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NESTED SET SEQUENCE INTERSECTIONS

e Basic Question: Given a nested sequence of
nonempty closed sets {Sg} in R (Sk11 C Sk for
all k), when is N2 S} nonempty?
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e Set intersection theorems are significant in at
least four major contexts:

— Existence of optimal solutions

— Preservation of closedness by linear trans-
formations

— Duality gap issue, i.e., equality of optimal
values of the primal convex problem

minimize,e x, g(z)<0 f ()

and i1ts dual

maximize, >0 ¢(p) = inf { f(z) + p'g(x)}

— min-max — max-min issue, i.e., whether

min max ¢(x, z) = max min ¢(z, 2),
T z < T

where ¢ is convex in x and concave in z



SOME SPECIFIC CONTEXTS I

¢ Does a function f : R" — (—o0, 00| attain
a minimum over a set X7

— This is true iff the intersection of the nonempty
sets {x € X | f(z) <~} is nonempty
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e If C is closed, is AC closed?
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— Many interesting special cases, e.g., if C; and
C'> are closed, is C; + C5 closed?



SOME SPECIFIC CONTEXTS II

e Preservation of closedness by partial min-
ima: If F(x,u) is closed, is p(u) = inf, F(x,u)
closed?

— Ciritical question in the duality gap issue,
where

F(z,u) = {f(x) if v € X, g(v) < u,

00 otherwise

and p is the primal function.

— Critical question regarding min-max—max-
min where

F(x,u) = {SUpZEZ{gb(a:,z) — U’Z} if x € X,
| o0 if z ¢ X.

We have min-max=max-min if

= inf F
p(v) = inf F(z,u)

is closed.

— Can be addressed by using the relation

Proj (epi(F)) C epi(p) C cl (Proj (epi(F)))



ASYMPTOTIC DIRECTIONS

e Given a sequence of nonempty nested closed sets
{Si}, we say that a vector d # 0 is an asymptotic
direction of {Sy} if there exists {x} s. t.

xr € Sk, xr #+ 0, k=0,1,...
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e A sequence {zj} associated with an asymptotic
direction d as above is called an asymptotic se-
quence corresponding to d.

e Generalizes the known notion of asymptotic di-
rection of a set (rather than a nested set sequence).



RETRACTIVE ASYMPTOTIC DIRECTIONS

e An asymptotic sequence {xx} and correspond-
ing asymptotic direction are called retractive if
there exists k& > 0 such that

xr —d € Sk, vV k> k.

{Si} is called retractive if all its asymptotic se-
quences are retractive.
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e Important observation: A retractive asymp-

totic sequence {xy} (for large k) gets closer to 0
when shifted in the opposite direction —d.



SET INTERSECTION THEOREM

Proposition: The intersection of a retractive nested
sequence of closed sets is nonempty.

e Key proof ideas:

(a) Consider rx a minimum norm vector from

Sk

(b) The intersection N2, S is empty iff {x} is
unbounded.

(¢) An asymptotic sequence {xy} consisting of
minimum norm vectors from the Sp cannot
be retractive, because {z} eventually gets
closer to 0 when shifted opposite to the
asymptotic direction.

(d) Hence {x} is bounded.
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CALCULUS OF RETRACTIVE SEQUENCES

e Unions and intersections of retractive set
sequences are retractive.

e Polyhedral sets are retractive.

e Recall the recession cone R~ of a convex set
C, and its lineality space Lc = Rc N (—R¢).

Recession Cone Rc

Convexsy

For Si:convex, the set of asymptotic directions
of {Si} is the set of nonzero d € N Rg, .
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e Unions and intersections of retractive set
sequences are retractive.

e Polyhedral sets are retractive.

e Recall the recession cone R~ of a convex set
C, and its lineality space Lc = Rc N (—R¢).
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Convexsy

For Si:convex, the set of asymptotic directions
of {Si} is the set of nonzero d € N Rg, .

e The vector sum of a compact set and a
polyhedral cone (e.g., a polyhedral set) is re-
tractive.

e The level sets of a continuous concave function
{x | f(x) < v} are retractive.



EXISTENCE OF SOLUTIONS ISSUES

e Standard results on existence of minima of con-
vex functions generalize with simple proofs using
the set intersection theorem.

e Use the set intersection theorem, and
existence of optimal solution

<=> nonemptiness of N (nonempty level sets)

e Example 1: The set of minima of a closed
convex function f over a closed set X is nonempty
if there is no asymptotic direction of X that is a
direction of recession of f.

e Example 2: The set of minima of a closed
quasiconvex function f over a retractive closed set
X is nonempty if

ANRCL,
where A: set of asymptotic directions of X,
R =M, Sk’ L = m?:o[@kv

Sp={z|f(@) <}
and vy | f*.



LINEAR AND QUADRATIC PROGRAMMING

e Frank-Wolfe Th: Let X be polyhedral and
flz) =2'Qx + cx

where @) is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
is finite, there exists a minimum of f of over X.

e The proof is straightforward using the set in-
tersection theorem, and

existence of optimal solution

<=> nonemptiness of N (nonempty level sets)
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e Frank-Wolfe Th: Let X be polyhedral and
flz) =2'Qx + cx

where @) is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
is finite, there exists a minimum of f of over X.

e The proof is straightforward using the set in-
tersection theorem, and

existence of optimal solution

<=> nonemptiness of M nonempty level sets.

e Extensions not covered:

— X can be the vector sum of a compact set
and a polyhedral cone.

— f can be of the form

f(z) = p(a'Qz) + cx
where () is positive semidefinite and p is a
polynomial.
e These extensions need the subsequent theory.

e Reason is that level sets of quadratic func-
tions (and polynomial) are not retractive.



MULTIPLE SEQUENCE INTERSECTIONS

e Key question: Given {S;} and {57}, each
with nonempty intersection by itself, and with

SiNSE# 0,

for all k, when does the intersection sequence {S}N
S7} have an empty intersection?

Sk1
d: “Critical Asymptote”

e Examples indicate that the trouble lies with the
existence of a *“critical asymptote”.

e “Critical asymptotes” roughly are: Common
asymptotic directions d such that starting at Ny S,%
and looking at the horizon along d, we do
not meet NS, (and similarly with the roles of

S; and S? reversed).



CRITICAL DIRECTIONS

e We say that an asymptotic direction d of {Sj},
with Ng S, # O is a horizon direction with
respect to a set G if for every x € (G, we have
x + ad € N S, for all « sufficiently large.

e We say that an asymptotic direction d of {Sj}
is noncritical with respect to a set G if it is
either a horizon direction with respect to G or a
retractive horizon direction with respect to Nx Sk.
Otherwise, d is critical with respect to G.

Retractive
Horizon with respect to RN d
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e Example: The asymptotic directions of a level
set sequence of a convex quadratic

Se={z|2Qx+cx+b<wm}, w0,

are noncritical with respect to R”. (Extension:
Convex polynomials, bidirectionally flat convex fns.)

e Example: The as. directions of a vector sum
S of a compact and a polyhedral set are non-
critical (are retractive hor. dir. with resp. to S).



EXAMPLE OF CRITICAL DIRECTION

Sk1
d: “Critical Asymptote”

e Two set sequences, all intersections of a finite
number of sets are nonempty.

e d shown is the only common asymptotic direc-
tion.

e d is noncritical for S2 with respect to NS}
(because it is retractive).

e d is critical for NS; with respect to S2.



CRITICAL DIRECTION THEOREM

e Roughly it says that: For the intersection
of a set sequence {S; NS;N---NSI} to be
empty, some common asymptotic direction
must be critical for one of the {S]} with re-
spect to all the others.

e Critical Direction Theorem: Consider {S; }
and {57}, each with nonempty intersection by it-

self. If
SinS: # O forall k, and N2, (SENS?) = 0,

there is a common asymptotic direction that is
critical for {S; } with respect to Ny S7 (or for {S7}
with respect to Ng SL).

e Extends to any finite number of sequences {57 }.
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e Special Case: The intersection of set se-
quences defined by convex polynomial func-
tions

Si:{x\pj(az)§wi,j:1,...,r}, vil(),

is nonempty, if all the ﬂkSi and S; N...N ST
are nonempty. (For example p; may be convex
quadratic or bidirectionally flat.)



EXISTENCE OF SOLUTIONS THEOREMS

e Convex Quadratic/Polynomial Problems:
For j =0,1,...,7r, let f; : " — N be polynomial
convex functions. Then the problem

minimize fo(x)
subject to fi(x) <0, j=1,...,n

has at least one optimal solution if and only if its
optimal value is finite.



EXISTENCE OF SOLUTIONS THEOREMS

e Convex Quadratic/Polynomial Problems:
For j =0,1,...,7r, let f; : " — N be polynomial
convex functions. Then the problem

minimize fo(x)
subject to fi(x) <0, j=1,...,n

has at least one optimal solution if and only if its
optimal value is finite.

e Extended Frank-Wolfe Theorem: Let
flz) =2'Qx + cx

where () is symmetric, and let X be a closed set
whose asymptotic directions are retractive horizon
directions with respect to X. If the minimal value
of f over X is finite, there exists a minimum of f
over X.



