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Preface

There is no royal way to geometry
(Euclid to king Ptolemy of Alexandria)

Interest in convex optimization has become intense due to widespread ap-
plications in fields such as large-scale resource allocation, signal processing,
and machine learning. This book aims at an up-to-date and accessible de-
velopment of algorithms for solving convex optimization problems.

The book complements the author’s 2009 “Convex Optimization The-
ory” book, but can be read independently. The latter book focuses on
convexity theory and optimization duality, while the present book focuses
on algorithmic issues. The two books share mathematical prerequisites,
notation, and style, and together cover the entire finite-dimensional convex
optimization field. Both books rely on rigorous mathematical analysis, but
also aim at an intuitive exposition that makes use of visualization where
possible. This is facilitated by the extensive use of analytical and algorith-
mic concepts of duality, which by nature lend themselves to geometrical
interpretation.

To enhance readability, the statements of definitions and results of
the “theory book” are reproduced without proofs in Appendix B. Moreover,
some of the theory needed for the present book, has been replicated and/or
adapted to its algorithmic nature. For example the theory of subgradients
for real-valued convex functions is fully developed in Chapter 3. Thus the
reader who is already familiar with the analytical foundations of convex
optimization need not consult the “theory book” except for the purpose of
studying the proofs of some specific results.

The book covers almost all the major classes of convex optimization
algorithms. Principal among these are gradient, subgradient, polyhedral
approximation, proximal, and interior point methods. Most of these meth-
ods rely on convexity (but not necessarily differentiability) in the cost and
constraint functions, and are often connected in various ways to duality. I
have provided numerous examples describing in detail applications to spe-
cially structured problems. The reader may also find a wealth of analysis
and discussion of applications in books on large-scale convex optimization,
network optimization, parallel and distributed computation, signal process-
ing, and machine learning.

The chapter-by-chapter description of the book follows:

Chapter 1: Here we provide a broad overview of some important classes of
convex optimization problems, and their principal characteristics. Several

ix



X Preface

problem structures are discussed, often arising from Lagrange duality the-
ory and Fenchel duality theory, together with its special case, conic duality.
Some additional structures involving a large number of additive terms in
the cost, or a large number of constraints are also discussed, together with
their applications in machine learning and large-scale resource allocation.

Chapter 2: Here we provide an overview of algorithmic approaches, focus-
ing primarily on algorithms for differentiable optimization, and we discuss
their differences from their nondifferentiable convex optimization counter-
parts. We also highlight the main ideas of the two principal algorithmic
approaches of this book, iterative descent and approximation, and we illus-
trate their application with specific algorithms, reserving detailed analysis
for subsequent chapters.

Chapter 3: Here we discuss subgradient methods for minimizing a con-
vex cost function over a convex constraint set. The cost function may be
nondifferentiable, as is often the case in the context of duality and machine
learning applications. These methods are based on the idea of reduction
of distance to the optimal set, and include variations aimed at algorithmic
efficiency, such as e-subgradient and incremental subgradient methods.

Chapter 4: Here we discuss polyhedral approximation methods for min-
imizing a convex function over a convex constraint set. The two main
approaches here are outer linearization (also called the cutting plane ap-
proach) and inner linearization (also called the simplicial decomposition
approach). We show how these two approaches are intimately connected
by conjugacy and duality, and we generalize our framework for polyhedral
approximation to the case where the cost function is a sum of two or more
convex component functions.

Chapter 5: Here we focus on proximal algorithms for minimizing a convex
function over a convex constraint set. At each iteration of the basic proxi-
mal method, we solve an approximation to the original problem. However,
unlike the preceding chapter, the approximation is not polyhedral, but
rather it is based on quadratic regularization, i.e., adding a quadratic term
to the cost function, which is appropriately adjusted at each iteration. We
discuss several variations of the basic algorithm. Some of these include
combinations with the polyhedral approximation methods of the preced-
ing chapter, yielding the class of bundle methods. Others are obtained
via duality from the basic proximal algorithm, including the augmented
Lagrangian method (also called method of multipliers) for constrained op-
timization. Finally, we discuss extensions of the proximal algorithm for
finding a zero of a maximal monotone operator, and a major special case:
the alternating direction method of multipliers, which is well suited for
taking advantage of the structure of several types of large-scale problems.

Chapter 6: Here we discuss a variety of algorithmic topics that sup-
plement our discussion of the descent and approximation methods of the
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preceding chapters. We first discuss gradient projection methods and vari-
ations with extrapolation that have good complexity properties, including
Nesterov’s optimal complexity algorithm. These were developed for differ-
entiable problems, and can be extended to the nondifferentiable case by
means of a smoothing scheme. Then we discuss a number of combinations
of gradient, subgradient, and proximal methods that are well suited for
specially structured problems. We pay special attention to incremental
versions for the case where the cost function consists of the sum of a large
number of component terms. We also describe additional methods, such
as the classical block coordinate descent approach, the proximal algorithm
with a nonquadratic regularization term, and the e-descent method. We
close the chapter with a discussion of interior point methods.

Our lines of analysis are largely based on differential calculus-type
ideas, which are central in nonlinear programming, and on concepts of hy-
perplane separation, conjugacy, and duality, which are central in convex
analysis. A traditional use of duality is to establish the equivalence and
the connections between a pair of primal and dual problems, which may in
turn enhance insight and enlarge the set of options for analysis and compu-
tation. The book makes heavy use of this type of problem duality, but also
emphasizes a qualitatively different, algorithm-oriented type of duality that
is largely based on conjugacy. In particular, some fundamental algorithmic
operations turn out to be dual to each other, and whenever they arise in
various algorithms they admit dual implementations, often with significant
gains in insight and computational convenience. Some important examples
are the duality between the subdifferentials of a convex function and its
conjugate, the duality of a proximal operation using a convex function and
an augmented Lagrangian minimization using its conjugate, and the dual-
ity between outer linearization of a convex function and inner linearization
of its conjugate. Several interesting algorithms in Chapters 4-6 admit dual
implementations based on these pairs of operations.

The book contains a fair number of exercises, many of them sup-
plementing the algorithmic development and analysis. In addition a large
number of theoretical exercises (with carefully written solutions) for the “the-
ory book,” together with other related material, can be obtained from the
book’s web page http://www.athenasc.com/convexalgorithms.html, and
the author’s web page http://web.mit.edu/dimitrib/www/home.html. The
MIT OpenCourseWare site http://ocw.mit.edu/index.htm, also provides
lecture slides and other relevant material.

The mathematical prerequisites for the book are a first course in
linear algebra and a first course in real analysis. A summary of the relevant
material is provided in Appendix A. Prior exposure to linear and nonlinear
optimization algorithms is not assumed, although it will undoubtedly be
helpful in providing context and perspective. Other than this background,
the development is self-contained, with proofs provided throughout.
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The present book, in conjunction with its “theory” counterpart may
be used as a text for a one-semester or two-quarter convex optimization
course; I have taught several variants of such a course at MIT and else-
where over the last fifteen years. Still the book may not provide all of the
convex optimization material an instructor may wish for, and it may need
to be supplemented by works that aim primarily at specific types of con-
vex optimization models, or address more comprehensively computational
complexity issues. I have added representative citations for such works,
which, however, are far from complete in view of the explosive growth of
the literature on the subject.

The book may also be used as a supplementary source for nonlinear
programming classes that are primarily focused on classical differentiable
nonconvex optimization material (Kuhn-Tucker theory, Newton-like and
conjugate direction methods, interior point, penalty, and augmented La-
grangian methods). For such courses, it may provide a nondifferentiable
convex optimization component.

I was fortunate to have several outstanding collaborators in my re-
search on various aspects of convex optimization: Vivek Borkar, Jon Eck-
stein, Eli Gafni, Xavier Luque, Angelia Nedi¢, Asuman Ozdaglar, John
Tsitsiklis, Mengdi Wang, and Huizhen (Janey) Yu. Substantial portions of
our joint research have found their way into the book. In addition, I am
grateful for interactions and suggestions I received from several colleagues,
including Leon Bottou, Steve Boyd, Tom Luo, Steve Wright, and particu-
larly Mark Schmidt and Lin Xiao who read with care major portions of the
book. I am also very thankful for the valuable proofreading of parts of the
book by Mengdi Wang and Huizhen (Janey) Yu, and particularly by Ivan
Pejcic who went through most of the book with a keen eye. I developed
the book through convex optimization classes at MIT over a fifteen-year
period, and I want to express appreciation for my students who provided
continuing motivation and inspiration.

Finally, I would like to mention Paul Tseng, a major contributor
to numerous topics in this book, who was my close friend and research
collaborator on optimization algorithms for many years, and whom we
unfortunately lost while he was still at his prime. I am dedicating the book
to his memory.

Dimitri P. Bertsekas
dimitrib@mit.edu
January 2015
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1.1

2 Convex Optimization Models: An Overview Chap. 1

In this chapter we provide an overview of some broad classes of convex
optimization models. Our primary focus will be on large challenging prob-
lems, often connected in some way to duality. We will consider two types
of duality. The first is Lagrange duality for constrained optimization, which
is obtained by assigning dual variables to the constraints. The second is
Fenchel duality together with its special case, conic duality, which involves
a cost function that is the sum of two convex function components. Both
of these duality structures arise often in applications, and in Sections 1.1
and 1.2 we provide an overview, and discuss some examples.f

In Sections 1.3 and 1.4, we discuss additional model structures in-
volving a large number of additive terms in the cost, or a large number
of constraints. These types of problems also arise often in the context of
duality, as well as in other contexts such as machine learning and signal
processing with large amounts of data. In Section 1.5, we discuss the exact
penalty function technique, whereby we can transform a convex constrained
optimization problem to an equivalent unconstrained problem.

LAGRANGE DUALITY

We start our overview of Lagrange duality with the basic case of nonlin-
ear inequality constraints, and then consider extensions involving linear
inequality and equality constraints. Consider the problemi

minimize f(x)
subject to x € X, g(x) <0,

(1.1)

where X is a nonempty set,

9(@) = (q1(2), ..., gr(2))",

and f: X —Randg; : X — R, j=1,...,r, are given functions. We refer
to this as the primal problem, and we denote its optimal value by f*. A
vector = satisfying the constraints of the problem is referred to as feasible.
The dual of problem (1.1) is given by

maximize  q(u)

. (1.2)
subject to pu € R,

1 Consistent with its overview character, this chapter contains few proofs,
and refers frequently to the literature, and to Appendix B, which contains a full
list of definitions and propositions (without proofs) relating to nonalgorithmic
aspects of convex optimization. This list reflects and summarizes the content
of the author’s “Convex Optimization Theory” book [Ber09]. The proposition
numbers of [Ber09] have been preserved, so all omitted proofs of propositions in
Appendix B can be readily accessed from [Ber09].

I Appendix A contains an overview of the mathematical notation, terminol-
ogy, and results from linear algebra and real analysis that we will be using.



Sec. 1.1 Lagrange Duality 3

where the dual function g is

_ Jinfyex L(x,p) if p >0,
a(n) = { —00 otherwise,

and L is the Lagrangian function defined by
L(z,p) = f(z) + w'g(x), ze€X, peiRy

(cf. Section 5.3 of Appendix B).
Note that the dual function is extended real-valued, and that the
effective constraint set of the dual problem is

{u >0 ‘ mig(L(x,u) > —oo}.

The optimal value of the dual problem is denoted by g*.
The weak duality relation, ¢* < f*, always holds. It is easily shown
by writing for all 4 > 0, and = € X with g(z) <0,

q(n) = inf L(z, 1) < L(x,p) = f(z) + Zujgj(x) < f(2),

so that

* = gu =su < inf x) = f*.
q #@5‘1(“) HZ‘SQ(”)—IGX,g@)goﬂ) f

We state this formally as follows (cf. Prop. 4.1.2 in Appendix B).

Proposition 1.1.1: (Weak Duality Theorem) Consider problem
(1.1). For any feasible solution z and any p € R, we have ¢(u) < f(x).
Moreover, g* < f*.

When ¢* = f*, we say that strong duality holds. The following propo-
sition gives necessary and sufficient conditions for strong duality, and pri-
mal and dual optimality (see Prop. 5.3.2 in Appendix B).

Proposition 1.1.2: (Optimality Conditions) Consider problem
(1.1). There holds ¢* = f*, and (a*, u*) are a primal and dual optimal
solution pair if and only if x* is feasible, u* > 0, and

a5 EargmigL(x,u*), wigi(z*) =0, j=1,...,7
TE




4 Convex Optimization Models: An Overview Chap. 1

Both of the preceding propositions do not require any convexity as-
sumptions on f, g, and X. However, generally the analytical and algo-
rithmic solution process is simplified when strong duality (¢* = f*) holds.
This typically requires convexity assumptions, and in some cases conditions
on ri(X), the relative interior of X, as exemplified by the following result,
given in Prop. 5.3.1 in Appendix B. The result delineates the two principal
cases where there is no duality gap in an inequality-constrained problem.

Proposition 1.1.3: (Strong Duality — Existence of Dual Opti-
mal Solutions) Consider problem (1.1) under the assumption that
the set X is convex, and the functions f, and gi,..., g, are convex.
Assume further that f* is finite, and that one of the following two
conditions holds:

(1) There exists T € X such that g;(T) <0 forall j=1,...,r.

(2) The functions gj, j = 1,...,r, are affine, and there exists T €
ri(X) such that g(z) < 0.

Then ¢* = f* and there exists at least one dual optimal solution.
Under condition (1) the set of dual optimal solutions is also compact.

Convex Programming with Inequality and Equality Constraints

Let us consider an extension of problem (1.1), with additional linear equal-
ity constraints. It is our principal constrained optimization model under
convexity assumptions, and it will be referred to as the convex programming
problem. Tt is given by

minimize f(x)

. (1.3)
subject to z € X, g(z) <0, Az =0b,

where X is a convex set, g(z) = (gl(:v),...,gT(x))l, f:+ X — R and
gi : X — R, j=1,...,r, are given convex functions, A4 is an m x n matrix,
and b € R™.

The preceding duality framework may be applied to this problem by
converting the constraint Az = b to the equivalent set of linear inequality
constraints

Ax < b, —Ax < —b,

with corresponding dual variables A+ > 0 and A= > 0. The Lagrangian
function is

f(@) + wg(z) + (A = A7) (Az - b),
and by introducing a dual variable

A=At = A~
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with no sign restriction, it can be written as

Liw, 1, \) = f(@) + wg(x) + N (Az — b).
The dual problem is

- T \
maximize  inf (@, 1y N)

subject to >0, A € R,

In this manner, Prop. 1.1.3 under condition (2), together with Prop. 1.1.2,
yield the following for the case where all constraint functions are linear.

Proposition 1.1.4: (Convex Programming — Linear Equality
and Inequality Constraints) Consider problem (1.3).

(a) Assume that f* is finite, that the functions g; are affine, and
that there exists T € ri(X) such that AZ = b and ¢g(Z) < 0. Then
q* = f* and there exists at least one dual optimal solution.

(b) There holds f* = ¢*, and (z*,u*, \*) are a primal and dual
optimal solution pair if and only if z* is feasible, p* > 0, and

xT* Eargmi)rflL(x,u*,)\*), u;gj(ac*)zo, j=1,...,m
S

In the special case where there are no inequality constraints:

minimize f(x)
subject to z € X, Az =1,

the Lagrangian function is
and the dual problem is
maximize inf L(z, \)
reX
subject to A € R,

The corresponding result, a simpler special case of Prop. 1.1.4, is given in
the following proposition.



6 Convex Optimization Models: An Overview Chap. 1

Proposition 1.1.5: (Convex Programming — Linear Equality
Constraints) Consider problem (1.4).

(a) Assume that f* is finite and that there exists T € ri(X) such
that AT = b. Then f* = ¢* and there exists at least one dual
optimal solution.

(b) There holds f* = ¢*, and (a*, A*) are a primal and dual optimal
solution pair if and only if z* is feasible and

x* € arg Hélg Lz, \*).
x

The following is an extension of Prop. 1.1.4(a) to the case where the
inequality constraints may be nonlinear. It is the most general convex
programming result relating to duality in this section (see Prop. 5.3.5 in
Appendix B).

Proposition 1.1.6: (Convex Programming — Linear Equality
and Nonlinear Inequality Constraints) Consider problem (1.3).
Assume that f* is finite, that there exists T € X such that AT = b
and ¢(T) < 0, and that there exists & € ri(X) such that AZ = b. Then
q* = f* and there exists at least one dual optimal solution.

Aside from the preceding results, there are alternative optimality con-
ditions for convex and nonconvex optimization problems, which are based
on extended versions of the Fritz John theorem; see [BeO02] and [BOT06],
and the textbooks [Ber99] and [BNOO3]. These conditions are derived us-
ing a somewhat different line of analysis and supplement the ones given
here, but we will not have occasion to use them in this book.

Discrete Optimization and Lower Bounds

The preceding propositions deal mostly with situations where strong du-
ality holds (¢* = f*). However, duality can be useful even when there is
duality gap, as often occurs in problems that have a finite constraint set
X. An example is integer programming, where the components of x must
be integers from a bounded range (usually 0 or 1). An important special
case is the linear 0-1 integer programming problem

minimize cdx

subject to Ax <b, x;=0o0rl, i=1,...,n,
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where z = (z1,...,25).

A principal approach for solving discrete optimization problems with
a finite constraint set is the branch-and-bound method, which is described
in many sources; see e.g., one of the original works [LaD60], the survey
[BaT85], and the book [NeW88|. The general idea of the method is that
bounds on the cost function can be used to exclude from consideration
portions of the feasible set. To illustrate, consider minimizing F(x) over
z € X, and let Y7, Ya be two subsets of X. Suppose that we have bounds

£y < min f(z),  Fa = min f(z).

Then, if Fo < F;, the solutions in Y may be disregarded since their cost
cannot be smaller than the cost of the best solution in Y>. The lower bound
F, can often be conveniently obtained by minimizing f over a suitably
enlarged version of Y7, while for the upper bound Fs, a value f(z), where
x € Y2, may be used.

Branch-and-bound is often based on weak duality (cf. Prop. 1.1.1) to
obtain lower bounds to the optimal cost of restricted problems of the form

minimize f(x)

- (1.5)
subject to z € X, g(x) <0,

where X is a subset of X; for example in the 0-1 integer case where X
specifies that all x; should be 0 or 1, X may be the set of all 0-1 vectors
x such that one or more components x; are fixed at either 0 or 1 (i.e., are
restricted to satisfy z; = 0 for all x € X or z; =1 for all x € X) These
lower bounds can often be obtained by finding a dual-feasible (possibly
dual-optimal) solution g > 0 of this problem and the corresponding dual
value

q(p) = inf {f(x)+wg(x)}, (1.6)

which by weak duality, is a lower bound to the optimal value of the re-
stricted problem (1.5). In a strengthened version of this approach, the
given inequality constraints g(z) < 0 may be augmented by additional in-
equalities that are known to be satisfied by optimal solutions of the original
problem.

An important point here is that when X is finite, the dual function
q of Eq. (1.6) is concave and polyhedral. Thus solving the dual problem
amounts to minimizing the polyhedral function —q over the nonnegative
orthant. This is a major context within which polyhedral functions arise
in convex optimization.

1.1.1 Separable Problems — Decomposition

Let us now discuss an important problem structure that involves Lagrange
duality and arises frequently in applications. Here x has m components,
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z = (x1,...,%m), with each x; being a vector of dimension n; (often n; =
1). The problem has the form

minimize Z filxs)
- (1.7)
subject to Zgu(:zrl) <0, zmeX;, t=1,....m, j=1,...,n
i=1

where f; : R? — R and gs; : f™ — N7 are given functions, and X; are
given subsets of R"i. By assigning a dual variable u; to the jth constraint,
we obtain the dual problem [cf. Eq. (1.2)]

maximize qi(p)
2 0

subject to p >0,

where

T
gi(w) = inf § filwi) + ; 1395 (i) ¢
and = (1, .., fr)-

Note that the minimization involved in the calculation of the dual
function has been decomposed into m simpler minimizations. These min-
imizations are often conveniently done either analytically or computation-
ally, in which case the dual function can be easily evaluated. This is the key
advantageous structure of separable problems: it facilitates computation of
dual function values (as well as subgradients as we will see in Section 3.1),
and it is amenable to decomposition and distributed computation.

Let us also note that in the special case where the components x;
are one-dimensional, and the functions f; and sets X; are convex, there
is a particularly favorable duality result for the separable problem (1.7):
essentially, strong duality holds without any qualifications such as the lin-
earity of the constraint functions, or the Slater condition of Prop. 1.1.3; see
[Tse09].

Duality Gap Estimates for Nonconvex Separable Problems

The separable structure is additionally helpful when the cost and/or the
constraints are not convex, and there is a duality gap. In particular, in this
case the duality gap turns out to be relatively small and can often be shown
to diminish to zero relative to the optimal primal value as the number m of
separable terms increases. As a result, one can often obtain a near-optimal
primal solution, starting from a dual-optimal solution, without resorting
to costly branch-and-bound procedures.
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The small duality gap size is a consequence of the structure of the set
S of constraint-cost pairs of problem (1.7), which in the case of a separable
problem, can be written as a vector sum of m sets, one for each separable
term, i.e.,

S =81+ + Sm,

where
Si = {(gilwi), filx:)) | @ € Xi},

and g; : R — R is the function g¢;(z;) = (gil(:zrl-), .. ,gim(:zri)). It can
be shown that the duality gap is related to how much S “differs” from
its convex hull (a geometric explanation is given in [Ber99], Section 5.1.6,
and [Ber09], Section 5.7). Generally, a set that is the vector sum of a
large number of possibly nonconvex but roughly similar sets “tends to
be convex” in the sense that any vector in its convex hull can be closely
approximated by a vector in the set. As a result, the duality gap tends to
be relatively small. The analytical substantiation is based on a theorem
by Shapley and Folkman (see [Ber99], Section 5.1, or [Ber09], Prop. 5.7.1,
for a statement and proof of this theorem). In particular, it is shown in
[AuE76], and also [BeS82], [Ber82al, Section 5.6.1, under various reasonable
assumptions, that the duality gap satisfies
fr—q* <(r+1) max p;,
=1,..., m

where for each i, p; is a nonnegative scalar that depends on the structure of
the functions f;, gij, 7 = 1,...,r, and the set X; (the paper [AuE76] focuses
on the case where the problem is nonconvex but continuous, while [BeS82]
and [Ber82a] focus on an important class of mixed integer programming
problems). This estimate suggests that as m — oo and |f*| — oo, the
duality gap is bounded, while the “relative” duality gap (f* — ¢*)/|f*|
diminishes to 0 as m — oc.

The duality gap has also been investigated in the author’s book
[Ber09] within the more general min common-max crossing framework
(Section 4.1 of Appendix B). This framework includes as special cases
minimax and zero-sum game problems. In particular, consider a function
¢ : X X Z — R defined over nonempty subsets X C £" and Z C R™. Then
it can be shown that the gap between “infsup” and “supinf” of ¢ can be
decomposed into the sum of two terms that can be computed separately:
one term can be attributed to the lack of convexity and/or closure of ¢
with respect to x, and the other can be attributed to the lack of concavity
and/or upper semicontinuity of ¢ with respect to z. We refer to [Ber09],
Section 5.7.2, for the analysis.

1.1.2 Partitioning

It is important to note that there are several different ways to introduce
duality in the solution of large-scale optimization problems. For example a
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strategy, often called partitioning, is to divide the variables in two subsets,

and minimize first with respect to one subset while taking advantage of

whatever simplification may arise by fixing the variables in the other subset.
As an example, the problem

minimize F(z)+ G(y)
subject to Ax+By=¢, xz€X, yey,

can be written as
. . . F i f G
minimize F(z)+ By:cir}%,yey )
subject to = € X,
or
minimize F(z) + p(c — Ax)
subject to x € X,

where p is given by
= inf  G(y).
p(u) = inf G)
In favorable cases, p can be dealt with conveniently (see e.g., the book
[Las70] and the paper [GeoT72]).

Strategies of splitting or transforming the variables to facilitate al-
gorithmic solution will be frequently encountered in what follows, and in
a variety of contexts, including duality. The next section describes some
significant contexts of this type.

FENCHEL DUALITY AND CONIC PROGRAMMING

Let us consider the Fenchel duality framework (see Section 5.3.5 of Ap-
pendix B). It involves the problem

minimize fi1(z) + f2(Ax)

. (1.9)
subject to = € R,

where A is an m x n matrix, fi : R? — (—o0,00] and fa : R™ — (—00, 00]
are closed proper convex functions, and we assume that there exists a
feasible solution, i.e., an € R such that z € dom(f1) and Az € dom(f2).T

The problem is equivalent to the following constrained optimization
problem in the variables z; € R™ and x2 € R™:

minimize f1(z1) + f2(x2)

1.10
subject to x1 € dom(f1), 2 € dom(f2), ro = Axq. ( )

T We remind the reader that our convex analysis notation, terminology, and
nonalgorithmic theory are summarized in Appendix B.
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Viewing this as a convex programming problem with the linear equality
constraint zo = Ax1, we obtain the dual function as

A= inf N —A
q( ) 11Edom(fl%flmedom(fz){fl (£C1) * f2(CC2) * (582 :C1)}
= zlilelgen{fl (Il) — )\/Axl} + z;élgfe‘m{fQ(IQ) + )\/IQ}-

The dual problem of maximizing ¢ over A € 8™, after a sign change to
convert it to a minimization problem, takes the form

minimize fF(A'A) + f5(=N)
subject to A\ € Rm,

where f; and fJ are the conjugate functions of f; and f2. We denote by f*
and ¢* the corresponding optimal primal and dual values [¢* is the negative
of the optimal value of problem (1.11)].

The following Fenchel duality result is given as Prop. 5.3.8 in Ap-
pendix B. Parts (a) and (b) are obtained by applying Prop. 1.1.5(a) to
problem (1.10), viewed as a problem with xo = Ax; as the only linear
equality constraint. The first equation of part (c¢) is a consequence of Prop.
1.1.5(b). Its equivalence with the last two equations is a consequence of
the Conjugate Subgradient Theorem (Prop. 5.4.3, App. B), which states
that for a closed proper convex function f, its conjugate f*, and any pair
of vectors (x,y), we have

37:6&1“gzr1€1§er71I {f(z)—z’y} iff yedf(z) iff ze€df*(y),

with all of these three relations being equivalent to 2’y = f(z) 4+ f*(y).
Here 0f(x) denotes the subdifferential of f at x (the set of all subgradients
of f at x); see Section 5.4 of Appendix B.

(1.11)

Proposition 1.2.1: (Fenchel Duality) Consider problem (1.9).

(a) If f* is finite and (A - ri(dom(f1))) N ri(dom(f2)) # &, then
f* = ¢* and there exists at least one dual optimal solution.

(b) If g* is finite and ri(dom(f;)) N (A’ ri( — dom(f3))) # &, then
f* = g* and there exists at least one primal optimal solution.

(¢) There holds f* = g¢*, and (z*, A\*) is a primal and dual opti-
mal solution pair if and only if any one of the following three
equivalent conditions hold:

T* € arg;gg@{fl(x)—fﬂ’fl’%*} and Az* € argzrélgi%%{fz(z)+z’/\*},

(1.12)
A'X* € Ofi(z*) and — X\* € fa(Ax*), (1.13)

x* € Off(A’A*) and Ax* € OfF(—A*). (1.14)
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Minimax Problems

Minimax problems involve minimization over a set X of a function F of
the form

F(z) = sup ¢(, 2),
z€Z

where X and Z are subsets of ® and 8™, respectively, and ¢ : &» x ®m —
R is a given function. Some (but not all) problems of this type are related
to constrained optimization and Fenchel duality.

Example 1.2.1: (Connection with Constrained Optimization)
Let ¢ and Z have the form

¢(x,2) = f(z) +2'g(x),  Z={z]z20},

where f: R" — R and g : R" — R™ are given functions. Then it is seen that

Fie) = sup(a.) = { /) 90 <0,

2cZ 00 otherwise.

Thus minimization of F over z € X is equivalent to solving the constrained
optimization problem

minimize f(x)
(1.15)
subject to z € X, g(z) <0.

The dual problem is to maximize over z > 0 the function

E(2) = inf {f() +2'g(2)} = inf o(x,2),

reX

and the minimax equality

inf sup ¢(z,2) = sup inf ¢(x,z) (1.16)

z€X ez zezz€EX

is equivalent to problem (1.15) having no duality gap.

Example 1.2.2: (Connection with Fenchel Duality)

Let ¢ have the special form
¢(x,2) = f(x) + 2" Az — g(2),

where f : R" — R and g : R™ — R are given functions, and A is a given
m X n matrix. Then we have

F(z) = sup ¢(x,2) = f(z) +sup { (Az)'z — g(2) } = f(x) + §"(Ax),

z€Z z€Z
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where §* is the conjugate of the function

9(z) = {g(z) if z € Z7
00 otherwise.

Thus the minimax problem of minimizing F over z € X comes under the
Fenchel framework (1.9) with fo = §* and f1 given by

_Jf(z) ifzeX,
fl(x)i{oo ifx ¢ X.

It can also be verified that the Fenchel dual problem (1.11) is equivalent to
maximizing over z € Z the function F(z) = infzex ¢(z, 2). Again having no
duality gap is equivalent to the minimax equality (1.16) holding.

Finally note that strong duality theory is connected with minimax
problems primarily when X and Z are convex sets, and ¢ is convex in x
and concave in z. When Z is a finite set, there is a different connection
with constrained optimization that does not involve Fenchel duality and
applies without any convexity conditions. In particular, the problem

minimize max {gl(iﬂ), e 7gr($)}

subject to = € X,

where g; : ®#* — R are any real-valued functions, is equivalent to the
constrained optimization problem

minimize y
subject to = € X, gilz) <y, j=1,...,m

where y is an additional scalar optimization variable. Minimax problems
will be discussed further later, in Section 1.4, as an example of problems
that may involve a large number of constraints.

Conic Programming

An important problem structure, which can be analyzed as a special case of
the Fenchel duality framework is conic programming. This is the problem

minimize f(x)

. (1.17)
subject to = € C,

where f : R — (—o0,00] is a closed proper convex function and C is a
closed convex cone in Rn.

Indeed, let us apply Fenchel duality with A equal to the identity and
the definitions

0 ifzeC,

h@=i@, R ={3 {0
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The corresponding conjugates are

)= s (Ve f@) 0 =swxe= {0 S0

reR™ zeC

where
Cx={X|Nx<0,VzeC}

is the polar cone of C' (note that fJ is the support function of C; cf. Section
1.6 of Appendix B). The dual problem is
minimize f*(\)

. (1.18)
subject to A € C,

where f* is the conjugate of f and C is the negative polar cone (also called
the dual cone of C):

C=-Cr={\|Nz>0,VzeC}

Note the symmetry between primal and dual problems. The strong duality
relation f* = ¢* can be written as

inf f(z) = — inf f*(\).

zeC rec

The following proposition translates the conditions of Prop. 1.2.1(a),
which guarantees that there is no duality gap and that the dual problem
has an optimal solution.

Proposition 1.2.2: (Conic Duality Theorem) Assume that the
primal conic problem (1.17) has finite optimal value, and moreover
ri(dom(f)) Nri(C) # @. Then, there is no duality gap and the dual
problem (1.18) has an optimal solution.

Using the symmetry of the primal and dual problems, we also obtain
that there is no duality gap and the primal problem (1.17) has an optimal
solution if the optimal value of the dual conic problem (1.18) is finite and
ri(dom(f*)) N ri(C) # @. Tt is also possible to derive primal and dual op-
timality conditions by translating the optimality conditions of the Fenchel
duality framework [Prop. 1.2.1(c)].
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Affine set b+ S

Figure 1.2.1. Illustration of a linear-conic problem: minimizing a linear function
c’z over the intersection of an affine set b+ S and a convex cone C.

1.2.1 Linear-Conic Problems

An important special case of conic programming, called linear-conic prob-
lem, arises when dom(f) is an affine set and f is linear over dom(f), i.e.,

fz) = cdx ifxeb+ S,
T loo ifzégb+ S,

where b and ¢ are given vectors, and S is a subspace. Then the primal
problem can be written as
minimize c'x

) (1.19)
subject to z—b€ S, x €,

see Fig. 1.2.1.
To derive the dual problem, we note that

f*(A) = sup (A —c)z

rz—beS
= sup(A —¢)/(y +b)
yeSs
_ A=¢)b ifA—ce S+,
00 ifA—c¢ St

It can be seen that the dual problem min,_ f*(\) [cf. Eq. (1.18)], after
discarding the superfluous term ¢’b from the cost, can be written as
minimize b\

. (1.20)
subject to A—ce S+, XeC,
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where C is the dual cone:
C={\|Nz>0,YVzeC}

By specializing the conditions of the Conic Duality Theorem (Prop. 1.2.2)
to the linear-conic duality context, we obtain the following.

Proposition 1.2.3: (Linear-Conic Duality Theorem) Assume
that the primal problem (1.19) has finite optimal value, and moreover
(b+S)Nri(C) # . Then, there is no duality gap and the dual problem
has an optimal solution.

Special Forms of Linear-Conic Problems

The primal and dual linear-conic problems (1.19) and (1.20) have been
placed in an elegant symmetric form. There are also other useful formats
that parallel and generalize similar formats in linear programming. For
example, we have the following dual problem pairs:

min cdz = max b\, (1.21)
Az=b, z€C c—ANeC

min 'z = max U, (1.22)
Az—beC Alx=¢, AeC

where A is an m X n matrix, and x € R?, A € ™, c € R*, b € k™.
To verify the duality relation (1.21), let T be any vector such that
AZ = b, and let us write the primal problem on the left in the primal conic
form (1.19) as
minimize 'z
subject to x —% € N(A4), =z € C,

where N(A) is the nullspace of A. The corresponding dual conic problem
(1.20) is to solve for p the problem

minimize T'p
. ) (1.23)
subject to p—ceN(A)L, ped.

Since N(A)+ is equal to Ra(A’), the range of A’, the constraints of problem
(1.23) can be equivalently written as ¢ — p € —Ra(A4’) = Ra(4’), u € C, or

c—p= AN peC,
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for some A € R™. Making the change of variables p = ¢ — A’\, the dual
problem (1.23) can be written as

minimize 7'(c— A’A)

subject to ¢ — A’A e C.

By discarding the constant T'c from the cost function, using the fact AT =
b, and changing from minimization to maximization, we see that this dual
problem is equivalent to the one in the right-hand side of the duality pair
(1.21). The duality relation (1.22) is proved similarly.

We next discuss two important special cases of conic programming:
second order cone programming and semidefinite programming. These pro-
blems involve two different special cones, and an explicit definition of the
affine set constraint. They arise in a variety of applications, and their
computational difficulty in practice tends to lie between that of linear and
quadratic programming on one hand, and general convex programming on
the other hand.

1.2.2 Second Order Cone Programming

In this section we consider the linear-conic problem (1.22), with the cone
C = {(Il,...,:cn) ‘ Tn > :1:%4-...4_:17121_1}7

which is known as the second order cone (see Fig. 1.2.2). The dual cone is

C'_{y|0§y’x,Vx€O}_{y’OSH( inf i< y’:z:},

T15--Tn—1

and it can be shown that C' = C. This property is referred to as self-duality
of the second order cone, and is fairly evident from Fig. 1.2.2. For a proof,
we write

n—1
inf y'x = inf < ynxn + inf YiTi
@1, 1)|<en xn>o{ - ||<z1,m.,zn71>||3zn; o

= Jnf {ynzn = ll(ys,- - o)l 20}

0 1fH(y177yn—l)H Syn,
—oo otherwise,

where the second equality follows because the minimum of the inner prod-
uct of a vector z € R*—1 with vectors in the unit ball of -1 is —||z|.
Combining the preceding two relations, we have

y € C if and only if 0 <yn—|[(y1,.--syn—-1)ll
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| 3

Z2

Figure 1.2.2. The second order cone
C:{(w17,fﬂn)|xn2 "E§++;p%71}’
in ®3.

soC=C.
The second order cone programming problem (SOCP for short) is
minimize 'z

. . (1.24)
subject to Az —b; € Cy, i1=1,...,m,

where x € ", ¢ is a vector in R, and for i = 1,...,m, A; is an n; X n
matrix, b; is a vector in ™, and C; is the second order cone of R7:i. It is
seen to be a special case of the primal problem in the left-hand side of the
duality relation (1.22), where
Ay b1

: , b= S, C=C1 X xCh.
Am bm

Note that linear inequality constraints of the form alx — b; > 0 can be

written as
()= () =

where C; is the second order cone of 2. As a result, linear-conic problems
involving second order cones contain as special cases linear programming
problems.

A:
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We now observe that from the right-hand side of the duality relation
(1.22), and the self-duality relation C' = C', the corresponding dual linear-
conic problem has the form

maximize Z bl
=t (1.25)

subject to ZA;)” =c¢, M€Cy,i=1,....,m,
i=1
where A = (\1,...,A\m). By applying the Linear-Conic Duality Theorem
(Prop. 1.2.3), we have the following.

Proposition 1.2.4: (Second Order Cone Duality Theorem)
Consider the primal SOCP (1.24), and its dual problem (1.25).

(a) If the optimal value of the primal problem is finite and there
exists a feasible solution T such that

AT — b; € int(C;), 1=1,...,m,

then there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exists

a feasible solution A = (A1, ..., \m) such that
i € int(Cy), i=1,...,m,

then there is no duality gap, and the primal problem has an
optimal solution.

Note that while the Linear-Conic Duality Theorem requires a relative
interior point condition, the preceding proposition requires an interior point
condition. The reason is that the second order cone has nonempty interior,
so its relative interior coincides with its interior.

The SOCP arises in many application contexts, and significantly, it
can be solved numerically with powerful specialized algorithms that belong
to the class of interior point methods, which will be discussed in Section
6.8. We refer to the literature for a more detailed description and analysis
(see e.g., the books [BeNO01], [BoV04]).

Generally, SOCPs can be recognized from the presence of convex
quadratic functions in the cost or the constraint functions. The following
are illustrative examples. The first example relates to the field of robust
optimization, which involves optimization under uncertainty described by
set membership.
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Example 1.2.3: (Robust Linear Programming)

Frequently, there is uncertainty about the data of an optimization problem,
so one would like to have a solution that is adequate for a whole range of
the uncertainty. A popular formulation of this type, is to assume that the
constraints contain parameters that take values in a given set, and require
that the constraints are satisfied for all values in that set. This approach is
also known as a set membership description of the uncertainty and has been
used in fields other than optimization, such as set membership estimation,
and minimax control (see the textbook [Ber07], which also surveys earlier
work).
As an example, consider the problem

minimize ¢z
, (1.26)
subject to aj;xz <bj, V (aj,b;) €Ty, j=1,...,m

where ¢ € R" is a given vector, and T} is a given subset of R""! to which
the constraint parameter vectors (aj,b;) must belong. The vector z must
be chosen so that the constraint ajz < b; is satisfied for all (aj;,b;) € T,
g=1...,r

Generally, when T} contains an infinite number of elements, this prob-
lem involves a correspondingly infinite number of constraints. To convert the
problem to one involving a finite number of constraints, we note that

ajz <bj, V(aj,b;) €Ty if and only if gi(z) <0,

where
gi(xr) = sup {ajz —b;}. (1.27)
(aj,bj)ETj
Thus, the robust linear programming problem (1.26) is equivalent to
minimize ¢z
subject to g;(z) <0, j=1,...,m
For special choices of the set T, the function g; can be expressed in
closed form, and in the case where T} is an ellipsoid, it turns out that the

constraint g;(z) < 0 can be expressed in terms of a second order cone. To see
this, let

Ty = {(@ + Pyus, bj + qjuy) | llusll <1, u; € R}, (1.28)

where P; is a given n x n; matrix, @; € " and ¢; € R™ are given vectors,
and b; is a given scalar. Then, from Egs. (1.27) and (1.28),

gi(z) = H Slhlll{(aj + Pjuy)'z — (b + qjuy) }
ujll<

= sup (Pjz —q;)u; +a;x — bj,
flujll <1
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and finally )
9i(x) = [|Pjz — g;|| + @5z — b;.

Thus,
gi(z) <0 if and only if (Pjx — q;,b; —ajz) € C;

where C; is the second order cone of R"™; ie., the “robust” constraint
g;i(z) < 0 is equivalent to a second order cone constraint. It follows that in
the case of ellipsoidal uncertainty, the robust linear programming problem
(1.26) is a SOCP of the form (1.24).

Example 1.2.4: (Quadratically Constrained Quadratic
Problems)

Consider the quadratically constrained quadratic problem

minimize ' Qox + 2g4 + po

subject to z'Q;x + 2q§-x +p; <0, 7=1,...,7
where Qo,...,Qr are symmetric n X n positive definite matrices, qo,...,qr
are vectors in R", and po, ..., pr are scalars. We show that the problem can
be converted to the second order cone format. A similar conversion is also
possible for the quadratic programming problem where Q) is positive definite
and Q; =0,5=1,...,r

Indeed, since each @; is symmetric and positive definite, we have

/ /
#Qu+ 2z +p; = (Q)%) Qw+2(Qa) Q)% +p,
=@}z + Q" 2¢II” +p; — 44Q; a5
for j =0,1,...,r. Thus, the problem can be written as

minimize ||Q(1)/2:C + Qo qoll” +po — 00 Q0 "0

. 1/2 —-1/2 — .
subject to Q) %z +Q; " 2¢lI* +p; — jQ; 'q; <0, j=1,....m,

1/2

or, by neglecting the constant py — q()leqo,

minimize ||Q(1)/2x + Qal/QQOH

. 2 —1/2 — 1/2
subject to HQ;/ T+ Q; P4l < (qng ‘g —Pj)

, J=1..."
By introducing an auxiliary variable 41, the problem can be written as

minimize Tp41

subject to [|Qq %z + Qy 2 qol| < wn1a

_ _ 1/2 .
1Q} %z + Q2 aqll < (jQ; "0y — ) ", G=1,...,m

1/2
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It can be seen that this problem has the second order cone form (1.24). In
particular, the first constraint is of the form Apx — by € C, where C is the
second order cone of R and the (n + 1)st component of Aoz — bo is Tnt1.
The remaining r constraints are of the form Az —b; € C, where the (n+1)st
component of A;x — b; is the scalar (q;»Q;lqj — pj)1/2.

We finally note that the problem of this example is special in that it
has no duality gap, assuming its optimal value is finite, i.e., there is no need
for the interior point conditions of Prop. 1.2.4. This can be traced to the fact
that linear transformations preserve the closure of sets defined by quadratic
constraints (see e.g., BNOO03], Section 1.5.2).

1.2.3 Semidefinite Programming

In this section we consider the linear-conic problem (1.21) with C being the
cone of matrices that are positive semidefinite.f This is called the positive
semidefinite cone. To define the problem, we view the space of symmetric
n X n matrices as the space R’ with the inner product

< X,Y >=trace(XY) = Z Zfﬂijyij-
i=1 j=1

The interior of C' is the set of positive definite matrices.
The dual cone is

C ={Y | trace(XY) >0, V X € C},

and it can be shown that C' = C, ie., C is self-dual. Indeed, if Y ¢ C,
there exists a vector v € R” such that

0 > v'Yv = trace(vv'Y).

Hence the positive semidefinite matrix X = vv’ satisfies 0 > trace(XY),
so Y ¢ C and it follows that C' D C. Conversely, let Y € C, and let X be
any positive semidefinite matrix. We can express X as

n

§ : /

X = /\ieiei,
i=1

where \; are the nonnegative eigenvalues of X, and e; are corresponding
orthonormal eigenvectors. Then,

trace(XY') = trace (YZ )\ieie’i> = Z AiefYe; > 0.

=1 i=1

T As noted in Appendix A, throughout this book a positive semidefinite ma-
trix is implicitly assumed to be symmetric.
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It follows that Y € C and € c C. Thus C is self-dual, C = C.

The semidefinite programming problem (SDP for short) is to mini-
mize a linear function of a symmetric matrix over the intersection of an
affine set with the positive semidefinite cone. It has the form

minimize < D, X >

. : (1.29)
subject to < A;, X >=10b;, i=1,...,m, XeC,

where D, Aj,..., Ap, are given n X n symmetric matrices, and b1, ..., bmn,
are given scalars. It is seen to be a special case of the primal problem in
the left-hand side of the duality relation (1.21).

We can view the SDP as a problem with linear cost, linear constraints,
and a convex set constraint. Then, similar to the case of SOCP, it can be
verified that the dual problem (1.20), as given by the right-hand side of the
duality relation (1.21), takes the form

maximize b\

1.30
subject to D — (MA1+ -+ Amdn) € C, (1.30)

where b = (b1,...,bn) and the maximization is over the vector A =
(M, ..., Am). By applying the Linear-Conic Duality Theorem (Prop. 1.2.3),
we have the following proposition.

Proposition 1.2.5: (Semidefinite Duality Theorem) Consider
the primal SDP (1.29), and its dual problem (1.30).

(a) If the optimal value of the primal problem is finite and there
exists a primal-feasible solution, which is positive definite, then
there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exist
scalars A1, ..., Am such that D — (XlAl E -—i—XmAm) is positive
definite, then there is no duality gap, and the primal problem
has an optimal solution.

The SDP is a fairly general problem. In particular, it can be shown
that a SOCP can be cast as a SDP. Thus SDP involves a more general
structure than SOCP. This is consistent with the practical observation that
the latter problem is generally more amenable to computational solution.
We provide some examples of problem formulation as an SDP.

Example 1.2.5: (Minimizing the Maximum Eigenvalue)

Given a symmetric n X n matrix M (), which depends on a parameter vector
A = (A1,...,Am), we want to choose A so as to minimize the maximum



24

Convex Optimization Models: An Overview Chap. 1
eigenvalue of M (\). We pose this problem as

minimize 2z
subject to maximum eigenvalue of M (A) < z,

or equivalently
minimize z
subject to zI — M(\) € C,

where I is the n X n identity matrix, and C' is the semidefinite cone. If M (\)
is an affine function of A,

M(A) = Mo+ MM+ -+ A M,

the problem has the form of the dual problem (1.30), with the optimization
variables being (z, A1, ..., Am).

Example 1.2.6: (Semidefinite Relaxation — Lower Bounds
for Discrete Optimization Problems)

Semidefinite programming provides a means for deriving lower bounds to
the optimal value of several types of discrete optimization problems. As an
example, consider the following quadratic problem with quadratic equality
constraints

minimize x'Qo:c + a(ﬂ: + bo (1.31)
subject to 'Qix +ajx+b; =0, i=1,...,m, .

where Qo,...,Qn are symmetric n X n matrices, ao,...,am are vectors in
R", and bo, ..., by, are scalars.

This problem can be used to model broad classes of discrete optimiza-
tion problems. To see this, consider an integer constraint that a variable x;
must be either 0 or 1. Such a constraint can be expressed by the quadratic
equality 22 —z; = 0. Furthermore, a linear inequality constraint a;:c < bj can
be expressed as the quadratic equality constraint yf- + a;x —bj =0, where y;
is an additional variable.

Introducing a multiplier vector A = (A1,..., Am), the dual function is
given by

a) = inf {/Q)z + eV +b(N)},

where
Q) =Qo+ > NQi, a(N)=ao+ Y Niai, bA)=bo+ Y Aibs.
i=1 i=1 i=1

Let f* and ¢* be the optimal values of problem (1.31) and its dual,
and note that by weak duality, we have f* > ¢*. By introducing an auxiliary
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scalar variable &, we see that the dual problem is to find a pair (£, A) that
solves the problem
maximize &

subject to g(X\) > &.

The constraint g(\) > £ of this problem can be written as

Jinf {&' QN +a(V)z +b()) - £} >0,

or equivalently, introducing a scalar variable ¢ and multiplying with ¢2,

inf  {(tx)' Q\)(tz) + a(N) (tx)t + (b(X) — £)t*} > 0.

TERT, tER

Writing y = ¢z, this relation takes the form of a quadratic in (y, t),

Jennf {¥ Q)Y +a)yt + (b — )7} = 0,

or

QM) za(N)
( £> eC, (1.32)

where C' is the positive semidefinite cone. Thus the dual problem is equivalent
to the SDP of maximizing & over all (£, \) satisfying the constraint (1.32), and
its optimal value ¢* is a lower bound to f*.

1.3 ADDITIVE COST PROBLEMS

In this section we focus on a structural characteristic that arises in several
important contexts: a cost function f that is the sum of a large number of
components f; : R? — R,

fz) = Zfi(fl?)- (1.33)

Such cost functions can be minimized with specialized methods, called in-
cremental, which exploit their additive structure, by updating x using one
component function f; at a time (see Section 2.1.5). Problems with ad-
ditive cost functions can also be treated with specialized outer and inner
linearization methods that approximate the component functions f; indi-
vidually (rather than approximating f); see Section 4.4.

An important special case is the cost function of the dual of a sepa-
rable problem

m
maximize Z qi(1)

i=1
subject to pu > 0,
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where

qi(p) = mllelﬁ( filzs) + ; wigi(xi) ¢

and g = (p1,...,p4r) [cf. Eq. (1.8)]. After a sign change to convert to
minimization it takes the form (1.33) with f;(¢) = —¢;(1). This is a major
class of additive cost problems.

We will next describe some applications from a variety of fields. The

following five examples arise in many machine learning contexts.

Example 1.3.1: (Regularized Regression)

This is a broad class of applications that relate to parameter estimation. The
cost function involves a sum of terms f;(x), each corresponding to the er-
ror between some data and the output of a parametric model, with = being
the vector of parameters. An example is linear least squares problems, also
referred to as linear regression problems, where f; has quadratic structure.
Often a convex regularization function R(x) is added to the least squares ob-
jective, to induce desirable properties of the solution and/or the corresponding
algorithms. This gives rise to problems of the form

minimize R(z)+ 3>, (cjz — bi)?
subject to = € R,

where ¢; and b; are given vectors and scalars, respectively. The regularization
function R is often taken to be differentiable, and particularly quadratic.
However, there are practically important examples of nondifferentiable choices
(see the next example).

In statistical applications, such a problem arises when constructing a
linear model for an unknown input-output relation. The model involves a
vector of parameters x, to be determined, which weigh input data (the com-
ponents of the vectors ¢;). The inner products c;z produced by the model are
matched against the scalars b;, which are observed output data, corresponding
to inputs ¢; from the true input-output relation that we try to represent. The
optimal vector of parameters z* provides the model that (in the absence of a
regularization function) minimizes the sum of the squared errors (cjz* — b;).

In a more general version of the problem, a nonlinear parametric model
is constructed, giving rise to a nonlinear least squares problem of the form

m
minimize R(z) + Z
i=1

subject to z € R",

gi(@)[’

where g; : " — R are given nonlinear functions that depend on the data.
This is also a common problem, referred to as nonlinear regression, which,
however, is often nonconvex [it is convex if the functions g; are convex and
also nonnegative, i.e., gi;(x) > 0 for all € R"].
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It is also possible to use a nonquadratic function of the error between
some data and the output of a linear parametric model. Thus in place of the
squared error (1/2)(cix — b;)?, we may use hi(ciz — b;), where h; : R — R is
a convex function, leading to the problem

m

minimize R(x) + Z hi(cix — b;)
i=1
subject to = € R".

Generally the choice of the function h; is dictated by statistical modeling
considerations, for which the reader may consult the relevant literature. An
example is

hi(cix — bi) = |ciz — bil,

which tends to result in a more robust estimate than least squares in the
presence of large outliers in the data. This is known as the least absolute
deviations method.

There are also constrained variants of the problems just discussed,
where the parameter vector = is required to belong to some subset of R™,
such as the nonnegative orthant or a “box” formed by given upper and lower
bounds on the components of . Such constraints may be used to encode into
the model some prior knowledge about the nature of the solution.

Example 1.3.2: (¢;-Regularization)

A popular approach to regularized regression involves ¢1 -reqularization, where
R(z) =z =7 _|a7],
j=1

~ is a positive scalar and z’ is the jth coordinate of z. The reason for the
popularity of the ¢1 norm ||z||1 is that it tends to produce optimal solutions
where a greater number of components x’ are zero, relative to the case of
quadratic regularization (see Fig. 1.3.1). This is considered desirable in many
statistical applications, where the number of parameters to include in a model
may not be known a priori; see e.g., [Tib96], [DoE03], [BJM12]. The special
case where a linear least squares model is used,

minimize v|z|1 + 5 Y1, (clx — b;)?
subject to z € R",
is known as the lasso problem.

In a generalization of the lasso problem, the ¢; regularization function
|z]|1 is replaced by a scaled version ||Sz||1, where S is some scaling matrix.
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A A
Level sets of I Level sets of F
z*
/ ~
Figure 1.3.1. Illustration of the effect of ¢1-regularization for cost functions
of the form 7||z||1 + F(x), where v > 0 and F' : R" — R is differentiable (figure
in the left-hand side). The optimal solution z* tends to have more zero com-

ponents than in the corresponding quadratic regularization case, illustrated
in the right-hand side.

\/

The term ||Sz||1 then induces a penalty on some undesirable characteristic of
the solution. For example the problem

n—1

minimize ’yz |Tit1 — @] + % Z:’;l(c;:c —b;)?
i=1

subject to = € R,

is known as the total variation denoising problem; see e.g., [ROF92], [Cha04],
[BeT09a]. The regularization term here encourages consecutive variables to
take similar values, and tends to produce more smoothly varying solutions.
Another related example is matriz completion with nuclear norm regu-
larization; see e.g., [CaR09], [CaT10], [RFP10], [Recll], [ReR13]. Here the
minimization is over all m X n matrices X, with components denoted X;;. We
have a set of entries M;;, (i,7) € €, where Q is a subset of index pairs, and
we want to find X whose entries X;; are close to M;; for (z,7) € 2, and has as
small rank as possible, a property that is desirable on the basis of statistical
considerations. The following more tractable version of the problem is solved

instead: ) )
minimize || X« + 3 Z(i,j)eQ(Xij — Mij)

subject to X € R™*",

where || X ||« is the nuclear norm of X, defined as the sum of the singular
values of X. There is substantial theory that justifies this approximation,
for which we refer to the literature. It turns out that the nuclear norm is a
convex function with some nice properties. In particular, its subdifferential
at any X can be conveniently characterized for use in algorithms.
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Let us finally note that sometimes additional regularization functions
are used in conjunction with ¢i-type terms. An example is the sum of a
quadratic and an ¢;-type term.

Example 1.3.3: (Classification)

In the regression problems of the preceding examples we aim to construct a
parametric model that matches well an input-output relationship based on
given data. Similar problems arise in a classification context, where we try to
construct a parametric model for predicting whether an object with certain
characteristics (also called features) belongs to a given category or not.

We assume that each object is characterized by a feature vector c¢ that
belongs to R™ and a label b that takes the values +1 or —1, if the object
belongs to the category or not, respectively. As illustration consider a credit
card company that wishes to classify applicants as “low risk” (+1) or “high
risk” (-1), with each customer characterized by n scalar features of financial
and personal type.

We are given data, which is a set of feature-label pairs (c;,b;), i =
1,...,m. Based on this data, we want to find a parameter vector x € R" and
a scalar y € R such that the sign of ¢’z + y is a good predictor of the label
of an object with feature vector c. Thus, loosely speaking, x and y should be
such that for “most” of the given feature-label data (c;, b;) we have

cx+y >0, if by = +1,

cr+y <0, if b = —1.

In the statistical literature, ¢’z + y is often called the discriminant function,
and the value of
bi(ciz +y),

for a given object ¢ provides a measure of “margin” to misclassification of
the object. In particular, a classification error is made for object ¢ when
bi(ciz +y) < 0.

Thus it makes sense to formulate classification as an optimization prob-
lem where negative values of b;(cix + y) are penalized. This leads to the

problem
m

minimize R(z) + Z h(bi(ch + y))
i=1
subject to z € R", y e R,
where R is a suitable regularization function, and A : ® — R is a convex

function that penalizes negative values of its argument. It would make some
sense to use a penalty of one unit for misclassification, i.e.,

0 ifz>0,
h(z)_{1 if 2 <0,

but such a penalty function is discontinuous. To obtain a continuous cost
function, we allow a continuous transition of h from negative to positive
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values, leading to a variety of nonincreasing functions h. The choice of h
depends on the given application and other theoretical considerations for
which we refer to the literature. Some common examples are

h(z)=e"7, (exponential loss),
h(z) = log (1 + 672) , (logistic loss),
h(z) = max {0, 1- z}, (hinge loss).

For the case of logistic loss the method comes under the methodology of lo-
gistic regression, and for the case of hinge loss the method comes under the
methodology of support vector machines. As in the case of regression, the reg-
ularization function R could be quadratic, the £1 norm, or some scaled version
or combination thereof. There is extensive literature on these methodologies
and their applications, to which we refer for further discussion.

Example 1.3.4: (Nonnegative Matrix Factorization)

The nonnegative matrix factorization problem is to approximately factor a
given nonnegative matrix B as C X, where C' and X are nonnegative matrices
to be determined via the optimization

minimize ||CX — B||%
subject to C >0, X > 0.

Here || - | » denotes the Frobenius norm of a matrix (||M||% is the sum of the
squares of the scalar components of M). The matrices B, C, and X must have
compatible dimensions, with the column dimension of C' usually being much
smaller than its row dimension, so that C'X is a low-rank approximation of
B. In some versions of the problem some of the nonnegativity constraints on
the components of C' and X may be relaxed. Moreover, regularization terms
may be added to the cost function to induce sparsity or some other effect,
similar to earlier examples in this section.

This problem, formulated in the 90s, [PaT94], [Paa97], [LeS99], has
become a popular model for regression-type applications such as the ones
of Example 1.3.1, but with the vectors ¢; in the least squares objective

Z';l(cgsc — b;)? being unknown and subject to optimization. In the regres-
sion context of Example 1.3.1, we aim to (approximately) represent the data
in the range space of the matrix C' whose rows are the vectors ¢}, and we
may view C' as a matrix of known basis functions. In the matrix factorization
context of the present example, we aim to discover a “good” matrix C' of basis
functions that represents well the given data, i.e., the matrix B.

An important characteristic of the problem is that its cost function is
not convex jointly in (C, X). However, it is convex in each of the matrices C'
and X individually, when the other matrix is held fixed. This facilitates the
application of algorithms that involve alternate minimizations with respect
to C and with respect to X; see Section 6.5. We refer to the literature, e.g.,
the papers [BBLO7], [Lin07], [GoZ12], for a discussion of related algorithmic
issues.
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Example 1.3.5: (Maximum Likelihood Estimation)

The maximum likelihood approach is a major statistical inference methodol-
ogy for parameter estimation, which is described in many sources (see e.g., the
textbooks [Was04], [HTF09]). In fact in many cases, a maximum likelihood
formulation is used to provide a probabilistic justification of the regression
and classification models of the preceding examples.

Here we observe a sample of a random vector Z whose distribution
Pz(-;x) depends on an unknown parameter vector z € R". For simplicity
we assume that Z can take only a finite set of values, so that Pz(z;x) is the
probability that Z takes the value z when the parameter vector has the value
z. We estimate x based on the given sample value z, by solving the problem

maximize Pz(z;x
(z:) (1.34)
subject to = € R".

The cost function Pz(z;-) of this problem may either have an additive
structure or may be equivalent to a problem that has an additive structure.
For example the event that Z = z may be the union of a large number of
disjoint events, so Pz(z;x) is the sum of the probabilities of these events. For
another important context, suppose that the data z consists of m independent
samples z1,..., zm drawn from a distribution P(-;z), in which case

Pz(z;x) = P(z1;2) -+ - P(2m; ).

Then the maximization (1.34) is equivalent to the additive cost minimization
m
minimize Z fi(z)
i=1
subject to = € R,
where
fi(z) = —log P(z;; x).

In many applications the number of samples m is very large, in which case
special methods that exploit the additive structure of the cost are recom-
mended. Often a suitable regularization term is added to the cost function,
similar to the preceding examples.

Example 1.3.6: (Minimization of an Expected Value -
Stochastic Programming)

An important context where additive cost functions arise is the minimization
of an expected value

minimize E{F(:c,w)}
subject to =z € X,
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where w is a random variable taking a finite but very large number of values
wi, ¢ = 1,...,m, with corresponding probabilities 7;. Then the cost function
consists of the sum of the m functions m; F(x, w;).

For example, in stochastic programming, a classical model of two-stage
optimization under uncertainty, a vector x € X is selected, a random event
occurs that has m possible outcomes wi, ..., wm, and another vector y € Y
is selected with knowledge of the outcome that occurred (see e.g., the books
[BiL97], [KaW94], [Pre95], [SDR09]). Then for optimization purposes, we
need to specify a different vector y; € Y for each outcome w;. The problem
is to minimize the expected cost

F(z) + Zﬂ'iGi(yi),

where G;(y;) is the cost associated with the choice y; and the occurrence
of w;, and 7; is the corresponding probability. This is a problem with an
additive cost function.

Additive cost functions also arise when the expected value cost function
E{F($7 w)} is approximated by an m-sample average

m

f@) = -3 Few),

where w; are independent samples of the random variable w. The minimum
of the sample average f(z) is then taken as an approximation of the minimum
of E{F(:c, w)}

Generally additive cost problems arise when we want to strike a bal-

ance between several types of costs by lumping them into a single cost
function. The following is an example of a different character than the
preceding ones.

Example 1.3.7: (Weber Problem in Location Theory)

A basic problem in location theory is to find a point x in the plane whose
sum of weighted distances from a given set of points 41, ..., ¥m iS minimized.
Mathematically, the problem is

m
minimize Z wzHSC - yzH
i=1

subject to = € R",

where w1, ..., wn, are given positive scalars. This problem has many varia-
tions, including constrained versions, and descends from the famous Fermat-
Torricelli-Viviani problem (see [BMS99] for an account of the history of this
problem). We refer to the book [DrH04] for a survey of recent research, and
to the paper [BeT10] for a discussion that is relevant to our context.
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The structure of the additive cost function (1.33) often facilitates the
use of a distributed computing system that is well-suited for the incremental
approach. The following is an illustrative example.

Example 1.3.8: (Distributed Incremental Optimization —
Sensor Networks)

Consider a network of m sensors where data are collected and are used to solve
some inference problem involving a parameter vector x. If f;(x) represents an
error penalty for the data collected by the ith sensor, the inference problem
involves an additive cost function 27;1 fi. While it is possible to collect all
the data at a fusion center where the problem will be solved in centralized
manner, it may be preferable to adopt a distributed approach in order to
save in data communication overhead and/or take advantage of parallelism
in computation. In such an approach the current iterate xy is passed on from
one sensor to another, with each sensor ¢ performing an incremental iteration
involving just its local component f;. The entire cost function need not be
known at any one location. For further discussion we refer to representative
sources such as [RaN04], [RaN05], [BHGO8], [MRS10], [GSW12], and [Say14].

The approach of computing incrementally the values and subgradients
of the components f; in a distributed manner can be substantially extended
to apply to general systems of asynchronous distributed computation, where
the components are processed at the nodes of a computing network, and the
results are suitably combined [NBBO01] (see our discussion in Sections 2.1.5
and 2.1.6).

Let us finally note a constrained version of additive cost problems
where the functions f; are extended real-valued. This is essentially equiv-
alent to constraining x to lie in the intersection of the domains

Xz' = dom(fi),

resulting in a problem of the form

m
minimize Z fi(z)
i=1
subject to = € NIZ, X,

where each f; is real-valued over the set X;. Methods that are well-suited
for the unconstrained version of the problem where X; = R™ can often be
modified to apply to the constrained version, as we will see in Chapter 6,
where we will discuss incremental constraint projection methods. However,
the case of constraint sets with many components arises independently of
whether the cost function is additive or not, and has its own character, as
we discuss in the next section.
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LARGE NUMBER OF CONSTRAINTS

In this section we consider problems of the form

minimize T
imize  f(2) | (1.35)
subject to z € X, gj(z) <0, j=1,...,m

where the number 7 of constraints is very large. Problems of this type occur
often in practice, either directly or via reformulation from other problems.
A similar type of problem arises when the abstract constraint set X consists
of the intersection of many simpler sets:

X = Mger Xy,

where L is a finite or infinite index set. There may or may not be additional
inequality constraints g;(«) < 0 like the ones in problem (1.35). We provide
a few examples.

Example 1.4.1: (Feasibility and Minimum Distance
Problems)

A simple but important problem, which arises in many contexts and embodies
important algorithmic ideas, is a classical feasibility problem, where the ob-
jective is to find a common point within a collection of sets Xy, ¢ € L, where
each X/ is a closed convex set. In the feasibility problem the cost function
is zero. A somewhat more complex problem with a similar structure arises
when there is a cost function, i.e., a problem of the form

minimize f(z)

subject to = € Nger Xy,

where f: R" — R. An important example is the minimum distance problem,

where

f(@) = |lz — =],
for a given vector z and some norm || - ||. The following example is a special
case.

Example 1.4.2: (Basis Pursuit)

Consider the problem

minimize ||z
(1.36)
subject to Az = b,

where || - |1 is the ¢; norm in R", A is a given m X n matrix, and b is
a vector in R™ that consists of m given measurements. We are trying to
construct a linear model of the form Ax = b, where x is a vector of n scalar
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weights for a large number n of basis functions (m < n). We want to satisfy
exactly the measurement equations Az = b, while using only a few of the
basis functions in our model. Consequently, we introduce the ¢; norm in the
cost function of problem (1.36), aiming to delineate a small subset of basis
functions, corresponding to nonzero coordinates of x at the optimal solution.
This is called the basis pursuit problem (see, e.g., [CDS01], [VaF08]), and its
underlying idea is similar to the one of ¢;-regularization (cf. Example 1.3.2).

It is also possible to consider a norm other than ¢; in Eq. (1.36). An
example is the atomic norm || - |4 induced by a subset A that is centrally
symmetric around the origin (a € A if and only if —a € A):

|z]|4 = inf {t >0|zet- conv(A)}.

This problem, and other related problems involving atomic norms, have many
applications; see for example [CRP12], [SBT12], [RSW13].
A related problem is

minimize || X]||«
subject to AX = B,

where the optimization is over all m X n matrices X. The matrices A, B
are given and have dimensions ¢ X m and ¢ X n, respectively, and || X]||. is
the nuclear norm of X. This problem aims to produce a low-rank matrix X
that satisfies an underdetermined set of linear equations AX = B (see e.g.,
[CaR09], [RFP10], [RXB11]). When these equations specify that a subset of
entries X;j, (4,) € Q, are fixed at given values M;;,

Xij = Mij, (4,7) € Q,

we obtain an alternative formulation of the matrix completion problem dis-
cussed in Example 1.3.2.

Example 1.4.3: (Minimax Problems)

In a minimax problem the cost function has the form

f(z) = sup ¢(z, 2),
z€Z
where Z is a subset of some space and ¢(-, z) is a real-valued function for each
z € Z. We want to minimize f subject to z € X, where X is a given constraint
set. By introducing an artificial scalar variable y, we may transform such a
problem to the general form

minimize y
subject to z € X, ¢(z,2) <y, Vze€LZ

which involves a large number of constraints (one constraint for each z in the
set Z, which could be infinite). Of course in this problem the set X may also
be of the form X = Nyecr Xy as in earlier examples.



36

Convex Optimization Models: An Overview Chap. 1

Example 1.4.4: (Basis Function Approximation for Separable
Problems — Approximate Dynamic Programming)

Let us consider a large-scale separable problem of the form

minimize Z fi(yi)
i=1
™ (1.37)
subject to Zgij(yi) <0, Vj=1,...,m7 y>0,
i=1
where f; : 8 — R are scalar functions, and the dimension m of the vector
y=(y1,...,Ym) is very large. One possible way to address this problem is to
approximate y with a vector of the form ®x, where ® is an m x n matrix. The
columns of ® may be relatively few, and may be viewed as basis functions
for a low-dimensional approximation subspace {®z | z € R"}. We replace
problem (1.37) with the approximate version
m
minimize Z fi(pix)
i=1
™ 1.38
subject to Zgij(¢;$) <0, Vj=1,...,m ( )

i=1
dix >0, i=1,...,m,

where ¢} denotes the ith row of ®, and ¢z is viewed as an approximation of
y;. Thus the dimension of the problem is reduced from m to n. However, the
constraint set of the problem became more complicated, because the simple
constraints y; > 0 take the more complex form ¢,z > 0. Moreover the number
m of additive components in the cost function, as well as the number of its
constraints is still large. Thus the problem has the additive cost structure of
the preceding section, as well as a large number of constraints.

An important application of this approach is in approximate dynamic
programming (see e.g., [BeT96], [SuB98], [Powll], [Ber12]), where the func-
tions f; and g¢;; are linear. The corresponding problem (1.37) relates to the
solution of the optimality condition (Bellman equation) of an infinite horizon
Markovian decision problem (the constraint y > 0 may not be present in this
context). Here the numbers m and r are often astronomical (in fact r can be
much larger than m), in which case an exact solution cannot be obtained. For
such problems, approximation based on problem (1.38) has been one of the
major algorithmic approaches (see [Berl2] for a textbook presentation and
references). For very large m, it may be impossible to calculate the cost func-
tion value ZZ’;I fi(¢ix) for a given z, and one may at most be able to sample
individual cost components f;. For this reason optimization by stochastic
simulation is one of the most prominent approaches in large scale dynamic
programming.

Let us also mention that related approaches based on randomization
and simulation have been proposed for the solution of large scale instances of
classical linear algebra problems; see [BeY09], [Ber12] (Section 7.3), [DMMO06],
[StV09], [HMT10], [Neel0], [DMM11], [WaB13a], [WaB13b].
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A large number of constraints also arises often in problems involving
a graph, and may be handled with algorithms that take into account the
graph structure. The following example is typical.

Example 1.4.5: (Optimal Routing in a Network —
Multicommodity Flows)

Consider a directed graph that is used to transfer “commodities” from given
supply points to given demand points. We are given a set W of ordered node
pairs w = (4,7). The nodes i and j are referred to as the origin and the
destination of w, respectively, and w is referred to as an OD pair. For each
w, we are given a scalar r,, referred to as the input of w. For example, in the
context of routing of data in a communication network, r,, (measured in data
units/second) is the arrival rate of traffic entering and exiting the network at
the origin and the destination of w, respectively. The objective is to divide
each r,, among the many paths from origin to destination in a way that the
resulting total arc flow pattern minimizes a suitable cost function.
We denote:

P,: A given set of paths that start at the origin and end at the destination
of w. All arcs on each of these paths are oriented in the direction from
the origin to the destination.

zp: The portion of 7, assigned to path p, also called the flow of path p.
The collection of all path flows {x, | p € Py, w € W} must satisfy the

constraints
Z Tp = Tw, YV weW, (1.39)
pPE Py
zp >0, VpéeE P, weW. (1.40)

The total flow F;; of arc (4, ) is the sum of all path flows traversing the arc:

Fy; = Z Tp. (1.41)

all paths p
containing (%,5)

Consider a cost function of the form

Z Di;(Fiy). (1.42)

(%,9)

The problem is to find a set of path flows {x, } that minimize this cost function
subject to the constraints of Eqgs. (1.39)-(1.41). It is typically assumed that
D;j is a convex function of Fj;. In data routing applications, the form of
D;; is often based on a queueing model of average delay, in which case D;; is
continuously differentiable within its domain (see e.g., [BeG92]). In a related
context, arising in optical networks, the problem involves additional integer
constraints on z,, but may be addressed as a problem with continuous flow
variables (see [0zB03]).
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The preceding problem is known as a multicommodity network flow
problem. The terminology reflects the fact that the arc flows consist of several
different commodities; in the present example the different commodities are
the data of the distinct OD pairs. This problem also arises in essentially iden-
tical form in traffic network equilibrium problems (see e.g., [FIH95], [Ber98],
[Ber99], [Pat99], [Pat04]). The special case where all OD pairs have the same
end node, or all OD pairs have the same start node, is known as the single
commodity network flow problem, a much easier type of problem, for which
there are efficient specialized algorithms that tend to be much faster than
their multicommodity counterparts (see textbooks such as [Ber91], [Ber98]).

By expressing the total flows Fj; in terms of the path flows in the cost
function (1.42) [using Eq. (1.41)], the problem can be formulated in terms of
the path flow variables {zp | p € Py, w € W} as

minimize D(x)

subject to Z Tp =Tw, VwWeW,
pE Py

zp >0, VpeP,, weW,

where

D(x) = ZDU Z Tp

(4,5) all paths p
containing (%,5)

and x is the vector of path flows x,. There is a potentially huge number
of variables as well as constraints in this problem. However, by judiciously
taking into account the special structure of the problem, the constraint set
can be simplified and approximated by the convex hull of a small number of
vectors x, and the number of variables and constraints can be reduced to a
manageable size (see e.g., [BeG83], [FIH95], [OMV00], and our discussion in
Section 4.2).

There are several approaches to handle a large number of constraints.
One possibility, which points the way to some major classes of algorithms,
is to initially discard some of the constraints, solve the corresponding less
constrained problem, and later selectively reintroduce constraints that seem
to be violated at the optimum. In Chapters 4-6, we will discuss methods
of this type in some detail.

Another possibility is to replace constraints with penalties that assign
high cost for their violation. In particular, we may replace problem (1.35)
with

minimize f(z) + ¢ Z P(g;(x))

subject to z € X,

where P(-) is a scalar penalty function satisfying P(u) = 0 if v < 0, and
P(u) > 0 if u > 0, and ¢ is a positive penalty parameter. We discuss this
possibility in the next section.
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EXACT PENALTY FUNCTIONS

In this section we discuss a transformation that is often useful in the context
of constrained optimization algorithms. We will derive a form of equiva-
lence between a constrained convex optimization problem, and a penalized
problem that is less constrained or is entirely unconstrained. The motiva-
tion is that some convex optimization algorithms do not have constrained
counterparts, but can be applied to a penalized unconstrained problem.
Furthermore, in some analytical contexts, it is useful to be able to work
with an equivalent problem that is less constrained.

We consider the convex programming problem

minimize T
imize  f(2) | (1.43)
subject to z € X, gj(z) <0, j=1,...,m

where X is a convex subset of 7, and f : X — R and g; : X — R are
given convex functions. We denote by f* the primal optimal value, and by
q* the dual optimal value, i.e.,

q* = supq(u),
n=>0

where
q(u) = it {f(@) + @)},  Vu=0,

with g(z) = (g1(z), ... ,gr(x))l. We assume that —oo < ¢* = f* < 0.
We introduce a convex penalty function P : " — R, which satisfies

P(u) =0, Vu <0, (1.44)

P(u) >0, if uj >0 for some j =1,...,r. (1.45)

We consider solving in place of the original problem (1.43), the “penalized”
problem

minimize f(z) + P(g(z)) (1.46)
subject to = € X, |

where the inequality constraints have been replaced by the extra cost
P (g(x)) for their violation. Some interesting examples of penalty functions
are based on the squared or the absolute value of constraint violation:

T

P(u) = gZ(maX{O,uj})Q,

j=1
and

P(u) = CZ max{0, u,},

j=1
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Figure 1.5.1. Illustration of various penalty functions P and their conjugate
functions, denoted by Q. Because P(u) = 0 for u < 0, we have Q(u) = oo for p

outside the nonnegative orthant.

where c is a positive penalty parameter. However, there are other possibil-
ities that may be well-matched with the problem at hand.
The conjugate function of P is given by

Q(u) = sup {u'n = P(u)},

and it can be seen that

Q(p) >0,
Q(p) = o0,

Y e R,

if p; <0 for some j=1,...,r.

Figure 1.5.1 shows some examples of one-dimensional penalty functions P,

together with their conjugates.
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Consider the primal function of the original constrained problem,

p(U) - mEX}Igl(fz)Suf(x)7 u € R
We have,
il {f@ + Plo(@)} = inf il (@) + Plg(x))}
- zlgi ueéﬁrmf {f x u)}
- zeX, u€§RT {f JJ )}

= inf 1nf {f(z)+ P(u)}

uERT zeX, g(x)<u

= inf {p(u) + P(u)},

where for the second equality, we use the monotonicity relationf
u<v = P(u) < P(v).

Moreover, —oo < ¢* and f* < oo by assumption, and since for any p with
q(p) > —o0, we have

p(u) > q(u) — wu > —oo, YV ue R,

it follows that p(0) < co and p(u) > —oo for all u € R, so p is proper.
We can now apply the Fenchel Duality Theorem (Prop. 1.2.1) with

the identifications fi = p, fo = P, and A = I. We use the conjugacy

relation between the primal function p and the dual function g to write

inf, {pw) + P(u)} = iglg{q(u) -Q(W}, (1.47)
so that
inf {f(@)+P(g(x))} = ig%{qw) - QW (1.48)

see Fig. 1.5.2. Note that the conditions for application of the theorem are
satisfied since the penalty function P is real-valued, so that the relative

1 To show this relation, we argue by contradiction. If there exist v and v with
u < v and P(u) > P(v), then by continuity of P, there must exist @ close enough
to u such that @ < v and P(w) > P(v). Since P is convex, it is monotonically
increasing along the halfline {H+ a(u—v)|a> O}, and since P(u) > P(v) > 0,
P takes positive values along this halfline. However, since © < v, this halfline
eventually enters the negative orthant, where P takes the value 0 by Eq. (1.44),
a contradiction.
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Figure 1.5.2. Illustration of the du-
ality relation (1.48), and the opti-
mal values of the penalized and the
dual problem. Here f* is the opti-
mal value of the original problem,
I\ which is assumed to be equal to the
optimal dual value ¢*, while f is the

f‘ + Q(,u,) optimal value of the penalized prob-
_— lem,

=
N
|-
g (R
Ty

q() J= inf {f(x)+P(9(x)) }.

! o
/ 'a’ \ ,U,V The point of contact of the graphs

~hy

of the functions f 4 Q(u) and q(u)
corresponds to the vector i that at-
A tains the maximum in the relation

J=max{a(w) - QU }-

ke

interiors of dom(p) and dom(P) have nonempty intersection. Furthermore,
as part of the conclusions of part (a) of the Fenchel Duality Theorem, it
follows that the supremum over p > 0 in Eq. (1.48) is attained.

Figure 1.5.2 suggests that in order for the penalized problem (1.46)
to have the same optimal value as the original constrained problem (1.43),
the conjugate @ must be “sufficiently flat” so that it is minimized by some
dual optimal solution p*. This can be interpreted in terms of properties of
subgradients, which are stated in Appendix B, Section 5.4: we must have
0 € 0Q(u*) for some dual optimal solution p*, which by Prop. 5.4.3 in
Appendix B, is equivalent to pu* € 9P(0). This is part (a) of the following
proposition, which was given in [Ber75al]. Parts (b) and (c) of the propo-
sition deal with issues of equality of corresponding optimal solutions. The
proposition assumes the convexity and other assumptions made in the early
part in this section regarding problem (1.43) and the penalty function P.
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Proposition 1.5.1: Consider problem (1.43), where we assume that
—00 < g* = f* < oo.

(a) The penalized problem (1.46) and the original constrained prob-
lem (1.43) have equal optimal values if and only if there exists a
dual optimal solution p* such that u* € 9P(0).

(b) In order for some optimal solution of the penalized problem (1.46)
to be an optimal solution of the constrained problem (1.43), it is
necessary that there exists a dual optimal solution p* such that

u'p* < P(uw), YV ueRr. (1.49)

(c¢) In order for the penalized problem (1.46) and the constrained
problem (1.43) to have the same set of optimal solutions, it is
sufficient that there exists a dual optimal solution p* such that

w'pu* < P(u), YV u € R with u; > 0 for some j.  (1.50)

Proof: (a) We have using Eqs. (1.47) and (1.48),
p(0) = inf {p(u) + P(u)} = il;po{q(u) -Q(u} = Infl {f(z) + P(g(x))}.
(1.51)
Since f* = p(0), we have
o= int {7+ Plo))

if and only if equality holds in Eq. (1.51). This is true if and only if
0 € arg min {p(u) + P(u)},

which by Prop. 5.4.7 in Appendix B, is true if and only if there exists some
p* € —0p(0) with p* € 9P(0) (in view of the fact that P is real-valued).
Since the set of dual optimal solutions is —9p(0) (under our assumption
—00 < ¢* = f* < 00; see Example 5.4.2, [Ber09]), the result follows.

(b) If 2* is an optimal solution of both problems (1.43) and (1.46), then by
feasibility of x*, we have P (g(a:*)) = 0, so these two problems have equal
optimal values. From part (a), there must exist a dual optimal solution
w* € OP(0), which is equivalent to Eq. (1.49), by the subgradient inequality.

(c) If z* is an optimal solution of the constrained problem (1.43), then
P(g(z*)) =0, so we have

[ = f(@*) = f(z*) + P(g(z*)) > inf {f(z) + P(g(z)) }.

reX
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The condition (1.50) implies the condition (1.49), so that by part (a),
equality holds throughout in the above relation, showing that z* is also
an optimal solution of the penalized problem (1.46).

Conversely, let z* € X be an optimal solution of the penalized prob-
lem (1.46). If z* is feasible [i.e., satisfies in addition g(z*) < 0], then it is an
optimal solution of the constrained problem (1.43) [since P(g(z)) = 0 for
all feasible vectors x|, and we are done. Otherwise x* is infeasible in which
case gj(z*) > 0 for some j. Then, by using the given condition (1.50), it
follows that there exists a dual optimal solution p* and an € > 0 such that

p'g(2*) + e < P(g(z+)).
Let Z be a feasible vector such that f(Z) < f* + €. Since P(g(Z)) = 0 and
f* = mingex{f(z)+ p*'g(x)}, we obtain
F@)+ P(9(@)) = f(@) < f*+e < fa*) + pr'g(a™) +e.

By combining the last two relations, it follows that

f(@) +P(g(3)) < fla*) + P(g(z")),

which contradicts the hypothesis that z* is an optimal solution of the
penalized problem (1.46). This completes the proof. Q.E.D.

As an illustration, consider the minimization of f(x) = —x over all
x € X ={x| x>0} with g(x) = < 0. The dual function is

q(p) = inf(u =Dz, p=0,

so g(u) = 0 for p € [1,00) and ¢q(p) = —oo otherwise. Let P(u) =
cmax{0, u}, so the penalized problem is miny>o { —z+cmax{0,2}}. Then
parts (a) and (b) of the proposition apply if ¢ > 1. However, part (c) ap-
plies only if ¢ > 1. In terms of Fig. 1.5.2, the conjugate of P is Q(u) = 0 if
€ [0,c] and Q(u) = oo otherwise, so when ¢ = 1, Q is “flat” over an area
not including an interior point of the dual optimal solution set [1, c0).

To elaborate on the idea of the preceding example, let

P(u) = cimax{o, ujt,
j=1
where ¢ > 0. The condition u* € 9P(0), or equivalently,
u'p* < P(u), YueRr
[cf. Eq. (1.49)], is equivalent to

Wi < Vi=1,...,r
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Similarly, the condition w/p* < P(u) for all w € " with u; > 0 for some j
[cf. Eq. (1.50)], is equivalent to

wi <c, Vi=1,...,r

The reader may consult the literature for other results on exact penalty
functions, starting with their first proposal in the book [Zan69]. The pre-
ceding development is based on [Ber75], and focuses on convex program-
ming problems. For additional representative references, some of which
also discuss nonconvex problems, see [HaM79], [Ber82a], [Bur91], [FeM91],
[BNOO03], [FrT07]. In what follows we develop an exact penalty function
result for the case of an abstract constraint set, which will be used in the
context of incremental constraint projection algorithms in Section 6.4.4.

A Distance-Based Exact Penalty Function

Let us discuss the case of a general Lipschitz continuous (not necessarily
convex) cost function and an abstract constraint set X C R7. The idea is
to use a penalty that is proportional to the distance from X:

dist(z; X) = inf o —yl.

The next proposition from [Berl1] provides the basic result (see Fig. 1.5.3).

Proposition 1.5.2: Let f : ®* — R be a function that is Lipschitz
continuous with constant L over a set Y C R, i.e.,

|f(@)— fW)| < Llz—yl, VayeY.

Let also X be a nonempty closed subset of Y, and let ¢ be a scalar such
that ¢ > L. Then z* minimizes f over X if and only if z* minimizes

Fo(z) = f(x) + cdist(z; X)

over Y.

Proof: For any x € Y, let & denote a vector of X that is at minimum
distance from z (such a vector exists by the closure of X and Weierstrass’
Theorem). If ¢ > L, we have for all z € Y,

F(x) = f(x) +cllz — 2|
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A
f(z) + cdist(x; X)

/ L= cdist(z; X)
— P -~
@) ~. ‘
T» T* ! x
|

Figure 1.5.3. Illustration of Prop. 1.5.2. For c greater than the Lipschitz constant
of f, the “slope” of the penalty function counteracts the “slope” of f at the optimal
solution z*.

with strict inequality if  # Z; here the first inequality follows using the
Lipschitz property of f to write
f@) = f(@) =2 —L|z - 2|,

while the second inequality follows from the fact f(&) = F(£). In words,
the value of F'(z) is strictly reduced when we project an x € Y with x ¢ X
onto X. Hence the minima of F' over Y can only lie within X, while F' = f
within X. Thus all minima of F’ over ¥ must lie in X and also minimize
f over X (since F' = f on X). Conversely, all minima of f over X are also
minima of F over X (since F' = f on X), and by the preceding inequality,
they are also minima of F' over Y. Q.E.D.

The following proposition provides a generalization for constraints
that involve the intersection of several sets.

Proposition 1.5.3: Let f : Y — R be a function defined on a sub-
set Y of R7, and let X;, i = 1,...,m, be closed subsets of Y with
nonempty intersection. Assume that f is Lipschitz continuous over Y
with constant L, and that for some scalar 5 > 0, we have

dist(z; X1 0 N X)) < B Y dist(z; Xi), VaeY. (152
p=il

Let ¢ be a scalar such that ¢ > SL. Then the set of minima of f over
N, X; coincides with the set of minima of

flx)+ec Z dist(z; X;)

i=1

over Y.
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Proof: The proof is similar to the proof of Prop. 1.5.2, using Eq. (1.52)
to modify the main inequality. Denote F(z) = f(x) 4+ ¢ >, dist(z; X;)
and X = X;N---NX,,. For a vector x € Y, let Z; denote a vector of X;
that is at minimum distance from z, and let & denote a vector of X that
is at minimum distance from x. If ¢ > SL, we have for all x € Y,

Fla) = f(a) + e llo - &
zﬂm+«ﬂw—f@»+§nw—m

> @)+ (5-1) a4l

with strict inequality if  # &. The proof now proceeds as in Prop. 1.5.2.
Q.E.D.

It can be shown that the condition (1.52) is satisfied if all the sets
X1,...,Xm are polyhedral (this is a consequence of the well-known Hoff-
man’s Lemma). We finally note that exact penalty functions, and par-
ticularly the distance function dist(z; X;), are often relatively convenient
in various contexts where difficult constraints complicate the algorithmic
solution. As an example, see Section 6.4.4, where incremental proximal
methods for highly constrained problems are discussed.

NOTES, SOURCES, AND EXERCISES

There is a very extensive literature on convex optimization, and in this sec-
tion we will restrict ourselves to noting some books, research monographs,
and surveys. In subsequent chapters, we will discuss in greater detail the
literature that relates to the specialized content of these chapters.

Books relating primarily to duality theory are Rockafellar [Roc70],
Stoer and Witzgall [StW70], Ekeland and Temam [EkT76], Bonnans and
Shapiro [BoS00], Zalinescu [Zal02], Auslender and Teboulle [AuT03], and
Bertsekas [Ber09].

The books by Rockafellar and Wets [RoW98], Borwein and Lewis
[BoL00], and Bertsekas, Nedi¢, and Ozdaglar [BNOO03] straddle the bound-
ary between convex and variational analysis, a broad spectrum of topics
that integrate classical analysis, convexity, and optimization of both convex
and nonconvex (possibly nonsmooth) functions.

The book by Hiriart-Urruty and Lemarechal [HiL93] focuses on con-
vex optimization algorithms. The books by Rockafellar [Roc84] and Bert-
sekas [Ber98] have a more specialized focus on network optimization algo-
rithms and monotropic programming problems, which will be discussed in
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Chapters 4 and 6. The book by Ben-Tal and Nemirovski [BeN01] focuses
on conic and semidefinite programming [see also the 2005 class notes by
Nemirovski (on line), and the representative survey papers by Alizadeh and
Goldfarb [AlG03], and Todd [Tod01]]. The book by Wolkowicz, Saigal, and
Vanderberghe [WSV00] contains a collection of survey articles on semidefi-
nite programming. The book by Boyd and Vanderberghe [BoV04] describes
many applications, and contains a lot of related material and references.
The book by Ben-Tal, El Ghaoui, and Nemirovski [BGNQ9] focuses on
robust optimization; see also the survey by Bertsimas, Brown, and Cara-
manis [BBC11]. The book by Bauschke and Combettes [BaC11] develops
the connection of convex analysis and monotone operator theory in infinite
dimensional spaces. The book by Rockafellar and Wets [RoW98] also has
a substantial finite-dimensional treatment of this subject. The books by
Cottle, Pang, and Stone [CPS92], and Facchinei and Pang [FaP03] focus on
complementarity and variational inequality problems. The books by Palo-
mar and Eldar [PaE10], and Vetterli, Kovacevic, and Goyal [VKG14], and
the surveys in the May 2010 issue of the IEEE Signal Processing Magazine
describe applications of convex optimization in communications and sig-
nal processing. The books by Hastie, Tibshirani, and Friedman [HTF09],
and Sra, Nowozin, and Wright [SNW12] describe applications of convex
optimization in machine learning.

EXERCISES

1.1 (Support Vector Machines and Duality)

Consider the classification problem associated with a support vector machine,
minimize ||z||* + 8 ", max {07 1—bi(ciz + y)}
subject to = € R", y € R,

with quadratic regularization, where 8 is a positive regularization parameter (cf.
Example 1.3.3).
(a) Write the problem in the equivalent form

minimize j||z|]* +8Y ", &
subject to z € R", y € R,
0<&, 1-bi(r+y) <&, i=1,...,m.

Associate dual variables p; > 0 with the constraints 1 — b;(ciz + y) < &,
and show that the dual function is given by

( {(A](,U,) le;n:llLLJbJ:O,OSIU,lSB,Z:L,m,
q(p) =

—oo otherwise,
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where
m

IMEDIITEED U S 2T
i=1
Does the dual problem, viewed as the equivalent quadratic program
minimize % 2111 2311 bibjcécjuiuj - 27;1 Hi
m

subject to Z,ujbj:O, 0<u; <p,i=1,...,m,

=1

always have a solution? Is the solution unique? Note: The dual problem
may have high dimension, but it has a generally more favorable structure
than the primal. The reason is the simplicity of its constraint set, which
makes it suitable for special types of quadratic programming methods, and
the two-metric projection and coordinate descent methods of Section 2.1.2.

(b) Consider an alternative formulation where the variable y is set to 0, leading
to the problem

minimize %||z[|* + B>, max{0,1 — bicjz}

subject to x € R".

Show that the dual problem should be modified so that the constraint
Z;”:l 1b; = 0is not present, thus leading to a bound-constrained quadratic
dual problem.

Note: The literature of the support vector machine field is extensive. Many of the
nondifferentiable optimization methods to be discussed in subsequent chapters
have been applied in connection to this field; see e.g., [MaMO01], [FeMO02], [SmS04],
[Bot05], [Joa06], [JEY09], [JoY09], [SSS07], [LeW11].

1.2 (Minimizing the Sum or the Maximum of Norms [LVB98])

Consider the problems

P
minimize Z | Fix + gil]
i=1

subject to = € R",

(1.53)

and
minimize max || Fiz + gil|
i=1,...,p

subject to z € R",

where F; and g¢; are given matrices and vectors, respectively. Convert these
problems to second order cone form and derive the corresponding dual problems.
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1.3 (Complex I/; and I, Approximation [LVB98])
Consider the complex [; approximation problem

minimize ||Az — b1

subject to = € C",
where C" is the set of n-dimensional vectors whose components are complex
numbers, and A and b are given matrix and vector with complex components.

Show that it is a special case of problem (1.53) and derive the corresponding dual
problem. Repeat for the complex [~ approximation problem

minimize ||Az — b/

subject to x € C".
1.4

The purpose of this exercise is to show that the SOCP can be viewed as a special
case of SDP.

(a) Show that a vector € R™ belongs to the second order cone if and only if

the matrix
o o0 .- 0 T
o o0 --- 0 T2
ol + | : :
o o0 --- 0 Tn—1
X1 X2 s Tn—1 0

is positive semidefinite. Hint: We have that for any positive definite sym-
metric n X n matrix A, vector b € R", and scalar d, the matrix

(v ?)

is positive definite if and only if

c—bA b >0.

(b) Use part (a) to show that the primal SOCP can be written in the form of
the dual SDP.

1.5 (Explicit Form of a Second Order Cone Problem)

Consider the SOCP (1.24).
(a) Partition the n; X (n + 1) matrices (A; b;) as

(Az bl):<lj,l di>7 i:17...7m7

pi 4
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where D; is an (n; — 1) X n matrix, d; € R~ p; € R, and ¢; € R. Show
that

Aix —b; € C; if and only if |Dix — di]| < pir — qi,
so we can write the SOCP (1.24) as
minimize 'z

subject to ||Dix — di|| < pix —qi, i=1,...,m.

(b) Similarly partition A; as

i = (“) i=1,...,m,
Vi

where p; € R~ and v; € R. Show that the dual problem (1.25) can be
written in the form
maximize Z(d;ui + qivi)
i=1

subject to Z(ng +uipi) =¢, |l <wvi, i=1,...,m.
i=1

C ow that the primal and dual interior point conditions for strong duality
Sh hat th imal and dual i i i diti f duali
rop. 1.2. old if there exist primal and dual feasible solutions T an
P 1.2.4) hold if th i imal and dual feasibl luti d
(%;,7:) such that

|‘Dif—di||<p:,'f—qi7 i=1,...,m,

and
||ﬁz”<77«7 7::1,...,7'7'1/,

respectively.

1.6 (Separable Conic Problems)

Consider the problem
m
minimize Z fi(z:)
i=1
subject to x € SNC,

where x = (z1,...,2Zm) with z; € R™,i=1,...,m, and f; : R™ — (—o00, 0] is
a proper convex function for each i, and S and C are a subspace and a cone of
R1TFm respectively. Show that a dual problem is

maximize Z qi(Ni)
i=1

subject to A € C+ SJ}
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where A = (A1,...,Am), C is the dual cone of C, and

i(\i) = inf { fi(z:) — Nz}, i =1,...,m.
) = it (A N}, m

1.7 (Weber Points)

Consider the problem of finding a circle of minimum radius that contains r points

Y1,...,Yr in the plane, i.e., find x and z that minimize z subject to ||z — y;|| < z
for all j =1,...,r, where x is the center of the circle under optimization.
(a) Introduce multipliers pj, 7 = 1,...,r, for the constraints, and show that

the dual problem has an optimal solution and there is no duality gap.

(b) Show that calculating the dual function at some p > 0 involves the com-
putation of a Weber point of yi1,...,y, with weights u1,..., ur, i.e., the
solution of the problem

-
min iz — y;
min 3 plle =y,

Jj=1

(see Example 1.3.7).

1.8 (Inconsistent Convex Systems of Inequalities)

Let gj : R" — R, j =1,...,7, be convex functions over the nonempty convex set
X C R". Show that the system

g;(z) <0, ji=1,...,r,

has no solution within X if and only if there exists a vector p € R" such that

.
=1, p>0
j=1

wag(z) >0, VoelX.

Note: This is an example of what is known as a theorem of the alternative.
There are many results of this type, with a long history, such as the Farkas
Lemma, and the theorems of Gordan, Motzkin, and Stiemke, which address the
feasibility (possibly strict) of linear inequalities. They can be found in many
sources, including Section 5.6 of [Ber09]. Hint: Consider the convex program

minimize y

subject to x € X, yeR, gi(x) <y, j=1,...,r
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