (8), we have 

R(p, P) = Z (ai~im§ + Plm+l - Pin) - 
(ira, i~+I)cP + 

k-1 

= C(P)  + ~-~(Pim+, --Pim) 
m=l 

= C(P)  + Pik - Pil, 

which yields the desired result. 

Z (alto+lira +Pim -P~,~,~) 
(i,.+ 1 , im)EP- 

[] 

LEMMA 2. Let gj(k) denote the surplus of  node j corresponding to f(k) .  For all 
nodes j such that 9j(k) < O, we have pj(k q- 1) = pj(t) for all t < k. 

Proof. By the nature of augmentations, we have gj(t) < 9j(t + 1) < 0 if 9y(t) < O. 
Therefore,  the hypothesis implies that 9j(t) < 0 for all t < k and the result 
follows from (14) and Proposition l(d). [] 

LEMMA 3. 

t < k. Then: 
Let k >_ 1 be given and assume that (f( t ) ,  p(t)) satisfies CS for all 

(a) For all nodes j and all t < k, there holds 

~j(t) < pj(Tt) + dj(~'t). (15) 

(b) For t < k, if f ( t  + 1) ~ y(t) (i.e., iteration t is compatible), and j is a node 
which belongs to the corresponding augmenting path, then we have 

pj(t) + dj(t) = ~j(t) = pj(t + 1). (16) 

(c) For all nodes j and all t < k - 1, there holds 

pj(t) + dj(t) < pj(t  + 1) + dj(t + 1). (17) 

Proof. (a) If j is such that 9j(rt) < 0, by Proposition l(d), we have pj(t) = pj(Tt) 
and dj(t) = 0, so the result holds. Thus, assume that 9j(rt) >_ O. Consider any 
unblocked path P [with respect to f(~-t)] from j to a node ~ with g~(r,) < 0. By 
Lemma 1, we have 

p-f(Tt) = pj(Tt) + R(p(Tt), P) - C(P),  

~j(t) = ~j(t) + R(~(t), P) - C(P),  
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where the second equality holds because by Proposition l(b), the pair (f(~-t), p) 
satisfies CS and Lemma 1 applies. Since ~(r t )  < 0, we have p~(rt) = FoT(t ) and 
it follows that 

~j(t) = pj(r 0 + R(p('rt), P) - R(~(t), P) < Pj(~-t) + R(p(~-t), P). 

Taking the minimum of R(p(Tt), P) over all unblocked paths P, starting at j and 
ending at nodes ff with gj(Tt) < 0, the result follows. 

(b), (c) We prove parts (b) and (c) simultaneously, by first proving a weaker 
version of part (b) [see (18) below], then proving part (c), and then completing the 
proof of part (b). Specifically, we will first show that for t < k, if f ( t  + 1) r f ( t )  
and j is a node which belongs to the corresponding augmenting path, then 
we have 

pj(t)  + dj(t)  <_  j(t) = pj ( t  + 1). (18) 

Indeed, if gj(t) < O, (18) holds since, by Lemma 2, we have pj(t) = ~ ( t )  and 
d~(t) = 0. Assume that g~(t) >_ O. Let the augmenting path of iteration t end at 
node 7, and let P be the portion of this path that starts at j and ends at 7- We 
have, using Lemma 1, and Propositions l(b) and l(c), 

= - c ( P ) ,  

vy(t) = pj( t)  - c ( P )  + n(p( t ) ,  P) .  

Since gj-(t) < 0, by Lemma 2, we have ~ ( t )  = PT(t), and we obtain 

~j(t) = pj(t) + R(p(t), P) > pj(t) + dj(t), 

showing the left-hand side of (18). Since dj(t) > O, this yields pj(t) < ~j(t), so 
~ ( t )  = max{pj(t), ~j(t)} = pj(t + 1), completing the proof of (18). 

We now prove part (c), making use of (18). Let us fix node j and assume 
without loss of generality that iteration t is compatible [otherwise (16) and (17) 
hold trivially]. If gj(t + 1) < 0, we have pj(t) = pj(t + 1) and dj(t) = dj( t+ 1) = 0, 
so the desired relation (17) holds. Thus, assume that g~(t + 1) > 0, and let 
P = (J, Jl, . . . ,  Jk, 7) be an unblocked path with respect to f ( t  + 1), which is 
such that 97(t + 1) < 0 and 

R(p(t + 1), P)  = dj(t + 1). 

Let P denote the augmenting path of iteration t. Then there are three possi- 
bilities: (1) P n P = O ;  (2) j E P ;  or (3) P n P # O a n d j ~ P .  We prove (17) 
separately for each of these cases: 

(1) In this case, the nodes j, Jl, . . . ,  jk do not belong to P, and the path P is 
also unblocked with respect to f( t) .  By using Lemma 1, it follows that 

pT(t + 1) = pj(t + 1) - C(P) + R(p(t + 1), P), 
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and 

v e t )  = v a t )  - c ( P )  + R(p(t),  P). 

Since g)-(t + 1) < O, we have py(t + 1) = p)-(t), so the preceding equations yield 

pj(t + 1) + n(p(t + 1), P)  = pj(t) + R(p(t), P). 

Since R(p(t + 1), P )  = dj(t + 1) and R(p(t), P) >_ dj(t), we obtain 

pj(t) + dj(t) < pj(t + 1) + dj(t + 1), 

and (17) is proved. 
(2) In this case, by (18), we have 

pj(t) + dj(t) < pj(t + 1) _< pj(t + 1) + dj(t + 1), 

and (17) is proved. 
(3) In this case, there is a node jm, m E {1, . . . ,  k}, which belongs to P,  and 

is such that  j and Jl, . . - ,  J,~-I do not belong to P.  Consider  the following 
paths, which are unblocked with respect to f ( t  + 1): 

P '  = (J, Jl, . . . ,  Jm-1, jr,), 
P"  = (jm, Jm+l, . . - ,  Jk,-J). 

By using Lemma  1, we have 

n(p(t  + 1), P') + pj(t + 1) = R(p(t),P') + pj(t) + pj~(t + 1) -pj~(t) ,  

and since by (18), pjm(t + 1) - p j ~ ( t )  > dj~(t), we obtain 

R(p(t + 1), P') + pj(t + 1) _ R(p(t), P') + pj(t) + dj~(t). (19) 

On the other  hand, we have 

R(V(t + 1), P )  = R(v(t + 1), P') + R(p(t + 1), P")  

and since R(p(t + 1), P") > 0, we obtain 

R(p(t + 1), P) >_ R(p(t + 1), P') .  (20) 

Combining (19) and (20), we see that 

R(p(t + 1), P) + pj(t + 1) > R(p(t), P') + pj(t) + djm(t ). 

We have R(p(t), P') + dj~(t) > dj(t), and R(p(t + 1), P)  = dj(t + 1), so it 
follows that  

pj(t + 1) + dj(t + 1) > pj(t) + dj(t), 
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and the proof of (17) is complete. 
To complete the proof of part (b), we note that by using (15) and (17), 

we obtain 

 j(t) <_ pj(T,) + <_ + 

which combined with (18) yields the desired (16). [] 

We can now prove that the asynchronous algorithm preserves CS. 

PROPOSITION 2. All pairs ( f (k) ,  p(k)) generated by the asynchronous algorithm 
satisfy CS. 

Proof. By induction. Suppose all iterations up to the kth maintain CS, let the 
kth iteration be compatible, and let Pk be the corresponding augmenting path. 
We will show that the pair ( f ( k  + 1), p(k + 1)) satisfies CS. For any arc (i, j )  
there are four possibilities: 

(1) fi~(k + 1) ~ fij(k). In this case by Proposition 1(c), we have ~i(k) = aq + 
~(k) .  Since i and j belong to Pk, by Lemma 3(b), we have pi(k + 1) -- ~i(k) 
and pj(k + 1) = pj(k), implying that pi(k + 1) = alj + pj(k + 1), so the CS 
condition is satisfied for arc (i, j). 

(2) fi~(k + 1) = f~j(k) < cij. In this case, by the CS property (cf. the induction 
hypothesis), we have pi(k) <__ aij + pj(k). If pi(k) > pi(k), it follows from 
(14) that 

pi(k + 1) = pi(k) < a~j + pj(k) < aij + pj(k + 1), 

so the CS condition is satisfied for arc (i, j). Assume therefore that p~(k) < 
~i(k). If fij(~k) < c4~, then since by Proposition l(b), (f,  ~) satisfies CS, we 
have ~(k)  < a~j + ~j(k), from which pi(k + 1) < alj + ~j(k) g a~j + pj (k  + 1), 
and again the CS condition is satisfied for are (i, j). The last remaining 
possibility [under the assumption f~j(k + 1) = f~j(k) < c4j] is that fij(~'k) = clj 
and p~(k) < ~i(k). We will show that this can't happen by assuming that it 
does and then arriving at a contradiction. Let tl be the first time index such 
that Tk < tl <__ k and f~j(tl) < c~j. Then by Lemmas 3(a) and 3(c), we have 

~i(k) <_ pi(rk) + di('ck) < pi(tl - 1) + di(tl - 1), 

while from Lemma 3(b), 

pi(tl - 1) + di(tl - 1) = p~(tl) < p~(k), 

[since ]~j(ta) 7 ~ f i i ( t l -  1) and node i belongs to the augmenting path 
of iteration tl - 1]. It follows that ~(k)  < pi(k), which contradicts the 
assumption pi(k) < ffi(k), as desired. We have thus shown that the CS 
condition holds for arc (i, j )  in case (2). 
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(3) f i j ( k  + 1) = f q ( k )  > bi~. The proof that the CS condition is satisfied for arc 
(i, j )  is similar as for the preceding case (2). 

(4) f i j ( k  + 1) = f i j (k )  = bij = cij. In this case, the CS conditions (4) are 
trivially satisfied. [] 

Proposition 2 shows that if the asynchronous algorithm terminates, the flow- 
price pair obtained satisfies CS. Since the flow obtained at termination is feasible, 
it must be optimal. To guarantee that the algorithm terminates, we impose 
the condition 

lim Tk = cr 
k----~oo 

This is a natural and essential condition, stating that the algorithm iterates with 
increasingly more recent information. 

PROPOSITION 3. I f  limk-~o~ rk = oc, the asynchronous algorithm terminates. I f  the 
problem is feasible, the f low obtained at termination is optimal. 

Proof. There can be at most a finite number of compatible iterations, so if the 
algorithm does not terminate, all iterations after some index k are incompatible, 
and f ( k )  = f ( ~  for all k >_ k. On the other hand, since limk--,oo rk = c~, we 
have that rk _> k for all k sufficiently large, so that f(~-~) = f ( k )  for all k with 
T k > k .  This contradicts the incompatibility of the kth iteration. [] 

4. Combination with single node relaxation iterations 

Computational experiments show that in a serial setting, primal-dual methods 
are greatly speeded up by mixing shortest path augmentations with single node 
relaxation (or coordinate ascent) iterations of the type introduced in [3]. The 
typical single node iteration starts with a pair (f, p) satisfying CS and produces 
another pair (f ,  ~) satisfying CS. It has the following form. 

Single node relaxation iteration 

Choose a node i with gi > 0 (if no such node can be found, the algorithm 
terminates). Let 

Bi + = {jl(i, j )  e A ,  r~j = O, fij  < c~j}, (21) 

B [  = {Jl(J, i) C .4, rji = O, fji > bjl}. (22) 

Step 1: If 
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g,  _> - I , j )  + (S j ,  - b j , ) ,  

jeB~ + jeB~- 

go to step 4. Otherwise, if gi > 0, choose a node j e B~ with gj < 0 
and go to step 2, or choose a node j E B/- with ~ < 0 and go to step 
3; if no such node can be found or if gl = 0, set f = f and ~ = p, and 
go to the next iteration. 

Step 2 (Flow adjustment on outgoing are): Let 

= min{g,  -g l ,  c~i - / i s } .  

Set 

f~j := f~i + 8, g~ := g~-6 ,  gj := g~ + 8 

delete j from B .+~ , and go to step 1. 
Step 3 (Flow adjustment on incoming arc): Let 

= min{gi, - g j ,  f i ~ -  b~/}. 

Set 

f j~ := f j ~ - 8 ,  gi := gi-~i ,  g j : = g j + 8  

delete j from B~-, and go to step 1. 
Step 4 (Increase price of t): Set 

jen~§ ieB/- 
fij = cij, Y j e B +, 
f ~i = bji, V j e B?, 

pi := min{min{pj + aljl(i, j )  e A, pl < p~ + alj}, 
min{pj - aji[(j, i) e A,  Pi < pj - aji}}. (23) 

If following these changes, gi > 0, recalculate the sets B/+ and B~- using 
(21) and (22), and go to step 1; else, set 7 = f and ~ = p, and go to 
the next iteration. [Note: If the set of arcs over which the minimum 
in (23) is calculated is empty, there are two possibilities: (a) g~ > 0, in 
which case it can be shown that the dual cost increases without bound 
along pl, and the primal problem is infeasible; or (b) gi = 0, in which 
case the cost stays constant along pl; in this case, we set f = f ,  ff = p, 
and go to the next iteration.] 

It can be seen that the flow changes of the above iteration are such that the 
condition g~ > 0 is maintained. Furthermore, it can be shown that the pair ( f ,  p) 
generated by the iteration satisfies CS. To see this, first note that steps 2 and 
3 can only change flows of arcs with zero reduced cost; then observe that the 
flow changes in step 4 are designed to maintain CS of the arcs whose reduced 
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cost changes from zero to nonzero, and the price change is such that the sign 
of the reduced costs of all other arcs does not change from positive to negative 
or reversely. 

A combined primal-dual/single node relaxation iteration can now be con- 
structed. It starts with a pair (f,  p) satisfying CS and produces another pair 
( f ,  ~) as follows: 

Combined primal-dual~relaxation iteration 

Choose a node i with g~ > 0 (if no such node can be found, stop the algorithm). 
Perform a single node relaxation iteration. If as a result (f ,  p) is changed, 
terminate the iteration; otherwise, perform a primal-dual iteration starting 
from (f,  p). 

A synchronous parallel combined method can be constructed based on the 
above iteration. To this end, we must modify the definition of compatibility for 
the case where the pair ( f (n) ,  ~(n)) (refer to the description of the synchronous 
parallel iteration in Section 2) is produced by the single node relaxation iteration. 
In this case, we discard the results of the iteration if 

Pi. (?Z) < Pin (n), 

where in is the node i used in the single node iteration. Otherwise, we say that 
the iteration is compatible, we set 

pi(n + 1) = f Pi. if i = in, 
[ pi(n) otherwise, 

and for all arcs (i, j ) ,  we set 

�9 fij (n) 

+ a) = f j(n) 

bij 

clj 

i f i r  a n d j r  

if i = in or j = in, and rij(n + 1) = O, 

if i = in or j = i m  and r~j(n + 1) > O, 

if i = i,~ or j = i~, and ri j (n  -I- 1) < O, 

where rij(n + 1) is the reduced cost of arc (i, j )  with respect to the price vector 
+ 1). 

The definition of compatibility is such that the above synchronous parallel 
iteration preserves CS. Using this property and the monotonic increase of the 
node prices, it can be seen that the associated algorithm terminates finitely, 
assuming the problem is feasible (see [3]). A similar result can be shown for the 
corresponding asynchronous version of the parallel iteration. 
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5. Computational results 

In order to illustrate the expected performance of the above parallel primal- 
dual minimum cost network flow algorithms, we designed a synchronous and 
two asynchronous parallel versions of one of the primal-dual codes developed 
by Bertsekas and Tseng for comparison with the RELAX code (see [8] for a 
description). We implemented these parallel primal-dual algorithms on a shared- 
memory Encore MULTIMAX and evaluated the parallel computation time for 
two transshipment problems as a function of the number of processors used. 
In this section, we briefly overview the parallel implementations and discuss the 
numerical results obtained. 

The synchronous algorithm (SPD) operates as follows: The current flow- 
price pair (f, p) satisfying CS is kept in shared memory. Each iteration starts 
synchronously with each processor copying the current set of node prices into 
local memory. Each processor n = 1, . . . .  m selects a different node i,~ with 
positive surplus, and performs a primal-dual iteration to compute a shortest 
augmenting path (in terms of the reduced cost lengths) from node iN to the set 
of nodes with negative surplus. Let ~(n) and P(n) be the modified price vector 
(in local memory) and augmenting path obtained by processor n. 

Assume without loss of generality that the m processors find their shortest 
augmenting paths in the order n = 1 , . . . ,  m, and let (f(n),  p(n)) denote the 
flow-price pair resulting from incorporation of the results of the processor n [note 
that (f(0), p(0)) = (f, p)]. As described in Section 2, once a processor computes 
~(n) and P(n),  it checks to see whether P(n)  is a compatible augmentation 
based on the most recent network prices and flows ( f (n -  1 ) , p ( n -  1)). During 
this operation, the network is locked so that only one processor (at a time) can 
verify the compatibility of an augmentation or modify the flow-price pair. If the 
augmentation is compatible, the arc flows are modified accordingly and the node 
prices are adjusted as described in Section 2. The processor then waits for all 
other processors to complete their computations before starting the next cycle 
of augmentations. 

In our implementation on the Encore MULTIMAX, the most recent flow-price 
pair (f(n), p(n)) is also kept in shared memory. The set of nodes with positive 
surplus is maintained in a queue in shared memory; a lock on this queue is used 
in order to guarantee that a given node can be selected by only one processor. 
A synchronization lock on the flow-price pair (f(n),  p(n)) is used to restrict 
modifications of flows of prices by more than one processor simultaneously, and 
a synchronization barrier is used at the end of each iteration to synchronize the 
next iteration. 

The principal drawback of our implementation of the synchronous algorithm 
is the idle time spent by the processors waiting while other processors are still 
computing augmenting paths or modifying the pair (f(n), p(n)) that is kept in 
shared memory. Figure 2 illustrates the processor idle times in a typical iteration. 

In order to reduce the idle time spent by the processors, asynchronous algo- 
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rithms allow processors which have finished their computations to proceed with 
further computation. In our asynchronous algorithms, the current flow-price pair 
(f, p) satisfying CS and a queue of nodes with positive surplus are also kept in 
shared memory. The first asynchronous algorithm (ASPD1) operates as follows: 
Each processor starts its computation by extracting a node from the queue of 
nodes with positive surplus. It then copies the flow-price pair (f, p) into local 
memory, and performs a primal-dual iteration to compute a shortest augmenting 
path and modified price vector P and ~. The node then checks whether this 
augmentation is compatible with the possibly modified flow-price pair (f, p). If 
the augmentation is compatible, the flows and prices are modified as described 
in Section 2. The processor then repeats the cycle without waiting for other 
processors to complete their computations. 

In our implementation of ASPD1 and the Encore MULTIMAX, a lock is 
used to allow only one processor to either read or modify the flow-price pair 
(f, p) at a time. A second lock is used to allow only one processor to access 
the queue of positive surplus nodes at a time. The first lock can create a 
critical slowdown when several processors are used because a processor must 
wait until another processor has completely copied (f, p) before it can begin 
its own copy. In order to reduce this potential bottleneck, we developed a 
different asynchronous implementation ASPD2 using a monitor [10] instead of 
locks to allow several processors to copy (f, p) simultaneously, but to exclude 
any processors from either reading or writing (f, p) whenever another processor 
is currently modifying (f,p). 

Table 1 shows the performance of the algorithm on the Encore MULTIMAX 
for two uncapacitated transshipment problems generated using the widely used 
NETGEN program of [14]; these problems correspond to problems NG31 and 
NG35 in [14]. Problem NG31 has 1,000 nodes and 4,800 arcs, with 50 sources 
and 50 sinks, while problem NG35 has 1,500 nodes and 5,730 arcs, with 75 
sources and 75 sinks. The Encore MULTIMAX's individual processors are rated 
at roughly 1 MIPS each. The table contains the average time obtained over 
11 different runs, as a function of the number of processors used; the standard 
deviation is enclosed in parenthesis. The variability of the run times for different 
runs is due to randomness in the order of completion of the computations of the 
individual processors, which can lead to differences as to which augmentations 
are found compatible. 

Table 1 clearly illustrates the superiority of the asynchronous implementations 
over the synchronous implementations, even on a shared-memory multiprocessor 
where synchronization is easily achieved. The ASPD2 implementation is superior 
for a larger number of processors because it allows simultaneous reading of the 
flow-price pair (f, p); for a small number of processors, the ASPD1 algorithm 
is slightly faster because of its simpler synchronization logic. Note also that 
the speedups achieved are larger for the larger NG35 problem, because of the 
greater difficulty in computing augmenting paths, which increases the ratio of 
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Figure 2. Timing diagram of an iteration. The computation of each processor consists of three parts, 
possibly separated by idle time. In the first part, all processors copy (in parallel) the master pair 
(f, p). In the second part, the processors calculate (in parallel) their shortest augmenting paths. In 
the third part, the processors update (one at a time) the master pair ([, p). The next iteration does 
not begin until all processors have finished all three parts. 

computation time to synchronization overhead. 
The results of Table 1 also indicate that the speedups achieved are limited as 

the number of processors increase. There are two primary reasons for this: Even 
in the asynchronous algorithm, there is some synchronization overhead associated 
with maintaining the integrity of the queue of positive surplus nodes and the 
flow-price pair (f,  p); this overhead increases with the number of processors. 
Furthermore, when the algorithms are near convergence, there are very few nodes 
with positive surplus, so that there isn't enough parallel work for the available 
processors. These last few iterations are nearly sequential, and often consist of 
the longest augmenting paths. Similar limitations were observed in [5] in the 
context of parallel Hungarian algorithms for the assignment problems. For a more 
detailed discussion of these limiting factors, the reader is referred to [5], which 
reports extensive numerical experiments quantifying both the synchronization 
overhead and the sequential part of the computation. 

Alternative parallel algorithms which significantly reduce the synchronization 
overhead can be designed using the theory described in Sections 2 and 3. One 
approach is to have each processor search for multiple augmenting paths (from 
different starting nodes with positive surplus) during each iteration. In this 
manner, the number of iterations is considerably reduced, thereby reducing the 
overall synchronization overhead. To make this approach efficient, the assignment 
of positive surplus nodes to each processor should be adaptive, depending on 
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Table 1. Average run times and standard deviations (in parenthesis) in seconds over 
11 runs on the Encore MULTIMAX for problems NG31 and NG35 of [14]. SPD 
is a synchronous version, while ASPD1 and ASPD2 are asynchronous versions. 

Problem # Processors SPD ASPDI ASPD2 

NG31 

NG35 

23.51 (0.16) 

16.20 (0.15) 

13.94 (0.86) 

14.07 (0.57) 

14.15 (0.56) 

14.79 (0.92) 

13.35 (0.79) 

14.74 (0.40) 

55.90 (0.50) 
40.45 (1.30) 

33.72 (1.56) 

32.21 (1.87) 

25.45 (1.39) 

25.34 (2.19) 
26.86 (2.03) 

23.70 (2.13) 

23.15 (0.15) 
14.84 (0.28) 
13.1l (0.66) 
11.59 (0.50) 
11.74 (0.96) 
11.00 (0.75) 
11.54 (0.60) 
11.76 (0.60) 

54.23 (0.71) 

33.15 (1.83) 

26.96 (0.95) 

24.52 (1.33) 

22.64 (1.22) 

21.46 (1.64) 

20.97 (0.86) 

20.48 (1.82) 

24.00 (0.22) 
15.24 (0.66) 

13.45 (0.68) 
11.81 (0.55) 
11.29 (0.49) 
11.38 (0.36) 
10.19 (0.85) 
9.65 (0.53) 

55.64 (0.65) 

33.72 (1.00) 

28.05 (1.56) 

24.29 (1.09) 
21.82 (0.94) 

20.22 (1.74) 

19.16 (1.34) 

18.40 (1.59) 

the time required to find the previous augmentations. Such an algorithm was 
implemented and evaluated in [5] in the context of the assignment problem, 
yielding significant reductions in synchronization overhead. 
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