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@ On Error Bounds for Successive Approximation Methods
DIMITRI P. BERTSEKAS
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Abstract—This note considers a class of contraction mappings and the
. . successive approximation method for obtaining the associated fixed points.
Some error bounds are provided which generalize and strengthen those
given by McQueen (1] and Denardo [2] for dynamic programming algo-
rithms.

M. ‘r ived hlgy m, 107(, ised- D b. 30..1878
R. }‘m_‘.‘....,....m}., is-with-the Departmi of-El ies-and-C feati ':_.,' Manuscript received July 7, 1975. This work was supported by the Joint Services
&Lk y—ofRoorkee RoorkesIndias leave—from—the—Indian—lnstitute—of  Electronics Program under Contract DAAB-07-72-C-0259 and by the National Science

t Foundation under Grant ENG-74-19332.
th—the—D. £ KL i d Cc ication Engi ing, The author is with the Coordinated Science Laboratory and the Department of Electri-

University Aﬁﬁ'ﬁﬁfi‘é& Iﬁfé?%éa $di%imited to: MIT Libraries. Downloaded on Decembéil Brzips aralnvapityTd HoreiE EFoxmiold. SH&3trictions apply.

i


Dimitri Bertsekas Migrated

Dimitri Bertsekas Migrated


TECHNICAL NOTES AND CORRESPONDENCE

I. MAIN RESULT
Let X be a set and B(X) be the set of all bounded real valued
functions on X. For any two functions f,f' € B(X) we write
I=r,
f<f

Let also 7:B(X)—B(X) be a mapping on B(X) having the following
two properties:

if f(x)=f"(x), VxeX
iff(x) < f(x), VxEX.

f<f=T(N<T), 8))

< T(f+re)(x)— T(f)(x) <

r

VifeB(X)

a a, Vr#0,fEB(X),xeXx (2)

where e is the unit function on X

e(x)=1, VxeXx (3
and a,, a, are two scalars with
O<a <ap<l. 4)

Notice that (2) may also be written as

T(f)+min[alr,a2r]e< T(f+re) < T(f)+maxlar,ayrle,
Vr#0, fER(X), xEX. (5)

We shall make frequent use of the expression above.

It is easy to show that relations (1) and (2) imply that T is a
contraction mapping on B(X) viewed as a normed space with the sup
norm. Indeed for any two functions f,f’ € B(X) and every x €X we have

F(x)— sup | f(x)—f(x)| < f(x)< f(x)+ sup |f(x)—f(x)|
xEX *xEX
and by applying T above and using (1), (2),
T(f)(x)-a, sgr;lf(x)—f'(x)l < T(f)}x)
, < T(f)(x) +ay sup | f(x)—f(x)]
xEX

or equivalently,
sup |T(fNx)— T(f)(x)| < ay sup | F(x)—f(x)].
xeX xEX
Since B (X) with the sup norm is complete it follows that T has a unique
fixed point f* € B(X)
*=T(f*).

Furthermore, the successive approximation method which generates
T(f),...,T*(f)," + - starting from an arbitrary function f € B(X) has the
convergence property

kli.m T* () (x)=f*(x), VxEX.

The following proposition provides monotonic upper and lower bounds
on the difference T*(f)(x)— f*(x).
Proposition: For any fE€ B(X), x€ X, and k=1,2,- .- there holds

T () + by < TEHT (AU x) + Brsy < F¥(X)

< Th+1 () +b < T (f}(x)+5, (6)

dk}
2

where

a 293
1-— a, dk’ (7)

bk=mm{ T

_ a _ ey _
b =max| ——d,, ——
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de= inf [T*(£)()- T4 ()] ©)
d.= sup [T*(N)(x)— T+ 1 (f)x)] 10

xeX

Proof: Tt is sufficient to prove (6) for k=1 since the result for k> 1
then follows by replacing f by T*~!(f). For notational convenience
denote

d=d, =3, d=d', &=a.

We have
fx)+d<T(fH)x), ¥xEX. (11)
Applying T on both sides of the above and using (1), (5), (11)
F(x)+minld+ a,d,d+ a,dl < T(f)(x)+minla,d, a,d]
<T(f+deXx)< T2 (f)(x), VYxeX. (12)

Applying T and using (1), (5), (11), (12)

£ +min[d+ a,d+ a2d, d+ ayd+ add]
< T(f)(x) +min[a,d+ o?d,ad + a2d |
< T?(f)(x)+min[a}d, od]
< T(T(f) +minlayd, arde)(x) < T3 (f)(x).

Proceeding similarly we have for every k=1,2,- - -

k k k k
f(x)+min[ > aid, D, a{d] < T(f)(x)+min{ > aid, > az"d]
i=0 i=0

i=1 i=1

<+ < T*(f)x)+min[afd, akd] < TE+ (£)(x).

Taking the limit as k—co

. 1 1 ) oy 0y
f(x)+mm[r_71d, I—a, d] < T(f)(x)+m1n[l_—ald, —ITa;d:l
2 . a% 0‘% .
< T?(f)(x)+min l—ald’ ‘_—azd} < f* (13)

Also we have from (12)

minla,d,ed ) < T2(f)(x) — T(F)(x)

and by taking the infimum over x € X above

minle,d,a,d] < d".

It is easy to see that the above relation implies

2 2
x o [+ [4¢
min ! d 2d<min ,l 2d’.
I—a, 1—a,

I—a; 71—y
Combining (13), (14) and using the definitions (7), (9) we obtain

d,

(14)

T(H)(x)+by< T (f)(x)+b,

Also from (13) we have T(f)(x)+b; < f*(x), YxEX and an identical
argument shows that T2(f)(x)+ b, < f¥(x), Vx € X. Hence, the left part
of (6) is proved for k=1. The right part follows by an entirely similar
argument. Q.ED.

II. Discussion

Error bounds involving successive differences of iterates of methods of
successive approximation utilizing monotone contraction mappings of
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[2]). Reference [1] considers the case where X is a finite set X ={1,2,---,
n}, @;=a;=a and obtains the error bounds

1
l—a

T () + g < T* (f)(i)+ﬁdk+1

<P < THND + T—doy

1
l-a

<STUND+1gde =120 (19)

for the case of the mapping 7T : B(X)— B (X) defined by

T(f)()= min {g(z-,u)+a ilp,-j(u)f(j)} (16)
u j=

uG)

where U (i) is a subset of a finite (control) set for each i/, a €(0, 1) is the
discount factor, and

n
py()>0, X piw)=1, ViucU().
i=1

This is the mapping associated with the usual discounted finite state
Markovian decision problems (see, e.g., [3]-[5]). The error bounds (15)
are known to be extremely useful in practice. The mapping (16) falls
within our framework with a;=a,=0a. Relation (13) shows that our
error bounds are sharper than those of (15) although the improvement is
admittediy small.

The error bounds of Denardo [2, p. 171] are given by

sup |T* (fNx)—fH(x)|< By k=1,2,---
xeX

E,=min azEk_l,—l—f%z su;;(m(f)(x)—rk—l(f)(x)|]. a7)
xe€

A comparison of the bounds above with the bounds of the proposition of
the past section reveals that if T%(f)< T*¥~Y() then (17) provides a
lower bound to f* which is equivalent to ours and an upper bound which
is less sharp than ours. Similarly if 7%~ '(f) < T*(f) then (17) provides
an upper bound to f* equivalent to ours and a lower bound which is less
sharp. When neither T%(f) < T*~!(f) nor T*~Y(f) < T*(f) holds then
either our lower or our upper bound is sharper. The improvement can be
attributed to the fact that Denardo’s bounds take into account only the
right part of inequality (2).

Concerning the applicability of the result given it should be pointed
out that it may be applied in sequential decision problems where the
(effective) discount factor may depend on the current state and the
control applied, such as for example in semi-Markov decision problems
[3]. It may also be applied in Markovian decision problems with constant
discount factors which are solved by successive approximation methods
of the Gauss—Seidel type such as those described by Kushner [5] and
Bertsekas [6].
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280 6 MINIMIZATION OF TOTAL EXPECTED VALUE-DISCOUNTED COST

functional equation for J*: S —» R:

J*¥(x) = macx E {g(x, u, w} + aJ*[f(x, u, w)]}

where 0 < a < 1 and g, £, S, C, and w satisfy continuity, compactness, and
finiteness assumptions analogous to Assumptions A of Section 5.2. Let
S!, 82,..., 8" be mutually disjoint sets with S = ( Ji_, S, select arbitrary
points x'e S\, i = 1, ..., n, and consider the discretized functional equation

max E {g(x, u, w) + oaJ*[ £ (x, u, W)}
J*(x) = if x=x% i=1,...,n
J*(x") if xeS, i=1,...,n

(a) Show that both equations have unique solutions J* and J* within
the class of all bounded functions J: S — R and furthermore

lim sule *(x) — J*(x)| = 0,
ds—0 xe8
where

d, = max sug lx — x'.
(b) Provide a discretization procedure and prove a similar result under
assumptions analogous to Assumption B of Section 5.2.
Hint: Use the results already proved in Section 5.2.
3. Let S be aset and B(S) be the set of all bounded real-valued functions on
S. Let T: B(S) — B(S) be a mapping with the following two properties:

(1) TUJ)< TJ)forall J,J €B(S)with J < J'.
(2) Foreveryscalarr # 0and all xe S

ay < [TU + re)(x) — TU)X)/r < a3,

where o, a, are two scalars with 0 < «; < a; < 1.
(a) Show that T is a contraction mapping on B(S) and hence for every
J € B(S) we have

lim T*J)(x) = J*(x) VxE€S,
k—

where J* is the unique fixed point of T in B(S).
(b) Show that for all Je B(S), xeS,andk = 1,2,...,
T (x) + ¢, < T U)(X) + ces

T** 1(-])()‘) + Cret

J*(x)
T () + &,

VAN
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where for all k

— 0y x

= min{ % inf [T¥J)(x) — T* (J)(x)],
1 oy xeS

%2 inf [TJ)(x) — T“’l(J)(x)]},

1 - 0y x€8§

G = max{l flal itslg[T“(J)(x) — T*Y(J)x)],

2 sup[ THU)(x) — T'H(J)(x)]}.
— ¥y x€§

A geometric interpretation of these relations for the case where S consists of a
single element is provided in Fig. 6.3.
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(c) Show that the mapping F defined by (38)-(41) satisfies
o" < [FUJ + re)(x) — FU)x)]/r < a,

where n is the number of elements in S.
Hint: Use a line of argument similar to the one of Section 6.2.



