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Preface

This book aims at an accessible, concise, and intuitive exposition of two
related subjects that find broad practical application:

(a) Convex analysis, particularly as it relates to optimization.

(b) Duality theory for optimization and minimax problems, mainly within
a convexity framework.

The focus on optimization is to derive conditions for existence of primal
and dual optimal solutions for constrained problems such as

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r.

Other types of optimization problems, such as those arising in Fenchel
duality, are also part of our scope. The focus on minimax is to derive
conditions guaranteeing the equality

inf
x∈X

sup
z∈Z

φ(x, z) = sup
z∈Z

inf
x∈X

φ(x, z),

and the attainment of the “inf” and the “sup.”
The treatment of convexity theory is fairly detailed. It touches upon

nearly all major aspects of the subject, and it is sufficient for the devel-
opment of the core analytical issues of convex optimization. The mathe-
matical prerequisites are a first course in linear algebra and a first course
in real analysis. A summary of the relevant material is provided in an
appendix. Prior knowledge of linear and nonlinear optimization theory is
not assumed, although it will undoubtedly be helpful in providing context
and perspective. Other than this modest background, the development is
self-contained, with rigorous proofs provided throughout.

We have aimed at a unified development of the strongest possible
forms of duality with the most economic use of convexity theory. To this
end, our analysis often departs from the lines of Rockafellar’s classic 1970
book and other books that followed the Fenchel/Rockafellar formalism. For
example, we treat differently closed set intersection theory and preserva-
tion of closure under linear transformations (Sections 1.4.2 and 1.4.3); we
develop subdifferential calculus by using constrained optimization duality
(Section 5.4.2); and we do not rely on concepts such as infimal convolu-
tion, image, polar sets and functions, bifunctions, and conjugate saddle
functions. Perhaps our greatest departure is in duality theory itself: sim-
ilar to Fenchel/Rockafellar, our development rests on Legendre/Fenchel
conjugacy ideas, but is far more geometrical and visually intuitive.

vii



viii Preface

Our duality framework is based on two simple geometrical problems:
the min common point problem and the max crossing point problem. The
salient feature of the min common/max crossing (MC/MC) framework is its
highly visual geometry, through which all the core issues of duality theory
become apparent and can be analyzed in a unified way. Our approach is to
obtain a handful of broadly applicable theorems within the MC/MC frame-
work, and then specialize them to particular types of problems (constrained
optimization, Fenchel duality, minimax problems, etc). We address all du-
ality questions (existence of duality gap, existence of dual optimal solutions,
structure of the dual optimal solution set), and other issues (subdifferential
theory, theorems of the alternative, duality gap estimates) in this way.

Fundamentally, the MC/MC framework is closely connected to the
conjugacy framework, and owes its power and generality to this connec-
tion. However, the two frameworks offer complementary starting points
for analysis and provide alternative views of the geometric foundation
of duality: conjugacy emphasizes functional/algebraic descriptions, while
MC/MC emphasizes set/epigraph descriptions. The MC/MC framework is
simpler, and seems better suited for visualizing and investigating questions
of strong duality and existence of dual optimal solutions. The conjugacy
framework, with its emphasis on functional descriptions, is more suitable
when mathematical operations on convex functions are involved, and the
calculus of conjugate functions can be brought to bear for analysis or com-
putation.

The book evolved from the earlier book of the author [BNO03] on
the subject (coauthored with A. Nedić and A. Ozdaglar), but has different
character and objectives. The 2003 book was quite extensive, was struc-
tured (at least in part) as a research monograph, and aimed to bridge the
gap between convex and nonconvex optimization using concepts of non-
smooth analysis. By contrast, the present book is organized differently,
has the character of a textbook, and concentrates exclusively on convex
optimization. Despite the differences, the two books have similar style and
level of mathematical sophistication, and share some material.

The chapter-by-chapter description of the book follows:

Chapter 1: This chapter develops all of the convex analysis tools that
are needed for the development of duality theory in subsequent chapters.
It covers basic algebraic concepts such as convex hulls and hyperplanes,
and topological concepts such as relative interior, closure, preservation of
closedness under linear transformations, and hyperplane separation. In
addition, it develops subjects of special interest in duality and optimization,
such as recession cones and conjugate functions.

Chapter 2: This chapter covers polyhedral convexity concepts: extreme
points, the Farkas and Minkowski-Weyl theorems, and some of their ap-
plications in linear programming. It is not needed for the developments of
subsequent chapters, and may be skipped at first reading.
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Chapter 3: This chapter focuses on basic optimization concepts: types
of minima, existence of solutions, and a few topics of special interest for
duality theory, such as partial minimization and minimax theory.

Chapter 4: This chapter introduces the MC/MC duality framework. It
discusses its connection with conjugacy theory, and it charts its applica-
tions to constrained optimization and minimax problems. It then develops
broadly applicable theorems relating to strong duality and existence of dual
optimal solutions.

Chapter 5: This chapter specializes the duality theorems of Chapter 4 to
important contexts relating to linear programming, convex programming,
and minimax theory. It also uses these theorems as an aid for the devel-
opment of additional convex analysis tools, such as a powerful nonlinear
version of Farkas’ Lemma, subdifferential theory, and theorems of the al-
ternative. A final section is devoted to nonconvex problems and estimates
of the duality gap, with special focus on separable problems.

In aiming for brevity, I have omitted a number of topics that an
instructor may wish for. One such omission is applications to specially
structured problems; the book by Boyd and Vanderbergue [BoV04], as well
as my book on parallel and distributed computation with John Tsitsiklis
[BeT89] cover this material extensively (both books are available on line).

Another important omission is computational methods. However, I
have written a long supplementary sixth chapter (over 100 pages), which
covers the most popular convex optimization algorithms (and some new
ones), and can be downloaded from the book’s web page

http://www.athenasc.com/convexduality.html.

This chapter, together with a more comprehensive treatment of convex
analysis, optimization, duality, and algorithms will be part of a more ex-
tensive textbook that I am currently writing. Until that time, the chapter
will serve instructors who wish to cover convex optimization algorithms in
addition to duality (as I do in my M.I.T. course). This is a “living” chapter
that will be periodically updated. Its current contents are as follows:

Chapter 6 on Algorithms: 6.1. Problem Structures and Computational
Approaches; 6.2. Algorithmic Descent; 6.3. Subgradient Methods; 6.4. Poly-
hedral Approximation Methods; 6.5. Proximal and Bundle Methods; 6.6.
Dual Proximal Point Algorithms; 6.7. Interior Point Methods; 6.8. Approx-
imate Subgradient Methods; 6.9. Optimal Algorithms and Complexity.

While I did not provide exercises in the text, I have supplied a sub-
stantial number of exercises (with detailed solutions) at the book’s web
page. The reader/instructor may also use the end-of-chapter problems (a
total of 175) given in [BNO03], which have similar style and notation to
the present book. Statements and detailed solutions of these problems can
be downloaded from the book’s web page and are also available on line at
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http://www.athenasc.com/convexity.html.

The book may be used as a text for a theoretical convex optimization
course; I have taught several variants of such a course at MIT and elsewhere
over the last ten years. It may also be used as a supplementary source for
nonlinear programming classes, and as a theoretical foundation for classes
focused on convex optimization models (rather than theory).

The book has been structured so that the reader/instructor can use
the material selectively. For example, the polyhedral convexity material
of Chapter 2 can be omitted in its entirety, as it is not used in Chapters
3-5. Similarly, the material on minimax theory (Sections 3.4, 4.2.5, and
5.5) may be omitted; and if this is done, Sections 3.3 and 5.3.4, which use
the tools of partial minimization, may be omitted. Also, Sections 5.4-5.7
are “terminal” and may each be omitted without effect on other sections.

A “minimal” self-contained selection, which I have used in my nonlin-
ear programming class at MIT (together with the supplementary web-based
Chapter 6 on algorithms), consists of the following:

• Chapter 1, except for Sections 1.3.3 and 1.4.1.

• Section 3.1.

• Chapter 4, except for Section 4.2.5.

• Chapter 5, except for Sections 5.2, 5.3.4, and 5.5-5.7.

This selection focuses on nonlinear convex optimization, and excludes all
the material relating to polyhedral convexity and minimax theory.

I would like to express my thanks to several colleagues for their con-
tributions to the book. My collaboration with Angelia Nedić and Asuman
Ozdaglar on our 2003 book was important in laying the foundations of the
present book. Huizhen (Janey) Yu read carefully early drafts of portions
of the book, and offered several insightful suggestions. Paul Tseng con-
tributed substantially through our joint research on set intersection theory,
given in part in Section 1.4.2 (this research was motivated by earlier col-
laboration with Angelia Nedić). Feedback from students and colleagues,
including Dimitris Bisias, Vivek Borkar, John Tsitsiklis, Mengdi Wang,
and Yunjian Xu, is highly appreciated. Finally, I wish to thank the many
outstanding students in my classes, who have been a continuing source of
motivation and inspiration.
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2 Basic Concepts of Convex Analysis Chap. 1

Convex sets and functions are very useful in optimization models, and have
a rich structure that is convenient for analysis and algorithms. Much of this
structure can be traced to a few fundamental properties. For example, each
closed convex set can be described in terms of the hyperplanes that support
the set, each point on the boundary of a convex set can be approached
through the relative interior of the set, and each halfline belonging to a
closed convex set still belongs to the set when translated to start at any
point in the set.

Yet, despite their favorable structure, convex sets and their analysis
are not free of anomalies and exceptional behavior, which cause serious
difficulties in theory and applications. For example, contrary to affine
and compact sets, some basic operations such as linear transformation and
vector sum may not preserve the closedness of closed convex sets. This in
turn complicates the treatment of some fundamental optimization issues,
including the existence of optimal solutions and duality.

For this reason, it is important to be rigorous in the development of
convexity theory and its applications. Our aim in this first chapter is to
establish the foundations for this development, with a special emphasis on
issues that are relevant to optimization.

1.1 CONVEX SETS AND FUNCTIONS

We introduce in this chapter some of the basic notions relating to convex
sets and functions. This material permeates all subsequent developments
in this book. Appendix A provides the definitions, notational conventions,
and results from linear algebra and real analysis that we will need. We first
define convex sets (cf. Fig. 1.1.1).

Definition 1.1.1: A subset C of !n is called convex if

αx + (1 − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1].

Note that the empty set is by convention considered to be convex.
Generally, when referring to a convex set, it will usually be apparent from
the context whether this set can be empty, but we will often be specific
in order to minimize ambiguities. The following proposition gives some
operations that preserve convexity.

Proposition 1.1.1:

(a) The intersection ∩i∈ICi of any collection {Ci | i ∈ I} of convex
sets is convex.
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αx + (1 − α)y, 0 ≤ α ≤ 1

x y

−2
x x

x y

−2

x

y

−2

x

y

−2

Figure 1.1.1. Illustration of the definition of a convex set. For convexity, linear
interpolation between any two points of the set must yield points that lie within
the set. Thus the sets on the left are convex, but the sets on the right are not.

(b) The vector sum C1 +C2 of two convex sets C1 and C2 is convex.

(c) The set λC is convex for any convex set C and scalar λ. Fur-
thermore, if C is a convex set and λ1, λ2 are positive scalars,

(λ1 + λ2)C = λ1C + λ2C.

(d) The closure and the interior of a convex set are convex.

(e) The image and the inverse image of a convex set under an affine
function are convex.

Proof: The proof is straightforward using the definition of convexity. To
prove part (a), we take two points x and y from ∩i∈ICi, and we use the
convexity of Ci to argue that the line segment connecting x and y belongs
to all the sets Ci, and hence, to their intersection.

Similarly, to prove part (b), we take two points of C1 + C2, which we
represent as x1 +x2 and y1 + y2, with x1, y1 ∈ C1 and x2, y2 ∈ C2. For any
α ∈ [0, 1], we have

α(x1 + x2) + (1 − α)(y1 + y2) =
(

αx1 + (1 − α)y1

)

+
(

αx2 + (1 − α)y2

)

.

By convexity of C1 and C2, the vectors in the two parentheses of the right-
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hand side above belong to C1 and C2, respectively, so that their sum belongs
to C1 + C2. Hence C1 + C2 is convex. The proof of part (c) is left as an
exercise for the reader. The proof of part (e) is similar to the proof of part
(b).

To prove part (d), let C be a convex set. Choose two points x and y
from the closure of C, and sequences {xk} ⊂ C and {yk} ⊂ C, such that
xk → x and yk → y. For any α ∈ [0, 1], the sequence

{

αxk + (1 − α)yk

}

,
which belongs to C by the convexity of C, converges to αx+(1−α)y. Hence
αx + (1−α)y belongs to the closure of C, showing that the closure of C is
convex. Similarly, we choose two points x and y from the interior of C, and
we consider open balls that are centered at x and y, and have sufficiently
small radius r so that they are contained in C. For any α ∈ [0, 1], consider
the open ball of radius r that is centered at αx + (1 − α)y. Any point in
this ball, say αx + (1 − α)y + z, where ‖z‖ < r, belongs to C, because it
can be expressed as the convex combination α(x + z) + (1 − α)(y + z) of
the vectors x + z and y + z, which belong to C. Hence the interior of C
contains αx + (1 − α)y and is therefore convex. Q.E.D.

Special Convex Sets

We will often consider some special sets, which we now introduce. A hy-
perplane is a set specified by a single linear equation, i.e., a set of the form
{x | a′x = b}, where a is a nonzero vector and b is a scalar. A halfs-
pace is a set specified by a single linear inequality, i.e., a set of the form
{x | a′x ≤ b}, where a is a nonzero vector and b is a scalar. It is clearly
closed and convex. A set is said to be polyhedral if it is nonempty and it is
the intersection of a finite number of halfspaces, i.e., if it has the form

{x | a′
jx ≤ bj , j = 1, . . . , r},

where a1, . . . , ar and b1, . . . , br are some vectors in !n and scalars, respec-
tively. A polyhedral set is convex and closed, being the intersection of
halfspaces [cf. Prop. 1.1.1(a)].

A set C is said to be a cone if for all x ∈ C and λ > 0, we have λx ∈ C.
A cone need not be convex and need not contain the origin, although the
origin always lies in the closure of a nonempty cone (see Fig. 1.1.2). A
polyhedral cone is a set of the form

C = {x | a′
jx ≤ 0, j = 1, . . . , r},

where a1, . . . , ar are some vectors in !n. A subspace is a special case of a
polyhedral cone, which is in turn a special case of a polyhedral set.
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(a) (b) (c)

Figure 1.1.2. Illustration of convex and nonconvex cones. Cones (a) and (b) are
convex, while cone (c), which consists of two lines passing through the origin, is
not convex. Cone (a) is polyhedral. Cone (b) does not contain the origin.

1.1.1 Convex Functions

We now define a real-valued convex function (cf. Fig. 1.1.3).

Definition 1.1.2: Let C be a convex subset of !n. We say that a
function f : C *→ ! is convex if

f
(

αx + (1 − α)y
)

≤ αf(x) + (1 − α)f(y), ∀ x, y ∈ C, ∀ α ∈ [0, 1].
(1.1)

a f(x) + (1 - a )f(y)

x y

C

f(a x + (1 - a )y)

a x + (1 - a )y

f(x)

f(y)

αx + (1 − α)y

y C

x x y

f(x)

) f(y)

) αf(x) + (1 − α)f(y)

f
(

αx + (1 − α)y
)

Figure 1.1.3. Illustration of the definition of a function f : C !→ # that is
convex. The linear interpolation αf(x) + (1 − α)f(y) overestimates the function

value f
(

αx + (1 − α)y
)

for all α ∈ [0, 1].
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Note that, according to our definition, convexity of the domain C is
a prerequisite for convexity of a function f : C *→ !. Thus when calling a
function convex, we imply that its domain is convex.

We introduce some variants of the basic definition of convexity. A
convex function f : C *→ ! is called strictly convex if the inequality (1.1) is
strict for all x, y ∈ C with x += y, and all α ∈ (0, 1). A function f : C *→ !,
where C is a convex set, is called concave if the function (−f) is convex.

An example of a convex function is an affine function, one of the form
f(x) = a′x + b, where a ∈ !n and b ∈ !; this is straightforward to verify
using the definition of convexity. Another example is a norm ‖ · ‖, since by
the triangle inequality, we have

‖αx + (1 − α)y‖ ≤ ‖αx‖ + ‖(1 − α)y‖ = α‖x‖ + (1 − α)‖y‖,

for any x, y ∈ !n, and α ∈ [0, 1].
If f : C *→ ! is a function and γ is a scalar, the sets {x ∈ C | f(x) ≤

γ} and {x ∈ C | f(x) < γ}, are called level sets of f . If f is a convex
function, then all its level sets are convex. To see this, note that if x, y ∈ C
are such that f(x) ≤ γ and f(y) ≤ γ, then for any α ∈ [0, 1], we have
αx + (1 − α)y ∈ C, by the convexity of C, so

f
(

αx + (1 − α)y
)

≤ αf(x) + (1 − α)f(y) ≤ γ,

by the convexity of f . A similar proof also shows that the level sets {x ∈
C | f(x) < γ} are convex when f is convex. Note, however, that convexity
of the level sets does not imply convexity of the function; for example, the
scalar function f(x) =

√

|x| has convex level sets but is not convex.

Extended Real-Valued Convex Functions

We generally prefer to deal with convex functions that are real-valued and
are defined over the entire space !n (rather than over just a convex subset),
because they are mathematically simpler. However, in some situations,
prominently arising in the context of optimization and duality, we will
encounter operations resulting in functions that can take infinite values.
For example, the function

f(x) = sup
i∈I

fi(x),

where I is an infinite index set, can take the value ∞ even if the functions
fi are real-valued, and the conjugate of a real-valued function often takes
infinite values (cf. Section 1.6).

Furthermore, we will encounter functions f that are convex over a
convex subset C and cannot be extended to functions that are real-valued
and convex over the entire space !n [e.g., the function f : (0,∞) *→ !
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f(x)

x
Convex function

f(x)

x
Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

Figure 1.1.4. Illustration of the epigraphs and effective domains of extended
real-valued convex and nonconvex functions.

defined by f(x) = 1/x]. In such situations, it may be convenient, instead
of restricting the domain of f to the subset C where f takes real values, to
extend the domain to all of !n, but allow f to take infinite values.

We are thus motivated to introduce extended real-valued functions
that can take the values −∞ and ∞ at some points. Such functions can
be characterized using the notion of epigraph, which we now introduce.

The epigraph of a function f : X *→ [−∞,∞], where X ⊂ !n, is
defined to be the subset of !n+1 given by

epi(f) =
{

(x, w) | x ∈ X, w ∈ !, f(x) ≤ w
}

.

The effective domain of f is defined to be the set

dom(f) =
{

x ∈ X | f(x) < ∞
}

(see Fig. 1.1.4). It can be seen that

dom(f) =
{

x | there exists w ∈ ! such that (x, w) ∈ epi(f)
}

,

i.e., dom(f) is obtained by a projection of epi(f) on !n (the space of x).
Note that if we restrict f to its effective domain, its epigraph remains
unaffected. Similarly, if we enlarge the domain of f by defining f(x) = ∞
for x /∈ X , the epigraph and the effective domain remain unaffected.

It is often important to exclude the degenerate case where f is identi-
cally equal to ∞ [which is true if and only if epi(f) is empty], and the case
where the function takes the value −∞ at some point [which is true if and
only if epi(f) contains a vertical line]. We will thus say that f is proper if
f(x) < ∞ for at least one x ∈ X and f(x) > −∞ for all x ∈ X , and we
will say that f improper if it is not proper. In words, a function is proper
if and only if its epigraph is nonempty and does not contain a vertical line.
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A difficulty in defining extended real-valued convex functions f that
can take both values −∞ and ∞ is that the term αf(x) + (1 − α)f(y)
arising in our earlier definition for the real-valued case may involve the
forbidden sum −∞+∞ (this, of course, may happen only if f is improper,
but improper functions arise on occasion in proofs or other analyses, so we
do not wish to exclude them a priori). The epigraph provides an effective
way of dealing with this difficulty.

Definition 1.1.3: Let C be a convex subset of !n. We say that an
extended real-valued function f : C *→ [−∞,∞] is convex if epi(f) is
a convex subset of !n+1.

It can be easily verified that, according to the above definition, con-
vexity of f implies that its effective domain dom(f) and its level sets
{

x ∈ C | f(x) ≤ γ
}

and
{

x ∈ C | f(x) < γ
}

are convex sets for all
scalars γ. Furthermore, if f(x) < ∞ for all x, or f(x) > −∞ for all x, then

f
(

αx+(1−α)y
)

≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C, ∀ α ∈ [0, 1], (1.2)

so the preceding definition is consistent with the earlier definition of con-
vexity for real-valued functions.

By passing to epigraphs, we can use results about sets to infer corre-
sponding results about functions (e.g., proving convexity). The reverse is
also possible, through the notion of indicator function δ : !n *→ (−∞,∞]
of a set X ⊂ !n, defined by

δ(x | X) =
{

0 if x ∈ X ,
∞ otherwise.

In particular, a set is convex if and only if its indicator function is convex,
and it is nonempty if and only if its indicator function is proper.

A convex function f : C *→ (−∞,∞] is called strictly convex if the
inequality (1.2) is strict for all x, y ∈ dom(f) with x += y, and all α ∈ (0, 1).
A function f : C *→ [−∞,∞], where C is a convex set, is called concave if
the function (−f) : C *→ [−∞,∞] is convex as per Definition 1.1.3.

Sometimes we will deal with functions that are defined over a (pos-
sibly nonconvex) domain C but are convex when restricted to a convex
subset of their domain. The following definition formalizes this case.

Definition 1.1.4: Let C and X be subsets of !n such that C is
nonempty and convex, and C ⊂ X . We say that an extended real-
valued function f : X *→ [−∞,∞] is convex over C if f becomes
convex when the domain of f is restricted to C, i.e., if the function
f̃ : C *→ [−∞,∞], defined by f̃(x) = f(x) for all x ∈ C, is convex.
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f(x)

X x
{

x | f(x) ≤ γ

}

γ

epi(f)

Figure 1.1.5. Visualization of the epigraph of a function in relation to its level
sets. It can be seen that the level set {x | f(x) ≤ γ} can be identified with
a translation of the intersection of epi(f) and the “slice” {(x, γ) | x ∈ #n},
indicating that epi(f) is closed if and only if all the level sets are closed.

By replacing the domain of an extended real-valued proper convex
function with its effective domain, we can convert it to a real-valued func-
tion. In this way, we can use results stated in terms of real-valued func-
tions, and we can also avoid calculations with ∞. Thus, nearly all the
theory of convex functions can be developed without resorting to extended
real-valued functions. The reverse is also true, namely that extended real-
valued functions can be adopted as the norm; for example, this approach
is followed by Rockafellar [Roc70]. We will adopt a flexible approach, and
use both real-valued and extended real-valued functions, depending on the
context.

1.1.2 Closedness and Semicontinuity

If the epigraph of a function f : X *→ [−∞,∞] is a closed set, we say that
f is a closed function. Closedness is related to the classical notion of lower
semicontinuity. Recall that f is called lower semicontinuous at a vector
x ∈ X if

f(x) ≤ lim inf
k→∞

f(xk)

for every sequence {xk} ⊂ X with xk → x. We say that f is lower semicon-
tinuous if it is lower semicontinuous at each point x in its domain X . We
say that f is upper semicontinuous if −f is lower semicontinuous. These
definitions are consistent with the corresponding definitions for real-valued
functions [cf. Definition A.2.4(c)].

The following proposition connects closedness, lower semicontinuity,
and closedness of the level sets of a function; see Fig. 1.1.5.
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Proposition 1.1.2: For a function f : !n *→ [−∞,∞], the following
are equivalent:

(i) The level set Vγ =
{

x | f(x) ≤ γ
}

is closed for every scalar γ.

(ii) f is lower semicontinuous.

(iii) epi(f) is closed.

Proof: If f(x) = ∞ for all x, the result trivially holds. We thus assume
that f(x) < ∞ for at least one x ∈ !n, so that epi(f) is nonempty and
there exist level sets of f that are nonempty.

We first show that (i) implies (ii). Assume that the level set Vγ is
closed for every scalar γ. Suppose, to arrive at a contradiction, that

f(x) > lim inf
k→∞

f(xk)

for some x and sequence {xk} converging to x, and let γ be a scalar such
that

f(x) > γ > lim inf
k→∞

f(xk).

Then, there exists a subsequence {xk}K such that f(xk) ≤ γ for all k ∈ K,
so that {xk}K ⊂ Vγ . Since Vγ is closed, x must also belong to Vγ , so
f(x) ≤ γ, a contradiction.

We next show that (ii) implies (iii). Assume that f is lower semicon-
tinuous over !n, and let (x, w) be the limit of a sequence

{

(xk, wk)
}

⊂ epi(f).

Then we have f(xk) ≤ wk, and by taking the limit as k → ∞ and by using
the lower semicontinuity of f at x, we obtain

f(x) ≤ lim inf
k→∞

f(xk) ≤ w.

Hence, (x, w) ∈ epi(f) and epi(f) is closed.
We finally show that (iii) implies (i). Assume that epi(f) is closed,

and let {xk} be a sequence that converges to some x and belongs to Vγ for
some scalar γ. Then (xk, γ) ∈ epi(f) for all k and (xk, γ) → (x, γ), so since
epi(f) is closed, we have (x, γ) ∈ epi(f). Hence, x belongs to Vγ , implying
that this set is closed. Q.E.D.

For most of our development, we prefer to use the closedness notion,
rather than lower semicontinuity. One reason is that contrary to closed-
ness, lower semicontinuity is a domain-specific property. For example, the
function f : ! *→ (−∞,∞] given by

f(x) =

{

0 if x ∈ (0, 1),
∞ if x /∈ (0, 1),
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is neither closed nor lower semicontinuous; but if its domain is restricted
to (0, 1) it becomes lower semicontinuous.

On the other hand, if a function f : X *→ [−∞,∞] has a closed
effective domain dom(f) and is lower semicontinuous at every x ∈ dom(f),
then f is closed. We state this as a proposition. The proof follows from
the argument we used to show that (ii) implies (iii) in Prop. 1.1.2.

Proposition 1.1.3: Let f : X *→ [−∞,∞] be a function. If dom(f)
is closed and f is lower semicontinuous at each x ∈ dom(f), then f is
closed.

As an example of application of the preceding proposition, the in-
dicator function of a set X is closed if and only if X is closed (the “if”
part follows from the proposition, and the “only if” part follows using the
definition of epigraph). More generally, if fX is a function of the form

fX(x) =

{

f(x) if x ∈ X ,
∞ otherwise,

where f : !n *→ ! is a continuous function, then it can be shown that fX

is closed if and only if X is closed.
We finally note that an improper closed convex function is very pe-

culiar: it cannot take a finite value at any point, so it has the form

f(x) =

{

−∞ if x ∈ dom(f),
∞ if x /∈ dom(f).

To see this, consider an improper closed convex function f : !n *→ [−∞,∞],
and assume that there exists an x such that f(x) is finite. Let x be such
that f(x) = −∞ (such a point must exist since f is improper and f is not
identically equal to ∞). Because f is convex, it can be seen that every
point of the form

xk =
k − 1

k
x +

1

k
x, ∀ k = 1, 2, . . .

satisfies f(xk) = −∞, while we have xk → x. Since f is closed, this implies
that f(x) = −∞, which is a contradiction. In conclusion, a closed convex
function that is improper cannot take a finite value anywhere.

1.1.3 Operations with Convex Functions

We can verify the convexity of a given function in a number of ways. Sev-
eral commonly encountered functions, such as affine functions and norms,
are convex. An important type of convex function is a polyhedral function,
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which by definition is a proper convex function whose epigraph is a poly-
hedral set. Starting with some known convex functions, we can generate
other convex functions by using some common operations that preserve
convexity. Principal among these operations are the following:

(a) Composition with a linear transformation.

(b) Addition, and multiplication with a nonnegative scalar.

(c) Taking supremum.

(d) Taking partial minimum, i.e., minimizing with respect to z a function
that is (jointly) convex in two vectors x and z.

The following three propositions deal with the first three cases, and Section
3.3 deals with the fourth.

Proposition 1.1.4: Let f : !m *→ (−∞,∞] be a given function, let
A be an m × n matrix, and let F : !n *→ (−∞,∞] be the function

F (x) = f(Ax), x ∈ !n.

If f is convex, then F is also convex, while if f is closed, then F is
also closed.

Proof: Let f be convex. We use the definition of convexity to write for
any x, y ∈ !n and α ∈ [0, 1],

F
(

αx + (1 − α)y
)

= f
(

αAx + (1 − α)Ay
)

≤ αf(Ax) + (1 − α)f(Ay)

= αF (x) + (1 − α)F (y).

Hence F is convex.
Let f be closed. Then f is lower semicontinuous at every x ∈ !n (cf.

Prop. 1.1.2), so for every sequence {xk} converging to x, we have

f(Ax) ≤ lim inf
k→∞

f(Axk),

or
F (x) ≤ lim inf

k→∞
F (xk)

for all k. It follows that F is lower semicontinuous at every x ∈ !n, and
hence is closed by Prop. 1.1.2. Q.E.D.

The next proposition deals with sums of function and it is interesting
to note that it can be viewed as a special case of the preceding proposition,
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which deals with compositions with linear transformations. The reason is
that we may write a sum F = f1 + · · · + fm in the form F (x) = f(Ax),
where A is the matrix defined by Ax = (x, . . . , x), and f : !mn *→ (−∞,∞]
is the function given by

f(x1, . . . , xm) = f1(x1) + · · · + fm(xm).

Proposition 1.1.5: Let fi : !n *→ (−∞,∞], i = 1, . . . , m, be given
functions, let γ1, . . . , γm be positive scalars, and let F : !n *→ (−∞,∞]
be the function

F (x) = γ1f1(x) + · · · + γmfm(x), x ∈ !n.

If f1, . . . , fm are convex, then F is also convex, while if f1, . . . , fm are
closed, then F is also closed.

Proof: The proof follows closely the one of Prop. 1.1.4. Q.E.D.

Proposition 1.1.6: Let fi : !n *→ (−∞,∞] be given functions for
i ∈ I, where I is an arbitrary index set, and let f : !n *→ (−∞,∞] be
the function given by

f(x) = sup
i∈I

fi(x).

If fi, i ∈ I, are convex, then f is also convex, while if fi, i ∈ I, are
closed, then f is also closed.

Proof: A pair (x, w) belongs to epi(f) if and only if f(x) ≤ w, which is true
if and only if fi(x) ≤ w for all i ∈ I, or equivalently (x, w) ∈ ∩i∈Iepi(fi).
Therefore,

epi(f) = ∩
i∈I

epi(fi).

If the functions fi are convex, the epigraphs epi(fi) are convex, so epi(f)
is convex, and f is convex. If the functions fi are closed, the epigraphs
epi(fi) are closed, so epi(f) is closed, and f is closed. Q.E.D.

1.1.4 Characterizations of Differentiable Convex Functions

For once or twice differentiable functions, there are some additional criteria
for verifying convexity, as we will now discuss. A useful alternative charac-
terization of convexity for differentiable functions is given in the following
proposition and is illustrated in Fig. 1.1.6.
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zz x

) f(z)

f(x) + ∇f(x)′(z − x)

Figure 1.1.6. Characterization of convexity in terms of first derivatives. The
condition f(z) ≥ f(x) + ∇f(x)′(z − x) states that a linear approximation, based
on the gradient, underestimates a convex function.

Proposition 1.1.7: Let C be a nonempty convex subset of !n and
let f : !n *→ ! be differentiable over an open set that contains C.

(a) f is convex over C if and only if

f(z) ≥ f(x) + ∇f(x)′(z − x), ∀ x, z ∈ C. (1.3)

(b) f is strictly convex over C if and only if the above inequality is
strict whenever x += z.

Proof: The ideas of the proof are geometrically illustrated in Fig. 1.1.7.
We prove (a) and (b) simultaneously. Assume that the inequality (1.3)
holds. Choose any x, y ∈ C and α ∈ [0, 1], and let z = αx+(1−α)y. Using
the inequality (1.3) twice, we obtain

f(x) ≥ f(z) + ∇f(z)′(x − z),

f(y) ≥ f(z) + ∇f(z)′(y − z).

We multiply the first inequality by α, the second by (1−α), and add them
to obtain

αf(x) + (1 − α)f(y) ≥ f(z) + ∇f(z)′
(

αx + (1 − α)y − z
)

= f(z),

which proves that f is convex. If the inequality (1.3) is strict as stated in
part (b), then if we take x += y and α ∈ (0, 1) above, the three preceding
inequalities become strict, thus showing the strict convexity of f .
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z

z x

z x

) f(z)

) f(z)

αf(x) + (1 − α)f(y)

f(x)

)f(y)

) z = αx + (1 − α)y
x y

(a)

) (b)

x + α(z − x)

f(x) +
f
(

x + α(z − x)
)

− f(x)

α

f(z) + ∇f(z)′(y − z)
f(z) + ∇f(z)′(x − z)

f(x) + ∇f(x)′(z − x)

Figure 1.1.7. Geometric illustration of the ideas underlying the proof of Prop.
1.1.7. In figure (a), we linearly approximate f at z = αx+(1−α)y. The inequality
(1.3) implies that

f(x) ≥ f(z) + ∇f(z)′(x − z),

f(y) ≥ f(z) + ∇f(z)′(y − z).

As can be seen from the figure, it follows that αf(x)+(1−α)f(y) lies above f(z),
so f is convex.

In figure (b), we assume that f is convex, and from the figure’s geometry,
we note that

f(x) +
f
(

x + α(z − x)
)

− f(x)

α

lies below f(z), is monotonically nonincreasing as α ↓ 0, and converges to f(x) +
∇f(x)′(z − x). It follows that f(z) ≥ f(x) + ∇f(x)′(z − x).
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Conversely, assume that f is convex, let x and z be any vectors in C
with x += z, and consider the function g : (0, 1] *→ ! given by

g(α) =
f
(

x + α(z − x)
)

− f(x)

α
, α ∈ (0, 1].

We will show that g(α) is monotonically increasing with α, and is strictly
monotonically increasing if f is strictly convex. This will imply that

∇f(x)′(z − x) = lim
α↓0

g(α) ≤ g(1) = f(z) − f(x),

with strict inequality if g is strictly monotonically increasing, thereby show-
ing that the desired inequality (1.3) holds, and holds strictly if f is strictly
convex. Indeed, consider any α1, α2, with 0 < α1 < α2 < 1, and let

α =
α1

α2
, z = x + α2(z − x). (1.4)

We have
f
(

x + α(z − x)
)

≤ αf(z) + (1 − α)f(x),

or
f
(

x + α(z − x)
)

− f(x)

α
≤ f(z) − f(x), (1.5)

and the above inequalities are strict if f is strictly convex. Substituting the
definitions (1.4) in Eq. (1.5), we obtain after a straightforward calculation

f
(

x + α1(z − x)
)

− f(x)

α1
≤

f
(

x + α2(z − x)
)

− f(x)

α2
,

or
g(α1) ≤ g(α2),

with strict inequality if f is strictly convex. Hence g is monotonically
increasing with α, and strictly so if f is strictly convex. Q.E.D.

Note a simple consequence of Prop. 1.1.7(a): if f : !n *→ ! is a
differentiable convex function and ∇f(x∗) = 0, then x∗ minimizes f over
!n. This is a classical sufficient condition for unconstrained optimality,
originally formulated (in one dimension) by Fermat in 1637. Similarly,
from Prop. 1.1.7(a), we see that the condition

∇f(x∗)′(z − x∗) ≥ 0, ∀ z ∈ C,

implies that x∗ minimizes a differentiable convex function f over a convex
set C. This sufficient condition for optimality is also necessary. To see this,
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assume to arrive at a contradiction that x∗ minimizes f over C and that
∇f(x∗)′(z − x∗) < 0 for some z ∈ C. By differentiation, we have

lim
α↓0

f
(

x∗ + α(z − x∗)
)

− f(x∗)

α
= ∇f(x∗)′(z − x∗) < 0,

so f
(

x∗ + α(z − x∗)
)

decreases strictly for sufficiently small α > 0, contra-
dicting the optimality of x∗. We state the conclusion as a proposition.

Proposition 1.1.8: Let C be a nonempty convex subset of !n and
let f : !n *→ ! be convex and differentiable over an open set that
contains C. Then a vector x∗ ∈ C minimizes f over C if and only if

∇f(x∗)′(z − x∗) ≥ 0, ∀ z ∈ C.

Let us use the preceding optimality condition to prove a basic theorem
of analysis and optimization.

Proposition 1.1.9: (Projection Theorem) Let C be a nonempty
closed convex subset of !n, and let z be a vector in !n. There exists a
unique vector that minimizes ‖z−x‖ over x ∈ C, called the projection
of z on C. Furthermore, a vector x∗ is the projection of z on C if and
only if

(z − x∗)′(x − x∗) ≤ 0, ∀ x ∈ C. (1.6)

Proof: Minimizing ‖z − x‖ is equivalent to minimizing the convex and
differentiable function

f(x) = 1
2
‖z − x‖2.

By Prop. 1.1.8, x∗ minimizes f over C if and only if

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ C.

Since ∇f(x∗) = x∗ − z, this condition is equivalent to Eq. (1.6).
Minimizing f over C is equivalent to minimizing f over the compact

set C ∩
{

‖z − x‖ ≤ ‖z −w‖
}

, where w is any vector in C. By Weierstrass’
Theorem (Prop. A.2.7), it follows that there exists a minimizing vector. To
show uniqueness, let x∗

1 and x∗
2 be two minimizing vectors. Then by Eq.

(1.6), we have

(z − x∗
1)′(x

∗
2 − x∗

1) ≤ 0, (z − x∗
2)′(x

∗
1 − x∗

2) ≤ 0.
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Adding these two inequalities, we obtain

(x∗
2 − x∗

1)′(x
∗
2 − x∗

1) = ‖x∗
2 − x∗

1‖
2 ≤ 0,

so x∗
2 = x∗

1. Q.E.D.

For twice differentiable convex functions, there is another characteri-
zation of convexity, given by the following proposition.

Proposition 1.1.10: Let C be a nonempty convex subset of !n and
let f : !n *→ ! be twice continuously differentiable over an open set
that contains C.

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex
over C.

(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly
convex over C.

(c) If C is open and f is convex over C, then ∇2f(x) is positive
semidefinite for all x ∈ C.

Proof: (a) Using the mean value theorem (Prop. A.3.1), we have for all
x, y ∈ C,

f(y) = f(x) + ∇f(x)′(y − x) + 1
2 (y − x)′∇2f

(

x + α(y − x)
)

(y − x)

for some α ∈ [0, 1]. Therefore, using the positive semidefiniteness of ∇2f ,
we obtain

f(y) ≥ f(x) + ∇f(x)′(y − x), ∀ x, y ∈ C.

From Prop. 1.1.7(a), we conclude that f is convex over C.

(b) Similar to the proof of part (a), we have f(y) > f(x) + ∇f(x)′(y − x)
for all x, y ∈ C with x += y, and the result follows from Prop. 1.1.7(b).

(c) Assume, to obtain a contradiction, that there exist some x ∈ C and
some z ∈ !n such that z′∇2f(x)z < 0. Since C is open and ∇2f is
continuous, we can choose z to have small enough norm so that x + z ∈ C
and z′∇2f(x + αz)z < 0 for every α ∈ [0, 1]. Then, using again the mean
value theorem, we obtain f(x + z) < f(x) + ∇f(x)′z, which, in view of
Prop. 1.1.7(a), contradicts the convexity of f over C. Q.E.D.

If f is convex over a convex set C that is not open, ∇2f(x) may
not be positive semidefinite at any point of C [take for example n = 2,
C =

{

(x1, 0) | x1 ∈ !
}

, and f(x) = x2
1 − x2

2]. However, it can be shown
that the conclusion of Prop. 1.1.10(c) also holds if C has nonempty interior
instead of being open.
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1.2 CONVEX AND AFFINE HULLS

We now discuss issues relating to the convexification of nonconvex sets.
Let X be a nonempty subset of !n. The convex hull of a set X , denoted
conv(X), is the intersection of all convex sets containing X , and is a convex
set by Prop. 1.1.1(a). A convex combination of elements of X is a vector
of the form

∑m
i=1 αixi, where m is a positive integer, x1, . . . , xm belong to

X , and α1, . . . , αm are scalars such that

αi ≥ 0, i = 1, . . . , m,

m
∑

i=1

αi = 1.

Note that a convex combination belongs to conv(X) (see the construction
of Fig. 1.2.1). For any convex combination and function f : !n *→ ! that
is convex over conv(X), we have

f

(

m
∑

i=1

αixi

)

≤

m
∑

i=1

αif(xi). (1.7)

This follows by using repeatedly the definition of convexity together with
the construction of Fig. 1.2.1. The preceding relation is a special case of
a relation known as Jensen’s inequality, which finds wide use in applied
mathematics and probability theory.

x
x

y z

z x1

x2

x3

Figure 1.2.1. Construction of a convex combination of m vectors by forming
a sequence of m − 1 convex combinations of pairs of vectors (first combine two
vectors, then combine the result with a third vector, etc). For example,

x = α1x1 + α2x2 + α3x3 = (α1 + α2)
(

α1

α1 + α2

x1 +
α2

α1 + α2

x2

)

+ α3x3,

so the convex combination α1x1 + α2x2 + α3x3 can be obtained by forming the
convex combination

z =
α1

α1 + α2

x1 +
α2

α1 + α2

x2,

and then by forming the convex combination x = (α1 + α2)z + α3x3 as shown
in the figure. This shows that a convex combination of vectors from a convex set
belongs to the set, and that a convex combination of vectors from a nonconvex
set belongs to the convex hull of the set.



20 Basic Concepts of Convex Analysis Chap. 1

It is straightforward to verify that the set of all convex combinations
of elements of X is equal to conv(X). In particular, if X consists of a finite
number of vectors x1, . . . , xm, its convex hull is

conv
(

{x1, . . . , xm}
)

=

{

m
∑

i=1

αixi

∣

∣

∣
αi ≥ 0, i = 1, . . . , m,

m
∑

i=1

αi = 1

}

.

Also, for any set S and linear transformation A, we have conv(AS) =
A conv(S). From this it follows that for any sets S1, . . . , Sm, we have
conv(S1 + · · · + Sm) = conv(S1) + · · · + conv(Sm).

We recall that an affine set M in !n is a set of the form x+S, where
x is some vector, and S is a subspace uniquely determined by M and called
the subspace parallel to M . Alternatively, a set M is affine if it contains all
the lines that pass through pairs of points x, y ∈ M with x += y. If X is a
subset of !n, the affine hull of X , denoted aff(X), is the intersection of all
affine sets containing X . Note that aff(X) is itself an affine set and that it
contains conv(X). The dimension of aff(X) is defined to be the dimension
of the subspace parallel to aff(X). It can be shown that

aff(X) = aff
(

conv(X)
)

= aff
(

cl(X)
)

.

For a convex set C, the dimension of C is defined to be the dimension of
aff(C).

Given a nonempty subset X of !n, a nonnegative combination of
elements of X is a vector of the form

∑m
i=1 αixi, where m is a positive

integer, x1, . . . , xm belong to X , and α1, . . . , αm are nonnegative scalars. If
the scalars αi are all positive,

∑m
i=1 αixi is said to be a positive combination.

The cone generated by X , denoted cone(X), is the set of all nonnegative
combinations of elements of X . It is easily seen that cone(X) is a convex
cone containing the origin, although it need not be closed even if X is
compact, as shown in Fig. 1.2.2 [it can be proved that cone(X) is closed in
special cases, such as when X is finite; see Section 1.4.3].

The following is a fundamental characterization of convex hulls (see
Fig. 1.2.3).

Proposition 1.2.1: (Caratheodory’s Theorem) Let X be a non-
empty subset of !n.

(a) Every nonzero vector from cone(X) can be represented as a pos-
itive combination of linearly independent vectors from X .

(b) Every vector from conv(X) can be represented as a convex com-
bination of no more than n + 1 vectors from X .
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(0, 0)

(0, 1)

X

cone(X)

Figure 1.2.2. An example in #2 where X is convex and compact, but cone(X)
is not closed. Here

X =
{

(x1, x2) | x2
1 + (x2 − 1)2 ≤ 1

}

, cone(X) =
{

(x1, x2) | x2 > 0
}

∪
{

(0, 0)
}

.

xx
x

z x1

z x1

x2

x2

x3

x4

conv(X)

cone(X)

X

(a) ) (b)

x

0

Figure 1.2.3. Illustration of Caratheodory’s Theorem. In (a), X is a nonconvex
set in #2, and a point x ∈ cone(X) is represented as a positive combination
of the two linearly independent vectors x1, x2 ∈ X. In (b), X consists of four
points x1, x2, x3, x4 in #2, and the point x ∈ conv(X) shown in the figure can
be represented as a convex combination of the three vectors x1, x2, x3. Note also
that x can alternatively be represented as a convex combination of the vectors
x1, x3, x4, so the representation is not unique.

Proof: (a) Consider a vector x += 0 from cone(X), and let m be the
smallest integer such that x has the form

∑m
i=1 αixi, where αi > 0 and

xi ∈ X for all i = 1, . . . , m. We argue by contradiction. If the vectors xi

are linearly dependent, there exist scalars λ1, . . . , λm, with
∑m

i=1 λixi = 0
and at least one λi is positive. Consider the linear combination

∑m
i=1(αi −

γλi)xi, where γ is the largest γ such that αi − γλi ≥ 0 for all i. This
combination provides a representation of x as a positive combination of
fewer than m vectors of X – a contradiction. Therefore, x1, . . . , xm are
linearly independent.
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X Y

Y x (
X

y 0

1) 1
x (x, 1) 1

1 !n

Figure 1.2.4. Illustration of the proof
of Caratheodory’s Theorem for convex
hulls using the version of the theorem
for generated cones. We consider the

set Y =
{

(y, 1) | y ∈ X
}

⊂ #n+1 and

apply Prop. 1.2.1(a).

(b) We apply part (a) to the following subset of !n+1:

Y =
{

(y, 1) | y ∈ X
}

(cf. Fig. 1.2.4). If x ∈ conv(X), we have x =
∑I

i=1 γixi for an integer I > 0

and scalars γi > 0, i = 1, . . . , I, with 1 =
∑I

i=1 γi, so that (x, 1) ∈ cone(Y ).
By part (a), we have (x, 1) =

∑m
i=1 αi(xi, 1) for some scalars α1, . . . , αm > 0

and (at most n+1) linearly independent vectors (x1, 1), . . . , (xm, 1). Thus,
x =

∑m
i=1 αixi and 1 =

∑m
i=1 αi. Q.E.D.

Note that the proof of part (b) of Caratheodory’s Theorem shows
that if m ≥ 2, the m vectors x1, . . . , xm ∈ X used to represent a vector in
conv(X) may be chosen so that x2−x1, . . . , xm−x1 are linearly independent
[if x2−x1, . . . , xm−x1 were linearly dependent, there exist λ2, . . . , λm, not
all 0, with

∑m
i=2 λi(xi −x1) = 0 so that by defining λ1 = −(λ2 + · · ·+λm),

m
∑

i=1

λi(xi, 1) = 0,

contradicting the linear independence of (x1, 1), . . . , (xm, 1)].
Caratheodory’s Theorem can be used to prove several other important

results. An example is the following proposition.

Proposition 1.2.2: The convex hull of a compact set is compact.

Proof: Let X be a compact subset of !n. To show that conv(X) is com-
pact, we take a sequence in conv(X) and show that it has a convergent
subsequence whose limit is in conv(X). Indeed, by Caratheodory’s Theo-

rem, a sequence in conv(X) can be expressed as
{

∑n+1
i=1 αk

i xk
i

}

, where for

all k and i, αk
i ≥ 0, xk

i ∈ X , and
∑n+1

i=1 αk
i = 1. Since the sequence

{

(αk
1 , . . . , αk

n+1, x
k
1 , . . . , xk

n+1)
}
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is bounded, it has a limit point
{

(α1, . . . , αn+1, x1, . . . , xn+1)
}

, which must

satisfy
∑n+1

i=1 αi = 1, and αi ≥ 0, xi ∈ X for all i. Thus, the vector
∑n+1

i=1 αixi, which belongs to conv(X), is a limit point of the sequence
{

∑n+1
i=1 αk

i xk
i

}

, showing that conv(X) is compact. Q.E.D.

Note that the convex hull of an unbounded closed set need not be
closed. As an example, for the closed subset of !2

X =
{

(0, 0)
}

∪
{

(x1, x2) | x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0
}

,

the convex hull is

conv(X) =
{

(0, 0)
}

∪
{

(x1, x2) | x1 > 0, x2 > 0
}

,

which is not closed.
We finally note that just as one can convexify nonconvex sets through

the convex hull operation, one can also convexify a nonconvex function by
convexification of its epigraph. In fact, this can be done in a way that the
optimality of the minima of the function is maintained (see Section 1.3.3).

1.3 RELATIVE INTERIOR AND CLOSURE

We now consider some generic topological properties of convex sets and
functions. Let C be a nonempty convex subset of !n. The closure of C,
denoted cl(C), is also a nonempty convex set [Prop. 1.1.1(d)]. The interior
of C is also convex, but it may be empty. It turns out, however, that
convexity implies the existence of interior points relative to the affine hull
of C. This is an important property, which we now formalize.

Let C be a nonempty convex set. We say that x is a relative interior
point of C if x ∈ C and there exists an open sphere S centered at x such
that S ∩ aff(C) ⊂ C, i.e., x is an interior point of C relative to the affine
hull of C. The set of all relative interior points of C is called the relative
interior of C, and is denoted by ri(C). The set C is said to be relatively
open if ri(C) = C. The vectors in cl(C) that are not relative interior points
are said to be relative boundary points of C, and their collection is called
the relative boundary of C.

For an example, let C be a line segment connecting two distinct points
in the plane. Then ri(C) consists of all points of C except for the two end
points, and the relative boundary of C consists of the two end points. For
another example, let C be an affine set. Then ri(C) = C and the relative
boundary of C is empty.

The most fundamental fact about relative interiors is given in the
following proposition.
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x

C xα = αx+(1−α)x

x

x S

Sα
α ε

0 αε

Figure 1.3.1. Proof of the Line Segment Principle for the case where x ∈ C.
Since x ∈ ri(C), there exists an open sphere S = {z | ‖z − x‖ < ε} such that
S ∩ aff(C) ⊂ C. For all α ∈ (0, 1], let xα = αx + (1 − α)x and let Sα = {z |
‖z − xα‖ < αε}. It can be seen that each point of Sα ∩ aff(C) is a convex
combination of x and some point of S ∩ aff(C). Therefore, by the convexity of C,
Sα ∩ aff(C) ⊂ C, implying that xα ∈ ri(C).

Proposition 1.3.1: (Line Segment Principle) Let C be a nonempty
convex set. If x ∈ ri(C) and x ∈ cl(C), then all points on the line seg-
ment connecting x and x, except possibly x, belong to ri(C).

Proof: For the case where x ∈ C, the proof is given in Fig. 1.3.1. Consider
the case where x /∈ C. To show that for any α ∈ (0, 1] we have xα =
αx + (1 − α)x ∈ ri(C), consider a sequence {xk} ⊂ C that converges to
x, and let xk,α = αx + (1 − α)xk. Then as in Fig. 1.3.1, we see that
{z | ‖z − xk,α‖ < αε} ∩ aff(C) ⊂ C for all k, where ε is such that the open
sphere S = {z | ‖z−x‖ < ε} satisfies S ∩ aff(C) ⊂ C. Since xk,α → xα, for
large enough k, we have

{z | ‖z − xα‖ < αε/2} ⊂ {z | ‖z − xk,α‖ < αε}.

It follows that {z | ‖z − xα‖ < αε/2} ∩ aff(C) ⊂ C, which shows that
xα ∈ ri(C). Q.E.D.

A major consequence of the Line Segment Principle is given in the
following proposition.

Proposition 1.3.2: (Nonemptiness of Relative Interior) Let C
be a nonempty convex set. Then:

(a) ri(C) is a nonempty convex set, and has the same affine hull as
C.
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(b) If m is the dimension of aff(C) and m > 0, there exist vectors
x0, x1, . . . , xm ∈ ri(C) such that x1 − x0, . . . , xm − x0 span the
subspace parallel to aff(C).

Proof: (a) Convexity of ri(C) follows from the Line Segment Principle
(Prop. 1.3.1). By using a translation argument if necessary, we assume
without loss of generality that 0 ∈ C. Then aff(C) is a subspace whose
dimension will be denoted by m. To show that ri(C) is nonempty, we will
use a basis for aff(C) to construct a relatively open set.

If the dimension m is 0, then C and aff(C) consist of a single point,
which is a unique relative interior point. If m > 0, we can find m linearly in-
dependent vectors z1, . . . , zm in C that span aff(C); otherwise there would
exist r < m linearly independent vectors in C whose span contains C, con-
tradicting the fact that the dimension of aff(C) is m. Thus z1, . . . , zm form
a basis for aff(C).

Consider the set

X =

{

x
∣

∣

∣
x =

m
∑

i=1

αizi,

m
∑

i=1

αi < 1, αi > 0, i = 1, . . . , m

}

(see Fig. 1.3.2), and note that X ⊂ C since C is convex. We claim that
this set is open relative to aff(C), i.e., for every vector x ∈ X , there exists
an open ball B centered at x such that x ∈ B and B ∩ aff(C) ⊂ X .
To see this, fix x ∈ X and let x be another vector in aff(C). We have
x = Zα and x = Zα, where Z is the n × m matrix whose columns are the
vectors z1, . . . , zm, and α and α are suitable m-dimensional vectors, which
are unique since z1, . . . , zm form a basis for aff(C). Since Z has linearly
independent columns, the matrix Z ′Z is symmetric and positive definite,
so for some positive scalar γ, which is independent of x and x, we have

‖x − x‖2 = (α − α)′Z ′Z(α − α) ≥ γ‖α − α‖2. (1.8)

Since x ∈ X , the corresponding vector α lies in the open set

A =

{

(α1, . . . , αm)
∣

∣

∣

m
∑

i=1

αi < 1, αi > 0, i = 1, . . . , m

}

.

From Eq. (1.8), we see that if x lies in a suitably small ball centered at
x, the corresponding vector α lies in A, implying that x ∈ X . Hence
X contains the intersection of aff(C) and an open ball centered at x, so
X is open relative to aff(C). It follows that all points of X are relative
interior points of C, so that ri(C) is nonempty. Also, since by construction,
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z2

C

X

z z1

z1 and z2 are linearly
independent, belong to
C and span aff(C)

0

Figure 1.3.2. Construction of the relatively open set X in the proof of nonempti-
ness of the relative interior of a convex set C that contains the origin, assuming
that m > 0. We choose m linearly independent vectors z1, . . . , zm ∈ C, where m
is the dimension of aff(C), and we let

X =

{

m
∑

i=1

αizi

∣

∣

∣

m
∑

i=1

αi < 1, αi > 0, i = 1, . . . , m

}

.

Any point in X is shown to be a relative interior point of C.

aff(X) = aff(C) and X ⊂ ri(C), we see that ri(C) and C have the same
affine hull.

(b) Let x0 be a relative interior point of C [there exists such a point by
part (a)]. Translate C to C − x0 (so that x0 is translated to the origin),
and consider vectors z1, . . . , zm ∈ C − x0 that span aff(C − x0), as in the
proof of part (a). Let α ∈ (0, 1). Since 0 ∈ ri(C −x0), by the Line Segment
Principle (Prop. 1.3.1), we have αzi ∈ ri(C − x0) for all i = 1, . . . , m. It
follows that the vectors

xi = x0 + αzi, i = 1, . . . , m,

are such that x1−x0, . . . , xm−x0 belong to ri(C) and span aff(C). Q.E.D.

Here is another useful consequence of the Line Segment Principle.

Proposition 1.3.3: (Prolongation Lemma) Let C be a nonempty
convex set. A vector x is a relative interior point of C if and only if
every line segment in C having x as one endpoint can be prolonged
beyond x without leaving C [i.e., for every x ∈ C, there exists a γ > 0
such that x + γ(x − x) ∈ C].

Proof: If x ∈ ri(C), the given condition clearly holds, using the definition
of relative interior point. Conversely, let x satisfy the given condition, and
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let x be a point in ri(C) (by Prop. 1.3.2, there exists such a point). If
x = x, we are done, so assume that x += x. By the given condition, there
is a γ > 0 such that y = x + γ(x− x) ∈ C, so that x lies strictly within the
line segment connecting x and y. Since x ∈ ri(C) and y ∈ C, by the Line
Segment Principle (Prop. 1.3.1), it follows that x ∈ ri(C). Q.E.D.

We will see in the following chapters that the notion of relative interior
is pervasive in convex optimization and duality theory. As an example, we
provide an important characterization of the set of optimal solutions in the
case where the cost function is concave.

Proposition 1.3.4: Let X be a nonempty convex subset of !n, let
f : X *→ ! be a concave function, and let X∗ be the set of vectors
where f attains a minimum over X , i.e.,

X∗ =

{

x∗ ∈ X
∣

∣

∣
f(x∗) = inf

x∈X
f(x)

}

.

If X∗ contains a relative interior point of X , then f must be constant
over X , i.e., X∗ = X .

Proof: Let x∗ belong to X∗∩ ri(X), and let x be any vector in X . By the
Prolongation Lemma (Prop. 1.3.3), there exists a γ > 0 such that

x̂ = x∗ + γ(x∗ − x)

belongs to X , implying that

x∗ =
1

γ + 1
x̂ +

γ

γ + 1
x

(see Fig. 1.3.3). By the concavity of f , we have

f(x∗) ≥
1

γ + 1
f(x̂) +

γ

γ + 1
f(x),

and using f(x̂) ≥ f(x∗) and f(x) ≥ f(x∗), this shows that f(x) = f(x∗).
Q.E.D.

One consequence of the preceding proposition is that a linear cost
function f(x) = c′x, with c += 0, cannot attain a minimum at some interior
point of a convex constraint set, since such a function cannot be constant
over an open sphere. This will be further discussed in Chapter 2, after we
introduce the notion of an extreme point.
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X

C x

ε x
x∗

) aff(X)

Figure 1.3.3. The idea of the proof
of Prop. 1.3.4. If x∗ ∈ ri(X) mini-
mizes f over X and f is not constant
over X, then there exists x ∈ X such
that f(x) > f(x∗). By the Prolonga-
tion Lemma (Prop. 1.3.3), there exists
x ∈ X such that x∗ lies strictly between
x and x. Since f is concave and f(x) >
f(x∗), we must have f(x) < f(x∗) - a
contradiction of the optimality of x∗.

1.3.1 Calculus of Relative Interiors and Closures

To deal with set operations such as intersection, vector sum, and linear
transformation in convex analysis, we need tools for calculating the corre-
sponding relative interiors and closures. These tools are provided in the
next five propositions. Here is an informal summary of their content:

(a) Two convex sets have the same closure if and only if they have the
same relative interior.

(b) Relative interior and closure commute with Cartesian product and
inverse image under a linear transformation.

(c) Relative interior commutes with image under a linear transformation
and vector sum, but closure does not.

(d) Neither closure nor relative interior commute with set intersection,
unless the relative interiors of the sets involved have a point in com-
mon.

Proposition 1.3.5: Let C be a nonempty convex set.

(a) cl(C) = cl
(

ri(C)
)

.

(b) ri(C) = ri
(

cl(C)
)

.

(c) Let C be another nonempty convex set. Then the following three
conditions are equivalent:

(i) C and C have the same relative interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(

ri(C)
)

⊂ cl(C). Conversely, let
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x ∈ cl(C). We will show that x ∈ cl
(

ri(C)
)

. Let x be any point in
ri(C) [there exists such a point by Prop. 1.3.2(a)], and assume that x += x
(otherwise we are done). By the Line Segment Principle (Prop. 1.3.1), we
have αx + (1 − α)x ∈ ri(C) for all α ∈ (0, 1]. Thus, x is the limit of the
sequence

{

(1/k)x + (1 − 1/k)x | k ≥ 1
}

that lies in ri(C), so x ∈ cl
(

ri(C)
)

.

(b) The inclusion ri(C) ⊂ ri
(

cl(C)
)

follows from the definition of a relative
interior point and the fact aff(C) = aff

(

cl(C)
)

(the proof of this is left
for the reader). To prove the reverse inclusion, let z ∈ ri

(

cl(C)
)

. We will
show that z ∈ ri(C). By Prop. 1.3.2(a), there exists an x ∈ ri(C). We
may assume that x += z (otherwise we are done). We use the Prolongation
Lemma [Prop. 1.3.3, applied within the set cl(C)] to choose γ > 0, with γ
sufficiently close to 0 so that the vector y = z + γ(z − x) belongs to cl(C).
Then we have z = (1 − α)x + αy where α = 1/(γ + 1) ∈ (0, 1), so by the
Line Segment Principle (Prop. 1.3.1, applied within the set C), we obtain
z ∈ ri(C).

(c) If ri(C) = ri(C), part (a) implies that cl(C) = cl(C). Similarly, if
cl(C) = cl(C), part (b) implies that ri(C) = ri(C). Thus, (i) and (ii)
are equivalent. Also, (i), (ii), and the relation ri(C) ⊂ C ⊂ cl(C) imply
condition (iii). Finally, let condition (iii) hold. Then by taking closures,
we have cl

(

ri(C)
)

⊂ cl(C) ⊂ cl(C), and by using part (a), we obtain
cl(C) ⊂ cl(C) ⊂ cl(C). Hence cl(C) = cl(C), i.e., (ii) holds. Q.E.D.

We now consider the image of a convex set C under a linear trans-
formation A. Geometric intuition suggests that A · ri(C) = ri(A ·C), since
spheres within C are mapped onto ellipsoids within the image A·C (relative
to the corresponding affine hulls). This is shown in part (a) of the follow-
ing proposition. However, the image of a closed convex set under a linear
transformation is not closed [see part (b) of the following proposition], and
this is a major source of analytical difficulty in convex optimization.

Proposition 1.3.6: Let C be a nonempty convex subset of !n and
let A be an m × n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A · C). Furthermore, if C is bounded,
then A · cl(C) = cl(A · C).

Proof: (a) For any set X , we have A ·cl(X) ⊂ cl(A ·X), since if a sequence
{xk} ⊂ X converges to some x ∈ cl(X) then the sequence {Axk}, which
belongs to A · X , converges to Ax, implying that Ax ∈ cl(A · X). We use



30 Basic Concepts of Convex Analysis Chap. 1

this fact and Prop. 1.3.5(a) to write

A · ri(C) ⊂ A · C ⊂ A · cl(C) = A · cl
(

ri(C)
)

⊂ cl
(

A · ri(C)
)

.

Thus the convex set A · C lies between the convex set A · ri(C) and the
closure of that set, implying that the relative interiors of the sets A ·C and
A · ri(C) are equal [Prop. 1.3.5(c)]. Hence ri(A · C) ⊂ A · ri(C).

To show the reverse inclusion, we take any z ∈ A · ri(C) and we show
that z ∈ ri(A · C). Let x be any vector in A · C, and let z ∈ ri(C) and
x ∈ C be such that Az = z and Ax = x. By the Prolongation Lemma
(Prop. 1.3.3), there exists a γ > 0 such that the vector y = z + γ(z − x)
belongs to C. Thus we have Ay ∈ A · C and Ay = z + γ(z − x), so by the
Prolongation Lemma, it follows that z ∈ ri(A · C).

(b) By the argument given in part (a), we have A · cl(C) ⊂ cl(A · C). To
show the converse, assuming that C is bounded, choose any z ∈ cl(A · C).
Then, there exists a sequence {xk} ⊂ C such that Axk → z. Since C is
bounded, {xk} has a subsequence that converges to some x ∈ cl(C), and
we must have Ax = z. It follows that z ∈ A · cl(C). Q.E.D.

Note that if C is closed and convex but unbounded, the set A · C
need not be closed [cf. part (b) of the preceding proposition]. For example,
projection on the horizontal axis of the closed convex set

{

(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1
}

,

shown in Fig. 1.3.4, is the (nonclosed) halfline
{

(x1, x2) | x1 > 0, x2 = 0
}

.
Generally, the vector sum of sets C1, . . . , Cm can be viewed as the

result of the linear transformation (x1, . . . , xm) *→ x1 + · · · + xm on the
Cartesian product C1 × · · · × Cm. Thus, results involving linear transfor-
mations, such as the one of the preceding proposition, yield corresponding
results for vector sums, such as the one of the following proposition.

Proposition 1.3.7: Let C1 and C2 be nonempty convex sets. We
have

ri(C1 + C2) = ri(C1) + ri(C2), cl(C1) + cl(C2) ⊂ cl(C1 + C2).

Furthermore, if at least one of the sets C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2).

Proof: Consider the linear transformation A : !2n *→ !n given by

A(x1, x2) = x1 + x2, x1, x2 ∈ !n.
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x1

x2

C1 =
{

(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1
}

C2 =
{

(x1, x2) | x1 = 0
}

,

Figure 1.3.4. An example where the sum of two closed convex sets C1 and C2

is not closed. Here

C1 =
{

(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1
}

, C2 =
{

(x1, x2) | x1 = 0
}

,

and C1 +C2 is the open halfspace
{

(x1, x2) | x1 > 0
}

. Also the projection of the
set C1 on the horizontal axis is not closed.

The relative interior of the Cartesian product C1 ×C2 (viewed as a subset
of !2n) is ri(C1)×ri(C2) (the easy proof of this is left for the reader). Since

A(C1 × C2) = C1 + C2,

from Prop. 1.3.6(a), we obtain ri(C1 + C2) = ri(C1) + ri(C2).
Similarly, the closure of C1 × C2 is cl(C1) × cl(C2). From Prop.

1.3.6(b), we have

A · cl(C1 × C2) ⊂ cl
(

A · (C1 × C2)
)

,

or equivalently, cl(C1) + cl(C2) ⊂ cl(C1 + C2).
To show the reverse inclusion, assuming that C1 is bounded, let x ∈

cl(C1 + C2). Then there exist sequences {x1
k} ⊂ C1 and {x2

k} ⊂ C2 such
that x1

k + x2
k → x. Since {x1

k} is bounded, it follows that {x2
k} is also

bounded. Thus,
{

(x1
k, x2

k)
}

has a subsequence that converges to a vector
(x1, x2), and we have x1 + x2 = x. Since x1 ∈ cl(C1) and x2 ∈ cl(C2),
it follows that x ∈ cl(C1) + cl(C2). Hence cl(C1 + C2) ⊂ cl(C1) + cl(C2).
Q.E.D.

The requirement that at least one of the sets C1 and C2 be bounded
is essential in the preceding proposition. This is illustrated by the example
of Fig. 1.3.4.
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Proposition 1.3.8: Let C1 and C2 be nonempty convex sets. We
have

ri(C1) ∩ ri(C2) ⊂ ri(C1 ∩ C2), cl(C1 ∩ C2) ⊂ cl(C1) ∩ cl(C2).

Furthermore, if the sets ri(C1) and ri(C2) have a nonempty intersec-
tion, then

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2), cl(C1 ∩ C2) = cl(C1) ∩ cl(C2).

Proof: Take any x ∈ ri(C1)∩ri(C2) and any y ∈ C1∩C2. By the Prolonga-
tion Lemma (Prop. 1.3.3), it can be seen that the line segment connecting
x and y can be prolonged beyond x by a small amount without leaving C1

and also by another small amount without leaving C2. Thus, by using the
lemma again, it follows that x ∈ ri(C1 ∩ C2), so that

ri(C1) ∩ ri(C2) ⊂ ri(C1 ∩ C2).

Also, since the set C1 ∩ C2 is contained in the closed set cl(C1) ∩ cl(C2),
we have

cl(C1 ∩ C2) ⊂ cl(C1) ∩ cl(C2).

To show the reverse inclusions assuming that ri(C1) ∩ ri(C2) += Ø,
let y ∈ cl(C1) ∩ cl(C2), and let x ∈ ri(C1) ∩ ri(C2). By the Line Segment
Principle (Prop. 1.3.1), αx + (1 − α)y ∈ ri(C1) ∩ ri(C2) for all α ∈ (0, 1]
(see Fig. 1.3.5). Hence, y is the limit of a sequence αkx + (1 − αk)y ⊂
ri(C1) ∩ ri(C2) with αk → 0, implying that y ∈ cl

(

ri(C1) ∩ ri(C2)
)

. Thus,

cl(C1) ∩ cl(C2) ⊂ cl
(

ri(C1) ∩ ri(C2)
)

⊂ cl(C1 ∩ C2).

We showed earlier that cl(C1 ∩ C2) ⊂ cl(C1) ∩ cl(C2), so equality holds
throughout in the preceding relation, and therefore cl(C1 ∩C2) = cl(C1) ∩
cl(C2). Furthermore, the sets ri(C1) ∩ ri(C2) and C1 ∩ C2 have the same
closure. Therefore, by Prop. 1.3.5(c), they have the same relative interior,
so that

ri(C1 ∩ C2) = ri
(

ri(C1) ∩ ri(C2)
)

⊂ ri(C1) ∩ ri(C2).

We showed earlier the reverse inclusion, so ri(C1 ∩ C2) = ri(C1) ∩ ri(C2).
Q.E.D.

The requirement that ri(C1) ∩ ri(C2) += Ø is essential in part (a) of
the preceding proposition. As an example, consider the following subsets
of the real line:

C1 = {x | x ≥ 0}, C2 = {x | x ≤ 0}.



Sec. 1.3 Relative Interior and Closure 33

C x

x y

C1
C2

aff(C1 ∪ C2)

Figure 1.3.5. Construction used to show that

cl(C1) ∩ cl(C2) ⊂ cl(C1 ∩ C2),

assuming that there exists x ∈ ri(C1)∩ ri(C2) (cf. Prop. 1.3.8). Any y ∈ cl(C1)∩
cl(C2) can be approached along the line segment of ri(C1) ∩ ri(C2) connecting it
with x, so it belongs to the closure of ri(C1)∩ri(C2) and hence also to cl(C1∩C2).

Then we have ri(C1 ∩ C2) = {0} += Ø = ri(C1) ∩ ri(C2). Also, consider the
following subsets of the real line:

C1 = {x | x > 0}, C2 = {x | x < 0}.

Then we have cl(C1 ∩ C2) = Ø += {0} = cl(C1) ∩ cl(C2).

Proposition 1.3.9: Let C be a nonempty convex subset of !m, and
let A be an m × n matrix. If A−1 · ri(C) is nonempty, then

ri(A−1 · C) = A−1 · ri(C), cl(A−1 · C) = A−1 · cl(C),

where A−1 denotes inverse image of the corresponding set under A.

Proof: Define the sets

D = !n × C, S =
{

(x, Ax) | x ∈ !n
}

,

and let T be the linear transformation that maps (x, y) ∈ !n+m into x ∈
!n. We have

A−1 · C = {x | Ax ∈ C} = T ·
{

(x, Ax) | Ax ∈ C
}

= T · (D ∩ S),
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from which
ri(A−1 · C) = ri

(

T · (D ∩ S)
)

. (1.9)

Similarly, we have

A−1·ri(C) =
{

x | Ax ∈ ri(C)
}

= T ·
{

(x, Ax) | Ax ∈ ri(C)
}

= T ·
(

ri(D)∩S
)

,
(1.10)

where the last equality holds because ri(D) = !n × ri(C) (cf. Prop. 1.3.8).
Since by assumption, A−1 · ri(C) is nonempty, we see that ri(D) ∩ S is
nonempty. Therefore, using the fact ri(S) = S, and Props. 1.3.6(a) and
1.3.8, it follows that

ri
(

T · (D ∩ S)
)

= T · ri
(

D ∩ S
)

= T ·
(

ri(D) ∩ S
)

. (1.11)

Combining Eqs. (1.9)-(1.11), we obtain

ri(A−1 · C) = A−1 · ri(C).

To show the second relation, note that

A−1·cl(C) =
{

x | Ax ∈ cl(C)
}

= T ·
{

(x, Ax) | Ax ∈ cl(C)
}

= T ·
(

cl(D)∩S
)

,

where the last equality holds because cl(D) = !n × cl(C). Since ri(D) ∩ S
is nonempty and ri(S) = S, it follows from Prop. 1.3.8 that

cl(D) ∩ S = cl(D ∩ S).

Using the last two relations and the continuity of T , we obtain

A−1 · cl(C) = T · cl(D ∩ S) ⊂ cl
(

T · (D ∩ S)
)

,

which combined with Eq. (1.9) yields

A−1 · cl(C) ⊂ cl(A−1 · C).

To show the reverse inclusion, let x be a vector in cl(A−1 · C). Then
there exists a sequence {xk} converging to x such that Axk ∈ C for all
k. Since {xk} converges to x, we see that {Axk} converges to Ax, so that
Ax ∈ cl(C), or equivalently, x ∈ A−1 · cl(C). Q.E.D.

We finally show a useful characterization of the relative interior of
sets involving two variables. It generalizes the Cartesian product formula

ri(C1 × C2) = ri(C1) × ri(C2)

for two convex sets C1 ⊂ !n and C2 ∈ !m.
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Proposition 1.3.10: Let C be a convex subset of !n+m. For x ∈ !n,
denote

Cx = {y | (x, y) ∈ C},

and let
D = {x | Cx += Ø}.

Then
ri(C) =

{

(x, y) | x ∈ ri(D), y ∈ ri(Cx)
}

.

Proof: Since D is the projection of C on the x-axis, from Prop. 1.3.6,

ri(D) =
{

x | there exists y ∈ !m with (x, y) ∈ ri(C)
}

,

so that
ri(C) = ∪x∈ri(D)

(

Mx ∩ ri(C)
)

,

where Mx =
{

(x, y) | y ∈ !m
}

. For every x ∈ ri(D), we have

Mx ∩ ri(C) = ri(Mx ∩ C) =
{

(x, y) | y ∈ ri(Cx)
}

,

where the first equality follows from Prop. 1.3.8. By combining the pre-
ceding two equations, we obtain the desired result. Q.E.D.

1.3.2 Continuity of Convex Functions

We now derive a basic continuity property of convex functions.

Proposition 1.3.11: If f : !n *→ ! is convex, then it is continuous.
More generally, if f : !n *→ (−∞,∞] is a proper convex function,
then f , restricted to dom(f), is continuous over the relative interior of
dom(f).

Proof: Restricting attention to the affine hull of dom(f) and using a trans-
formation argument if necessary, we assume without loss of generality that
the origin is an interior point of dom(f) and that the unit cube

X = {x | ‖x‖∞ ≤ 1}

is contained in dom(f) (we use the norm ‖x‖∞ = maxj∈{1,...,n} |xj |). It
will suffice to show that f is continuous at 0, i.e., that for any sequence
{xk} ⊂ !n that converges to 0, we have f(xk) → f(0).
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1 0

xk

xk+1

4 yk

zk

e1 = (1, 1)

1) e2 = (1,−1)1) e3 = (−1,−1)

1) e4 = (−1, 1)

Figure 1.3.6. Construction for the
proof of continuity of a real-valued
convex function (cf. Prop. 1.3.11).

Let ei, i = 1, . . . , 2n, be the corners of X , i.e., each ei is a vector
whose entries are either 1 or −1. It can be seen that any x ∈ X can be

expressed in the form x =
∑2n

i=1 αiei, where each αi is a nonnegative scalar

and
∑2n

i=1 αi = 1. Let A = maxi f(ei). From Jensen’s inequality [Eq.
(1.7)], it follows that f(x) ≤ A for every x ∈ X .

For the purpose of proving continuity at 0, we can assume that xk ∈ X
and xk += 0 for all k. Consider the sequences {yk} and {zk} given by

yk =
xk

‖xk‖∞
, zk = −

xk

‖xk‖∞
;

(cf. Fig. 1.3.6). Using the definition of a convex function for the line seg-
ment that connects yk, xk, and 0, we have

f(xk) ≤
(

1 − ‖xk‖∞
)

f(0) + ‖xk‖∞f(yk).

Since ‖xk‖∞ → 0 and f(yk) ≤ A for all k, by taking the limit as k → ∞,
we obtain

lim sup
k→∞

f(xk) ≤ f(0).

Using the definition of a convex function for the line segment that connects
xk, 0, and zk, we have

f(0) ≤
‖xk‖∞

‖xk‖∞ + 1
f(zk) +

1

‖xk‖∞ + 1
f(xk)

and letting k → ∞, we obtain

f(0) ≤ lim inf
k→∞

f(xk).

Thus, limk→∞ f(xk) = f(0) and f is continuous at zero. Q.E.D.
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Among other things, the proposition implies that a real-valued convex
function is continuous and hence closed (cf. Prop. 1.1.2). We also have the
following stronger result for the case of a function of one variable.

Proposition 1.3.12: If C is a closed interval of the real line, and
f : C *→ ! is closed and convex, then f is continuous over C.

Proof: By the preceding proposition, f is continuous in the relative inte-
rior of C. To show continuity at a boundary point x, let {xk} ⊂ C be a
sequence that converges to x, and write

xk = αkx0 + (1 − αk)x, ∀ k,

where {αk} is a nonnegative sequence with αk → 0. By convexity of f , we
have for all k such that αk ≤ 1,

f(xk) ≤ αkf(x0) + (1 − αk)f(x),

and by taking the limit as k → ∞, we obtain

lim sup
k→∞

f(xk) ≤ f(x).

Consider the function f̃ : ! *→ (−∞,∞], which takes the value f(x) for
x ∈ C and ∞ for x /∈ C, and note that it is closed (since it has the same
epigraph as f), and hence lower semicontinuous (cf. Prop. 1.1.2). It follows
that f(x) ≤ lim infk→∞ f(xk), thus implying that f(xk) → f(x), and that
f is continuous at x. Q.E.D.

1.3.3 Closures of Functions

In this section, we study operations that can transform a given function
to a closed and/or convex function, while preserving much of its essential
character. These operations play an important role in optimization and
other contexts.

A nonempty subset E of !n+1 is the epigraph of some function if for
every (x, w) ∈ E, the set

{

w | (x, w) ∈ E
}

is either the real line or else it is
a halfline that is bounded below and contains its (lower) endpoint. Then
E is the epigraph of the function f : D *→ [−∞,∞], where

D =
{

x | there exists w ∈ ! with (x, w) ∈ E
}

,

and
f(x) = inf

{

w | (x, w) ∈ E
}

, ∀ x ∈ D
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[the infimum is actually attained if f(x) is finite]. Note that E is also the
epigraph of other functions with different domain than f (but the same
effective domain); for example, f̃ : !n *→ [−∞,∞], where f̃(x) = f(x) for
x ∈ D and f̃(x) = ∞ for x /∈ D. If E is the empty set, it is the epigraph
of the function that is identically equal to ∞.

The closure of the epigraph of a function f : X *→ [−∞,∞] can be
seen to be a legitimate epigraph of another function. This function, called
the closure of f and denoted cl f : !n *→ [−∞,∞], is given by†

(cl f)(x) = inf
{

w | (x, w) ∈ cl
(

epi(f)
)}

, x ∈ !n.

When f is convex, the set cl
(

epi(f)
)

is closed and convex [since the closure
of a convex set is convex by Prop. 1.1.1(d)], implying that cl f is closed and
convex since epi(cl f) = cl

(

epi(f)
)

by definition.
The closure of the convex hull of the epigraph of f is the epigraph of

some function, denoted čl f called the convex closure of f . It can be seen
that čl f is the closure of the function F : !n *→ [−∞,∞] given by

F (x) = inf
{

w | (x, w) ∈ conv
(

epi(f)
)}

, x ∈ !n. (1.12)

It is easily shown that F is convex, but it need not be closed and its
domain may be strictly contained in dom(čl f) (it can be seen though that
the closures of the domains of F and čl f coincide).

From the point of view of optimization, an important property is that
the minimal values of f , cl f , F , and čl f coincide, as stated in the following
proposition:

Proposition 1.3.13: Let f : X *→ [−∞,∞] be a function. Then

inf
x∈X

f(x) = inf
x∈X

(cl f)(x) = inf
x∈(n

(cl f)(x) = inf
x∈(n

F (x) = inf
x∈(n

(čl f)(x),

where F is given by Eq. (1.12). Furthermore, any vector that attains
the infimum of f over X also attains the infimum of cl f , F , and čl f .

† A note regarding the definition of closure: in Rockafellar [Roc70], p. 52,
what we call “closure” of f is called the “lower semi-continuous hull” of f , and

“closure” of f is defined somewhat differently (but denoted cl f). Our definition
of “closure” of f works better for our purposes, and results in a more streamlined

analysis. It coincides with the one of [Roc70] when f is proper convex. For this

reason the results of this section correspond to results in [Roc70] only in the
case where the functions involved are proper convex. In Rockafellar and Wets

[RoW98], p. 14, our “closure” of f is called the “lsc regularization” or “lower

closure” of f , and is denoted by cl f . Thus our notation is consistent with the
one of [RoW98].
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Proof: If epi(f) is empty, i.e., f(x) = ∞ for all x, the results trivially
hold. Assume that epi(f) is nonempty, and let f∗ = infx∈(n(cl f)(x). For
any sequence

{

(xk, wk)
}

⊂ cl
(

epi(f)
)

with wk → f∗, we can construct a
sequence

{

(xk, wk)
}

⊂ epi(f) such that |wk − wk| → 0, so that wk → f∗.
Since xk ∈ X , f(xk) ≤ wk, we have

lim sup
k→∞

f(xk) ≤ f∗ ≤ (cl f)(x) ≤ f(x), ∀ x ∈ X,

so that
inf

x∈X
f(x) = inf

x∈X
(cl f)(x) = inf

x∈(n
(cl f)(x).

Choose
{

(xk, wk)
}

⊂ conv
(

epi(f)
)

with wk → infx∈(n F (x). Each
(xk, wk) is a convex combination of vectors from epi(f), so that wk ≥
infx∈X f(x). Hence infx∈(n F (x) ≥ infx∈X f(x). On the other hand,
we have F (x) ≤ f(x) for all x ∈ X , so it follows that infx∈(n F (x) =
infx∈X f(x). Since čl f is the closure of F , it also follows (based on what was
shown in the preceding paragraph) that infx∈(n(čl f)(x) = infx∈(n F (x).

We have f(x) ≥ (cl f)(x) for all x, so if x∗ attains the infimum of f ,

inf
x∈(n

(cl f)(x) = inf
x∈X

f(x) = f(x∗) ≥ (cl f)(x∗),

showing that x∗ attains the infimum of cl f . Similarly, x∗ attains the
infimum of F and čl f . Q.E.D.

The following is a characterization of closures and convex closures.

Proposition 1.3.14: Let f : !n *→ [−∞,∞] be a function.

(a) cl f is the greatest closed function majorized by f , i.e., if g :
!n *→ [−∞,∞] is closed and satisfies g(x) ≤ f(x) for all x ∈ !n,
then g(x) ≤ (cl f)(x) for all x ∈ !n.

(b) čl f is the greatest closed and convex function majorized by f ,
i.e., if g : !n *→ [−∞,∞] is closed and convex, and satisfies
g(x) ≤ f(x) for all x ∈ !n, then g(x) ≤ (čl f)(x) for all x ∈ !n.

Proof: (a) Let g : !n *→ [−∞,∞] be closed and such that g(x) ≤ f(x)
for all x. Then epi(f) ⊂ epi(g). Since epi(cl f) = cl

(

epi(f)
)

, we have that
epi(cl f) is the intersection of all closed sets E ⊂ !n+1 with epi(f) ⊂ E, so
that epi(cl f) ⊂ epi(g). It follows that g(x) ≤ (cl f)(x) for all x ∈ !n.

(b) Similar to the proof of part (a). Q.E.D.

Working with the closure of a convex function is often useful because
in some sense the closure “differs minimally” from the original. In partic-
ular, we can show that a convex function coincides with its closure on the
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relative interior of its domain. This and other properties of closures are
derived in the following proposition.

Proposition 1.3.15: Let f : !n *→ [−∞,∞] be a convex function.
Then:

(a) We have

cl
(

dom(f)
)

= cl
(

dom(cl f)
)

, ri
(

dom(f)
)

= ri
(

dom(cl f)
)

,

(cl f)(x) = f(x), ∀ x ∈ ri
(

dom(f)
)

.

Furthermore, cl f is proper if and only if f is proper.

(b) If x ∈ ri
(

dom(f)
)

, we have

(cl f)(y) = lim
α↓0

f
(

y + α(x − y)
)

, ∀ y ∈ !n.

Proof: (a) From Prop. 1.3.10, we have

ri
(

epi(f)
)

=
{

(x, w) | x ∈ ri
(

dom(f)
)

, f(x) < w
}

, (1.13)

ri
(

epi(cl f)
)

=
{

(x, w) | x ∈ ri
(

dom(cl f)
)

, (cl f)(x) < w
}

. (1.14)

Since epi(f) and epi(cl f) have the same closure, they have the same relative
interior [Prop. 1.3.5(c)], i.e., the sets of Eqs. (1.13) and (1.14) are equal.
Hence dom(f) and dom(cl f) have the same relative interior and therefore
also the same closure. Thus, the equality of the sets (1.13) and (1.14) yields

{

(x, w) | x ∈ ri
(

dom(f)
)

, f(x) < w
}

=
{

(x, w) | x ∈ ri
(

dom(f)
)

, (cl f)(x) < w
}

,

from which it follows that f(x) = (cl f)(x) for all x ∈ ri
(

dom(f)
)

.
If cl f is proper, clearly f is proper. Conversely, if cl f is improper,

then (cl f)(x) = −∞ for all x ∈ dom(cl f) (cf. the discussion at the end
of Section 1.1.2). Hence (cl f)(x) = −∞ for all x ∈ ri

(

dom(cl f)
)

=
ri
(

dom(f)
)

. Using what was just proved, it follows that f(x) = (cl f)(x) =
−∞ for all x ∈ ri

(

dom(f)
)

, implying that f is improper.

(b) Assume first y /∈ dom(cl f), i.e., (cl f)(y) = ∞. Then, by the lower
semicontinuity of cl f , we have (cl f)(yk) → ∞ for all sequences {yk} with
yk → y, from which f(yk) → ∞, since (cl f)(yk) ≤ f(yk). Hence (cl f)(y) =
limα↓0 f

(

y + α(x − y)
)

= ∞.
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Assume next that y ∈ dom(cl f), and consider the function g : [0, 1] *→
! given by

g(α) = (cl f)
(

y + α(x − y)
)

.

For α ∈ (0, 1], by the Line Segment Principle (Prop. 1.3.1), we have

y + α(x − y) ∈ ri
(

dom(cl f)
)

,

so by part (a), y + α(x − y) ∈ ri
(

dom(f)
)

, and

g(α) = (cl f)
(

y + α(x − y)
)

= f
(

y + α(x − y)
)

. (1.15)

If (cl f)(y) = −∞, then cl f is improper and (cl f)(z) = −∞ for all
z ∈ dom(cl f), since an improper closed convex function cannot take a finite
value at any point (cf. the discussion at the end of Section 1.1.2). Hence

f
(

y + α(x − y)
)

= −∞, ∀ α ∈ (0, 1],

and the desired equation follows. If (cl f)(y) > −∞, then (cl f)(y) is finite,
so cl f is proper and by part (a), f is also proper. It follows that the
function g is real-valued, convex, and closed, and hence also continuous
over [0, 1] (Prop. 1.3.12). By taking the limit in Eq. (1.15),

(cl f)(y) = g(0) = lim
α↓0

g(α) = lim
α↓0

f
(

y + α(x − y)
)

.

Q.E.D.

Note a corollary of part (a) of the preceding proposition: an improper
convex function f takes the value −∞ at all x ∈ ri

(

dom(f)
)

, since its
closure does (cf. the discussion at the end of Section 1.1.2).

Calculus of Closure Operations

We now characterize the closure of functions obtained by linear composition
and summation of convex functions.

Proposition 1.3.16: Let f : !m *→ [−∞,∞] be a convex function
and A be an m × n matrix such that the range of A contains a point
in ri

(

dom(f)
)

. The function F defined by

F (x) = f(Ax),

is convex and

(cl F )(x) = (cl f)(Ax), ∀ x ∈ !n.
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Proof: Let z be a point in the range of A that belongs to ri
(

dom(f)
)

,
and let y be such that Ay = z. Then, since dom(F ) = A−1dom(f) and by
Prop. 1.3.9, ri

(

dom(F )
)

= A−1ri
(

dom(f)
)

, we see that y ∈ ri
(

dom(F )
)

.
By using Prop. 1.3.15(b), we have for every x ∈ !n,

(cl F )(x) = lim
α↓0

F
(

x + α(y − x)
)

= lim
α↓0

f
(

Ax + α(Ay − Ax)
)

= (cl f)(Ax).

Q.E.D.

The following proposition is essentially a special case of the preceding
one (cf. the discussion in Section 1.1.3).

Proposition 1.3.17: Let fi : !n *→ [−∞,∞], i = 1, . . . , m, be con-
vex functions such that

∩m
i=1ri

(

dom(fi)
)

+= Ø. (1.16)

The function F defined by

F (x) = f1(x) + · · · + fm(x),

is convex and

(cl F )(x) = (cl f1)(x) + · · · + (cl fm)(x), ∀ x ∈ !n.

Proof: We write F in the form F (x) = f(Ax), where A is the matrix
defined by Ax = (x, . . . , x), and f : !mn *→ (−∞,∞] is the function

f(x1, . . . , xm) = f1(x1) + · · · + fm(xm).

Since dom(F ) = ∩n
i=1dom(fi), Eq. (1.16) implies that

∩n
i=1ri

(

dom(fi)
)

= ri
(

dom(F )
)

= ri
(

A−1 · dom(f)
)

= A−1 · ri
(

dom(f)
)

(cf. Props. 1.3.8 and 1.3.9). Thus Eq. (1.16) is equivalent to the range of
A containing a point in ri

(

dom(f)
)

, so that (cl F )(x) = (cl f)(x, . . . , x) (cf.
Prop. 1.3.16). Let y ∈ ∩n

i=1ri(dom(fi)), so that (y, . . . , y) ∈ ri(dom(f)).
Then, from Prop. 1.3.15(b), (cl F )(x) = limα↓0 f1

(

x + α(y − x)
)

+ · · · +
limα↓0 fm

(

x + α(y − x)
)

= (cl f1)(x) + · · · + (cl fm)(x). Q.E.D.

Note that the relative interior assumption (1.16) is essential. To see
this, let f1 and f2 be the indicator functions of two convex sets C1 and C2

such that cl(C1 ∩ C2) += cl(C1) ∩ cl(C2) (cf. the example following Prop.
1.3.8).
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x

C

0

d

x + αd

Recession Cone RC

Figure 1.4.1. Illustration of the recession
cone RC of a convex set C. A direction of
recession d has the property that x+αd ∈
C for all x ∈ C and α ≥ 0.

1.4 RECESSION CONES

We will now develop some methodology to characterize the asymptotic
behavior of convex sets and functions. This methodology is fundamental
in several convex optimization contexts, including the issue of existence of
optimal solutions, which will be discussed in Chapter 3.

Given a nonempty convex set C, we say that a vector d is a direction
of recession of C if x + αd ∈ C for all x ∈ C and α ≥ 0. Thus, d is a
direction of recession of C if starting at any x in C and going indefinitely
along d, we never cross the relative boundary of C to points outside C.

The set of all directions of recession is a cone containing the origin.
It is called the recession cone of C and it is denoted by RC (see Fig. 1.4.1).
Thus d ∈ RC if x+αd ∈ C for all x ∈ C and α ≥ 0. An important property
of a closed convex set is that to test whether d ∈ RC it is enough to verify
the property x+αd ∈ C for a single x ∈ C. This is part (b) of the following
proposition.

Proposition 1.4.1: (Recession Cone Theorem) Let C be a nonem-
pty closed convex set.

(a) The recession cone RC is closed and convex.

(b) A vector d belongs to RC if and only if there exists a vector
x ∈ C such that x + αd ∈ C for all α ≥ 0.

Proof: (a) If d1, d2 belong to RC and γ1, γ2 are positive scalars such that
γ1 + γ2 = 1, we have for any x ∈ C and α ≥ 0

x + α(γ1d1 + γ2d2) = γ1(x + αd1) + γ2(x + αd2) ∈ C,

where the last inclusion holds because C is convex, and x+αd1 and x+αd2

belong to C by the definition of RC . Hence γ1d1 + γ2d2 ∈ RC , implying
that RC is convex.
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x

C

z1 = x + d

d z2

z3

x

x + d

d x + d1

x + d2

x + d3

Figure 1.4.2. Construction for the proof of Prop. 1.4.1(b).

Let d be in the closure of RC , and let {dk} ⊂ RC be a sequence
converging to d. For any x ∈ C and α ≥ 0 we have x + αdk ∈ C for all k,
and because C is closed, x + αd ∈ C. Hence d ∈ RC , so RC is closed.

(b) If d ∈ RC , every vector x ∈ C has the required property by the defini-
tion of RC . Conversely, let d be such that there exists a vector x ∈ C with
x+αd ∈ C for all α ≥ 0. With no loss of generality, we assume that d += 0.
We choose arbitrary x ∈ C and α > 0, and we will show that x + αd ∈ C.
In fact, it is sufficient to show that x + d ∈ C, i.e., to assume that α = 1,
since the general case where α > 0 can be reduced to the case where α = 1
by replacing d with αd.

Let
zk = x + kd, k = 1, 2, . . .

and note that zk ∈ C for all k, by our choice of x and d. If x = zk for some
k, then x+d = x+(k +1)d, which belongs to C and we are done. We thus
assume that x += zk for all k, and we define

dk =
zk − x

‖zk − x‖
‖d‖, k = 1, 2, . . . (1.17)

so that x + dk is the intersection of the surface of the sphere centered at x
of radius ‖d‖, and the halfline that starts at x and passes through zk (see
the construction of Fig. 1.4.2). We will now argue that dk → d, and that
for large enough k, x + dk ∈ C, so using the closure of C, it follows that
x + d ∈ C.

Indeed, using the definition (1.17) of dk, we have

dk

‖d‖
=

‖zk − x‖

‖zk − x‖
·

zk − x

‖zk − x‖
+

x − x

‖zk − x‖
=

‖zk − x‖

‖zk − x‖
·

d

‖d‖
+

x − x

‖zk − x‖
.
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Because {zk} is an unbounded sequence,

‖zk − x‖

‖zk − x‖
→ 1,

x − x

‖zk − x‖
→ 0,

so by combining the preceding relations, we have dk → d. The vector x+dk

lies between x and zk in the line segment connecting x and zk for all k such
that ‖zk − x‖ ≥ ‖d‖, so by the convexity of C, we have x + dk ∈ C for all
sufficiently large k. Since x + dk → x + d and C is closed, it follows that
x + d ∈ C. Q.E.D.

It is essential to assume that the set C is closed in the preceding
proposition. For an example where part (a) fails without this assumption,
consider the set

C =
{

(x1, x2) | 0 < x1, 0 < x2
}

∪
{

(0, 0)
}

.

Its recession cone is equal to C, which is not closed. Part (b) also fails in
this example, since for the direction d = (1, 0) we have x + αd ∈ C for all
α ≥ 0 and all x ∈ C, except for x = (0, 0).

The following proposition gives some additional properties of reces-
sion cones.

Proposition 1.4.2: (Properties of Recession Cones) Let C be
a nonempty closed convex set.

(a) RC contains a nonzero direction if and only if C is unbounded.

(b) RC = Rri(C).

(c) For any collection of closed convex sets Ci, i ∈ I, where I is an
arbitrary index set and ∩i∈ICi += Ø, we have

R∩i∈ICi = ∩i∈IRCi .

(d) Let W be a compact and convex subset of !m, and let A be an
m × n matrix. The recession cone of the set

V = {x ∈ C | Ax ∈ W}

(assuming this set is nonempty) is RC ∩ N(A), where N(A) is
the nullspace of A.

Proof: (a) Assuming that C is unbounded, we will show that RC contains
a nonzero direction (the reverse implication is clear). Choose any x ∈ C
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and any unbounded sequence {zk} ⊂ C. Consider the sequence {dk}, where

dk =
zk − x

‖zk − x‖
,

and let d be a limit point of {dk} (compare with the construction of Fig.
1.4.2). Without loss of generality, assume that ‖zk − x‖ is monotonically
increasing with k. For any fixed α ≥ 0, the vector x+αdk lies between x and
zk in the line segment connecting x and zk for all k such that ‖zk−x‖ ≥ α.
Hence by the convexity of C, we have x + αdk ∈ C for all sufficiently large
k. Since x + αd is a limit point of {x + αdk} and C is closed, we have
x + αd ∈ C. Hence, using also Prop. 1.4.1(b), it follows that the nonzero
vector d is a direction of recession.

(b) If d ∈ Rri(C), then for a fixed x ∈ ri(C) and all α ≥ 0, we have
x+αd ∈ ri(C) ⊂ C. Hence, by Prop. 1.4.1(b), we have d ∈ RC . Conversely,
if d ∈ RC , then for any x ∈ ri(C), we have x + αd ∈ C for all α ≥ 0. It
follows from the Line Segment Principle (Prop. 1.3.1) that x + αd ∈ ri(C)
for all α ≥ 0, so that d belongs to Rri(C).

(c) By the definition of direction of recession, d ∈ R∩i∈ICi implies that
x + αd ∈ ∩i∈ICi for all x ∈ ∩i∈ICi and all α ≥ 0. By Prop. 1.4.1(b),
this in turn implies that d ∈ RCi for all i, so that R∩i∈ICi ⊂ ∩i∈IRCi .
Conversely, by the definition of direction of recession, if d ∈ ∩i∈IRCi and
x ∈ ∩i∈ICi, we have x + αd ∈ ∩i∈ICi for all α ≥ 0, so d ∈ R∩i∈ICi . Thus,
∩i∈IRCi ⊂ R∩i∈ICi .

(d) Consider the closed convex set V = {x | Ax ∈ W}, and choose some
x ∈ V . Then, by Prop. 1.4.1(b), d ∈ R

V
if and only if x + αd ∈ V for all

α ≥ 0, or equivalently if and only if A(x + αd) ∈ W for all α ≥ 0. Since
Ax ∈ W , the last statement is equivalent to Ad ∈ RW . Thus, d ∈ R

V
if and

only if Ad ∈ RW . Since W is compact, from part (a) we have RW = {0},
so RV is equal to {d | Ad = 0}, which is N(A). Since V = C ∩ V , using
part (c), we have RV = RC ∩ N(A). Q.E.D.

For an example where part (a) of the preceding proposition fails,
consider the unbounded convex set

C =
{

(x1, x2) | 0 ≤ x1 < 1, 0 ≤ x2

}

∪
{

(1, 0)
}

.

By using the definition, it can be verified that C has no nonzero directions
of recession. It can also be verified that (0, 1) is a direction of recession of
ri(C), so part (b) also fails. Finally, by letting

D =
{

(x1, x2) | −1 ≤ x1 ≤ 0, 0 ≤ x2

}

,

it can be seen that (0, 1) ∈ RD, so RC∩D += RC ∩ RD and part (c) fails as
well.
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Note that part (c) of the preceding proposition implies that if C and
D are nonempty closed and convex sets such that C ⊂ D, then RC ⊂ RD.
This can be seen by using part (c) to write RC = RC∩D = RC ∩RD, from
which we obtain RC ⊂ RD. This property can fail if the sets C and D are
not closed; for example, if

C =
{

(x1, x2) | 0 ≤ x1 < 1, 0 ≤ x2
}

, D = C ∪
{

(1, 0)
}

,

then the vector (0, 1) is a direction of recession of C but not of D.

Lineality Space

A subset of the recession cone of a convex set C that plays an important
role in a number of interesting contexts is its lineality space, denoted by
LC . It is defined as the set of directions of recession d whose opposite, −d,
are also directions of recession:

LC = RC ∩ (−RC).

Thus d ∈ LC if and only if the entire line {x + αd | α ∈ !} is contained in
C for every x ∈ C.

The lineality space inherits several of the properties of the recession
cone that we have shown (Props. 1.4.1 and 1.4.2). We collect these prop-
erties in the following proposition.

Proposition 1.4.3: (Properties of Lineality Space) Let C be a
nonempty closed convex subset of !n.

(a) LC is a subspace of !n.

(b) LC = Lri(C).

(c) For any collection of closed convex sets Ci, i ∈ I, where I is an
arbitrary index set and ∩i∈ICi += Ø, we have

L∩i∈ICi = ∩i∈ILCi .

(d) Let W be a compact and convex subset of !m, and let A be an
m × n matrix. The lineality space of the set

V = {x ∈ C | Ax ∈ W}

(assuming it is nonempty) is LC ∩ N(A), where N(A) is the
nullspace of A.
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Proof: (a) Let d1 and d2 belong to LC , and let α1 and α2 be nonzero
scalars. We will show that α1d1 + α2d2 belongs to LC . Indeed, we have

α1d1 + α2d2 = |α1|
(

sgn(α1)d1
)

+ |α2|
(

sgn(α2)d2
)

=
(

|α1| + |α2|)
(

αd1 + (1 − α)d2
)

,
(1.18)

where

α =
|α1|

|α1| + |α2|
, d1 = sgn(α1)d1, d2 = sgn(α2)d2,

and for a nonzero scalar s, we use the notation sgn(s) = 1 or sgn(s) = −1
depending on whether s is positive or negative, respectively. We now note
that LC is a convex cone, being the intersection of the convex cones RC

and −RC . Hence, since d1 and d2 belong to LC , any positive multiple of a
convex combination of d1 and d2 belongs to LC . It follows from Eq. (1.18)
that α1d1 + α2d2 ∈ LC .

(b) We have

Lri(C) = Rri(C) ∩
(

−Rri(C)

)

= RC ∩ (−RC) = LC ,

where the second equality follows from Prop. 1.4.2(b).

(c) We have
L∩i∈ICi =

(

R∩i∈ICi

)

∩
(

−R∩i∈ICi

)

= (∩i∈IRCi) ∩ (− ∩i∈I RCi)

= ∩i∈I

(

RCi ∩ (−RCi)
)

= ∩i∈ILCi ,

where the second equality follows from Prop. 1.4.2(c).

(d) We have
LV = RV ∩ (−RV )

=
(

RC ∩ N(A)
)

∩
(

(−RC) ∩ N(A)
)

=
(

RC ∩ (−RC)
)

∩ N(A)

= LC ∩ N(A),

where the second equality follows from Prop. 1.4.2(d). Q.E.D.

Example 1.4.1: (Sets Specified by Linear and Convex
Quadratic Inequalities)

Consider a nonempty set of the form

C = {x | x′Qx + c′x + b ≤ 0},
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where Q is a symmetric positive semidefinite n × n matrix, c is a vector in
#n, and b is a scalar. A vector d is a direction of recession if and only if

(x + αd)′Q(x + αd) + c′(x + αd) + b ≤ 0, ∀ α > 0, x ∈ C,

or

x′Qx + c′x + b + α(c + 2Qx)′d + α2d′Qd ≤ 0, ∀ α > 0, x ∈ C. (1.19)

Clearly, we cannot have d′Qd > 0, since then the left-hand side above would
become arbitrarily large for a suitably large choice of α, so d′Qd = 0. Since
Q is positive semidefinite, it can be written as Q = M ′M for some matrix M ,
so that we have Md = 0, implying that Qd = 0. It follows that Eq. (1.19) is
equivalent to

x′Qx + c′x + b + αc′d ≤ 0, ∀ α > 0, x ∈ C,

which is true if and only if c′d ≤ 0. Thus,

RC = {d | Qd = 0, c′d ≤ 0}.

Also, LC = RC ∩ (−RC), so

LC = {d | Qd = 0, c′d = 0}.

Consider now the case where C is nonempty and specified by any (pos-
sibly infinite) number of convex quadratic inequalities:

C = {x | x′Qjx + c′jx + bj ≤ 0, j ∈ J},

where J is some index set. Then using Props. 1.4.2(c) and 1.4.3(c), we have

RC = {d | Qjd = 0, c′jd ≤ 0, ∀ j ∈ J},

LC = {d | Qjd = 0, c′jd = 0, ∀ j ∈ J}.

In particular, if C is a polyhedral set of the form

C = {x | c′jx + bj ≤ 0, j = 1, . . . , r},

we have

RC = {d | c′jd ≤ 0, j = 1, . . . , r}, LC = {d | c′jd = 0, j = 1, . . . , r}.

Finally, let us prove a useful result that allows the decomposition of
a convex set along a subspace of its lineality space (possibly the entire
lineality space) and its orthogonal complement (see Fig. 1.4.3).

x

C

S

S⊥

C ∩ S⊥

< 0
d

d z

Figure 1.4.3. Illustration of the decom-
position of a convex set C as

C = S + (C ∩ S⊥),

where S is a subspace contained in the lin-
eality space LC . A vector x ∈ C is ex-
pressed as x = d + z with d ∈ S and
z ∈ C ∩ S⊥, as shown.
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Proposition 1.4.4: (Decomposition of a Convex Set) Let C be
a nonempty convex subset of !n. Then, for every subspace S that is
contained in the lineality space LC , we have

C = S + (C ∩ S⊥).

Proof: We can decompose !n as S + S⊥, so for x ∈ C, let x = d + z
for some d ∈ S and z ∈ S⊥. Because −d ∈ S ⊂ LC , the vector −d is a
direction of recession of C, so the vector x− d, which is equal to z, belongs
to C, implying that z ∈ C ∩ S⊥. Thus, we have x = d + z with d ∈ S and
z ∈ C ∩ S⊥ showing that C ⊂ S + (C ∩ S⊥).

Conversely, if x ∈ S + (C ∩ S⊥), then x = d + z with d ∈ S and
z ∈ C ∩ S⊥. Thus, we have z ∈ C. Furthermore, because S ⊂ LC , the
vector d is a direction of recession of C, implying that d + z ∈ C. Hence
x ∈ C, showing that S + (C ∩ S⊥) ⊂ C. Q.E.D.

In the special case where S = LC in Prop. 1.4.4, we obtain

C = LC + (C ∩ L⊥
C). (1.20)

Thus, C is the vector sum of two sets:

(1) The set LC , which consists of the lines contained in C, translated to
pass through the origin.

(2) The set C ∩L⊥
C , which contains no lines; to see this, note that for any

line {x + αd | α ∈ !} ⊂ C ∩ L⊥
C , we have d ∈ LC (since x + αd ∈ C

for all α ∈ !), so d ⊥ (x + αd) for all α ∈ !, implying that d = 0.

Note that if RC = LC and C is closed, the set C ∩L⊥
C contains no nonzero

directions of recession, so it is compact [cf. Prop. 1.4.2(a)], and C can be
decomposed into the sum of LC and a compact set, as per Eq. (1.20).

1.4.1 Directions of Recession of a Convex Function

We will now develop a notion of direction of recession of a convex function.
This notion is important in several contexts, including the existence of solu-
tions of convex optimization problems, which will be discussed in Chapter
3. A key fact is that a convex function f can be described in terms of its
epigraph, which is a convex set. The recession cone of epi(f) can be used
to obtain the directions along which f does not increase monotonically.
In particular, the “horizontal directions” in the recession cone of epi(f)
correspond to the directions along which the level sets

{

x | f(x) ≤ γ
}

are
unbounded. Along these directions, f is monotonically nonincreasing. This
is the idea underlying the following proposition.
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Proposition 1.4.5: Let f : !n *→ (−∞,∞] be a closed proper convex
function and consider the level sets

Vγ =
{

x | f(x) ≤ γ
}

, γ ∈ !.

Then:

(a) All the nonempty level sets Vγ have the same recession cone,
denoted Rf , and given by

Rf =
{

d | (d, 0) ∈ Repi(f)

}

,

where Repi(f) is the recession cone of the epigraph of f .

(b) If one nonempty level set Vγ is compact, then all of these level
sets are compact.

Proof: (a) Fix a γ such that Vγ is nonempty. Let S be the “γ-slice” of
epi(f),

S =
{

(x, γ) | f(x) ≤ γ
}

,

and note that
S = epi(f) ∩

{

(x, γ) | x ∈ !n
}

.

Using Prop. 1.4.2(c) [which applies since epi(f) is closed in view of the
closedness of f ], we have

RS = Repi(f) ∩
{

(d, 0) | d ∈ !n
}

=
{

(d, 0) | (d, 0) ∈ Repi(f)

}

.

From this equation and the fact S =
{

(x, γ) | x ∈ Vγ

}

, the desired formula
for RVγ follows.

(b) From Prop. 1.4.2(a), a nonempty level set Vγ is compact if and only if
the recession cone RVγ does not contain a nonzero direction. By part (a),
all nonempty level sets Vγ have the same recession cone, so if one of them
is compact, all of them are compact. Q.E.D.

Note that closedness of f is essential for the level sets Vγ to have a
common recession cone, as per Prop. 1.4.5(a). The reader may verify this by
using as an example the convex but not closed function f : !2 *→ (−∞,∞]
given by

f(x1, x2) =

{

−x1 if x1 > 0, x2 ≥ 0,
x2 if x1 = 0, x2 ≥ 0,
∞ if x1 < 0 or x2 < 0.

Here, for γ < 0, we have Vγ =
{

(x1, x2) | x1 ≥ −γ, x2 ≥ 0
}

, so that
(0, 1) ∈ RVγ , but V0 =

{

(x1, x2) | x1 > 0, x2 ≥ 0
}

∪
{

(0, 0)
}

, so that
(0, 1) /∈ RV0

.
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0

Recession Cone Rf

Level Sets of f

Figure 1.4.4. Illustration of the recession
cone Rf of a closed proper convex function
f . It is the (common) recession cone of the
nonempty level sets of f .

For a closed proper convex function f : !n *→ (−∞,∞], the (com-
mon) recession cone Rf of the nonempty level sets is called the recession
cone of f (cf. Fig. 1.4.4). A vector d ∈ Rf is called a direction of recession
of f .

The most intuitive way to look at directions of recession of f is from
a descent viewpoint: if we start at any x ∈ dom(f) and move indefinitely
along a direction of recession, we must stay within each level set that
contains x, or equivalently we must encounter exclusively points z with
f(z) ≤ f(x). In words, a direction of recession of f is a direction of
continuous nonascent for f . Conversely, if we start at some x ∈ dom(f) and
while moving along a direction d, we encounter a point z with f(z) > f(x),
then d cannot be a direction of recession. By the convexity of the level sets
of f , once we cross the relative boundary of a level set, we never cross it
back again, and with a little thought, it can be seen that a direction that is
not a direction of recession of f is a direction of eventual continuous ascent
of f [see Figs. 1.4.5(e),(f)].

Constancy Space of a Convex Function

The lineality space of the recession cone Rf of a closed proper convex
function f is denoted by Lf , and is the subspace of all d ∈ !n such that
both d and −d are directions of recession of f , i.e.,

Lf = Rf ∩ (−Rf ).

Equivalently, d ∈ Lf if and only if both d and −d are directions of reces-
sion of each of the nonempty level sets

{

x | f(x) ≤ γ
}

[cf. Prop. 1.4.5(a)].
In view of the convexity of f , which implies that f is monotonically non-
increasing along a direction of recession, we see that d ∈ Lf if and only
if

f(x + αd) = f(x), ∀ x ∈ dom(f), ∀ α ∈ !.

Consequently, any d ∈ Lf is called a direction in which f is constant , and
Lf is called the constancy space of f .
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Figure 1.4.5. Ascent/descent behavior of a closed proper convex function start-
ing at some x ∈ dom(f) and moving along a direction d. If d is a direction of
recession of f , there are two possibilities: either f decreases monotonically to a
finite value or −∞ [figures (a) and (b), respectively], or f reaches a value that is
less or equal to f(x) and stays at that value [figures (c) and (d)]. If d is not a
direction of recession of f , then eventually f increases monotonically to ∞ [figures
(e) and (f)], i.e., for some α ≥ 0 and all α1, α2 ≥ α with α1 < α2, we have

f(x + α1d) < f(x + α2d).

This behavior is determined only by d, and is independent of the choice of x within
dom(f).
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= 0

x, f(x)

rf (d)

Figure 1.4.6. Illustration of the reces-
sion function rf of a closed proper con-
vex function f . Its epigraph is the re-
cession cone of the epigraph of f .

As an example, if f is a quadratic function given by

f(x) = x′Qx + c′x + b,

where Q is a symmetric positive semidefinite n× n matrix, c is a vector in
!n, and b is a scalar, then its recession cone and constancy space are

Rf = {d | Qd = 0, c′d ≤ 0}, Lf = {d | Qd = 0, c′d = 0}

(cf. Example 1.4.1).

Recession Function

We saw that if d is a direction of recession of f , then f is asymptotically
nonincreasing along each halfline x + αd, but in fact a stronger property
holds: it turns out that the asymptotic slope of f along d is independent
of the starting point x. The “asymptotic slope” of a closed proper convex
function along a direction is expressed by a function that we now introduce.

We first note that the recession cone Repi(f) of the epigraph of a closed
proper convex function f : !n *→ (−∞,∞] is itself the epigraph of another
closed proper convex function. The reason is that for a given d, the set of
scalars w such that (d, w) ∈ Repi(f) is either empty or it is a closed interval
that is unbounded above and is bounded below (since f is proper and hence
its epigraph does not contain a vertical line). Thus Repi(f) is the epigraph
of a proper function, which must be closed and convex [since f , epi(f),
and Repi(f) are all closed and convex]. This function is called the recession
function of f and is denoted rf , i.e.,

epi(rf ) = Repi(f);

see Fig. 1.4.6.
The recession function can be used to characterize the recession cone

and constancy space of the function, as in the following proposition (cf.
Fig. 1.4.5).
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Proposition 1.4.6: Let f : !n *→ (−∞,∞] be a closed proper convex
function. Then the recession cone and constancy space of f are given
in terms of its recession function by

Rf =
{

d | rf (d) ≤ 0
}

, Lf =
{

d | rf (d) = rf (−d) = 0
}

.

Proof: By Prop. 1.4.5(a) and the definition epi(rf ) = Repi(f) of rf , the
recession cone of f is

Rf =
{

d | (d, 0) ∈ Repi(f)

}

=
{

d | rf (d) ≤ 0
}

.

Since Lf = Rf ∩ (−Rf ), it follows that d ∈ Lf if and only if rf (d) ≤ 0 and
rf (−d) ≤ 0. On the other hand, by the convexity of rf , we have

rf (d) + rf (−d) ≥ 2rf (0) = 0, ∀ d ∈ !n,

so it follows that d ∈ Lf if and only if rf (d) = rf (−d) = 0. Q.E.D.

The following proposition provides an explicit formula for the reces-
sion function.

Proposition 1.4.7: Let f : !n *→ (−∞,∞] be a closed proper convex
function. Then, for all x ∈ dom(f) and d ∈ !n,

rf (d) = sup
α>0

f(x + αd) − f(x)

α
= lim

α→∞

f(x + αd) − f(x)

α
. (1.21)

Proof: By definition, we have that (d, ν) ∈ Repi(f) if and only if for all
(x, w) ∈ epi(f),

(x + αd, w + αν) ∈ epi(f), ∀ α > 0,

or equivalently, f(x + αd) ≤ f(x) + αν for all α > 0, which can be written
as

f(x + αd) − f(x)

α
≤ ν, ∀ α > 0.

Hence

(d, ν) ∈ Repi(f) if and only if sup
α>0

f(x + αd) − f(x)

α
≤ ν,
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for all x ∈ dom(f). Since Repi(f) is the epigraph of rf , this implies the first
equality in Eq. (1.21).

From the convexity of f , we see that the ratio

f(x + αd) − f(x)

α

is monotonically nondecreasing as a function of α over the range (0,∞).
This implies the second equality in Eq. (1.21). Q.E.D.

The last expression in Eq. (1.21) leads to the interpretation of rf (d) as
the “asymptotic slope” of f along the direction d. In fact, for differentiable
convex functions f : !n *→ !, this interpretation can be made more precise:
we have

rf (d) = lim
α→∞

∇f(x + αd)′d, ∀ x ∈ !n, d ∈ !n. (1.22)

Indeed, for all x, d, and α > 0, we have using Prop. 1.1.7(a),

∇f(x)′d ≤
f(x + αd) − f(x)

α
≤ ∇f(x + αd)′d,

so by taking the limit as α → ∞ and using Eq. (1.21), it follows that

∇f(x)′d ≤ rf (d) ≤ lim
α→∞

∇f(x + αd)′d. (1.23)

The left-hand side above holds for all x, so replacing x with x + αd,

∇f(x + αd)′d ≤ rf (d), ∀ α > 0.

By taking the limit as α → ∞, we obtain

lim
α→∞

∇f(x + αd)′d ≤ rf (d), (1.24)

and by combining Eqs. (1.23) and (1.24), we obtain Eq. (1.22).
The calculation of recession functions can be facilitated by nice for-

mulas for the sum and the supremum of closed convex functions. The
following proposition deals with the case of a sum.

Proposition 1.4.8: (Recession Function of a Sum) Let fi :
!n *→ (−∞,∞], i = 1, . . . , m, be closed proper convex functions such
that the function f = f1 + · · · + fm is proper. Then

rf (d) = rf1
(d) + · · · + rfm(d), ∀ d ∈ !n. (1.25)
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Proof: Without loss of generality, assume that m = 2, and note that
f1 + f2 is closed proper convex (cf. Prop. 1.1.5). By using Eq. (1.21), we
have for all x ∈ dom(f1 + f2) and d ∈ !n,

rf1+f2
(d) = lim

α→∞

{

f1(x + αd) − f1(x)

α
+

f2(x + αd) − f2(x)

α

}

= lim
α→∞

{

f1(x + αd) − f1(x)

α

}

+ lim
α→∞

{

f2(x + αd) − f2(x)

α

}

= rf1
(d) + rf2

(d),

where the second equality holds because the limits involved exist. Q.E.D.

Note that for the formula (1.25) to hold, it is essential that f is proper,
for otherwise its recession function is undefined. There is a similar result
regarding the function

f(x) = sup
i∈I

fi(x),

where I is an arbitrary index set, and fi : !n *→ (−∞,∞], i ∈ I, are closed
proper convex functions such that f is proper. In particular, we have

rf (d) = sup
i∈I

rfi
(d), d ∈ !n. (1.26)

To show this, we simply note that the epigraph of rf is the recession cone
of the epigraph of f , the intersection of the epigraphs of fi. Thus, the
epigraph of rf is the intersection of the recession cones of the epigraphs of
fi by Prop. 1.4.2(c), which yields the formula (1.26).

1.4.2 Nonemptiness of Intersections of Closed Sets

The notions of recession cone and lineality space can be used to generalize
some of the fundamental properties of compact sets to closed convex sets.
One such property is that a sequence {Ck} of nonempty and compact sets
with Ck+1 ⊂ Ck for all k has nonempty and compact intersection [cf. Prop.
A.2.4(h)]. Another property is that the image of a compact set under
a linear transformation is compact [cf. Prop. A.2.6(d)]. These properties
may not hold when the sets involved are closed but unbounded (cf. Fig.
1.3.4), and some additional conditions are needed for their validity. In this
section we develop such conditions, using directions of recession and related
notions. We focus on the case where the sets involved are convex, but the
analysis generalizes to the nonconvex case (see [BeT07]).

To understand the significance of set intersection results, consider a
sequence of nonempty closed sets {Ck} in !n with Ck+1 ⊂ Ck for all k
(such a sequence is said to be nested), and the question whether ∩∞

k=0Ck

is nonempty. Here are some of the contexts where this question arises:
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Figure 1.4.7. Set intersection argument
to prove that the set A C closed when C
is closed. Here A is the projection on the
horizontal axis of points in the plane. For
a sequence {yk} ⊂ A C that converges to
some y, in order to prove that y ∈ AC, it
is sufficient to prove that the intersection
∩∞

k=0
Ck is nonempty, where

Ck = C ∩ Nk,

and

Nk = {x | ‖Ax − y‖ ≤ ‖yk − y‖}.

(a) Does a function f : !n *→ ! attain a minimum over a set X? This is
true if and only if the intersection

∩∞
k=0

{

x ∈ X | f(x) ≤ γk

}

is nonempty, where {γk} is a scalar sequence with γk ↓ infx∈X f(x).

(b) If C is a closed set and A is a matrix, is AC closed? To prove this,
we may let {yk} be a sequence in AC that converges to some y ∈ !n,
and then show that y ∈ AC. If we introduce the sets Ck = C ∩ Nk,
where

Nk = {x | ‖Ax − y‖ ≤ ‖yk − y‖},

it is sufficient to show that ∩∞
k=0Ck is nonempty (see Fig. 1.4.7).

We will next consider a nested sequence {Ck} of nonempty closed
convex sets, and in the subsequent propositions, we will derive several
alternative conditions under which the intersection ∩∞

k=0Ck is nonempty.
These conditions involve a variety of assumptions about the recession cones,
the lineality spaces, and the structure of the sets Ck.

Asymptotic Sequences of Convex Sets

The following line of analysis actually extends to nonconvex closed sets (see
[BeT07]). However, in this book we will restrict ourselves to set intersec-
tions involving only convex sets.

Our analysis revolves around sequences {xk} such that xk ∈ Ck for
each k. An important fact is that ∩∞

k=0Ck is empty if and only if every
sequence of this type is unbounded. Thus the idea is to introduce assump-
tions that guarantee that not all such sequences are unbounded. In fact
it will be sufficient to restrict attention to unbounded sequences that es-
cape to ∞ along common directions of recession of the sets Ck, as in the
following definition.
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Definition 1.4.1: Let {Ck} be a nested sequence of nonempty closed
convex sets. We say that {xk} is an asymptotic sequence of {Ck} if
xk += 0, xk ∈ Ck for all k, and

‖xk‖ → ∞,
xk

‖xk‖
→

d

‖d‖
,

where d is some nonzero common direction of recession of the sets Ck,

d += 0, d ∈ ∩∞
k=0RCk

.

A special case is when all the sets Ck are equal. In particular, for
a nonempty closed convex C, we say that {xk} ⊂ C is an asymptotic
sequence of C if {xk} is asymptotic for the sequence {Ck}, where Ck ≡ C.

Note that given any unbounded sequence {xk} such that xk ∈ Ck

for each k, there exists a subsequence {xk}k∈K that is asymptotic for the
corresponding subsequence {Ck}k∈K. In fact, any limit point of

{

xk/‖xk‖
}

is a common direction of recession of the sets Ck; this can be seen by using
the proof argument of Prop. 1.4.1(b). Thus, asymptotic sequences are in a
sense representative of unbounded sequences with xk ∈ Ck for each k.

We now introduce a special type of set sequences that have favorable
properties for our purposes.

Definition 1.4.2: Let {Ck} be a nested sequence of nonempty closed
convex sets. We say that an asymptotic sequence {xk} is retractive if
for the direction d corresponding to {xk} as per Definition 1.4.1, there
exists an index k such that

xk − d ∈ Ck, ∀ k ≥ k.

We say that the sequence {Ck} is retractive if all its asymptotic se-
quences are retractive. In the special case Ck ≡ C, we say that the set
C is retractive if all its asymptotic sequences are retractive.

Retractive set sequences are those whose asymptotic sequences still
belong to the corresponding sets Ck (for sufficiently large k) when shifted
by −d, where d is any corresponding direction of recession. For an example,
consider a nested sequence consisting of “cylindrical” sets in the plane, such
as Ck =

{

(x1, x2) | |x1| ≤ 1/k
}

, whose asymptotic sequences {(x1
k, x2

k)}
are retractive: they satisfy x1

k → 0, and either x2
k → ∞ [d = (0, 1)] or

x2
k → −∞ [d = (0,−1)] (see also Fig. 1.4.8). Some important types of
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Figure 1.4.8. Illustration of retractive and nonretractive sequences in #2. For
both set sequences, the intersection is the vertical half line {x | x2 ≥ 0}, and
the common directions of recession are of the form (0, d2) with d2 ≥ 0. For
the example on the right, any unbounded sequence {xk} such that xk is on the
boundary of the set Ck is asymptotic but not retractive.

set sequences can be shown to be retractive. As an aid in this regard, we
note that intersections and Cartesian products (involving a finite number
of sets) preserve retractiveness, as can be easily seen from the definition. In
particular, if {C1

k}, . . . , {C
r
k} are retractive nested sequences of nonempty

closed convex sets, the sequences {Nk} and {Tk} are retractive, where

Nk = C1
k ∩ C2

k ∩ · · · ∩ Cr
k , Tk = C1

k × C2
k × · · ·× Cr

k , ∀ k,

and we assume that all the sets Nk are nonempty.
The following proposition shows that a polyhedral set is retractive.

Indeed, this is the most important type of retractive set for our purposes.
Another retractive set of interest is the vector sum of a convex compact set
and a polyhedral cone; we leave the proof of this for the reader. However,
as a word of caution, we mention that a nonpolyhedral closed convex cone
need not be retractive.

Proposition 1.4.9: A polyhedral set is retractive.

Proof: A closed halfspace is clearly retractive. A polyhedral set is the
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Figure 1.4.9. Geometric view of the proof idea of Prop. 1.4.10. An asymptotic
sequence {xk} with corresponding direction of recession d eventually (for large
k) gets closer to 0 when shifted by −d, so such a sequence cannot consist of
the vectors of minimum norm from Ck without contradicting the retractiveness
assumption.

nonempty intersection of a finite number of closed halfspaces, and set in-
tersection preserves retractiveness. Q.E.D.

Set Intersection Theorems

The importance of retractive sequences is motivated by the following propo-
sition.

Proposition 1.4.10: A retractive nested sequence of nonempty closed
convex sets has nonempty intersection.

Proof: Let {Ck} be the given sequence. For each k, let xk be the vector
of minimum norm in the closed set Ck (projection of the origin on Ck; cf.
Prop. 1.1.9). The proof involves two ideas:

(a) The intersection ∩∞
k=0 Ck is empty if and only {xk} is unbounded, so

there is a subsequence {xk}k∈K that is asymptotic.

(b) If a subsequence {xk}k∈K of minimum norm vectors of Ck is asymp-
totic with corresponding direction of recession d, then {xk}k∈K cannot
be retractive, because xk would eventually (for large k) get closer to
0 when shifted by −d (see Fig. 1.4.9).

It will be sufficient to show that a subsequence {xk}k∈K is bounded.
Then, since {Ck} is nested, for each m, we have xk ∈ Cm for all k ∈ K,
k ≥ m, and since Cm is closed, each of the limit points of {xk}k∈K will
belong to each Cm and hence also to ∩∞

m=0 Cm, thereby showing the result.
Thus, we will prove the proposition by showing that there is no subsequence
of {xk} that is unbounded.
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Indeed, assume the contrary, let {xk}k∈K be a subsequence such
that limk→∞, k∈K ‖xk‖ = ∞, and let d be the limit of a subsequence
{

xk/‖xk‖
}

k∈K
, where K ⊂ K. For each k = 0, 1, . . ., define zk = xm,

where m is the smallest index m ∈ K with k ≤ m. Then, since zk ∈ Ck for
all k and limk→∞{zk/‖zk‖} = d, we see that d is a common direction of
recession of Ck [cf. the proof of Prop. 1.4.1(b)] and {zk} is an asymptotic
sequence corresponding to d. Using the retractiveness assumption, let k be
such that zk − d ∈ Ck for all k ≥ k. We have d′zk → ∞ since

d′zk

‖zk‖
→ ‖d‖2 = 1,

so for all k ≥ k with 2d′zk > 1, we obtain

‖zk − d‖2 = ‖zk‖2 − (2d′zk − 1) < ‖zk‖2.

This is a contradiction, since for infinitely many k, zk is the vector of
minimum norm on Ck. Q.E.D.

For an example, consider the sequence {Ck} of Fig. 1.4.8(a). Here
the asymptotic sequences {(x1

k, x2
k)} satisfy x1

k → 0, x2
k → ∞ and are re-

tractive, and indeed the intersection ∩∞
k=0 Ck is nonempty. On the other

hand, the condition for nonemptiness of ∩∞
k=0 Ck of the proposition is far

from necessary, e.g., the sequence {Ck} of Fig. 1.4.8(b) has nonempty in-
tersection but is not retractive.

A simple example where the preceding proposition applies is a “cylin-
drical” set sequence, where RCk

≡ LCk
≡ L for some subspace L. The

following proposition gives an important extension.

Proposition 1.4.11: Let {Ck} be a nested sequence of nonempty
closed convex sets. Denote

R = ∩∞
k=0RCk

, L = ∩∞
k=0LCk

.

(a) If R = L, then {Ck} is retractive, and ∩∞
k=0 Ck is nonempty.

Furthermore,
∩∞

k=0Ck = L + C̃,

where C̃ is some nonempty and compact set.

(b) Let X be a retractive closed convex set. Assume that all the sets
Ck = X ∩ Ck are nonempty, and that

RX ∩ R ⊂ L.

Then, {Ck} is retractive, and ∩∞
k=0 Ck is nonempty.
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y CkC Ck+1

X

y CkC Ck+1

X

Figure 1.4.10. Illustration of the need to assume that X is retractive in Prop.
1.4.11(b). Here the intersection ∩∞

k=0
Ck is equal to the left vertical line. In

the figure on the left, X is polyhedral, and the intersection X ∩
(

∩∞
k=0

Ck

)

is
nonempty. In the figure on the right, X is nonpolyhedral and nonretractive, and

the intersection X ∩
(

∩∞
k=0

Ck

)

is empty.

Proof: (a) The retractiveness of {Ck} and consequent nonemptiness of
∩∞

k=0 Ck is the special case of part (b) where X = !n. To show the
given form of ∩∞

k=0 Ck, we use the decomposition of Prop. 1.4.4, to ob-
tain ∩∞

k=0Ck = L + C̃, where

C̃ = (∩∞
k=0Ck) ∩ L⊥.

The recession cone of C̃ is R ∩ L⊥, and since R = L, it is equal to {0}.
Hence by Prop. 1.4.2(a), C̃ is compact.

(b) The common directions of recession of Ck are those in RX ∩ R, so by
the hypothesis they must belong to L. Thus, for any asymptotic sequence
{xk} of {Ck}, corresponding to d ∈ RX ∩ R, we have d ∈ L, and hence
xk − d ∈ Ck for all k. Since X is retractive, we also have xk − d ∈ X and
hence xk − d ∈ Ck, for sufficiently large k. Hence {xk} is retractive, so
{Ck} is retractive, and by Prop. 1.4.10, ∩∞

k=0 Ck is nonempty. Q.E.D.

Figure 1.4.10 illustrates the need to assume that X is retractive in
Prop. 1.4.11(b). The following is an important application of the preceding
set intersection result.

Proposition 1.4.12: (Existence of Solutions of Convex Quad-
ratic Programs) Let Q be a symmetric positive semidefinite n × n
matrix, let c and a1, . . . , ar be vectors in !n, and let b1, . . . , br be
scalars. Assume that the optimal value of the problem
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minimize x′Qx + c′x

subject to a′
jx ≤ bj , j = 1, . . . , r,

is finite. Then the problem has at least one optimal solution.

Proof: Let f denote the cost function and let X be the polyhedral set of
feasible solutions:

f(x) = x′Qx + c′x, X =
{

x | a′
jx ≤ bj, j = 1, . . . , r

}

.

Let also f∗ be the optimal value, let {γk} be a scalar sequence with γk ↓ f∗,
and denote

Ck = X ∩ {x | x′Qx + c′x ≤ γk}.

We will use Prop. 1.4.11(b) to show that the set of optimal solutions, i.e.,
the intersection ∩∞

k=0 Ck, is nonempty. Indeed, let RX be the recession
cone of X , and let R and L be the common recession cone and lineality
space of the sets {x ∈ !n | x′Qx + c′x ≤ γk} (i.e., the recession cone and
constancy space of f). By Example 1.4.1, we have

R = {d | Qd = 0, c′d ≤ 0}, L = {d | Qd = 0, c′d = 0},

RX = {d | a′
jd ≤ 0, j = 1, . . . , r}.

If d is such that d ∈ RX ∩ R but d /∈ L, then

Qd = 0, c′d < 0, a′
jd ≤ 0, j = 1, . . . , r,

which implies that for any x ∈ X , we have x + αd ∈ X for all α ≥ 0, while
f(x + αd) → −∞ as α → ∞. This contradicts the finiteness of f∗, and
shows that RX ∩ R ⊂ L. The nonemptiness of ∩∞

k=0 Ck now follows from
Prop. 1.4.11(b). Q.E.D.

1.4.3 Closedness Under Linear Transformations

The conditions just obtained regarding the nonemptiness of the intersection
of a sequence of closed convex sets can be translated to conditions guaran-
teeing the closedness of the image, AC, of a closed convex set C under a
linear transformation A. This is the subject of the following proposition.

Proposition 1.4.13: Let X and C be nonempty closed convex sets
in !n, and let A be an m×n matrix with nullspace denoted by N(A).
If X is a retractive closed convex set and

RX ∩ RC ∩ N(A) ⊂ LC ,

then A(X ∩ C) is a closed set.
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A(X!C)

C

X

C

X

A(X!C)

N(A) N(A)

C C

N(A) N(A)

) X

) X

A(X ∩ C) A(X ∩ C)

Figure 1.4.11. Illustration of the need to assume that the set X is retractive in
Prop. 1.4.13. In both examples shown, the matrix A is the projection onto the
horizontal axis, and its nullspace is the vertical axis. The condition RX ∩ RC ∩
N(A) ⊂ LC is satisfied. However, in the example on the right, X is not retractive,
and the set A(X ∩ C) is not closed.

Proof: Let {yk} be a sequence in A(X ∩ C) converging to some y. We
will prove that A(X ∩ C) is closed by showing that y ∈ A(X ∩ C). We
introduce the sets

Ck = C ∩ Nk,

where
Nk =

{

x | ‖Ax − y‖ ≤ ‖yk − y‖
}

,

(see Fig. 1.4.7). The sets Ck are closed and convex, and their (common)
recession cones and lineality spaces are RC ∩N(A) and LC ∩N(A), respec-
tively [cf. Props. 1.4.2(d) and 1.4.3(d)]. Therefore, by Prop. 1.4.11(b), the
intersection X ∩

(

∩∞
k=0Ck

)

is nonempty. Every point x in this intersection
is such that x ∈ X ∩C and Ax = y, showing that y ∈ A(X ∩C). Q.E.D.

Figure 1.4.11 illustrates the need for the assumptions of Prop. 1.4.13.
The proposition has some interesting special cases:

(a) Let C = !n and let X be a polyhedral set. Then, LC = !n and
the assumption of Prop. 1.4.13 is automatically satisfied, so it follows
that AX is closed. Thus the image of a polyhedral set under a linear
transformation is a closed set . Simple as this result may seem, it is
especially important in optimization. For example, as a special case,
it yields that the cone generated by vectors a1, . . . , ar is a closed set,
since it can be written as AC, where A is the matrix with columns
a1, . . . , ar and C is the polyhedral set of all (α1, . . . , αr) with αj ≥ 0
for all j. This fact is central in the proof of Farkas’ Lemma, an
important result given in Section 2.3.1.
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(b) Let X = !n. Then, Prop. 1.4.13 yields that AC is closed if every
direction of recession of C that belongs to N(A) belongs to the lineality
space of C. This is true in particular if

RC ∩ N(A) = {0},

i.e., there is no nonzero direction of recession of C that lies in the
nullspace of A. As a special case, this result can be used to obtain
conditions that guarantee the closedness of the vector sum of closed
convex sets. The idea is that the vector sum of a finite number of
sets can be viewed as the image of their Cartesian product under a
special type of linear transformation, as can be seen from the proof
of the following proposition.

Proposition 1.4.14: Let C1, . . . , Cm be nonempty closed convex sub-
sets of !n such that the equality d1 + · · · + dm = 0 for some vectors
di ∈ RCi implies that di ∈ LCi for all i = 1, . . . , m. Then C1+ · · ·+Cm

is a closed set.

Proof: Let C be the Cartesian product C1 × · · ·× Cm. Then, C is closed
convex, and its recession cone and lineality space are given by

RC = RC1
× · · ·× RCm , LC = LC1

× · · ·× LCm .

Let A be the linear transformation that maps (x1, . . . , xm) ∈ !mn into
x1 + · · · + xm ∈ !n. The null space of A is the set of all (d1, . . . , dm)
such that d1 + · · · + dm = 0. The intersection RC ∩ N(A) consists of all
(d1, . . . , dm) such that d1 + · · · + dm = 0 and di ∈ RCi for all i. By the
given condition, every (d1, . . . , dm) ∈ RC ∩ N(A) is such that di ∈ LCi for
all i, implying that (d1, . . . , dm) ∈ LC . Thus, RC ∩ N(A) ⊂ LC , and by
Prop. 1.4.13, the set AC is closed. Since

AC = C1 + · · · + Cm,

the result follows. Q.E.D.

When specialized to just two sets, the above proposition implies that
if C1 and −C2 are closed convex sets, then C1 − C2 is closed if there is no
common nonzero direction of recession of C1 and C2, i.e.

RC1
∩ RC2

= {0}.

This is true in particular if either C1 or C2 is bounded, in which case either
RC1

= {0} or RC2
= {0}, respectively.
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Some other conditions asserting the closedness of vector sums can be
derived from Prop. 1.4.13. For example, we can show that the vector sum
of a finite number of polyhedral sets is closed, since it can be viewed as the
image of their Cartesian product (clearly a polyhedral set) under a linear
transformation (in fact this vector sum is polyhedral; see Section 2.3.2).

Another useful result is that if X is a polyhedral set, and C is a closed
convex set, then X + C is closed if every direction of recession of X whose
opposite is a direction of recession of C lies also in the lineality space of
C (replace X and C by X ×!n and !n × C, respectively, in Prop. 1.4.13,
and let A map Cartesian product to sum as in the proof of Prop. 1.4.14).

1.5 HYPERPLANES

Some of the most important principles in convexity and optimization,
including duality, revolve around the use of hyperplanes, i.e., (n − 1)-
dimensional affine sets, which divide !n into two halfspaces. For example,
we will see that a closed convex set can be characterized in terms of hyper-
planes: it is equal to the intersection of all the halfspaces that contain it.
In the next section, we will apply this fundamental result to a convex func-
tion via its epigraph, and obtain an important dual description, encoded
by another convex function, called the conjugate of the original.

A hyperplane in !n is a set of the form {x | a′x = b}, where a is
nonzero vector in !n and b is a scalar. If x is any vector in a hyperplane
H = {x | a′x = b}, then we must have a′x = b, so the hyperplane can be
equivalently described as

H = {x | a′x = a′x},

or

H = x + {x | a′x = 0}.

Thus, H is an affine set that is parallel to the subspace {x | a′x = 0}. The
vector a is orthogonal to this subspace, and consequently, a is called the
normal vector of H ; see Fig. 1.5.1.

The sets

{x | a′x ≥ b}, {x | a′x ≤ b},

are called the closed halfspaces associated with the hyperplane (also referred
to as the positive and negative halfspaces , respectively). The sets

{x | a′x > b}, {x | a′x < b},

are called the open halfspaces associated with the hyperplane.
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x

Negative Halfspace

Positive Halfspace
e {x | a′x ≥ b}

e {x | a′x ≤ b}

Hyperplane

{x | a′x = b} = {x | a′x = a′x}

a

Figure 1.5.1. Illustration of the hyperplane H = {x | a′x = b}. If x is any vector
in the hyperplane, then the hyperplane can be equivalently described as

H = {x | a′x = a′x} = x + {x | a′x = 0}.

The hyperplane divides the space into two halfspaces as illustrated.

1.5.1 Hyperplane Separation

We say that two sets C1 and C2 are separated by a hyperplane H = {x |
a′x = b} if each lies in a different closed halfspace associated with H , i.e.,
if either

a′x1 ≤ b ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

or
a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

We then also say that the hyperplane H separates C1 and C2, or that H is
a separating hyperplane of C1 and C2. We use several different variants of
this terminology. For example, the statement that two sets C1 and C2 can
be separated by a hyperplane or that there exists a hyperplane separating
C1 and C2, means that there exists a vector a += 0 such that

sup
x∈C1

a′x ≤ inf
x∈C2

a′x;

[see Fig. 1.5.2(a)].
If a vector x belongs to the closure of a set C, a hyperplane that

separates C and the singleton set {x} is said to be supporting C at x. Thus
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a

(a)

C1 y C2

x

a

) (b)

C

Figure 1.5.2. (a) Illustration of a hyperplane separating two sets C1 and C2.
(b) Illustration of a hyperplane supporting a set C at a point x that belongs to
the closure of C.

the statement that there exists a supporting hyperplane of C at x means
that there exists a vector a += 0 such that

a′x ≤ a′x, ∀ x ∈ C,

or equivalently, since x is a closure point of C,

a′x = inf
x∈C

a′x.

As illustrated in Fig. 1.5.2(b), a supporting hyperplane of C is a hyperplane
that “just touches” C.

We will prove several results regarding the existence of hyperplanes
that separate two convex sets. Some of these results assert the existence
of separating hyperplanes with special properties that will prove useful in
various specialized contexts to be described later. The following proposition
deals with the basic case where one of the two sets consists of a single
vector. The proof is based on the Projection Theorem (Prop. 1.1.9) and is
illustrated in Fig. 1.5.3.

Proposition 1.5.1: (Supporting Hyperplane Theorem) Let C
be a nonempty convex subset of !n and let x be a vector in !n. If
x is not an interior point of C, there exists a hyperplane that passes
through x and contains C in one of its closed halfspaces, i.e., there
exists a vector a += 0 such that

a′x ≤ a′x, ∀ x ∈ C. (1.27)
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x1
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x̂0

x̂1

1 x̂2

x̂3

a0

a1

a2
a3

Figure 1.5.3. Illustration of the proof of
the Supporting Hyperplane Theorem for the
case where the vector x belongs to cl(C), the
closure of C. We choose a sequence {xk} of
vectors that do not belong to cl(C), with
xk → x, and we project xk on cl(C). We
then consider, for each k, the hyperplane
that is orthogonal to the line segment con-
necting xk and its projection x̂k, and passes
through xk. These hyperplanes “converge”
to a hyperplane that supports C at x.

Proof: Consider cl(C), the closure of C, which is a convex set by Prop.
1.1.1(d). Let {xk} be a sequence of vectors such that xk → x and xk /∈ cl(C)
for all k; such a sequence exists because x does not belong to the interior
of C and hence does not belong to the interior of cl(C) [cf. Prop. 1.3.5(b)].
If x̂k is the projection of xk on cl(C), we have by the optimality condition
of the Projection Theorem (Prop. 1.1.9)

(x̂k − xk)′(x − x̂k) ≥ 0, ∀ x ∈ cl(C).

Hence we obtain for all x ∈ cl(C) and all k,

(x̂k−xk)′x ≥ (x̂k−xk)′x̂k = (x̂k−xk)′(x̂k−xk)+(x̂k−xk)′xk ≥ (x̂k−xk)′xk.

We can write this inequality as

a′
kx ≥ a′

kxk, ∀ x ∈ cl(C), ∀ k, (1.28)

where

ak =
x̂k − xk

‖x̂k − xk‖
.

We have ‖ak‖ = 1 for all k, so the sequence {ak} has a subsequence that
converges to some a += 0. By considering Eq. (1.28) for all ak belonging to
this subsequence and by taking the limit as k → ∞, we obtain Eq. (1.27).
Q.E.D.

Note that if x is a closure point of C, then the hyperplane of the
preceding proposition supports C at x. Note also that if C has empty
interior, then any vector x can be separated from C as in the proposition.

Proposition 1.5.2: (Separating Hyperplane Theorem) Let C1

and C2 be two nonempty convex subsets of !n. If C1 and C2 are
disjoint, there exists a hyperplane that separates them, i.e., there exists
a vector a += 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2. (1.29)



Sec. 1.5 Hyperplanes 71

(a)

C1 y C2
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a) (b)

C1

y C2
d x1

1 x2

Figure 1.5.4. (a) An example of two disjoint convex sets that cannot be strictly
separated. (b) Illustration of the construction of a strictly separating hyperplane.

Proof: Consider the convex set

C = C2 − C1 = {x | x = x2 − x1, x1 ∈ C1, x2 ∈ C2}.

Since C1 and C2 are disjoint, the origin does not belong to C, so by the
Supporting Hyperplane Theorem (Prop. 1.5.1), there exists a vector a += 0
such that

0 ≤ a′x, ∀ x ∈ C,

which is equivalent to Eq. (1.29). Q.E.D.

We next consider a stronger form of separation of two sets C1 and C2

in !n. We say that a hyperplane {x | a′x = b} strictly separates C1 and
C2 if it separates C1 and C2 while containing neither a point of C1 nor a
point of C2, i.e.,

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

or
a′x2 < b < a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Clearly, C1 and C2 must be disjoint in order that they can be strictly
separated. However, this is not sufficient to guarantee strict separation (see
Fig. 1.5.4). The following proposition provides conditions that guarantee
the existence of a strictly separating hyperplane.

Proposition 1.5.3: (Strict Separation Theorem) Let C1 and
C2 be two disjoint nonempty convex sets. There exists a hyperplane
that strictly separates C1 and C2 under any one of the following five
conditions:
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(1) C2 − C1 is closed.

(2) C1 is closed and C2 is compact.

(3) C1 and C2 are polyhedral.

(4) C1 and C2 are closed, and

RC1
∩ RC2

= LC1
∩ LC2

,

where RCi and LCi denote the recession cone and the lineality
space of Ci, i = 1, 2.

(5) C1 is closed, C2 is polyhedral, and RC1
∩ RC2

⊂ LC1
.

Proof: We will show the result under condition (1). The result will then
follow under conditions (2)-(5), because these conditions imply condition
(1) (see Prop. 1.4.14, and the discussion following its proof).

Assume that C2 − C1 is closed, and consider the vector of minimum
norm (projection of the origin, cf. Prop. 1.1.9) in C2 − C1. This vector is
of the form x2 − x1, where x1 ∈ C1 and x2 ∈ C2. Let

a =
x2 − x1

2
, x =

x1 + x2

2
, b = a′x;

[cf. Fig. 1.5.4(b)]. Then, a += 0, since x1 ∈ C1, x2 ∈ C2, and C1 and C2 are
disjoint. We will show that the hyperplane

{x | a′x = b}

strictly separates C1 and C2, i.e., that

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2. (1.30)

To this end we note that x1 is the projection of x2 on cl(C1) (otherwise there
would exist a vector x1 ∈ C1 with ‖x2 − x1‖ < ‖x2 − x1‖ - a contradiction
of the minimum norm property of x2 − x1). Thus, we have

(x2 − x1)′(x1 − x1) ≤ 0, ∀ x1 ∈ C1,

or equivalently, since x − x1 = a,

a′x1 ≤ a′x1 = a′x + a′(x1 − x) = b − ‖a‖2 < b, ∀ x1 ∈ C1.

Thus, the left-hand side of Eq. (1.30) is proved. The right-hand side is
proved similarly. Q.E.D.
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Note that as a corollary of the preceding proposition, a closed set C
can be strictly separated from a vector x /∈ C, i.e., from the singleton set
{x}. We will use this fact to provide the following important characteriza-
tion of closed convex sets.

Proposition 1.5.4: The closure of the convex hull of a set C is the
intersection of the closed halfspaces that contain C. In particular,
a closed convex set is the intersection of the closed halfspaces that
contain it.

Proof: Let H denote the intersection of all closed halfspaces that contain
C. Since every closed halfspace containing C must also contain cl

(

conv(C)
)

,
it follows that H ⊃ cl

(

conv(C)
)

.
To show the reverse inclusion, consider a vector x /∈ cl

(

conv(C)
)

and
a hyperplane strictly separating x and cl

(

conv(C)
)

. The corresponding
closed halfspace that contains cl

(

conv(C)
)

does not contain x, so x /∈ H .
Hence H ⊂ cl

(

conv(C)
)

. Q.E.D.

1.5.2 Proper Hyperplane Separation

We now discuss a form of hyperplane separation, called proper , which turns
out to be useful in some important optimization contexts, such as the
duality theorems of Chapter 4 (Props. 4.4.1 and 4.5.1).

Let C1 and C2 be two subsets of !n. We say that a hyperplane
properly separates C1 and C2 if it separates C1 and C2, and does not fully
contain both C1 and C2. Thus there exists a hyperplane that properly
separates C1 and C2 if and only if there is a vector a such that

sup
x1∈C1

a′x1 ≤ inf
x2∈C2

a′x2, inf
x1∈C1

a′x1 < sup
x2∈C2

a′x2;

(see Fig. 1.5.5). If C is a subset of !n and x is a vector in !n, we say that
a hyperplane properly separates C and x if it properly separates C and the
singleton set {x}.

Note that a convex set in !n that has nonempty interior (and hence
has dimension n) cannot be fully contained in a hyperplane (which has
dimension n − 1). Thus, in view of the Separating Hyperplane Theorem
(Prop. 1.5.2), two disjoint convex sets one of which has nonempty interior
can be properly separated. Similarly and more generally, two disjoint con-
vex sets such that the affine hull of their union has dimension n can be
properly separated. Figure 1.5.5(c) provides an example of two convex sets
that cannot be properly separated.

The existence of a hyperplane that properly separates two convex sets
is intimately tied to conditions involving the relative interiors of the sets.
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Figure 1.5.5. (a) and (b) Illustration of a properly separating hyperplanes. (c)
Illustration of two convex sets that cannot be properly separated.

An important fact in this connection is that given a nonempty convex set
C and a hyperplane H that contains C in one of its closed halfspaces, we
have

C ⊂ H if and only if ri(C) ∩ H += Ø. (1.31)

To see this, let H be of the form {x | a′x = b} with a′x ≥ b for all x ∈ C.
Then for a vector x ∈ ri(C), we have x ∈ H if and only if a′x = b, i.e., a′x
attains its minimum over C at x. By Prop. 1.3.4, this is so if and only if
a′x = b for all x ∈ C, i.e., C ⊂ H .

The following propositions provide relative interior assumptions that
guarantee the existence of properly separating hyperplanes.

Proposition 1.5.5: (Proper Separation Theorem) Let C be a
nonempty convex subset of !n and let x be a vector in !n. There
exists a hyperplane that properly separates C and x if and only if
x /∈ ri(C).

Proof: Suppose that there exists a hyperplane H that properly separates
C and x. Then either x /∈ H , in which case x /∈ C and x /∈ ri(C), or
else x ∈ H and C is not contained in H , in which case by Eq. (1.31),
ri(C) ∩ H = Ø, in which case again x /∈ ri(C).

Conversely, assume that x /∈ ri(C). To show the existence of a prop-
erly separating hyperplane, we consider two cases (see Fig. 1.5.6):

(a) x /∈ aff(C). In this case, since aff(C) is closed and convex, by the
Strict Separation Theorem [Prop. 1.5.3 under condition (2)] there
exists a hyperplane that separates {x} and aff(C) strictly, and hence
also properly separates C and x.
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(a) ) (b)

CC
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Properly Separating
Hyperplane

Properly Separating
Hyperplane

aff(C)aff(C)

Ĉ = C + S⊥

Figure 1.5.6. Illustration of the construction of a hyperplane that properly sep-
arates a convex set C and a point x /∈ ri(C) (cf. the proof of Prop. 1.5.5). In
case (a), where x /∈ aff(C), the hyperplane is constructed as shown. In case (b),
where x ∈ aff(C), we consider the subspace S that is parallel to aff(C), we set
Ĉ = C +S⊥, and we use the Supporting Hyperplane Theorem to separate x from
Ĉ (Prop. 1.5.1).

(b) x ∈ aff(C). In this case, let S be the subspace that is parallel to
aff(C), and consider the set Ĉ = C + S⊥. From Prop. 1.3.7, we
have ri(Ĉ) = ri(C) + S⊥, so that x is not an interior point of Ĉ
[otherwise there must exist a vector x ∈ ri(C) such that x − x ∈ S⊥,
which, since x ∈ aff(C), x ∈ aff(C), and x − x ∈ S, implies that
x − x = 0, thereby contradicting the hypothesis x /∈ ri(C)]. By the
Supporting Hyperplane Theorem (Prop. 1.5.1), it follows that there
exists a vector a += 0 such that a′x ≥ a′x for all x ∈ Ĉ. Since Ĉ has
nonempty interior, a′x cannot be constant over Ĉ, and

a′x < sup
x∈Ĉ

a′x = sup
x∈C, z∈S⊥

a′(x + z) = sup
x∈C

a′x + sup
z∈S⊥

a′z. (1.32)

If we had a′z += 0 for some z ∈ S⊥, we would also have

inf
α∈(

a′(x + αz) = −∞,

which contradicts the fact a′(x + z) ≥ a′x for all x ∈ C and z ∈ S⊥.
It follows that

a′z = 0, ∀ z ∈ S⊥,

which when combined with Eq. (1.32), yields

a′x < sup
x∈C

a′x.

Thus the hyperplane {x | a′x = a′x} properly separates C and x.
Q.E.D.
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Proposition 1.5.6: (Proper Separation of Two Convex Sets)
Let C1 and C2 be two nonempty convex subsets of !n. There exists a
hyperplane that properly separates C1 and C2 if and only if

ri(C1) ∩ ri(C2) = Ø.

Proof: Consider the convex set C = C2 − C1. By Prop. 1.3.7, we have

ri(C) = ri(C2) − ri(C1),

so the assumption ri(C1) ∩ ri(C2) = Ø is equivalent to 0 /∈ ri(C). By using
Prop. 1.5.5, it follows that there exists a hyperplane properly separating C
and the origin, so we have

0 ≤ inf
x1∈C1, x2∈C2

a′(x2 − x1), 0 < sup
x1∈C1, x2∈C2

a′(x2 − x1),

if and only if ri(C1)∩ri(C2) = Ø. This is equivalent to the desired assertion.
Q.E.D.

The following proposition is a variant of Prop. 1.5.6. It shows that
if C2 is polyhedral and the slightly stronger condition ri(C1) ∩ C2 = Ø
holds, then there exists a properly separating hyperplane satisfying the
extra restriction that it does not contain the nonpolyhedral set C1 (rather
than just the milder requirement that it does not contain either C1 or C2);
see Fig. 1.5.7.

(a) ) (b)

a

(

P

C

Separating
g Hyperplane

a

C

(

P

Separating
g Hyperplane

Figure 1.5.7. Illustration of the special proper separation property of a convex
set C and a polyhedral set P , under the condition ri(C) ∩ P = Ø. In figure (a),
the separating hyperplane can be chosen so that it does not contain C. If P is
not polyhedral, as in figure (b), this may not be possible.



Sec. 1.5 Hyperplanes 77

Proposition 1.5.7: (Polyhedral Proper Separation Theorem)
Let C and P be two nonempty convex subsets of !n such that P is
polyhedral. There exists a hyperplane that separates C and P , and
does not contain C if and only if

ri(C) ∩ P = Ø.

Proof: First, as a general observation, we recall from our discussion of
proper separation that given a convex set X and a hyperplane H that
contains X in one of its closed halfspaces, we have

X ⊂ H if and only if ri(X) ∩ H += Ø; (1.33)

cf. Eq. (1.31). We will use repeatedly this relation in the subsequent proof.
Assume that there exists a hyperplane H that separates C and P ,

and does not contain C. Then, by Eq. (1.33), H cannot contain a point in
ri(C), and since H separates C and P , we must have ri(C) ∩ P = Ø.

Conversely, assume that ri(C) ∩ P = Ø. We will show that there
exists a separating hyperplane that does not contain C. Denote

D = P ∩ aff(C).

If D = Ø, then since aff(C) and P are polyhedral, the Strict Separation
Theorem [cf. Prop. 1.5.3 under condition (3)] applies and shows that there
exists a hyperplane H that separates aff(C) and P strictly, and hence does
not contain C.

We may thus assume that D += Ø. The idea now is to first construct a
hyperplane that properly separates C and D, and then extend this hyper-
plane so that it suitably separates C and P . [If C had nonempty interior,
the proof would be much simpler, since then aff(C) = !n and D = P .]

By assumption, we have ri(C) ∩ P = Ø implying that

ri(C) ∩ ri(D) ⊂ ri(C) ∩
(

P ∩ aff(C)
)

=
(

ri(C) ∩ P
)

∩ aff(C) = Ø.

Hence, by Prop. 1.5.6, there exists a hyperplane H that properly separates
C and D. Furthermore, H does not contain C, since if it did, H would
also contain aff(C) and hence also D, contradicting the proper separation
property. Thus, C is contained in one of the closed halfspaces of H , but not
in both. Let C be the intersection of aff(C) and the closed halfspace of H
that contains C; see Fig. 1.5.8. Note that H does not contain C (since H
does not contain C), and by Eq. (1.33), we have H ∩ ri(C) = Ø, implying
that

P ∩ ri(C) = Ø,
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Figure 1.5.8. Illustration of the proof of Prop. 1.5.7 in the case where D =
P ∩ aff(C) /= Ø. The figure shows the construction of a hyperplane that properly
separates C and P , and does not contain C, starting from the hyperplane H that
properly separates C and D. In this two-dimensional example we have M = {0},
so K = cone(P ) + M = cone(P ).

[if x ∈ P ∩ ri(C) then x ∈ D ∩ ri(C), a contradiction since D and ri(C) lie
in the opposite closed halfspaces of H and H ∩ ri(C) = Ø].

If P ∩ C = Ø, then by using again the Strict Separation Theorem
[cf. Prop. 1.5.3 under condition (3)], we can construct a hyperplane that
strictly separates P and C. This hyperplane also strictly separates P and
C, and we are done. We thus assume that P ∩ C += Ø, and by using a
translation argument if necessary, we assume that

0 ∈ P ∩ C,

as indicated in Fig. 1.5.8. The polyhedral set P can be represented as the
intersection of halfspaces {x | a′

jx ≤ bj} with bj ≥ 0 (since 0 ∈ P ) and
with bj = 0 for at least one j [since otherwise 0 would be in the interior of
P ; then, by the Line Segment Principle, for any x ∈ ri(C) the line segment
connecting 0 and x contains points in ri(D) ∩ ri(C), a contradiction of the
fact that H properly separates D and C]. Thus, we have

P = {x | a′
jx ≤ 0, j = 1, . . . , m} ∩ {x | a′

jx ≤ bj, j = m + 1, . . . , m},

for some integers m ≥ 1 and m ≥ m, vectors aj , and scalars bj > 0.
Let M be the relative boundary of C, i.e.,

M = H ∩ aff(C),

and consider the cone

K = {x | a′
jx ≤ 0, j = 1, . . . , m} + M.
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aff(C)

M= H «  aff(C)

C= aff(C) «  
      (Closed halfspace 
        containing C)

0
D= P «  aff(C)
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e K C = aff(C)∩

∩ (Closed Halfspace
e Containing C)

Figure 1.5.9. View of D and C within aff(C), and illustration of the construction
of the cone K = cone(P ) + M in the proof of Prop. 1.5.7.

Note that K = cone(P ) + M (see Figs. 1.5.8 and 1.5.9).
We claim that K ∩ ri(C) = Ø. The proof is by contradiction. If there

exists x ∈ K ∩ ri(C), then x can be expressed as x = αw + v for some
α > 0, w ∈ P , and v ∈ M [since K = cone(P ) + M and 0 ∈ P ], so that
w = (x/α) − (v/α) ∈ P . On the other hand, since x ∈ ri(C), 0 ∈ C ∩ M ,
and M is a subset of the lineality space of C [and hence also of the lineality
space of ri(C)], all vectors of the form α x + v, with α > 0 and v ∈ M ,
belong to ri(C). In particular the vector w = (x/α) − (v/α) belongs to
ri(C), so w ∈ P ∩ ri(C). This is a contradiction since P ∩ ri(C) = Ø, and
it follows that K ∩ ri(C) = Ø.

The cone K is polyhedral (since it is the vector sum of two polyhedral
sets), so it is the intersection of some closed halfspaces F1, . . . , Fr that pass
through 0 (cf. Fig. 1.5.8). Since K = cone(P ) + M , each of these closed
halfspaces contains M , the relative boundary of the set C, and furthermore
C is the closed half of a subspace. It follows that if any of the closed
halfspaces F1, . . . , Fr contains a vector in ri(C), then that closed halfspace
entirely contains C. Hence, since K does not contain any point in ri(C), at
least one of F1, . . . , Fr, say F1, does not contain any point in ri(C) (cf. Fig.
1.5.8). Therefore, the hyperplane corresponding to F1 contains no points
of ri(C), and hence also no points of ri(C). Thus, this hyperplane does not
contain C, while separating K and C. Since K contains P , this hyperplane
also separates P and C. Q.E.D.

Note that in the preceding proof, it is essential to introduce M , the
relative boundary of the set C, and to define K = cone(P )+M . If instead
we define K = cone(P ), then the corresponding halfspaces F1, . . . , Fr may
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all intersect ri(C), and the proof argument fails (see Fig. 1.5.9).

1.5.3 Nonvertical Hyperplane Separation

In the context of optimization, supporting hyperplanes are often used in
conjunction with epigraphs of functions defined on !n. Since the epigraph
is a subset of !n+1, we consider hyperplanes in !n+1 and associate them
with nonzero vectors of the form (µ, β), where µ ∈ !n and β ∈ !. We say
that such a hyperplane is vertical if β = 0.

Note that if a hyperplane with normal (µ, β) is nonvertical, then it
crosses the (n + 1)st axis (the axis associated with w) at a unique point.
In particular, if (u, w) is any vector on the hyperplane, the crossing point
has the form (0, ξ), where

ξ =
µ′

β
u + w,

since from the hyperplane equation, we have (0, ξ)′(µ, β) = (u, w)′(µ, β).
If the hyperplane is vertical, it either contains the entire (n + 1)st axis, or
else it does not cross it at all; see Fig. 1.5.10. Furthermore, a hyperplane
H is vertical if and only if the recession cone of H , as well as the recession
cones of the closed halfspaces associated with H , contain the (n+1)st axis.

Vertical lines in !n+1 are sets of the form
{

(u, w) | w ∈ !
}

, where u
is a fixed vector in !n. If f : !n *→ (−∞,∞] is a proper convex function,
then epi(f) cannot contain a vertical line, and it appears plausible that
epi(f) is contained in a closed halfspace corresponding to some nonverti-
cal hyperplane. We prove this fact in greater generality in the following
proposition, which will be important for the development of duality.

Proposition 1.5.8: (Nonvertical Hyperplane Theorem) Let C
be a nonempty convex subset of !n+1 that contains no vertical lines.
Let the vectors in !n+1 be denoted by (u, w), where u ∈ !n and
w ∈ !. Then:

(a) C is contained in a closed halfspace corresponding to a nonverti-
cal hyperplane, i.e., there exist a vector µ ∈ !n, a scalar β += 0,
and a scalar γ such that

µ′u + βw ≥ γ, ∀ (u, w) ∈ C.

(b) If (u, w) does not belong to cl(C), there exists a nonvertical hy-
perplane strictly separating (u, w) and C.

Proof: (a) Assume, to arrive at a contradiction, that every hyperplane
containing C in one of its closed halfspaces is vertical. Then every hyper-
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Figure 1.5.10. Illustration of vertical and nonvertical hyperplanes in #n+1. A
hyperplane with normal (µ, β) is nonvertical if β /= 0, or, equivalently, if it inter-
sects the (n + 1)st axis at the unique point ξ = (µ/β)′u + w, where (u, w) is any
vector on the hyperplane.

plane containing cl(C) in one of its closed halfspaces must also be vertical
and its recession cone must contain the (n+1)st axis. By Prop. 1.5.4, cl(C)
is the intersection of all closed halfspaces that contain it, so its recession
cone contains the (n + 1)st axis. Since the recession cones of cl(C) and
ri(C) coincide [cf. Prop. 1.4.2(b)], for every (u, w) ∈ ri(C), the vertical line
{

(u, w) | w ∈ !
}

belongs to ri(C) and hence to C. This contradicts the
assumption that C does not contain a vertical line.

(b) If (u, w) /∈ cl(C), then there exists a hyperplane strictly separating
(u, w) and cl(C) [cf. Prop. 1.5.3 under condition (2)]. If this hyperplane is
nonvertical, since C ⊂ cl(C), we are done, so assume otherwise. Then, we
have a nonzero vector µ and a scalar γ such that

µ′u > γ > µ′ u, ∀ (u, w) ∈ cl(C). (1.34)

The idea now is to combine this vertical hyperplane with a suitable nonver-
tical hyperplane in order to construct a nonvertical hyperplane that strictly
separates (u, w) from cl(C) (see Fig. 1.5.11).

Since, by assumption, C does not contain a vertical line, ri(C) also
does not contain a vertical line. Since the recession cones of cl(C) and
ri(C) coincide [cf. Prop. 1.4.2(b)], it follows that cl(C) does not contain
a vertical line. Hence, by part (a), there exists a nonvertical hyperplane
containing cl(C) in one of its closed halfspaces, so that for some (µ, β) and
γ, with β += 0, we have

µ′u + βw ≥ γ, ∀ (u, w) ∈ cl(C).
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Figure 1.5.11. Construction of a strictly
separating nonvertical hyperplane in the
proof of Prop. 1.5.8(b).

By multiplying this relation with an ε > 0 and combining it with Eq. (1.34),
we obtain

(µ + εµ)′u + εβw > γ + εγ, ∀ (u, w) ∈ cl(C), ∀ ε > 0.

Since γ > µ′ u, there is a small enough ε such that

γ + εγ > (µ + εµ)′u + εβw.

From the above two relations, we obtain

(µ + εµ)′u + εβw > (µ + εµ)′u + εβw, ∀ (u, w) ∈ cl(C),

implying that there is a nonvertical hyperplane with normal (µ + εµ, εβ)
that strictly separates (u, w) and cl(C). Since C ⊂ cl(C), this hyperplane
also strictly separates (u, w) and C. Q.E.D.

1.6 CONJUGATE FUNCTIONS

We will now develop a concept that is fundamental in convex optimization.
This is the conjugacy transformation, which associates with any function
f , a convex function, called the conjugate of f . The idea here is to de-
scribe f in terms of the affine functions that are majorized by f . When f
is closed proper convex, we will show that the description is accurate and
the transformation is symmetric, i.e., f can be recovered by taking the con-
jugate of the conjugate of f . The conjugacy transformation thus provides
an alternative view of a convex function, which often reveals interesting
properties, and is useful for analysis and computation.
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y x
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x 0

(−y, 1)

f(x)

inf
x∈"n

{f(x) − x′y} = −f!(y),

Figure 1.6.1. Visualization of the con-
jugate function

f#(y) = sup
x∈&n

{

x′y − f(x)
}

of a function f . The crossing point of
the vertical axis with the hyperplane that
has normal (−y, 1) and passes through a

point
(

x, f(x)
)

on the graph of f is

f(x) − x′y.

Thus, the crossing point corresponding
to the hyperplane that supports the epi-
graph of f is

inf
x∈&n

{f(x) − x′y},

which by definition is equal to −f#(y).

Consider an extended real-valued function f : !n *→ [−∞,∞]. The
conjugate function of f is the function f# : !n *→ [−∞,∞] defined by

f#(y) = sup
x∈(n

{

x′y − f(x)
}

, y ∈ !n. (1.35)

Figure 1.6.1 provides a geometrical interpretation of the definition.
Note that regardless of the structure of f , the conjugate f# is a closed

convex function, since it is the pointwise supremum of the collection of
affine functions

x′y − f(x), ∀ x such that f(x) is finite,

(Prop. 1.1.6). Note also that f# need not be proper, even if f is. We will
show, however, that in the case where f is convex, f# is proper if and only
if f is.

Figure 1.6.2 shows some examples of conjugate functions. In this
figure, all the functions are closed proper convex, and it can be verified
that the conjugate of the conjugate yields the original function. This is a
manifestation of a result that we will show shortly.

For a function f : !n *→ [−∞,∞], consider the conjugate of the
conjugate function f# (or double conjugate). It is denoted by f##, it is
given by

f##(x) = sup
y∈(n

{

y′x − f#(y)
}

, x ∈ !n,

and it can be constructed as shown in Fig. 1.6.3. As this figure suggests,
and part (d) of the following proposition shows, by constructing f##, we
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f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β
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x 0

x 0

x 0x 0

x 0

x 0

f!(y) =

{

β if y = α

∞ if y "= α

{

f!(y) =

{

0 if |y| ≤ 1
∞ if |y| > 1

f!(y) = (1/2c)y2

Figure 1.6.2. Some examples of conjugate functions. It can be verified that in
each case, the conjugate of the conjugate is the original, i.e., the conjugates of the
functions on the right are the corresponding functions on the left.

typically obtain the convex closure of f [the function that has as epigraph
the closure of the convex hull of epi(f); cf. Section 1.3.3]. In particular,
part (c) of the proposition shows that if f is closed proper convex, then
f## = f .
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Figure 1.6.3. Visualization of the double conjugate (conjugate of the conjugate)

f##(x) = sup
y∈&n

{

y′x − f#(y)
}

of a function f , where f# is the conjugate of f ,

f#(y) = sup
x∈&n

{

x′y − f(x)
}

.

For each x ∈ #n, we consider the vertical line in #n+1 that passes through the
point (x, 0), and for each y in the effective domain of f#, we consider the crossing
point of this line with the hyperplane with normal (−y, 1) that supports the
graph of f [and therefore passes through the point (0,−f#(y))]. This crossing
point is y′x− f#(y), so f##(x) is equal to the highest crossing level. As the figure
indicates (and Prop. 1.6.1 shows), the double conjugate f## is the convex closure
of f (barring the exceptional case where the convex closure takes the value −∞
at some point, in which case the figure above is not valid).

Proposition 1.6.1: (Conjugacy Theorem) Let f : !n *→ [−∞,∞]
be a function, let f# be its conjugate, and consider the double conju-
gate f##. Then:

(a) We have
f(x) ≥ f##(x), ∀ x ∈ !n.

(b) If f is convex, then properness of any one of the functions f , f#,
and f## implies properness of the other two.
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(c) If f is closed proper convex, then

f(x) = f##(x), ∀ x ∈ !n.

(d) The conjugates of f and its convex closure čl f are equal. Fur-
thermore, if čl f is proper, then

(čl f)(x) = f##(x), ∀ x ∈ !n.

Proof: (a) For all x and y, we have

f#(y) ≥ x′y − f(x),

so that
f(x) ≥ x′y − f#(y), ∀ x, y ∈ !n.

Hence
f(x) ≥ sup

y∈(n

{

x′y − f#(y)
}

= f##(x), ∀ x ∈ !n.

(b) Assume that f is proper, in addition to being convex. Then its epigraph
is nonempty and convex, and contains no vertical line. By applying the
Nonvertical Hyperplane Theorem [Prop. 1.5.8(a)], with C being the set
epi(f), it follows that there exists a nonvertical hyperplane with normal
(y, 1) that contains epi(f) in its positive halfspace. In particular, this
implies the existence of a vector y and a scalar c such that

y′x + f(x) ≥ c, ∀ x ∈ !n.

We thus obtain

f#(−y) = sup
x∈(n

{

−y′x − f(x)
}

≤ −c,

so that f# is not identically equal to ∞. Also, by the properness of f , there
exists a vector x such that f(x) is finite. For every y ∈ !n, we have

f#(y) ≥ y′x − f(x),

so f#(y) > −∞ for all y ∈ !n. Thus, f# is proper.
Conversely, assume that f# is proper. The preceding argument shows

that properness of f# implies properness of its conjugate, f##, so that
f##(x) > −∞ for all x ∈ !n. By part (a), f(x) ≥ f##(x), so f(x) > −∞
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for all x ∈ !n. Also, f cannot be identically equal to ∞, since then by its
definition, f# would be identically equal to −∞. Thus f is proper.

We have thus shown that a convex function is proper if and only if
its conjugate is proper, and the result follows in view of the conjugacy
relations between f , f#, and f##.

(c) We will apply the Nonvertical Hyperplane Theorem (Prop. 1.5.8), with
C being the closed and convex set epi(f), which contains no vertical line
since f is proper. Let (x, γ) belong to epi(f##), i.e., x ∈ dom(f##), γ ≥
f##(x), and suppose, to arrive at a contradiction, that (x, γ) does not belong
to epi(f). Then by Prop. 1.5.8(b), there exists a nonvertical hyperplane
with normal (y, ζ), where ζ += 0, and a scalar c such that

y′z + ζw < c < y′x + ζγ, ∀ (z, w) ∈ epi(f).

Since w can be made arbitrarily large, we have ζ < 0, and without loss of
generality, we can take ζ = −1, so that

y′z − w < c < y′x − γ, ∀ (z, w) ∈ epi(f).

Since γ ≥ f##(x) and
(

z, f(z)
)

∈ epi(f) for all z ∈ dom(f), we obtain

y′z − f(z) < c < y′x − f##(x), ∀ z ∈ dom(f).

Hence
sup

z∈(n

{

y′z − f(z)
}

≤ c < y′x − f##(x),

or
f#(y) < y′x − f##(x),

which contradicts the definition f##(x) = supy∈(n

{

y′x− f#(y)
}

. Thus, we
have epi(f##) ⊂ epi(f), which implies that f(x) ≤ f##(x) for all x ∈ !n.
This, together with part (a), shows that f##(x) = f(x) for all x.

(d) Let f̌# be the conjugate of čl f . For any y, −f#(y) and −f̌#(y) are the
supremum crossing levels of the vertical axis with the hyperplanes with nor-
mal (−y, 1) that contain the sets epi(f) and cl

(

conv
(

epi(f)
))

, respectively,
in their positive closed halfspaces (cf. Fig. 1.6.1). Since the hyperplanes of
this type are the same for the two sets, we have f#(y) = f̌#(y) for all y.
Thus, f## is equal to the conjugate of f̌#, which is čl f by part (c) when
čl f is proper. Q.E.D.

The properness assumptions on f and čl f are essential for the validity
of parts (c) and (d), respectively, of the preceding proposition. For an
illustrative example, consider the closed convex (but improper) function

f(x) =

{

∞ if x > 0,
−∞ if x ≤ 0.

(1.36)
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We have f = čl f , and it can be verified that f#(y) = ∞ for all y and
f##(x) = −∞ for all x, so that f += f## and čl f += f##.

For an example where f is proper (but not closed convex), while čl f
is improper and we have čl f += f##, let

f(x) =

{

log(−x) if x < 0,
∞ if x ≥ 0.

Then čl f is equal to the function (1.36), and čl f += f##.
The exceptional behavior in the preceding example can be attributed

to a subtle difference in the constructions of the conjugate function and
the convex closure: while the conjugate functions f# and f## are defined
exclusively in terms of nonvertical hyperplanes via the construction of Fig.
1.6.3, the epigraph of the convex closure čl f is defined in terms of nonverti-
cal and vertical hyperplanes. This difference is inconsequential when there
exists at least one nonvertical hyperplane containing the epigraph of f in
one of its closed halfspaces [this is true in particular if čl f is proper; see
Props. 1.5.8(a) and 1.6.1(d)]. The reason is that, in this case, the epigraph
of čl f can equivalently be defined by using just nonvertical hyperplanes
[this can be seen using Prop. 1.5.8(b)].

Example 1.6.1: (Indicator/Support Function Conjugacy)

Given a nonempty set X, consider the indicator function of X, defined by

δX(x) =
{

0 if x ∈ X,
∞ if x /∈ X.

The conjugate of δX is given by

σX(y) = sup
x∈X

y′x

and is called the support function of X (see Fig. 1.6.4). By the generic closed-
ness and convexity properties of conjugate functions, σX is closed and convex.
It is also proper since X is nonempty, so that σX(0) = 0 (an improper closed
convex function cannot take finite values; cf. the discussion at the end of Sec-
tion 1.1.2). Furthermore, the sets X, cl(X), conv(X), and cl

(

conv(X)
)

all
have the same support function [cf. Prop. 1.6.1(d)].
Example 1.6.2: (Support Function of a Cone - Polar Cones)

Let C be a convex cone. By the preceding example, the conjugate of its
indicator function δC is its support function,

σC(y) = sup
x∈C

y′x.

Since C is a cone, we see that

σC(y) =
{

0 if y′x ≤ 0, ∀ x ∈ C,
∞ otherwise.
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σX(y)/‖y‖

x̂

X

y

y 0

Figure 1.6.4. Visualization of
the support function

σX(y) = sup
x∈X

y′x

of a set X. To determine the
value σX(y) for a given vector y,
we project the set X on the line
determined by y, and we find x̂,
the extreme point of projection
in the direction y. Then

σX(y) = ‖x̂‖ · ‖y‖.

Thus the support/conjugate function σC is the indicator function δC∗ of the
cone

C∗ = {y | y′x ≤ 0, ∀ x ∈ C}, (1.37)

called the polar cone of C. It follows that the conjugate of σC is the indicator
function of the polar cone of C∗, and by the Conjugacy Theorem [Prop.
1.6.1(c)] it is also cl δC . Thus the polar cone of C∗ is cl(C). In particular, if
C is closed, the polar of its polar is equal to the original. This is a special
case of the Polar Cone Theorem, which will be discussed in more detail in
Section 2.2.

A special case of particular interest in when C = cone
(

{a1, . . . , ar}
)

,
the cone generated by a finite set of vectors a1, . . . , ar. Then it can be seen
that

C∗ = {x | a′
jx ≤ 0, j = 1, . . . , r}.

From this it follows that (C∗)∗ = C because C is a closed set [we have
essentially shown this: cone

(

{a1, . . . , ar}
)

is the image of the positive orthant

{α | α ≥ 0} under the linear transformation that maps α to
∑r

j=1
αjaj , and

the image of any polyhedral set under a linear transformation is a closed
set (see the discussion following the proof of Prop. 1.4.13)]. The assertion
(C∗)∗ = C for the case C = cone

(

{a1, . . . , ar}
)

is known as Farkas’ Lemma
and will be discussed further in what follows (Sections 2.3 and 5.1).

Let us finally note that we may define the polar cone of any set C via
Eq. (1.37). However, unless C is a cone, the support function of C will not
be an indicator function, nor will the relation (C∗)∗ = C hold. Instead, we
will show in Section 2.2 that in general we have (C∗)∗ = cl

(

cone(C)
)

.

1.7 SUMMARY

In this section, we discuss how the material of this chapter is used in
subsequent chapters. First, let us note that we have aimed to develop in
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this chapter the part of convexity theory that is needed for the optimization
and duality analysis of Chapters 3-5, and no more. We have developed the
basic principles of polyhedral convexity in Chapter 2 for completeness and
a broader perspective, but this material is not needed for the mathematical
development of Chapters 3-5. Despite the fact that we focus only on the
essential, we still cover considerable ground, and it may help the reader
to know how the various topics of this chapter connect with each other,
and how they are used later. We thus provide a summary and guide on a
section-by-section basis:

Section 1.1: The definitions and results on convexity and closure (Sections
1.1.1-1.1.3) are very basic and should be read carefully. The material of
Section 1.1.4 on differentiable convex functions, optimality conditions, and
the projection theorem, is also basic. The reader may skip Prop. 1.1.10 on
twice differentiable functions, which is used in nonessential ways later.

Section 1.2: The definitions of convex and affine hulls, and generated
cones, as well as Caratheodory’s theorem should also be read carefully.
Proposition 1.2.2 on the compactness of the convex hull of a compact set
is used only in the proof of Prop. 4.3.2, which is in turn used only in the
specialized MC/MC framework of Section 5.7 on estimates of duality gap.

Section 1.3: The definitions and results on relative interior and closure
up to and including Section 1.3.2 are pervasive in what follows. However,
the somewhat tedious proofs of Props. 1.3.5-1.3.10 may be skipped at first
reading. Similarly, the proof of continuity of a real-valued convex function
(Prop. 1.3.11) is specialized and may be skipped. Regarding Section 1.3.3,
it is important to understand the definitions, and gain intuition on closures
and convex closures of functions, as they arise in the context of conjugacy.
However, Props. 1.3.13-1.3.17 are used substantively later only for the de-
velopment of minimax theory (Sections 3.4, 4.2.5, and 5.5) and the theory
of directional derivatives (Section 5.4.4), which are themselves “terminal”
and do not affect other sections.

Section 1.4: The material on directions of recession, up to and includ-
ing Section 1.4.1, is very important for later developments, although the
use of Props. 1.4.5-1.4.6 on recession functions is somewhat focused. In
particular, Prop. 1.4.7 is used only to prove Prop. 1.4.8, and Props. 1.4.6-
1.4.8 are used only for the development of existence of solutions criteria
in Section 3.2. The set intersection analysis of Section 1.4.2, which may
challenge some readers at first, is used for the development of some im-
portant theory: the existence of optimal solutions for linear and quadratic
programs (Prop. 1.4.12), the criteria for preservations of closedness under
linear transformations and vector sum (Props. 1.4.13 and 1.4.14), and the
existence of solutions analysis of Chapter 3.

Section 1.5: The material on hyperplane separation is used extensively
and should be read in its entirety. However, the long proof of the poly-
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hedral proper separation theorem (Prop. 1.5.7, due to Rockafellar [Roc70],
Th. 20.2) may be postponed for later. This theorem is important for our
purposes. For example it is used (through Props. 4.5.1 and 4.5.2) to es-
tablish part of the Nonlinear Farkas’ Lemma (Prop. 5.1.1), on which the
constrained optimization and Fenchel duality theories rest.

Section 1.6: The material on conjugate functions and the Conjugacy
Theorem (Prop. 1.6.1) is very basic. In our duality development, we use
the theorem somewhat sparingly because we argue mostly in terms of the
MC/MC framework of Chapter 4 and the Strong Duality Theorem (Prop.
4.3.1), which serves as an effective substitute.
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There is a very extensive literature on convex analysis and optimization and
it is beyond our scope to give a complete bibliography. We are providing
instead a brief historical account and list some of the main textbooks in
the field.

Among early classical works on convexity, we mention Caratheodory
[Car11], Minkowski [Min11], and Steinitz [Ste13], [Ste14], [Ste16]. In partic-
ular, Caratheodory gave the theorem on convex hulls that carries his name,
while Steinitz developed the theory of relative interiors and recession cones.
Minkowski is credited with initiating the theory of hyperplane separation
of convex sets and the theory of support functions (a precursor to conju-
gate convex functions). Furthermore, Minkowski and Farkas (whose work,
published in Hungarian, spans a 30-year period starting around 1894), are
credited with laying the foundations of polyhedral convexity.

The work of Fenchel was instrumental in launching the modern era
of convex analysis, when the subject came to a sharp focus thanks to its
rich applications in optimization and game theory. In his 1951 lecture
notes [Fen51], Fenchel laid the foundations of convex duality theory, and
together with related works by von Neumann on saddle points and game
theory, and Kuhn and Tucker on nonlinear programming [KuT51], inspired
much subsequent work on convexity and its connections with optimization.
Furthermore, Fenchel developed most of the topics that are fundamental
in our exposition, such as the theory of conjugate convex functions (in-
troduced earlier in a more limited form by Legendre), and the theory of
subgradients.

There are several books that relate to both convex analysis and op-
timization. The book by Rockafellar [Roc70] has been an important in-
fluence to subsequent convex optimization books, including the present
work, but unfortunately it is written in a style that does not facilitate
intuition through visualization (it does not contain a single figure). The
book by Rockafellar and Wets [RoW98] is an extensive treatment of “vari-
ational analysis,” a broad spectrum of topics that integrate classical anal-
ysis, convexity, and optimization of both convex and nonconvex (possibly
nonsmooth) functions. Stoer and Witzgall [StW70] discuss similar top-
ics as Rockafellar [Roc70] but less comprehensively. Ekeland and Temam
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[EkT76], and Zalinescu [Zal02] develop the subject in infinite dimensional
spaces. Hiriart-Urruty and Lemarechal [HiL93] emphasize algorithms for
dual and nondi↵erentiable optimization. Rockafellar [Roc84] focuses on
convexity and duality in network optimization, and an important general-
ization, called monotropic programming. Bertsekas [Ber98] also gives a de-
tailed coverage of this material, which owes much to the early work of Minty
[Min60] on network optimization. Schrijver [Sch86] provides an extensive
account of polyhedral convexity with applications to integer programming
and combinatorial optimization, and gives many historical references. Bon-
nans and Shapiro [BoS00] emphasize sensitivity analysis and discuss infinite
dimensional problems as well. Borwein and Lewis [BoL00] develop many
of the concepts in Rockafellar and Wets [RoW98], but more succinctly.
The author’s earlier book with Nedić and Ozdaglar [BNO03] also strad-
dles the boundary between convex and variational analysis. Ben-Tal and
Nemirovski [BeN01] focus on conic and semidefinite programming [see also
the 2005 class notes by Nemirovski (on line)]. Auslender and Teboulle
[AuT03] emphasize the question of existence of solutions for convex as well
as nonconvex optimization problems, and related issues in duality theory
and variational inequalities. Boyd and Vanderbergue [BoV04] discuss many
applications of convex optimization.

We also note a few books that focus on the geometry and other prop-
erties of convex sets, but have limited connection with duality and op-
timization: Bonnesen and Fenchel [BoF34], Eggleston [Egg58], Valentine
[Val64], Grunbaum [Gru67], Webster [Web94], and Barvinok [Bar02].

The MC/MC framework di↵erentiates the present book from alter-
native treatments of convex optimization. It was initially developed by the
author in joint research with A. Nedić and A. Ozdaglar, which is described
in the book [BNO03]. The present account is improved and more com-
prehensive. In particular, it contains more streamlined proofs and some
new results, particularly in connection with minimax problems (Sections
4.2.5 and 5.7.2), and nonconvex problems (Section 5.7, which generalizes
the work on duality gap estimates in [Ber82], Section 5.6.1).

In a nutshell, the MC/MC framework aims to reduce duality theory
to its bare essentials. The starting point is the two dual descriptions of
a closed convex set: as the union of its points and as the intersection of
the halfspaces that contain it. Thus a closed convex function f admits two
dual descriptions: as the union of the points of its epigraph epi(f) and as
the intersection of the halfspaces that contain epi(f) (the latter description
defines the conjugate f⇤).

Fenchel duality provides dual descriptions of optimization problems
through the use of conjugate functions, but in the author’s view, this is an
indirect and far too complicated starting point for optimization duality. A
simpler and more fundamental approach is to start from a single set and
the two dual problems that it defines: the min common point problem and
max crossing point problem. Developing duality theory around these two
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problems leads to a simpler, unified, and visually transparent analysis of
the central frameworks of convex optimization: Lagrange duality, Fenchel
duality, min-max theory, and theorems of the alternative.
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