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Technical Notes and Correspondence 

On Continued  Fraction  Inversion by Routh’s  Algorithm 
R.  PARTHASARATHY AND HARPREET SINGH 

Abstract-This note points out that the generalized algorithm proposed 
recently by Chao et al. for Cauer second form can be applied for inverting 
a continued fraction in the  Cauer f i i  form by merely writing the transfer 
function as a ratio of two polynomials arranged in the descending powers 
of “S.” 

In [I] Rao  and Lamba presented an algorithm for inverting a con- 
tinued  fraction in the  Cauer second form by developing the Routh array 
from an even number of partial coefficients. Once  the array is so 
constructed, it is noticed that  the first two rows of  the  Routh  table give 
the corresponding transfer  function. The authors  have recently extended 
[3] the  procedure of Rao  and Lamba for the continued fraction inversion 
for the case of Cauer first form. 

Chao et al. have, in a recent note 121, proposed a generalization of the 
result presented in [I] when the  continued fraction expansion is given in 
the  Cauer second form  and  an  odd or even number of partial 
coefficients are known. 

The object of this note is to point out that this generalized algorithm 
[2], based on a backward expansion of the Routh array, can  be applied 
as well to the inversion of the  continued  fraction in Cauer first form 

: which is represented by 

G ( s ) =  1 
1 (1) 

H I S +  
f f 2  + 

1 

H 3 S +  - 1 

Given an arbitrary  number of partial coefficients Hn, H,- , ;  . . , HI, 
the inverse table is constructed following the same procedure as in [2]. 
The table, after correcting  the  typographical error in the  partial 
coefficients as given in [2], is reproduced below for ready reference. 

It is to be noted  that Bo, = 1 and that  the end elements of all the rows 
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can  be written by inspection as 1 or 0, accordingly, as 
Bzi,i+l=l,   i=1,2,3;.* 

Bz-l,i+l=O, i=1,2,3, . . .  . (3) 

Once the  array is completely written, it will be seen that  the coefficients 
in the nth  and (n+ 1)th rows give the  numerator coefficient ui and the 
denominator coefficient bi, respectively, of the resulting transfer func- 
tion. 

It turns out  that these are  indeed  the coefficients of the corresponding 
powers of S of the  numerator and denominator polynomials, arranged in 
the descending order as denoted by 

where 

N =n/2 
M=(n-1)/2 N > M ,  for any n, even or  odd 

whereas a continued  fraction in the  Cauer second form, on inversion, 
will give the resulting transfer function representation as [2] 

G ( S ) =  
u o + a 1 S + . . .  +UMSM 

bo+ b l S + .  . . + bNSN 

where 
N=n/2  N > M ,  n even 
M = ( n - 1 ) / 2  N > M ,  nodd  

and 

U ~ = B , - , , ~ + , ,  i=O,1,2;.-,M 

bi=B,.i+,, i=0,1,2;. . ,N. 
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On Error Bounds for Successive Approximation Methods 
DIMITRI P. BERTSEKAS 

Abstracl-This note considers a class of contraction mappings and the 
successive approximation method for obtaining the associated fixed points. 
Some error bounds are provided which g e n e d i e  and strengthen those 
given by McQueen [l] and Denardo [Z] for dynamic programming algo- 
rithms. 
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I. MAINRESULT 

Let X be a set and  B(X) be the  set of all bounded real valued 
functions on X .  For  any two functions f,f E E ( X )  we write 

f=f ,  i f f ( x )  = f ( x ) ,  V x  E x 
f <  f ,  iff(x) < f ( x ) ,  VxEX. then follows by replacing f by Tk- l ( f ) .  For notational convenience 

Proof: It is sufficient to prove (6) for k = 1 since the result for k > I 

denote 
Let also T :  B ( X ) + B ( X )  be a mapping on B ( X )  having  the following 
two properties: d , = d ,  d l=d ,  d2=d’, a,=$. 

f < f * T ( f ) <  T(f), Vf,fEB(X) (1)  We have 

T(f+ re ) (x )  - T ( f ) ( x )  f ( x ) + d <  T ( f ) ( x ) ,  VxEX. (11) 
a1 < r < a,, Vr+O,fEB(X), X E X  (2) Applying T on both sides of the  above and using (I), (5), (11) 

where e is the  unit  function on X f ( x ) + m i n [ d + a , d , d + a , d l <  T(f)(x)+min[a,d,a,dl  

O<a,<a,<1. 

Notice  that (2) may also be written as 
f (x)+min[d+ald+a:d,d+a2d+azd] 

< T(f)(x)+min[a,d+a:d,a,d+azdd] 

We shall make  frequent use of the expression above. Proceeding similarly we have for every k = 1,2; . . 
It is easy to show that relations ( 1 )  and (2) imply that T is a 

contraction  mapping  on B ( X )  viewed as a normed space with the sup 
n o m .  Indeed for any two functionsf,fE B ( X )  and every x E X  we have f(x)+min 

i = O  i -0  i = l   i = l  

and by applying T above and using (I),  (2), Taking  the h i t  as k-m 

Since B (X) with the sup norm is complete it follows that T has  a unique 
fixed point f *  E B ( X )  

f* = T (  f*).  ._ , 

Furthermore,  the successive approximation  method which generates 
min[ald,a2dl < d’ .  

T ( n ,  ..., T k ( f ) ;  .. starting from an arbitrary functionfEB(X) has the 
convergence property It is easy to see that  the  above relation implies 

The following proposition provides monotonic  upper and lower bounds 
on the difference Tk(f)(x)-f*(x). Combining (13), (14) and using the definitions (7), (9) we obtain 

Proposition: For  any f E B ( X ) ,  x E X, and k = 1,2,. . . there holds 
T ( f ) ( x )  + b, G T 2  ( f ) ( x >  + b2 

Also from (13) we have T ( f ) ( x ) +  b,  G f * (x) ,  V x E X  and an identical 

T k + l  ( f ) ( X ) + ’ k + l <  T k  ( f ) ( x ) + ’ k  of (6) is proved for k =  1. The right part follows by an entirely similar 
argument shows that T2(n(x )  + b, < ?(x), Vx E X .  Hence, the left part 

argument. Q.E.D. 

T k  (f)(x)+bk < T“+’ ( f ) ( X ) + b k +  1 < f*(x) 

where 

(7) 
Error bounds involving successive differences of iterates of methods of 

(8) successive approximation utilizing monotone  contraction mappings of 
the type considered here have been given by McQueen [I] and  Denardo 

11. DISCUSSION 
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[2]. Reference [ I ]  considers the  case where X is a finite set X = (1,2,. . . , 
n}, a I  = a2 = 01 and obtains  the  error  bounds 

< T k - ’ ( f ) ( i ) + - d k .  i=1,2; . - ,n (15) 1 -  
I-O1 

for the case of the  mapping T :  B ( X ) + B  (X) defined by 

where U ( i )  is a subset of a finite (control) set For each i, a E(0,I) is the 
discount  factor, and 

T h i s  is the mapping associated with the usual discounted finite state 
Markovian decision problems (see, e g ,  [3H5l). The error  bounds (15) 
are known to be extremely useful in practice. The mapping (16) falls 
within our framework with a l=az=a .  Relation (13) shows that our 
error bounds are  sharper  than those of (15) although the improvement is 
admittedly small. 

The error bounds of Denardo [2, p. 1711 are given by 

A comparison of the  bounds  above with the  bounds of the proposition of 
the past section reveals that if T k ( f ) <   T k - I ( f )  then (17) provides a 
lower bound tof* which is equivalent to ours and  an upper bound which 
is  less sharp than ours. Similarly if T k - ’ ( f ) <  T k ( f )  then (17) provides 
an upper bound to f* equivalent to ours and a lower bound which is less 
sharp. When neither T k ( f ) e  T k - I ( f )  nor T k - ’ ( f ) <   T k ( f )  holds then 
either our lower or our upper bound is sharper. The improvement can be 
attributed to the fact that Denardo’s bounds take into account only the 
right part of inequahty (2). 

Concerning the applicability of the result given it should be pointed 
out that it may be applied in sequential decision problems where the 
(effective) discount factor may depend  on  the  current state  and the 
control  applied, such as For example in semi-Markov decision problems 
[3]. It may also be applied in Markovian decision problems with constant 
discount  factors which are solved by successive approximation  methods 
of the Gauss-Seidel type such as those described by Kushner [ 5 ]  and 
Bertsekas [6]. 
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Suboptimality Bounds and Stability in the 
Control of Nonlinear Dynamic Systems 

A. J. LAUB AND F. N. BAILEY 

Abshoef-Certain results paraUeling those of Bailey and Ramapriyan 
[I] for linear dynamic systems  are  presented  for nonlinear systems. For 
“weakly perturbed”  systems certain suboptimal controls are shown to be 
stabilizing and upper and lower bounds on the snboptimality are investi- 
gated. 

I. INTRODUCTION 

Bailey and Ramapriyan [ I ]  have presented some results concerning  the 
derivation of upper and lower bounds on suboptimality when using a 
“naive” decentralized control for the  control of an autonomous linear 
dynamic system with quadratic  performance index on the time interval 
[0, w). When the subsystems comprising this overall system are  ‘keakly 
coupled” the naive decentralized control is shown to be stabilizing and 
the  bounds can  be used to derive an estimate of the  performance 
degradation.  Moreover, this estimate is calculable  without explicit 
knowledge of the solution to  the overall (coupled) regulator problem. 
Results similar in spirit  to these are presented below for the  control on 
[to, 03) of a  nonautonomous n o h e a r  dynamic system with a general 
integral performance index. However, only a  crude lower bound is given 
because of the unavailability of duality results analogous to those for 
linear systems as given by McClamroch [4]. Another  type of lower 
bound is also  computed in [2] but again this result makes heavy use of 
linearity. Thus, no convenient estimate of performance  degradation can 
be given so far in the general nonlLnear case. 

While the upper bound results presented below are similar to those 
given by Rissanen [6] and Rissanen and Durbeck [7] in the finite time 
case  (and generalized slightly by McClamroch [3D, a new and hopefully 
more intuitive derivation is offered here. Moreover, this discussion 
emphasizes the infinite time problem and stability questions but is also 
applicable  to  the finite time case considered by the above  authors. 

11. PROBLEM FomiuunoN 

Consider a process modeled by the following dynamical system: 

i = f ( r , x , u ) ,  x ( r o ) = x o  (1) 

wherex(t)€Rn,  u(z)ERm  andf:[rO,cc)xRnxRm+Rn. Let G=[co,+ 
m ) x  S where S is some subset of R ”  containing  the zero vector. It is 
assumed that there exists a unique (feedback) control law 

continuous in C, differentiable in x ,  which minimkes the performance 
criterion 

subject to the  constraint ( I )  for all initial values xoES where h:[ t ,  w)X 
R ” x  Rm+R is a nonnegative definite function on G, continuously 
differentiable in all arguments. Denote solutions of (1) by @(c;rwx0,u). 
Assume that f is smooth enough (say, f and its first partials  continuous) 
to ensure that for u as given in (2), solutions of ( I )  exist through any 
point ( r , , x l ) E G ,  are unique, depend continuously on the initial data, 
and ( t , Q ( r ;  r l . x l ,ko ) )E  G for all t a I,. Assume, furthermore, that ko(c,O) 
= 0 and f( z, 0,O) = 0 for all r z ro so x = 0 is an isolated equilibrium state. 
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functional equation for J* : S + R : 

J*(x) = max E {g(x, u, w )  + d * [ f ( x ,  u, w ) ] )  
usc  w 

where 0 < a < 1 and g , f ,  S ,  C,  and w satisfy continuity, compactness, and 
finiteness assumptions analogous to Assumptions A of Section 5.2. Let 
S', S2,  . . . , Sn be mutually disjoint sets with S = uy= S', select arbitrary 
points xi  E S', i = 1, . . . , n, and consider the discretized functional equation 

max E {g(x ,  u, w )  + a j * C f ( x ,  u, w)I) 

if x = x i ,  i = l ,  ..., n, 1 j*(xi) if XES', i = 1,. . ., n. 

Show that both equations have unique solutions J* and j* within 

U E C  w 

j * ( x )  = 

(a) 
the class of all bounded functions J :  S + R and furthermore 

lim sup I J*(x) - .l*(x) 1 = 0, 
d.+O x s S  

where 

d,  = max sug[lx - x i [ [ .  
i = l .  ..., n X E  

(b) Provide a discretization procedure and prove a similar result under 
assumptions analogous to Assumption B of Section 5.2. 

Hint: Use the results already proved in Section 5.2. 
3. Let S be a set and B(S) be the set of all bounded real-valued functions on 
S. Let T: B(S)  -+ B(S) be a mapping with the following two properties: 

(1) T(J)  < T(J') for all J ,  J' E B(S) with J d J'. 
(2) For every scalar r # 0 and all x E S 

al  < [T(J + re) (x)  - T ( J ) ( x ) l / r  d a,, 

where a l ,  a2 are two scalars with 0 < a1  d a2 < 1. 
(a) Show that T is a contraction mapping on B(S) and hence for every 

J E B(S) we have 

lim Tk(J) (x )  = J*(x)  Vx E S ,  
k + m  

where J* is the unique fixed point of Tin B(S). 
(b) Show that for all J E B(S), x E S ,  and k = 1,2, . . . , 

Tk(J)(X)  ck d T k + l ( J ) ( X )  ck+l  < J*(X) 

d Tk' l (J) (X)  + c k + l  d Tk(J ) (x )  + z k ,  
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where for all k 

1 - a2 a2 sup[Tk(J ) (x )  xss  - T*'(J)(x)]}. 

A geometric interpretation of these relations for the case where S consists of a 
single element is provided in Fig. 6.3. 

FIGURE 6.3 

(c) Show that the mapping F defined by (38)-(41) satisfies 
a" < [F(J + re) (x)  - F(J)(x) ] / r  < a, 

where n is the number of elements in S. 
Hint :  Use a line of argument similar to the one of Section 6.2. 


