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Preface

The knowledge at which geometry aims is the knowledge of the eternal

(Plato, Republic, VII, 52)

This book focuses on the theory of convex sets and functions, and its con-
nections with a number of topics that span a broad range from continuous
to discrete optimization. These topics include Lagrange multiplier theory,
Lagrangian and conjugate/Fenchel duality, minimax theory, and nondiffer-
entiable optimization.

The book evolved from a set of lecture notes for a graduate course at
M.LT. It is widely recognized that, aside from being an eminently useful
subject in engineering, operations research, and economics, convexity is an
excellent vehicle for assimilating some of the basic concepts of real anal-
ysis within an intuitive geometrical setting. Unfortunately, the subject’s
coverage in academic curricula is scant and incidental. We believe that at
least part of the reason is the shortage of textbooks that are suitable for
classroom instruction, particularly for nonmathematics majors. We have
therefore tried to make convex analysis accessible to a broader audience
by emphasizing its geometrical character, while maintaining mathematical
rigor. We have included as many insightful illustrations as possible, and we
have used geometric visualization as a principal tool for maintaining the
students’ interest in mathematical proofs.

Our treatment of convexity theory is quite comprehensive, with all
major aspects of the subject receiving substantial treatment. The math-
ematical prerequisites are a course in linear algebra and a course in real
analysis in finite dimensional spaces (which is the exclusive setting of the
book). A summary of this material, without proofs, is provided in Section
1.1.

The coverage of the theory has been significantly extended in the ex-
ercises, which represent a major component of the book. Detailed solutions

ix
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of all the exercises (nearly 200 pages) are internet-posted in the book’s www
page
http://www.athenasc.com/convexity.html

Some of the exercises may be attempted by the reader without looking at
the solutions, while others are challenging but may be solved by the ad-
vanced reader with the assistance of hints. Still other exercises represent
substantial theoretical results, and in some cases include new and unpub-
lished research. Readers and instructors should decide for themselves how
to make best use of the internet-posted solutions.

An important part of our approach has been to maintain a close link
between the theoretical treatment of convexity and its application to op-
timization. For example, in Chapter 2, after the development of some of
the basic facts about convexity, we discuss some of their applications to
optimization and saddle point theory; in Chapter 3, after the discussion
of polyhedral convexity, we discuss its application in linear and integer
programming; and in Chapter 4, after the discussion of subgradients, we
discuss their use in optimality conditions. We follow this style in the re-
maining chapters, although having developed in Chapters 1-4 most of the
needed convexity theory, the discussion in the subsequent chapters is more
heavily weighted towards optimization.

The chart of the opposite page illustrates the main topics covered
in the book, and their interrelations. At the top level, we have the most
basic concepts of convexity theory, which are covered in Chapter 1. At the
middle level, we have fundamental topics of optimization, such as existence
and characterization of solutions, and minimax theory, together with some
supporting convexity concepts such as hyperplane separation, polyhedral
sets, and subdifferentiability (Chapters 2-4). At the lowest level, we have
the core issues of convex optimization: Lagrange multipliers, Lagrange and
Fenchel duality, and numerical dual optimization (Chapters 5-8).

An instructor who wishes to teach a course from the book has a choice
between several different plans. One possibility is to cover in detail just
the first four chapters, perhaps augmented with some selected sections from
the remainder of the book, such as the first section of Chapter 7, which
deals with conjugate convex functions. The idea here is to concentrate on
convex analysis and illustrate its application to minimax theory through
the minimax theorems of Chapters 2 and 3, and to constrained optimiza-
tion theory through the Nonlinear Farkas’ Lemma of Chapter 3 and the
optimality conditions of Chapter 4. An alternative plan is to cover Chap-
ters 1-4 in less detail in order to allow some time for Lagrange multiplier
theory and computational methods. Other plans may also be devised, pos-
sibly including some applications or some additional theoretical topics of
the instructor’s choice.

While the subject of the book is classical, the treatment of several of
its important topics is new and in some cases relies on new research. In
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particular, our new lines of analysis include:

(a) A unified development of minimax theory and constrained optimiza-

tion duality as special cases of the duality between two simple ge-
ometrical problems: the min common point problem and the max
crossing point problem. Here, by minimax theory, we mean the anal-
ysis relating to the minimax equality

inf sup ¢(x, z) = sup inf ¢(z, 2),
z€X 2€Z z€Z z€X

and the attainment of the “inf” and the “sup.” By constrained opti-
mization theory, we mean the analysis of problems such as

()

subject to z € X,

minimize
gi(x) <0, j=1,...,r

and issues such as the existence of optimal solutions and Lagrange
multipliers, and the absence of a duality gap [equality of the opti-
mal value of the above problem and the optimal value of an associ-
ated dual problem, obtained by assigning multipliers to the inequality
constraints g;(z) < 0].

(b) A unification of conditions for existence of solutions of convex op-

timization problems, conditions for the minimax equality to hold,
and conditions for the absence of a duality gap in constrained opti-
mization. This unification is based on conditions guaranteeing that a
nested family of closed convex sets has a nonempty intersection.



xii Preface

(¢) A unification of the major constraint qualifications that guarantee
the existence of Lagrange multipliers for nonconvex constrained opti-
mization. This unification is achieved through the notion of constraint
pseudonormality, which is motivated by an enhanced form of the Fritz
John necessary optimality conditions.

(d) The development of incremental subgradient methods for dual opti-
mization, and the analysis of their advantages over classical subgra-
dient methods.

We provide some orientation by informally summarizing the main
ideas of each of the above topics.

Min Common/Max Crossing Duality

In this book, duality theory is captured in two easily visualized problems:
the min common point problem and the max crossing point problem, in-
troduced in Chapter 2. Fundamentally, these problems revolve around the
existence of nonvertical supporting hyperplanes to convex sets that are un-
bounded from above along the vertical axis. When properly specialized,
this turns out to be the critical issue in constrained optimization duality
and saddle point/minimax theory, under standard convexity and/or con-
cavity assumptions.

The salient feature of the min common/max crossing framework is its
simple geometry, in the context of which the fundamental constraint qual-
ifications needed for strong duality theorems are visually apparent, and
admit straightforward proofs. This allows the development of duality the-
ory in a unified way: first within the min common/max crossing framework
in Chapters 2 and 3, and then by specialization, to saddle point and min-
imax theory in Chapters 2 and 3, and to optimization duality in Chapter
6. All of the major duality theorems discussed in this book are derived in
this way, including the principal Lagrange multiplier and Fenchel duality
theorems for convex programming, and the von Neuman Theorem for zero
sum games.

From an instructional point of view, it is particularly desirable to
unify constrained optimization duality and saddle point/minimax theory
(under convexity/concavity assumptions). Their connection is well known,
but it is hard to understand beyond a superficial level, because there is not
enough overlap between the two theories to develop one in terms of the
other. In our approach, rather than trying to build a closer connection be-
tween constrained optimization duality and saddle point/minimax theory,
we show how they both stem from a common geometrical root: the min
common,/max crossing duality.

We note that the constructions involved in the min common and
max crossing problems arise in the theories of conjugate convex functions,
subgradients, and duality. As such they are implicit in several earlier anal-
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yses; in fact they have been employed for visualization purposes in the first
author’s nonlinear programming textbook [Ber99]. However, the two prob-
lems have not been used as a unifying theoretical framework for constrained
optimization duality, saddle point theory, or other contexts, except implic-
itly through the theory of conjugate convex functions, and the complicated
and specialized machinery of conjugate saddle functions. Pedagogically, it
may be desirable to postpone the introduction of conjugacy theory until it
is needed for the purposes of Fenchel duality (Chapter 7), which is what
we have done.

Existence of Solutions and Strong Duality

We show that under convexity assumptions, several fundamental issues in
optimization are intimately related. In particular, we give a unified analysis
of conditions for optimal solutions to exist, for the minimax equality to
hold, and for the absence of a duality gap in constrained optimization.

To provide a sense of the main idea, we note that given a constrained
optimization problem, lower semicontinuity of the cost function and com-
pactness of the constraint set guarantee the existence of an optimal solu-
tion (the Weierstrass Theorem). On the other hand, the same conditions
plus convexity of the cost and constraint functions guarantee not only the
existence of an optimal solution, but also the absence of a duality gap.
This is not a coincidence, because as it turns out, the conditions for both
cases critically rely on the same fundamental properties of compact sets,
namely that the intersection of a nested family of nonempty compact sets
is nonempty and compact, and that the projections of compact sets on any
subspace are compact.

In our analysis, we extend this line of reasoning under a variety of as-
sumptions relating to convexity, directions of recession, polyhedral sets, and
special types of sets specified by quadratic and other types of inequalities.
The assumptions are used to establish results asserting that the intersection
of a nested family of closed convex sets is nonempty, and that the function
f(x) =inf, F(z, z), obtained by partial minimization of a convex function
F, is lower semicontinuous. These results are translated in turn to a broad
variety of conditions that guarantee the existence of optimal solutions, the
minimax equality, and the absence of a duality gap.

Pseudonormality and Lagrange Multipliers

In Chapter 5, we discuss Lagrange multiplier theory in the context of opti-
mization of a smooth cost function, subject to smooth equality and inequal-
ity constraints, as well as an additional set constraint. Our treatment of
Lagrange multipliers is new, and aims to generalize, unify, and streamline
the theory of constraint qualifications.
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The starting point for our development is an enhanced set of neces-
sary conditions of the Fritz John type, that are sharper than the classical
Karush-Kuhn-Tucker conditions (they include extra conditions, which may
narrow down the field of candidate local minima). They are also more
general in that they apply when there is an abstract (possibly nonconvex)
set constraint, in addition to the equality and inequality constraints. To
achieve this level of generality, we bring to bear notions of nonsmooth anal-
ysis, and we find that the notion of regularity of the abstract constraint
set provides the critical distinction between problems that do and do not
admit a satisfactory theory.

Fundamentally, Lagrange multiplier theory should aim to identify the
essential constraint structure that guarantees the existence of Lagrange
multipliers. For smooth problems with equality and inequality constraints,
but no abstract set constraint, this essential structure is captured by the
classical notion of quasiregularity (the tangent cone at a given feasible
point is equal to the cone of first order feasible variations). However, in
the presence of an additional set constraint, the notion of quasiregularity
breaks down as a viable unification vehicle. Our development introduces
the notion of pseudonormality as a substitute for quasiregularity for the
case of an abstract set constraint. Pseudonormality unifies and expands
the major constraint qualifications, and simplifies the proofs of Lagrange
multiplier theorems. In the case of equality constraints only, pseudonor-
mality is implied by either one of two alternative constraint qualifications:
the linear independendence of the constraint gradients and the linearity
of the constraint functions. In fact, in this case, pseudonormality is not
much different than the union of these two constraint qualifications. How-
ever, pseudonormality is a meaningful unifying property even in the case
of an additional set constraint, where the classical proof arguments based
on quasiregularity fail. Pseudonormality also provides the connecting link
between constraint qualifications and the theory of exact penalty functions.

An interesting byproduct of our analysis is a taxonomy of different
types of Lagrange multipliers for problems with nonunique Lagrange mul-
tipliers. Under some convexity assumptions, we show that if there exists at
least one Lagrange multiplier vector, there exists at least one of a special
type, called informative, which has nice sensitivity properties. The nonzero
components of such a multiplier vector identify the constraints that need
to be violated in order to improve the optimal cost function value. Further-
more, a particular informative Lagrange multiplier vector characterizes the
direction of steepest rate of improvement of the cost function for a given
level of the norm of the constraint violation. Along that direction, the
equality and inequality constraints are violated consistently with the signs
of the corresponding multipliers.

The theory of enhanced Fritz John conditions and pseudonormality
are extended in Chapter 6 to the case of a convex programming problem,
without assuming the existence of an optimal solution or the absence of
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a duality gap. They form the basis for a new line of analysis for assert-
ing the existence of informative multipliers under the standard constraint
qualifications.

Incremental Subgradient Methods

In Chapter 8, we discuss one of the most important uses of duality: the
numerical solution of dual problems, often in the context of discrete opti-
mization and the method of branch-and-bound. These dual problems are
often nondifferentiable and have special structure. Subgradient methods
have been among the most popular for the solution of these problems, but
they often suffer from slow convergence.

We introduce incremental subgradient methods, which aim to acceler-
ate the convergence by exploiting the additive structure that a dual problem
often inherits from properties of its primal problem, such as separability.
In particular, for the common case where the dual function is the sum of
a large number of component functions, incremental methods consist of a
sequence of incremental steps, each involving a single component of the
dual function, rather than the sum of all components.

Our analysis aims to identify effective variants of incremental meth-
ods, and to quantify their advantages over the standard subgradient meth-
ods. An important question is the selection of the order in which the
components are selected for iteration. A particularly interesting variant
uses randomization of the order to resolve a worst-case complexity bottle-
neck associated with the natural deterministic order. According to both
analysis and experiment, this randomized variant performs substantially
better than the standard subgradient methods for large scale problems
that typically arise in the context of duality. The randomized variant is
also particularly well-suited for parallel, possibly asynchronous, implemen-
tation, and is the only available method, to our knowledge, that can be
used efficiently within this context.

We are thankful to a few persons for their contributions to the book.
Several colleagues contributed information, suggestions, and insights. We
would like to single out Paul Tseng, who was extraordinarily helpful by
proofreading portions of the book, and collaborating with us on several
research topics, including the Fritz John theory of Sections 5.7 and 6.6.
We would also like to thank Xin Chen and Janey Yu, who gave us valuable
feedback and some specific suggestions. Finally, we wish to express our
appreciation for the stimulating environment at M.I.T., which provided an
excellent setting for this work.

Dimitri P. Bertsekas, dimitrib@mit.edu
Angelia Nedi¢, angelia.nedich@alphatech.com
Asuman E. Ozdaglar, asuman@mit.edu
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Note added in the second printing (spring 2013):

The second printing of this book is identical to the first printing, except
that typograpical and other minor errors have been corrected. Moreover,
some relevant research references that appeared subsequent to the first
printing of 2003 were noted. Also, the related book

Convex Optimization Theory, by Dimitri P. Bertsekas, 2009,
ISBN 978-1-886529-31-1, 256 pages

appeared in 2009. This book shares some material with the present work,
but has the character of a textbook and concentrates exclusively on convex
optimization. With the publication of the 2009 book, the set of exercises
on convex optimization was substantially enlarged. The exercises for both
books can be found (with complete solutions) at the Athena Scientific web
site (http://www.athenasc.com).
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2

Basic Convexity Concepts Chap. 1

In this chapter and the following three, we develop the theory of convex
sets, which is the mathematical foundation for minimax theory, Lagrange
multiplier theory, and duality. We assume no prior knowledge of the sub-

ject,

and we give a detailed development. As we embark on the study

of convexity, it is worth listing some of the properties of convex sets and
functions that make them so special in optimization.

(a)

A convex function has no local minima that are not global. Thus the
difficulties associated with multiple disconnected local minima, whose
global optimality is hard to verify in practice, are avoided (see Section
2.1).

A convex set has a nonempty relative interior. In other words, relative
to the smallest affine set containing it, a convex set has a nonempty
interior (see Section 1.4). Thus convex sets avoid the analytical and
computational optimization difficulties associated with “thin” and
“curved” constraint surfaces.

A convex set is connected and has feasible directions at any point
(assuming it consists of more than one point). By this we mean
that given any point x in a convex set X, it is possible to move
from z along some directions y and stay within X for at least a
nontrivial interval, i.e., z + ay € X for all sufficiently small but
positive stepsizes a (see Section 4.6). In fact a stronger property
holds: given any two distinct points x and Z in X, the direction
T — x is a feasible direction at x, and all feasible directions can be
characterized this way. For optimization purposes, this is important
because it allows a calculus-based comparison of the cost of x with
the cost of its close neighbors, and forms the basis for some important
algorithms. Furthermore, much of the difficulty commonly associated
with discrete constraint sets (arising for example in combinatorial
optimization), is not encountered under convexity.

A nonconvez function can be “convexified” while maintaining the opti-
mality of its global minima, by forming the convex hull of the epigraph
of the function (see Exercise 1.20).

The existence of a global minimum of a conver function over a convex
set is conveniently characterized in terms of directions of recession
(see Section 2.3).

A polyhedral conver set (one that is specified by linear equality and in-
equality constraints) is characterized in terms of a finite set of extreme
points and extreme directions. This is the basis for finitely terminat-
ing methods for linear programming, including the celebrated simplex
method (see Sections 3.3 and 3.4).

A convex function is continuous within the interior of its domain,
and has nice differentiability properties. In particular, a real-valued
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Sec. 1.1 Linear Algebra and Real Analysis 3

convex function is directionally differentiable at any point. Further-
more, while a convex function need not be differentiable, it possesses
subgradients, which are nice and geometrically intuitive substitutes
for a gradient (see Chapter 4). Just like gradients, subgradients figure
prominently in optimality conditions and computational algorithms.

(h) Convez functions are central in duality theory. Indeed, the dual prob-
lem of a given optimization problem (discussed in Chapter 6) consists
of minimization of a convex function over a convex set, even if the
original problem is not convex.

(i) Closed convex cones are self-dual with respect to polarity. In words,
we have C' = (C*)* for any closed and convex cone C, where C* is
the polar cone of C' (the set of vectors that form a nonpositive inner
product with all vectors in C'), and (C*)* is the polar cone of C*. This
simple and geometrically intuitive property (discussed in Section 3.1)
underlies important aspects of Lagrange multiplier theory.

(j) Convex lower semicontinuous functions are self-dual with respect to
conjugacy. It will be seen in Chapter 7 that a certain geometrically
motivated conjugacy operation on a convex, lower semicontinuous
function generates another convex, lower semicontinuous function,
and when applied for the second time regenerates the original func-
tion. The conjugacy operation relies on a fundamental dual charac-
terization of a closed convex set: as the union of all line segments
connecting its points, and as the intersection of the closed halfspaces
within which the set is contained. Conjugacy is central in duality
theory, and has a nice interpretation that can be used to visualize
and understand some of the most interesting aspects of convex opti-
mization.

In this first chapter, after an introductory first section, we focus on
the basic concepts of convex analysis: characterizations of convex sets and
functions, convex and affine hulls, topological concepts such as closure,
continuity, and relative interior, and the important notion of the recession
cone.

LINEAR ALGEBRA AND REAL ANALYSIS

In this section, we list some basic definitions, notational conventions, and
results from linear algebra and real analysis. We assume that the reader is
familiar with this material, so no proofs are given. For related and addi-
tional material, we recommend the books by Hoffman and Kunze [HoKT71],
Lancaster and Tismenetsky [LaT85], and Strang [Str76] (linear algebra),
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and the books by Ash [Ash72], Ortega and Rheinboldt [OrR70], and Rudin
[Rud76] (real analysis).

Set Notation

If X is a set and z is an element of X, we write x € X. A set can be
specified in the form X = {z | x satisfies P}, as the set of all elements
satisfying property P. The union of two sets X; and X5 is denoted by
X1 U X2 and their intersection by X; N X2. The symbols 4 and V have
the meanings “there exists” and “for all,” respectively. The empty set is
denoted by @.

The set of real numbers (also referred to as scalars) is denoted by R.
The set R augmented with +0o and —oco is called the set of extended real
numbers. We write —oo < x < oo for all real numbers z, and —oo < z < ©
for all extended real numbers . We denote by [a,b] the set of (possibly
extended) real numbers z satisfying a < x < b. A rounded, instead of
square, bracket denotes strict inequality in the definition. Thus (a, b], [a,b),
and (a,b) denote the set of all x satisfying a < x < b, a < z < b, and
a < x < b, respectively. Furthermore, we use the natural extensions of the
rules of arithmetic: x -0 = 0 for every extended real number z, z - 0o = oo
ifx >0, xz-00=-ifz <0, and £+ 00 = 0o and £ — oo = —oo for
every scalar x. The expression co — oo is meaningless and is never allowed
to occur.

Inf and Sup Notation

The supremum of a nonempty set X of scalars, denoted by sup X, is defined
as the smallest scalar y such that y > x for all x € X. If no such scalar
exists, we say that the supremum of X is co. Similarly, the infimum of X,
denoted by inf X, is defined as the largest scalar y such that y < x for all
x € X, and is equal to —oo if no such scalar exists. For the empty set, we
use the convention

sup J = —o0, inf J = oo.

If sup X is equal to a scalar T that belongs to the set X, we say that
T is the mazimum point of X and we write T = max X. Similarly, if inf X is
equal to a scalar T that belongs to the set X, we say that T is the minimum
point of X and we write T = min X. Thus, when we write max X (or min X)
in place of sup X (or inf X, respectively), we do so just for emphasis: we
indicate that it is either evident, or it is known through earlier analysis, or
it is about to be shown that the maximum (or minimum, respectively) of
the set X is attained at one of its points.
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Function Notation

If f is a function, we use the notation f : X — Y to indicate the fact that
f is defined on a nonempty set X (its domain) and takes values in a set
Y (its range). Thus when using the notation f : X — Y, we implicitly
assume that X is nonempty. If f : X — Y is a function, and U and V
are subsets of X and Y, respectively, the set {f(z) | z € U} is called the
image or forward image of U under f, and the set {x eX | flx) e V} is
called the inverse image of V under f.

1.1.1 Vectors and Matrices

We denote by " the set of n-dimensional real vectors. For any =z € &,
we use x; to indicate its ith coordinate, also called its ith component.

Vectors in " will be viewed as column vectors, unless the contrary
is explicitly stated. For any = € R», a2/ denotes the transpose of x, which
is an n-dimensional row vector. The inner product of two vectors x,y € Rn
is defined by 'y = >_1 | ziy;. Two vectors z,y € R satisfying 2’y = 0
are called orthogonal.

If z is a vector in ", the notations > 0 and = > 0 indicate that all
components of x are positive and nonnegative, respectively. For any two
vectors x and y, the notation x > y means that £ —y > 0. The notations
x>y, x <y, etc., are to be interpreted accordingly.

If X is a set and ) is a scalar, we denote by AX the set {\z | z € X}.
If X1 and X2 are two subsets of R, we denote by X1 + Xs the set

{z1+ 2| 21 € X1, 22 € Xo},
which is referred to as the wvector sum of X1 and Xs. We use a similar
notation for the sum of any finite number of subsets. In the case where

one of the subsets consists of a single vector T, we simplify this notation as
follows:

T+ X={T+z|zeX}

We also denote by X7 — X2 the set
{.231 — 2 | r1 € X1, 22 € XQ}.

Given sets X; C R, i = 1,...,m, the Cartesian product of the X;,
denoted by X1 X - -+ X X, is the set

{(ml,..‘,xm)|mi€Xi,z':1,...,m},

which is a subset of Rrn1+-+nm,
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Subspaces and Linear Independence

A nonempty subset S of " is called a subspace if ax + by € S for every
z,y € S and every a,b € R. An affine set in R" is a translated subspace,
ie., aset X of the form X =T+ S5 ={T+ x|z € S}, where T is a vector
in /" and S is a subspace of R, called the subspace parallel to X. Note
that there can be only one subspace S associated with an affine set in this
manner. [To see this, let X = 2+ S and X = T+ S be two representations
of the affine set X. Then, we must have z = T + 5 for some 5 € S (since
x € X), sothat X = T+5+S5. Since we also have X = T+, it follows that
S =8 —35=_S.] The span of a finite collection {x1,...,2m} of elements of
R is the subspace consisting of all vectors y of the form y = Y., agzy,
where each oy, is a scalar.

The vectors x1,...,xm € R™ are called linearly independent if there
exists no set of scalars ag,...,am, at least one of which is nonzero, such
that >°,"; ap, = 0. An equivalent definition is that 1 # 0, and for every
k > 1, the vector x; does not belong to the span of zy,...,T_1.

If S is a subspace of R containing at least one nonzero vector, a basis
for S is a collection of vectors that are linearly independent and whose
span is equal to S. Every basis of a given subspace has the same number
of vectors. This number is called the dimension of S. By convention, the
subspace {0} is said to have dimension zero. The dimension of an affine set
T+ S is the dimension of the corresponding subspace S. Every subspace of
nonzero dimension has a basis that is orthogonal (i.e., any pair of distinct
vectors from the basis is orthogonal).

Given any set X, the set of vectors that are orthogonal to all elements
of X is a subspace denoted by X-:

X+ ={yl|yz=0,VzeX}

If S is a subspace, S+ is called the orthogonal complement of S. Any vector
x can be uniquely decomposed as the sum of a vector from S and a vector
from S-+t. Furthermore, we have (S1)+ = S.

Matrices

For any matrix A, we use A;j, [A]ij, or ai; to denote its ijth element. The
transpose of A, denoted by A’, is defined by [A'];; = aj;. For any two
matrices A and B of compatible dimensions, the transpose of the product
matrix AB satisfies (AB)' = B’ A’.

If X is a subset of ™ and A is an m X n matrix, then the image of
X under A is denoted by AX (or A-X if this enhances notational clarity):

AX ={Az |z € X}.



Sec. 1.1 Linear Algebra and Real Analysis 7

If Y is a subset of ™, the inverse image of Y under A is denoted by A-1Y
or A-1.Y:
ATY ={z| Az € Y}.

If X and Y are subspaces, then AX and A-1Y are also subspaces.

Let A be a square matrix. We say that A is symmetric if A’ = A. We
say that A is diagonal if [A];; = 0 whenever ¢ # j. We use I to denote the
identity matrix (the diagonal matrix whose diagonal elements are equal to
1). We denote the determinant of A by det(A).

Let A be an m x n matrix. The range space of A, denoted by R(A),
is the set of all vectors y € ™ such that y = Az for some x € R”?. The
nullspace of A, denoted by N(A), is the set of all vectors z € R™ such
that Az = 0. It is seen that the range space and the null space of A are
subspaces. The rank of A is the dimension of the range space of A. The
rank of A is equal to the maximal number of linearly independent columns
of A, and is also equal to the maximal number of linearly independent rows
of A. The matrix A and its transpose A’ have the same rank. We say that
A has full rank, if its rank is equal to min{m,n}. This is true if and only
if either all the rows of A are linearly independent, or all the columns of A
are linearly independent.

The range space of an m x n matrix A is equal to the orthogonal
complement of the nullspace of its transpose, i.e.,

R(A) = N(AL.

Another way to state this result is that given vectors a1, ..., a, € ™ (the
columns of A) and a vector x € R™, we have 2’y = 0 for all y such that
agy = 0 for all ¢ if and only if x = Aja1 + -+ + Apan for some scalars
Al, ..., An. This is a special case of Farkas’ Lemma, an important result
for constrained optimization, which will be discussed in Section 3.2. A
useful application of this result is that if S; and Sy are two subspaces of
7, then
Sf‘ + St = (S1 n SQ)J‘.

This follows by introducing matrices By and Bs such that S; = {z | Biz =
0} = N(B1) and S2 = {z | Bex = 0} = N(Bs), and writing

By

) L
BJ) = (N(B1)NN(Bz2))" = (51NS2)~+

st+st = r(s; B =]

A function f : " — R is said to be affine if it has the form f(x) =
a’x + b for some a € R* and b € R. Similarly, a function f : R — R™ is
said to be affine if it has the form f(x) = Az + b for some m x n matrix
A and some b € ™. If b = 0, f is said to be a linear function or linear
transformation. Sometimes, with slight abuse of terminology, an equation
or inequality involving a linear function, such as a’x = b or a’x < b, is
referred to as a linear equation or inequality, respectively.
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1.1.2 Topological Properties

Definition 1.1.1: A norm || - || on R is a function that assigns a
scalar ||z|| to every z € R and that has the following properties:

(a) ||z|| > 0 for all z € R
(b)
(¢) ||z|| = 0 if and only if x = 0.
(d)

llaz|| = |a - ||z|| for every scalar o and every x € R».

llz + yll < |lz|| + ||ly|l for all z,y € R (this is referred to as the
triangle inequality).

The Euclidean norm of a vector x = (x1,...,2y) is defined by

n 1/2
]l = (a2)1/2 = (Z Jm|2> -
=1

We will use the Euclidean norm almost exclusively in this book. In partic-
ular, in the absence of a clear indication to the contrary, || - || will denote
the Fuclidean norm. Two important results for the Euclidean norm are:

Proposition 1.1.1: (Pythagorean Theorem) For any two vectors
z and y that are orthogonal, we have

[z +ylI? = llz[1* + [ly]I>-

Proposition 1.1.2: (Schwarz Inequality) For any two vectors x
and y, we have

|’y < llz[| - llll,

with equality holding if and only if x = ay for some scalar a.

Two other important norms are the mazimum norm ||- || (also called
sup-norm or Lss-norm), defined by

[2floo = max ],
i=1,...,n



Sec. 1.1 Linear Algebra and Real Analysis 9

and the £1-norm || - ||1, defined by
el =) laal:
i=1

Sequences

We use both subscripts and superscripts in sequence notation. Generally,
we prefer subscripts, but we use superscripts whenever we need to reserve
the subscript notation for indexing components of vectors and functions.
The meaning of the subscripts and superscripts should be clear from the
context in which they are used.

A sequence {zy | k = 1,2,...} (or {xx} for short) of scalars is said
to converge if there exists a scalar x such that for every ¢ > 0 we have
|z — x| < € for every k greater than some integer K (that depends on
€). The scalar z is said to be the limit of {z\}, and the sequence {x}}
is said to converge to x; symbolically, zr — = or limg_c zp = x. If for
every scalar b there exists some K (that depends on b) such that xj > b
for all £k > K, we write xx — oo and limy_ .o, x5 = oo. Similarly, if for
every scalar b there exists some integer K such that x; < b for all k > K,
we write xy — —oo and limg_ o xry = —o0. Note, however, that implicit
in any of the statements “{z;} converges” or “the limit of {z}} exists” or
“{x} has a limit” is that the limit of {z} is a scalar.

A scalar sequence {zy} is said to be bounded above (respectively, be-
low) if there exists some scalar b such that z; < b (respectively, x > b) for
all k. It is said to be bounded if it is bounded above and bounded below.
The sequence {zy} is said to be monotonically nonincreasing (respectively,
nondecreasing) if xp41 < xp (respectively, xr11 > i) for all k. If 2 — x
and {x} is monotonically nonincreasing (nondecreasing), we also use the
notation xy, | « (zx T x, respectively).

Proposition 1.1.3: Every bounded and monotonically nonincreasing
or nondecreasing scalar sequence converges.

Note that a monotonically nondecreasing sequence {xj} is either
bounded, in which case it converges to some scalar x by the above propo-
sition, or else it is unbounded, in which case xx — oo. Similarly, a mono-
tonically nonincreasing sequence {x} is either bounded and converges, or
it is unbounded, in which case x; — —o0.

Given a scalar sequence {zy}, let

ym = sup{zy | k > m}, zm = inf{zy | k > m}.
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The sequences {ym} and {zp,} are nonincreasing and nondecreasing, re-
spectively, and therefore have a limit whenever {z} is bounded above or
is bounded below, respectively (Prop. 1.1.3). The limit of y,, is denoted
by limsupy,_, ., Tk, and is referred to as the upper limit of {z)}. The limit
of z,, is denoted by liminfy_.. z, and is referred to as the lower limit of
{zi}. If {1} is unbounded above, we write limsup,_, ., 2x = 0o, and if it
is unbounded below, we write liminf_. . zp = —o0.

Proposition 1.1.4: Let {23} and {yx} be scalar sequences.
(a) We have

inf{xy | k> 0} <liminfz; <limsupzy < sup{xj | £ > 0}.

k—oo k—oo

(b) {xx} converges if and only if

—oo < liminf z; = limsup xx < oo.

k—oo k—o0

Furthermore, if {x)} converges, its limit is equal to the common
scalar value of liminfy_, x5 and limsup,_, . =k.

(c) If xp <y for all k, then

liminf x5 < liminf yg, lim sup xx < limsup yg-
k—o0 k—o0 k—oo k—o0
(d) We have

liminf x, + lim inf ¥, < liminf(zg + yx),
k—oo k—oo k—oo

lim sup x, + lim sup yx > limsup(zx + yx)-

k—oo k—oo k—oo

A sequence {xy} of vectors in R is said to converge to some z € R»
if the ith component of x; converges to the ith component of x for every 1.
We use the notations x; — = and limy_, xx = x to indicate convergence
for vector sequences as well. The sequence {z;} is called bounded if each
of its corresponding component sequences is bounded. It can be seen that
{z1} is bounded if and only if there exists a scalar ¢ such that [|zk|| < ¢
for all k. An infinite subset of a sequence {x} is called a subsequence of
{z1}. Thus a subsequence can itself be viewed as a sequence, and can be
represented as a set {x | kK € K}, where K is an infinite subset of positive
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integers (the notation {xy}r will also be used).

A vector x € R is said to be a limit point of a sequence {zx} if
there exists a subsequence of {zj} that converges to .t The following is a
classical result that will be used often.

Proposition 1.1.5: (Bolzano-Weierstrass Theorem) A bounded
sequence in R has at least one limit point.

o(-) Notation
For a positive integer p and a function h : R — R™ we write
h(z) = o([l?)
if
h(l‘k) _

k—oo [k [P

for all sequences {x} such that z; — 0 and z # 0 for all k.
Closed and Open Sets
We say that = is a closure point of a subset X of Rm if there exists a

sequence {z} C X that converges to x. The closure of X, denoted cl(X),
is the set of all closure points of X.

Definition 1.1.2: A subset X of 1" is called closed if it is equal to
its closure. It is called open if its complement, {z | x ¢ X}, is closed.
It is called bounded if there exists a scalar ¢ such that ||z| < ¢ for all
x € X. It is called compact if it is closed and bounded.

For any € > 0 and z* € R, consider the sets

{:v\||x—x*||<e}, {33|Hx—x*|\§e}

T Some authors prefer the alternative term “cluster point” of a sequence, and
use the term “limit point of a set S” to indicate a point T such that T ¢ S and
there exists a sequence {zy} C S that converges to T. With this terminology, T
is a cluster point of a sequence {zx | k = 1,2,...} if and only if (Z,0) is a limit
point of the set {(a:k, 1/k) | k=1,2,.. } Our use of the term “limit point” of a

sequence is quite popular in optimization and should not lead to any confusion.
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The first set is open and is called an open sphere centered at x*, while the
second set is closed and is called a closed sphere centered at x*. Sometimes
the terms open ball and closed ball are used, respectively. A consequence
of the definitions, is that a subset X of R is open if and only if for every
x € X there is an open sphere that is centered at x and is contained in X.
A neighborhood of a vector x is an open set containing x.

Definition 1.1.3: We say that x is an interior point of a subset X of
R if there exists a neighborhood of x that is contained in X. The set
of all interior points of X is called the interior of X, and is denoted
by int(X). A vector x € cl(X) which is not an interior point of X is
said to be a boundary point of X. The set of all boundary points of X
is called the boundary of X.

Proposition 1.1.6:
(a) The union of a finite collection of closed sets is closed.
The intersection of any collection of closed sets is closed.
The union of any collection of open sets is open.
The intersection of a finite collection of open sets is open.
A set is open if and only if all of its elements are interior points.
Every subspace of R is closed.

A set X is compact if and only if every sequence of elements of
X has a subsequence that converges to an element of X.

(h) If {Xx} is a sequence of nonempty and compact sets such that
Xk D Xy for all £, then the intersection N3 Xy is nonempty
and compact.

The topological properties of sets in ", such as being open, closed,
or compact, do not depend on the norm being used. This is a consequence
of the following proposition, referred to as the norm equivalence property
in ", which shows that if a sequence converges with respect to one norm,
it converges with respect to all other norms.

Proposition 1.1.7: For any two norms || - || and || - ||’ on R, there
exists a scalar ¢ such that ||z|| < ¢||z||’ for all z € R™.
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Using the preceding proposition, we obtain the following.

Proposition 1.1.8: If a subset of R™ is open (respectively, closed,
bounded, or compact) with respect to some norm, it is open (respec-
tively, closed, bounded, or compact) with respect to all other norms.

Sequences of Sets

Let {X;} be a sequence of nonempty subsets of R”. The outer limit of
{X\}, denoted limsup,_,., Xk, is the set of all z € R" such that every
neighborhood of x has a nonempty intersection with infinitely many of the
sets X, k = 1,2,.... Equivalently, limsup,_,., X is the set of all limit
points of sequences {zy} such that zj € X for all k =1,2,....

The inner limit of {Xy}, denoted liminfy o Xk, is the set of all
x € R" such that every neighborhood of z has a nonempty intersection
with all except finitely many of the sets Xy, & = 1,2,.... Equivalently,
liminfy_,oc Xi is the set of all limits of convergent sequences {xj} such
that zp € X for all k=1,2,....

The sequence {X}} is said to converge to a set X if

X = liminf X} = limsup Xk.

k—o0 k—o0

In this case, X is called the limit of { X}, and is denoted by limy_, o0 Xp.

The inner and outer limits are closed (possibly empty) sets. If each
set X}, consists of a single point xy, limsup,_, . Xy is the set of limit points
of {zr}, while liminfy_. . X is just the limit of {xx} if {zx} converges,
and otherwise it is empty.

Continuity

Let f: X — ™ be a function, where X is a subset of ®”, and let x be a
vector in X. If there exists a vector y € 8™ such that the sequence {f(;vk)}
converges to y for every sequence {z;} C X such that limy_.. zr = x, we
write lim,—, f(2) = y. If there exists a vector y € R™ such that the
sequence { f(zx)} converges to y for every sequence {z;} C X such that
limg_oo 2, =  and xp, < x (respectively, xp > ) for all k, we write
lim,1, f(2) = y [respectively, lim, |, f(2)].
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Definition 1.1.4: Let X be a subset of fn.

(a) A function f: X +— R™ is called continuous at a vector x € X if
lim, ., f(2) = f(z).

(b) A function f : X — R™ is called right-continuous (respectively,
left-continuous) at a vector x € X if lim, |, f(z) = f(x) [respec-
tively, lim,1, f(2) = f(x)].

(¢) A real-valued function f : X — R is called upper semicontinuous
(respectively, lower semicontinuous) at a vector € X if f(x) >
lim sup;,_, o f(x) [respectively, f(z) < liminfg_ f(xy)] for ev-
ery sequence {zy} C X that converges to x.

If f: X — R™ is continuous at every vector in a subset of its domain
X, we say that f is continuous over that subset. If f : X — R™ is con-
tinuous at every vector in its domain X, we say that f is continuous. We
use similar terminology for right-continuous, left-continuous, upper semi-
continuous, and lower semicontinuous functions.

Proposition 1.1.9:
(a) Any vector norm on R is a continuous function.

(b) Let f : ™ +— RP and g : R» — R™ be continuous functions.
The composition f-g: R" — R, defined by (f-g)(x) = f(g(z)),
is a continuous function.

(c) Let f : R — ™ be continuous, and let Y be an open (re-

spectively, closed) subset of $¢*. Then the inverse image of Y,
{z € R | f(x) € Y}, is open (respectively, closed).

(d) Let f: " — R™ be continuous, and let X be a compact subset
of R". Then the image of X, {f(z) | z € X}, is compact.

Matrix Norms

A norm || - || on the set of n x n matrices is a real-valued function that
has the same properties as vector norms do when the matrix is viewed as
a vector in ®7°. The norm of an n x n matrix A is denoted by || A|.

An important class of matrix norms are induced norms, which are
constructed as follows. Given any vector norm || - ||, the corresponding
induced matrix norm, also denoted by || - ||, is defined by

e

joll=
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It is easily verified that for any vector norm, the above equation defines a
matrix norm.

Let || - || denote the Euclidean norm. Then by the Schwarz inequality
(Prop. 1.1.2), we have

[Al = sup [|Az||= sup [y'Az]|.
]| =1 lyll=llzl=1

By reversing the roles of x and y in the above relation and by using the
equality y’ Az = x’ A’y, it follows that || A| = |4’

1.1.3 Square Matrices

Definition 1.1.5: A square matrix A is called singular if its determi-
nant is zero. Otherwise it is called nonsingular or invertible.

Proposition 1.1.10:
(a) Let A be an n x n matrix. The following are equivalent:
(i

(ii

The matrix A is nonsingular.
The matrix A’ is nonsingular.
(iii) For every nonzero x € R", we have Az # 0.

For every y € Rn, there is a unique x € $" such that
Ax =y.

(v) There is an n x n matrix B such that AB = I = BA.

)
)
)
)

(iv

(vi) The columns of A are linearly independent.
(vii) The rows of A are linearly independent.

(b) Assuming that A is nonsingular, the matrix B of statement (v)
(called the inverse of A and denoted by A—1) is unique.

(c) For any two square invertible matrices A and B of the same
dimensions, we have (AB)~1 = B-1A4-1

Definition 1.1.6: A symmetric n X n matrix A is called positive defi-
nite if ' Ax > 0 for all x € ", x # 0. It is called positive semidefinite
if / Az > 0 for all x € Rn.
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Throughout this book, the notion of positive definiteness applies ex-
clusively to symmetric matrices. Thus whenever we say that a matriz is
positive (semi)definite, we implicitly assume that the matriz is symmetric,
although we usually add the term “symmetric” for clarity.

Proposition 1.1.11:

(a) A square matrix is symmetric and positive definite if and only if
it is invertible and its inverse is symmetric and positive definite.

(b) The sum of two symmetric positive semidefinite matrices is pos-
itive semidefinite. If one of the two matrices is positive definite,
the sum is positive definite.

(¢) If A is a symmetric positive semidefinite n X n matrix and T is
an m X n matrix, then the matrix T'AT" is positive semidefinite.
If A is positive definite and T is invertible, then T'AT” is positive
definite.

(d) If A is a symmetric positive definite n x n matrix, there exist
positive scalars 7 and 7 such that

Ylzl? < 2’ Az < F|z|2,  VazeRm

(e) If A is a symmetric positive definite n x n matrix, there exists
a unique symmetric positive definite matrix that yields A when
multiplied with itself. This matrix is called the square root of A.
It is denoted by Al/2, and its inverse is denoted by A—1/2.

1.1.4 Derivatives

Let f : R — R be some function, fix some = € K", and consider the
expression

lim f(x + ae;) — f(ﬂﬁ)7

a—0 [e%
where ¢; is the ith unit vector (all components are 0 except for the ith
component which is 1). If the above limit exists, it is called the ith par-
tial derivative of f at the vector x and it is denoted by (0f/0x;)(z) or
Of(z)/0x; (i in this section will denote the ith component of the vector
x). Assuming all of these partial derivatives exist, the gradient of f at z is

defined as the column vector

of(x)

6x1

Vi) =
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For any y € :", we define the one-sided directional derivative of f in
the direction y, to be
[z +ay) — f(z)

o) = i
f'(x;9) lim " ,

provided that the limit exists.

If the directional derivative of f at a vector x exists in all directions
y and f’(x;y) is a linear function of y, we say that f is differentiable at
x. This type of differentiability is also called Gateaux differentiability. It
is seen that f is differentiable at x if and only if the gradient V f(x) exists
and satisfies

Vi@)y=f(z;y), Vyehn

The function f is called differentiable over a subset U of &~ if it is differ-
entiable at every x € U. The function f is called differentiable (without
qualification) if it is differentiable at all x € Rn.

If f is differentiable over an open set U and V f(-) is continuous at
all z € U, f is said to be continuously differentiable over U. It can then be
shown that

i LEFY SO V@Y _ oy ey, (1.1)
y—0 Iyl

where || - || is an arbitrary vector norm. If f is continuously differentiable
over R, then f is also called a smooth function. If f is not smooth, it is
referred to as being nonsmooth.

The preceding equation can also be used as an alternative definition
of differentiability. In particular, f is called Frechet differentiable at x
if there exists a vector g satisfying Eq. (1.1) with Vf(x) replaced by g.
If such a vector g exists, it can be seen that all the partial derivatives
(0f/0z;)(x) exist and that ¢ = Vf(z). Frechet differentiability implies
(Gateaux) differentiability but not conversely (see for example Ortega and
Rheinboldt [OrR70] for a detailed discussion). In this book, when dealing
with a differentiable function f, we will always assume that f is continu-
ously differentiable over some open set [V f(+) is a continuous function over
that set], in which case f is both Gateaux and Frechet differentiable, and
the distinctions made above are of no consequence.

The definitions of differentiability of f at a vector x only involve the
values of f in a neighborhood of x. Thus, these definitions can be used
for functions f that are not defined on all of R”, but are defined instead
in a neighborhood of the vector at which the derivative is computed. In
particular, for functions f : X — R, where X is a strict subset of R", we
use the above definition of differentiability of f at a vector x, provided x is
an interior point of the domain X. Similarly, we use the above definition
of continuous differentiability of f over a subset U, provided U is an open
subset of the domain X. Thus any mention of continuous differentiability
of a function over a subset implicitly assumes that this subset is open.
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Differentiation of Vector-Valued Functions

A vector-valued function f : " +— R is called differentiable (or smooth)
if each component f; of f is differentiable (or smooth, respectively). The
gradient matriz of f, denoted V f(z), is the n x m matrix whose ith column
is the gradient V f;(x) of f;. Thus,

Vi) = [Vi@)- - Via@)].

The transpose of V f is called the Jacobian of f and is a matrix whose ijth
entry is equal to the partial derivative 0f;/0z;.

Now suppose that each one of the partial derivatives of a function
f: R — Ris asmooth function of . We use the notation (02 f/0x;0z;)(x)
to indicate the ith partial derivative of 0f/0x; at a vector € R". The
Hessian of f is the matrix whose ijth entry is equal to (02f/0z;0z;)(x),
and is denoted by V2f(z). We have (02f/0z;0x;)(x) = (02f/0x;0x;)(x)
for every x, which implies that V2 f(x) is symmetric.

If f: /{m+n — Ris a function of (x,y), where z € ™ and y € R, and

T1,...,Tm and yi,...,yn denote the components of z and y, respectively,
we write
of (z.y) of(z,y)
oxq Jy1
of (z,y) of (z,y)
Ozm Oyn

We denote by V2, f(x,y), V2, f(x,y), and Vi, f(z,y) the matrices with
components

92f(z,y) PJ(@.y)
2 _ S\ I 2 = -
02 f(x,y)
2 _— =7
[Vyyf(wvy)]ij - yidy;
If f:Rm+n — Rroand fi, fo,. .., fr are the component functions of f, we

write

va(.’l?, y) = [V»Lfl(xvy) T V»LfT(may)L
Vyf(azy) = [Vyf1(l', y) T vyfT(x7y)]'

Let f: Rk — R™ and g : ®™ — R* be smooth functions, and let h
be their composition, i.e.,
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Then, the chain rule for differentiation states that
Vh(z) = Vf(z)Vg(f(z)), vV x € Rk
Some examples of useful relations that follow from the chain rule are:
V(f(Az)) = AV f(Ax), V2(f(Az)) = A’V2 f(Ax)A,

where A is a matrix,

Vo (£(h@),v)) = Vh(@)Vaf (b)),
Va (£ (h(@). 9(2)) ) = Vh(@)Vif ((x). g(x)) + Vo)V (hx). g(x)).

Differentiation Theorems

We now state some theorems relating to differentiable functions that will
be useful for our purposes.

Proposition 1.1.12: (Mean Value Theorem) Let f : R" — R be
continuously differentiable over an open sphere S, and let = be a vector
in S. Then for all y such that 2 +y € S, there exists an « € [0, 1] such
that

flz+y) = f(x) + VI(z + ay)'y.

Proposition 1.1.13: (Second Order Expansions) Let f: " —
R be twice continuously differentiable over an open sphere S, and let
x be a vector in S. Then for all y such that z +y € S:

(a) There exists an « € [0,1] such that
fl@+y) = f(2) +y' Vi) + 39'V2f(z + ay)y.
(b) We have

fle+y) = flx) +y'V @)+ 50 V2f(@)y +o[lyll?).
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Proposition 1.1.14: (Implicit Function Theorem) Consider a
function f : fntm - ™ of x € R and y € R™ such that:

(1) f(=y) =0.
(2) f is continuous, and has a continuous and nonsingular gradient
matrix Vy f(z,y) in an open set containing (Z, 7).

Then there exist open sets Sz C R™ and Sy C R™ containing T and 7,
respectively, and a continuous function ¢ : Sz — Sy such that § = ¢(Z)
and f(z,¢(x)) = 0 for all z € Sz. The function ¢ is unique in the sense
that if x € Sz, y € Sy, and f(x,y) = 0, then y = ¢(z). Furthermore,
if for some integer p > 0, f is p times continuously differentiable the
same is true for ¢, and we have

Vo(a) = Vel (@, 6()) (VoS (@, 6)) ), Vaess

As a final word of caution to the reader, let us mention that one can
easily get confused with gradient notation and its use in various formulas,
such as for example the order of multiplication of various gradients in the
chain rule and the Implicit Function Theorem. Perhaps the safest guideline
to minimize errors is to remember our conventions:

(a) A vector is viewed as a column vector (an n X 1 matrix).

(b) The gradient V f of a scalar function f : " — R is also viewed as a
column vector.

(¢) The gradient matrix Vf of a vector function f : R* — ™ with
components fi,..., fm is the n X m matrix whose columns are the
vectors Vfi1,...,Vfn.

With these rules in mind, one can use “dimension matching” as an effective
guide to writing correct formulas quickly.

CONVEX SETS AND FUNCTIONS

In this and the subsequent sections of this chapter, we introduce some

of the basic notions relating to convex sets and functions. This material

permeates all subsequent developments in this book, and will be used in

the next chapter for the discussion of important issues in optimization.
We first define convex sets (see also Fig. 1.2.1).
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ax+(1-a)y, O<a<1 i i

Convex Sets Nonconvex Sets

Figure 1.2.1. Illustration of the definition of a convex set. For convexity, linear
interpolation between any two points of the set must yield points that lie within
the set.

Definition 1.2.1: A subset C of 1" is called convez if

az + (1 —a)y € C, Va,yeC, ¥V acl0,1].

Note that the empty set is by convention considered to be convex.
Generally, when referring to a convex set, it will usually be apparent from
the context whether this set can be empty, but we will often be specific in
order to minimize ambiguities.

The following proposition lists some operations that preserve convex-
ity of a set.

Proposition 1.2.1:

(a) The intersection N;crC; of any collection {C; | ¢ € I'} of convex
sets is convex.

(b) The vector sum C1 + C2 of two convex sets Cy and Cs is convex.
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(c) The set AC' is convex for any convex set C' and scalar A. Fur-
thermore, if C' is a convex set and A1, A2 are positive scalars,

(M + X2)C = MC + X0

(d) The closure and the interior of a convex set are convex.

(e) The image and the inverse image of a convex set under an affine
function are convex.

Proof: The proof is straightforward using the definition of convexity. For
example, to prove part (a), we take two points z and y from N;e;C;, and
we use the convexity of C; to argue that the line segment connecting z and
y belongs to all the sets C;, and hence, to their intersection.

Similarly, to prove part (b), we take two points of Cq + Co, which we
represent as x1 + x2 and y1 + y2, with x1,y1 € C1 and x2,y2 € Ca. For any
a € [0, 1], we have

a(zr +a2) + (1 —a)(y1 +y2) = (az1 + (1 — a)y1) + (a2 + (1 - a)y2).

By convexity of C7 and Cy, the vectors in the two parentheses of the right-
hand side above belong to C'; and Cs, respectively, so that their sum belongs
to C1+C5. Hence C1+4C5 is convex. The proof of part (c) is left as Exercise
1.1. The proof of part (e) is similar to the proof of part (b).

To prove part (d), we take two points « and y from the closure of C,
and sequences {x} C C and {yx} C C, such that z; — x and yx, — y. For
any o € [0, 1], the sequence {azy + (1 — @)y; }, which belongs to C by the
convexity of C, converges to ax + (1 — a)y. Hence ax + (1 — «)y belongs
to the closure of C, showing that the closure of C' is convex. Similarly,
we take two points z and y from the interior of C', and we consider open
balls that are centered at x and y, and have sufficiently small radius r so
that they are contained in C. For any « € [0, 1], consider the open ball
of radius r that is centered at ax + (1 — @)y. Any point in this ball, say
azr+(1—a)y+z, where ||z|| < r, belongs to X, because it can be expressed
as the convex combination a(z + z) + (1 — a)(y + z) of the vectors = + =z
and y + z, which belong to X. Hence ax + (1 — )y belongs to the interior
of C, showing that the interior of C is convex. Q.E.D.

A set C is said to be a cone if for all x € C and A > 0, we have
Ax € C. A cone need not be convex and need not contain the origin,
although the origin always lies in the closure of a nonempty cone (see Fig.
1.2.2). Several of the results of the preceding proposition have analogs for
cones (see Exercise 1.2).
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0 0
(a) (b) (c)

Figure 1.2.2. Illustration of convex and nonconvex cones. Cones (a) and (b) are
convex, while cone (c), which consists of two lines passing through the origin, is
not convex. Cone (b) does not contain the origin.

Convex Functions

The notion of a convex function is defined below and is illustrated in Fig.
1.2.3.

Definition 1.2.2: Let C' be a convex subset of ®*. A function f :
C — R is called convex if

flaz+ (1 -a)y) <af(z)+(1-a)f(y), Ve,yeC, Vac [?,1])
1.2

af(x) + (1 - a)f(y)

AN

: flax+(1-a)y)

X ax+(1-a)y y

) g
- o

Figure 1.2.3. Illustration of the definition of a function f : C — R that is
convex. The linear interpolation af(x) 4+ (1 — «) f(y) overestimates the function
value f(ax +(1— a)y) for all a € [0, 1].
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We introduce some more definitions that involve variations of the
basic definition of convexity. A convex function f : C' — R is called strictly
conver if the inequality (1.2) is strict for all z,y € C with x # y, and all
a € (0,1). A function f : C'+— R, where C is a convex set, is called concave
if —f is convex.

Note that, according to our definition, convexity of the domain C
is a prerequisite for calling a function f : C' — R “convex.” Sometimes
we will deal with functions f : X +— R that are defined over a (possibly
nonconvex) domain X but are convex when restricted to a convex subset
of their domain. The following definition formalizes this case.

Definition 1.2.3: Let C and X be subsets of ®™ such that C is
nonempty and convex, and C' C X. A function f : X — R is called
convez over C' if Eq. (1.2) holds, i.e., when the domain of f is restricted
to C, f becomes convex.

If f:C — R is a function and + is a scalar, the sets {x € C' | f(x) <
~v} and {x € C | f(x) < v}, are called level sets of f. If f is a convex
function, then all its level sets are convex. To see this, note that if z,y € C'
are such that f(z) < v and f(y) < v, then for any o € [0,1], we have
az + (1 — a)y € C, by the convexity of C, and we have

flaz+ (1 —a)y) <af(x)+(1—a)f(y) <7,

by the convexity of f. Similarly, we can show that the level sets {z € C |
f(x) < v} are convex when f is convex. Note, however, that convexity of
the level sets does not imply convexity of the function; for example, the
scalar function f(z) = \/m has convex level sets but is not convex.

Extended Real-Valued Convex Functions

We generally prefer to deal with convex functions that are real-valued and
are defined over the entire space R" (rather than over just a convex subset).
However, in some situations, prominently arising in the context of optimiza-
tion and duality, we will encounter operations on real-valued functions that
produce extended real-valued functions. For example, the function

f(@) = sup fi(z),
i€l
where [ is an infinite index set, can take the value co even if the functions
fi are real-valued. The same is true of conjugate convex functions to be
discussed in Chapter 7.
Furthermore, we will encounter functions f that are convex over a
convex subset C' and cannot be extended to functions that are real-valued
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and convex over the entire space R" [e.g., the function f : (0,00) — R
defined by f(z) = 1/z]. In such situations, it may be convenient, instead
of restricting the domain of f to the subset C where f takes real values, to
extend the domain to all of R, but allow f to take infinite values.

We are thus motivated to introduce extended real-valued functions
that can take the values of —oco and oo at some points. Such functions can
be characterized using the notions of epigraph and effective domain, which
we now introduce.

f(x) Epigraph f(x) Epigraph

A \ A

Y
\

Convex function Nonconvex function

Figure 1.2.4. Illustration of the epigraphs of extended real-valued convex and
nonconvex functions.

We define the epigraph of a function f : X — [—o00, 0], where X C
R, to be the subset of R*+1 given by

epi(f) = {(z,w) |z € X, we R, f(z) <w};
(see Fig. 1.2.4). We define the effective domain of f to be the set
dom(f) ={z € X | f(x) < o0}.
It can be seen that
dom(f) = { | there exists w € R such that (z,w) € epi(f)},

i.e., dom(f) is obtained by a projection of epi(f) on R™ (the space of x).
Note that if we restrict f to the set of « for which f(x) < oo, its epigraph
remains unaffected. Similarly, if we enlarge the domain of f by defining
f(z) = oo for x ¢ X, the epigraph remains unaffected.

It is often important to exclude the degenerate case where f is identi-
cally equal to co [which is true if and only if epi(f) is empty], and the case
where the function takes the value —oo at some point [which is true if and
only if epi(f) contains a vertical line]. We will thus say that f is proper if
f(z) < oo for at least one z € X and f(z) > —oo for all x € X, and we
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will say that f improper if it is not proper. In words, a function is proper
if and only if its epigraph is nonempty and does not contain a vertical line.

A difficulty in defining extended real-valued convex functions f that
can take both values —oo and oo is that the term af(x) + (1 — «)f(y)
arising in our earlier definition for the real-valued case may involve the
forbidden sum —oo + oo (this, of course, may happen only if f is improper,
but improper functions may arise on occasion in proofs or other analyses, so
we do not wish to exclude a priori such functions). The epigraph provides
an effective way of dealing with this difficulty.

Definition 1.2.4: Let C be a convex subset of #*. An extended real-
valued function f : C — [—o0, 00] is called convez if epi(f) is a convex
subset of Rn+1,

It can be easily verified that, according to the above definition, con-
vexity of f implies that its effective domain dom(f) and its level sets
{z € C| f() <~} and {z € C | f(z) < v} are convex sets for all
scalars . Furthermore, if f(z) < oo for all z, or f(z) > —oo for all z, we
have

flaz+(1-a)y) < af(z)+(1—a)f(y), Vaz,ye C, Vael0,1], (1.3)

so the preceding definition is consistent with the earlier definition of con-
vexity for real-valued functions.

A convex function f : C' +— (—o0,00] is called strictly convez if the
inequality (1.3) is strict for all z,y € dom(f) with = # y, and all « € (0, 1).
A function f: C — [—00,00], where C' is a convex set, is called concave if
the function —f : C' — [—00, 0] is convex as per Definition 1.2.4.

The following definition deals with the case where an extended real-
valued function becomes convex when restricted to a subset of its domain.

Definition 1.2.5: Let C and X be subsets of " such that C' is
nonempty and convex, and C' C X. An extended real-valued function
f: X — [—00,00] is called convex over C'if f becomes convex when the
domain of f is restricted to C, i.e., if the function f : C — [—00, 0],
defined by f(x) = f(z) for all z € C, is convex.

Note that by replacing the domain of an extended real-valued proper
convex function with its effective domain, we can convert it to a real-valued
function. In this way, we can use results stated in terms of real-valued
functions, and we can also avoid calculations with co. Thus, the entire
subject of convex functions can be developed without resorting to extended
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real-valued functions. The reverse is also true, namely that extended real-
valued functions can be adopted as the norm; for example, this approach
is followed by Rockafellar [Roc70].

Generally, functions that are real-valued over the entire space R” are
more convenient (and even essential) in numerical algorithms and also in
optimization analyses where a calculus-oriented approach based on differ-
entiability is adopted. This is typically the case in nonconvex optimization,
where nonlinear equality and nonconvex inequality constraints are involved
(see Chapter 5). On the other hand, extended real-valued functions offer
notational advantages in convex optimization, and in fact may be more
natural because some basic constructions around duality involve extended
real-valued functions (see Chapters 6 and 7). Since we plan to deal with
nonconvex as well as convex problems, and with duality theory as well
as numerical methods, we will adopt a flexible approach, and use both
real-valued and extended real-valued functions.

Lower Semicontinuity and Closedness of Convex Functions

An extended real-valued function f : X +— [—o00,00] is called lower semi-
continuous at a vector x € X if f(x) < liminfy_, o f(zk) for every sequence
{z1,} C X with z, — z. This is consistent with the corresponding definition
for real-valued functions [cf. Definition 1.1.4(c)]. If f is lower semicontinu-
ous at every z in a subset U of X, we say that f is lower semicontinuous
over U. The following proposition relates lower semicontinuity of f with
closedness of its epigraph and its level sets.

Proposition 1.2.2: For a function f : " — [—o0, 00], the following
are equivalent:

(i) The level set {x | f(z) < v} is closed for every scalar .
(i) f is lower semicontinuous over $.

(iii) epi(f) is closed.

Proof: If f(z) = oo for all z, the result trivially holds. We thus assume
that f(x) < oo for at least one x € ", so that epi(f) is nonempty and
there exist level sets of f that are nonempty.

We first show that (i) implies (ii). Assume that the level set {z |
fl@) < 'y} is closed for every scalar . Suppose, to arrive at a contradiction,
that f(Z) > liminfy_ o f(zk) for some T and sequence {xy} converging to
T, and let v be a scalar such that

f@) >~> likrginff(xk).



28 Basic Convexity Concepts Chap. 1

Then, there exists a subsequence {x }x such that f(zx) <~ forall k € K.
Since the set {z | f(z) < v} is closed, Z must belong to this set, so
f(@) <, a contradiction.

We next show that (ii) implies (iii). Assume that f is lower semicon-
tinuous over R, and let (Z,w) be the limit of a sequence {(zx,wy)} C
epi(f). Then we have f(xp) < wg, and by taking the limit as k& —
oo and by using the lower semicontinuity of f at T, we obtain f(T) <
liminfy o f(xr) < w. Hence, (Z,w) € epi(f) and epi(f) is closed.

We finally show that (iii) implies (i). Assume that epi(f) is closed,
and let {zr} be a sequence that converges to some T and belongs to the
level set {z | f(z) < v} for some scalar 7. Then (zj,7) € epi(f) for all
k and (x,v) — (T,7), so since epi(f) is closed, we have (Z,7) € epi(f).
Hence, T belongs to the level set {z | f(x) < v}, implying that this set is
closed. Q.E.D.

If the epigraph of a function f : X — [—o00, 0] is a closed set, we say
that f is a closed function. To understand the relation between closedness
and lower semicontinuity, let us extend the domain of f to " and consider
the function f : 7 — [—00, 00| given by

oy flx) ifreX,

f(x)_{oo ifx ¢ X.
Then, we see that f and f have the same epigraph, and according to the
preceding proposition, f is closed if and only if f is lower semicontinuous
over R

Note, however, that if f is lower semicontinuous over dom(f), it is

not necessarily closed; take for example f to be constant for x in some
nonclosed set and oo otherwise. Furthermore, if f is closed, dom(f) need
not be closed; for example, the function

f(x):{% if x >0,

oo otherwise,
is closed but dom(f) is the open half-line of positive numbers. On the other
hand, if dom(f) is closed and f is lower semicontinuous over dom(f), then
f is closed because epi(f) is closed, as can be seen by reviewing the proof
that (ii) implies (iii) in Prop. 1.2.2. We state this as a proposition.

Proposition 1.2.3: Let f : X — [—00,00] be a function. If dom(f)
is closed and f is lower semicontinuous over dom(f), then f is closed.

We finally note that an improper closed convex function is very pe-
culiar: it cannot take a finite value at any point, so it has the form

| —oo if x € dom(f),
fla) = {oo if x ¢ dom(f).
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To see this, consider an improper closed convex function f : ®7 — [—o0, o0],
and assume that there exists an x such that f(x) is finite. Let T be such
that f(Z) = —oo (such a point must exist since f is improper and f is not
identically equal to c0). Because f is convex, it can be seen that every
point of the form

k—1 1_
mk:Tx—i—E:a Vk=1,2,...
satisfies f(xy) = —oo, while we have z;, — x. Since f is closed, this implies
that f(z) = —oo, which is a contradiction. In conclusion, a closed convex

function that is improper cannot take a finite value anywhere.

Recognizing Convex Functions

We can verify the convexity of a given function in a number of ways. Several
commonly encountered functions are convex. For example, affine functions
and norms are convex; this is straightforward to verify using the definition
of convexity. In particular, for any z,y € R" and any « € [0, 1], by using
the triangle inequality, we have

laz + (1 = a)y|| < [laz| +[|(1 = a)yl| = afjz]| + (1 = )]yl

so the norm function || || is convex. The exercises provide further examples
of useful convex functions.

Starting with some known convex functions, we can generate other
convex functions by using some common algebraic operations that preserve
convexity of a function. The following proposition provides some of the
necessary machinery.

Proposition 1.2.4:

(a) Let f; : R» +— (—o00,00], ¢ = 1,...,m, be given functions, let
Al, ..., Am be positive scalars, and consider the function g :
R +— (—o0, 00] given by

9(x) = Mifi(z) + - + A fn (@)

If f1,..., fm are convex, then g is also convex, while if f1,..., fin
are closed, then g is also closed.
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(b) Let f: R™ — (—o0, 0] be a given function, let A be an m x n
matrix, and consider the function g : R" — (—o0, 00| given by

g9(z) = f(Az).

If f is convex, then g is also convex, while if f is closed, then g
is also closed.

(¢) Let fi : R — (—o00, 00| be given functions for ¢ € I, where I is an
arbitrary index set, and consider the function g : ®™ — (—o00, 00}
given by

g(x) = sup fi(x).
il
If f;, i € I, are convex, then g is also convex, while if f;, ¢ € I,
are closed, then g is also closed.

Proof: (a) Let f1,..., fm be convex. We use the definition of convexity
to write for any z,y € ®" and « € [0, 1],

g(aa: +(1- a)y) = Z/\ifi(ozz +(1- a)y)

< Z Ai(afi(z) + (1 —a)fi(y))

= az)\zfz(fU) +(1-a) Z i fi(y)
i=1 i=1

Hence g is convex.

Let the functions fi,..., fm be closed. Then they are lower semi-
continuous at every x € R* (cf. Prop. 1.2.2), so for every sequence {xzj}
converging to x, we have f;(x) < liminfy_,o fi(zy) for all i. Hence

g(z) < Z/\i likrgi(gf filzr) < likrgioréfz)\ifi(xk) = likrgigfg(xk),
im1 i=1

where we have used the assumption A; > 0 and Prop. 1.1.4(d) (the sum of
the lower limits of sequences is less than or equal to the lower limit of the
sum sequence). Therefore, g is lower semicontinuous at all x € ", so by
Prop. 1.2.2, it is closed.

(b) This is straightforward, along the lines of the proof of part (a).
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Ny

Figure 1.2.5. Characterization of convexity in terms of first derivatives. The
condition f(z) > f(z) 4+ (2 — )’V f(z) states that a linear approximation, based
on the gradient, underestimates a convex function.

(c) A pair (z,w) belongs to epi(g) if and only if g(z) < w, which is true
if and only if fi(z) < w for all ¢ € I, or equivalently (z,w) € Nicrepi(fi).
Therefore,

epi(g) = N, epi(fi).

If the f; are convex, the epigraphs epi(f;) are convex, so epi(g) is convex,
and g is convex. If the f; are closed, then, by definition, the epigraphs
epi(f;) are closed, so epi(g) is closed, and g is closed. Q.E.D.

For once or twice differentiable functions, there are some additional
useful criteria for verifying convexity, as we now proceed to discuss.

Characterizations of Differentiable Convex Functions

For differentiable functions, a useful alternative characterization of convex-
ity is given in the following proposition and is illustrated in Fig. 1.2.5.

Proposition 1.2.5: Let C be a convex subset of R" and let f : R —
R be differentiable over $n.

(a) f is convex over C' if and only if

f(z) > f(z)+ (2 — )V f(x), Vx,zeC. (1.4)

(b) f is strictly convex over C' if and only if the above inequality is
strict whenever = # z.
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Proof: The ideas of the proof are geometrically illustrated in Fig. 1.2.6.
We prove (a) and (b) simultaneously. Assume that the inequality (1.4)
holds. Choose any z,y € C and « € [0,1], and let z = ax+ (1 —«a)y. Using
the inequality (1.4) twice, we obtain

f@) = f(z) + (x = 2)'V[(2),

fy) = f(2) + (y = 2)'VI(2).

We multiply the first inequality by «, the second by (1 — «), and add them
to obtain

af @)+ (1 —a)f(y) > f(z) + (e + (1 — )y — 2) V() = f(2),

which proves that f is convex. If the inequality (1.4) is strict as stated in
part (b), then if we take x # y and « € (0,1) above, the three preceding
inequalities become strict, thus showing the strict convexity of f.

Conversely, assume that f is convex, let  and z be any vectors in C'
with « # z, and for a € (0, 1), consider the function

g(a) = f(IJra(Z;x)) _f(x), a e (0,1].

We will show that g(«) is monotonically increasing with «, and is strictly
monotonically increasing if f is strictly convex. This will imply that

(z =)V f(z) = 2%9(@) <g(1) = f(z) = f(2),

with strict inequality if g is strictly monotonically increasing, thereby show-
ing that the desired inequality (1.4) holds, and holds strictly if f is strictly
convex. Indeed, consider any a1, a2, with 0 < a3 < a2 < 1, and let

a1

a=—,
Q2

Sy}

=z + ax(z — z). (1.5)

We have
flz+aiz-=) <afz)+ (1 -a)f(z),

or

f(a;‘ +a(2 :33)) - f(x) < f(z) o f(x), (1.6)

(07

and the above inequalities are strict if f is strictly convex. Substituting the
definitions (1.5) in Eq. (1.6), we obtain after a straightforward calculation

fleta(z=w) = f(z) _ f(z+a2(z—2) = f(@)

aq Q2
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or

f(z) + (x |

Figure 1.2.6. Geometric illustration of the ideas underlying the proof of Prop.
1.2.5. In figure (a), we linearly approximate f at z = az+(1—a)y. The inequality
(1.4) implies that

f@) = f(2) + (z = 2)' VI(2),

W) 2 f(2) + (y — 2)'VI(2).

As can be seen from the figure, it follows that af(z)+ (1 —«)f(y) lies above f(z),
so f is convex.

In figure (b), we assume that f is convex, and from the figure’s geometry,
we note that

f(z+a(z—2) - f(2)

67

flo) +

lies below f(z), is monotonically nonincreasing as « | 0, and converges to f(x) +
(z — 2)'Vf(z). It follows that f(z) > f(z) + (z — z)'V f(z).

g(a1) < g(az),

with strict inequality if f is strictly convex. Hence g is monotonically
increasing with «, and strictly so if f is strictly convex. Q.E.D.
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Note a simple consequence of Prop. 1.2.5(a): if f : ®" +— R is a convex
function and V f(z*) = 0, then z* minimizes f over ®". This is a classical
sufficient condition for unconstrained optimality, originally formulated (in
one dimension) by Fermat in 1637.

For twice differentiable convex functions, there is another characteri-
zation of convexity as shown by the following proposition.

Proposition 1.2.6: Let C be a convex subset of R™ and let f : R —
R be twice continuously differentiable over 7.

(a) If V2f(x) is positive semidefinite for all x € C, then f is convex
over C.

(b) If V2f(x) is positive definite for all € C, then f is strictly
convex over C.

(c) If C is open and f is convex over C, then V2f(z) is positive
semidefinite for all z € C.

Proof: (a) By Prop. 1.1.13(b), for all z,y € C we have
F) = f(@) + (y —2)VI(2) + 50y —2)'V2f (& + aly — 2))(y — 2)

for some « € [0,1]. Therefore, using the positive semidefiniteness of V2 f,
we obtain

f) = @)+ (y—2)Vf), Vzyel
From Prop. 1.2.5(a), we conclude that f is convex.

(b) Similar to the proof of part (a), we have f(y) > f(z) + (y — )V f(z)
for all z,y € C with = # y, and the result follows from Prop. 1.2.5(b).

(c) Assume, to obtain a contradiction, that there exist some x € C and
some z € R" such that 2/V2f(x)z < 0. Since C is open and V2f is
continuous, we can choose z to have small enough norm so that z + z € C
and 2/V2f(z + az)z < 0 for every a € [0,1]. Then, using again Prop.
1.1.13(b), we obtain f(z + 2z) < f(z) + 2’V f(x), which, in view of Prop.
1.2.5(a), contradicts the convexity of f over C. Q.E.D.

As an example, consider the quadratic function
f(z) =2'Qx + d'z,
where @ is a symmetric n X n matrix and b is a vector in R". Since
V2f(x) = 2Q, it follows by using Prop. 1.2.6, that f is convex if and only

if @ is positive semidefinite, and it is strictly convex if and only if @Q is
positive definite.
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If f is convex over a strict subset C' C R7, it is not necessarily true
that V2f(x) is positive semidefinite at any point of C' [take for example
n =2 C={(x1,0) | 21 € R}, and f(z) = 2 — 23]. The relation of
convexity and twice differentiability is further considered in Exercises 1.8
and 1.9. In particular, it can be shown that the conclusion of Prop. 1.2.6(c)
also holds if C' has nonempty interior instead of being open.

CONVEX AND AFFINE HULLS

Let X be a nonempty subset of R*. A convex combination of elements of X
is a vector of the form 27;1 a;xi, where m is a positive integer, x1,...,2m
belong to X, and ay, ..., a,, are scalars such that

m
>0, i=1,....m, dai=1.
=1

Note that if X is convex, then a convex combination belongs to X (see the
construction of Fig. 1.3.1).

X2

X4

Figure 1.3.1. Illustration of the construction of a convex combination of m
vectors by forming a sequence of m — 1 convex combinations of pairs of vectors.
For example, we have

ai ag
T +
a1 + oz a1 + ag

T = a1x1 + agw2 + azrz = (a1 + az2) ( ac2) + azws,

so the convex combination ajx1 4+ agx2 + azxs can be obtained by forming the

convex combination
[e5] a2
z = 1 + 2,
al + az a) + az

and then by forming the convex combination
z = (a1 + a2)z + azzs

as shown in the figure. The construction shows among other things that a convex
combination of a collection of vectors from a convex set belongs to the convex set.
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For any function f : R — R that is convex over X, we have

/ (Z 041‘%‘) < Zaif(l'i)~ (1.7)

This follows by using repeatedly the definition of convexity together with
the construction of Fig. 1.3.1. The preceding relation is a special case of a
relation known as Jensen’s inequality, and can be used to prove a number
of interesting relations in applied mathematics and probability theory.

The convex hull of a set X, denoted conv(X), is the intersection of
all convex sets containing X, and is a convex set by Prop. 1.2.1(a). It is
straightforward to verify that the set of all convex combinations of elements
of X is convex, and is equal to conv(X) (Exercise 1.14). In particular, if
X consists of a finite number of vectors x1, ..., Tm, its convex hull is

conv({xl,...,zm}) = {Zaimi a;>0,1=1,...,m, Zai :1}.

=1 =1

We recall that an affine set M in " is a set of the form x + S, where
x is some vector and S is a subspace uniquely determined by M and called
the subspace parallel to M. If X is a subset of R", the affine hull of X,
denoted aff(X), is the intersection of all affine sets containing X. Note that
aff(X) is itself an affine set and that it contains conv(X). It can be seen
that

aff(X) = aff(conv(X)) = aff(cl(X)),

(see Exercise 1.18). Furthermore, in the case where 0 € X, aff(X) is the
subspace generated by X. For a convex set C, the dimension of C'is defined
to be the dimension of aff(C).

Given a nonempty subset X of R, a nonnegative combination of
elements of X is a vector of the form 2111 a;x;, where m is a positive
integer, x1,...,xm,m belong to X, and a1, ..., a,, are nonnegative scalars. If
the scalars «; are all positive, Y .~ | ajx; is said to be a positive combination.
The cone generated by X, denoted cone(X), is the set of all nonnegative
combinations of elements of X. It is easily seen that cone(X) is a convex
cone containing the origin, although it need not be closed even if X is
compact, as shown in Fig. 1.3.2 [it can be proved that cone(X) is closed in
special cases, such as when X consists of a finite number of elements — this
is one of the central results of polyhedral convexity, which will be shown in
Section 3.2].

The following is a fundamental characterization of convex hulls (see
Fig. 1.3.3).
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Figure 1.3.2. An example in 2 where X is convex and compact, but cone(X)
is not closed. Here

X = {(x1,22) | 2] + (22 - 1)> < 1},

cone(X) = {(w1,22) | 22 > 0} U{(0,0)}.

cone(X) X4
conv(X)

X2
X

X3
(a) (b)

Figure 1.3.3. Illustration of Caratheodory’s Theorem. In (a), X is a nonconvex
set in R, and a point € cone(X) is represented as a positive combination
of the two linearly independent vectors z1,z2 € X. In (b), X consists of four
points 1, x2, 3,24 in N2, and the point = € conv(X) shown in the figure can
be represented as a convex combination of the three vectors zi,x2,z3. Note
that the vectors o — x1,23 — 21 are linearly independent. Note also that x can
alternatively be represented as a convex combination of the vectors x1,z2, x4, so
the representation is not unique.

Proposition 1.3.1: (Caratheodory’s Theorem) Let X be a non-
empty subset of Rn.

(a) Every & # 0 in cone(X) can be represented as a positive combina-
tion of vectors x1, ...,z from X that are linearly independent.
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(b) Every z ¢ X that belongs to conv(X) can be represented as
a convex combination of vectors xi,...,x, from X such that
To — T1,...,Tm — 1 are linearly independent.

Proof: (a) Let  be a nonzero vector in cone(X ), and let m be the small-
est integer such that = has the form ZZ’;I a;xi, where a; > 0 and x; € X
for all i = 1,...,m. If the vectors x; were linearly dependent, there would
exist scalars A1, ..., Amy, with Z:’;l Aix; = 0 and at least one A; is positive.
Consider the linear combination Zgl(ai — J\i)x;, where 7 is the largest
v such that «; —yA; > 0 for all . This combination provides a represen-
tation of x as a positive combination of fewer than m vectors of X — a
contradiction. Therefore, x1,...,Zm, are linearly independent.

(b) The proof will be obtained by applying part (a) to the subset of fn+1
given by
Y ={(z,1) |z € X}.

If 2 € conv(X), then for some positive integer I and some positive scalars
vi,it=1,...,1, with 1 = Zle ~i, we have x = Zif:l ~iti, so that (z,1) €
cone(Y). By part (a), we have (z,1) = DI aj(z4,1) for some positive

scalars a, . . ., @, and some linearly independent vectors (z1,1),. .., (Zm, 1),
with x1,...,2m € R™ and m > 2, i.e.,
m m
x:Zaixi, 1:Zai.
i=1 i=1
Assume, to arrive at a contradiction, that zo — x1,..., %y — x1 are

linearly dependent, so that there exist Aa, ..., Ap, not all 0, with

Equivalently, defining Ay = —(A2 + - - - + Ay, ), we have
m
> Ailwi 1) =0,

1=

—

which contradicts the linear independence of (z1,1),..., (zm,1). Q.E.D.

Note that in view of the linear independence assertions in Caratheodo-
ry’s Theorem, a vector in cone(X) [or conv(X)] may be represented by
no more than n (or n + 1, respectively) vectors of X. Note also that
the proof of the theorem suggests an algorithm to obtain a representation
of a vector x € cone(X) in terms of linearly independent vectors. The
typical step in this algorithm is the proof’s construction, which starts with
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a representation involving linearly dependent vectors, and yields another
representation involving fewer vectors.

Caratheodory’s Theorem can be used to prove several other important
results. An example is the following proposition.

Proposition 1.3.2: The convex hull of a compact set is compact.

Proof: Let X be a compact subset of . To show that conv(X) is com-
pact, we will take a sequence in conv(X) and show that it has a convergent
subsequence whose limit is in conv(X). Indeed, by Caratheodory’s Theo-

: 1
rem, a sequence in conv(X) can be expressed as {Z;jl afxf}, where for

all k and i, of > 0, z¥ € X, and Z?jll aF = 1. Since the sequence

{(O/fa"'7aﬁ+17xlfa'~'vxﬁ+l)}

is bounded, it has a limit point {(al, ey Q1,21 - ,xn+1)}, which must
satisfy Z?:ll a; = 1, and a; > 0, z; € X for all &. Thus, the vector
Z?Ill a;x;, which belongs to conv(X), is a limit point of the sequence
{Z?:ll afscf}, showing that conv(X) is compact. Q.E.D.

Note that it is not generally true that the convex hull of a closed set
is closed. As an example, for the closed subset of 2

X = {(0,0)} ] {(a:l,xg) | 12 > 1,21 >0, 29 > 0},
the convex hull is
conv(X) = {(0,0)} U {(z1,22) | 21 > 0, z2 > 0},

which is not closed.

RELATIVE INTERIOR, CLOSURE, AND CONTINUITY

We now consider some generic topological properties of convex sets and
functions. Let C' be a nonempty convex subset of ®”. The closure of C' is
also a nonempty convex set (Prop. 1.2.1). While the interior of C may be
empty, it turns out that convexity implies the existence of interior points
relative to the affine hull of C'. This is an important property, which we
now formalize.

Let C be a nonempty convex set. We say that x is a relative interior
point of C, if x € C' and there exists an open sphere S centered at = such
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that SNaff(C) C C, i.e., x is an interior point of C' relative to aff(C'). The
set of all relative interior points of C' is called the relative interior of C', and
is denoted by ri(C). The set C is said to be relatively open if ri(C) = C.
A vector in the closure of C' which is not a relative interior point of C' is
said to be a relative boundary point of C. The set of all relative boundary
points of C' is called the relative boundary of C.

For example, if C' is a line segment connecting two distinct points
in the plane, then ri(C') consists of all points of C except for the two end
points. The relative boundary of C' consists of the two end points.

The following proposition gives some basic facts about relative interior
points.

Proposition 1.4.1: Let C' be a nonempty convex set.

(a) (Line Segment Principle) If x € ri(C) and T € cl(C), then all
points on the line segment connecting x and T, except possibly
T, belong to ri(C).

(b) (Nonemptiness of Relative Interior) ri(C') is a nonempty convex
set, and has the same affine hull as C. In fact, if m is the dimen-

sion of aff(C') and m > 0, there exist vectors o, x1,...,Tm €
ri(C) such that z; — o, ..., zm — xo span the subspace parallel
to aff(C).

(¢) z €ri(C) if and only if every line segment in C' having x as one
endpoint can be prolonged beyond z without leaving C' [i.e., for
every T € C, there exists ay > 1 such that z+(y—1)(z—7%) € C].

Proof: (a) For the case where T € C, the proof is given in Fig. 1.4.1.
Consider the case where T ¢ C. To show that for any o € (0, 1] we have
ZTo = ax + (1 — a)T € ri(C), consider a sequence {x} C C that converges
to T, and let zp o = ax + (1 — a)xi. Then as in Fig. 1.4.1, we see that
{z | |z — kol < ae} Naff(C) C C for all k, where € is such that the open
sphere S = {z | ||z — z|| < €} satisfies SNaff(C) C C. Since xg,o — Ta, for
large enough k, we have

{z 1z = zall < ae/2} C{z [ ||z = zpall < ac}.

It follows that {z | ||z — za| < ae/2} Naff(C) C C, which shows that
Zo € 1i(C).

(b) Convexity of ri(C') follows from the Line Segment Principle of part (a).
By using a translation argument if necessary, we assume without loss of
generality that 0 € C. Then, the affine hull of C is a subspace whose
dimension will be denoted by m. If m = 0, then C and aff(C) consist
of a single point, which is a unique relative interior point. If m > 0, we
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Figure 1.4.1. Proof of the Line Segment Principle for the case where z € C.
Since z € ri(C), there exists an open sphere S = {z | ||z — z|| < €} such that
Snaff(C) C C. For all a € (0,1], let zo = az + (1 — )T and let So = {z |
|z — za|| < ae}. It can be seen that each point of S, N aff(C) is a convex
combination of T and some point of SNaff(C). Therefore, by the convexity of C,
Sa Naff(C) C C, implying that z € ri(C).

can find m linearly independent vectors z1, ...,z in C that span aff(C);
otherwise there would exist r < m linearly independent vectors in C' whose
span contains C, contradicting the fact that the dimension of aff(C') is m.
Thus 21, ..., 2m form a basis for aff (C).

Consider the set

m m
X:{x ’ x:Zaizi,Zai<l, ai>07i:1,...,m}
i=1 i=1

(see Fig. 1.4.2). We claim that this set is open relative to aff(C), i.e.,
for every vector T € X, there exists an open ball B centered at T such
that T € B and B Naff(C) € X. To see this, fix T € X and let = be
another vector in aff (C'). We have T = Za and ¢ = Z«, where Z is the
n X m matrix whose columns are the vectors z1,...,2mn, and @ and « are
suitable m-dimensional vectors, which are unique since z1, ..., 2z, form a
basis for aff (C'). Since Z has linearly independent columns, the matrix Z/Z
is symmetric and positive definite, so by Prop. 1.1.11(d), we have for some
positive scalar -, which is independent of x and T,

le 2|2 = (a — @) 2/ Z(a - &) > y]a - al]. (L8)
Since T € X, the corresponding vector @ lies in the open set
A= {(al,...,am) ‘ Zai <1l,a; >0,i= 1,...,m}.
i=1

From Eq. (1.8), we see that if x lies in a suitably small ball centered at
T, the corresponding vector « lies in A, implying that x € X. Hence
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z4 and z, are linearly

independent, belong to C
and span aff(C)

Figure 1.4.2. Construction of the relatively open set X in the proof of nonempti-
ness of the relative interior of a convex set C' that contains the origin, assuming
that m > 0. We choose m linearly independent vectors zi,...,2zm € C, where m
is the dimension of aff(C), and we let

m m
X = Zaizi Za¢<1,a¢>0,’i=1,‘..,m .
i=1 i=1

X contains the intersection of aff(C') and an open ball centered at T, so
X is open relative to aff(C). It follows that all points of X are relative
interior points of C, so that ri(C') is nonempty. Also, since by construction,
aff(X) = aff(C) and X C ri(C), we see that ri(C) and C have the same
affine hull.

To show the last assertion of part (b), consider vectors

m
:cozozZzi, Ti=x0+ oz, 1=1,...,m,
=1
where « is a positive scalar such that a(m+1) < 1. The vectors zo, ..., Tm
belong to X, and since X C ri(C), they also belong to ri(C'). Furthermore,
because x; — ¢ = az; for all ¢ and the vectors z1, ..., zm span aff(C), the
vectors x1 — Zo, ..., Tm — Zo also span aff(C).

(c) If x € 1ri(C), the given condition clearly holds, using the definition of
relative interior point. Conversely, let = satisfy the given condition. We will
show that x € ri(C). By part (b), there exists a vector T € ri(C). We may
assume that T # x, since otherwise we are done. By the given condition,
since T is in C, there is a v > 1 such that y = 2z + (y — 1)(x — 7) € C.
Then we have © = (1 — a)Z + ay, where a = 1/ € (0,1), so by the Line
Segment Principle, we obtain z € ri(C). Q.E.D.

We will see in the following chapters that the notion of relative interior
is pervasive in convex optimization and duality theory. As an example, we
provide an important characterization of the set of optimal solutions in the
case where the cost function is concave.
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Proposition 1.4.2: Let X be a nonempty convex subset of 7, let
f X — R be a concave function, and let X* be the set of vectors
where f attains a minimum over X, i.e.,

X+ = {xeX | F(a¥) wig)f(f(x)}.

If X* contains a relative interior point of X, then f must be constant
over X, i.e., X* = X.

Proof: Let z* belong to X* Nri(X), and let « be any vector in X. By
Prop. 1.4.1(c), there exists a v > 1 such that the vector

F=at+ (=) —a)
belongs to X, implying that

1 -1
x*z—:%—i—Lgp
v g

By the concavity of the function f, we have

far) 2 2f(@) + ——f(@),

and since f(£) > f(x*) and f(z) > f(x*), we obtain
f@) =~ 1(@)+ T2 1 @) > fa).

Hence f(z) = f(z*). Q.E.D.

One consequence of the preceding proposition is that a linear cost
function f(z) = ¢’z, with ¢ # 0, cannot attain a minimum at some interior
point of a constraint set, since such a function cannot be constant over an
open sphere.

Operations with Relative Interiors and Closures

To deal with set operations such as intersection, vector sum, linear transfor-
mation in the analysis of convex optimization problems, we need tools for
calculating the corresponding relative interiors and closures. These tools
are provided in the next three propositions.
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Proposition 1.4.3: Let C' be a nonempty convex set.
(a) We have cl(C) = cl(ri(C)).
(b) We have ri(C) = ri(cl(C)).

(c) Let C be another nonempty convex set. Then the following three
conditions are equivalent:

(i) C and C have the same relative interior.
(ii) C and C have the same closure.

(iii) 1i(C) C C C cl(C).

Proof: (a) Since 1i(C) C C, we have cl(ri(C)) C cl(C). Conversely, let
T € cl(C). We will show that Z € cl(ri(C)). Let  be any point in
ri(C) [there exists such a point by Prop. 1.4.1(b)], and assume that T # x
(otherwise we are done). By the Line Segment Principle [Prop. 1.4.1(a)],
we have az + (1 — )T € ri(C) for all a € (0,1]. Thus, T is the limit of the
sequence {(1/k)z+ (1 —1/k)T | k > 1} that lies in 1i(C), so T € cl(ri(C)).

(b) The inclusion ri(C) C ri(cl(C)) follows from the definition of a relative
interior point and the fact aff(C) = aff(cl(C)) (see Exercise 1.18). To
prove the reverse inclusion, let z € ri(cl(C)). We will show that z € ri(C).
By Prop. 1.4.1(b), there exists an x € ri(C). We may assume that = # z
(otherwise we are done). We choose v > 1, with ~ sufficiently close to 1 so
that the vector y = z + (v — 1)(z — ) belongs to cl(C) [cf. Prop. 1.4.1(c)].
Then we have z = (1 — o)z + ay where oo = 1/v € (0,1), so by the Line
Segment Principle [Prop. 1.4.1(a)], we obtain 2z € ri(C).

(c) If ri(C) = ri(C), part (a) implies that cI(C) = cI(C). Similarly, if

cl(C) = cl(C), part (b) implies that ri(C') = ri(C'). Thus, (i) and (ii)
are equivalent. Also, (i), (ii), and the relation ri(C) C C C cl(C) imply
condition (iii). Finally, let condition (iii) hold. Then by taking closures,

we have cl(ri(C)) C cl(C) C cl(C), and by using part (a), we obtain

cl(C) C cl(C) C cl(C). Hence cl(C) = cl(C), i.e., (ii) holds. Q.E.D.

Proposition 1.4.4: Let C' be a nonempty convex subset of " and
let A be an m X n matrix.

(a) We have A -ri(C) =1i(A-C).

(b) We have A - cl(C) C cl(A - C). Furthermore, if C' is bounded,
then A - cl(C) =cl(4-C).
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Xo 4

C={(x1,X0) X1 >0, X5 >0, XyXo = 1}

Figure 1.4.3. An example of a closed convex set C' whose image A - C' under a
linear transformation A is not closed. Here

C = {(xl,mz) |1 >0, 22 >0, z122 > 1}

and A acts as projection on the horizontal axis, i.e., A (z1,22) = (z1,0). Then
A - C is the (nonclosed) halfline {(11,:1:2) |z1 >0, 22 = 0}.

Proof: (a) For any set X, we have A-cl(X) C cl(A-X), since if a sequence
{zr} C X converges to some z € cl(X) then the sequence {Azy}, which
belongs to A - X, converges to Az, implying that Az € cl(A- X). We use
this fact and Prop. 1.4.3(a) to write

A-Ti(C)CA-CCA-c(C)=A-c(ri(C)) Ccl(A-1i(C)).

Thus the convex set A - C' lies between the convex set A - ri(C') and the
closure of that set, implying that the relative interiors of the sets A-C and
A-1i(C) are equal [Prop. 1.4.3(c)]. Hence ri(A-C) C A-ri(C). To show the
reverse inclusion, we take any z € A-1i(C') and we show that z € ri(A - C).
Let z be any vector in A - C, and let Z € ri(C) and T € C be such that
AZ = z and AT = x. By Prop. 1.4.1(c), there exists a v > 1 such that the
vector § = Z + (v — 1)(Z — T) belongs to C. Thus we have Ay € A-C and
Ay =z+ (y—1)(z — x), so by Prop. 1.4.1(c), it follows that z € ri(A - C).

(b) By the argument given in part (a), we have A - cl(C) C cl(A - C). To
show the converse, assuming that C' is bounded, choose any z € cl(A - C).
Then, there exists a sequence {zx} C C such that Az — 2. Since C is
bounded, {zx} has a subsequence that converges to some x € cl(C), and
we must have Az = z. It follows that z € A-cl(C). Q.E.D.

Note that if C' is closed and convex but unbounded, the set A-C need
not be closed [cf. part (b) of the above proposition]. An example is given
in Fig. 1.4.3.
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Proposition 1.4.5: Let C'y and C2 be nonempty convex sets.
(a) We have

ri(Cl) N ri(Cz) C 1"1(01 N CQ), Cl(Cl n CQ) C Cl(Cl) N CI(CQ).

Furthermore, if the sets ri(C1) and ri(C2) have a nonempty in-
tersection, then

ri(C1 n Cz) = I"i(C1) N I“i(Cz), CI(C1 n CQ) = Cl(Cl) N CI(CQ).

(b) We have
ri(Cl + Cg) = ri(C1) +I'i(02), CI(C1) + CI(CQ) C Cl(Cl + CQ).
Furthermore, if at least one of the sets C; and C2 is bounded,

then
Cl(Cl) + CI(CQ) = CI(C1 aF CQ)

Proof: (a) Take any x € ri(Cy) Nri(C2) and any y € C1 N C2. By Prop.
1.4.1(c), it can be seen that the line segment connecting x and y can be
prolonged beyond z by a small amount without leaving C7 and also by
another small amount without leaving C. Thus, by the same proposition,
it follows that « € ri(C1 N C2), so that ri(C1) Nri(Cs2) C ri(Ch N Cs). Also,
since the set C1 N Cy is contained in the closed set cl(C1) Ncl(Ce), we have

Cl(Cl n CQ) C Cl(Cl) N CI(CQ).

Assume now that ri(C1)Nri(C?) is nonempty. Let y € cl(C1)Ncl(Cy),
and let z € ri(C1) Nri(C?). By the Line Segment Principle [Prop. 1.4.1(a)],
the vector ax + (1 — a)y belongs to ri(C1) Nri(C2) for all o € (0, 1]. Hence,
y is the limit of a sequence agx + (1 — ay)y C ri(C1) Nri(Ce) with oy — 0,
implying that y € cl(ri(C1) Nri(C2)). Thus,

Cl(Cl) n Cl(Cg) C cl(ri(Cl) N I‘i(Cg)) C Cl(Cl N CQ).

We showed earlier that cl(Cy N C2) C cl(C1) N cl(Ca), so equality holds
throughout in the preceding relation, and therefore cl(Cy N C2) = cl(Cy) N
cl(C2). Furthermore, the sets ri(C1) Nri(Cs2) and C; N Cy have the same
closure. Therefore, by Prop. 1.4.3(c), they have the same relative interior,
implying that

ri(Cl n CQ) C ri(Cl) N I'i(CQ).
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We showed earlier the reverse inclusion, so we obtain ri(C1NC2) = ri(C1)N

I‘i(CQ).

(b) Consider the linear transformation A : 827 — R given by A(x1,z2) =
x1 + x2 for all z1,z2 € ™. The relative interior of the Cartesian product
Cy x Cy (viewed as a subset of $27) is ri(C) x ri(C2) (see Exercise 1.37).
Since A(Cy x C3) = C1 + Cs, from Prop. 1.4.4(a), we obtain ri(Cy + Cs) =
I‘i(Cl) + I‘i(CQ).

Similarly, the closure of the Cartesian product C7 x Cq is cl(C1) x
cl(Ca) (see Exercise 1.37). From Prop. 1.4.4(b), we have A - cl(C1 x C2) C
cl(A- (C1 x C2)), or equivalently, cl(C1) 4 cl(C2) C cl(Cy + C).

Finally, we show the reverse inclusion, assuming that C is bounded.
Indeed, if z € cl(C1 4 Cy), there exist sequences {z}} C C1 and {27} C (s
such that z} + 22 — z. Since {z}} is bounded, it follows that {z2} is also
bounded. Thus, {(x,lw xﬁ)} has a subsequence that converges to a vector
(z1,22), and we have z! + 22 = z. Since 2! € cl(C1) and 22 € cl(C2),
it follows that = € cl(Cy) + cl(C2). Hence cl(Cy 4+ Cs) C cl(Ch) + cl(C2).
Q.E.D.

The requirement that ri(C1) Nri(Ce) # @ is essential in part (a) of
the preceding proposition. As an example, consider the following subsets

of R:
Ci={z|z>0}, Cy={z |z <0}.

Then we have ri(Cy N C) = {0} # O =r1i(C1) Nri(C2). Also, consider the
following subsets of R:

Ci={z|z >0}, Cy={z |z <0}.

Then we have cl(C1 N C2) = J # {0} = cl(C1) Ncl(Ca).

The requirement that at least one of the sets C1 and C2 be bounded
is essential in part (b) of the preceding proposition. This is illustrated by
the example of Fig. 1.4.4.

We note that the results regarding the closure of the image of a closed
set under a linear transformation [cf. Prop. 1.4.4(b)] and the related result
regarding the closure of the vector sum of two closed sets [cf. Prop. 1.4.5(b)]
will be refined in the next section by using the machinery of recession cones,
which will be developed in that section.

Continuity of Convex Functions

We close this section with a basic result on the continuity properties of
convex functions.
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Xo A

e

Co ={(x1,%0) x4 =0}

Figure 1.4.4. An example where the sum of two closed convex sets C; and C2
is not closed. Here

C = {(xl,xg) |Z‘1 >0, x2 >0, x129 > ].}, Cy = {(xl,:cg) ‘ T = 0},

and C7 + Cq is the open halfspace {(azl,zz) | x1 > O}.

Proposition 1.4.6: If f : ®» — R is convex, then it is continuous.
More generally, if f : ®» — (—o00,00] is a proper convex function,
then f, restricted to dom(f), is continuous over the relative interior of

dom( f).

Proof: Restricting attention to the affine hull of dom(f) and using a
transformation argument if necessary, we assume without loss of gener-
ality, that the origin is an interior point of dom(f) and that the unit cube
X ={z| ||z]]cc < 1} is contained in dom(f). It will suffice to show that f
is continuous at 0, i.e., that for any sequence {z1} C R™ that converges to
0, we have f(zx) — f(0).

Let e;, i = 1,...,2", be the corners of X, i.e., each e; is a vector
whose entries are either 1 or —1. It can be seen that any = € X can be
expressed in the form x = 21221 aje;, where each «; is a nonnegative scalar
and 212; a; = 1. Let A = max; f(e;). From Jensen’s inequality [Eq.
(1.7)], it follows that f(x) < A for every z € X.

For the purpose of proving continuity at 0, we can assume that z; € X

and x, # 0 for all k. Consider the sequences {y;} and {zx} given by

Tk Lk

Yk = A= i
[k ]| k]l

(cf. Fig. 1.4.5). Using the definition of a convex function for the line seg-
ment that connects yi, xx, and 0, we have

Far) < (1= llonlloo) £(0) + [l lloo f (yn)-
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eg_ Yk e2
Xk
Xk+1e Figure 1.4.5. Construction for proving
¢ continuity of a convex function (cf. Prop.
0 1.4.6).
ey Z €4

Since ||zl — 0 and f(yr) < A for all k, by taking the limit as k — oo,
we obtain

lim sup f(zx) < f(0).

k—oo
Using the definition of a convex function for the line segment that connects
zr, 0, and 2, we have

[EZ3ES 1

f(0) < f(zr) + Wf(fﬂk)

= llzklloo +1

and letting k£ — oo, we obtain
£(0) < timint f(zy).

Thus, limg_« f(zx) = f(0) and f is continuous at zero. Q.E.D.

A straightforward consequence of the continuity of a real-valued func-
tion f that is convex over }t" is that its epigraph as well as the level sets
{z | f(x) < v} for all scalars v are closed and convex (cf. Prop. 1.2.2).
Thus, a real-valued convex function is closed.

RECESSION CONES

Some of the preceding results [Props. 1.3.2, 1.4.4(b)] have illustrated how
closedness and compactness of convex sets are affected by various opera-
tions such as linear transformations. In this section we take a closer look
at this issue. In the process, we develop some important convexity topics
that are broadly useful in optimization.
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Figure 1.5.1. Illustration of the recession
cone R¢ of a convex set C. A direction of
recession y has the property that z +ay €
C for all x € C and a > 0.

Recession Cone Rg

Convex Set C

We will first introduce the principal notions of this section: directions
of recession and lineality space. We will then show how these concepts play
an important role in various conditions that guarantee:

(a) The nonemptiness of the intersection of a sequence of closed convex
sets.

(b) The closedness of the image of a closed convex set under a linear
transformation.

It turns out that these issues lie at the heart of important questions relating
to the existence of solutions of convex optimization problems, to minimax
theory, and to duality theory, as we will see in subsequent chapters.

Given a nonempty convex set C, we say that a vector y is a direction
of recession of C' if x +ay € C for all t € C and a > 0. Thus, y is a
direction of recession of C' if starting at any = in C and going indefinitely
along y, we never cross the relative boundary of C to points outside C.
The set of all directions of recession is a cone containing the origin. It is
called the recession cone of C' and it is denoted by R¢ (see Fig. 1.5.1). The
following proposition gives some properties of recession cones.

Proposition 1.5.1: (Recession Cone Theorem) Let C be a nonem-
pty closed convex set.

(a) The recession cone Rc¢ is a closed convex cone.

(b) A vector y belongs to Rc¢ if and only if there exists a vector
x € C such that x + ay € C for all a > 0.

(¢) Rc contains a nonzero direction if and only if C' is unbounded.
(d) The recession cones of C' and ri(C') are equal.

(e) If D is another closed convex set such that C'N D # J, we have

Renp = Re N Rp.
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More generally, for any collection of closed convex sets C;, i € I,
where [ is an arbitrary index set and N;c;C; is nonempty, we
have

Rn,c;0; = NierRe;-

Proof: (a) If y1,y2 belong to R and A1, A2 are positive scalars such that
A1+ A2 =1, we have for any x € C'and a > 0

x4+ oMy + Aey2) = Az + ayr) + A2(z + ay2) € C,

where the last inclusion holds because C' is convex, and x+ ay; and z+ ays
belong to C by the definition of Rc. Hence A\iy1 + A2y2 € R, implying
that R¢ is convex.

Let y be in the closure of R¢o, and let {yx} C Rc be a sequence
converging to y. For any x € C' and o > 0 we have x + ay € C for all k,
and because C' is closed, we have x + ay € C. This implies that y € R¢
and that R¢ is closed.

(b) If y € Rc, every vector « € C has the required property by the defini-
tion of Rc. Conversely, let y be such that there exists a vector z € C' with
x4 ay € C for all « > 0. With no loss of generality, we assume that y # 0.
We fix T € C' and a > 0, and we show that T + ay € C. It is sufficient
to show that T 4+ y € C, i.e., to assume that o = 1, since the general case
where o > 0 can be reduced to the case where @ = 1 by replacing y with
y/a.
Let
zr = x + ky, k=1,2,...

and note that z; € C for all k, since z € C and y € R¢. If T = 2, for some
k, then T+y = 2+ (k+ 1)y, which belongs to C and we are done. We thus
assume that T # zj for all k, and we define

2k — T

Yk |||yH, k=1,2,...

E

so that T + yy, lies on the line that starts at T and passes through z; (see
the construction of Fig. 1.5.2).

We have
y_k:||zk—x||. 2 — T x—T :||Zk—$||_i x—T
Iyl llze =2 llze —=ll - lze =2l llze =2l Nyl e — |

Because {zj} is an unbounded sequence,

Iz — || T -7 0
|z — | ’ |2 — || ’
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Figure 1.5.2. Construction for the proof of Prop. 1.5.1(b).

so by combining the preceding relations, we have y, — y. The vector T+yy,
lies between T and zj in the line segment connecting T and zj, for all k such
that ||z — Z|| > ||ly||, so by the convexity of C, we have T + y; € C for all
sufficiently large k. Since T + yr — T + y and C is closed, it follows that
T + y must belong to C.

(¢) Assuming that C' is unbounded, we will show that R¢ contains a nonzero
direction (the reverse implication is clear). Choose any T € C and any
unbounded sequence {z;} C C. Consider the sequence {yj}, where

2L — T

Ye = 77— =m>
l[2x — ||

and let y be a limit point of {yx} (compare with the construction of Fig.
1.5.2). For any fixed o > 0, the vector T + ayy lies between T and zj in
the line segment connecting Z and z; for all k such that |z — Z|| > «a.
Hence by the convexity of C, we have T + ayy € C for all sufficiently large
k. Since T + ay is a limit point of {Z + ayi}, and C is closed, we have
T + ay € C. Hence, using also part (b), it follows that the nonzero vector
y is a direction of recession.

(d) If y € Ryj(c), then for a fixed z € ri(C) and all @ > 0, we have
z + ay € ri(C) C C. Hence, by part (b), we have y € Rc. Conversely, if
y € Re, for any x € ri(C), we have x + ay € C for all @ > 0. It follows
from the Line Segment Principle [cf. Prop. 1.4.1(a)] that « +ay € ri(C) for
all @ > 0, so that y belongs to Rj(c)-
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(e) By the definition of direction of recession, y € Rcnp implies that
x+ay € CND forall z € CND and all « > 0. By part (b), this
in turn implies that y € Rc and y € Rp, so that Rcnp C Rc N Rp.
Conversely, by the definition of direction of recession, if y € Rc N Rp and
x € CND, wehave x + ay € CN D for all @« > 0, so y € Renp. Thus,
Rc N Rp C Renp- The preceding argument can also be simply adapted
to show that Rn,_;c; = NierRe;. Q.E.D.

It is essential to assume that the set C' is closed in the above proposi-
tion. For an example where part (a) fails without this assumption, consider
the set

C= {(331,.%2) |0 <21, 0< xz} U {(0,0)}.

Its recession cone is equal to C, which is not closed. For an example where
parts (b)-(e) fail, consider the unbounded convex set

C= {(:IJ1,.T2) [0<21<1,0< .’172} U {(1,0)}.

By using the definition of direction of recession, it can be verified that C' has
no nonzero directions of recession, so parts (b) and (c) of the proposition
fail. It can also be verified that (0, 1) is a direction of recession of ri(C), so
part (d) also fails. Finally, by letting

D= {(z1,22) | -1 <21 <0,0 < 22},

it can be seen that part (e) fails as well.

Note that part (e) of the preceding proposition implies that if C' and
D are nonempty closed and convex sets such that C' C D, then Rc C Rp.
This can be seen by using part (e) to write Rc = Rcnp = Re N Rp, from
which we obtain Rc C Rp. It is essential that the sets C' and D be closed
in order for this property to hold.

Note also that part (c) of the above proposition yields a characteri-
zation of compact and convex sets, namely that a closed convex set C' is
bounded if and only if Rc = {0}. The following is a useful generalization.

Proposition 1.5.2: Let C be a nonempty closed convex subset of
R, let W be a nonempty convex compact subset of 3t™, and let A be
an m X n matrix. Consider the set

V={xeC| Az e W},
and assume that it is nonempty. Then, V is closed and convex, and
its recession cone is Rc N N(A), where N(A) is the nullspace of A.

Furthermore, V' is compact if and only if

Rc N N(A) = {0}
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Proof: We note that V = C NV, where V is the set
V={xecRr|Arc W},

which is closed and convex since it is the inverse image of the closed convex
set W under the continuous linear transformation A. Hence, V is closed
and convex.

The recession cone of V is N(A) [clearly N(A) C Rw;

v ify ¢ N(A)

but y € Ry, then for all x € V, we must have
Ax + oAy e W, Va>0,

which contradicts the boundedness of W since Ay # 0]. Hence, since
V = CnNV,V is nonempty, and the sets C and V are closed and convex,
by Prop. 1.5.1(e), the recession cone of V' is Rc N N(A). Since V is closed
and convex, by Prop. 1.5.1(c), it follows that V is compact if and only if
RcNN(A)={0}. Q.E.D.

Lineality Space

A subset of the recession cone of a convex set C' that plays an important
role in a number of interesting contexts is its lineality space, denoted by
Lc. Tt is defined as the set of directions of recession y whose opposite, —y,
are also directions of recession:

Lc=RegN (*Rc).

Thus, if y € L¢, then for every z € C, the line {x+ay | a € R} is contained
in C.

The lineality space inherits several of the properties of the recession
cone that we have shown in the preceding two propositions. We collect
these properties in the following proposition.

Proposition 1.5.3: Let C' be a nonempty closed convex subset of

Rn.
(a) The lineality space of C' is a subspace of R™.
(b) The lineality spaces of C' and ri(C) are equal.
(¢) If D is another closed convex set such that C'N D # ¢, we have

Leap = LeNLp.
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More generally, for any collection of closed convex sets C;, i € I,
where [ is an arbitrary index set and N;c;C; is nonempty, we
have

L0, = NierLe;-

(d) Let W be a convex and compact subset of ¢, and let A be an
m X n matrix. If the set

V={reC|AzeW}

is nonempty, it is closed and convex, and its lineality space is
Lo N N(A), where N(A) is the nullspace of A.

Proof: (a) Let y; and y2 belong to Lc, and let a; and «o be nonzero
scalars. We will show that a1y1 + aay2 belongs to Lo. Indeed, we have

a1y1 + aoyz = |oa|(sgn(ar)yr) + |oo|(sgn(az)y2)

(1.9)
= (laa] + laz]) (o7 + (1 — )7),
where
__lal =sgn(a)yi, Yy = sgn(az)y:
|Oél‘ + |042‘7 1 ’ 2 ’
and for a nonzero scalar s, we use the notation sgn(s) =1 or sgn(s) = —1

depending on whether s is positive or negative, respectively. We now note
that L¢ is a convex cone, being the intersection of the convex cones R¢
and —R¢. Hence, since §; and 7, belong to L¢, any positive multiple of a
convex combination of §; and 7, belongs to L¢. It follows from Eq. (1.9)
that a1y1 + agys € Le.

(b) We have
Liicy = Riicy N (—Rii(c)) = Re N (—=Re) = Le,

where the second equality follows from Prop. 1.5.1(d).

(c) We have
Lnyerc; = (Rﬁiezci) N (_Rmielci)
= (NierRe,) N (= Nier Re;,)
= Nier (Re; N (—Rc,))
= NjerLc;,

where the second equality follows from Prop. 1.5.1(e).
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(d) We have
Ly = Ry N (—Rv)

= (RcNN(A)) N ((—Rc) N N(A))
= (Rc N (—Rc)) NN(A)
=LcN N(A),
where the second equality follows from Prop. 1.5.2. Q.E.D.
Let us also prove a useful result that allows the decomposition of

a convex set along a subspace of its lineality space (possibly the entire
lineality space) and its orthogonal complement (see Fig. 1.5.3).

Proposition 1.5.4: (Decomposition of a Convex Set) Let C be
a nonempty convex subset of R”. Then, for every subspace S that is
contained in the lineality space L¢, we have

C =S+ (CnSL).

Proof: We can decompose " as the sum of the subspace S and its or-
thogonal complement S+. Let z € C, so that z = y + z for some y € S
and z € S+. Because —y € S and S C L¢, the vector —y is a direction
of recession of C, so the vector « — y, which is equal to z, belongs to C.
Thus, z € CNSL, and we have © = y + z with y € S and z € C N SL.
This shows that C' C S+ (C'n SL).

Conversely, if x € S+ (CNSL), then z = y + 2 with y € S and
z € CNSL. Thus, we have z € C. Furthermore, because S C L¢, the
vector y is a direction of recession of C', implying that y + z € C. Hence
x € C, showing that S+ (CNS+L)cC. Q.E.D.

1.5.1 Nonemptiness of Intersections of Closed Sets

The notions of recession cone and lineality space can be used to generalize
some of the fundamental properties of compact sets to closed convex sets.
One such property is that the intersection of a nested sequence of nonempty
compact sets is nonempty and compact [cf. Prop. 1.1.6(h)]. Another prop-
erty is that the image of a compact set under a linear transformation is
compact [cf. Prop. 1.1.9(d)]. These properties fail for general closed sets,
but it turns out that they hold under some assumptions involving convexity
and directions of recession.

In what follows in this section, we will generalize the properties of
compact sets just mentioned to closed convex sets. In subsequent chapters,
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Figure 1.5.3. Illustration of the decom-
position of a convex set C as

C=5+(Cnst),

where S is a subspace contained in the lin-
eality space Lo. A vector x € C is ex-
pressed as * = y + z with y € S and
z € CN St as shown.

we will translate these properties into important results relating to the ex-
istence of solutions of convex optimization problems, and to fundamental
issues in minimax theory and duality theory. For a glimpse into this con-
nection, note that the set of minimizing points of a function is equal to
the intersection of its nonempty level sets, so the question of existence of a
solution to an optimization problem reduces to a question of nonemptiness
of a set intersection.

We consider a nested sequence {C%} of nonempty closed convex sets,
and in the subsequent propositions, we will derive several alternative condi-
tions under which the intersection N2 (C is nonempty. These conditions
involve a variety of assumptions about the recession cones, the lineality
spaces, and the structure of the sets C}.

The following result makes no assumptions about the structure of the
sets C, other than closedness and convexity.

Proposition 1.5.5: Let {Cy} be a sequence of nonempty closed con-
vex subsets of " such that Cy41 C Cj for all k. Let Ry and Ly be
the recession cone and the lineality space of Cy, respectively, and let

R=N2 Ry, L= L.

Assume that
R=1L.

Then the intersection N2 ,C} is nonempty and has the form
N2 ,Ce =L+ C,

where C is some nonempty and compact set.
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Proof: Since the sets C are nested, the lineality spaces Ly are also nested
[cf. Prop. 1.5.1(e)]. Since each Ly is a subspace, it follows that for all &
sufficiently large, we have Ly = L. Thus, we may assume without loss of
generality that

Ly =1L, Y k.

We next show by contradiction that for all sufficiently large k, we
have Ry N L+ = {0}. Indeed, suppose that this is not so. Then since the
Ry, are nested [cf. Prop. 1.5.1(e)], for each k there exists some y;, € RN L+
such that |lygx|| = 1. Hence the set {y | ||y|]| = 1} N Ry N L+ is nonempty,
and since it is also compact, the intersection {y | |ly|| = 1} N (N Rx) N L+
is nonempty. This intersection is equal to {y | ||y|| = 1} N L N L+, since,
by hypothesis, we have N2 Ry = R = L. But this is a contradiction since
LN L+ ={0}. We may thus assume without loss of generality that

Rp,NLL={0}, Vk

By the Recession Cone Theorem [Prop. 1.5.1(e)], for each k, the re-
cession cone of Cy N L1 is given by

RckﬂLL :kaRLL7
and since R; 1 = L+ and R, N L+ = {0}, it follows that
RCkﬂLl - {0}, V ]f

Hence, by the Recession Cone Theorem [Prop. 1.5.1(c)], the sets C N L+
are compact, as well as nested, so that their intersection

C =2, (CrNLLY) (1.10)

is nonempty and compact, which implies in particular that the intersection
N2 ,Cr is nonempty. Furthermore, since L is the lineality space of all
the sets Cy, it is also the lineality space of N2 Cy [cf. Prop. 1.5.3(c)].
Therefore, by using the decomposition property of Prop. 1.5.4, we have

N o Cr = L+ (N2, ,Cr) N LL,
implying, by Eq. (1.10), that N2 C), = L + C, as required. Q.E.D.

Note that in the special case where N Ry = {0}, the preceding
proposition shows that the intersection N2 (C is nonempty and compact.
In fact, the proof of the proposition shows that the set C} is compact for
all sufficiently large k.

In the following two propositions, we consider the intersection of sets
that are defined, at least in part, in terms of linear and/or quadratic in-
equalities.
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Proposition 1.5.6: Let {C%} be a sequence of closed convex sub-
sets of R, and let X be a subset of R” specified by linear inequality
constraints, i.e.,

X=A{z|djz<bj,j=1,...,7}, (1.11)

where a; are vectors in R” and b; are scalars. Assume that:
(1) Ci+1 C Cy, for all k.
(2) The intersection X N C}, is nonempty for all k.

(3) We have
RxNRCL,

where Rx is the recession cone of X, and
R = N2 o R, L =N Lk,

with R and Lj denoting the recession cone and the lineality
space of C, respectively.

Then the intersection X N (ﬂz":OCk) is nonempty.

Proof: We use induction on the dimension of the set X. Suppose that the
dimension of X is 0. Then, X consists of a single point. By assumption (2),
this point belongs to X NC}, for all k£, and hence belongs to the intersection
X N (N2, Ch).

Assume that, for some | < n, the intersection X N (ﬂzC:OCk) is
nonempty for every set X of dimension less than or equal to [ that is spec-
ified by linear inequality constraints, and is such that X N C}, is nonempty
for all k and RyNR C L. Let X be of the form (1.11), be such that X NCy,
is nonempty for all k, satisfy Rx N R C L, and have dimension [ + 1. We
will show that the intersection X N (ﬂ,;";OC’k) is nonempty.

If Ly N L = Rx N R, then by Prop. 1.5.5 applied to the sets X N CY,
we have that X N (ﬂ?;OCk) is nonempty, and we are done. We may thus
assume that Lx N L # Rx N R.

Since we always have LxNL C RxNR, from the assumption RxNR C
L it follows that there exists a nonzero direction ¥ € Rx N R such that
y ¢ Lx, ie.,

Yy € Rx, -y ¢ Rx, ye L.

Using Prop. 1.5.1(e), it is seen that the recession cone of X is

Rx={ylay <0, j=1,...1},
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Figure 1.5.4. Construction used in the
induction proof of Prop. 1.5.6.

Xk \f

so the fact ¥ € Rx implies that
ayy <0, Vi=1,...,nm
while the fact —y ¢ Rx implies that the index set
J=1{jlaz<0}

is nonempty.
By assumption (2), we may select a sequence {x} such that

r, € XNCy, VEk.

We then have
ajzr < by, Vi=1,....,r, Vk.

We may assume that
asxr < by, Vied, VEk;

otherwise we can replace x with z + 7, which belongs to X N Cj (since
7€ Rx and g € L).

Suppose that for each k, we start at z; and move along —y as far as
possible without leaving the set X, up to the point where we encounter the
vector

T = x — B,
where ) is the positive scalar given by
!/
Bk = min ajmk,i_bj
i€l ajy
(see Fig. 1.5.4). Since a}y = 0 for all j ¢ J, we have a;Z) = ajjz for all
j & J, so the number of linear inequalities of X that are satisfied by T as
equalities is strictly larger than the number of those satisfied by xj. Thus,
there exists jo € J such that agofk = bj, for all k£ in an infinite index set
K c {0,1,...}. By reordering the linear inequalities if necessary, we can
assume that jo =1, i.e.,

a’lfk = by, a’lmk < by, vV kelk.



Sec. 1.5 Recession Cones 61
To apply the induction hypothesis, consider the set
X = {x | ajz = by, ajx < by, j=2,...,1}

and note that {ZTy}x C X. Since Tj, = x5, — By with 2 € Cy, and 7 € L,
we have Zj, € C}, for all k, implying that Z,, € X N C}, for all k € K. Thus,
X NCy # O for all k. Because the sets Cj are nested, so are the sets
X N Cf. Furthermore, the recession cone of X is

Ry ={ylaiy=0, afy <0, j=2,...,7},
which is contained in Rx, so that

R+sNRCRxNRCL.

Finally, to show that the dimension of X is smaller than the dimension of
X, note that the set {x | @}z = b1} contains X, so that a; is orthogonal to
the subspace S5 that is parallel to aff(X). Since a}y < 0, it follows that
7 ¢ Sx. On the other hand, 7 belongs to Sx, the subspace that is parallel
to aff (X)), since for all k, we have z, € X and zy — kY € X.

Based on the preceding, we can use the induction hypothesis to assert
that the intersection X N (ﬂ,;“;oCk) is nonempty. Since X C X, it follows
that X N (ﬂz":OCk.) is nonempty. Q.E.D.

Figure 1.5.5 illustrates the need for the assumptions of the preceding
proposition.

Proposition 1.5.7: Let {Cy} be a sequence of subsets of " given
by
Cr = {m | 2/Qx + a’x + b < wk},

where @ is a symmetric positive semidefinite n x n matrix, a is a vector
in ", b is a scalar, and {wy} is a nonincreasing scalar sequence that
converges to 0. Let also X be a subset of " of the form

X ={e|2'Qz+ajx+b; <0, j=1,...,r}, (1.12)

where (); are symmetric positive semidefinite n x n matrices, a; are
vectors in $”, and b; are scalars. Assume further that X N Cj is
nonempty for all k. Then, the intersection X N (ﬂz":OCk) is nonempty.

Proof: We note that X and all the sets C} are closed, and that by the
positive semidefiniteness of () and @, the set X and all the sets C}, are
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\
Ck+1 ék Ck+1 Ck

(a) (b)

Figure 1.5.5. Illustration of the issues regarding the nonemptiness of the inter-
section X N (ﬂgo:OCk) in Prop. 1.5.6, under the assumption Rx N R C L. Here
the intersection NP2 (Cy is equal to the left vertical line. In the figure on the

left, X is specified by linear constraints and the intersection X N (m;ozock) is
nonempty. In the figure on the right, X is specified by a nonlinear constraint,
and the intersection X N (ﬂ;":OCk) is empty.

convex [cf. Prop. 1.2.6(a)]. Furthermore, all the sets Cj have the same
recession cone R and the same lineality space L, which are given by

R={y|Qy=0, a'y <0}, L={y|Qy=0, a'y=0}.

[To see this, note that y € R if and only if z + ay € R for all x € Cj, and
a > 0, or equivalently, (x + ay)’'Q(x + ay) + o’ (z + ay) + b < wy, i.e.,

T'Qx + d'r 4+ a22'Qy + a'y) + a2y’ Qy + b < wy, Va>0,VzxeCC.

Since @ is positive semidefinite, this relation implies that y/Qy = 0 and that
y is in the nullspace of @, so that we must also have a’y < 0. Conversely,
if Qy = 0 and o’y < 0, the above relation holds and y € R.] Similarly,
the recession cone of X is

Rx ={y|Qjy=0, afy <0, j=1,...,r}.

We will prove the result by induction on the number r of quadratic
functions that define X. For r = 0, we have X N C}y = Cy, for all k, and by
our assumption that X N Cy # @, we have Cy # (J for all k. Furthermore,
since {wy, } is nonincreasing, the sets C}, are nested. If R = L, then by Prop.
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1.5.5, it follows that N2 ,Cy is nonempty and we are done, so assume that
R # L. Since we always have L C R, there exists a nonzero vector § such
that y € R while —y € R, i.e.,

Qy =0, a'y < 0.
Consider a point of the form x + ag for some x € R and « > 0. We have
(z+ay)Q(x + ay) + d'(x + af) = 2'Qx + 'z + a a'y.
Since a/y < 0, we can choose « > 0 so that
rQr+dr+ady+b<0,

and because {wy} is nonincreasing, it follows that = + oy € N2, C.

Assume that X N (ﬂzo:OCk) is nonempty whenever X is given by Eq.
(1.12) in terms of at most r convex quadratic functions and is such that
X NCY is nonempty for all k. Suppose that the set X is given by Eq. (1.12)
in terms of r + 1 convex quadratic functions. If Rx "R = Lx N L, by using
Prop. 1.5.5, we see that X N (ﬂ?:OC’k) # () and we are done, so assume
that there exists a direction ¥ such that ¥ € Rx N R but —y € Rx N R.
For any x € X, and any ¥ € Rx N R and a > 0, we have

r+ay € X,

(x +a)'Q(x + ay) + o' (v + aF) = 2'Qx + o’z + ad'y.

If -y ¢ R, ie, a'y <0, it follows that for some sufficiently large «,
Qr+dzx+ady+b<0,

implying that z + oy € NP2 Ck. Since xz + oy € X for all «, it follows
that « + oy € X N (N2,Ck). Thus, if 7 € Rx N R but =y ¢ R, then
XN (ﬁg‘;OCk) is nonempty.

Assume now that y € Rx N R and —y ¢ Rx. Then Q;y = 0 and
a’jy < 0 for all j, while a;y < 0 for at least one j. For convenience, let us
reorder the inequalities of X so that

Q;y =0, a'y =0, Vji=1,...,T, (1.13)
J J

Q7=0, dF<0, Vji=T+1,...7+]1, (1.14)

where 7 is an integer with 0 <7 < r + 1.
Consider now the set

Yz{z\x’sz+a;x+bj§(), j:l,...,?},



64 Basic Convexity Concepts Chap. 1

where X =Rnif 7=0. Since X € X and X N Cy # O for all k, the set
X NCy is nonempty for all k. Thus, by the induction hypothesis, it follows
that the intersection

Xn (mliiock)

is nonempty. Let T be a point in this set. Since * € N2 ,Cy and § € R, it
follows that for all a > 0,

T+ ag €N Ck.
Furthermore, since T € X, by Eq. (1.13), we have that for all a > 0,
(T + a¥)'Q;(T + aF) + a;(T + ay) + b; <0, Vi=1,...,T.

Finally, in view of Eq. (1.14), we can choose a sufficiently large @ > 0 so
that

@+ay)Q;@+ay) +a;T+ay)+b, <0, Vji=r+1...,r+L

The preceding three relations imply that T+ay € XN (ﬁz‘;OCk), showing
that X N (ﬂzozoCk) is nonempty. Q.E.D.

Note that it is essential to require that {wy} is convergent in Prop.
1.5.7. As an example, consider the subsets of R2 given by

XZ{(1‘1,1‘2)|$%§$2}, C’k:{(xl,xg)\xlg—k:}, k=0,1,...

Then all the assumptions of Prop. 1.5.7 are satisfied, except that the right-
hand side, —k, of the quadratic inequality that defines C}, does not converge
to a scalar. It can be seen that the intersection X N (N3°,Cy) is empty,
since N2 ,C}, is empty.

1.5.2 Closedness Under Linear Transformations

The conditions just obtained regarding the nonemptiness of the intersection
of a sequence of closed convex sets can be translated to conditions guaran-
teeing the closedness of the image, AC, of a closed convex set C' under a
linear transformation A. This is the subject of the following proposition.
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Proposition 1.5.8: Let C' be a nonempty closed convex subset of
R, and let A be an m X n matrix with nullspace denoted by N(A).

(a) If Re N N(A) C L¢, then the set AC is closed.

(b) Let X be a nonempty subset of R™ specified by linear inequality
constraints, i.e.,

X={z|adjz<bj,j=1,...,r},
where a; are vectors in ™ and b; are scalars. If
Rx ﬂRcﬂN(A) C Lo,

then the set A(X N C) is closed.

(¢) Let C be specified by convex quadratic inequalities, i.e.,
C= {x|x’ij+a;-x+bj <0,j=1,...,r},

where (Q; are symmetric positive semidefinite n x n matrices, a;
are vectors in 7, and b; are scalars. Then the set A C is closed.

Proof: (a) Let {yx} be a sequence of points in AC converging to some
y € }». We will prove that A C is closed by showing that 7 € AC.
We introduce the sets

Wi = {z[llz =3l < llyr — 3ll},
and

Ck={1'€C|A$€Wk}

(see Fig. 1.5.6). To show that § € AC, it is sufficient to prove that the
intersection N2 ,C% is nonempty, since every T € N2 ,C}, satisfies T € C
and AT =7 (because yx — 7). To show that N2 C}, is nonempty, we will
use Prop. 1.5.5.

Each set C}, is nonempty (since y, € AC and y, € Wy), and it is
convex and closed by Prop. 1.5.2. By taking an appropriate subsequence if
necessary, we may assume that the sets Cy are nested. It can be seen that
all C} have the same recession cone, denoted by R, and the same lineality
space, denoted by L, which by Props. 1.5.2 and 1.5.3(d), are given by

R=RcNN(A), L=LcnN(A). (1.15)

Since Rc N N(A) C L¢, we have Rc N N(A) C Le N N(A), and in
view of the relation LocNN(A) C ReNN(A), which always holds, it follows
that

RcﬁN(A) ZLcﬂN(A).
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S
_ C Figure 1.5.6. Construction used in the
X Ck proof of Prop. 1.5.8(a). Here A is the
projection on the horizontal axis of points
in the plane.
Y| Yk+ |yk
T —
Wy |
AC

This relation and Eq. (1.15) imply that R = L, so that by Prop. 1.5.5, the
intersection N2 ,C} is nonempty.

(b) We use a similar argument to the one used for part (a), except that
we assume that {yx} C A(X N C), and we use Prop. 1.5.6 to show that
XN (ﬂi":OCk) is nonempty.

Let Wy, and Cj be defined as in part (a). By our choice of {yx}, the
sets C}, are nested, so that assumption (1) of Prop. 1.5.6 is satisfied. Since
yr € A(XNC) and y, € Wy, it follows that X N Cy is nonempty for all k.
Thus assumption (2) of Prop. 1.5.6 is also satisfied.

Since Rx N Rce N N(A) C L¢, we also have

Rx NRcNN(A) C LeNN(A).

In view of this relation and Eq. (1.15), it follows that Rx N R C L, thus
implying that assumption (3) of Prop. 1.5.6 is satisfied. Therefore, by
applying Prop. 1.5.6 to the sets X N C}, we see that the intersection X N
(ﬁ?;OCk) is nonempty. Every point in this intersection is such that x € X
and z € C with Az = 7, showing that g € A(X NC).

(c) Similar to part (a), we let {yx} be a sequence in A C' converging to some
7 € N7, We will show that 7 € AC. We let

Ce = {z | Az =7l < llyr — 7112},
or equivalently
Cr = {z | o' A Az — 2(Ag)z + [[7]1? < |y — 712}
Thus, Ck has the form given in Prop. 1.5.7, with

Q = A/Av a = —214/?7 b= H?HQ» Wg = Hyk —§H27
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Figure 1.5.7. Tllustration of the need to assume that the set X is specified by
linear inequalities in Prop. 1.5.8(b). In both examples shown, the matrix A is
the projection onto the horizontal axis, and its nullspace is the vertical axis. The
condition Rx N Rc N N(A) C L¢ is satisfied. However, in the example on the
right, X is not specified by linear inequalities, and the set A(X NC) is not closed.

and wy — 0. By applying Prop. 1.5.7, with X = C, we see that the
intersection X N (ﬂzonCk) is nonempty. For any z in this intersection,
we have x € C and Az = 7 (since y — 7), showing that 7 € AC, and
implying that A C is closed. Q.E.D.

Figure 1.5.7 illustrates the need for the assumptions of part (b) of the
preceding proposition. Part (a) of the proposition implies that if

Rc N N(A) = {0},

i.e., there is no nonzero direction of recession of C' that lies in the nullspace
of A, then A C is closed. This fact can be applied to obtain conditions that
guarantee the closedness of the vector sum of closed convex sets. The idea
is that the vector sum of a finite number of sets can be viewed as the image
of their Cartesian product under a special type of linear transformation, as
can be seen from the proof of the following proposition.

Proposition 1.5.9: Let C4,...,C,, be nonempty closed convex sub-
sets of R™ such that the equality y1 + -+ + ym = 0 for some vectors
yi € R, implies that y; = 0 for all7 =1,...,m. Then the vector sum
Ci+---+ C,y, is a closed set.

Proof: Let C be the Cartesian product C7 X --- x C,, viewed as a sub-
set of #mn and let A be the linear transformation that maps a vector
(z1,...,Tm) € R™" into 1 + - -+ + &p,. Then it can be verified that C is
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closed and convex [see Exercise 1.37(a)]. We have

Rc =Re, X -+ X Re,,
[see Exercise 1.37(c)] and

N(A) = {1, ym) [ 1+ +ym =0, yi € R"},

so under the given condition, we obtain Rc N N(A) = {0}. Since AC =
Ci + - -+ + C,, the result follows from Prop. 1.5.8(a). Q.E.D.

When specialized to just two sets, the above proposition implies that
if C; and —C4 are closed convex sets, then C; — C3 is closed if there is no
common nonzero direction of recession of C7 and Ca, i.e.

Rcl n R02 = {0}

This result can be generalized by using Prop. 1.5.8(a). In particular, by
using the argument of Prop. 1.5.9, we can show that if C; and Cs are closed
convex sets, the set C7 — C5 is closed if

R01 n R02 = Lcl N LCQ

(see Exercise 1.43).

Some other conditions asserting the closedness of vector sums can be
derived from Prop. 1.5.8. For example, by applying Prop. 1.5.8(b), we can
show that if X is specified by linear inequality constraints, and C'is a closed
convex set, then X + C' is closed if every direction of recession of X whose
opposite is a direction of recession of C' lies also in the lineality space of
C. Furthermore, if the sets Ci,...,Cy,, are specified by convex quadratic
inequalities as in Prop. 1.5.8(c), then, similar to Prop. 1.5.9, we can show
that the vector sum Ci + - - + Cyy, is closed (see Exercise 1.44).

As an illustration of the need for the assumptions of Prop. 1.5.9,
consider the example of Fig. 1.4.4, where C1 and Csy are closed sets, but
C1 + Cs is not closed. In this example, the set C; has a nonzero direction
of recession, which is the opposite of a direction of recession of Cs.

NOTES, SOURCES, AND EXERCISES

Among early classical works on convexity, we mention Caratheodory [Carl1],
Minkowski [Minll1], and Steinitz [Stel3], [Steld], [Stel6]. In particular,
Caratheodory gave the theorem on convex hulls that carries his name,
while Steinitz developed the theory of relative interiors and recession cones.
Minkowski is credited with initiating the theory of hyperplane separation
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of convex sets and the theory of support functions (a precursor to conju-
gate convex functions). Furthermore, Minkowski and Farkas (whose work,
published in Hungarian, spans a 30-year period starting around 1894), are
credited with laying the foundations of polyhedral convexity.

The work of Fenchel was instrumental in launching the modern era
of convex analysis, when the subject came to a sharp focus thanks to its
rich applications in optimization and game theory. In his 1951 lecture notes
[Fen51], Fenchel laid the foundations of convex duality theory, and together
with related works by von Neumann [Neu28], [Neu37] on saddle points and
game theory, and Kuhn and Tucker on nonlinear programming [KuT51],
inspired much subsequent work on convexity and its connections with op-
timization. Furthermore, Fenchel introduced several of the topics that are
fundamental in our exposition, such as the theory of subdifferentiability
and the theory of conjugate convex functions.

There are several books that relate to both convex analysis and op-
timization. The book by Rockafellar [Roc70], widely viewed as the classic
convex analysis text, contains a detailed development of convexity and
convex optimization (it does not cross over into nonconvex optimization).
The book by Rockafellar and Wets [RoW98] is an extensive treatment of
“variational analysis,” a broad spectrum of topics that integrate classical
analysis, convexity, and optimization of both convex and nonconvex (possi-
bly nonsmooth) functions. The normal cone, introduced by Mordukhovich
[Mor76] and discussed in Chapter 4, and the work of Clarke on nonsmooth
analysis [Cla83] play a central role in this subject.

Among other books with detailed accounts of convexity and opti-
mization, Stoer and Witzgall [StW70] discuss similar topics as Rockafellar
[Roc70] but less comprehensively. Ekeland and Temam [EkT76] develop
the subject in infinite dimensional spaces. Hiriart-Urruty and Lemarechal
[HiL93] emphasize algorithms for dual and nondifferentiable optimization.
Rockafellar [Roc84] focuses on convexity and duality in network optimiza-
tion, and an important generalization, called monotropic programming.
Bertsekas [Ber98] also gives a detailed coverage of this material, which owes
much to the early work of Minty [Min60] on network optimization. Bon-
nans and Shapiro [BoS00] emphasize sensitivity analysis and discuss infinite
dimensional problems as well. Borwein and Lewis [BoL00] develop many of
the concepts in Rockafellar and Wets [RoW98], but more succinctly. Schri-
jver [Sch86] provides an extensive account of polyhedral convexity with
applications to integer programming and combinatorial optimization, and
gives many historical references. Ben-Tal and Nemirovski [BeNO01] focus
on conic and semidefinite programming. Auslender and Teboulle [AuT03]
emphasize the question of existence of solutions for convex as well as non-
convex optimization problems, and associated issues in duality theory and
variational inequalities. Finally, let us note a few books that focus pri-
marily on the geometry and other properties of convex sets, but have lim-
ited connection with duality, game theory, and optimization: Bonnesen
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and Fenchel [BoF34], Eggleston [Eggh8], Grunbaum [Gru67], Klee [Kle63],
Valentine [Val64], Webster [Web94], and Barvinok [Bar02].

The development of this chapter mostly follows well-established lines.
The only exception are the conditions guaranteeing the nonemptiness of a
closed set intersection and the closedness of the image of a closed con-
vex set under a linear transformation (Props. 1.5.5-1.5.8). The associated
line of analysis, together with its use in minimax theory and duality the-
ory in subsequent chapters (Sections 2.3, 2.6, and 6.5), have not received
much attention, and are largely new (Nedi¢ and Bertsekas [NeB02]; see also
Bertsekas and Tseng [BeT06]). Our Props. 1.5.5 and 1.5.6 are new in the
level of generality given here. Our Prop. 1.5.7 is due to Luo (see Luo and
Zhang [LuZ99]). A generalization of this result to nonquadratic functions
is given in Exercise 2.7 of Chapter 2 (see the material on bidirectionally flat
functions). Our Prop. 1.5.6 may be derived from a special form of Helly’s
Theorem (Th. 21.5 in Rockafellar [Roc70], which deals with the intersec-
tion of a possibly uncountable family of sets; see also Rockafellar [Roc65]).
Our induction proof of Prop. 1.5.6 is more elementary, and relies on our
assumption that the family of sets is countable, which is sufficient for the
analyses of this book. We note that the history and range of applications of
Helly’s Theorem are discussed, among others, by Danzer, Grunbaum, and
Klee [DGK63], and Valentine [Val63], [Val64]. The use of recession cones
in proving refined versions of Helly’s Theorem and closedness of images of
sets under a linear transformation was first studied by Fenchel [Fen51].

EXERCISES

1.1

Let C' be a nonempty subset of ", and let A\; and A2 be positive scalars. Show
that if C' is convex, then (A1 + A2)C = A\ C + X\2C [cf. Prop. 1.2.1(c)]. Show by
example that this need not be true when C' is not convex.

1.2 (Properties of Cones)

Show that:
(a) The intersection N;crC; of a collection {C; | i € I} of cones is a cone.
(b) The Cartesian product Cq x Cs of two cones C1 and C? is a cone.
(¢) The vector sum Cy + C> of two cones Cq and C> is a cone.
)

(d) The closure of a cone is a cone.
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) The image and the inverse image of a cone under a linear transformation
is a cone.

(Lower Semicontinuity under Composition)

) Let f: R" — R™ be a continuous function and g : R™ +— R be a lower
semicontinuous function. Show that the function h defined by h(z) =
g(f(w)) is lower semicontinuous.

) Let f : R™ — R be a lower semicontinuous function, and g : ® — R be
a lower semicontinuous and monotonically nondecreasing function. Show
that the function h defined by h(z) = g(f(x)) is lower semicontinuous.
Give an example showing that the monotonic nondecrease assumption is
essential.

(Convexity under Composition)

C be a nonempty convex subset of R".

) Let f : C — % be a convex function, and ¢g : ® — R be a function
that is convex and monotonically nondecreasing over a convex set that
contains the set of values that f can take, {f(:v) |z € C’}. Show that the

function h defined by h(z) = g(f(m)) is convex over C. In addition, if g is
monotonically increasing and f is strictly convex, then h is strictly convex.

) Let f = (f1,...,fm), where each f; : C — R is a convex function, and let
g: 1™ — RN be a function that is convex and monotonically nondecreasing
over a convex set that contains the set {f(x) | z € C’}, in the sense that
for all w, @ in this set such that v < @, we have g(u) < g(@). Show that the
function h defined by h(z) = g(f(a;)) is convex over C.

(Examples of Convex Functions)

Show that the following functions from " to (—oo, 0] are convex:

(a

(f

)

1
fl(l‘l,-..,In) = {_($1$2"'$n)n ife1 >0,...,2, >0,
00 otherwise.

(z)
(x)
fa(z) = ﬁ, where f is concave and f(z) is a positive number for all z.
(z)
e

/ . oy . . . .
) fo(z) = €% A% where A is a positive semidefinite symmetric n x n matrix
and (3 is a positive scalar.
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(g) fr(x) = f(Az +b), where f : R™ — R is a convex function, A is an m x n
matrix, and b is a vector in R™.

1.6 (Ascent/Descent Behavior of a Convex Function)

Let f: R +— R be a convex function.

(a) (Monotropic Property) Use the definition of convexity to show that f is
“turning upwards” in the sense that if z1, z2, z3 are three scalars such that

1 < 22 < x3, then
fx2) = f(z1) _ flas) = fla2)

To — X1 - T3 — X2

(b) Use part (a) to show that there are four possibilities as x increases to oco:
(1) f(z) decreases monotonically to —oo, (2) f(z) decreases monotonically
to a finite value, (3) f(x) reaches some value and stays at that value, (4)
f(x) increases monotonically to co when z > T for some T € R.

1.7 (Characterization of Differentiable Convex Functions)

Let f : R" — R be a differentiable function. Show that f is convex over a
nonempty convex set C' if and only if

!
(Vi@) - Vi) (@-y) >0, VazyeCl
Note: The condition above says that the function f, restricted to the line segment
connecting x and y, has monotonically nondecreasing gradient.

1.8 (Characterization of Twice Continuously Differentiable
Convex Functions)

Let C' be a nonempty convex subset of R” and let f : R" — R be twice continu-
ously differentiable over R". Let S be the subspace that is parallel to the affine
hull of C. Show that f is convex over C if and only if ¥'V?f(x)y > 0 for all
z € C and y € S. [In particular, when C has nonempty interior, f is convex over
C if and only if V?f(x) is positive semidefinite for all z € C.]

1.9 (Strong Convexity)

Let f: R"™ — R be a differentiable function. We say that f is strongly convex
with coefficient « if

!/ n
(Vi) = Vi) (@—y) >alz—yl*, VazyeR", (1.16)
where « is some positive scalar.
(a) Show that if f is strongly convex with coefficient a, then f is strictly convex.

(b) Assume that f is twice continuously differentiable. Show that strong con-
vexity of f with coefficient « is equivalent to the positive semidefiniteness
of V2f(z) — oI for every x € R™, where T is the identity matrix.
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1.10 (Posynomials)

A posynomial is a function of positive scalar variables y1, ..., y, of the form
m
91, syn) = Y By,
i=1

where a;; and (3; are scalars, such that 8; > 0 for all i. Show the following:
(a) A posynomial need not be convex.

(b) By a logarithmic change of variables, where we set
f(m):ln(g(yl,...,yn)), b, =Inpg;, Vi, x; =Iny;, V7,
we obtain a convex function
f(z) =Inexp(Az +b), VzeR",

where exp(z) = €1 + .-+ ¢e*™ for all z € R™, A is an m X n matrix with
entries a;j, and b € R™ is a vector with components b;.

(c¢) Every function g : ®" — R of the form

gW) =g ()" g ()™

)

where gi is a posynomial and ~; > 0 for all k£, can be transformed by a
logarithmic change of variables into a convex function f given by

f(@) = e Inexp(Ag + by),

k=1

with the matrix Ax and the vector by being associated with the posynomial
gi, for each k.

1.11 (Arithmetic-Geometric Mean Inequality)

Show that if aq, ..., a, are positive scalars with Z?Zl a; = 1, then for every set
of positive scalars x1,...,z,, we have

2lzy? - ap™ < arx + aswa + -+ A,
with equality if and only if x1 = 22 = -+ = x,,. Hint: Show that —Inz is a

strictly convex function on (0, 00).
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1.12 (Young and Holder Inequalities)

Use the result of Exercise 1.11 to verify Young’s inequality

D q
<= +L, Va0, vy>0,
p q
where p > 0, ¢ > 0, and
l/p+1/g=1.

Then, use Young’s inequality to verify Holder’s inequality
n n 1/p n 1/q
D lwayil < <Z |:c> <Z |y1-|q> :
i=1 i=1 i=1

1.13

Let C' be a nonempty convex set in R"™*, and let f : ®™ +— [—00, 0] be the
function defined by

f(ac):inf{w| (x,w)eC’}, zeR".

Show that f is convex.

1.14

Show that the convex hull of a nonempty set coincides with the set of all convex
combinations of its elements.

1.15

Let C be a nonempty convex subset of R". Show that
cone(C) = Uzec{yz | v > 0}.

1.16 (Convex Cones)

Show that:

(a) For any collection of vectors {a; | i € I}, the set C = {z | ajo < 0,7 € I}
is a closed convex cone.

(b) A cone C is convex if and only if C+ C C C.
(¢) For any two convex cones C7 and C> containing the origin, we have
C1 4+ Cy = conv(Cy U Ca),
CinNnCy = U (OéC1 N (1 — a)Cz).

a€[0,1]
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1.17

Let {C; | i € I} be an arbitrary collection of convex sets in R", and let C' be the
convex hull of the union of the collection. Show that

C = U ZOQCZ Zai:1,a¢ZO,Vi€7 s

Ici, T: finite set icT ieT

i.e., the convex hull of the union of the C; is equal to the set of all convex
combinations of vectors from the C;.

1.18 (Convex Hulls, Affine Hulls, and Generated Cones)

Let X be a nonempty set. Show that:
(a) X, conv(X), and cl(X) have the same affine hull.
(b) cone(X) = cone(conv(X)).

(c) aff (conv(X ))C aff (cone(X )) Give an example where the inclusion is
strict, i.e., aﬁ(conv(X)) is a strict subset of aﬁ(cone(X)).

(d) If the origin belongs to conv(X), then aff (conv(X)) = aff (cone(X)).
1.19

Let {f; | ¢ € I} be an arbitrary collection of proper convex functions f; : R" —
(—00, 00]. Define

f(x) = inf {w | (z,w) € conv(UieIepi(fi))} , xzeR".
Show that f(z) is given by
flx) = inf{zaz‘fi(ﬂfi) ‘ Zaixi =z, z; e R", Zai =1, ;>0 Viel,
il i€l icl

IcI, T: ﬁnite}.

1.20 (Convexification of Nonconvex Functions)

Let X be a nonempty subset of " and let f : X — R be a function that is
bounded below over X. Define the function F : conv(X) — R by

F(z) = inf{w | (z,w) € conv(epi(f))}.
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Show that:

(a) F is convex over conv(X) and it is given by

F(z) = inf Zaif(xi)‘Zaixi:x,xieX,Zai:LaizO,Vi ,

where the infimum is taken over all representations of x as a convex com-
bination of elements of X (i.e., with finitely many nonzero coefficients «;).

(b)
inf  F(x)= inf f(z).

zE€conv(X) zeX

(c) Every z* € X that attains the minimum of f over X, ie., f(z*) =
infzex f(x), also attains the minimum of F over conv(X).

1.21 (Minimization of Linear Functions)

Show that minimization of a linear function over a set is equivalent to minimiza-
tion over its convex hull. In particular, if X C R" and ¢ € R", then

. / . /
inf cx=inf cx.

zEconv(X) zeX

Furthermore, the infimum in the left-hand side above is attained if and only if
the infimum in the right-hand side is attained.

1.22 (Extension of Caratheodory’s Theorem)

Let X1 and X»> be nonempty subsets of R", and let X = conv(X1) + cone(X2).
Show that every vector x in X can be represented in the form

k m
ng QT + E Qi
i=1

i=k+1

where m is a positive integer with m < n+1, the vectors z1, ...,z belong to X1,
the vectors yx+1, ..., ym belong to X2, and the scalars a1, . . ., am, are nonnegative
with ag +- - -4+ ar = 1. Furthermore, the vectors x2 —x1,..., Tk —T1, Yk+1s-- -, Ym

are linearly independent.

1.23

Let X be a nonempty bounded subset of . Show that
cl (conv(X)) = conv (cl(X)) .

In particular, if X is compact, then conv(X) is compact (cf. Prop. 1.3.2).
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1.24 (Radon’s Theorem)

Let z1,...,2m,m be vectors in R", where m > n + 2. Show that there exists a
partition of the index set {1,...,m} into two disjoint sets I and J such that

conv({xi i€ I}) ﬂconv({zj |j e J}) # 0.

Hint: The system of n + 1 equations in the m unknowns \1,..., Am,

Z)\imizo, Z)\izo,
=1 =1
has a nonzero solution A*. Let I = {i | A7 > 0} and J = {j | A\] < 0}.

1.25 (Helly’s Theorem [Hel21])

Consider a finite collection of convex subsets of ", and assume that the inter-
section of every subcollection of n + 1 (or fewer) sets has nonempty intersection.
Show that the entire collection has nonempty intersection. Hint: Use induction.
Assume that the conclusion holds for every collection of M sets, where M > n+1,
and show that the conclusion holds for every collection of M + 1 sets. In par-
ticular, let C4,...,Crpy1 be a collection of M + 1 convex sets, and consider the
collection of M + 1 sets Bi,..., Bymy1, where

Bj =Nj=1,.., M+1’Ci’ j=1...,M+1.

Note that, by the induction hypothesis, each set B; is the intersection of a collec-
tion of M sets that have the property that every subcollection of n+1 (or fewer)
sets has nonempty intersection. Hence each set Bj is nonempty. Let z; be a vec-
tor in B;. Apply Radon’s Theorem (Exercise 1.24) to the vectors z1,...,Zum+1.
Show that any vector in the intersection of the corresponding convex hulls belongs
to the intersection of C1,...,Crr41.

1.26

Consider the problem of minimizing over R" the function

max{ fi(z),..., fu(z)},

where f; : R" — (—o00,00], i = 1,..., M, are convex functions, and assume that
the optimal value, denoted f*, is finite. Show that there exists a subset I of
{1,..., M}, containing no more than n + 1 indices, such that

inf {maxfi(m)} = f~.

zeERMT el

Hint: Consider the convex sets X; = {m | fi(z) < f*}, argue by contradiction,
and apply Helly’s Theorem (Exercise 1.25).
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1.27

Let C be a nonempty convex subset of ®", and let f : " — (—o0, 0] be a convex
function such that f(x) is finite for all z € C. Show that if for some scalar v, we
have f(x) >~ for all z € C, then we also have f(z) > ~ for all z € cl(C).

1.28

Let C be a nonempty convex set, and let S be the subspace that is parallel to
the affine hull of C. Show that

ri(C) = int(C' + SH) N C.

1.29

Let xo,...,Tm be vectors in R™ such that z1 — xo,...,xm — To are linearly
independent. The convex hull of zo,...,x,, is called an m-dimensional simplez,
and xo,...,ZTm are called the vertices of the simplex.

(a) Show that the dimension of a convex set is the maximum of the dimensions
of all the simplices contained in the set.

(b) Use part (a) to show that a nonempty convex set has a nonempty relative
interior.

1.30

Let C1 and C3 be two nonempty convex sets such that Cy C Cs.
(a) Give an example showing that ri(C1) need not be a subset of ri(Cb).

(b) Assuming that the sets C1 and C3 have the same affine hull, show that
ri(C1) C ri(Ca).

(c) Assuming that the sets ri(C1) and ri(C2) have nonempty intersection, show
that ri(C1) C ri(Cs).

(d) Assuming that the sets C; and ri(C:) have nonempty intersection, show
that the set ri(C1) Nri(C2) is nonempty.

1.31

Let C be a nonempty convex set.

(a) Show the following refinement of Prop. 1.4.1(c): x € ri(C) if and only if for
every T € aff(C'), there exists a v > 1 such that x + (y — 1)(z — ) € C.

(b) Assuming that the origin lies in ri(C), show that cone(C) coincides with
aff (C).



Sec. 1.6 Notes, Sources, and Exercises 79

(c) Show the following extension of part (b) to a nonconvex set: If X is a
nonempty set such that the origin lies in the relative interior of conv(X),
then cone(X) coincides with aff (X).

1.32

Let C be a nonempty set.

(a) If C is convex and compact, and the origin is not in the relative boundary
of C, then cone(C) is closed.

(b) Give examples showing that the assertion of part (a) fails if C' is unbounded
or the origin is in the relative boundary of C.

(¢) If C is compact and the origin is not in the relative boundary of conv(C),
then cone(C) is closed. Hint: Use part (a) and Exercise 1.18(b).

1.33

(a) Let C be a nonempty convex cone. Show that ri(C) is also a convex cone.

(b) Let C = cone({aﬁl7 e ,xm}). Show that

ri(C’) = {Z QT4

a; >0, i=1,...,m}.

1.34

Let A be an m x n matrix and let C' be a nonempty convex set in ™. Assuming
that A™' - 1i(C) is nonempty, show that

(A7 C) = A7 ri(0), (A7 0)=A""-cl(O).

(Compare these relations with those of Prop. 1.4.4.)

1.35 (Closure of a Convex Function)

Consider a proper convex function f : " +— (—o00,00] and the function whose
epigraph is the closure of the epigraph of f. This function is called the closure
of f and is denoted by cl f. Show that:

(a) clf is the greatest lower semicontinuous function majorized by f, i.e., if
g: R"® — [—00,00] is lower semicontinuous and satisfies g(z) < f(z) for all
z € R", then g(z) < (clf)(z) for all z € R".

(b) clf is a closed proper convex function and

(cl f)(z) = f(x), Ve ri(dom(f)).
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(c) fz e ri(dom(f)) and y € dom(cl f), we have

(e f)y) = gfgf(y +a(z —y)).

(d) Assume that f = fi + -+ fm, where f; : R" — (—o0,00], i =1,...,m,
are proper convex functions such that Nj;ri (dom( fz)) # (. Show that

(clf)(@) = (lf1)(@) + -+ (cl fm)(z), VazeR"

1.36

Let C be a convex set and let M be an affine set such that the intersection
cl(C) N M is nonempty and bounded. Show that for every affine set M that is
parallel to M, the intersection C' N M is bounded.

1.37 (Properties of Cartesian Products)

Given nonempty sets X; C R", i =1,...,m, let X = X3 X --- X X, be their
Cartesian product. Show that:

(a) The convex hull (closure, affine hull) of X is equal to the Cartesian product
of the convex hulls (closures, affine hulls, respectively) of the X;.

(b) If all the sets X1, ..., X,, contain the origin, then
cone(X) = cone(X1) X + -+ x cone(X,,).

Furthermore, the result fails if one of the sets does not contain the origin.

(c) If all the sets X1,...,X,, are convex, then the relative interior (recession
cone) of X is equal to the Cartesian product of the relative interiors (re-
cession cones, respectively) of the Xj.

1.38 (Recession Cones of Nonclosed Sets)

Let C be a nonempty convex set.
(a) Show that
Rc C Raey, cl(Rc) C Reycy-
Give an example where the inclusion cl(Rc) C Re(c is strict.

(b) Let C be a closed convex set such that C C C. Show that Rc C Rg. Give
an example showing that the inclusion can fail if C is not closed.
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1.39 (Recession Cones of Relative Interiors)

Let C be a nonempty convex set.
(a) Show that Rri(C) = Rcl(C)-

(b) Show that a vector y belongs to Ry if and only if there exists a vector
z € ri(C) such that z + ay € ri(C) for every o > 0.

(c) Let C be a convex set such that C = ri(C) and C c C. Show that Rc C
Rg. Give an example showing that the inclusion can fail if C' # ri(C).

1.40
This exercise is a refinement of Prop. 1.5.6. Let {X} and {Ci} be sequences of
closed convex subsets of 1", such that the intersection
X =Nz Xk
is specified by linear inequality constraints as in Prop. 1.5.6. Assume that:
(1) Xwk+1 C X and Cr41 C Cy, for all k.
(2) Xi N Cy is nonempty for all k.

(3) We have
Rx = Lx, Rx NRc C Le,
where
RX = mzoZORka LX = ﬂzo:OLXk7
RC - ﬂzO:ORCk7 LC - sz:OLCk-

Then the intersection NyZo(Xy; N Cy) is nonempty. Hint: Consider the sets
Cr = Xi N C and the intersection X N (N52,C%). Apply Prop. 1.5.6.

1.41
Let C be a nonempty convex subset of " and let A be an m X n matrix. Show
that if Rcl(C) n N(A) = {0}, then

Cl(A . C) =A- CI(C), A- Rcl(C) = RA'CI(C)'

Give an example showing that A - Rcyc) and Ra.cic) may differ when Reyc) N
N(A) £ {0},

1.42

Let C be a nonempty convex subset of R". Show the following refinement of
Prop. 1.5.8(a) and Exercise 1.41: if A is an m x n matrix and Reycy N N(A) is a
subspace of the lineality space of cl(C), then

cl(A-C)=A-cl(C), A Raey = Raao)-
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1.43 (Recession Cones of Vector Sums)

This exercise is a refinement of Prop. 1.5.9.

(a) Let C1,...,Cy be nonempty closed convex subsets of R" such that the
equality y1 + -+ + ym = 0 with y; € R¢, implies that each y; belongs to
the lineality space of C;. Then, the vector sum Cy + --- + C,, is a closed
set and

Rey . vom = Rey + -+ Roy, -

(b) Show the following extension of part (a) to nonclosed sets: Let C1,...,Cn
be nonempty convex subsets of ™ such that the equality y1 +- -+ ym =0
with y; € Rec,) implies that each y; belongs to the lineality space of
cl(Cs). Then, we have

c(Cr+ - 4+ Cn)=cl(Cr) + -+ 4+ cl(Cr),

Raoy 4-+0m) = Beoy) + -+ Raom)-

1.44

Let C4, ..., Cy be nonempty subsets of R™ that are specified by convex quadratic
inequalities, i.e., for all i =1,...,n,

C;, = {ZB | x'Qijx—l—a;ja:—i—bij <0, 5= 1,...,7‘1‘},

where @);; are symmetric positive semidefinite n X n matrices, a;; are vectors in
R", and b;; are scalars. Show that the vector sum Ci + - - - + Ch, is a closed set.

1.45 (Set Intersection and Helly’s Theorem)

Show that the conclusions of Props. 1.5.5 and 1.5.6 hold if the assumption that
the sets C are nonempty and nested is replaced by the weaker assumption that
any subcollection of n + 1 (or fewer) sets from the sequence {Cx} has nonempty
intersection. Hint: Consider the sets C' given by

Cr=n,Ci;, Vk=1,2,...,

and use Helly’s Theorem (Exercise 1.25) to show that they are nonempty.
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