Technical Notes and Correspondence

On Continued Fraction Inversion by Rowth's Algonthin

R. PARTHASARATHY ANO HARDREET SINGH

Abstract

Abstrat--This note points out that the genoralized dgonthm proposed reently by Chae et all for Cauer senond form oan be applied for invorting a continued fraetion in the Cauer firgt form by meroly witing the transfer function as a ratio of two poljnomiols arronged in the decending powers of " s " "

In [1] Rac and Lamba presented an algorithm for inverting a continued fration in the Cauer second form by developing the Routh array from an even number of partial seefficients. Once the array is so eonstrueted, it is noticed that the first two rows of the Routh table give the corresponding transfer function. The authors have recently extended [3] the procedure of Rao and Lamba for the continued fraction inversion for the ease of Cawer first form.

Chao at ol have, in a reeent note [2], proposed a genoralization-of the result presented in [1] when the continued fraction expansion is given in the Cauer seoond form and an odd or oven number of partial eoeffioionts are known. The object of this note is to point out that this generalized algorithm [2], based on a backward expansion of the Routb array, can be applied as well to the inversion of the continued fraction in Cuuer first form whieh is represented by

$$
\begin{equation*}
G(s)=\frac{1}{H_{1} S+\frac{1}{\frac{H_{2}+\frac{1}{H_{3} S+\frac{1}{\ddots}}}{}} . . \frac{1}{}} \tag{1}
\end{equation*}
$$

Given an arbitnary number of partial ceefficients $I_{n}, I_{n-1}, \quad, M_{1}$, the inverse table is construted following the same procedure as in [2]] The table, ofter correcting the typegraphicol error in the partial coefficients as given in [2], is reproduced below for ready reference

$$
\begin{aligned}
& \frac{1}{H_{n}}=\frac{B_{01}}{B_{11}} \\
& \frac{1}{H_{n-1}}=\frac{B_{11}}{B_{21}} \\
& \frac{1}{H_{n-2}}=\frac{B_{21}}{B_{31}} \\
& \frac{1}{H_{n-3}}=\frac{B_{31}}{B_{41}} \\
& \frac{1}{B_{11}} \begin{array}{lll}
B_{01} \\
H_{n-4} & 1 \\
B_{31} & B_{32} & 0 \\
B_{51}
\end{array} B_{B_{41}} \quad B_{42} \\
& 1
\end{aligned}
$$

It is to be noted that $D_{01}-1$ and that the end clements of all the rowis

[^0]ean be witten by inspection as ! or 0 , accordingly, as
\[

$$
\begin{align*}
B_{2 i, i+1}-1, & i=1,2,3, \cdots \\
B_{2 i-1, i+1}-0, & i=1,2,3, \cdots \tag{3}
\end{align*}
$$
\]

Onee the array is eompletely written, it will be seen that the ceefficients in the nth and $\left(x+1\right.$!th rown give the numprater nofffieient a_{i} and the denominater coefficient b_{i}, respectively, of the resulting transfer funetion

If tums out that these are indeed the coeffieiento of the eorresponding pewers of \mathcal{S} of the numarator and denominator polynomials, arrangedin the deseending order as donoted by

$$
\begin{equation*}
G(S)=\frac{a_{0} S^{M}+a_{1} S^{M-1}+\cdots+a_{M}}{b_{0} S^{N}+b_{1} S^{N-1}+\cdots+b_{N}} \tag{4}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
N=n / 2 \\
M=(n-1) / 2
\end{array}\right\} \quad N>M, \quad \text { for any } n \text {, even or odd }
$$

whereas a continued fraction in the Cauer second form, on inversion, will give the resulting transfer function representation as [2]

$$
\begin{equation*}
G(S)=\frac{\epsilon_{0}+a_{1} S+\cdots+a_{M^{S}} S^{M}}{\dot{b}_{0}+\dot{b}_{1} S+\cdots+b_{N^{\prime}} S^{N}} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& N=n / 2 \quad N>M, \quad n \text { even } \\
& M=(n-1) / 2 \quad N>M, \quad n \text { odd }
\end{aligned}
$$

anid

$$
\begin{align*}
& a_{1}=B_{n-1, i+1}, \quad i=0,1,2, \cdots, M \\
& b_{i}=B_{n, i+1}, \quad i-0,1,2, \cdots, N . \tag{6}
\end{align*}
$$

ACKNOWZEDGMEAT

The authors wish to thank Prof. A. K. Kamal for his adviee and

References

[1] S. Vital Bao and S. S Iamba, is noto-on-continuad fraction invopion by Boutb'c algorithm," IEEC Trac. Awomat Come, wol AC 10 , Pp 103 284, Ima 1974
[2] K. \& Chao, K. S. Iu, and I. P. S. Madan, Mn the inversion table-of gentinued fraetion-expansion," ILEL Tramis. Antomat. Contr, vel. AC-20, PP. 136-137, Fel 1075.

On Error Bounds for Successive Approximation Methods DIMITRI P. BERTSEKAS

Abstract

This note considers a class of contraction mappings and the successive approximation method for obtaining the associated fixed points. Some error bounds are provided which generalize and strengthen those given by McQueen [1] and Denardo [2] for dynamic programming algorithms.

[^1]

I. Main Result

Let X be a set and $B(X)$ be the set of all bounded real valued functions on X. For any two functions $f, f^{\prime} \in B(X)$ we write

$$
\begin{array}{ll}
f=f^{\prime}, & \text { if } f(x)=f^{\prime}(x), \quad \forall x \in X \\
f \leqslant f^{\prime}, & \text { if } f(x) \leqslant f^{\prime}(x), \quad \forall x \in X
\end{array}
$$

Let also $T: B(X) \rightarrow B(X)$ be a mapping on $B(X)$ having the following two properties:

$$
\begin{gather*}
f \leqslant f^{\prime} \Rightarrow T(f) \leqslant T\left(f^{\prime}\right), \quad \forall f, f^{\prime} \in B(X) \tag{1}\\
\alpha_{1} \leqslant \frac{T(f+r e)(x)-T(f)(x)}{r} \leqslant \alpha_{2}, \quad \forall r \neq 0, f \in B(X), x \in X \tag{2}
\end{gather*}
$$

where e is the unit function on X

$$
\begin{equation*}
e(x)=1, \quad \forall x \in X \tag{3}
\end{equation*}
$$

and α_{1}, α_{2} are two scalars with

$$
\begin{equation*}
0<\alpha_{1} \leqslant \alpha_{2}<1 \tag{4}
\end{equation*}
$$

Notice that (2) may also be written as
$T(f)+\min \left[\alpha_{1} r, \alpha_{2} r\right]_{e} \leqslant T(f+r e) \leqslant T(f)+\max \left[\alpha_{1} r, \alpha_{2} r\right]_{e}$,

$$
\begin{equation*}
\forall r \neq 0, f \in B(X), x \in X \tag{5}
\end{equation*}
$$

We shall make frequent use of the expression above.
It is easy to show that relations (1) and (2) imply that T is a contraction mapping on $B(X)$ viewed as a normed space with the sup norm. Indeed for any two functions $f, f^{\prime} \in B(X)$ and every $x \in X$ we have

$$
f^{\prime}(x)-\sup _{x \in X}\left|f(x)-f^{\prime}(x)\right| \leqslant f(x) \leqslant f^{\prime}(x)+\sup _{x \in X}\left|f(x)-f^{\prime}(x)\right|
$$

and by applying T above and using (1), (2),

$$
\begin{aligned}
& T\left(f^{\prime}\right)(x)-\alpha_{2} \sup _{x \in X}\left|f(x)-f^{\prime}(x)\right| \leqslant T(f)(x) \\
& \\
& \leqslant T\left(f^{\prime}\right)(x)+\alpha_{2} \sup _{x \in X}\left|f(x)-f^{\prime}(x)\right|
\end{aligned}
$$

or equivalently,

$$
\sup _{x \in X}\left|T(f)(x)-T\left(f^{\prime}\right)(x)\right| \leqslant \alpha_{2} \sup _{x \in X}\left|f(x)-f^{\prime}(x)\right|
$$

Since $B(X)$ with the sup norm is complete it follows that T has a unique fixed point $f^{*} \in B(X)$

$$
f^{*}=T\left(f^{*}\right)
$$

Furthermore, the successive approximation method which generates $T(f), \ldots, T^{k}(f), \cdots$ starting from an arbitrary function $f \in B(X)$ has the convergence property

$$
\lim _{k \rightarrow \infty} T^{k}(f)(x)=f^{*}(x), \quad \forall x \in X
$$

The following proposition provides monotonic upper and lower bounds on the difference $T^{k}(f)(x)-f^{*}(x)$.

Proposition: For any $f \in B(X), x \in X$, and $k=1,2, \cdots$ there holds

$$
\begin{align*}
& T^{k}(f)(x)+b_{k} \leqslant T^{k+1}(f)(x)+b_{k+1} \leqslant f^{*}(x) \\
& \leqslant T^{k+1}(f)(x)+\bar{b}_{k+1} \leqslant T^{k}(f)(x)+\bar{b}_{k} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
b_{k}=\min \left[\frac{\alpha_{1}}{1-\alpha_{1}} d_{k}, \frac{\alpha_{2}}{1-\alpha_{2}} d_{k}\right] \tag{7}
\end{equation*}
$$

Combining (13), (14) and using the definitions (7), (9) we obtain

$$
T(f)(x)+b_{1} \leqslant T^{2}(f)(x)+b_{2}
$$

Also from (13) we have $T(f)(x)+b_{1} \leqslant f^{*}(x), \forall x \in X$ and an identical argument shows that $T^{2}(f)(x)+b_{2} \leqslant f^{*}(x), \forall x \in X$. Hence, the left part of (6) is proved for $k=1$. The right part follows by an entirely similar argument.
Q.E.D.

II. Discussion

Error bounds involving successive differences of iterates of methods of successive approximation utilizing monotone contraction mappings of есөnequpe
[2]. Reference [1] considers the case where X is a finite set $X=\{1,2, \cdots$, $n\}, \alpha_{1}=\alpha_{2}=\alpha$ and obtains the error bounds

$$
\begin{align*}
T^{k-1}(f)(i)+\frac{1}{1-\alpha} d_{k} & \leqslant T^{k}(f)(i)+\frac{1}{1-\alpha} d_{k+1} \\
& \leqslant f^{*}(i) \leqslant T^{k}(f)(i)+\frac{1}{1-\alpha} \bar{d}_{k+1} \\
& \leqslant T^{k-1}(f)(i)+\frac{1}{1-\alpha} \bar{d}_{k}, \quad i=1,2, \cdots, n \tag{15}
\end{align*}
$$

for the case of the mapping $T: B(X) \rightarrow B(X)$ defined by

$$
\begin{equation*}
T(f)(i)=\min _{u \in U(i)}\left\{g(i, u)+\alpha \sum_{j=1}^{n} p_{i j}(u) f(j)\right\} \tag{16}
\end{equation*}
$$

where $U(i)$ is a subset of a finite (control) set for each $i, \alpha \in(0,1)$ is the discount factor, and

$$
p_{i j}(u) \geqslant 0, \quad \sum_{j=1}^{n} p_{i j}(u)=1, \quad \forall i, u \in U(i) .
$$

This is the mapping associated with the usual discounted finite state Markovian decision problems (see, e.g., [3]-[5]). The error bounds (15) are known to be extremely useful in practice. The mapping (16) falls within our framework with $\alpha_{1}=\alpha_{2}=\alpha$. Relation (13) shows that our error bounds are sharper than those of (15) although the improvement is admittedly small.

The error bounds of Denardo [2, p. 171] are given by

$$
\begin{gather*}
\sup _{x \in X}\left|T^{k}(f)(x)-f^{*}(x)\right| \leqslant E_{k}, \quad k=1,2, \cdots \\
E_{k}=\min \left[\alpha_{2} E_{k-1}, \frac{\alpha_{2}}{1-\alpha_{2}} \sup _{x \in X}\left|T^{k}(f)(x)-T^{k-1}(f)(x)\right|\right] . \tag{17}
\end{gather*}
$$

A comparison of the bounds above with the bounds of the proposition of the past section reveals that if $T^{k}(f) \leqslant T^{k-1}(f)$ then (17) provides a lower bound to f^{*} which is equivalent to ours and an upper bound which is less sharp than ours. Similarly if $T^{k-1}(f) \leqslant T^{k}(f)$ then (17) provides an upper bound to f^{*} equivalent to ours and a lower bound which is less sharp. When neither $T^{k}(f) \leqslant T^{k-1}(f)$ nor $T^{k-1}(f) \leqslant T^{k}(f)$ holds then either our lower or our upper bound is sharper. The improvement can be attributed to the fact that Denardo's bounds take into account only the right part of inequality (2).

Concerning the applicability of the result given it should be pointed out that it may be applied in sequential decision problems where the (effective) discount factor may depend on the current state and the control applied, such as for example in semi-Markov decision problems [3]. It may also be applied in Markovian decision problems with constant discount factors which are solved by successive approximation methods of the Gauss-Seidel type such as those described by Kushner [5] and Bertsekas [6].

References

[1] J. McQueen, "A modified dynamic programming method for Markovian decision problems," J. Math. Anal. Appl., vol. 14, pp. 38-43. 1966.
[2] E. V. Denardo, "Contraction mappings in the theory underlying dynamic programming." S/AM Req., vol. 9, pp. 165-177, 1967.
[3] S. M. Ross, Applied Probability Models with Optimization Applications. San Francisco, CA: Holden-Day, 1970.
[4] C. Derman, Finite State Markovian Decision Problems. New York: Academic, 1970.
[5] H. Kushner, Introduction to Stochastic Control. New York: Holt. Rinehart and Winston, 1971.
[6] D. P. Bertsekas, Dynamic Programming and Stochastic Control. New York: Academic, 1976.

Suboptimality Bounds and Stabitity in the Control of Nomlinear Dynamie Systems

A.J.LAUB ANDF.N. BANLEY

Abstract

Certain results paralleling twose of Balley and Ramapriyan [i] for thear dyamic systems are presented for nontiear systenis. For "weahty pertubed" sysiems cetrain suboptimal cominobs are shome to be stabiting and mpper and lower bounds on the suboptimality are investigated.

I. Intionuctont

Bailey and Ramapniyan [1] have presented some results coneerning the derivation of upper and lower bounds on suboptimatity when using a "maive" decentralized control for the control of ant autonomous timear dynamic system with quadratic performatice inder on the time interval $[0, \infty)$. When the subsystems comprising this overall system are "weakty coupled" the raive decentratized control is shown to be stabilizing and the bounds can be used to derive an estimate of the performance degradation. Mereover, this estimate is ealoulable without explioit knowledge of the solution to the overall (eoupled) regulator problem. Iesults similar in spint to these are presented below for the control on $\left[\mathrm{F}_{0}, \infty\right)$ of a nenautenomow nonlinear dynamic system witb a general integral performanee index. However, only a erade lower bound is given because of the unavailability of duality results analogous to those for linear systems as given by Meclammoch [4]. Another type of lower bound is atso computed in [2] but again this result makes heavy use of limearity. Thus, ne cenvenient estimate of performanee degradation can be given so far in the general nonlinear case.
While the upper bound results presented below are similar to those given by Rissamen [6] and Rissamen and Durbeek [7] in the finite time ease (and generalied shghtly by MeClamroch [3), a Iew and hopefully more intuitive derivation is offered liere. Moreover, this discussiol emptasizes the infinite time problem and stabitity questions but is also applicable to the finite time case considered by the above authors.

IV. Problem Formolamon

Gonsider a process modeled by the following dymamical system.

$$
\begin{equation*}
\dot{x}=f(t, x, x), \quad x\left(t_{0}\right)=x_{0} \tag{i}
\end{equation*}
$$

 $\infty) \times S$ where \mathcal{S} is some subset of \boldsymbol{R}^{n} containing the zero vector. It is assumed that there exists a mique (feedtack) contion law

$$
\begin{equation*}
u(t)=k_{0}(t, x(t)), \quad t \geqslant t_{0} \tag{2}
\end{equation*}
$$

continuous in 2 , differentiable in x, which minimices tile performance enterion

$$
\begin{equation*}
J\left(t_{0}, x_{0}, u\right)=\int_{t_{0}}^{\infty} h(t, x, u) d t \tag{3}
\end{equation*}
$$

subject to the constraint (i) for all initial values $x_{0} \in S$ where $h:\left[t_{0}, \infty\right) \times$ $\boldsymbol{R}^{n} \times \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}$ is a nomegative deffinite function on G, continuousty differentiable in all arguments. Denote solutions of (1) by $\varphi\left(t, i_{0}, x_{0}, u\right)$. Assume that is smooth enough (say, f and iss first partials continuous) to ensure that for "as givenin in (2), solutions of (1) exist throogh any point $\left(t_{1}, x_{1}\right) \in G$, are unique, depend continuousty on the initial data,

[^2]functional equation for $J^{*}: S \rightarrow R$:
$$
J^{*}(x)=\max _{u \in C} \underset{w}{E}\left\{g(x, u, w)+\alpha J^{*}[f(x, u, w)]\right\}
$$
where $0<\alpha<1$ and g, f, S, C, and w satisfy continuity, compactness, and finiteness assumptions analogous to Assumptions A of Section 5.2. Let $S^{1}, S^{2}, \ldots, S^{n}$ be mutually disjoint sets with $S=\bigcup_{i=1}^{n} S^{i}$, select arbitrary points $x^{i} \in S^{i}, i=1, \ldots, n$, and consider the discretized functional equation
\[

\hat{J}^{*}(x)= $$
\begin{cases}\max _{u \in C} \underset{w}{E}\{g(x, u, w)+\alpha \hat{J} *[f(x, u, w)]\} \\ & \text { if } \quad x=x^{i}, \quad i=1, \ldots, n, \\ \hat{J}^{*}\left(x^{i}\right) & \text { if } \quad x \in S^{i}, \quad i=1, \ldots, n .\end{cases}
$$
\]

(a) Show that both equations have unique solutions J^{*} and \hat{J}^{*} within the class of all bounded functions $J: S \rightarrow R$ and furthermore

$$
\lim _{d_{s} \rightarrow 0} \sup _{x \in S}\left|J^{*}(x)-\hat{J}^{*}(x)\right|=0,
$$

where

$$
d_{s}=\max _{i=1, \ldots, \ldots} \sup _{n \in \mathcal{S}_{i}}\left\|x-x^{i}\right\| .
$$

(b) Provide a discretization procedure and prove a similar result under assumptions analogous to Assumption B of Section 5.2.

Hint: Use the results already proved in Section 5.2.
3. Let S be a set and $B(S)$ be the set of all bounded real-valued functions on S. Let $T: B(S) \rightarrow B(S)$ be a mapping with the following two properties:
(1) $T(J) \leqslant T\left(J^{\prime}\right)$ for all $J, J^{\prime} \in B(S)$ with $J \leqslant J^{\prime}$.
(2) For every scalar $r \neq 0$ and all $x \in S$

$$
\alpha_{1} \leqslant[T(J+r e)(x)-T(J)(x)] / r \leqslant \alpha_{2},
$$

where α_{1}, α_{2} are two scalars with $0 \leqslant \alpha_{1} \leqslant \alpha_{2}<1$.
(a) Show that T is a contraction mapping on $B(S)$ and hence for every $J \in B(S)$ we have

$$
\lim _{k \rightarrow \infty} T^{k}(J)(x)=J^{*}(x) \quad \forall x \in S,
$$

where J^{*} is the unique fixed point of T in $B(S)$.
(b) Show that for all $J \in B(S), x \in S$, and $k=1,2, \ldots$,

$$
\begin{aligned}
T^{k}(J)(x)+c_{k} & \leqslant T^{k+1}(J)(x)+c_{k+1} \leqslant J^{*}(x) \\
& \leqslant T^{k+1}(J)(x)+\bar{c}_{k+1} \leqslant T^{k}(J)(x)+\bar{c}_{k},
\end{aligned}
$$

where for all k

$$
\begin{aligned}
c_{k}= & \min \left\{\frac{\alpha_{1}}{1-\alpha_{1}} \inf _{x \in S}\left[T^{k}(J)(x)-T^{k-1}(J)(x)\right]\right. \\
& \left.\frac{\alpha_{2}}{1-\alpha_{2}} \inf _{x \in S}\left[T^{k}(J)(x)-T^{k-1}(J)(x)\right]\right\} \\
\bar{c}_{k}= & \max \left\{\frac{\alpha_{1}}{1-\alpha_{1}} \sup _{x \in S}\left[T^{k}(J)(x)-T^{k-1}(J)(x)\right]\right. \\
& \left.\frac{\alpha_{2}}{1-\alpha_{2}} \sup _{x \in S}\left[T^{k}(J)(x)-T^{k-1}(J)(x)\right]\right\}
\end{aligned}
$$

A geometric interpretation of these relations for the case where S consists of a single element is provided in Fig. 6.3.

FIGURE 6.3
(c) Show that the mapping F defined by (38)-(41) satisfies

$$
\alpha^{n} \leqslant[F(J+r e)(x)-F(J)(x)] / r \leqslant \alpha
$$

where n is the number of elements in S.
Hint: Use a line of argument similar to the one of Section 6.2.

[^0]: Manuscript reeeived May 10, 1075, reviced Deeenber 30,1075
 R. Parthomanaty is with the Depormont of Cloetronien and Communiention Enginest. ing. University of Doorkee, Doorkee, India, on leave from the Indian Inctitute of Techoolog, Madras, India,

[^1]: Manuscript received July 7. 1975. This work was supported by the Joint Services Electronics Program under Contract DAAB-07-72-C-0259 and by the National Science Foundation under Grant ENG-74-19332.

 The author is with the Coordinated Science Laboratory and the Department of Electri-

[^2]: Manuscript received August 11, 1975.
 A. J. Laub is with the Department of Electrical Engineering, Uaiversity of Toronto, Toronto, Ont., Canada.
 F. N. Bailey is with the Department of Electrical Engineering and Center for Comparative Studies in Technological Development and Social Change, University of Minnesota, Minneapolis, MN 55455.

