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2 Auction Algorithms for Network Transport Chap. 4

In this chapter we discuss auction algorithms for the transhipment prob-
lem. The auction algorithms for transhipment that we will discuss in this
chapter involve adaptations of the algorithmic ideas of Chapters 2 and 3
for assignment and shortest path problems, respectively. They are based
on two general approaches:

(a) Transforming the transhipment problem to an equivalent assignment
problem, using one of the methods discussed in Section 1.2, and then
applying one of the assignment auction algorithms of Chapter 2.

(b) Using the path construction algorithms of Chapter 3 within the frame-
work of classical primal dual/sequential shortest path methods for
transhipment. The latter methods involve constructions of a large
number of augmenting paths, which are similar and hence can ben-
efit from one of the principal advantages of auction algorithms for
path construction: reusing prices as a favorable initialization from
one path construction to the next.

In Section 4.1, we discuss the ε-relaxation method for the tranship-
ment problem, which is based on the first approach above. We then discuss
auction algorithms based on the second approach above, first for the max-
flow problem in Section 4.2, and then for the transhipment problem in
Section 4.3. In Section 4.4, we extend the algorithms of Sections 4.1-4.3 to
convex separable network optimization problems. In Section 4.5, we pro-
vide proofs of various propositions, and discuss some theoretical aspects
of the algorithms of this chapter, including computational complexity es-
timates. The analysis of Section 4.5 requires some additional background
on directed graphs, and associated notions of paths and flows. We have
provided this background in the appendix to Chapter 1, and we will use it
in the main body of the chapter.

4.1 THE ε-RELAXATION METHOD

In this section, we will introduce and analyze an auction algorithm for the
transhipment problem

minimize
∑

(i,j)∈A

aijxij

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A,

(4.1)

where aij , bij , cij , and si are given. Throughout this section, we assume
that aij , bij, cij, and si are integer, and that the problem is feasible.

The method of this section, called ε-relaxation, can be interpreted
as a special case of the auction algorithm for the assignment problem; see
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Sections 7.3.3 and 7.4 of the book [Ber98]. We will not go into the details of
this equivalence here, but instead we will provide an intuitive interpretation
of the algorithm.

Let us consider a graph that represents a network of cities connected
with transportation links (i, j), along which persons can move at cost aij
per person. We think of each node i as a city, of each arc (i, j) as a
link between cities i and j, and of si as the (positive or negative) excess
persons at city i. We want to bring the excess of each city to 0 by moving
the persons between the cities while observing the capacity bounds bij , cij
of the transportation links, while minimizing the total cost of the transfer.

Consider the possibility of accomplishing the minimum cost transfer
by providing an economic incentive for persons to move between cities. In
particular, suppose that we charge each person a price pi for being in city
i. Taking into account the transportation cost aij for crossing link (i, j),
we stipulate that persons will move from city i to city j if pi > aij + pj , to
the extent that the capacity of link (i, j) allows. For a given set of capacity
feasible link flows xij , let

gi =
∑

{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij (4.2)

denote the corresponding excess of node i. In the spirit of the auction
algorithm, we introduce a mechanism by which the price pi tends to increase
as gi > 0. This in turn stimulates a movement of persons from higher price
cities i to lower price cities j, taking into account the transportation cost
aij and link capacities bij , cij , and also giving priority to cities that offer
a most favorable price differential.

The ε-relaxation method provides a precise algorithmic mechanism
for effecting the changes in flows in response to current prices. It relies on
a notion of ε-complementary slackness (ε-CS for short), which extends the
corresponding ε-CS notions for assignment and path planning problems,
discussed in Chapters 2 and 3, respectively. For a given ε, we say that a
capacity-feasible flow vector x and a price vector p satisfy ε-CS if

pi − pj ≤ aij + ε for all (i, j) ∈ A with xij < cij , (4.3)

pi − pj ≥ aij − ε for all (i, j) ∈ A with bij < xij , (4.4)

(see Fig. 4.1.1). The usefulness of ε-CS is due in large measure to the
following proposition, which generalizes a corresponding result for the as-
signment problem. The proposition relies on the integrality of the cost
coefficients aij . Its proof is given in Section 4.5.

Proposition 4.1.1: If ε < 1/N , where N is the number of nodes,
x is feasible, and x and p satisfy ε-CS, then x is optimal for the
transhipment problem (4.1).



4 Auction Algorithms for Network Transport Chap. 4

Figure 4.1.1: Illustration of ε-CS. All pairs of arc flows xij and price differences
pi−pj should either lie on the thick lines or in the shaded area between the thick

lines.

In the ε-relaxation method, flows and prices are changed in a way
that maintains ε-CS and tends to drive the nonzero node excesses towards
zero. Furthermore, flow is allowed to change along certain types of arcs,
which we now introduce. Given a flow-price pair (x, p) satisfying ε-CS, we
say that an arc (i, j) is ε+-unblocked if

pi = pj + aij + ε and xij < cij .

We say that an arc (j, i) is ε−-unblocked if

pi = pj − aji + ε and bji < xji.

The candidate list of a node i is the (possibly empty) set of outgoing arcs
(i, j) that are ε+- unblocked, and incoming arcs (j, i) that are ε−-unblocked.

We use a fixed positive value of ε, and we start with a pair (x, p)
satisfying ε-CS. Furthermore, the starting arc flows are integer, and it will
be seen that the integrality of the arc flows is preserved thanks to the
integrality of the node supplies and the arc flow bounds. Implementations
that have good worst case complexity also require that all initial arc flows
be at either their upper or their lower bound, as will be explained later.
This can be easily enforced.

At the start of a typical iteration we have a flow-price vector pair
(x, p) satisfying ε-CS and we select a node i with gi > 0; if no such node
can be found, the algorithm terminates.
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Iteration of the ε-Relaxation Method

Step 1: (Scan incident arc) If the candidate list of node i is
empty, go to Step 4; else select from the candidate list of i either an
arc (i, j) and go to Step 2, or an arc (j, i) and go to Step 3.

Step 2: (Push flow forward along arc (i, j)) Increase xij by
δ = min{gi, cij − xij}. If now gi = 0 and xij < cij , stop; else go to
Step 1.

Step 3: (Push flow backward along arc (j, i)) Decrease xji by
δ = min{gi, xji − bji}. If now gi = 0 and bji < xji, stop; else go to
Step 1.

Step 4: (Increase price of node i) Raise pi to the level

pi = min
{

min
{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
,

min
{(j,i)∈A|bji<xji}

{
pj − aji + ε

}}
.

(4.5)

Go to Step 1.

To describe the algorithm in words, at each iteration, the selected
node i reduces its excess gi by pushing flow along its candidate list arcs.
i.e., the ones that are ε+-unblocked and ε−-unblocked. If after pushing all
possible flow along these arcs, node i still has positive excess, it increases
its price pi to create new ε+-unblocked and/or ε−-unblocked arcs, and
corresponding candidate list. This is done as many times as necessary,
until the excess gi is reduced to 0.

Figure 4.1.2 illustrates the sequence of price rises in an ε-relaxation
iteration, and shows how it can be interpreted as an approximate coordinate
ascent or Gauss-Seidel relaxation iteration. This interpretation parallels
the approximate coordinate descent interpretation of the mathematically
equivalent auction algorithm (cf. Fig. 2.1.1).

To see that the iteration is well-defined in the sense that it stops after
a finite number of computational operations, observe the following:

(a) Integrality of the arc flows is maintained by the algorithm, since the
starting arc flows, the node supplies, and the arc flow bounds are
integer. In particular, the flow increments δ in Steps 2 and 3 are
integer throughout the algorithm.

(b) At most one flow change per incident arc of node i is performed at each
iteration since a flow change either sets the flow to one of its bounds,
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Figure 4.1.2: Illustration of the price rises of the ε-relaxation iteration. Here,

node i has four incident arcs (1, i), (3, i), (i, 2), and (i, 4) with flow ranges [0, 20],
[0, 20], [0, 10], and [0, 30], respectively, and supply si = 0. The arc costs and

current prices are such that

p1 − a1i ≤ p2 + ai2 ≤ p3 − a3i ≤ p4 + ai4,

as shown in the figure. The break points of the dual cost along the price pi
correspond to the values of pi at which one or more incident arcs to node i become

balanced. For values between two successive break points, there are no balanced

arcs. Each price rise of the ε-relaxation iteration increases pi to the point which is
ε to the right of the next break point larger than pi, (assuming that the starting
price of node i is to the left of the maximizing point by more than ε). In the

example of the figure, there are two price rises, the second of which sets pi at the
point which is ε to the right of the maximizing point, leading to the approximate

(within ε) coordinate ascent interpretation.

which causes the corresponding arc to drop out of the candidate list of
i through the end of the iteration, or else results in gi = 0, which leads
the iteration to branch to Step 4 and subsequently stop. Therefore,
the number of flow changes per iteration is finite. In addition we have
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gi > 0 at the start and gi = 0 at the end of an iteration, so at least
one flow change must occur before an iteration can stop.

(c) After each price rise with gi > 0 at least one flow change must be
performed, so from (b) it follows that the number of price changes
per iteration is finite.

Thus the method’s iteration is guaranteed to stop after a finite number of
operations.

There is, however, an exceptional situation in Step 4, which requires
special handling. This is the case where in Eq. (4.5) we have xij = cij for
all outgoing arcs (i, j) and bji = xji for all incoming arcs (j, i); that is,
the cut separating i from the remainder of the graph is saturated, while
gi ≥ 0. This can arise under two circumstances: (1) gi > 0, in which case,
the problem must be infeasible, or (2) gi = 0. To deal with the situation,
we stop the algorithm in case (1), and we keep pi at its current level and
stop the iteration in case (2).

The following proposition establishes the validity of the ε-relaxation
method. The proof is given in Section 4.5.

Proposition 4.1.2: Assume that the transhipment problem is fea-
sible and that aij , bij , cij , and si are integer, and that si ≥ 0 for all i.
Then the ε-relaxation method terminates with a pair (x, p) satisfying
ε-CS. The flow vector x is feasible, and is optimal if ε < 1/N .

Note the feasibility of the problem is a requirement for the algorithm
to terminate. In practice, the algorithm may be supplemented with addi-
tional mechanisms to detect infeasibility, as will be discussed later in this
section. Note also it is necessary to assume that the problem data is integer
to assert optimality of the obtained solution with ε < 1/N . A version of
the method that can deal with noninteger data will be developed in Section
4.4, in the context of the more general convex separable network problem.

ε-Scaling

Let us now apply an ε-scaling approach to the ε-relaxation method. Similar
to the case of the auction algorithms of Chapter 2, the idea is to use re-
peated applications of the method, called scaling phases, with progressively
smaller values of ε. Each scaling phase uses price and flow information ob-
tained from the preceding one. The kth scaling phase consists of applying
the ε-relaxation method with ε = εk, where εk is updated by

εk+1 = max

{
εk

θ
,

1

N + 1

}
, k = 0, 1, . . . ,
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where θ is an integer with θ > 1. The first scaling phase is started with
zero initial prices and an ε0 that is a fixed fraction of the arc cost range
C = max(i,j)∈A aij . The total number of scaling phases is k, which is the
first positive integer k for which εk−1 is equal to 1/(N + 1). Thus the
number of scaling phases is O

(
log(NC)

)
.

With some special technical refinements to the algorithm, we can show
that the (k + 1)st scaling phase has a running time of O(N3). Since the
number of scaling phases is O

(
log(NC)

)
, we obtain the following proposi-

tion. The proof is given in Section 4.5.

Proposition 4.1.3: The running time of the ε-relaxation method
using the sweep implementation and ε-scaling as described above is
O
(
N3 log(NC)

)
.

4.1.1 Implementation Issues

The efficient implementation of the ε-relaxation method requires a number
of techniques that while not suggested by the complexity analysis of Section
4.5, are essential for good practical performance.

Surplus Scaling

When applying ε-scaling, except for the last scaling phase, it is not essential
to reduce the excesses of all nodes to zero; it is possible to terminate a
scaling phase prematurely, and reduce ε further, in an effort to economize
on computation. A technique that is typically quite effective is to iterate
only on nodes whose excess exceeds some threshold, which is gradually
reduced to zero with each scaling phase. The threshold is usually set by
some heuristic scheme.

Negative Surplus Node Iterations

It is possible to define a symmetric form of the ε-relaxation iteration that
starts from a node with negative excess and decreases (rather than in-
creases) the price of that node. Furthermore, one can mix positive excess
and negative excess iterations in the same algorithm; this is analogous to
the combined forward/reverse auction algorithm for assignment and the
forward/reverse auction algorithm for shortest paths. However, if the two
types of iterations are mixed arbitrarily, the algorithm is not guaranteed
to terminate even for a feasible problem; for an example, see Bertsekas and
Tsitsiklis [1989], p. 373. For this reason, some care must be exercised in
mixing the two types of iterations in order to guarantee that the algorithm
eventually makes progress.
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Dealing with Infeasibility

The issues and methods relating to infeasibility are similar to those dis-
cussed in Section 2.1, in connection with the assignment problem. One
possibility is to monitor infeasibility by checking the price levels. If the
problem is infeasible, the ε-relaxation method will either terminate with
gi ≤ 0 for all i and gi < 0 for at least one i, in which case infeasibility will
be detected, or else it will perform an infinite number of iterations and,
consequently, an infinite number of flow pushes and price rises. In the lat-
ter case, it can be shown that the prices of some of the nodes will diverge
to infinity. This can be used to detect infeasibility. For further discussion
we refer to the book [Ber98].

4.2 AN AUCTION ALGORITHM FOR MAX-FLOW

In this section, we consider the classical max-flow problem, where we are
given a directed graph (N ,A), and we want to push a maximum amount
of flow from a source node 1 to a sink node N , subject to the constraint
that the flow of each arc (i, j) ∈ A should lie in an interval [0, cij ], where
cij is a given positive scalar, called the capacity of (i, j).

Here the number of nodes is N and the nodes are denoted 1, 2, . . . , N .
To facilitate the presentation we assume that there is at most one arc (i, j)
starting at i and ending at j, so that we can unambiguously refer to an arc
as (i, j). A flow vector x = {xij | (i, j) ∈ A} is said to be capacity feasible
if 0 ≤ xij ≤ cij for all (i, j) ∈ A. The associated surplus of each node is
defined by

gi =
∑

{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij , ∀ i ∈ N . (4.6)

The flow vector is said to be feasible if it is capacity feasible and the node
surpluses satisfy

gi = 0, ∀ i ∈ N , i 6= 1, i 6= N. (4.7)

The problem is to find a feasible flow such that gN is maximized.
The most popular algorithms for the max-flow problem consist of a se-

quence of flow increases along paths from the source node to the sink node,
also called augmenting paths. In the most efficient of these methods, the
augmenting paths are shortest, in the sense that they consist of a minimum
number of arcs. We discuss an auction algorithm for the max-flow problem,
whereby the augmenting paths are constructed by one of the auction/path
construction algorithms of Chapter 3. While, in the auction algorithm the
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augmenting paths are not necessarily shortest, they typically can be found
with much less computation than the shortest augmenting paths used by
competing methods. Moreover, the path computations benefit from the
reuse of the auction algorithm prices. For these reasons, the algorithm has
excellent performance and outperforms other competing methods by a very
large margin in tests with standard randomly generated problems.

More specifically, the classical approach to the max-flow problem is
the Ford-Fulkerson algorithm [FoF56], which consists of successive aug-
mentations; it sequentially moves flow from the source to the sink along
augmenting paths, until a saturated cut separating the source and the sink
is created. In its original form, this algorithm had two drawbacks:

(a) If the augmenting paths are arbitrarily constructed, the number of
augmentations can be very large. In fact if the arc capacities are irra-
tional, the algorithm may fail to terminate (see e.g. [FoF62], [PaS82],
[Ber91a]).

(b) No mechanism is provided to pass helpful information from one aug-
menting path construction to the next.

These two drawbacks have been addressed by much subsequent research.
The traditional approach to keep the number of augmentations small is to
ensure that the augmenting paths are shortest, in the sense that they con-
tain the smallest possible number of arcs. In fact all polynomial augmenting
path methods that we are aware of use this approach. The simplest way
to construct the shortest augmenting paths is to use a breadth-first search
method, leading to an O(NA2) running time [EdK72], where A is the num-
ber of arcs. In order to reuse information from one shortest augmenting
path construction to the next, the idea of a layered network implementation
was also suggested [Din70], and resulted in an O(N2A) running time.

The algorithm of this section is of the Ford-Fulkerson type, but do not
use shortest augmenting paths. Instead it constructs (possibly nonshort-
est) augmenting paths using the ideas of the auction algorithm for the
assignment problem [Ber79], [Ber91a], [Ber92a]. In particular, our path
construction algorithm is obtained by converting the path construction
problem to a special type of unweighted matching problem, applying the
auction algorithms of Section 3.2, and streamlining the computations. A
key feature here is that the price mechanism of the auction algorithm is
used to pass valuable information from one augmenting path construction
to the next.

Another relevant class of max-flow algorithms is the class of preflow-
push methods, which originated with the work of [Kar74], [ShV82], and
has been the subject of much subsequent development [Gol85], [GoT86],
[AhO89], [AMO89], [ChM89], [DeM89], [MPS91]. These methods move
flow along single-arc paths, and they share with the auction algorithm
the idea of using a price mechanism (within this context, prices are also
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called labels). This connection is not accidental, and in fact it is shown
in [Ber94] that a generic preflow-push method for the max-flow problem
[GoT86] can be derived as a special case of the auction algorithm for the
assignment problem, using the reformulation of the max-flow problem as
an assignment problem. Preflow-push methods have excellent theoretical
worst-case complexity [O

(
N2A1/2

)
with relatively simple implementation

[ChM89], and even better through the use of sophisticated but somewhat
impractical data structures].

Our algorithm of this section has an O
(
N2A

)
worst-case running

time, but according to our experiments, it is substantially faster than both
shortest augmenting path and preflow-push methods. There is a two-fold
explanation for this. First, the auction algorithm solves simpler path con-
struction problems than the competing shortest augmenting path methods,
while at the same time it passes useful price information from one path
construction to the next. Second, because flow changes take place over
multiple-arc paths, the phenomenon of ping-ponging of flow between pairs
of nodes that is characteristic of preflow-push methods is largely avoided.
Indeed experiments have shown that the number of arc flow changes re-
quired to solve the problem is generally far smaller in our method than in
preflow-push methods.

4.2.1 Path Construction Algorithms

In this section we describe a method for finding a path between two nodes
of a graph. This method lies at the heart of our max-flow algorithm, which
will be presented in the next section. We give two versions of the algorithm.
The first is simple and easy to understand. The second is a more complex
variation of the first, but is apparently more efficient in practice. We first
introduce some terminology.

Given the directed graph (N ,A), the set of arcs outgoing from node i
is denoted by A(i) and the corresponding set of nodes {j | (i, j) ∈ A(i)} is
denoted by N(i). We will use the extended definition of a path, described in
the appendix to Chapter 1, which involves both forward and backward arcs.
In particular, in this section, a path P is a sequence of nodes (n1, n2, . . . , nt)
with t ≥ 2, and a corresponding sequence of t − 1 arcs such that the ith
arc in the sequence is either (ni, ni+1) (in which case it is called a forward
arc of the path) or (ni+1, ni) (in which case it is called a backward arc of
the path). Node n1 is called the start node of P and node nt is called the
terminal node of P . By slight abuse of terminology, we consider P = (n1)
to be a path, in which case n1 is both the start and the terminal node of
P . For i = 2, . . . , t, the node ni−1 is called the predecessor of ni, and is
denoted by pred(ni).

We denote by P+ and P− the sets of forward and backward arcs of
P , respectively. The path P is said to be forward if all its arcs are forward.
The path P is said to be simple if it contains no cycles, that is, if the nodes
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n1, . . . , nt are distinct. In the context of the max-flow problem, the length
of a path is the number of its arcs. All paths in this subsection will be
forward paths. The paths to be considered in the context of the max-flow
problem, starting with the next subsection, may contain both forward and
backward arcs.

The following algorithm aims at finding a simple forward path that
starts at a given node n1 and ends at node N . It maintains a simple forward
path P = (n1, . . . , nt) and a set of integer node prices satisfying

p(i) ≤ p(j) + 1, ∀ (i, j) ∈ A, (4.8)

p(n1) < N, p(N) = 0, (4.9)

p(i) ≥ p(j), ∀ (i, j) ∈ P. (4.10)

The conditions (4.8) and (4.10) are related to the ε-complementary slack-
ness conditions with ε = 1 and arc costs equal to 0.

The algorithm is motivated by the max-flow context, where the objec-
tive is not to find a single path, but rather to find a sequence of paths each
in a graph that differs slightly from its predecessor. Within this context,
prices are helpful in guiding the search for new paths. Loosely speaking,
prices are modified by the algorithm in a way that the desired paths have
an approximate downhill direction, that is, they proceed from high price
nodes to low price nodes. Thus, if a set of prices is roughly appropriate for
guiding the search for a path in a given graph, it is also roughly appropriate
for guiding the search for a path in a slightly different graph.

At the start of the algorithm, we require that P = (n1), and that p
is such that Eqs. (4.8) and (4.9) hold. The path P is modified repeatedly
using the following two operations:

(a) A contraction of P , which deletes the last arc of P , that is, replaces
the path P = (n1, . . . , nt) by the path P = (n1, . . . , nt−1). [In the
degenerate case where P = (n1), a contraction leaves P unchanged.]

(b) An extension of P , which adds to P an arc outgoing from its terminal
node, that is, replaces the path P = (n1, . . . , nt) by a path P =
(n1, . . . , nt, nt+1), where (nt, nt+1) is an arc.

The prices p(i) may also be increased in the course of the algorithm so that,
together with P , they satisfy the conditions (4.8)(4.10). A contraction
always involves a price increase of the terminal node nt. An extension may
or may not involve such a price increase. An extension of P is always done
to a neighbor node of nt that has minimal price. The algorithm terminates
if either node N becomes the terminal node of P (then P is the desired
path), or else p(n1) ≥ N [in view of p(N) = 0 and p(i) ≤ p(j) + 1 for all
arcs (i, j) as per Eqs. (4.8) and (4.9), this means that there is no forward
path from n1 to N ].



Sec. 4.2 An Auction Algorithm for Max-Flow 13

Path Construction Algorithm

Set P = (n1), and select p such that Eqs. (4.8) and (4.9) hold.

Step 1 (Check for contraction or extension): Let nt be the
terminal node of P . If the set N(nt) is empty, set p(nt) = N and go
to Step 3. Otherwise, find a node in N(nt) with minimal price and
denote it succ(nt),

succ(nt) = arg min
j∈N(nt)

p(j). (4.11)

Set
p(nt) = p

(
succ(nt)

)
+ 1. (4.12)

If nt = n1, or if

nt 6= n1 and p
(
pred(nt)

)
> p
(
succ(nt)

)
, (4.13)

go to Step 2; otherwise go to Step 3.

Step 2 (Extend path): Extend P by node succ(nt) and the cor-
responding arc of A(nt). If succ(nt) = N , terminate the algorithm;
otherwise go to Step 1.

Step 3 (Contract path): If P = (n1) and p(n1) ≥ N , terminate
the algorithm; otherwise, contract P and go to Step 1.

We note, that maintaining a path that is extended or contracted at
each iteration, while maintaining a price vector that satisfies complemen-
tary slackness conditions, is a central feature of the auction algorithm for
shortest paths [Ber91a], [Ber91b], and its embedding in a sequential short-
est path algorithm for the minimum cost flow problem [Ber92b]. However,
as mentioned earlier, our path construction algorithm does not necessarily
generate a shortest path. Instead, we show later that it just solves a special
type of unweighted matching problem by means of the auction algorithm.

In the special case where all initial prices are zero and there is a path
from each node to N , by tracing the steps, it can be seen that the algorithm
will work like depth-first search, raising to 1 the prices of the nodes of
some path from n1 to N in a sequence of extensions with no intervening
contractions. More generally, the algorithm terminates without performing
any contractions if the initial prices satisfy p(i) ≥ p(j) for all arcs (i, j) and
there is a path from each node to N .

We make the following observations:

(1) The prices remain integer throughout the algorithm [cf. Eq. (4.12)].



14 Auction Algorithms for Network Transport Chap. 4

(2) The conditions (4.8)-(4.10) are satisfied each time Step 1 is entered.
The proof is by induction. These conditions hold initially by assump-
tion. Condition (4.9) is maintained by the algorithm, since we have
termination as soon as p(n1) ≥ N . To verify conditions (4.8) and
(4.10), we note that only the price of nt can change in Step 1, and
by Eqs. (4.11) and (4.12), this price change maintains condition (4.8)
for all arcs, and condition (4.10) for all arcs of P , except possibly for
the arc

(
pred(nt), nt

)
in the case of an extension with the condition

p
(
pred(nt)

)
> p
(
succ(nt)

)
holding. In the latter case, we must have

p
(
pred(nt)

)
≥ p

(
succ(nt)

)
+ 1 because the prices are integer, so by

Eq. (4.12), we have p
(
pred(nt)

)
≥ p(nt) at the next entry to Step 1.

This completes the induction.

(3) A contraction is always accompanied by a price increase. Indeed by
Eq. (4.10), which was just established, upon entering Step 1 with
nt 6= n1, we have p(nt) ≤ p

(
pred(nt)

)
, and to perform a contraction,

we must have p
(
pred(nt)

)
≤ p
(
succ(nt)

)
. Hence p(nt) ≤ p

(
succ(nt)

)
,

implying by Eq. (4.12) that p(nt) must be increased to the level
p
(
succ(nt)

)
+ 1. It can be seen, however, by example, that an ex-

tension may or may not be accompanied by a price increase.

(4) Upon return to Step 1 following an extension, the terminal node nt
satisfies [cf. Eq. (4.12)]

p
(
pred(nt)

)
= p(nt) + 1.

This, together with the condition p(i) ≥ p(j) for all (i, j) ∈ P [cf. Eq.
(4.10)], implies that the path P will not be extended to a node that
already belongs to P . Thus P remains a simple path throughout the
algorithm.

To facilitate the presentation, let us introduce some additional termi-
nology. For a given integer price vector p, we say that an arc (i, j) is uphill
if p(i) < p(j), downhill if p(i) ≥ p(j), and strictly downhill if p(i) = p(j)+1.
The following proposition summarizes the conclusions of the preceding dis-
cussion and establishes the termination properties of the algorithm.

Proposition 4.2.1:

(a) Throughout the algorithm, the prices satisfy the conditions
(4.8) and (4.9), the path P is simple, its arcs are downhill, and
following an extension, the last arc of P is strictly downhill.
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(b) If there exists a forward path from n1 to N , the algorithm ter-
minates via Step 2 with such a path. Otherwise, the algorithm
terminates via Step 3.

Proof: Part (a) was established above, so we prove part (b). We first note
that the prices of the nodes of P are upper bounded by N in view of Eqs.
(4.9) and (4.10). Next we observe that there is a price change of at least one
unit with each contraction, and since the prices of the nodes of P are upper
bounded by N , there can be only a finite number of contractions. Since
there can be at most N − 1 successive extensions without a contraction,
the algorithm must terminate. Since, throughout the algorithm, p(N) = 0
and the condition p(i) ≤ p(j) + 1 holds for all arcs (i, j), the existence
of a forward path starting at a node n1 and ending at N implies that
p(n1) < N throughout the algorithm. Therefore, if termination occurs via
Step 3, there cannot exist a path from n1 to N . Q.E.D.

4.2.2 An Improved Version of Path Construction

Most of the calculation in the preceding algorithm is needed to determine
the nodes succ(nt) attaining the minimum in Eq. (4.11) of Step 1. On the
other hand, typically some of these nodes and the corresponding arcs do not
change frequently during the algorithm. Thus it makes sense to save them
in a data structure and try to reuse them as much as is possible without
affecting the essential properties of the algorithm [maintaining conditions
(4.8)-(4.10) and precluding the formation of a cycle within the path P ].
This leads to a modification of the algorithm, where in addition to the
price p, we maintain for each node i 6= N , a subset of outgoing arcs of i
denoted Cand(i), and called the candidate set of arcs of node i. The set of
end nodes of arcs in Cand(i) which are opposite to i is denoted Succ(i).

The sets of arcs Cand(i) together with the set of prices p(i), define a
graph, called the admissible graph, whose node set is N = {1, . . . , N} and
arc set is {

(i, j) | j ∈ Succ(i), p(i) ≥ p(j), i = 1, . . . , N
}
.

As the sets Succ(i) and the prices p(i) change in the course of the algorithm,
the admissible graph also changes. We require that the initial sets Cand(i)
and prices p(i) are such that the admissible graph is acyclic. This condition
is satisfied in particular if we select the sets Cand(i) to be empty. The
algorithm is as follows:
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Path Construction Algorithm: Second Version

Set P = (n1), and select p such that Eqs. (4.8) and (4.9) hold.

Step 1 (Check for contraction or extension): Let nt be the
terminal node of P . If there is a node j ∈ Succ(nt) such that

p(nt) ≥ p(j), (4.14)

select such a node j and go to Step 2. Otherwise, if the set N(nt) is
empty, set p(nt) = N and go to Step 3; otherwise set

Succ(nt) =

{
j | p(j) = min

j∈N(nt)
p(j)

}
, (4.15)

Cand(nt) =
{

(nt, j) ∈ A(nt) | j ∈ Succ(nt)
}
, (4.16)

and select a node j ∈ Succ(nt). Set

p(nt) = p(j) + 1. (4.17)

If nt = n1, or if

nt 6= n1 and p
(
pred(nt)

)
> p(j), (4.18)

go to Step 2; otherwise go to Step 3.

Step 2 (Extend path): Extend P by node j and the corresponding
arc of Cand(nt). If j = N , terminate the algorithm, and otherwise
go to Step 1.

Step 3 (Contract path): If P = (n1) and p(n1) ≥ N , terminate
the algorithm; otherwise, contract P and go to Step 1.

Note that, similar to the first version of the algorithm, each contrac-
tion is accompanied by an increase of the price p(nt), while each extension
may or may not be accompanied by an increase of p(nt). Note also that if
the “downhill test” p(nt) ≥ p(j) of Eq. (4.14) were to be replaced by the
“strictly downhill test” p(nt) = p(j) + 1, the two versions of the algorithm
would have been essentially identical [the sets Cand(i) would just provide
a specific implementation of the successor node selection of Eq. (4.11)].
However, because of the difference in the test for making an extension to a
node of Succ(nt), the two versions of the algorithm are not mathematically
equivalent. In particular, in the second version we perform an extension
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when upon entering Step 1, we have p(nt) = p(j) for some j ∈ Succ(nt),
in which case the last arc of the path P is not strictly downhill following
the extension. For this reason it is not obvious that an extension will not
create a cycle in P with an attendant breakdown of the algorithm.

It turns out, however, that such a cycle cannot be closed because it
can be proved that throughout the algorithm:

(a) The arcs of P belong to the admissible graph.

(b) The admissible graph remains acyclic.

Both of these properties can be shown by induction. In particular, property
(a) is maintained because a contraction that deletes the terminal arc of P
does not affect the prices of the end nodes of the other arcs of P . Further-
more, each extension is done along an arc of Cand(nt) and whether the test
(4.14) is passed or p(nt) is set via Eq. (4.17), this arc is downhill and its
predecessor arc continues to be downhill following the extension. Also, to
show that property (b) is maintained, suppose that property (b) holds at
the start of Step 1, and consider the two cases where a node j ∈ Cand(nt)
satisfying the downhill test (4.14) can be found, and cannot be found. In
the first case, the admissible graph remains unchanged. In the second case,
the only potentially new arcs of the admissible graph are the arcs of the
set Cand(nt), after this set is recalculated. However, following the price
setting of Eq. (4.17), all the arcs of Cand(nt) are strictly downhill, so these
arcs cannot be part of a cycle of the admissible graph, all the arcs of which
are downhill by definition. Thus the admissible graph remains acyclic fol-
lowing Step 2 or 3, which shows that P remains a simple path at all times.
We have the following proposition.

Proposition 4.2.2: Assume that the initial admissible graph is
acyclic. Then:

(a) Throughout the algorithm, the admissible graph remains acyclic.

(b) The flow-price pairs generated by the algorithm satisfy the con-
ditions (4.8) and (4.9), the path P is simple, and the arcs of P
are downhill.

(c) If there exists a path from n1 toN , the algorithm terminates via
Step 2 with such a path. Otherwise, the algorithm terminates
via Step 3.

Proof: Part (a) was shown above and the remaining parts are proved
similar to the corresponding parts of Prop. 4.2.1. Q.E.D.
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4.2.3 The Auction/Max-Flow Algorithm

We now consider the max-flow problem. We introduce some additional
terminology.

Given a capacity feasible flow vector x, for each node i, we introduce
the set of eligible arcs of i

A(i, x) =
{

(i, j) | xij < cij
}
∪
{

(j, i) | 0 < xji
}
,

and the corresponding set of eligible neighbors of i

N(i, x) =
{
j | (i, j) ∈ A(i, x) or (j, i) ∈ A(i, x)

}
.

The reduced graph is the graph with node set N which contains an arc (i, j)
if and only if j is an eligible neighbor of i. Thus eligible arcs of a node i in
the original graph correspond to outgoing arcs from i in the reduced graph.
For a given capacity feasible x, a path P in the original graph is said to be
unblocked if it corresponds to a forward path of the reduced graph, that is,
if xij < cij for all forward arcs (i, j) ∈ P+ and 0 < xij for all backward
arcs (i, j) ∈ P−. An unblocked path is said to be augmenting if its start
node has positive surplus and its terminal node is the sink N . If P is an
augmenting path, an augmentation is an operation that increases the flow
of all arcs (i, j) ∈ P+ and decreases the flow of all arcs (i, j) ∈ P− by a
common increment δ > 0.

Following standard terminology, a cut is a partition
(
N+,N−

)
of the

set of nodes N into two subsets N+ and N− with 1 ∈ N+ and N ∈ N−.
The capacity of this cut is the sum of the capacities of all arcs (i, j) with
i ∈ N+ and j ∈ N−. The max flow-min cut theorem states that the
maximum flow is equal to the minimal cut capacity. For a given flow
vector x, a cut

(
N+,N−

)
is said to be saturated if xij = cij for all arcs

(i, j) with i ∈ N+ and j ∈ N−, and xij = 0 for all arcs (i, j) with i ∈ N−
and j ∈ N+. The algorithm of this section terminates with a capacity
feasible flow vector x and a cut

(
N+,N−

)
that is saturated and is such

that the surpluses gi, given by Eq. (4.6), satisfy

g1 ≤ 0, gi ≥ 0, ∀ i 6= 1, gi = 0, ∀ i ∈ N−, i 6= N.

It is well known that such a cut is a minimum cut, and we will show how
it can be used together with x to obtain a maximum flow (see the remarks
following the proof of Prop. 3, which also prove that the cut obtained upon
termination is minimum).

A capacity feasible flow vector x together with a price vector p =
{p(i) | i ∈ N} are said to be a valid pair if

p(i) ≤ p(j) + 1, ∀ j that are eligible neighbors of i. (4.19)
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Our algorithm starts with and maintains a valid flow-price pair (x, p) such
that

g1 ≤ 0, gi ≥ 0, ∀ i 6= 1,

p(1) = N, p(N) = 0, p(i) ≥ 0, ∀ i 6= 1, N. (4.20)

A possible initial choice is the flow vector x given by

xij =

{
cij if i = 1
0 if i 6= 1

(4.21)

together with the price vector p given by

p(i) =

{
N if i = 1
length of a shortest unblocked path from i to N if i 6= 1

(4.22)
which can be obtained by a breadth-first search starting from N . (If there
is no forward path of the original graph from i to N , the above length is
taken to be equal to N .)

Our algorithm maintains a flow-price pair (x, p) satisfying the condi-
tions (4.19)-(4.20), performs a sequence of iterations, and terminates with
a minimum cut. At the start of each iteration, a node n1 with n1 6= N ,
p(n1) < N , and gn1 > 0 is selected. The iteration tries to construct an
augmenting path starting at n1 by using the second path construction algo-
rithm of the preceding section, applied to the reduced graph and using the
price vector p. If an augmenting path is found, the iteration concludes with
a corresponding augmentation. If an augmenting path cannot be found,
the path construction algorithm terminates with p(n1) ≥ N , so that node
n1 will not be chosen as the starting node at any subsequent iteration.
Consistently with the second path construction algorithm of Section 2, we
maintain for each node i, a set of incident arcs of i denoted Cand(i). The
set Cand(i) is empty for i = 1, i = N , and all i with p(i) = N . The set of
end nodes of Cand(i) which are opposite to i is denoted Succ(i).

We require that initially, we have

p(i) = p(j) + 1, if j ∈ Succ(i),

which will be true if all sets Cand(i) are empty, or for all i we have

Cand(i) =
{

(i, j) ∈ A(i, x) | p(i) = p(j)+1
}
∪
{

(j, i) ∈ A(i, x) | p(i) = p(j)+1
}
,

(4.23)
where (x, p) is the initial flow-price pair. If the shortest path initialization
of Eqs. (4.21)-(4.22) is used, then Cand(i) as given by Eq. (4.23), is the set
of arcs outgoing from i in a shortest augmenting path from i. The typical
iteration is as follows:
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Typical Iteration of the Auction/Max-Flow Algorithm

Select a node n1 with n1 6= N , p(n1) < N , and gn1 > 0 (if no such
node exists, the algorithm terminates). Set P = (n1).

Step 1 (Check for contraction or extension): Let nt be the
terminal node of P . If there is a node j ∈ Succ(nt) ∩N(nt, x) such
that

p(nt) ≥ p(j), (4.24)

select such a node j and go to Step 2. Otherwise, if the set N(nt, x)
is empty, set p(nt) = N and go to Step 3; otherwise set

Succ(nt) =

{
j | p(j) = min

j∈N(nt,x)
p(j)

}
, (4.25)

Cand(nt) =
{

(nt, j) ∈ A(nt, x) | j ∈ Succ(nt)
}

∪
{

(j, nt) ∈ A(nt, x) | j ∈ Succ(nt)
}
,

(4.26)

and select a node j ∈ Succ(nt). Set

p(nt) = p(j) + 1. (4.27)

If nt = n1, or if

nt 6= n1 and p
(
pred(nt)

)
> p(j),

go to Step 2; otherwise go to Step 3.

Step 2 (Extend path): Extend P by the node j and the corre-
sponding arc of Cand(nt). If j is the sink N , go to Step 4, and
otherwise go to Step 1.

Step 3 (Contract path): If P = (n1) and p(n1) ≥ N , terminate
the iteration; otherwise, contract P and go to Step 1.

Step 4 (Augmentation): Perform an augmentation along P with
flow increment

δ = min
{
gn1 , {cij − xij | (i, j) ∈ P+}, {xij | (i, j) ∈ P−}

}
, (4.28)

and terminate the iteration.

Note that, except for the at most N − 2 contractions in which p(nt)
is set to N , all contractions involve an increase of the price p(nt) and a
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recalculation of the set Succ(nt). Extensions can either occur through a
discovery of a node j ∈ Succ(nt) ∩ N(nt, x) such that p(nt) ≥ p(j), or
through a recalculation of the set Succ(nt), in which case an increase of
p(nt) may or may not occur.

We assume that the search through the set Succ(nt) ∩N(nt, x) for a
node j such that p(nt) ≥ p(j) is organized as follows: When a set Cand(i)
is initially calculated, via for example Eq. (4.23), or is recalculated via
Eq. (4.26), it is organized as a queue, which allows the deletion of its
top element with O(1) work. Each iteration is started by sequentially
retrieving arcs from the top of Cand(nt) and checking to see if these arcs
are eligible and their endnode j opposite to nt satisfies p(nt) ≥ p(j). Each
arc not passing these tests is deleted from Cand(nt), and the checking is
stopped when either a node j with the required properties is found or the set
Cand(nt) becomes empty. To simplify the following complexity accounting,
the work for checking and deleting the arcs of Cand(nt) is lumped into the
work for calculating Cand(nt). With this convention, the work involved in
an extension for which we recalculate the set Cand(nt) via Eq. (4.26) is
proportional to the degree of nt, while the work involved in an extension
where after checking and possibly deleting enough arcs of Cand(nt), we
find an eligible neighbor node j that passes the test p(nt) ≥ p(j) is O(1).
Similarly, the work involved in a contraction is proportional to the degree
of nt.

The next proposition establishes the basic properties of the algorithm:

Proposition 4.2.3: The following hold for the max-flow algorithm
of this section:

(a) Each iteration of the max-flow algorithm up to the discovery
of the corresponding augmenting path, consists of an applica-
tion of the second path construction algorithm of the preceding
section to the reduced graph, with the start node of the path
being the chosen node n1 for this iteration, and the end node
of the path being N .

(b) The algorithm terminates and upon termination, there is a sat-
urated cut separating the sink from all nodes with nonzero sur-
plus, which is a minimum capacity cut.

(c) The running time of the algorithm is O(N2A).

Proof: (a) By comparing the descriptions of the second path construction
algorithm and the iteration of the max-flow algorithm, we see that the
condition (4.8) that is maintained by the path construction algorithm is
equivalent to the condition (4.19) for the pair (x, p) to be valid, the price
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change (4.17)corresponds to the price change (4.27), and the downhill test
(4.14) for an extension corresponds to the downhill test (4.24). Let us
define the admissible graph of the max-flow algorithm as the graph whose
node set is N = {1, . . . , N} and arc set is{

(i, j) | j ∈ Succ(i) ∩N(i, x), p(i) ≥ p(j), i = 1, . . . , N
}
.

Then the sets Succ(i) and the admissible graph of the path construction
algorithm correspond to the sets Succ(i)∩N(i, x) and the admissible graph
in the max-flow algorithm, respectively.

Based on the preceding associations, it is seen that if at the start of
an iteration of the max-flow algorithm the admissible graph is acyclic, then
the iteration up to the discovery of an augmenting path is equivalent to
the application of the path construction algorithm to the reduced graph.
Thus, to prove the result we must show that the admissible graph of the
max-flow algorithm remains acyclic throughout the algorithm.

To this end, we note that, in view of the initial restriction p(i) =
p(j) + 1 for all j ∈ Succ(i), the admissible graph is acyclic at the start of
the algorithm. Furthermore, if the admissible graph is acyclic at the start
of an iteration, the same is true during the iteration up to the discovery
of the augmenting path, since the path construction algorithm maintains
the acyclicity of the admissible graph. We claim that an augmentation
does not add any new arcs to the admissible graph, and thus maintains its
acyclicity. Indeed, suppose that an augmentation occurs along the path
(i1, i2, . . . , ik, N), and that one of the arcs (im, im−1), m = 2, . . . , k, is
added to the reduced graph and to the admissible graph as a result of the
augmentation. Then, we must have p(im) ≥ p(im−1), im−1 ∈ Succ(im)
[by the definition of the admissible graph], and also p(im−1) ≥ p(im),
im ∈ Succ(im−1) [since the arc (im−1, im) belongs to the augmenting
path], so that p(im−1) = p(im). This implies that p(im−1) and p(im)
have been increased at least once since the start of the algorithm [since
we have p(i) = p(j) + 1 for all j ∈ Succ(i) at the start of the algorithm
and also following each recalculation of the set Succ(i)]. Furthermore, the
conditions p(im−1) < p(im) + 1 and im ∈ Succ(im−1) imply that the last
increase of p(im) occured after the last recalculation of Succ(im−1) [since
following a recalculation of Succ(i) at a node i, we have p(i) = p(j) + 1
for all j ∈ Succ(i)]. Therefore the last increase of p(im) occured after
the last increase of p(im−1) [since each increase of p(i) involves a recal-
culation of Succ(i)]. Similarly, the conditions p(im) < p(im−1) + 1 and
im−1 ∈ Succ(im) imply that the opposite is true. We thus reach a contra-
diction.

(b) From part (a) and Prop. 4.2.2, it follows that each iteration terminates.
At the end of an iteration, either we have p(n1) ≥ N , indicating that there
is no augmenting path starting at n1, or we have an augmentation. In the
former case the number of nodes i with p(i) ≥ N increases strictly, so there
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can be at most N − 2 iterations of this type. To show that the number
of augmentations is finite, we first note that there are at most N price
increases per node, since prices take nonnegative integer values, and once
the price of a node exceeds N − 1, it increases no further. We next observe
that each augmentation either exhausts the surplus of n1, or saturates at
least one arc (that is, it drives the flow of the arc to zero or its upper
bound). When an arc with end nodes i and j is saturated in the direction
from i to j, there are two possibilities: (1) p(i) = p(j)+1, or (2) p(i) = p(j),
in which case in view of j ∈ Succ(i), we cannot have i ∈ Succ(j), since
this would violate the acyclicity of the admissible graph. In either case (1)
or case (2), we see that one of the at most N increases of p(j) must occur
before this arc can become unsaturated and then saturated again in the
direction from i to j. Thus the number of arc saturations is O(N) per arc,
and the total number of arc saturations is O(NA), leading to an O(NA)
bound in the number of iterations and the number of augmentations.

We thus see that the algorithm terminates, and since augmentations
preserve the condition gi ≥ 0 for all i 6= 1, upon termination, we must have
gi ≥ 0 for all i 6= 1, p(1) = N , p(i) ≥ N for all i 6= N with gi > 0, and
p(N) = 0. It follows that there can be no augmenting path starting at
node 1 or at a node i with gi > 0, implying that there is a saturated cut(
N+,N−

)
such that 1 ∈ N+, N ∈ N−, gi ≥ 0 for all i 6= 1, and gi = 0 for

all i 6= N with i ∈ N−. As discussed earlier, this is a minimum cut.

(c) We first note that as shown in the proof of part (b):

(1) There are at most N price increases per node.

(2) There are at most O(NA) iterations and at most O(NA) augmenta-
tions.

In view of (1) above, there can be at most N contractions and exten-
sions that involve a price increase at each node, and the work for each is
proportional to the degree of nt. Thus the work for these contractions and
extensions is O(NA). Also, since each augmentation involves a flow change
for each of at most N − 1 arcs, the work for augmentations is O(N2A).

There remains to bound the work for extensions that do not involve
a price increase. We argue by contradiction that each such extension does
not involve the recalculation of the set Succ(nt), that is, either it involves
the first calculation of Succ(nt) or the downhill test (4.24) is failed for all
j ∈ Succ(nt) ∩N(nt, x). Indeed suppose that the set Succ(nt) is recalcu-
lated via Eq. (4.25) and we find that p(nt) = p(j) + 1 for all j ∈ Succ(nt),
so that an extension is performed without an increase of p(nt). Then, every
j ∈ Succ(nt) must have been an eligible neighbor of nt and its price must
have remained unchanged continuously since the preceding time Succ(nt)
was calculated [and p(nt) was set to p(j) + 1]. But this is a contradic-
tion, since in order for Succ(nt) to be recalculated, all nodes j in the set
Succ(nt) ∩ N(nt, x) must satisfy p(nt) < p(j). Thus if an extension at
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nt does not involve a price increase, it also does not involve a recalcula-
tion of Succ(nt), and therefore (using the accounting method described in
the paragraph preceding Prop. 4.2.3) it requires only O(1) work, unless
it involves the calculation of Succ(nt) for the first time. Now the total
number of extensions is O(N2A) because in each iteration, the number of
extensions exceeds the number of contractions by at most N − 1, the total
number of contractions in the entire algorithm is O(N2), while the total
number of iterations is O(NA). Thus the total work for extensions that do
not involve a price increase is O(N2A). Q.E.D.

Given the cut (N+,N−) and the flow vector x obtained upon termi-
nation of the algorithm, we can obtain a maximum flow by applying the
same algorithm to a certain feasibility problem, that aims to return to the
source the excess flow that has entered the graph from the source and has
accumulated at the other nodes of N+. In particular, we delete all nodes
in N− and all arcs with at least one endnode in N−, and for each node
i 6= 1 with i ∈ N+ and ∑

{(i,j)|j∈N−}

cij > 0,

we introduce an arc (i, 1) with flow and capacity

xi1 = ci1 =
∑

{(i,j)|j∈N−}

cij (4.29)

[if the arc (i, 1) already exists, we just change its capacity and flow to
the above value]. In the resulting graph, call it G, we pose the problem of
finding a flow vector x such that the corresponding surpluses are all zero. It
can be seen that the surpluses corresponding to the flow vector x restricted
to G are equal to the nonnegative surpluses gi obtained upon termination
for all i 6= 1. We can thus apply the max-flow algorithm of this section
starting with this flow vector, and the prices

p(i) =

{
0 if i = 1,
length of a shortest unblocked path from i to 1 if i 6= 1,

which together with x form a valid pair for the graph G. It can be shown
then that each iteration of the algorithm will terminate with an augmen-
tation from some node i with gi > 0 to the source 1. [Given any capacity
feasible flow vector in a graph with arc capacities, and a node i with pos-
itive surplus, there is always an augmenting path starting at i and ending
at some node with negative surplus; this follows from the conformal real-
ization theorem (see e.g. [Ber91a], p. 7). Here node 1 is the only node with
negative surplus.] Thus the algorithm will terminate when the surpluses
of all the nodes i 6= 1 will be reduced to 0, while upon termination the
flows of the arcs (i, 1) will still be equal to their initial values given by Eq.
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(4.29), since these arcs cannot participate in an augmenting path. If xij
is the final flow of each arc (i, j) of G, it can be seen, using also the fact
gi = 0 for all i ∈ N− with i 6= N , that the flow vector x∗ defined for each
arc (i, j) ∈ A by

x∗ij =

{
xij if i /∈ N−, j /∈ N−,
xij otherwise,

will have surpluses g∗i satisfying g∗i = 0 for all i 6= 1, N , g∗1 < 0, g∗N >
0, while saturating the cut (N+,N−). Thus, by the max flow-min cut
theorem, x∗ must be a maximum flow and (N+,N−) must be a minimum
cut.

Note from the proof of Prop. 3 that the complexity bottleneck is the
O(N2A) bound for augmentations and for extensions that do not involve
a price increase. Our computational experience, however, indicates that
the O(NA) work for price increases is at least as much of a bottleneck.
This is similar to preflow-push methods where the O(NA) work for price
increases usually dominates the computation, even though the worst case
complexity bound is worse than O(NA). It thus appears that the practical
computation bottlenecks are comparable for preflow-push methods and our
method.

We finally note two variants of the max-flow algorithm. In the first
variant, we use the first version of the path construction algorithm, given
in Section 2, in place of the second version. The statement of the typical
iteration of this algorithm is identical with the one given above, except
that the downhill test p(nt) ≥ p(j) of Eq. (4.24) is replaced by the strictly
downhill p(nt) = p(j)+1. Proposition 3 can also be proved for this variant
of the algorithm using a similar (in fact simpler) proof.

In the second variant of the max-flow algorithm, instead of main-
taining the entire set Cand(i), we maintain just one arc of Cand(i). The
iteration of the algorithm is modified so that if the unique arc of Cand(nt)
passes the downhill test of Eq. (4.24), it is used as earlier. Otherwise [as-
suming N(nt, x) is nonempty] the set Succ(nt) is computed and a single
arc of Cand(nt) is retained. This variant can be shown to terminate with a
minimum cut as stated in Prop. 3. Its complexity analysis is similar to the
one given in the proof of Prop. 3(c), except that the work for extensions
that do not involve a price increase can be estimated as O(NA2) rather
than O(N2A), raising the complexity bound to O(NA2). However, when
combined with the second best data structure given in the next section,
this second variant of the max-flow algorithm proved the most effective in
our computational results.

4.2.4 Efficient Implementation

In this section we describe a number of variations of the auction/max-flow
algorithm of the preceding section, which we have empirically found to
improve performance.
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Tests for a Saturated Cut

It has been observed that for some problems (particularly those involving
a sparse graph), our method can create a saturated cut very quickly and
may then spend a great deal of additional time to raise to the level N the
prices of the nodes that are left with positive surplus. This characteristic
is shared with preflow-push methods. Computational studies [DeM89],
[MPS91], [AnS93], [NgV93] of preflow-push methods have shown that it is
extremely important to use a procedure that detects early the presence of
a saturated cut. Several schemes have been suggested in the literature.

One possibility is to test periodically for a saturated cut by an O(A)
breadth-first search from the sink, which tries to find the set S of nodes
from which there is an unblocked path to the sink. If all nodes in S have
zero surplus, then S defines a minimum cut. Note that once a node of
S with positive surplus is found, the breadth-first search can be termi-
nated. However, in an alternative version of this scheme, one can also
perform global repricing , whereby all the nodes in S are obtained, and
their prices are recalculated and are set to their shortest distances from
the sink. Furthermore, all the nodes not in S can effectively be purged
from the computation by setting their price equal to N . While global
repricing can be costly, it is known to be beneficial for several problem
types [MPS91], [AnS93], [NgV93]. It is important to use an appropriate
heuristic scheme that ensures that global repricing is not too frequent, in
view of the associated overhead. In practice, repeating the test after a
number of contractions, which is of the order of N , seems to work well.

Another possibility, suggested in the context of preflow-push methods
in [DeM89], is to maintain in a suitable data structure, for each integer k
in the range [1, N−1], the number of nodes m(k) whose price is equal to k.
If for some k we have m(k) = 0 (this is called a gap at price k), then there
is a saturated cut separating all nodes with price greater than k from all
nodes whose price is less than k. All the nodes with price greater than k
can effectively be purged from the computation by setting their price equal
to N . Furthermore, if all nodes with price less than k have zero surplus, the
separating saturated cut is a minimum cut. In our experiments, we have
found this second procedure in conjunction with the highest price selection
rule to be more effective than the first. Note an advantage of both of these
procedures: they can purge from the computation a significant number of
nodes before finding a minimum cut.

Method for Selecting the Starting Node of the Path

Our algorithm leaves unspecified the choice of the positive surplus node
used as the starting node of the path P . One possibility is to select a node
with the highest price among all positive surplus nodes i with p(i) < N .
Each time the path P degenerates to its start node, following a contraction,
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it is possible to make a new start node selection based on the highest price
criterion without affecting the termination properties of the algorithm.

An alternative is to maintain all nodes i with positive surplus and
p(i) < N in a FIFO queue, and use as starting node the first node in the
queue. Note that the preflow-push method that uses a highest price scheme
is superior to the method that uses a FIFO scheme in terms of worst-case
complexity [O(N2A1/2) versus O(N3)].

Greedy Augmentations

Once an augmenting path is constructed, instead of pushing the same
amount of flow along each arc of the path, it is possible to push along each
arc (i, j) the maximum possible amount of flow, that is, max{gi, cij − xij}
if (i, j) is a forward arc of the path, or max{gj , xij} if (i, j) is a backward
arc of the path. We call this a greedy augmentation. For examples where
such augmentations are helpful, we refer to the paper [Ber95a].

Using a Second Best Candidate

Consider the variant of the algorithm, where only one node of the set
Succ(i), call it j1(i), is maintained for each i, together with a corresponding
arc of Cand(i). Suppose that for the terminal node nt of the current path
P we have available a lower bound β(nt) on the prices of all the nodes in
N(nt, x) except for the price of node j1(nt). Suppose also that in Step 1,
the downhill test p(nt) ≥ p

(
j1(nt)

)
of Eq. (4.24) for an extension is failed.

Then we can check to see whether we have

p
(
j1(nt)

)
≤ β(nt),

and if this is so, we know that p
(
j1(nt)

)
is still less or equal to the prices of

all nodes in N(x, nt), thereby making the computation of this minimum as
per Eq. (4.25) unnecessary. A lower bound of this type can be obtained by
calculating, together with j1(nt), the second best node in N(nt, x), that
is, a node j2(nt) given by

j2(nt) = arg min
j∈N(nt, x), j 6=j1(nt)

p(j).

Then, as long as j1(nt) remains unchanged and no new node is added to
N(nt, x), we can use

β(nt) = p
(
j2(nt)

)
as a suitable lower bound [if a new node is added to N(nt, x) due to an
augmentation, we must suitably modify β(nt) and j2(nt)]. This idea can
be further strengthened by checking to see if j2(nt) still belongs to N(nt, x)
and whether its price is still β(nt), in the case where the test p

(
j1(nt)

)
≤
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p
(
j2(nt)

)
is failed. If this is so, we can set j1(nt) to j2(nt), thereby obviating

again the calculation of the minimum in Eq. (4.25).
The idea of using a second best candidate arc and node is known to

be very effective in auction algorithms for the assignment problem and the
shortest path problem (see Chapters 2 and 3). It similarly improves the
performance of our max-flow algorithm.

4.3 THE AUCTION/SEQUENTIAL SHORTEST PATH
ALGORITHM

In this section, we develop an auction algorithm for the solution of the
transhipment problem, based on augmentations along paths, which are
guided by an ε-CS condition. An important feature of the auction approach
is that it allows useful information to be passed from one path construction
to the next in the form of prices.

We use an approach that blends the auction/shortest path construc-
tion process with the remainder of the algorithm. In this approach, we use
ε-perturbations of the arc lengths, related to ε-CS, which ensure that the
path generated by the auction/shortest path method does not close a cycle
through an extension. We first introduce some terminology.

We recall from Section 4.1 that given a flow-price pair (x, p) satisfying
ε-CS, an arc (i, j) is said to be ε+-unblocked if

pi = pj + aij + ε and xij < cij ,

and an arc (j, i) is said to be ε−-unblocked if

pi = pj − aji + ε and bji < xji.

The admissible graph corresponding to (x, p) is defined as G∗ = (N ,A∗),
where the arc set A∗ consists of an arc (i, j) for each ε+-unblocked arc
(i, j) ∈ A, and an arc (i, j) for each ε−-unblocked arc (j, i) ∈ A.

We recall that a path P is a sequence of nodes (n1, n2, . . . , nk) and a
corresponding sequence of k−1 arcs such that the ith arc in the sequence is
either (ni, ni+1) or (ni+1, ni). For any path P , we denote by s(P ) and t(P )
the start and terminal nodes of P , respectively, and by P+ and P− the sets
of forward and backward arcs of P , respectively. The path P is said to be
ε-unblocked if all arcs of P+ are ε+-unblocked, and all arcs of P− are ε−-
unblocked. If P is ε-unblocked, and the start node s(P ) has positive excess
and the terminal node t(P ) has negative excess, then P is an augmenting
path. An augmentation along such a path consists of increasing the flow
of all arcs in P+ and reducing the flow of all arcs in P− by the common
increment

δ = min

{
gs(P ), −gt(P ), min

(i,j)∈P+
{cij − xij}, min

(i,j)∈P−
{xij − bij}

}
.
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Given a path P = (n1, n2, . . . , nk), a contraction of P is the opera-
tion that deletes the terminal node of P together with the corresponding
terminal arc. An extension of P by an arc (nk, nk+1) or an arc (nk+1, nk),
replaces P by the path (n1, n2, . . . , nk, nk+1) and adds to P the correspond-
ing arc. For convenience, we allow a path P to consist of a single node i, in
which case extension by an arc (i, j) or (j, i) gives a path with start node
i and terminal node j.

The algorithm to be presented will be called auction/sequential short-
est path algorithm (abbreviated ASSP). It uses a fixed ε > 0, and maintains
a flow-price pair (x, p) satisfying ε-CS and also a simple path P (possibly
consisting of a single node). It terminates when all nodes have nonneg-
ative excess; then either all nodes have zero excess and x is feasible, or
else some node has negative excess showing that the problem is infeasible.
Throughout the algorithm, x is integer, and (x, p) and P satisfy:

(a) The admissible graph corresponding to (x, p) is acyclic.

(b) P belongs to the admissible graph, i.e., it is ε-unblocked. Further-
more, P starts at a node with positive excess, and all its nodes have
nonnegative excess.

We assume that at the start of the algorithm we have a pair (x, p) satisfying
ε-CS, as well as the above two properties. In particular, initially one may
choose any price vector p, select x according to

xij =

{
cij if pi ≥ aij + pj ,
bij if pi < aij + pj ,

and choose P to consist of a single node with positive excess. For these
choices, ε-CS is satisfied and the corresponding admissible graph is acyclic,
since its arc set is empty.

At each iteration, the path P is either extended or contracted. In
the case of a contraction, the price of the terminal node of P is strictly
increased. In the case of an extension, no price rise occurs, but if the
new terminal node has negative excess, P becomes augmenting, and an
augmentation along P is performed. Then the path P is replaced by the
degenerate path that consists of a single node with positive excess, and the
process is repeated.
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Iteration of the ASSP Algorithm

Let i be the terminal node of P . If

pi < min
{

min
{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
,

min
{(j,i)∈A|bji<xji}

{
pj − aji + ε

}} (4.30)

go to Step 1; else go to Step 2.

Step 1 (Contract path): Set

pi := min
{

min
{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
,

min
{(j,i)∈A|bji<xji}

{
pj − aji + ε

}} (4.31)

and if i 6= s(P ), contract P . Go to the next iteration.

Step 2 (Extend path): Extend P by an arc (i, ji) or an arc (ji, i)
that attains the minimum in Eq. (4.30). If the excess of ji is negative
go to Step 3; otherwise, go to the next iteration.

Step 3 (Augmentation): Perform an augmentation along P . If all
nodes have nonpositive excess, terminate the algorithm; otherwise,
replace P by a path that consists of a single node with positive excess
and go to the next iteration.

The following proposition establishes that some basic properties are
maintained by the algorithm.

Proposition 4.3.1: Suppose that at the start of an iteration of the
ASSP algorithm the following two conditions hold:

(1) (x, p) satisfies ε-CS and the corresponding admissible graph is
acyclic.

(2) P belongs to the admissible graph, starts at a node with posi-
tive excess, and all its nodes have nonnegative excess.

Then these two conditions hold at the start of the next iteration.

Proof: Suppose the iteration involves a contraction. Then it can be seen
that the price increase (4.31) preserves ε-CS. Furthermore, since only the
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price of node i changes and no arc flow changes, the admissible graph
remains unchanged except for the incident arcs of node i. In particular, all
the incident arcs of i in the admissible graph at the start of the iteration are
deleted and the arcs of the admissible graph corresponding to the arcs (i, j)
and (j, i) that attain the minimum in Eq. (4.31) are added. Since all these
arcs are outgoing from i in the admissible graph, a cycle cannot be closed.
Finally, following a contraction, P does not contain the terminal node i, so
it belongs to the admissible graph that we had before the iteration. Thus
P consists of arcs that belong to the admissible graph that we obtain after
the iteration.

Suppose the iteration involves an extension. Then by ε-CS, we must
have

pi = min

{
min

{(i,j)∈A|xij<cij}

{
aij + pj + ε

}
, min
{(j,i)∈A|bji<xji}

{
pj − aji + ε

}}
,

at the start of the iteration. It follows that the path P obtained by exten-
sion is simple and ε-unblocked, since the extension arc (i, ji) must belong
to the admissible graph. Since no price or flow changes with an extension,
the ε-CS conditions and the admissible graph stay unchanged following the
extension. If there is a subsequent augmentation at Step 3 because the
new terminal node ji has negative excess, the ε-CS conditions will not be
affected, while the admissible graph will not gain any new arcs, so it will
remain acyclic. Q.E.D.

Note that if we were to take ε = 0 (rather than ε > 0), the preceding
proof would break down, because we would not be able to prove that the
admissible graph remains acyclic following an augmentation. In particular,
if following an augmentation, the flow of some arc (i, j) lies strictly between
its lower and upper bound, the arcs (i, j) and (j, i) would both belong to
the admissible graph, each with zero length, thereby closing a zero length
cycle.

A sequence of iterations between two successive augmentations (or
the sequence of iterations up to the first augmentation) will be called an
augmentation cycle. Let us fix an augmentation cycle and let p be the price
vector at the start of the cycle. The reduced graph GR = (N ,AR), defined
earlier, will not change in the course of this augmentation cycle, since no
arc flow will change during the cycle, except for the augmentation at the
end. Suppose that we take as arc lengths of the reduced graph the reduced
costs at the start of the cycle plus ε. In particular, during the cycle, the
arc set AR consists of an arc (i, j) with length aij + pj − pi + ε for each
arc (i, j) ∈ A with xij < cij , and an arc (j, i) with length pi − aij − pj + ε
for each arc (i, j) ∈ A with bij < xij . Note that, because (x, p) satisfies
ε-CS, the arc lengths of the reduced graph are nonnegative. However, the
reduced graph does not contain zero length cycles, since any such cycle
must belong to the admissible graph, which is acyclic.



32 Auction Algorithms for Network Transport Chap. 4

Using these observations, it can now be seen that the augmentation
cycle is just the auction/shortest path algorithm of Section 2.6 applied to
the problem of finding a shortest path from the starting node s(P ) to some
node with negative excess in the reduced graph GR, using the preceding ε-
perturbed arc lengths. To understand this, one should view pi − pi during
the augmentation cycle as the price of node i that is maintained by the
auction/shortest path algorithm. The price increments pi − pi obtained
by the auction/shortest path algorithm are added in effect to the starting
prices pi at the end of the augmentation cycle to form the new prices that
will be used for the shortest path construction of the next augmentation
cycle.

By the theory of the auction/shortest path algorithm, a shortest path
in the reduced graph will be found in a finite number of iterations if there
exists at least one path from the starting node s(P ) to some node with
negative excess. Such a path is guaranteed to exist if the problem is feasible.
Since the augmentation will change all the flows of the final path P by a
positive integer amount, we see that each augmentation cycle reduces the
total absolute excess

∑
i∈N |gi| by a positive integer. Therefore, there can

be only a finite number of augmentation cycles, and we have shown the
following proposition.

Proposition 4.3.2: Assume that the minimum cost flow problem
is feasible. Then the ASSP algorithm terminates with a pair (x, p)
satisfying ε-CS. The flow vector x is feasible and is optimal if ε <
1/N .

It is interesting to try to relate the iterations of the algorithm with it-
erations of the ε-relaxation method. Each iteration of the algorithm involv-
ing a contraction can be viewed as an iteration of an ε-relaxation method,
except that the iterating terminal node i may have zero excess. Each it-
eration involving an extension without an augmentation changes neither
the flow nor the price vectors; it merely extends the path P by a single
arc. Finally, each iteration involving an augmentation can be viewed as a
sequence of ε-relaxation iterations, each pushing the flow increment δ along
the ε+-unblocked forward arcs and the ε−-unblocked backward arcs of P .
Thus we may view the algorithm as a variant of the ε-relaxation method.

ε-Scaling

As in all auction algorithms, the practical performance of the algorithm
may be degraded by “price wars,” that is, prolonged sequences of itera-
tions involving small price increases. There is a built-in potential for price
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wars here because with a small ε, the reduced graph may contain cycles
with small length, which slow down the underlying auction/shortest path
algorithm. (There is a cycle of length 2ε for every arc whose flow lies strictly
between the corresponding flow bounds.) This difficulty can be addressed
by ε-scaling, that is, by applying the algorithm several times, each time
decreasing ε by a constant factor, up to the threshold value of 1/(N + 1),
while using the final prices obtained for one value of ε as starting prices for
the next value of ε. A polynomial complexity bound of O

(
N2A log(NC)

)
,

where C is the cost range

C = max
(i,j)∈A

|aij |,

can be proved for the resulting method, after we introduce modifications
similar to the ones of Section ??? for the ε-relaxation method. The unscaled
version of the method, where ε is kept fixed at 1/(N + 1), is pseudopoly-
nomial.

In addition to ε-scaling, there are several implementation techniques,
which have been found to improve performance in practice. We refer to
Bertsekas [1995b] for further details and computational results.

4.4 AUCTION ALGORITHMS FOR CONVEX SEPARABLE
NETWORK OPTIMIZATION

In this section we develop auction algorithms for the separable convex net-
work flow problem introduced in Section 1.2. It has the form

minimize
∑

(i,j)∈A

fij(xij)

subject to
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N ,

xij ∈ Xij , ∀ (i, j) ∈ A,

(4.32)

where x is a flow vector in a given directed graph (N ,A), si are given
supply scalars, Xij are nonempty intervals of scalars, and each function
fij : Xij 7→ < is convex.

We begin with a development of the mathematical properties of con-
vex functions of one variable in Section 4.4.1. We then derive, in Section
4.4.2, optimality conditions that do not require differentiability of the cost
function. In Section 4.4.3, we develop a duality theory that generalizes the
one of Section 1.3 for the transhipment problem.

We then proceed with the development of auction algorithms for con-
vex separable problems. These algorithms can deal with nondifferentiabil-
ities in the dual problem and are also very efficient in practice. There is a
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solid theoretical basis for this efficiency, as we show with a computational
complexity analysis. Based on complexity analysis and experimentation,
these algorithms are very efficient. With proper implementation, they ap-
pear to be minimally affected by ill-conditioning in the dual problem.

4.4.1 Convex Functions of a Single Variable

In this section, we introduce some mathematical properties of convex func-
tions of one variable, defined over an interval of the real line <. We recall
that in our terminology, an interval is a nonempty and convex subset of the
real line. The supremum (infimum) of an interval is called the right end-
point (the left endpoint , respectively). Thus, an interval is a set that has
one of the forms (a, b), (a, b], [a, b), [a, b], (−∞, b), (−∞, b], (a,∞), [a,∞),
(−∞,∞), where a and b are scalars. The left endpoint is a (or −∞) and
the right endpoint is b (or ∞). The interior of an interval is the set (a, b)
where a and b are the left and right endpoints, respectively.

Let f : X 7→ < be a convex function defined on an interval X.† The
subset {

(x, γ) | x ∈ X, f(x) ≤ γ
}

of <2 is called the epigraph of f , and is convex if and only if f is convex.
It can be shown (as a consequence of convexity) that f is continuous at all
points in the interior of X; that is, limk→∞ f(xk) = f(x) for all sequences
{xk} ⊂ X converging to an interior point x of X. At an endpoint of X
that is included in X, f may or may not be continuous. A condition that
guarantees continuity of f over the entire interval X is that the epigraph
of f is a closed subset of <2. If this condition holds, we say that f is
closed . Throughout this chapter, we assume that the convex functions fij
involved in the convex separable network problem (4.32) are closed . This
assumption facilitates the analysis and is practically always satisfied.

† Much of the literature of convex analysis treats convex functions as ex-
tended real-valued functions, which are defined over the entire real line but
take the value ∞ outside their (effective) domain. In this format, a function
f : X 7→ < that is convex over the convex interval X is represented by the
function f̂ : < 7→ (−∞,∞] defined by

f̂(x) =
{
f(x) if x ∈ X,
∞ if x /∈ X.

There are notational advantages to this format, particularly for functions of sev-

eral variables, as it is not necessary to keep track of the domains of various

functions explicitly. It is simpler for our limited purposes, however, to maintain

the more common framework of real-valued functions.
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The right derivative of f at a point x ∈ X that is not the right
endpoint of X is defined by

f+(x) = lim
αk→0+

f(x+ αk)− f(x)

αk
,

where the limit is taken over any positive sequence {αk} such that x+αk ∈
X for all k. If X contains its right endpoint b, we define f+(b) = ∞.
Similarly, the left derivative of f at a point x ∈ X that is not the left
endpoint of X is defined by

f−(x) = lim
αk→0+

f(x− αk)− f(x)

αk
,

where the limit is taken over any positive sequence {αk} such that x−αk ∈
X for all k. If X contains its left endpoint a, we define f−(a) = −∞. In the
degenerate case where X consists of a single point a, we define f−(a) = −∞
and f+(a) = ∞. Note that the only point of X where f+ may equal ∞
is the right endpoint (assuming it belongs to X), and the only point of X
where f− may equal −∞ is the left endpoint (assuming it belongs to X).

It can be shown, as a consequence of convexity, that the right and
left derivatives are monotonically nondecreasing and satisfy

f−(x) ≤ f+(x) ≤ f−(y) ≤ f+(y), ∀ x, y ∈ X with x < y. (4.33)

Furthermore, f− is left continuous (f+ is right continuous) over the interval
where it is finite. If f is differentiable at a point x ∈ X, we have

f−(x) = f+(x) = ∇f(x),

where ∇f(x) is the gradient of f at x. The right and left derivatives define
the subset

Γ =
{

(x, t) | x ∈ X, f−(x) ≤ t ≤ f+(x)
}

of <2, which is called the characteristic curve of f , and is illustrated in
Fig. 4.4.1.

Directional Derivatives of Separable Convex Functions

Consider now a general convex set F in <n, and a function f : F 7→ <
that is convex. The directional derivative f ′(x; y) of f at a vector x ∈ F in
the direction y is defined to be the right derivative of the convex function
f(x+αy) of the scalar α at α = 0 (this function is defined over the interval
of all α such that x+ αy ∈ F ). In other words,

f ′(x; y) = lim
α→0+

f(x+ αy)− f(x)

α
, (4.34)
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Figure 4.4.1: Illustration of various convex functions f : X 7→ < (on the left-

hand side) and their right and left derivatives, and characteristic curves

Γ =
{

(x, t) | x ∈ X, f−(x) ≤ t ≤ f+(x)
}

(on the right-hand side). In example (c), X contains its right endpoint b, but we

have f−(b) = f+(b) =∞.
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where we use the convention f(x + αy) = ∞ if x + αy /∈ F . Note that a
vector x∗ ∈ F minimizes f over F if and only if

f ′(x∗; y) ≥ 0, ∀ y. (4.35)

Let us consider the special case of a separable function of the flow
vector x:

f(x) =
∑

(i,j)∈A

fij(xij),

where each fij is a closed convex function over an interval Xij . Then, by
applying the definition (4.34), we see that the directional derivative is given
by

f ′(x; y) =
∑

{(i,j)∈A|yij>0}

f+ij (xij)yij +
∑

{(i,j)∈A|yij<0}

f−ij (xij)yij , (4.36)

where f−ij (xij) and f+ij (xij) denote the left and the right derivative of fij
at an arc flow xij ∈ Xij . There is an ambiguity in the above equation
when f+ij (xij) =∞ for some (i, j) with yij > 0 and f−ij (xij) =∞ for some
(i, j) with yij < 0, in which case the sum ∞−∞ appears. We resolve this
ambiguity by adopting the convention

∞−∞ =∞.

It can be shown by using the definition (4.34) that with this convention, the
directional derivative formula of Eq. (4.36) is correct even in cases where
the ambiguity arises. To see this, note that if f+ij (xij) =∞ for some (i, j),
xij must be the right endpoint of the interval Xij , so that if in addition
yij > 0, it follows that xij + αyij /∈ Xij for all α > 0. Thus x + αy is
outside the domain of f for all α > 0, so that, according to our convention,
f(x+ αy) =∞ for all α > 0 and, from Eq. (4.34), f ′(x; y) =∞.

4.4.2 Optimality Conditions

In this and the next two sections, we discuss the main analytical aspects of
convex separable problems. The optimality conditions derived in Section
8.6 require differentiability of the cost function. However, the approach
used there can be extended to a nondifferentiable separable convex cost
by using directional differentiability. In particular, by arguing that the
directional derivative of f cannot be negative along any feasible direction
at x∗ [cf. Eq. (4.35)], we obtain a generalization of the nonnegative cycle
condition for optimality of Props. 1.2 and 8.2.
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Proposition 4.4.1: (Nonnegative Cycle Condition) Consider
the separable convex network problem. A vector x∗ is optimal if and
only if x∗ is feasible and for every simple cycle C that is unblocked
with respect to x∗ there holds∑

(i,j)∈C+

f+ij (x∗ij)−
∑

(i,j)∈C−
f−ij (x∗ij) ≥ 0. (4.37)

Proof: Let x∗ be an optimal flow vector and let C be a simple cycle
that is unblocked with respect to x∗. Consider the flow vector d(C) with
components

dij(C) =

{
1 if (i, j) ∈ C+,
−1 if (i, j) ∈ C−,
0 otherwise.

(4.38)

Then d(C) is a feasible direction at x∗ and using Eq. (4.36), it is seen that
the directional derivative of f at x∗ in the direction d(C) is the left-hand
side of Eq. (4.37). Since x∗ is optimal, this directional derivative must be
nonnegative [cf. Eq. (4.35)].

Conversely, suppose that x∗ is feasible but not optimal. Let x be a fea-
sible flow vector with cost smaller that the one of x∗. Consider a conformal
decomposition of the circulation x−x∗ into simple cycles C1, . . . , CM , and
the corresponding cycle flow vectors d(C1), . . . , d(CM ) as per Eq. (4.38):

x− x∗ =

M∑
m=1

γmd(Cm), γm > 0, m = 1, . . . ,M. (4.39)

Using Eqs. (4.36) and (4.39), we see that the directional derivative of f in
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the direction x− x∗ is given by

f ′(x∗;x− x∗) =
∑

{(i,j)|xij−x∗ij>0}

f+ij (x∗ij)(xij − x∗ij)

+
∑

{(i,j)|xij−x∗ij<0}

f−ij (x∗ij)(xij − x∗ij)

=
∑

{(i,j)|xij−x∗ij>0}

f+ij (x∗ij)

M∑
m=1

γmdij(Cm)

+
∑

{(i,j)|xij−x∗ij<0}

f−ij (x∗ij)

M∑
m=1

γmdij(Cm)

=

M∑
m=1

γm

( ∑
{(i,j)|dij(Cm)>0}

f+ij (x∗ij)dij(Cm)

+
∑

{(i,j)|dij(Cm)<0}

f−ij (x∗ij)dij(Cm)

)

=

M∑
m=1

γmf ′
(
x∗; d(Cm)

)
.

[The last equality holds using the definition (4.36) of a directional deriva-
tive. The next-to-last inequality holds because for any arc (i, j) the sign
of each nonzero arc flow dij(Cm) is the same as the sign of xij − x∗ij , since
the decomposition is conformal.] Since f ′(x∗;x − x∗) < 0 and γm > 0 for
all m, we must have f ′

(
x∗; d(Cm)

)
< 0 for at least one m, or∑

(i,j)∈C+
m

f+ij (x∗ij)−
∑

(i,j)∈C−m

f−ij (x∗ij) < 0.

Thus if Eq. (4.37) holds, x∗ must be optimal. Q.E.D.

4.4.3 Duality

As in earlier developments of duality, we obtain a dual problem by intro-
ducing a price pi for each node i and by forming the Lagrangian function

L(x, p) =
∑

(i,j)∈A

fij(xij) +
∑
i∈N

pi

 ∑
{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij + si


=

∑
(i,j)∈A

(
fij(xij)− (pi − pj)xij

)
+
∑
i∈N

sipi.

(4.40)
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The dual function value q(p) at a price vector p is obtained by minimizing
L(x, p) over all x satisfying the constraint xij ∈ Xij . Thus,

q(p) = inf
x∈X

L(x, p) =
∑

(i,j)∈A

qij(pi − pj) +
∑
i∈N

sipi,

where

qij(pi − pj) = inf
xij∈Xij

{
fij(xij)− (pi − pj)xij

}
. (4.41)

The problem

maximize q(p)

subject to no constraint on p,

is referred to as the dual problem, while the original problem of minimizing
f subject to the conservation of flow constraints and x ∈ X is referred to
as the primal problem. The dual function is also referred to as the dual
cost function or dual cost , and the optimal value of the dual problem is
referred to as the optimal dual cost .

Note that qij is concave since it is the pointwise infimum of linear
functions [the epigraph of −qij is a convex set, since it is the intersection
of the epigraphs of the linear functions (pi− pj)xij − fij(xij) as xij ranges
over Xij ]. If Xij is a compact set, then since fij is assumed closed and
hence continuous over Xij , the infimum in the definition (4.41) of qij is
attained (by Weierstrass’ theorem), and it follows that qij is real-valued;
that is, q(p) is a real number for all p. If Xij is not compact, it is possible
that qij is not real-valued. Thus the dual problem embodies the implicit
constraint p ∈ Q, where Q is the “effective domain” of q given by

Q =
{
p | q(p) > −∞

}
.

We consequently say that a price vector p is feasible if q(p) > −∞. The
dual problem is said to be infeasible if there is no feasible price vector. The
form of qij is illustrated in Fig. 4.4.2.†

Our objective is to generalize the duality theorems given in Chapter 4
for the minimum cost flow cost problem. For this, we must first generalize
the conditions for complementary slackness.

† The relation between the primal and dual arc cost functions fij and qij
is a special case of a conjugacy relation that is central in the theory of convex

functions (see e.g., Rockafellar [1970], [1984]). There is a rich theory around this

relation. Here, we will prove only those facts about conjugacy that we will need

in our analysis.
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Figure 4.4.2: Illustration of primal and dual arc cost function pairs. Points
where the primal function is nondifferentiable correspond to linear segments of

the dual function.

Definition 4.4.1: A flow-price vector pair (x, p) is said to satisfy
complementary slackness (CS for short) if for all arcs (i, j), we have
xij ∈ Xij and

f−ij (xij) ≤ pi − pj ≤ f+ij (xij).

Thus a pair (x, p) satisfies CS if for every arc (i, j), the pair (xij , pi−
pj) lies on the characteristic curve of the function fij (see Fig. 4.4.3). Note
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Figure 4.4.3: Illustration of CS. The pairs (xij , pi − pj) must lie on the corre-
sponding characteristic curves

Γij =
{

(xij , tij) | xij ∈ Xij , f
−
ij (xij) ≤ tij ≤ f+ij (xij)

}
,

shown in the right-hand side.

that an equivalent definition of CS is that xij attains the infimum in the
definition of qij for all arcs (i, j):

fij(xij)− (pi − pj)xij = min
zij∈Xij

{
fij(zij)− (pi − pj)zij

}
.

It can be seen that these conditions generalize the corresponding CS con-
ditions for the minimum cost flow problem.

We are now ready to derive the basic duality results for separable
problems.

Proposition 4.4.2: (Complementary Slackness Theorem) A
feasible flow vector x∗ and a price vector p∗ satisfy CS if and only
if x∗ and p∗ are optimal primal and dual solutions, respectively, and
the optimal primal and dual costs are equal.

Proof: We first show that for any feasible flow vector x and any price
vector p, the primal cost of x is no less than the dual cost of p. Indeed,
using the definition of q(p) and L(x, p), we have

q(p) ≤ L(x, p)

=
∑

(i,j)∈A

fij(xij) +
∑
i∈N

pi

si − ∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}

xji


=

∑
(i,j)∈A

fij(xij),

(4.42)
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where the last equality follows from the feasibility of x.
If x∗ is feasible and satisfies CS together with p∗, we have by the

definition of q

q(p∗) = inf
x

{
L(x, p∗) | xij ∈ Xij , (i, j) ∈ A

}
= L(x∗, p∗)

=
∑

(i,j)∈A

fij(x∗ij) +
∑
i∈N

p∗i

si − ∑
{j|(i,j)∈A}

x∗ij +
∑

{j|(j,i)∈A}

x∗ji


=

∑
(i,j)∈A

fij(x∗ij),

where the last equality follows from the feasibility of x∗, and the second
equality holds because (x∗, p∗) satisfies CS if and only if

fij(x∗ij)− (p∗i − p∗j )x∗ij = min
xij∈Xij

{
fij(xij)− (p∗i − p∗j )xij

}
, ∀ (i, j) ∈ A,

and L(x∗, p∗) can be written as in Eq. (4.40). Therefore, x∗ attains the
minimum of the primal cost on the right-hand side of Eq. (4.42), and p∗

attains the maximum of q(p) on the left-hand side of Eq. (4.42), while the
optimal primal and dual costs are equal.

Conversely, suppose that x∗ and p∗ are optimal flow and price vectors
for the primal and dual problems, respectively, and the two optimal costs
are equal; that is,

q(p∗) =
∑

(i,j)∈A

fij(x∗ij).

We have by definition

q(p∗) = inf
x

{
L(x, p∗) | xij ∈ Xij , (i, j) ∈ A

}
,

and also, using the Lagrangian expression (4.40) and the feasibility of x∗,∑
(i,j)∈A

fij(x∗ij) = L(x∗, p∗).

Combining the last three equations, we obtain

L(x∗, p∗) = min
x

{
L(x, p∗) | xij ∈ Xij , (i, j) ∈ A

}
.

Using the Lagrangian expression (4.40), it follows that for all arcs (i, j), we
have

fij(x∗ij)− (p∗i − p∗j )x∗ij = min
xij∈Xij

{
fij(xij)− (p∗i − p∗j )xij

}
.
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This is equivalent to the pair (x∗, p∗) satisfying CS. Q.E.D.

An important question, which is left open by Prop. 4.4.2, is whether
there exists a price vector that satisfies CS together with an optimal flow
vector. For the minimum cost flow problem, this is always true, as we
have seen in Chapter 1. However, answering this question for convex but
nonlinear problems requires some qualifying condition. We introduce such
a condition in the following definition.

Definition 4.4.2: (Regularity) A flow vector x is called regular
if for all arcs (i, j), we have

f−ij (xij) <∞, −∞ < f+ij (xij).

It is quite unusual for a flow vector x not to be regular. For this
to happen, there must exist an arc flow xij that lies at the right (left)
endpoint of the corresponding constraint interval Xij while both the left
and the right slopes of fij at that endpoint are ∞ (or −∞, respectively)
[see Fig. 4.4.1(c) for an example]. In particular, if xij belongs to the interior
of Xij for all arcs (i, j), then x is regular. Furthermore, all flow vectors are
regular if each fij is the restriction to the interval Xij of some function that
is convex over the entire real line, such as for example a linear function.

While nonregularity is unusual for a feasible flow vector, it is far more
rare for an optimal flow vector. In particular, we claim that if there exists
at least one regular feasible solution, all optimal solutions must be regular .
To show this, note that if x∗ is an optimal solution and x is another feasible
solution, we have

x∗ij < xij ⇒ f+ij (x∗ij) <∞,

since if x∗ij < xij , then x∗ij cannot be the right endpoint of the interval Xij .
Similarly, we have

xij < x∗ij ⇒ f−ij (x∗ij) > −∞.

It follows from the preceding two relations that

f+ij (x∗ij)(xij−x∗ij) <∞, f−ij (x∗ij)(xij−x∗ij) <∞, ∀ (i, j) ∈ A. (4.43)

Now if x is regular and x∗ is not regular but optimal, there must exist an
arc (i, j) such that either (a) f−ij (x∗ij) =∞, or (b) f+ij (x∗ij) = −∞. In case
(a), x∗ij must be the right endpoint of Xij and xij < x∗ij (since x is regular).
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Hence the product f−ij (x∗ij)(xij − x∗ij) is −∞, and in view of Eq. (4.43), we
have

f ′(x∗;x− x∗) = −∞,

contradicting the optimality of x∗. We similarly obtain a contradiction in
case (b), completing the proof that regularity of at least one feasible flow
vector implies regularity of every optimal flow vector. We use this to show
the following proposition.

Proposition 4.4.3: Suppose that there exists at least one primal
feasible solution that is regular. Then, if x∗ is an optimal solution of
the primal problem, there exists an optimal solution p∗ of the dual
problem that satisfies CS together with x∗.

Proof: By Prop. 4.4.1, for every simple cycle C that is unblocked with
respect to x∗ there holds∑

(i,j)∈C+

f+ij (x∗ij)−
∑

(i,j)∈C−
f−ij (x∗ij) ≥ 0.

The discussion preceding the present proposition, implies that x∗ must be
regular. Using this fact, it is seen that the assumptions for the use of the
feasible differential theorem (Exercise 5.11 in Chapter 5) are fulfilled with
a+ij = f+ij (x∗ij) and a−ij = f−ij (x∗ij). Using the conclusion of this theorem, we
can assert that there exists a price vector p∗ satisfying

f−ij (xij) ≤ p∗i − p∗j ≤ f
+
ij (xij),

for all arcs (i, j). Thus p∗ satisfies CS together with x∗. Q.E.D.

Figure 4.4.4 gives an example where the assertion of Prop. 4.4.3 does
not hold in the absence of a regular feasible solution.

An important question, which is left open by Props. 4.4.2 and 4.4.3,
relates to the equality of the optimal primal and dual costs in the absence of
an optimal primal solution that is regular. Generally, for convex programs,
it is possible that the optimal primal cost is strictly greater that the optimal
dual cost, in which case we say that there is a duality gap. Using the
machinery of the simplex method, we showed that for linear cost problems,
this cannot happen (see Props. 4.2 and 5.8). However, the equality of the
optimal primal and dual costs is a characteristic property of linear programs
and the corresponding proof methods do not easily generalize to the case
of a general convex cost function. It is thus somewhat unexpected that for
the separable problem of this chapter the optimal primal and dual costs are
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Figure 4.4.4: An example of a problem where there is no regular primal feasible
solution, and the dual problem has no optimal solution (cf. Prop. 4.4.3). The

primal problem is

minimize f12(x12) + f21(x21)

subject to x12 = x21, 0 ≤ x12 <∞, −∞ < x21 ≤ 0,

where
f12(x12) = −

√
x12, x12 ∈ [0,∞),

f21(x21) = −
√
−x21, x21 ∈ (−∞, 0].

The dual arc functions can be calculated to be

q12(t12) = inf
0≤x12<∞

{
−
√
x12 − t12x12

}
=

{
1

4t12
if t12 < 0,

−∞ otherwise,

and

q21(t21) = inf
−∞<x21≤0

{
−
√
−x21 − t21x21

}
=

{
− 1

4t21
if t21 > 0,

−∞ otherwise.

The only primal feasible solution is the zero flow vector, which is nonregular. The

optimal primal cost is 0. The dual problem is to maximize

1

4(p1 − p2)
−

1

4(p2 − p1)

over all (p1, p2) with p1 < p2, and has no optimal solution. The dual optimal cost

is 0. Note that the optimal primal and dual costs are equal, consistently with the
following Prop. 4.4.4.

equal under comparable assumptions to those for linear programs. This is
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a remarkable result due to Minty [1960] and Rockafellar ([1967] or [1970]
or [1984]), and requires a fairly sophisticated proof.

Proposition 4.4.4: (Duality Theorem for Separable Prob-
lems) If there exists at least one feasible solution to the primal
problem, or at least one feasible solution to the dual problem, the
optimal primal and dual costs are equal.

Note that part of the assertion of Prop. 4.4.4 is that if the primal
problem is feasible but unbounded, then the dual problem is infeasible (the
optimal costs of both problems are equal to −∞), and that if the dual
problem is feasible but unbounded, the primal problem is infeasible (the
optimal costs of both problems are equal to ∞).

Duality and the Equilibrium Problem

We can use duality and CS to introduce a problem, which is referred to
as the equilibrium problem. The name stems from the association with
some classical problems of finding equilibrium solutions to various physical
systems, as we will explain shortly.

Network Equilibrium Problem

Find a flow-price pair (x, p) such that x satisfies the conservation of
flow equations, and for each arc (i, j), the pair (xij , pi − pj) lies on
the characteristic curve

Γij =
{

(xij , tij) | xij ∈ Xij , f
−
ij (xij) ≤ tij ≤ f+ij (xij)

}
. (4.44)

Thus, the pair (x, p) is an equilibrium solution if and only if x is
feasible and (x, p) satisfies CS. We have the following result:

Proposition 4.4.5: (Network Equilibrium Theorem) A flow-
price pair (x∗, p∗) solves the equilibrium problem if and only if x∗

and p∗ are optimal primal and dual solutions, respectively
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Proof: If (x∗, p∗) solve the equilibrium problem, then (x∗, p∗) satisfy CS,
so by the forward part of Prop. 4.4.2, x∗ is primal optimal and p∗ is dual
optimal. Conversely, if x∗ is primal optimal and p∗ is dual optimal, then
x∗ is primal feasible, so by Prop. 4.4.4, the optimal primal and dual costs
are equal. It follows using the reverse part of Prop. 4.4.2 that x∗ and p∗

satisfy CS, and since x∗ is feasible, they also solve the equilibrium problem.
Q.E.D.

4.4.4 Auction Algorithms

We first develop an appropriate extension of the notion of ε-complementary
slackness (ε-CS for short). We then derive and analyze generalizations of
the ε-relaxation and auction/sequential shortest path methods. Through-
out this section, we assume that the problem is feasible.

Definition 4.4.3: Given ε ≥ 0, a flow-price vector pair (x, p) is said
to satisfy ε-CS if for all arcs (i, j), we have xij ∈ Xij and

f−ij (xij)− ε ≤ pi − pj ≤ f+ij (xij) + ε.

Figure 4.4.5 illustrates the definition of ε-CS. The intuition behind
the ε-CS conditions is that a feasible flow-price pair is “approximately”
primal and dual optimal if the ε-CS conditions are satisfied. This intuition
is quantified in the following proposition:

Proposition 4.4.6: Let
(
x(ε), p(ε)

)
be a flow-price pair satisfying ε-

CS such that x(ε) is feasible, and let ξ(ε) be any flow vector satisfying
CS together with p(ε) [note that ξ(ε) need not satisfy the conservation
of flow constraints].

(a)

0 ≤ f
(
x(ε)

)
− q
(
p(ε)

)
≤ ε

∑
(i,j)∈A

|xij(ε)− ξij(ε)| . (4.45)

(b) Assume that all the dual arc cost functions qij are real-valued.
Then

lim
ε→0

(
f
(
x(ε)

)
− q
(
p(ε)

))
= 0.
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Figure 4.4.5: A visualization of the ε-CS conditions in terms of a “cylinder”
around the characteristic curve. The shaded area represents flow-price differential

pairs that satisfy the ε-CS conditions. In this figure, fij is a quadratic function

whose curvature is the slope shown, and the arc flow range Xij is the interval
[bij , cij ].

Proof: (a) To simplify notation, let us replace x(ε), p(ε), and ξ(ε), by x,
p, and ξ, respectively. Denote tij = pi − pj . Since ξ and p satisfy CS, we
have

fij(xij) = ξijtij + qij(tij), ∀ (i, j) ∈ A.

Take an arc (i, j) such that xij ≥ ξij . Then

fij(xij) + (ξij − xij)f−ij (xij) ≤ fij(ξij) = ξijtij + qij(tij).

Hence

fij(xij)− qij(tij) ≤ (xij − ξij)
(
f−ij (xij)− tij

)
+xijtij ≤ |xij − ξij |ε+xijtij ,

where the second inequality follows from ε-CS. This inequality is similarly
obtained when xij ≤ ξij , so we have

fij(xij)− qij(tij) ≤ |xij − ξij |ε+ xijtij , ∀ (i, j) ∈ A.

From the definition of qij , we also have

xijtij ≤ fij(xij)− qij(tij), ∀ (i, j) ∈ A.
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By combining these two inequalities and adding over all arcs, we obtain∑
(i,j)∈A

xijtij ≤
∑

(i,j)∈A

(
fij(xij)−qij(tij)

)
≤ ε

∑
(i,j)∈A

|xij−ξij |+
∑

(i,j)∈A

xijtij .

Since x is feasible, we have

∑
(i,j)∈A

xijtij =
∑
i∈N

pi

 ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji

 =
∑
i∈N

pisi.

Combining the last two relations, we obtain

0 ≤
∑

(i,j)∈A

(
fij(xij)− qij(tij)

)
−
∑
i∈N

pisi ≤ ε
∑

(i,j)∈A

|xij − ξij |.

Using the definitions of f(x) and q(p), this relation is seen to be equivalent
to the desired Eq. (4.45).

(b) We first argue by contradiction that x(ε) remains bounded as ε → ∞.
Indeed, if this is not so, then since x(ε) is feasible for all ε, there exists a
cycle C and a sequence εk converging to 0 such that xij(εk) → ∞ for all
(i, j) ∈ C+ and xij(εk)→ −∞ for all (i, j) ∈ C−. Since all qij are assumed
real-valued, we must have

lim
ξ→∞

f−ij (ξ) =∞, ∀ (i, j) ∈ C+,

lim
ξ→−∞

f+ij (ξ) = −∞, ∀ (i, j) ∈ C+.

This implies that for k sufficiently large,

tij(εk) ≥ f−ij
(
xij(εk)

)
− εk > tij(ε0), ∀ (i, j) ∈ C+, (4.46)

tij(εk) ≤ f+ij
(
xij(εk)

)
− εk < tij(ε0), ∀ (i, j) ∈ C−. (4.47)

On the other hand, since tij(εk) = pi(εk)− pj(εk), we have∑
(i,j)∈C+

tij(εk)−
∑

(i,j)∈C−
tij(εk) = 0, ∀ k,

which contradicts Eqs. (4.46) and (4.47). Therefore x(ε) is bounded as
ε→ 0.

We will now show that ξij(ε)− xij(ε) is bounded for all arcs (i, j) as
ε → 0, where ξ(ε) is any flow vector satisfying CS together with p(ε), i.e.,
for all arcs (i, j), we have

ξij(ε) ∈ Xij , f−ij
(
ξij(ε)

)
≤ tij(ε) ≤ f+ij

(
ξij(ε)

)
.
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If the interval Xij is unbounded above, we have f−ij (ξ) → ∞ as ξ → ∞.
Since xij(ε) is bounded, we have that tij(ε) is bounded from above, which
in turn implies that ξij(ε) is bounded from above. Similarly, we can argue
that ξij(ε) is bounded from below. Therefore, ξij(ε) is bounded for all arcs
(i, j) as ε→ 0, and it follows that |xij(ε)−ξij(ε)| is also bounded for all arcs
(i, j) as ε → 0. This, together with Eq. (4.45), which was shown earlier,
completes the proof. Q.E.D.

Proposition 4.4.6 does not tell us how small ε must be to achieve a
certain tolerance for the sum f

(
x(ε)

)
− q
(
p(ε)

)
. On the other hand, if the

the lengths of the intervals Xij are bounded by some constant L > 0, then
from Eq. (4.45), we obtain

f
(
x(ε)

)
− q
(
p(ε)

)
≤ εAL,

where A is the number of arcs.
For the remainder of this section, we assume that the dual arc cost

functions qij are real-valued , as in Prop. 9.7(b). This is true in partic-
ular if the intervals Xij are compact, or if limxij→∞ f+(xij) = ∞ and
limxij→−∞ f−(xij) = −∞ for all arcs (i, j).

We introduce a generic auction algorithm, whereby x and p are al-
ternately adjusted so as to drive the excesses

gi =
∑

{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij + si

to zero while maintaining ε-CS at all iterations. The only additional re-
quirements are that nodes with nonnegative excess continue to have non-
negative excess and that price changes are effected by increasing the price
of a node with positive excess by the maximum amount possible. We
then consider two special cases of this generic algorithm. The first is the
ε-relaxation method, which generalizes the method of Section 7.4; the sec-
ond is the auction/sequential shortest path algorithm, which generalizes
the method of Section 7.5.

Given a flow-price vector pair (x, p) satisfying ε-CS, an iteration of
the generic auction algorithm updates (x, p) as follows:



52 Auction Algorithms for Network Transport Chap. 4

Iteration of the Generic Auction Algorithm

If there is no node with positive excess, terminate the algorithm.
Otherwise, perform one of the following two operations:

(a) (Flow change) Adjust the flow vector x in a way that ε-CS is
maintained and all nodes with nonnegative excess continue to
have nonnegative excess. (Here p is unchanged.)

(b) (Price rise) Increase the price pi of some node i with positive
excess by the maximum amount that maintains ε-CS. (Here x
and all other coordinates of p are unchanged.)

Upon termination of the generic auction algorithm, the flow-price
vector pair (x, p) satisfies ε-CS and all nodes have excess that is non-positive
(and is equal to 0 since the problem is assumed to feasible). Thus, the
validity of the method rests on whether it terminates finitely. The following
proposition shows that the total number of price rises is finite under a
suitable assumption.

Proposition 4.4.7: Let r be any nonnegative scalar such that the
initial price vector p0 for the generic auction algorithm satisfies rε-
CS together with some feasible flow vector x0. Also, assume that
each price rise on a node increases the price of that node by at least
βε, for some fixed β ∈ (0, 1). Then, the method performs at most
(r + 1)(N − 1)/β price rises on each node.

Proof: Consider the pair (x, p) at the beginning of an iteration of the
generic method. Since the excess vector g = (g1, . . . , gN ) is not zero, and
the flow vector x0 is feasible, we conclude that for each node s with gs > 0
there exists a node t with gt < 0 and a simple path P from t to s such that:

xij > x0ij , ∀ (i, j) ∈ P+, (4.48)

xij < x0ij , ∀ (i, j) ∈ P−, (4.49)

where P+ is the set of forward arcs of P and P− is the set of backward
arcs of P. [This can be seen from the conformal realization theorem (Prop.
1.1) as follows. For the flow vector x− x0, the excess of node t is −gt > 0
and the excess of node s is −gs < 0. Hence, by the conformal realization
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theorem, there is a simple path P from t to s that conforms to the flow
x − x0, that is, xij − x0ij > 0 for all (i, j) ∈ P+ and xij − x0ij < 0 for all
(i, j) ∈ P−.]

From Eqs. (4.48) and (4.49), and the convexity of the functions fij
for all (i, j) ∈ A, we have

f−ij (xij) ≥ f+ij (x0ij), ∀ (i, j) ∈ P+, (4.50)

f+ij (xij) ≤ f−ij (x0ij), ∀ (i, j) ∈ P−. (4.51)

Since the pair (x, p) satisfies ε-CS, we also have that

pi − pj ∈ [f−ij (xij)− ε, f+ij (xij) + ε], ∀ (i, j) ∈ A. (4.52)

Similarly, since the pair (x0, p0) satisfies rε-CS, we have

p0i − p0j ∈ [f−ij (x0ij)− rε, f
+
ij (x0ij) + rε], ∀ (i, j) ∈ A. (4.53)

Combining Eqs. (4.50), (4.52), and (4.53), we obtain for all (i, j) ∈ P+,

pi − pj ≥ f−ij (xij)− ε ≥ f+ij (x0ij)− ε ≥ p0i − p0j − (r + 1)ε.

Similarly, combining Eqs. (4.51)-(4.53), we obtain for all (i, j) ∈ P−,

pi − pj ≤ p0i − p0j + (r + 1)ε.

Applying the above inequalities for all arcs of the path P , we get

pt − ps ≥ p0t − p0s − (r + 1)|P |ε, (4.54)

where |P | denotes the number of arcs of the path P. Since only nodes with
positive excess can change their prices and nodes with nonnegative excess
continue to have nonnegative excess, it follows that if a node has negative
excess at some time, then its price is unchanged from the beginning of the
method until that time. Thus pt = p0t . Since the path is simple, we also
have that |P | ≤ N − 1. Therefore, Eq. (4.54) yields

ps − p0s ≤ (r + 1)|P |ε ≤ (r + 1)(N − 1)ε. (4.55)

Since only nodes with positive excess can increase their prices and, by
assumption, each price rise increment is at least βε, we conclude from Eq.
(4.55) that the total number of price rises that can be performed for node
s is at most (r + 1)(N − 1)/β. Q.E.D.

The preceding proposition shows that the bound on the number of
price rises is independent of the cost functions, but depends only on

r0 = min
{
r ∈ [0,∞) | (x0, p0) satisfies rε-CS

for some feasible flow vector x0
}
,
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Figure 4.4.6: Visualization of the conditions satisfied by a candidate-list arc. The

shaded area represents flow-price differential pairs corresponding to a candidate-
list arc (i, j) ∈ L+(i) in figure (a), and to a candidate-list arc (j, i) ∈ L−(i) in

figure (b). Note that at the right endpoint of Xij the right derivative f+ij is ∞,

so at the right endpoint, L+(i) is empty. Similarly, at the left endpoint, L−(i) is

empty.

which is the minimum multiplicity of ε with which CS is violated by the
initial price vector together with some feasible flow vector. Note that r0 is
well defined for any p0 because, for all r sufficiently large, rε-CS is satisfied
by p0 and any feasible flow vector.

To ensure that the number of flow changes between successive price
rises is finite and that each price rise is at least βε, we need to further
specify how the price rises and flow changes should be effected. We thus
proceed to introduce the key mechanisms for achieving this.

For any ε > 0, any β ∈ (0, 1), and any flow-price vector pair (x, p)
satisfying ε-CS, we define for each node i ∈ N its candidate list as the
union of the following two sets of arcs

L+(i) =
{

(i, j) ∈ A | (1− β)ε < pi − pj − f+ij (xij) ≤ ε
}
, (4.56)

L−(i) =
{

(j, i) ∈ A | −(1− β)ε > pj − pi − f−ji (xji) ≥ −ε
}
. (4.57)

The arcs of the candidate list can be visualized in terms of the char-
acteristic curves

Γij =
{

(xij , tij) ∈ <2 | f−ij (xij) ≤ tij ≤ f+ij (xij)
}
.

Thus, (i, j) is in the candidate list of i (respectively, j) if (xij , pi − pj)
belongs to the “strip” at height between (1−β)ε and ε above (respectively,
below) Γij (see Fig. 4.4.6).
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Figure 4.4.7: Illustration of the flow margin δ of a candidate-list arc (i, j) ∈
L+(i) in figure (a), and to a candidate-list arc (j, i) ∈ L−(i) in figure (b).

For each arc (i, j) [respectively, (j, i)] in the candidate list of i, the
supremum of δ for which

pi − pj ≥ f+ij (xij + δ)

[respectively, pj − pi ≤ f−ji (xji − δ)] is called the flow margin of the arc
(see Fig. 4.4.7). An important fact, shown below, is that the flow margins
of these arcs are always positive.

Proposition 4.4.8: All arcs in the candidate list of a node have
positive flow margins.

Proof: Assume that for an arc (i, j) ∈ A the flow margin is not positive;
that is, we have

pi − pj < f+ij (xij + δ), ∀ δ > 0.

Since the function f+ij is right continuous, this yields

pi − pj ≤ lim
δ↓0

f+ij (xij + δ) = f+ij (xij),

and thus, based on the definition of Eq. (4.56), (i, j) cannot be in the
candidate list of node i. A similar argument shows that an arc (j, i) ∈ A
such that

pj − pi > f−ji (xji − δ), ∀ δ > 0,
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cannot be in the candidate list of node i. Q.E.D.

The method that we will use for flow changes is to decrease the excess
of a node with positive excess by changing the flow of candidate-list arcs.
This can be done either one arc at a time, as in the case of the ε-relaxation
method of Section 4.1, or one path of arcs at a time, as in the case of
the auction/sequential-shortest-path algorithm of Section 4.3. When the
candidate list of the node is empty, we perform a price rise on the node.
An important fact, shown below, is that the price rise increment for a node
with empty candidate list is at least βε.

Proposition 4.4.9: If we perform a price rise on a node whose candi-
date list is empty, then the price of that node will increase by at least
βε.

Proof: If the candidate list of a node i is empty, then for every arc (i, j) ∈
A we have pi − pj − f+ij (xij) ≤ (1 − β)ε, and for every arc (j, i) ∈ A we

have pj − pi − f−ji (xji) ≥ −(1− β)ε. This implies that the numbers

pj − pi + f+ij (xij) + ε, ∀ (i, j) ∈ A,

pj − pi − f−ji (xji) + ε, ∀ (j, i) ∈ A,

are all greater than or equal to βε. Since a price rise on i adds to pi the
minimum of all these numbers, the result follows. Q.E.D.

For any ε > 0, any β ∈ (0, 1), and any flow-price vector pair (x, p)
satisfying ε-CS, let us consider the arc set A∗ that contains all candidate
list arcs oriented in the direction of flow change. In particular, for each
arc (i, j) in the forward portion L+(i) of the candidate list of a node i, we
introduce an arc (i, j) in A∗ and for each arc (j, i) in the backward portion
L−(i) of the candidate list of node i, we introduce an arc (i, j) in A∗ (thus
the direction of the latter arc is reversed). The set of nodes N and the set
A∗ define the admissible graph G∗ = (N ,A∗). We will consider methods
that keep G∗ acyclic at all iterations. Intuitively, because we move flow
in the direction of the arcs in G∗, keeping G∗ acyclic helps to limit the
number of flow changes between price rises, as we have seen in Section 7.4.
To ensure that initially the admissible graph is acyclic, one possibility is to
choose, for any initial price vector p0, the initial flow vector x0 such that
(x0, p0) satisfies 0-CS, that is,

f−ij (x0ij) ≤ p0i − p0j ≤ f
+
ij (x0ij), ∀ (i, j) ∈ A. (4.58)

With this choice, ε-CS is satisfied by (x0, p0) for any ε > 0, and the initial
admissible graph is empty and thus acyclic.
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In the next two sections, we will study two specializations of the
generic auction algorithm. These methods perform flow changes by moving
flow out of nodes with positive excess along candidate-list arcs and they
perform price rises only on nodes with empty candidate lists. In addition,
they keep the admissible graph acyclic at all iterations and have favorable
complexity bounds.

4.4.5 The ε-Relaxation Method

For fixed ε > 0 and β ∈ (0, 1), and a given flow-price vector pair (x, p)
satisfying ε-CS, an iteration of the ε-relaxation method updates (x, p) as
follows:

Iteration of the ε-Relaxation Method

Step 1: Select a node i with positive excess gi; if no such node exists,
terminate the method.

Step 2: (δ-Flow push) If the candidate list of i is empty, go to Step
3. Otherwise, choose an arc from the candidate list of i, and let

δ = min{gi, flow margin of the chosen arc}.

Increase xij by δ if (i, j) is the arc, or decrease xji by δ if (j, i) is the
arc. If as a result the excess of i becomes zero, go to the next iteration;
otherwise, go to Step 2.

Step 3: (Price rise) Increase the price pi by the maximum amount
that maintains ε-CS. Go to the next iteration.

To see that the ε-relaxation method is a specialization of the generic
auction method of Section 2, note that Step 3 is a price rise on node i
and that Step 2 adjusts the flows in such a way that ε-CS is maintained
and nodes with nonnegative excess continue to have nonnegative excess for
all subsequent iterations. The reason for the latter is that when iterating
at a node i, a flow push cannot make the excess of i negative (by the
choice of δ in Step 2), and cannot decrease the excess of neighboring nodes.
Furthermore, the ε-relaxation method performs a price rise only on nodes
with empty candidate list. Then, by Prop. 4.4.9, each price rise increment
is at least βε and, by Prop. 4.4.7, the number of price rises (i.e., Step 3) on
each node is at most (r + 1)(N − 1)/β, where r is any nonnegative scalar
such that the initial price vector satisfies rε-CS together with some feasible
flow vector. Thus, to prove finite termination of the ε-relaxation method,
it suffices to show that the number of flow pushes (i.e., Step 2) performed
between successive price rises is finite. We show this by first showing that
the method maintains the acyclicity of the admissible graph.
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Proposition 4.4.10: If the admissible graph is initially acyclic,
then it remains acyclic at all iterations of the ε-relaxation method.

Proof: We use induction. Initially, the admissible graph G∗ is acyclic by
assumption. Assume that G∗ remains acyclic for all subsequent iterations
up to the mth iteration for some m. We will prove that after the mth
iteration G∗ remains acyclic. Clearly, after a flow push in Step 2, the
admissible graph remains acyclic, since it either remains unchanged, or
some arcs are deleted from it. Thus we only have to prove that after a
price rise on a node i, no cycle involving i is created. We note that, after
a price rise on node i, all incident arcs to i in the admissible graph at
the start of the mth iteration are deleted and new arcs incident to i are
added. We claim that i cannot have any incoming arcs that belong to the
admissible graph. To see this, note that just before a price rise on node i,
we have

pj − pi − f+ji (xji) ≤ ε, ∀ (j, i) ∈ A,

and since each price rise increment is at least βε, we must have

pj − pi − f+ji (xji) ≤ (1− β)ε, ∀ (j, i) ∈ A,

after the price rise. Then, by Eq. (4.56), (j, i) cannot be in the candidate
list of node j. By a similar argument, we have that (i, j) cannot be in the
candidate list of j for all (i, j) ∈ A. Thus, after a price rise on node i,
we see that i cannot have any incoming arcs belonging to the admissible
graph, so no cycle involving i can be created. Q.E.D.

We say that a node i is a predecessor of a node j in the admissible
graph G∗ if a directed path (i.e., a path having no backward arc) from i to
j exists in G∗. Node j is then called a successor of i. Observe that, in the ε-
relaxation method, flow is pushed towards the successors of a node and if G∗
is acyclic, flow cannot be pushed from a node to any of its predecessors. A
δ-flow push along an arc in A is said to be saturating if the flow increment δ
is equal to the flow margin of the arc. By our choice of δ in the ε-relaxation
method, a nonsaturating flow push always exhausts (i.e., sets to zero) the
excess of the starting node of the arc. Then, by using Prop. 9.11, we obtain
the following result.
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Proposition 4.4.11: If the admissible graph is initially acyclic,
then the number of flow pushes between two successive price rises
(not necessarily at the same node) performed by the ε-relaxation
method is finite. Furthermore, the algorithm terminates with a flow-
price pair satisfying ε-CS.

Proof: We observe that a saturating flow push along an arc removes the
arc from the admissible graph, while a nonsaturating flow push does not
add a new arc to the admissible graph. Thus the number of saturating
flow pushes that can be performed between successive price rises is at most
A. It will thus suffice to show that the number of nonsaturating flow
pushes that can be performed between saturating flow pushes is finite.
Assume the contrary, that is, there is an infinite sequence of successive
nonsaturating flow pushes, with no intervening saturating flow push. Then
the admissible graph remains fixed throughout this sequence. Furthermore,
the excess of some node i0 must be exhausted infinitely often during this
sequence. This can happen only if the excess of some predecessor i1 of i0 is
exhausted infinitely often during the sequence. Continuing in this manner,
we construct an infinite sequence of predecessor nodes {ik}. Thus, some
node in this sequence must be repeated, which is a contradiction since the
admissible graph is acyclic. Hence, the number of flow pushes between two
successive price rises is finite. Since the number of price rises is finite (cf.
Props. 4.4.7 and 4.4.9), termination of the algorithm follows. Q.E.D.

By refining the proof of Prop. 9.12, we can further show that the
number of flow pushes between successive price rises is at most (N + 1)A,
from which a complexity bound for the ε-relaxation method may be readily
derived. However, we will focus on a special implementation of the method
for which we will derive a more favorable running time.

Efficient Implementation

Let us consider a generalization of the sweep implementation, discussed in
Section 7.4. This implementation defines the order in which nodes are se-
lected for an ε-relaxation iteration. In particular, the nodes are maintained
in a linked list T , which is traversed from the first to the last element. The
order of the nodes in the list is consistent with the successor order implied
by the admissible graph; that is, if a node j is a successor of a node i, then
j must appear after i in the list. If the initial admissible graph is empty, as
is the case with the initialization of Eq. (4.58), the initial list is arbitrary.
Otherwise, the initial list must be consistent with the successor order of
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the initial admissible graph. The list is updated in a way that maintains
the consistency with the successor order. In particular, let i be the node
chosen in Step 1 of the iteration, and let Ni be the subset of nodes of T
that are after i in T. If the price of i changes in this iteration, then node i
is removed from its position in T and placed in the first position of T . The
node chosen in the next iteration, if Ni is nonempty, is the node i′ ∈ Ni
with positive excess which ranks highest in T . Otherwise, the positive ex-
cess node ranking highest in T is chosen. It can be seen as in Section 7.4
that, with this rule of repositioning the nodes following a price change, the
list order is consistent with the successor order implied by the admissible
graph at all iterations.

The next proposition gives a bound on the number of flow pushes
made by the sweep implementation of the ε-relaxation method. This result
is based on the observations that (a) between successive saturating flow
pushes on an arc, there is at least one price rise performed on one of the
end nodes of the arc, and (b) between successive price rises (not necessarily
at the same node), the number of nonsaturating flow pushes is at most N .
The proof parallels the one given in Section 7.4, and will be omitted.

Proposition 4.4.12: Let r be any nonnegative scalar such that the
initial price vector for the sweep implementation of the ε-relaxation
method satisfies rε-CS together with some feasible flow vector. Then,
the number of price rises on each node, the number of saturating flow
pushes, and the number of nonsaturating flow pushes up to termina-
tion of the method are O(rN), O(rNA), and O(rN3), respectively.

We now derive the running time for the sweep implementation of the
ε-relaxation method. The dominant computational requirements are:

(1) The computation required for price rises.

(2) The computation required for saturating flow pushes.

(3) The computation required for nonsaturating flow pushes.

In contrast to the linear cost case, we cannot express the running time
in terms of the size of the problem data since the latter is not well defined
for convex cost functions. Instead, we introduce a set of simple operations
performed by the ε-relaxation method, and we estimate the number of these
operations. In particular, in addition to the usual arithmetic operations
with real numbers, we consider the following operations:

(a) Given the flow xij of an arc (i, j), calculate the cost fij(xij), the left
derivative f−ij (xij), and the right derivative f+ij (xij).

(b) Given the price differential tij = pi − pj of an arc (i, j), calculate
sup{ξ | f+ij (ξ) ≤ tij} and inf{ξ | f−ij (ξ) ≥ tij}.
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Operation (a) is needed to compute the candidate list of a node and a price
increase increment; operation (b) is needed to compute the flow margin of
an arc and the flow initialization of Eq. (4.58). Complexity will thus be
measured in terms of the total number of operations performed by the
method, as in the following proposition, which follows from Prop. 9.13.

Proposition 4.4.13: Let r be any nonnegative scalar such that the
initial price vector for the sweep implementation of the ε-relaxation
method satisfies rε-CS together with some feasible flow vector. Then,
the method requires O(rN3) operations up to termination.

The theoretical and the practical performance of the ε-relaxation
method can be further improved by ε-scaling , whereby we apply the ε-
relaxation method several times, starting with a large value of ε, say ε0,
and successively reduce ε up to a final value, say ε, that will give the de-
sirable degree of accuracy to our solution. Furthermore, the price and flow
information from one application of the method is passed to the next. Sim-
ilar to Section 7.4, it can be shown that if ε0 is chosen sufficiently large so
that the initial price vector satisfies ε0-CS together with some feasible flow
vector, then the running time of the ε-relaxation method using the sweep
implementation and ε-scaling is O

(
N3 ln(ε0/ε)

)
operations.

On the other hand, contrary to what complexity analysis suggests,
it is not clear whether the candidate list organization of the sweep imple-
mentation improves the practical performance, in view of the additional
overhead it requires.

4.4.6 Auction/Sequential Shortest Path Algorithm

We now consider the extension of the auction/sequential shortest path
(ASSP) algorithm of Section 7.5. The algorithm is a special case of the
generic auction method, and differs from the ε-relaxation method in that
instead of pushing flow along a candidate-list arc to any node, it pushes
flow along a path of candidate-list arcs ending at a node with negative
excess. In fact, whereas a flow push in the ε-relaxation method may in-
crease the excess of a node in absolute value (e.g., when flow is pushed to
a neighboring node with nonnegative excess), in the ASSP algorithm, the
excess of each node is nonincreasing in absolute value.

We first introduce some definitions. For a path P , we denote by
s(P ) and t(P ) the starting node and the terminal node, respectively, of
P. For any ε > 0 and β ∈ (0, 1), and any flow-price vector pair (x, p)
satisfying ε-CS, we say that a path P of a graph (N ,A) is augmenting if
each forward (respectively, backward) arc (i, j) of P is in the candidate
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list of i (respectively, j) and s(P ) is a source (i.e., has positive excess) and
t(P ) is a sink (i.e., has negative excess). As in Section 7.5, we define two
operations on a given path P = (n1, n2, . . . , nk):

(a) A contraction of P , which deletes the terminal node of P and the arc
incident to this node.

(b) An extension of P by an arc (nk, nk+1) or an arc (nk+1, nk), which
replaces P by the path (n1, n2, . . . , nk, nk+1) and adds to P the cor-
responding arc.

For a fixed ε > 0 and β ∈ (0, 1), and a given flow-price vector pair
(x, p) satisfying ε-CS, an iteration of the ASSP algorithm updates (x, p) as
follows:

Iteration of the ASSP Algorithm

Step 1: Select a node i with positive excess and let the path P con-
sist of only this node; if no such node exists, terminate the algorithm.

Step 2: Let i be the terminal node of the path P. If the candidate
list of i is empty, then go to Step 3; otherwise, go to Step 4.

Step 3: (Contract Path) Increase the price pi by the maximum
amount that maintains ε-CS. If i 6= s(P ), contract P. Go to Step 2.

Step 4: (Extend Path) Select an arc (i, j) [or (j, i)] from the
candidate list of i and extend P by this arc. If the excess of j is
negative, go to Step 5; otherwise, go to Step 2.

Step 5: (Augmentation) Perform an augmentation along the path
P by the amount

δ = min
{
gs(P ),−gt(P ),minimum of flow margins of the arcs of P

}
,

(i.e., increase the flow of all forward arcs of P and decrease the flow
of all backward arcs of P by δ). Go to the next iteration.

Roughly speaking, at each iteration of the ASSP algorithm, the path
P starts as a single source and is successively extended or contracted until
the terminal node of P is a sink. Then an augmentation along P is per-
formed so as to decrease (respectively, increase) the excess of the starting
node (respectively, terminal node), while leaving the excess of the remain-
ing nodes unchanged. In case of a contraction, the price of the terminal
node of P is strictly increased.

We note that the ASSP algorithm is a special case of the generic
auction algorithm. To see this, note that Step 2 is a price rise on node i
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and that Step 5 adjusts the flows in such a way that ε-CS is maintained
and nodes with nonnegative excess continue to have nonnegative excess for
all subsequent iterations. The reason for the latter is that an augmentation
along P changes the excess of only two nodes s(P ) and t(P ), and by our
choice of δ, the excess of the node s(P ) remains nonnegative after the
augmentation.

We also note that the ASSP algorithm performs price rises only on
nodes with empty candidate list. Thus, by Prop. 4.4.9, each price rise
increment is at least βε and, by Prop. 4.4.7, the number of price rises
(i.e., path contractions) on each node is at most (r + 1)(N − 1)/β, where
r is any nonnegative scalar such that the initial price vector satisfies rε-
CS together with some feasible flow vector. It follows that to prove finite
termination of the ASSP algorithm, it suffices to show that the number
of path extensions (cf. Step 4) and the number of augmentations (cf. Step
5) performed between successive path contractions is finite. Similar to the
case of the ε-relaxation method, we show this by first showing that the
algorithm keeps the admissible graph acyclic and that the path P , when
its backward arcs are reversed in direction, belongs to the admissible graph.

Proposition 4.4.14: If initially the admissible graph is acyclic,
then the admissible graph remains acyclic at all iterations of the
ASSP algorithm. Moreover, the path P maintained by the algo-
rithm, when its backward arcs are reversed in direction, belongs to
the admissible graph at all times.

Proof: The admissible graph can change either by a price rise (Step 3)
or by an augmentation (Step 5). An augmentation keeps the admissible
graph acyclic because, after an augmentation, the admissible graph either
remains unchanged or some arcs are deleted from it. A price rise keeps the
admissible graph acyclic, as was shown in the proof of Prop. 9.11.

To show that P , when its backward arcs are reversed in direction,
belongs to the admissible graph at all times, we simply observe that a
path extension maintains this property (since the arc added to P is in
the candidate list of the terminal node of P ) and that a path contraction
also maintains this property (since a price rise on the terminal node of P
changes the admissible graph only by adding/deleting arcs incident to this
node and, after the contraction, this node and its incident arc in P are
both deleted from P ). Q.E.D.

We now use Prop. 4.4.14 to bound the number of augmentations and
path extensions performed by the ASSP algorithm between successive path
contractions. This shows that the algorithm terminates with a flow-price
pair satisfying ε-CS.
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Proposition 4.4.15: If initially the admissible graph is acyclic,
then the number of augmentations and path extensions between two
successive path contractions (not necessarily at the same node) per-
formed by the ASSP algorithm is finite. Furthermore, the algorithm
terminates with a flow-price pair satisfying ε-CS.

Proof: We observe that an augmentation does not increase the number
of nodes with nonzero excess and does not add any arc to the admissible
graph. Moreover, after an augmentation, either an arc is removed from the
admissible graph or a node has its excess set to zero. Thus, the number of
arcs in the admissible graph plus the number of nodes with nonzero excess
is decreased by at least one after each augmentation. It follows that the
number of augmentations between successive path contractions is at most
A+N .

By Prop. 4.4.14, the path P always belongs to the admissible graph
which is acyclic, so P cannot have repeated nodes and hence the number
of successive extensions of P (before a contraction or an augmentation is
performed) is at most N . Thus, the number of path extensions between
successive path contractions is at most N · (number of augmentations be-
tween successive path contractions) ≤ N(A + N). Since the number of
contractions is finite (cf. Props. 4.4.7 and 4.4.9), termination of the algo-
rithm follows. Q.E.D.

4.5 THEORETICAL ASPECTS

In this section, we provide a more detailed analysis of the algorithms of this
chapter, including some of theoretical results that are needed for this anal-
ysis;see also the book [Ber98], and the paper by Bertsekas, Polymanakos,
and Tseng [BPT97].

Proof of Prop. 4.1.1

We prove Prop. 4.1.1, stated below:

Proposition: If ε < 1/N , where N is the number of nodes, x is fea-
sible, and x and p satisfy ε-CS, then x is optimal for the transhipment
problem (4.1).
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Proof: If x is not optimal, then by Prop. 1.2 in Section 1.2, there exists a
simple cycle Y that has negative cost, i.e.,∑

(i,j)∈Y +

aij −
∑

(i,j)∈Y−
aij < 0, (4.59)

and is unblocked with respect to x, i.e.,

xij < cij , ∀ (i, j) ∈ Y +,

bij < xij , ∀ (i, j) ∈ Y −.

By ε-CS [cf. Eqs. (4.3) and (4.4)], the preceding relations imply that

pi ≤ pj + aij + ε, ∀ (i, j) ∈ Y +,

pj ≤ pi − aij + ε, ∀ (i, j) ∈ Y −.

By adding these relations over all arcs of Y (whose number is no more than
N), and by using the hypothesis ε < 1/N , we obtain∑

(i,j)∈Y +

aij −
∑

(i,j)∈Y−
aij ≥ −Nε > −1.

Since the arc costs aij are integer, we obtain a contradiction of Eq. (4.59).
Q.E.D.

Proof of Prop. 4.1.2

We prove Prop. 4.1.2, stated below:

Proposition: Assume that the transhipment problem is feasible and
that aij , bij , cij , and si are integer, and that si ≥ 0 for all i. Then
the ε-relaxation method terminates with a pair (x, p) satisfying ε-CS.
The flow vector x is feasible, and is optimal if ε < 1/N .

Proof: We first make a few observations.

(a) The algorithm preserves ε-CS; this can be verified from the price
change formula (4.5).

(b) The prices of all nodes are monotonically nondecreasing during the
algorithm [this follows from the ε-CS property of (x, p) and Eq. (4.5)].
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(c) Once a node has nonnegative excess, its excess stays nonnegative
thereafter, since a flow change in Step 2 or 3 at a node i cannot drive
the excess of i below zero (since δ ≤ gi), and cannot decrease the
excess of neighboring nodes.

(d) If at some time a node has negative excess, its price must have never
been increased up to that time, and must be equal to its initial price.
This is a consequence of (c) above and of the assumption that only
nodes with nonnegative excess can be chosen for iteration.

Suppose, to arrive at a contradiction, that the method does not ter-
minate. Then, since there is at least one flow change per iteration, an
infinite number of flow changes must be performed at some node i on some
arc (i, j). Since for each flow change, the increment δ is integer, an infinite
number of flow changes must also be performed at node j on the arc (i, j).
This means that arc (i, j) becomes alternately ε+-unblocked with gi > 0
and ε−-unblocked with gj > 0 an infinite number of times, which implies
that pi and pj must increase by amounts of at least 2ε an infinite number
of times. Thus we have pi →∞ and pj →∞, while either gi > 0 or gj > 0
at the start of an infinite number of flow changes.

Let N∞ be the set of nodes whose prices increase to ∞. To preserve
ε-CS, we must have, after a sufficient number of iterations,

xij = cij for all (i, j) ∈ A with i ∈ N∞, j /∈ N∞,

xji = bji for all (j, i) ∈ A with i ∈ N∞, j /∈ N∞.

After some iteration, by (d) above, every node in N∞ must have nonnega-
tive excess, so the sum of excesses of the nodes in N∞ must be positive at
the start of the flow changes where either gi > 0 or gj > 0. It follows that

0 <
∑
i∈N∞

si −
∑

{(i,j)∈A|i∈N∞, j /∈N∞}

cij +
∑

{(j,i)∈A|i∈N∞, j /∈N∞}

bji.

For any feasible vector, the above relation implies that the sum of the ex-
cesss of nodes in N∞ exceeds the capacity of the cut [N∞,N−N∞], which
is impossible. It follows that there is no feasible flow vector, contradicting
the hypothesis. Thus the algorithm must terminate. Since upon termina-
tion we have gi ≤ 0 for all i and the problem is assumed feasible, it follows
that gi = 0 for all i. Hence the final flow vector x is feasible and by (a)
above it satisfies ε-CS together with the final p. By Prop. 7.10, if ε < 1/N ,
x is optimal. Q.E.D.

Computational Complexity Analysis of ε-Relaxation – ε-Scaling

We now discuss the running time of the ε-relaxation method. We first
introduce some technical changes to the algorithm.
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Let pk denote the initial price vector for the (k + 1)st scaling phase.
We have p0 = 0, and we assume that for k ≥ 1, pk is the price vector
obtained at the end of the kth scaling phase. As in Chapter 2, at the
beginning of the (k + 1)st scaling phase, we make a correction of size at
most εk to each aij so that it is divisible by εk [no correction is made in the
last phase since the aij are integer and the final value of ε is 1/(N + 1)].
Thus the arc cost coefficients in the (k + 1)st scaling phase, denoted akij ,
are all divisible by εk, and satisfy

|akij − aij | ≤ εk, ∀ (i, j) ∈ A.

The correction of the arc cost coefficients guarantees that all price rise
increments and prices are integer multiples of the prevailing value of ε.
The initial flow of each arc (i, j) for the (k + 1)st scaling phase is

xij =

{
bij if pki − pkj ≤ akij ,
cij if pki − pkj > akij .

With this choice, the initial admissible graph is empty and is therefore
acyclic.

We first focus on the case where ε is fixed, and we subsequently con-
sider the ε-scaling case where ε is progressively reduced. We continue to
assume that the problem data and the starting flows are integer. As in
Section 2.4 (??), for the case where ε is fixed, we assume that the cost coef-
ficients aij, and all the initial node prices are integer multiples of ε. Under
this assumption, it is seen from the price change operation (4.5) in Step 4
that all node prices will be integer multiples of ε throughout the algorithm,
implying that each price rise is of size at least ε.

For purposes of easy reference, let us call the operation of Step 4 a
price rise at node i, and let us call the operation of Step 2 (or Step 3) a
flow push on arc (i, j) [a flow push on arc (j, i), respectively]. A flow push
on arc (i, j) [or arc (j, i)] is said to be saturating if it results in setting
the flow xij to its upper bound cij (the flow xji to its lower bound bij ,
respectively); otherwise, the flow push is said to be nonsaturating. The
complexity analysis revolves around bounding the number of price rises,
and saturating and nonsaturating flow pushes. We first bound the number
of price rises. The proof is given in Section 4.5.

Proposition 4.5.1: Assume that for some scalar r ≥ 1, the initial
price vector p0 for the ε-relaxation method satisfies rε-CS together
with some feasible flow vector x0. Then, the ε-relaxation method
performs at most (r + 1)(N − 1) price rises per node.
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Proof: Consider the pair (x, p) at the beginning of an ε-relaxation iter-
ation. Since the excess vector g = (g1, . . . , gN ) is not zero, and the flow
vector x0 is feasible, we conclude that for each node s with gs > 0 there
exists a node t with gt < 0 and a path H from t to s that contains no cycles
and is such that:

bij ≤ x0ij < xij ≤ cij , ∀ (i, j) ∈ H+, (4.60)

bij ≤ xij < x0ij ≤ cij , ∀ (i, j) ∈ H−, (4.61)

where H+ is the set of forward arcs of H and H− is the set of backward
arcs of H. [This can be seen from the conformal realization theorem (Prop.
1.1) as follows. For the flow vector x − x0, the net outflow from node t is
−gt > 0 and the net outflow from node s is −gs < 0 (here we ignore the
flow supplies), so by the conformal realization theorem, there is a path H
from t to s that contains no cycle and conforms to the flow x − x0, that
is, xij − x0ij > 0 for all (i, j) ∈ H+ and xij − x0ij < 0 for all (i, j) ∈ H−.
Equations (4.60) and (4.61) then follow.]

Since the pair (x, p) satisfies ε-CS, we have using Eqs. (4.60) and
(4.61),

pi − pj ≤ aij + ε, ∀ (i, j) ∈ H+, (4.62)

pi − pj ≥ aij − ε, ∀ (i, j) ∈ H−. (4.63)

Similarly, since the pair (x0, p0) satisfies rε-CS, we have

p0i − p0j ≥ aij + rε, ∀ (i, j) ∈ H+, (4.64)

p0i − p0j ≤ aij − rε, ∀ (i, j) ∈ H−. (4.65)

Combining Eqs. (4.62)-(4.65), we obtain

pi − pj ≥ p0i − p0j − (r + 1)ε, ∀ (i, j) ∈ H+,

pi − pj ≤ p0i − p0j + (r + 1)ε, ∀ (i, j) ∈ H−.

Applying the above inequalities for all arcs of the path H, we get

pt − ps ≥ p0t − p0s − (r + 1)|H|ε, (4.66)

where |H| denotes the number of arcs of the path H. We observed earlier
that if a node has negative excess at some time, then its price is unchanged
from the beginning of the method until that time. Thus pt = p0t . Since
the path contains no cycles, we also have that |H| ≤ N − 1. Therefore, Eq.
(4.66) yields

ps − p0s ≤ (r + 1)|H|ε ≤ (r + 1)(N − 1)ε. (4.67)
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Figure 4.5.1: (a) An assignment example in which the number of price rises

required by the ε-relaxation method is proportional to N2. Note that the only
feasible solution has each sk assigned to the corresponding tk. (b) The assign-

ment example after n price rises, starting with zero prices. Prices are shown

next to the corresponding node. Only arcs with positive flow are depicted.
(c) The intermediate result after (n− 1)2 + 1 price rises.

Since only nodes with positive excess can increase their prices and each
price rise increment is at least ε, we conclude from Eq. (4.67) that the
total number of price rises that can be performed for node s is at most
(r + 1)(N − 1). Q.E.D.

The upper bound on the number of price rises given in Prop. 4.5.1
turns out to be tight, in the sense that examples can be found where rN
price rises occur at a number of nodes that is proportional to N . Under
these circumstances, the total number of price rises performed by the ε-
relaxation method is no better than O(rN2). The following example, from
Bertsekas and Tsitsiklis [1989], illustrates that the bound O(rN2) cannot
be improved.

Example 4.5.1:

Consider an assignment problem with 2n nodes, nodes s1, ..., sn being sinks
(persons) and t1, ..., tn being sources (objects). The arcs are (sk, tk) for k =
1, ..., n, and (sk, tk+1) for k = 1, ..., n−1. All arcs have unit capacity and zero
cost. The problem may also be viewed as a max-flow problem by adjoining
a “super source” node s and arcs (s, sk), along with a “super sink” node
t and arcs (tk, t). Suppose that the ε-relaxation method is applied to the
assignment version of this example, with ε = 1, zero initial prices, and the
rule that whenever it is possible to push flow away from a node on more than
one arc, the one that is uppermost in Fig. 4.5.1(a) is selected. The nodes are
chosen for iteration in the order 1, 2, ..., n.
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We claim that the ε-relaxation algorithm as applied to the example of
Fig. 4.5.1(a) requires n2 price rises. The final price of node sk is 2k − 1, and
that of tk is 2k − 2. We prove this by induction. When n = 1, a single price
rise at s1 and the ensuing flow adjustment yield a solution in which s1 has
price 1, t1 has price 0, and s1 is assigned to t1. This establishes the base case
of the induction. Now assume the claim is true for the problem of size n− 1;
we establish it for the problem of size n. After n price rises, the configuration
of Fig. 4.5.1(b) will be attained. This leaves nodes s2, ..., sn and t2, ..., tn in
precisely the same state as after n− 1 price rises in a problem of size n− 1.
By induction, after another

(n− 1)2 − (n− 1) = n2 − 3n+ 2

price rises, the algorithm reaches the configuration of Fig. 4.5.1(c). Following
the rules of ε-relaxation, the reader can confirm that the sequence of nodes
now iterated on is t2, s2, t3, s3, . . . , tn, sn, and the promised prices are obtained
after 2(n − 1) further price rises. Following this, the nodes are processed in
the opposite order, and a primal feasible solution is obtained in 2n additional
iterations (but no further price rises). The total number of price rises is

n+ (n2 − 3n+ 2) + 2(n− 1) = n2.

This establishes the induction.
The total number of nodes here is N = 2n. Hence the number of

price rises is (N/2)2 = N2/4, and increases with N at the same rate as its
theoretical bound.

We now introduce the notion of the admissible graph, which will play
an important role in the subsequent complexity analysis. For a given pair
(x, p) satisfying ε-CS, consider an arc set A∗ that contains all candidate
list arcs oriented in the direction of flow change. In particular, for each arc
(i, j) in the forward portion of the candidate list of a node i, we introduce
an arc (i, j) in A∗, and for each arc (j, i) in the backward portion of the
candidate list of node i, we introduce an arc (i, j) in A∗ (thus the direction
of the latter arc is reversed). The set of nodes N and the set A∗ define the
admissible graph G∗ = (N ,A∗). Note that an arc can be in the candidate
list of at most one node, so the admissible graph is well-defined.

For good performance of the ε-relaxation method, it may be impor-
tant to start with a flow-price vector pair (x, p) satisfying ε-CS, and such
that the corresponding admissible graph G∗ is acyclic. One possibility is to
select an initial price vector p and to set the initial arc flow xij for every
arc (i, j) ∈ A so that the flow-price pair (x, p) satisfies 0-CS; for example

xij =

{
bij if pi − pj ≤ aij ,
cij if pi − pj > aij ,

∀ (i, j) ∈ A. (4.68)

It can be seen that with this choice, ε-CS is satisfied for every arc (i, j) ∈ A,
and that the initial admissible graph is empty and thus acyclic. Figure 4.5.2
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Figure 4.5.2: Example showing the importance of starting with an admissible

graph that is acyclic. Initially, we choose x = 0 and p = 0, which do satisfy ε-CS.
The initial admissible graph consists of arcs (2, 3) and (3, 2). The algorithm will

start with a price rise of node 1 to p1 = 2ε, followed by a flow push of 1 unit from

node 1 to node 2. Following this, node 2 will push 1 unit of flow to node 3, node
3 will push 1 unit of flow to node 2, and this will be repeated R times, until the

arcs (2, 3) and (3, 2) become saturated. Thus the running time is proportional to

the capacity R.

provides an example illustrating the importance of starting with an acyclic
admissible graph.

On the other hand, it turns out that if we choose the initial flow-price
pair so that the admissible graph is initially acyclic, the algorithm cannot
create cycles in this graph, and the type of poor performance illustrated in
Fig. 4.5.2 cannot occur. This is shown in the following proposition.

Proposition 4.5.2: If the admissible graph is initially acyclic, it
remains acyclic throughout the ε-relaxation method.

Proof: We use induction. Assume that the admissible graph G∗ is acyclic
up to the start of the mth iteration, for some m ≥ 1. We will prove that
following the mth iteration G∗ remains acyclic. Clearly, after a flow push
the admissible graph remains acyclic, since it either remains unchanged, or
some arcs are deleted from it. Thus we only have to prove that after a price
rise at a node i, no cycle involving i is created. We note that, after a price
rise at node i, all incident arcs to i in the admissible graph at the start of
the mth iteration are deleted and new arcs incident to i are added. We
claim that i cannot have any incoming arcs which belong to the admissible
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graph. To see this, note that, just before a price rise at node i, we have

pj − pi ≤ aji + ε, ∀ (j, i) ∈ A,

and since each price rise is at least ε, we must have

pj − pi − aji ≤ 0, ∀ (j, i) ∈ A,

after the price rise. Then, (j, i) cannot be in the candidate list of node j.
By a similar argument, we have that (i, j) cannot be in the candidate list
of j for all (i, j) ∈ A. Thus, after a price rise at i, node i cannot have
any incoming incident arcs belonging to the admissible graph, so no cycle
involving i can be created. Q.E.D.

In order to obtain a sharper complexity result, we introduce a special
implementation of the ε-relaxation method, called the sweep implementa-
tion, whereby nodes are chosen for iteration in a way that enhances com-
putational efficiency (for an illustration, see Fig. 4.5.3). We assume here
that the initial admissible graph is acyclic. We introduce an order in which
the nodes are chosen in iterations. All the nodes are kept in a list T , which
is traversed from the first to the last element. The order of the nodes in the
list is consistent with the successor order implied by the admissible graph,
that is, if a node j is a successor of a node i, then j must appear after i
in the list. If the initial admissible graph is empty, as is the case with the
initialization of Eq. (4.68), the initial list is arbitrary. Otherwise, the ini-
tial list must be consistent with the successor order of the initial admissible
graph. The list is updated in a way that maintains the consistency with
the successor order. In particular, let i be a node on which we perform an
ε-relaxation iteration, and let Ni be the subset of nodes of T that are after
i in T. If the price of i changes, then node i is removed from its position in
T and placed in the first position of T . The next node chosen for iteration,
if Ni is nonempty, is the node i′ ∈ Ni with positive excess which ranks
highest in T . Otherwise, the positive excess node ranking highest in T is
picked. It can be seen that with this rule of repositioning nodes following
a price rise, the list order is consistent with the successor order implied by
the admissible graph throughout the method.

A sweep cycle is a set of iterations whereby all nodes are chosen once
from the list T and an ε-relaxation iteration is performed on those nodes
that have positive excess. The idea of the sweep implementation is that
an ε-relaxation iteration at a node i that has predecessors with positive
excess may be wasteful, since the excess of i will be set to zero and become
positive again through a flow push at a predecessor node.

We have the following proposition that estimates the number of sweep
cycles required for termination.
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Figure 4.5.3: Illustration of the admissible graph consisting of the ε+ - unblocked

arcs and the ε− - unblocked arcs with their directions reversed. These arcs spec-
ify the direction along which flow can be changed according to the rules of the

algorithm. A “+” (or “-” or “0”) indicates a node with positive (or negative or

zero) excess. The algorithm is operated so that the admissible graph is acyclic at
all times. The sweep implementation requires that the high ranking nodes (e.g.,

nodes 1 and 2 in the graph) are chosen for iteration before the low ranking nodes

(e.g., node 3 in the graph).

Proposition 4.5.3: Assume that for some scalar r ≥ 1, the initial
price vector for the sweep implementation of the ε-relaxation method
satisfies rε-CS together with some feasible flow vector. Then, the
number of sweep cycles up to termination is O(rN2).

Proof: Consider the start of any sweep cycle. Let N+ be the set of nodes
with positive excess that have no predecessor with positive excess; let N 0

be the set of nodes with nonpositive excess that have no predecessor with
positive excess. Then, as long as no price rise takes place during the cycle,
all nodes in N 0 remain in N 0, and an iteration on a node i ∈ N+ moves
i from N+ to N 0. So if no node changed price during the cycle, then all
nodes in N+ will be moved to N 0 and the method terminates. Therefore,
there is a price rise in every cycle except possibly the last one. Since by
Prop. 4.5.1 there are O(rN2) price rises, the result follows. Q.E.D.

We now bound the running time for the sweep implementation of the
ε-relaxation method.
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Proposition 4.5.4: Consider the ε-relaxation method with the sweep
implementation, and assume that for some scalar r ≥ 1 the initial
price vector p0 satisfies rε-CS together with some feasible flow vector
x0. Then, the method requires O(rN3) operations up to termination.

Proof: The dominant computational requirements are:

(1) The computation required for price rises.

(2) The computation required for saturating flow pushes.

(3) The computation required for nonsaturating flow pushes.

According to Prop. 4.5.1, there are O(rN) price rises per node, so the
requirements for (1) above are O(rNA) operations. Furthermore, when-
ever a flow push at an arc is saturating, it takes at least one price rise
at one of the end nodes of the arc before the arc’s flow can be changed
again. Thus the total requirement for (2) above is O(rNA) operations
also. Finally, for (3) above we note that for each sweep cycle there can
be only one nonsaturating flow push per node. Thus an estimate for (3)
is O(N · total number of sweep cycles) which, by Prop. 4.5.1, is O(rN3)
operations. Adding the computational requirements for (1), (2), and (3),
and using the fact A ≤ N2, the result follows. Q.E.D.


