SET INTERSECTION THEOREMS

AND

EXISTENCE OF OPTIMAL SOLUTIONS FOR

CONVEX AND NONCONVEX OPTIMIZATION

Dimitri P. Bertsekas and Paul Tseng

Math. Programming Journal, 2007

NESTED SET SEQUENCE INTERSECTIONS

• **Basic Question:** Given a nested sequence of nonempty closed sets $\{S_k\}$ in \Re^n $(S_{k+1} \subset S_k$ for all k), when is $\bigcap_{k=0}^{\infty} S_k$ nonempty?

NESTED SET SEQUENCE INTERSECTIONS

• **Basic Question:** Given a nested sequence of nonempty closed sets $\{S_k\}$ in \Re^n $(S_{k+1} \subset S_k$ for all k), when is $\bigcap_{k=0}^{\infty} S_k$ nonempty?

• Set intersection theorems are significant in at least four major contexts:

- Existence of optimal solutions
- Preservation of closedness by linear transformations
- Duality gap issue, i.e., equality of optimal values of the primal convex problem

$$\operatorname{minimize}_{x \in X, \, g(x) \le 0} f(x)$$

and its dual

$$\operatorname{maximize}_{\mu \ge 0} q(\mu) \equiv \inf_{x \in X} \left\{ f(x) + \mu' g(x) \right\}$$

- min-max = max-min issue, i.e., whether

$$\min_{x} \max_{z} \phi(x, z) = \max_{z} \min_{x} \phi(x, z),$$

where ϕ is convex in x and concave in z

SOME SPECIFIC CONTEXTS I

- Does a function $f : \Re^n \mapsto (-\infty, \infty]$ attain a minimum over a set X?
 - This is true iff the intersection of the nonempty sets $\{x \in X \mid f(x) \le \gamma\}$ is nonempty

SOME SPECIFIC CONTEXTS I

- Does a function $f : \Re^n \mapsto (-\infty, \infty]$ attain a minimum over a set X?
 - This is true iff the intersection of the nonempty sets $\{x \in X \mid f(x) \le \gamma\}$ is nonempty

• If C is closed, is AC closed?

- Many interesting special cases, e.g., if C_1 and C_2 are closed, is $C_1 + C_2$ closed?

SOME SPECIFIC CONTEXTS II

- Preservation of closedness by partial minima: If F(x, u) is closed, is $p(u) = \inf_x F(x, u)$ closed?
 - Critical question in the **duality gap** issue, where

$$F(x,u) = \begin{cases} f(x) & \text{if } x \in X, \ g(x) \le u, \\ \infty & \text{otherwise} \end{cases}$$

and p is the primal function.

 Critical question regarding min-max=maxmin where

$$F(x,u) = \begin{cases} \sup_{z \in Z} \{ \phi(x,z) - u'z \} & \text{if } x \in X, \\ \infty & \text{if } x \notin X. \end{cases}$$

We have min-max=max-min if

$$p(u) = \inf_{x \in \Re^n} F(x, u)$$

is closed.

- Can be addressed by using the relation

$$\operatorname{Proj}(\operatorname{epi}(F)) \subset \operatorname{epi}(p) \subset \operatorname{cl}(\operatorname{Proj}(\operatorname{epi}(F)))$$

ASYMPTOTIC DIRECTIONS

• Given a sequence of nonempty nested closed sets $\{S_k\}$, we say that a vector $d \neq 0$ is an **asymptotic direction of** $\{S_k\}$ if there exists $\{x_k\}$ s. t.

ASYMPTOTIC DIRECTIONS

• Given a sequence of nonempty nested closed sets $\{S_k\}$, we say that a vector $d \neq 0$ is an **asymptotic direction of** $\{S_k\}$ if there exists $\{x_k\}$ s. t.

• A sequence $\{x_k\}$ associated with an asymptotic direction d as above is called an **asymptotic sequence** corresponding to d.

• Generalizes the known notion of asymptotic direction of a set (rather than a nested set sequence).

RETRACTIVE ASYMPTOTIC DIRECTIONS

• An asymptotic sequence $\{x_k\}$ and corresponding asymptotic direction are called **retractive** if there exists $\overline{k} \geq 0$ such that

$$x_k - d \in S_k, \qquad \forall \ k \ge \overline{k}.$$

 $\{S_k\}$ is called **retractive** if all its asymptotic sequences are retractive.

RETRACTIVE ASYMPTOTIC DIRECTIONS

• An asymptotic sequence $\{x_k\}$ and corresponding asymptotic direction are called **retractive** if there exists $\overline{k} \geq 0$ such that

$$x_k - d \in S_k, \qquad \forall \ k \ge \overline{k}.$$

 $\{S_k\}$ is called **retractive** if all its asymptotic sequences are retractive.

• Important observation: A retractive asymptotic sequence $\{x_k\}$ (for large k) gets closer to 0 when shifted in the opposite direction -d.

SET INTERSECTION THEOREM

Proposition: The intersection of a retractive nested sequence of closed sets is nonempty.

- Key proof ideas:
 - (a) Consider x_k a **minimum norm vector** from S_k .
 - (b) The intersection $\bigcap_{k=0}^{\infty} S_k$ is empty iff $\{x_k\}$ is unbounded.
 - (c) An asymptotic sequence $\{x_k\}$ consisting of minimum norm vectors from the S_k cannot be retractive, because $\{x_k\}$ eventually gets closer to 0 when shifted opposite to the asymptotic direction.
 - (d) Hence $\{x_k\}$ is bounded.

CALCULUS OF RETRACTIVE SEQUENCES

- Unions and intersections of retractive set sequences are retractive.
- **Polyhedral sets** are retractive.
- Recall the **recession cone** R_C of a convex set C, and its **lineality space** $L_C = R_C \cap (-R_C)$.

For S_k :convex, the set of asymptotic directions of $\{S_k\}$ is the set of nonzero $d \in \bigcap_k R_{S_k}$.

CALCULUS OF RETRACTIVE SEQUENCES

- Unions and intersections of retractive set sequences are retractive.
- **Polyhedral sets** are retractive.
- Recall the **recession cone** R_C of a convex set C, and its **lineality space** $L_C = R_C \cap (-R_C)$.

For S_k :convex, the set of asymptotic directions of $\{S_k\}$ is the set of nonzero $d \in \bigcap_k R_{S_k}$.

• The vector sum of a compact set and a **polyhedral cone** (e.g., a polyhedral set) is retractive.

• The level sets of a continuous **concave** function $\{x \mid f(x) \leq \gamma\}$ are retractive.

EXISTENCE OF SOLUTIONS ISSUES

• Standard results on existence of minima of convex functions generalize with simple proofs using the set intersection theorem.

• Use the set intersection theorem, and existence of optimal solution

<=> nonemptiness of \cap (nonempty level sets)

• **Example 1:** The set of minima of a closed convex function f over a closed set X is nonempty if there is no asymptotic direction of X that is a direction of recession of f.

• Example 2: The set of minima of a closed quasiconvex function *f* over a retractive closed set *X* is nonempty if

$$A \cap R \subset L,$$

where A: set of asymptotic directions of X,

$$R = \bigcap_{k=0}^{\infty} R_{\overline{S}_k}, \qquad L = \bigcap_{k=0}^{\infty} L_{\overline{S}_k},$$
$$\overline{S}_k = \left\{ x \mid f(x) \le \gamma_k \right\}$$

and $\gamma_k \downarrow f^*$.

LINEAR AND QUADRATIC PROGRAMMING

• Frank-Wolfe Th: Let X be polyhedral and

f(x) = x'Qx + c'x

where Q is symmetric (not necessarily positive semidefinite). If the minimal value of f over Xis finite, there exists a minimum of f of over X.

• The proof is straightforward using the set intersection theorem, and

existence of optimal solution

<=> nonemptiness of \cap (nonempty level sets)

LINEAR AND QUADRATIC PROGRAMMING

• Frank-Wolfe Th: Let X be polyhedral and

f(x) = x'Qx + c'x

where Q is symmetric (not necessarily positive semidefinite). If the minimal value of f over Xis finite, there exists a minimum of f of over X.

• The proof is straightforward using the set intersection theorem, and

existence of optimal solution

<=> nonemptiness of \cap nonempty level sets.

- Extensions not covered:
 - X can be the vector sum of a compact set and a polyhedral cone.
 - -f can be of the form

$$f(x) = p(x'Qx) + c'x$$

where Q is positive semidefinite and p is a polynomial.

• These extensions need the subsequent theory.

• Reason is that level sets of quadratic functions (and polynomial) are not retractive.

MULTIPLE SEQUENCE INTERSECTIONS

• Key question: Given $\{S_k^1\}$ and $\{S_k^2\}$, each with nonempty intersection by itself, and with

 $S_k^1 \cap S_k^2 \neq \emptyset,$

for all k, when does the intersection sequence $\{S_k^1 \cap S_k^2\}$ have an empty intersection?

• Examples indicate that the trouble lies with the existence of a "critical asymptote".

• "Critical asymptotes" roughly are: Common asymptotic directions d such that starting at $\cap_k S_k^2$ and looking at the horizon along d, we do not meet $\cap_k S_k^1$ (and similarly with the roles of S_k^1 and S_k^2 reversed).

CRITICAL DIRECTIONS

• We say that an asymptotic direction d of $\{S_k\}$, with $\bigcap_k S_k \neq \emptyset$ is a **horizon direction with** respect to a set G if for every $x \in G$, we have $x + \alpha d \in \bigcap_k S_k$ for all α sufficiently large.

• We say that an asymptotic direction d of $\{S_k\}$ is **noncritical with respect to a set** G if it is either a horizon direction with respect to G or a retractive horizon direction with respect to $\cap_k S_k$. Otherwise, d is **critical with respect to** G.

CRITICAL DIRECTIONS

• We say that an asymptotic direction d of $\{S_k\}$, with $\bigcap_k S_k \neq \emptyset$ is a **horizon direction with** respect to a set G if for every $x \in G$, we have $x + \alpha d \in \bigcap_k S_k$ for all α sufficiently large.

• We say that an asymptotic direction d of $\{S_k\}$ is **noncritical with respect to a set** G if it is either a horizon direction with respect to G or a retractive horizon direction with respect to $\cap_k S_k$. Otherwise, d is **critical with respect to** G.

• Example: The asymptotic directions of a level set sequence of a convex quadratic

$$S_k = \{ x \mid x'Qx + c'x + b \le \gamma_k \}, \qquad \gamma_k \downarrow 0,$$

are noncritical with respect to \Re^n . (Extension: Convex polynomials, bidirectionally flat convex fns.)

• Example: The as. directions of a vector sum *S* of a compact and a polyhedral set are non-critical (are retractive hor. dir. with resp. to *S*).

EXAMPLE OF CRITICAL DIRECTION

• Two set sequences, all intersections of a finite number of sets are nonempty.

• d shown is the only common asymptotic direction.

• d is noncritical for S^2 with respect to $\cap_k S_k^1$ (because it is retractive).

• d is critical for $\cap_k S_k^1$ with respect to S^2 .

CRITICAL DIRECTION THEOREM

• Roughly it says that: For the intersection of a set sequence $\{S_k^1 \cap S_k^2 \cap \cdots \cap S_k^r\}$ to be empty, some common asymptotic direction must be critical for one of the $\{S_k^j\}$ with respect to all the others.

• Critical Direction Theorem: Consider $\{S_k^1\}$ and $\{S_k^2\}$, each with nonempty intersection by itself. If

$$S_k^1 \cap S_k^2 \neq \emptyset$$
 for all k , and $\cap_{k=0}^{\infty} (S_k^1 \cap S_k^2) = \emptyset$,

there is a common asymptotic direction that is critical for $\{S_k^1\}$ with respect to $\cap_k S_k^2$ (or for $\{S_k^2\}$ with respect to $\cap_k S_k^1$).

• Extends to any finite number of sequences $\{S_k^j\}$.

CRITICAL DIRECTION THEOREM

• Roughly it says that: For the intersection of a set sequence $\{S_k^1 \cap S_k^2 \cap \cdots \cap S_k^r\}$ to be empty, some common asymptotic direction must be critical for one of the $\{S_k^j\}$ with respect to all the others.

• Critical Direction Theorem: Consider $\{S_k^1\}$ and $\{S_k^2\}$, each with nonempty intersection by itself. If

$$S_k^1 \cap S_k^2 \neq \emptyset$$
 for all k , and $\cap_{k=0}^{\infty} (S_k^1 \cap S_k^2) = \emptyset$,

there is a common asymptotic direction that is critical for $\{S_k^1\}$ with respect to $\cap_k S_k^2$ (or for $\{S_k^2\}$ with respect to $\cap_k S_k^1$).

• Extends to any finite number of sequences $\{S_k^j\}$.

• Special Case: The intersection of set sequences defined by convex polynomial functions

$$S_k^j = \{ x \mid p_j(x) \le \gamma_k^j, \, j = 1, \dots, r \}, \qquad \gamma_k^j \downarrow 0,$$

is nonempty, if all the $\cap_k S_k^j$ and $S_k^1 \cap \ldots \cap S_k^r$ are nonempty. (For example p_j may be convex quadratic or bidirectionally flat.)

EXISTENCE OF SOLUTIONS THEOREMS

• Convex Quadratic/Polynomial Problems: For j = 0, 1, ..., r, let $f_j : \Re^n \mapsto \Re$ be polynomial convex functions. Then the problem

> minimize $f_0(x)$ subject to $f_j(x) \le 0$, $j = 1, \dots, r$,

has at least one optimal solution if and only if its optimal value is finite.

EXISTENCE OF SOLUTIONS THEOREMS

• Convex Quadratic/Polynomial Problems: For j = 0, 1, ..., r, let $f_j : \Re^n \mapsto \Re$ be polynomial convex functions. Then the problem

> minimize $f_0(x)$ subject to $f_j(x) \le 0$, $j = 1, \dots, r$,

has at least one optimal solution if and only if its optimal value is finite.

• Extended Frank-Wolfe Theorem: Let

$$f(x) = x'Qx + c'x$$

where Q is symmetric, and let X be a closed set whose asymptotic directions are retractive horizon directions with respect to X. If the minimal value of f over X is finite, there exists a minimum of fover X.