SET INTERSECTION THEOREMS

AND

EXISTENCE OF OPTIMAL SOLUTIONS FOR

CONVEX AND NONCONVEX OPTIMIZATION

Dimitri P. Bertsekas and Paul Tseng
Math. Programming Journal, 2007

NESTED SET SEQUENCE INTERSECTIONS

- Basic Question: Given a nested sequence of nonempty closed sets $\left\{S_{k}\right\}$ in $\Re^{n}\left(S_{k+1} \subset S_{k}\right.$ for all k), when is $\cap_{k=0}^{\infty} S_{k}$ nonempty?

NESTED SET SEQUENCE INTERSECTIONS

- Basic Question: Given a nested sequence of nonempty closed sets $\left\{S_{k}\right\}$ in $\Re^{n}\left(S_{k+1} \subset S_{k}\right.$ for all k), when is $\cap_{k=0}^{\infty} S_{k}$ nonempty?
- Set intersection theorems are significant in at least four major contexts:
- Existence of optimal solutions
- Preservation of closedness by linear transformations
- Duality gap issue, i.e., equality of optimal values of the primal convex problem

$$
\operatorname{minimize}_{x \in X, g(x) \leq 0} f(x)
$$

and its dual

$$
\operatorname{maximize}_{\mu \geq 0} q(\mu) \equiv \inf _{x \in X}\left\{f(x)+\mu^{\prime} g(x)\right\}
$$

$-\min -\max =\max -\min$ issue, i.e., whether

$$
\min _{x} \max _{z} \phi(x, z)=\max _{z} \min _{x} \phi(x, z),
$$

where ϕ is convex in x and concave in z

SOME SPECIFIC CONTEXTS I

- Does a function $f: \Re^{n} \mapsto(-\infty, \infty]$ attain a minimum over a set X ?
- This is true iff the intersection of the nonempty sets $\{x \in X \mid f(x) \leq \gamma\}$ is nonempty

SOME SPECIFIC CONTEXTS I

- Does a function $f: \Re^{n} \mapsto(-\infty, \infty]$ attain a minimum over a set X ?
- This is true iff the intersection of the nonempty sets $\{x \in X \mid f(x) \leq \gamma\}$ is nonempty

- If C is closed, is $A C$ closed?

- Many interesting special cases, e.g., if C_{1} and C_{2} are closed, is $C_{1}+C_{2}$ closed?

SOME SPECIFIC CONTEXTS II

- Preservation of closedness by partial minima: If $F(x, u)$ is closed, is $p(u)=\inf _{x} F(x, u)$ closed?
- Critical question in the duality gap issue, where

$$
F(x, u)= \begin{cases}f(x) & \text { if } x \in X, g(x) \leq u \\ \infty & \text { otherwise }\end{cases}
$$

and p is the primal function.

- Critical question regarding $\min -\max =$ maxmin where

$$
F(x, u)= \begin{cases}\sup _{z \in Z}\left\{\phi(x, z)-u^{\prime} z\right\} & \text { if } x \in X, \\ \infty & \text { if } x \notin X\end{cases}
$$

We have $\min -\max =\max -\min$ if

$$
p(u)=\inf _{x \in \Re^{n}} F(x, u)
$$

is closed.

- Can be addressed by using the relation

$$
\operatorname{Proj}(\operatorname{epi}(F)) \subset \operatorname{epi}(p) \subset \mathrm{cl}(\operatorname{Proj}(\operatorname{epi}(F)))
$$

ASYMPTOTIC DIRECTIONS

- Given a sequence of nonempty nested closed sets $\left\{S_{k}\right\}$, we say that a vector $d \neq 0$ is an asymptotic direction of $\left\{S_{k}\right\}$ if there exists $\left\{x_{k}\right\}$ s. t.

$$
x_{k} \in S_{k}, \quad x_{k} \neq 0, \quad k=0,1, \ldots
$$

$$
\left\|x_{k}\right\| \rightarrow \infty, \quad \frac{x_{k}}{\left\|x_{k}\right\|} \rightarrow \frac{d}{\|d\|}
$$

ASYMPTOTIC DIRECTIONS

- Given a sequence of nonempty nested closed sets $\left\{S_{k}\right\}$, we say that a vector $d \neq 0$ is an asymptotic direction of $\left\{S_{k}\right\}$ if there exists $\left\{x_{k}\right\}$ s. t.

$$
x_{k} \in S_{k}, \quad x_{k} \neq 0, \quad k=0,1, \ldots
$$

$$
\left\|x_{k}\right\| \rightarrow \infty, \quad \frac{x_{k}}{\left\|x_{k}\right\|} \rightarrow \frac{d}{\|d\|}
$$

- A sequence $\left\{x_{k}\right\}$ associated with an asymptotic direction d as above is called an asymptotic sequence corresponding to d.
- Generalizes the known notion of asymptotic direction of a set (rather than a nested set sequence).

RETRACTIVE ASYMPTOTIC DIRECTIONS

- An asymptotic sequence $\left\{x_{k}\right\}$ and corresponding asymptotic direction are called retractive if there exists $\bar{k} \geq 0$ such that

$$
x_{k}-d \in S_{k}, \quad \forall k \geq \bar{k} .
$$

$\left\{S_{k}\right\}$ is called retractive if all its asymptotic sequences are retractive.

Asymptotic Sequence

Asymptotic Direction

RETRACTIVE ASYMPTOTIC DIRECTIONS

- An asymptotic sequence $\left\{x_{k}\right\}$ and corresponding asymptotic direction are called retractive if there exists $\bar{k} \geq 0$ such that

$$
x_{k}-d \in S_{k}, \quad \forall k \geq \bar{k} .
$$

$\left\{S_{k}\right\}$ is called retractive if all its asymptotic sequences are retractive.

- Important observation: A retractive asymptotic sequence $\left\{x_{k}\right\}$ (for large k) gets closer to 0 when shifted in the opposite direction $-d$.

SET INTERSECTION THEOREM

Proposition: The intersection of a retractive nested sequence of closed sets is nonempty.

- Key proof ideas:
(a) Consider x_{k} a minimum norm vector from S_{k}.
(b) The intersection $\cap_{k=0}^{\infty} S_{k}$ is empty iff $\left\{x_{k}\right\}$ is unbounded.
(c) An asymptotic sequence $\left\{x_{k}\right\}$ consisting of minimum norm vectors from the S_{k} cannot be retractive, because $\left\{x_{k}\right\}$ eventually gets closer to 0 when shifted opposite to the asymptotic direction.
(d) Hence $\left\{x_{k}\right\}$ is bounded.

Asymptotic Sequence

CALCULUS OF RETRACTIVE SEQUENCES

- Unions and intersections of retractive set sequences are retractive.
- Polyhedral sets are retractive.
- Recall the recession cone R_{C} of a convex set C, and its lineality space $L_{C}=R_{C} \cap\left(-R_{C}\right)$.

For S_{k} :convex, the set of asymptotic directions of $\left\{S_{k}\right\}$ is the set of nonzero $d \in \cap_{k} R_{S_{k}}$.

CALCULUS OF RETRACTIVE SEQUENCES

- Unions and intersections of retractive set sequences are retractive.
- Polyhedral sets are retractive.
- Recall the recession cone R_{C} of a convex set C, and its lineality space $L_{C}=R_{C} \cap\left(-R_{C}\right)$.

For S_{k} :convex, the set of asymptotic directions of $\left\{S_{k}\right\}$ is the set of nonzero $d \in \cap_{k} R_{S_{k}}$.

- The vector sum of a compact set and a polyhedral cone (e.g., a polyhedral set) is retractive.
- The level sets of a continuous concave function $\{x \mid f(x) \leq \gamma\}$ are retractive.

EXISTENCE OF SOLUTIONS ISSUES

- Standard results on existence of minima of convex functions generalize with simple proofs using the set intersection theorem.
- Use the set intersection theorem, and existence of optimal solution

$$
<=>\text { nonemptiness of } \cap \text { (nonempty level sets) }
$$

- Example 1: The set of minima of a closed convex function f over a closed set X is nonempty if there is no asymptotic direction of X that is a direction of recession of f.
- Example 2: The set of minima of a closed quasiconvex function f over a retractive closed set X is nonempty if

$$
A \cap R \subset L
$$

where A : set of asymptotic directions of X,

$$
\begin{gathered}
R=\cap_{k=0}^{\infty} R_{\bar{S}_{k}}, \quad L=\cap_{k=0}^{\infty} L_{\bar{S}_{k}} \\
\bar{S}_{k}=\left\{x \mid f(x) \leq \gamma_{k}\right\}
\end{gathered}
$$

and $\gamma_{k} \downarrow f^{*}$.

LINEAR AND QUADRATIC PROGRAMMING

- Frank-Wolfe Th: Let X be polyhedral and

$$
f(x)=x^{\prime} Q x+c^{\prime} x
$$

where Q is symmetric (not necessarily positive semidefinite). If the minimal value of f over X is finite, there exists a minimum of f of over X.

- The proof is straightforward using the set intersection theorem, and
existence of optimal solution
$<=>$ nonemptiness of \cap (nonempty level sets)

LINEAR AND QUADRATIC PROGRAMMING

- Frank-Wolfe Th: Let X be polyhedral and

$$
f(x)=x^{\prime} Q x+c^{\prime} x
$$

where Q is symmetric (not necessarily positive semidefinite). If the minimal value of f over X is finite, there exists a minimum of f of over X.

- The proof is straightforward using the set intersection theorem, and existence of optimal solution
$<=>$ nonemptiness of \cap nonempty level sets.
- Extensions not covered:
- X can be the vector sum of a compact set and a polyhedral cone.
- f can be of the form

$$
f(x)=p\left(x^{\prime} Q x\right)+c^{\prime} x
$$

where Q is positive semidefinite and p is a polynomial.

- These extensions need the subsequent theory.
- Reason is that level sets of quadratic functions (and polynomial) are not retractive.

MULTIPLE SEQUENCE INTERSECTIONS

- Key question: Given $\left\{S_{k}^{1}\right\}$ and $\left\{S_{k}^{2}\right\}$, each with nonempty intersection by itself, and with

$$
S_{k}^{1} \cap S_{k}^{2} \neq \varnothing,
$$

for all k, when does the intersection sequence $\left\{S_{k}^{1} \cap\right.$ $\left.S_{k}^{2}\right\}$ have an empty intersection?

- Examples indicate that the trouble lies with the existence of a "critical asymptote".
- "Critical asymptotes" roughly are: Common asymptotic directions d such that starting at $\cap_{k} S_{k}^{2}$ and looking at the horizon along d, we do not meet $\cap_{k} S_{k}^{1}$ (and similarly with the roles of S_{k}^{1} and S_{k}^{2} reversed).

CRITICAL DIRECTIONS

- We say that an asymptotic direction d of $\left\{S_{k}\right\}$, with $\cap_{k} S_{k} \neq \varnothing$ is a horizon direction with respect to a set G if for every $x \in G$, we have $x+\alpha d \in \cap_{k} S_{k}$ for all α sufficiently large.
- We say that an asymptotic direction d of $\left\{S_{k}\right\}$ is noncritical with respect to a set G if it is either a horizon direction with respect to G or a retractive horizon direction with respect to $\cap_{k} S_{k}$. Otherwise, d is critical with respect to G.

CRITICAL DIRECTIONS

- We say that an asymptotic direction d of $\left\{S_{k}\right\}$, with $\cap_{k} S_{k} \neq \varnothing$ is a horizon direction with respect to a set G if for every $x \in G$, we have $x+\alpha d \in \cap_{k} S_{k}$ for all α sufficiently large.
- We say that an asymptotic direction d of $\left\{S_{k}\right\}$ is noncritical with respect to a set G if it is either a horizon direction with respect to G or a retractive horizon direction with respect to $\cap_{k} S_{k}$. Otherwise, d is critical with respect to G.

- Example: The asymptotic directions of a level set sequence of a convex quadratic

$$
S_{k}=\left\{x \mid x^{\prime} Q x+c^{\prime} x+b \leq \gamma_{k}\right\}, \quad \gamma_{k} \downarrow 0
$$

are noncritical with respect to \Re^{n}. (Extension: Convex polynomials, bidirectionally flat convex fns.)

- Example: The as. directions of a vector sum S of a compact and a polyhedral set are noncritical (are retractive hor. dir. with resp. to S).

EXAMPLE OF CRITICAL DIRECTION

- Two set sequences, all intersections of a finite number of sets are nonempty.
- d shown is the only common asymptotic direction.
- d is noncritical for S^{2} with respect to $\cap_{k} S_{k}^{1}$ (because it is retractive).
- d is critical for $\cap_{k} S_{k}^{1}$ with respect to S^{2}.

CRITICAL DIRECTION THEOREM

- Roughly it says that: For the intersection of a set sequence $\left\{S_{k}^{1} \cap S_{k}^{2} \cap \cdots \cap S_{k}^{r}\right\}$ to be empty, some common asymptotic direction must be critical for one of the $\left\{S_{k}^{j}\right\}$ with respect to all the others.
- Critical Direction Theorem: Consider $\left\{S_{k}^{1}\right\}$ and $\left\{S_{k}^{2}\right\}$, each with nonempty intersection by itself. If
$S_{k}^{1} \cap S_{k}^{2} \neq \varnothing \quad$ for all k, and $\quad \cap_{k=0}^{\infty}\left(S_{k}^{1} \cap S_{k}^{2}\right)=\varnothing$, there is a common asymptotic direction that is critical for $\left\{S_{k}^{1}\right\}$ with respect to $\cap_{k} S_{k}^{2}$ (or for $\left\{S_{k}^{2}\right\}$ with respect to $\left.\cap_{k} S_{k}^{1}\right)$.
- Extends to any finite number of sequences $\left\{S_{k}^{j}\right\}$.

CRITICAL DIRECTION THEOREM

- Roughly it says that: For the intersection of a set sequence $\left\{S_{k}^{1} \cap S_{k}^{2} \cap \cdots \cap S_{k}^{r}\right\}$ to be empty, some common asymptotic direction must be critical for one of the $\left\{S_{k}^{j}\right\}$ with respect to all the others.
- Critical Direction Theorem: Consider $\left\{S_{k}^{1}\right\}$ and $\left\{S_{k}^{2}\right\}$, each with nonempty intersection by itself. If
$S_{k}^{1} \cap S_{k}^{2} \neq \emptyset \quad$ for all k, and $\quad \cap_{k=0}^{\infty}\left(S_{k}^{1} \cap S_{k}^{2}\right)=\varnothing$,
there is a common asymptotic direction that is critical for $\left\{S_{k}^{1}\right\}$ with respect to $\cap_{k} S_{k}^{2}$ (or for $\left\{S_{k}^{2}\right\}$ with respect to $\left.\cap_{k} S_{k}^{1}\right)$.
- Extends to any finite number of sequences $\left\{S_{k}^{j}\right\}$.
- Special Case: The intersection of set sequences defined by convex polynomial functions

$$
S_{k}^{j}=\left\{x \mid p_{j}(x) \leq \gamma_{k}^{j}, j=1, \ldots, r\right\}, \quad \gamma_{k}^{j} \downarrow 0,
$$

is nonempty, if all the $\cap_{k} S_{k}^{j}$ and $S_{k}^{1} \cap \ldots \cap S_{k}^{r}$ are nonempty. (For example p_{j} may be convex quadratic or bidirectionally flat.)

EXISTENCE OF SOLUTIONS THEOREMS

- Convex Quadratic/Polynomial Problems: For $j=0,1, \ldots, r$, let $f_{j}: \Re^{n} \mapsto \Re$ be polynomial convex functions. Then the problem

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x) \\
& \text { subject to } f_{j}(x) \leq 0, \quad j=1, \ldots, r
\end{aligned}
$$

has at least one optimal solution if and only if its optimal value is finite.

EXISTENCE OF SOLUTIONS THEOREMS

- Convex Quadratic/Polynomial Problems: For $j=0,1, \ldots, r$, let $f_{j}: \Re^{n} \mapsto \Re$ be polynomial convex functions. Then the problem

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x) \\
& \text { subject to } f_{j}(x) \leq 0, \quad j=1, \ldots, r
\end{aligned}
$$

has at least one optimal solution if and only if its optimal value is finite.

- Extended Frank-Wolfe Theorem: Let

$$
f(x)=x^{\prime} Q x+c^{\prime} x
$$

where Q is symmetric, and let X be a closed set whose asymptotic directions are retractive horizon directions with respect to X. If the minimal value of f over X is finite, there exists a minimum of f over X.

