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Preface

In the five years since the first edition of Data Networks appeared, the networking field
has changed in a number of important ways. Perhaps the most fundamental has been
the rapid development of optical fiber technology. This has created almost limitless
opportunities for new digital networks of greatly enhanced capabilities. In the near term,
the link capacities available for data networks, both wide area and local, are increasing
by many orders of magnitude. In the longer term, public broadband integrated service
networks that provide integrated data, voice, and video on a universal scale are now
technologically feasible. These networks of the future appear at first to have almost
nothing in common with the data networks of the last 20 years, but in fact, many of the
underlying principles are the same. This edition is designed both to provide a fundamental
understanding of these common principles and to provide insight into some of the new
principles that are evolving for future networks.

Our approach to helping the reader understand the basic principles of networking
is to provide a balance between the description of existing networks and the development
of analytical tools. The descriptive material is used to illustrate the underlying concepts,
and the analytical material is used to generate a deeper and more precise understanding of
the concepts. Although the analytical material can be used to analyze the performance of
various networks, we believe that its more important use is in sharpening one’s conceptual
and intuitive understanding of the field; that is, analysis should precede design rather than
follow it.

The book is designed to be used at a number of levels, varying from a senior
undergraduate elective, to a first year graduate course, to a more advanced graduate
course, to a reference work for designers and researchers in the field. The material has
been tested in a number of graduate courses at M.I.T. and in a number of short courses at
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varying levels. The book assumes some background in elementary probability and some
background in either electrical engineering or computer science, but aside from this, the
material is self-contained.

Throughout the book, major concepts and principles are first explained in a simple
non-mathematical way. This is followed by careful descriptions of modelling issues and
then by mathematical analysis. Finally, the insights to be gained from the analysis are
explained and examples are given to clarify the more subtle issues. Figures are liberally
used throughout to illustrate the ideas. For lower-level courses, the analysis can be
glossed over; this allows the beginning and intermediate-level student to grasp the basic
ideas, while enabling the more advanced student to acquire deeper understandlng and the
ability to do research in the field.

Chapter 1 provides a broad introduction to the subject and also develops the layering
concept. This layering allows the various issues of data networks to be developed in a
largely independent fashion, thus making it possible to read the subsequent chapters in any
desired depth (including omission) without seriously hindering the ability to understand
other chapters.

Chapter 2 covers the two lowest layers of the above layering and also discusses
a number of closely related aspects of the higher layers. The treatment of the lowest,
or physical, layer provides a brief overview of how binary digits are transmitted over
physical communication media. The effort here is to provide just enough material so that
the student can relate the abstraction of digital transmission to physical phenomena. The
next layer, data link control, allows packets to be transmitted reliably over communi-
cation links. This provides an introduction into the distributed algorithms, or protocols,
that must be used at the ends of the link to provide the desired reliability. These proto-
cols are less important in modern high speed networks than in older networks, but the
concepts are used repeatedly at many layers in all kinds of networks. The remainder
of the chapter focuses on other point to point protocols that allow the end points of a
link, or the end points of a network session, to cooperate in providing some required
service.

Chapter 3 develops the queueing theory used for performance analysis of multiac-
cess schemes (Chapter 4) and, to a lesser extent, routing algorithms (Chapter 5). Less
analytical courses will probably omit most of this chapter, simply adopting the results on
faith. Little’s theorem and the Poisson process should be covered however, since they
are simple and greatly enhance understanding of the subsequent chapters. This chapter
is rich in results, often developed in a far simpler way than found in the queueing lit-
erature. This simplicity is achieved by considering only steady-state behavior and by
sometimes sacrificing rigor for clarity and insight. Mathematically sophisticated readers
will be able to supply the extra details for rigor by themselves, while for most readers
the extra details would obscure the line of argument.

Chapter 4 develops the topic of multiaccess communication, including local area
networks, metropolitan area networks, satellite networks, and radio networks. Less theo-
retical courses will probably skip the last half of section 4.2, all of section 4.3, and most
of section 4.4, getting quickly to local area networks in section 4.5. Conceptually, one
gains a great deal of insight into the nature of distributed algorithms in this chapter.
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Chapter 5 develops the subject of routing. The material is graduated in order of
increasing difficulty and depth, so readers can go as far as they are comfortable. Along
with routing itself, which is treated in greater depth than elsewhere in the literature,
further insights are gained into distributed algorithms. There is also a treatment of
topological design and a section on recovery from link failures.

Chapter 6 deals with flow control (or congestion control as it is sometimes called).
The first three sections are primarily descriptive, describing first the objectives and the
problems in achieving these objectives, and then two general approaches, window flow
control, and rate control. The fourth section describes the ways that flow control is
handled in several existing networks. The last section is more advanced and analytical,
describing various algorithms to select session rates in rate control schemes.

A topic that is not treated in any depth in the book is that of higher-layer protocols,
namely the various processes required in the computers and devices using the network
to communicate meaningfully with each other given the capability of reliable transport
of packets through the network provided by the lower layers. This topic is different in
nature than the other topics covered and would have doubled the size of the book if
treated in depth.

We apologize in advance for the amount of jargon and acronyms in the book. We
felt it was necessary to include at least the most commonly used acronyms in the field,
both to allow readers to converse with other workers in the field and also for the reference
value of being able to find out what these acronyms mean.

An extensive set of problems are given at the end of each chapter except the first.
They range from simple exercises to gain familiarity with the basic concepts and tech-
niques to advanced problems extending the results in the text. Solutions of the problems
are given in a manual available to instructors from Prentice-Hall.

Each chapter also contains a brief section of sources and suggestions for further
reading. Again, we apologize in advance to the many authors whose contributions
have not been mentioned. The literature in the data network field is vast, and we limited
ourselves to references that we found most useful, or that contain material supplementing
the text.

The stimulating teaching and research environment at M.IT. has been an ideal
setting for the development of this book. In particular we are indebted to the many
students who have used this material in courses. Their comments have helped greatly
in clarifying the topics. We are equally indebted to the many colleagues and advanced
graduate students who have provided detailed critiques of the various chapters. Special
thanks go to our colleague Pierre Humblet whose advice, knowledge, and deep insight
have been invaluable. In addition, Erdal Arikan, David Castanon, Robert Cooper, Tony
Ephremides, Eli Gafni, Marianne Gardner, Inder Gopal, Paul Green, Ellen Hahne, Bruce
Hajek, Michael Hluchyi, Robert Kennedy, John Spinelli, and John Tsitsiklis have all
been very helpful. We are also grateful to Nancy Young for typing the many revisions.
Our editors at Prentice-Hall have also been very helpful and cooperative in producing the
final text under a very tight schedule. Finally we wish to acknowledge the research sup-
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port of DARPA under grant ONR-N00014-84-K-0357, NSF under grants ECS-8310698,
ECS-8217668, 8802991-NCR, and DDM-8903385, and ARO under grants DAAG 29-
84-K-000 and DAAL03-86-K-0171.

Dimitri Bertsekas

Robert Gallager
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Introduction
and Layered Network
Architecture

1.1 HISTORICAL OVERVIEW

Primitive forms of data networks have a long history, including the smoke signals used
by primitive societies, and certainly including nineteenth-century telegraphy. The mes-
sages in these systems were first manually encoded into strings of essentially binary
symbols, and then manually transmitted and received. Where necessary, the messages
were manually relayed at intermediate points.

A major development, in the early 1950s, was the use of communication links
to connect central computers to remote terminals and other peripheral devices, such as
printers and remote job entry points (RJEs) (see Fig. 1.1). The number of such peripheral
devices expanded rapidly in the 1960s with the development of time-shared computer
systems and with the increasing power of central computers. With the proliferation of
remote peripheral devices, it became uneconomical to provide a separate long-distance
communication link to each peripheral. Remote multiplexers or concentrators were de-
veloped to collect all the traffic from a set of peripherals in the same area and to send
it on a single link to the central processor. Finally, to free the central processor from
handling all this communication, special processors called front ends were developed to

1



2 Introduction and Layered Network Architecture Chap. 1

T
%

Central
/ / processor

RJE

Figure 1.1 Network with one central processor and a separate communication link to
each device.

control the communication to and from all the peripherals. This led to the more com-
plex structure shown in Fig. 1.2. The communication is automated in such systems, in
contrast to telegraphy, for example, but the control of the communication is centrally
exercised at the computer. While it is perfectly appropriate and widely accepted to refer
to such a system as a data network or computer communication network, it is simpler
to view it as a computer with remote peripherals. Many of the interesting problems
associated with data networks, such as the distributed control of the system, the relaying
of messages over multiple communication links, and the sharing of communication links
between many users and processes, do not arise in these centralized systems.

The ARPANET and TYMNET, introduced around 1970, were the first large-scale,
general-purpose data networks connecting geographically distributed computer systems,
users, and peripherals. Figure 1.3 shows such networks. Inside the “subnet” are a set of
nodes, various pairs of which are connected by communication links. Outside the subnet
are the various computers, data bases, terminals, and so on, that are connected via the
subnet. Messages originate at these external devices, pass into the subnet, pass from
node to node on the communication links, and finally pass out to the external recipient.
The nodes of the subnet, usually computers in their own right, serve primarily to route
the messages through the subnet. These nodes are sometimes called IMPs (interface
message processors) and sometimes called switches. In some networks (e.g., DECNET),
nodes in the subnet might be physically implemented within the external computers using
the network. It is helpful, however, to view the subnet nodes as being logically distinct
from the external computers.

It is important to observe that in Figs. 1.1 and 1.2 the computer system is the
center of the network, whereas in Fig. 1.3 the subnet (i.e., the communication part of the
network) is central. Keeping this picture of external devices around a communication
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I Printer I /‘

Multiplexer

Central Front Printer
processor end

Terminal
controller

Multiplexer

Figure 1.2 Network with one central processor but with shared communication links
to devices.

Personal
computer

[

Subnet [:'
D Terminal

L]

[:' CcPU

CPU

Figure 1.3  General network with a subnet of communication links and nodes. External
devices are connected to the subnet via links to the subnet nodes.



4 Introduction and Layered Network Architecture Chap. 1

subnet in mind will make it easier both to understand network layering later in this
chapter and to understand the issues of distributed network control throughout the book.

The subnet shown in Fig. 1.3 contains a somewhat arbitrary placement of links
between the subnet nodes. This arbitrary placement (or arbitrary topology as it is often
called) is typical of wide area networks (i.e., networks covering more than a metropolitan
area). Local area networks (i.e., networks covering on the order of a square kilometer or
less) usually have a much more restricted topology, with the nodes typically distributed
on a bus, a ring, or a star.

Since 1970 there has been an explosive growth in the number of wide area and
local area networks. Many examples of these networks are discussed later, including as
wide area networks, the seminal ARPANET and TYMNET, and as local area networks,
Ethernets and token rings. For the moment, however, Fig. 1.3 provides a generic model
for data networks.

With the multiplicity of different data networks in existence in the 1980s, more and
more networks have been connected via gateways and bridges so as to allow users of one
network to send data to users of other networks (see Fig. 1.4). At a fundamental level,
one can regard such a network of networks as simply another network, as in Fig. 1.3,
with each gateway, bridge, and subnet node of each constituent network being a subnet
node of the overall network. From a more practical viewpoint, a network of networks is
much more complex than a single network. The problem is that each constituent subnet
has its own conventions and control algorithms (i.e., protocols) for handling data, and
the gateways and bridges must deal with this inhomogeneity. We discuss this problem
later after developing some understanding of the functioning of individual subnets.

Personal
computer

Wide-area
network

Local area
network

Local area

Figure 1.4 Network of interconnected networks. Individual wide area networks (WANs)
and local networks (LANs) are connected via bridges and gateways.



Sec. 1.1 Historical Overview 5

In the future, it is likely that data networks, the voice network, and perhaps cable
TV networks will be far more integrated than they are today. Data can be sent over the
voice network today, as explained more fully in Section 2.2, and many of the links in
data networks are leased from the voice network. Similarly, voice can be sent over data
networks. What is envisioned for the future, however, is a single integrated network,
called an integrated services digital network (ISDN), as ubiquitous as the present voice
network. In this vision, offices and homes will each have an access point into the ISDN
that will handle voice, current data applications, and new applications, all with far greater
convenience and less expense than is currently possible. ISDN is currently available in
some places, but it is not yet very convenient or inexpensive. Another possibility for
the future is called broadband ISDN. Here the links will carry far greater data rates than
ISDN and the network will carry video as well as voice and data. We discuss the pros
and cons of this in Section 2.10.

1.1.1 Technological and Economic Background

Before data networks are examined, a brief overview will be given, first, of the tech-
nological and economic factors that have led to network development, and second, of
the applications that require networks. The major driving force in the rapid advances
in computers, communication, and data networks has been solid-state technology and in
particular the development of very large scale integration (VLSI). In computers, this has
led to faster, less expensive processors; faster, larger, less expensive primary memory;
and faster, larger, less expensive bulk storage. The result has been the lowering of the
cost of computation by roughly a factor of 2 every two years. This has led to a rapid
increase in the number of cost effective applications for computers.

On the other hand, with the development of more and more powerful microproces-
sor chips, there has been a shift in cost effectiveness from large time-shared computer
facilities to small but increasingly powerful personal computers and workstations. Thus,
the primary growth in computation is in the number of computer systems rather than in
the increasing power of a small number of very large computer systems.

This evolution toward many small but powerful computers has had several effects
on data networks. First, since individual organizations use many computers, there is a
need for them to share each other’s data, thus leading to the network structures of Figs.
1.3 and 1.4. (If, instead, the evolution had been toward a small number of ever more
powerful computer systems, the structure of Fig. 1.2 would still predominate.) Second,
since subnet nodes are small computers, the cost of a given amount of processing within
a subnet has been rapidly decreasing. Third, as workstations become more powerful,
they deal with larger blocks of data (e.g., high-resolution graphics) and the data rates
of present-day wide area data networks are insufficient to transmit such blocks with
acceptable delay.

The discussion of computational costs above neglects the cost of software. While
the art of software design has been improving, the improvement is partly counterbalanced
by the increasing cost of good software engineers. When software can be replicated,
however, the cost per unit goes down inversely with the number of replicas. Thus,
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even though software is a major cost of a new computer system, the increasing market
decreases its unit cost. Each advance in solid-state technology decreases cost and in-
creases the performance of computer systems; this leads to an increase in market, thus
generating decreased unit software costs, leading, in a feedback loop, to further increases
in market. Each new application, however, requires new specialized software which is
initially expensive (until a market develops) and which requires a user learning curve.
Thus, it is difficult to forecast the details of the growth of both the computer market and
the data network market.

1.1.2 Communication Technology

The communication links for wide area networks are usually leased from the facilities of
the voice telephone network. In Section 2.2 we explain how these physical links are used
to transmit a fixed-rate stream of binary digits. The rate at which a link transmits binary
digits is usually referred to as the data rate, capacity, or speed of the link, and these data
rates come in standard sizes. Early networks typically used link data rates of 2.4, 4.8, 9.6,
and 56 kilobits/sec, whereas newer networks often use 64 kilobits/sec, 1.5 megabits/sec,
and even 45 megabits/sec. There are major economies of scale associated with higher
link speeds; for example, the cost of a 1.5 megabit/sec link is about six times that of
a 64 kilobit/sec link, but the data rate is 24 times higher. This makes it economically
advantageous to concentrate network traffic on a relatively small set of high-speed links.
(This effect is seen in Fig. 1.2 with the use of multiplexers or concentrators to share
communication costs.)

One result of sharing high-speed (i.e., high data rate) communication links is that
the cost of sending data from one point to another increases less than linearly with the
geographic separation of the points. This occurs because a user with a long communi-
cation path can share one or more high-speed links with other users (thus achieving low
cost per unit data) over the bulk of the path, and use low-speed links (which have high
cost per unit data) only for local access to the high-speed links.

Estimating the cost of transmission facilities is highly specialized and complex.
The cost of a communication link depends on whether one owns the facility or leases
it; with leasing, the cost depends on the current competitive and regulatory situation.
The details of communication cost will be ignored in what follows, but there are several
overall effects of these costs that are important.

First, for wide area data networks, cost has until recently been dominated by
transmission costs. Thus, it has been desirable to use the communication links efficiently,
perhaps at added computational costs. As will be shown in Section 1.3, the sporadic
nature of most data communication, along with the high cost of idle communication
links, led to the development of packet data networks.

Second, because of the gradual maturing of optical fiber technology, transmission
costs, particularly for high data rate links, are dropping at an accelerating rate which is
expected to continue well into the future. The capacity of a single optical fiber using
today’s technology is 10° to 10'° bits/sec, and in the future this could rise to 10' or
more. In contrast, all the voice and data traffic in the United States amounts to about
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10'2 bits/sec. Optical fiber is becoming widespread in use and is expected to be the
dominant mode of transmission in the future. One consequence of this is that network
costs are not expected to be dominated by transmission costs in the future. Another
consequence is that network link capacities will increase dramatically; as discussed later,
this will change the nature of network applications.

Third, for local area networks, the cost of a network has never been dominated by
transmission costs. Coaxial cable and even a twisted pair of wires can achieve relatively
high-speed communication at modest cost in a small geographic area. The use of such me-
dia and the desire to avoid relatively expensive switching have led to a local area network
technology in which many nodes share a common high-speed communication medium
on a shared multiaccess basis. This type of network structure is discussed in Chapter 4.

1.1.3 Applications of Data Networks

With the proliferation of computers referred to above, it is not difficult to imagine a
growing need for data communication. A brief description of several applications requir-
ing communication will help in understanding the basic problems that arise with data
networks.

First, there are many applications centered on remote accessing of central storage
facilities and of data bases. One common example is that of a local area network
in which a number of workstations without disk storage use one or more common file
servers to access files. Other examples are the information services and financial services
available to personal computer users. More sophisticated examples, requiring many
interactions between the remote site and the data base and its associated programs,
include remote computerized medical diagnoses and remote computer-aided education.
In some of these examples, there is a cost trade-off between maintaining the data base
wherever it might be required and the communication cost of remotely accessing it as
required. In other examples, in which the data base is rapidly changing, there is no
alternative to communication between the remote sites and the central data base.

Next, there are many applications involving the remote updating of data bases,
perhaps in addition to accessing the data. Airline reservation systems, automatic teller
machines, inventory control systems, automated order entry systems, and word pro-
cessing with a set of geographically distributed authors provide a number of examples.
Weather tracking systems and military early warning systems are larger-scale examples.
In general, for applications of this type, there are many geographically separated points
at which data enter the system and often many geographically separated points at which
outputs are required. Whether the inputs are processed and stored at one point (as in
Figs. 1.1 and 1.2) or processed and stored at many points (as in Fig. 1.3), there is a need
for a network to collect the inputs and disseminate the outputs. In any data base with
multiple users there is a problem maintaining consistency (e.g., two users of an airline
reservation system might sell the same seat on some flight). In geographically distributed
systems these problems are particularly acute because of the networking delays.

The communication requirements for accessing files and data bases have been
increasing rapidly in recent years. Part of the reason for this is just the natural growth
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of an expanding field. Another reason is that workstations are increasingly graphics
oriented, and transmitting a high-resolution image requires millions of bits. Another
somewhat related reason is that the link capacities available in local area networks have
been much larger than those in wide area networks. As workstation users get used to
sending images and large files over local area nets, they expect to do the same over
wide area networks. Thus the need for increased link capacity for wide area networks is
particularly pressing.

Another popular application is electronic mail between the human users of a net-
work. Such mail can be printed, read, filed, forwarded to other individuals, perhaps with
added comments, or read by the addressee at different locations. It is clear that such a
service has many advantages over postal mail in terms of delivery speed and flexibility.

In comparison with facsimile, which has become very popular in recent years, elec-
tronic mail is more economical, has the flexibility advantages above, and is in principle
more convenient for data already stored in a computer. Facsimile is far more convenient
for data in hard-copy form (since the hard copy is fed directly into the facsimile machine).
It appears clear, however, that the recent popularity of facsimile is due to the fact that it
is relatively hassle-free, especially for the occasional or uninitiated user. Unfortunately,
electronic mail, and more generally computer communication, despite all the cant about
user friendliness, is full of hassles and pitfalls for the occasional or uninitiated user.

There is a similar comparison of electronic mail with voice telephone service. Voice
service, in conjunction with an answering machine or voice mail service, in principle
has most of the flexibility of electronic mail except for the ability to print a perma-
nent record of a message. Voice, of course, has the additional advantage of immediate
two-way interaction and of nonlinguistic communication via inflection and tone. Voice
communication is more expensive, but requires only a telephone rather than a telephone
plus computer.

As a final application, one might want to use a remote computer system for some
computational task. This could happen as a means of load sharing if the local computer
is overutilized. It could also arise if there is no local computer, if the local computer is
inoperational, or the remote computer is better suited to the given task. Important special
cases of the latter are very large problems that require supercomputers. These problems
frequently require massive amounts of communication, particularly when the output is in
high resolution graphic form. Present-day networks, with their limited link speeds, are
often inadequate for these tasks. There are also “real-time” computational tasks in which
the computer system must respond to inputs within some maximum delay. If such a task
is too large for the local computer, it might be handled by a remote supercomputer or by
a number of remote computers working together. Present-day networks are also often
inadequate for the communication needs of these tasks.

It will be noted that all the applications above could be satisfied by a network
with centralized computer facilities as in Fig. 1.1 or 1.2. To see this, simply visualize
moving all the large computers, data bases, and subnet nodes in the network of Fig. 1.3 to
one centralized location, maintaining links between all the nodes previously connected.
The central facilities would then be connected by short communication lines rather than
long, but aside from some changes in propagation delays, the overall network would be
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unchanged. Such a geographically centralized but logically distributed structure would
both allow for shared memory between the computers and for centralized repair. Why,
then, are data networks with geographically distributed computational and data base
facilities growing so quickly in importance? One major reason is the cost and delay of
communication. With distributed computers, many computational tasks can be handled
locally. Even for remote tasks, communication costs can often be reduced significantly
by some local processing. Another reason is that organizations often acquire computers
for local automation tasks, and only after this local automation takes place does the
need for remote interactions arise. Finally, organizations often wish to have control of
their own computer systems rather than be overly dependent on the pricing policies,
software changes, and potential security violations of a computer utility shared with
many organizations.

Another advantage often claimed for a network with distributed computational
facilities is increased reliability. For the centralized system in Fig. 1.2 there is some
truth to this claim, since the failure of a communication link could isolate a set of
sites from all access to computation. For the geographically centralized but logically
distributed network, especially if there are several disjoint paths between each pair of
sites, the failure of a communication link is less critical and the question of reliability
becomes more complex. If all the large computers and data bases in a network were
centralized, the network could be destroyed by a catastrophe at the central site. Aside
from this possibility, however, a central site can be more carefully protected and repairs
can be made more quickly and easily than with distributed computational sites. Other than
these effects, there appears to be no reason why geographically distributed computational
facilities are inherently more or less reliable than geographically centralized (but logically
distributed) facilities. At any rate, the main focus in what follows will be on networks
as in Figs. 1.3 and 1.4, where the communication subnet is properly viewed as the center
of the entire network.

1.2 MESSAGES AND SWITCHING
1.2.1 Messages and Packets

A message in a data network corresponds roughly to the everyday English usage of the
word. For example, in an airline reservation system, we would regard a request for a
reservation, including date, flight number, passenger names, and so on, as a message.
In an electronic mail system, a message would be a single document from one user
to another. If that same document is then forwarded to several other users, we would
sometimes want to regard this forwarding as several new messages and sometimes as
forwarding of the same message, depending on the context. In a file transfer system, a
message would usually be regarded as a file. In an image transmission system (i.e., pic-
tures, figures, diagrams, etc.), we would regard a message as an image. In an application
requiring interactive communication between two or more users, a message would be
one unit of communication from one user to another. Thus, in an interactive transaction,
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user 1 might send a message to user 2, user 2 might reply with a message to 1, who
might then send another message to 2, and so forth until the completion of the overall
transaction. The important characteristic of a message is that from the standpoint of the
network users, it is a single unit of communication. If a recipient receives only part of
a message, it is usually worthless.

It is sometimes necessary to make a distinction between a message and the rep-
resentation of the message. Both in a subnet and in a computer, a message is usually
represented as a string of binary symbols, O or 1. For brevity, a binary symbol will be
referred to as a bit. When a message goes from sender to recipient, there can be several
transformations on the string of bits used to represent the message. Such transformations
are sometimes desirable for the sake of data compression and sometimes for the sake of
facilitating the communication of the message through the network. A brief description
of these two purposes follows.

The purpose of data compression is to reduce the length of the bit string representing
the message. From the standpoint of information theory, a message is regarded as one
of a collection of possible messages, with a probability distribution on the likelihood of
different messages. Such probabilities can only be crudely estimated, either a priori or
adaptively. The idea, then, is to assign shorter bit strings to more probable messages
and longer bit strings to less probable messages, thus reducing the expected length of the
representation. For example, with text, one can represent common letters in the alphabet
(or common words in the dictionary) with a small number of bits and represent unusual
letters or words with more bits. As another example, in an airline reservation system, the
common messages have a very tightly constrained format (date, flight number, names,
etc.) and thus can be very compactly represented, with longer strings for unusual types
of situations. Data compression will be discussed more in Chapter 2 in the context of
compressing control overhead. Data compression will not be treated in general here,
since this topic is separable from that of data networks, and is properly studied in its
own right, with applications both to storage and point-to-point communication.

Transforming message representations to facilitate communication, on the other
hand, is a central topic for data networks. In subsequent chapters, there are many
examples in which various kinds of control overhead must be added to messages to
ensure reliable communication, to route the message to the correct destination, to control
congestion, and so on. It will also be shown that transmitting very long messages as
units in a subnet is harmful in several ways, including delay, buffer management, and
congestion control. Thus, messages represented by long strings of bits are usually broken
into shorter bit strings called packets. These packets can then be transmitted through the
subnet as individual entities and reassembled into messages at the destination.

The purpose of a subnet, then, is to receive packets at the nodes from sites outside
the subnet, then transmit these packets over some path of communication links and
other nodes, and finally deliver them to the destination sites. The subnet must somehow
obtain information about where the packet is going, but the meaning of the corresponding
message is of no concern within the subnet. To the subnet, a packet is simply a string
of bits that must be sent through the subnet reliably and quickly. We return to this issue
in Section 1.3.
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1.2.2 Sessions

Messages between two users usually occur as a sequence in some larger transaction;
such a message sequence (or, equivalently, the larger transaction) is called a session.
For example, updating a data base usually requires an interchange of several messages.
Writing a program at a terminal for a remote computer usually requires many messages
over a considerable time period. Typically, a setup procedure (similar to setting up a call
in a voice network) is required to initiate a session between two users, and in this case
a session is frequently called a connection. In other networks, no such setup is required
and each message is treated independently; this is called a connectionless service. The
reasons for these alternatives are discussed later.

From the standpoint of network users, the messages within a session are typically
triggered by particular events. From the standpoint of the subnet, however, these message
initiation times are somewhat arbitrary and unpredictable. It is often reasonable, for
subnet purposes, to model the sequence of times at which messages or packets arrive
for a given session as a random process. For simplicity, these arrivals will usually be
modeled as occurring at random points in time, independently of each other and of the
arrivals for other sessions. This type of arrival process is called a Poisson process and
is defined and discussed in Section 3.3. This model is not entirely realistic for many
types of sessions and ignores the interaction between the messages flowing in the two
directions for a session. However, such simple models provide insight into the major
trade-offs involved in network design, and these trade-offs are often obscured in more
realistic and complex models.

Sometimes it will be more convenient to model message arrivals within a ses-
sion by an on/off flow model. In such a model, a message is characterized by a se-
quence of bits flowing into the subnet at a given rate. Successive message arrivals are
separated by random durations in which no flow enters the network. Such a model
is appropriate, for example, for voice sessions and for real-time monitoring types of
applications. When voice is digitized (see Section 2.2), there is no need to trans-
mit when the voice is silent, so these silence periods correspond to the gaps in an
on/off flow model. One might think that there is little fundamental difference between
a model using point arrivals for messages and a model using on/off flow. The out-
put from point message arrivals, followed by an access line of fixed rate, looks very
much like an on/off flow (except for the possibilitity that one message might arrive
while another is still being sent on the access line). The major difference between
these models, however, is in the question of delay. For sessions naturally modeled
by point message arrivals (e.g., data base queries), one is usually interested in delay
from message arrival to the delivery of the entire message (since the recipient will
process the entire message as a unit). For sessions naturally modeled by flow (such
as digitized voice), the concept of a message is somewhat artificial and one is usu-
ally interested in the delay experienced by the individual bits within the flow. It ap-
pears that the on/off flow model is growing in importance and is particularly appro-
priate for ISDN and broadband ISDN networks. Part of the reason for this growth
is the prevalence of voice in ISDN and voice and video in broadband ISDN. An-
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other reason, which will be more clear later, is that very long messages, which will
be prevalent with ISDN, are probably better treated in the subnet as flows than as point
arrivals.

To put this question of modeling message arrivals for a session in a more pragmatic
way, note that networks, particularly wide area networks built around a subnet as in
Fig. 1.3, generally handle multiple applications. Since the design and implementation of
a subnet is a time-consuming process, and since applications are rapidly changing and
expanding, subnets must be designed to handle a wide variety of applications, some of
which are unknown and most of which are subject to change. Any complex model of
message arrivals for sessions is likely to be invalid by the time the network is used. This
point of view, that subnets must be designed to work independently of the fine details
of applications, is discussed further in Section 1.3.

At this point we have a conceptual view, or model, of the function of a subnet.
It will provide communication for a slowly varying set of sessions; within each session,
messages of some random length distribution arrive at random times according to some
random process. Since we will largely ignore the interaction between the two directions
of message flow for a session, we shall usually model a two-way session as two one-way
sessions, one corresponding to the message flow in one direction and the other in the
opposite direction. In what follows we use the word session for such one-way sessions.
In matters such as session initiation and end-to-end acknowledgment, distinctions are
made between two-way and one-way sessions.

In principle a session could involve messages between more than two users. For
example, one user could broadcast a sequence of messages to each of some set of other
users, or the messages of each user in the set could be broadcast to each of the other
users. Such sessions might become important in the future, especially for broadband
ISDN, with applications such as video conferencing and television broadcast. We will
not discuss such applications in any detail, but instead will simply model multiuser
sessions as a multiplicity of one-way two-user sessions.

Although the detailed characteristics of different kinds of applications will not be
examined, there are some gross characteristics of sessions that must be kept in mind.
The most important are listed:

1. Message arrival rate and variability of arrivals. Typical arrival rates for sessions
vary from zero to more than enough to saturate the network. Simple models for
the variability of arrivals include Poisson arrivals, deterministic arrivals (i.e., a
fixed time interval from each message to the next message), and uniformly dis-
tributed arrivals (i.e., the time interval between successive messages has a uniform
probability density between some minimum and maximum interval).

2. Session holding time. Sometimes (as with electronic mail) a session is initiated for
a single message. Other sessions last for a working day or even permanently.

3. Expected message length and length distribution. Typical message lengths vary
roughly from a few bits to 10° bits, with file transfer applications at the high end and
interactive sessions from a terminal to a computer at the low end. Simple models for
length distribution include an exponentially decaying probability density, a uniform
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probability density between some minimum and maximum, and fixed length. As
mentioned above, long messages are becoming much more common because of
graphics and long file transfers.

te

Allowable delay. The allowable expected delay varies from about 10 msec for some
real-time control applications to 1 sec or less for interactive terminal to computer
applications, to several minutes or more for some file transfer applications. In other
applications, there is a maximum allowable delay (in contrast to expected delay).
For example, with packetized voice, fixed-length segments of the incoming voice
waveform are encoded into packets at the source. At the destination, these packets
must be reconverted into waveform segments with some fixed overall delay; any
packet not received by this time is simply discarded. As described above, delay is
sometimes of interest on a message basis and sometimes, in the flow model, on a
bit basis.

5. Reliability. For some applications, all messages must be delivered error-free. For
example, in banking applications, in transmission of computer programs, or in
file transfers, a single bit error in a message can have serious consequences. In
other applications, such as electronic mail, all messages must be delivered, but an
occasional bit error in a message can usually be visually corrected by the reader.
Finally, in other applications, both occasional bit errors and occasional loss of entire
packets or messages are allowable. For example, in distributed sensor systems,
messages are sometimes noisy when transmitted, and occasional lost messages are
soon replaced with more up-to-date messages. For packetized voice, the occasional
loss (or late delivery) of a packet or an occasional bit error simply increases the
noisiness of the received voice signal. It should be noted, however, that the use of
data compression for packetized voice and other applications greatly increases the
need for error-free communication.

6. Message and packet ordering. The packets within a message must either be main-
tained in the correct order going through the network or restored to the correct order
at some point. For many applications (such as updating data bases), messages must
also be delivered in the correct order, whereas for other applications, message order
is unimportant. The question of where to handle reliability and message ordering
(i.e., at the external sites or within the subnet or both) is an important design issue.
This is discussed in Section 2.8.

In keeping all these characteristics in mind, it is often helpful to focus on four
types of applications which lie somewhat at the extreme points and which do not interact
very well together in subnets. One is interactive terminal to computer sessions, in which
messages are short, the message rate is low, the delay requirement is moderately stringent,
and the need for reliability is high. Another is file transfer sessions, in which the messages
are very long, the message arrival rate is typically low, the delay requirement is very
relaxed, and the need for reliability is very high. The third is high-resolution graphics,
in which the messages are again long, sometimes up to 10° bits, the delay requirement
is stringent, and the arrival rate is low. The fourth is packetized voice. Here the concept
of a message is not very useful, but the packets are short, the packet arrival rate is high,
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the maximum delay requirement is stringent, and the need for reliability is rather low. A
network that can handle all these applications together will probably not have too much
difficulty with the other applications of interest.

1.2.3 Circuit Switching and Store-and-Forward Switching

There are two general approaches, known as circuit switching and store-and-forward
switching, that can be used within a subnet to transmit the traffic for the various sessions.
A brief overview will be given of the circuit switching approach, followed by the reason
why this approach leads to inefficient utilization of the communication channels for many
types of sessions. Next, an overview of the store-and-forward approach will be given,
showing how it overcomes the above inefficiency.

For the circuit switching approach, when a session s is initiated, it is allocated a
given transmission rate 7 in bits per second (this could be different in the two direc-
tions of a two-way session, but we focus on a one-way session here). A path is then
created from the transmitting site through the subnet and to the destination site. Each
communication link on this path then allocates a portion 7, of its total transmission ca-
pacity in the given direction for that session. This allocation of transmission rates to
different sessions on a communication link is usually done by time-division multiplexing
(TDM) or frequency-division multiplexing (FDM), but the details of that are explained
in Section 2.1. What is important is that the sum of the rates for all the sessions using
a link cannot exceed the total capacity of the link. Thus, if a communication link is
fully allocated to existing sessions, a new session cannot use that link. If no path can
be found using links with at least r bits/sec of unused rate, the new session must be
rejected (i.e., given a busy signal). The other important point is that once the session has
been successfully initiated, it has a guaranteed transmission rate 75 through the network.
The nodes then simply take the incoming bit stream for a given session off the incoming
link and switch it to the allocated portion of the outgoing link. This type of switching is
quite similar to the well-developed technology for switching in the telephone network.
In the telephone network, however, each session is allocated the same transmission rate,
whereas in a data network, the required transmission rates are different and vary over a
wide range.

Circuit switching is rarely used for data networks. In the past, the reason for this
has had nothing to do with the potential complexity of the switching, but rather, as we
now explain, has been because of very inefficient use of the links. Typical data sessions
tend to have short bursts of high activity followed by lengthy inactive periods; circuit
switching wastes the allocated rate during these inactive periods. For a more quantitative
view, let A be the message arrival rate for a given session s. More precisely, 1/ is the
expected interarrival time between messages of 5. Let X be the expected transmission
time of a message over a given link in the path; that is, if L is the expected length (in
bits) of messages from s, and 7, is the bit rate allocated to s, then X = L/r,. Figure 1.5
illustrates these arrivals and transmission times.

Note from the figure that the fraction of time in which session s’s portion of the
link is actually transmitting messages is rather small; that portion of the link is otherwise
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Figure 1.5 Link utilization. The expected transmission time of a message is X. The
expected interarrival period is 1/A. Thus, the link is used at most AX of the time.

idle. It is intuitively plausible, since 1/) is the expected interarrival time and X is the
expected busy time between arrivals, that the ratio of X to 1/ (i.e., AX) is the fraction
of time in which the portion of the link allocated to s is busy. This argument is made
precise in Chapter 3. Our conclusion then is that if AX < 1, session s’s portion of the
link is idle most of the time (i.e., inefficiently utilized).

To complete our argument about the inefficiency of circuit switching for data net-
works, we must relate X to the allowable expected delay 7' from message arrival at the
source to delivery at the destination. Since X is the expected time until the last bit of
the message has been sent on the first link, we must have X + P < T, where P is the
propagation delay through the network. Thus AX < AT. If AT < 1 (i.e., the allowable
delay is small relative to the message interarrival rate), the utilization AX for the session
is correspondingly small. In summary, the bit rate r allocated to a session must be large
enough to allow message transmission within the required delay, and when AT < 1,
this implies inefficient utilization of the link. Sessions for which AT' < 1 are usually
referred to as bursty sessions.

For many of the interactive terminal sessions carried by data networks, AT is on
the order of 0.01 or less. Thus, with circuit switching, that fraction of a link allocated to
such sessions is utilized at most 1% of the time. The conclusion we draw from this is that
if link costs are a dominant part of the cost of a network and if bursty sessions require
a dominant fraction of link capacity using circuit switching, then circuit switching is an
unattractive choice for data networks. Up to the present, both the assumptions above
have been valid, and for this reason, data networks have not used circuit switching.
The argument above has ignored propagation delays, switching delays in the nodes, and
queueing delays. (Queueing delay arises when a message from session s arrives while
another message from s is in transmission.) Since these delays must be added to the link
transmission time X in meeting the delay requirement 7', X must often be substantially
smaller than 7', making circuit switching even more inefficient. While propagation and
switching delays are often negligible, queueing delay is not, as shown in Chapter 3,
particularly when AT is close to or exceeds 1.

In the future, it appears that link costs will become less important in the overall cost
of a network. Also, with optical fiber, the marginal cost of link capacity is quite small,
so that the wasted capacity of circuit switching will become less important. Finally, it
appears that bursty interactive terminal traffic will grow considerably more slowly than
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link capacities in the future (the reason for this is discussed later). Thus circuit switch-
ing is a feasible possibility (although not necessarily the best possibility) for networks
of the future. Part of the issue here is that as link speeds increase, node processing
speed must also increase, putting a premium on simple processing within the subnet.
It is not yet clear whether circuit switching or store-and-forward allows simpler subnet
processing at high link speeds, but store-and-forward techniques are currently receiving
more attention.

In the store-and-forward approach to subnet design, each session is initiated without
necessarily making any reserved allocation of transmission rate for the session. Similarly,
there is no conventional multiplexing of the communication links. Rather, one packet
or message at a time is transmitted on a communication link, using the full transmission
rate of the link. The link is shared between the different sessions using that link, but the
sharing is done on an as needed basis (i.e., demand basis) rather than a fixed allocation
basis. Thus, when a packet or message arrives at a switching node on its path to the
destination site, it waits in a queue for its turn to be transmitted on the next link in its
path.

Store-and-forward switching has the advantage over circuit switching that each
communication link is fully utilized whenever it has any traffic to send. In Chapter 3,
when queueing is studied, it will be shown that using communication links on a demand
basis often markedly decreases the delay in the network relative to the circuit switching
approach. Store-and-forward switching, however, has the disadvantage that the queueing
delays in the nodes are hard to control. The packets queued at a node come from inputs at
many different sites, and thus there is a need for control mechanisms to slow down those
inputs when the queueing delay is excessive, or even worse, when the buffering capacity
at the node is about to be exceeded. There is a feedback delay associated with any such
control mechanism. First, the overloaded node must somehow send the offending inputs
some control information (through the links of the network) telling them to slow down.
Second, a considerable number of packets might already be in the subnet heading for the
given node. This is the general topic of flow control and is discussed.in Chapter 6. The
reader should be aware, however, that this problem is caused by the store-and-forward
approach and is largely nonexistent in the circuit switching approach.

There is a considerable taxonomy associated with store-and-forward switching.
Message switching is store-and-forward switching in which messages are sent as unit
entities rather than being segmented into packets. If message switching were to be
used, there would have to be a maximum message size, which essentially would mean
that the user would have to packetize messages rather than having packetization done
elsewhere. Packet switching is store-and-forward switching in which messages are broken
into packets, and from the discussion above, we see that store-and-forward switching and
packet switching are essentially synonymous. Virtual circuit routing is store-and-forward
switching in which a particular path is set up when a session is initiated and maintained
during the life of the session. This is like circuit switching in the sense of using a fixed
path, but it is virtual in the sense that the capacity of each link is shared by the sessions
using that link on a demand basis rather than by fixed allocations. Dynamic routing (or
datagram routing) is store-and-forward switching in which each packet finds its own path
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through the network according to the current information available at the nodes visited.
Virtual circuit routing is generally used in practice, although there are many interesting
intermediate positions between virtual circuit routing and dynamic routing. The general
issue of routing is treated in Chapter 5.

1.3 LAYERING

Layering, or layered architecture, is a form of hierarchical modularity that is central
to data network design. The concept of modularity (although perhaps not the name)
is as old as engineering. In what follows, the word module is used to refer either to
a device or to a process within some computer system. What is important is that the
module performs a given function in support of the overall function of the system. Such
a function is often called the service provided by the module. The designers of a module
will be intensely aware of the internal details and operation of that module. Someone
who uses that module as a component in a larger system, however, will treat the module
as a “black box.” That is, the user will be uninterested in the internal workings of the
module and will be concerned only with the inputs, the outputs, and, most important,
the functional relation of outputs to inputs (i.e., the service provided). Thus, a black box
is a module viewed in terms of its input—output description. It can be used with other
black boxes to construct a more complex module, which again will be viewed at higher
levels as a bigger black box.

This approach to design leads naturally to a hierarchy of modules in which a
module appears as a black box at one layer of the hierarchy, but appears as a system
of lower-layer black boxes at the next lower layer of the hierarchy (see Fig. 1.6). At
the overall system level (i.e., at the highest layer of the hierarchy), one sees a small
collection of top-layer modules, each viewed as black boxes providing some clear-cut
service. At the next layer down, each top-layer module is viewed as a subsystem of
lower-layer black boxes, and so forth, down to the lowest layer of the hierarchy. As
shown in Fig. 1.6, each layer might contain not only black boxes made up of lower-layer
modules but also simple modules that do not require division into yet simpler modules.

As an example of this hierarchical viewpoint, a computer system could be viewed
as a set of processor modules, a set of memory modules, and a bus module. A processor
module could, in turn, be viewed as a control unit, an arithmetic unit, an instruction
fetching unit, and an input-output unit. Similarly, the arithmetic unit could be broken
into adders, accumulators, and so on.

In most cases, a user of a black box does not need to know the detailed response
of outputs to inputs. For example, precisely when an output changes in response to
an input is not important as long as the output has changed by the time it is to be
used. Thus, modules (i.e., black boxes) can be specified in terms of tolerances rather
than exact descriptions. This leads to standardized modules, which leads, in turn, to the
possibility of using many identical, previously designed (i.e., off-the-shelf) modules in
the same system. In addition, such standardized modules can easily be replaced with
new, functionally equivalent modules that are cheaper or more reliable.



18 Introduction and Layered Network Architecture Chap. 1

High level module

Lower level Black box
black box

Lower
level
black
box

——

Simple module

Black box (————)

C:> Simple Black box
module

Figure 1.6 Hierarchy of nested black boxes. Each black box (except that at the lowest
level) contains black boxes at a lower level, plus perhaps other modules.

All of these advantages of modularity (i.e., simplicity of design; understandability;
and standard, interchangeable, widely available modules) provide the motivation for
a layered architecture in data networks. A layered architecture can be regarded as a
hierarchy of nested modules or black boxes, as described above. Each given layer in
the hierarchy regards the next lower layer as one or more black boxes which provide a
specified service to the given higher layer.

What is unusual about the layered architecture for data networks is that the black
boxes at the various layers are in fact distributed black boxes. The bottom layer of the
hierarchy consists of the physical communication links, and at each higher layer, each
black box consists of a lower-layer black box communication system plus a set of simple
modules, one at each end of the lower-layer communication system. The simple modules
associated with a black box at a given layer are called peer processes or peer modules
(see Fig. 1.7).

In the simplest case, a black box consists of two peer processes, one at each of
two nodes, and a lower-layer black box communication system connecting the two peer
processes. One process communicates with its peer at the other node by placing a message
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Figure 1.7 Peer processes within a black box communication system. The peer pro-
cesses communicate through a lower-layer black box communication system that itself
contains lower-layer peer processes.

into the lower-layer black box communication system. This lower-layer black box, as
illustrated in Fig. 1.7, might in fact consist of two lower-layer peer processes, one at
each of the two nodes, connected by a yet lower-layer black box communication system.
As a familiar example, consider two heads of state who have no common language for
communication. One head of state can then send a message to the peer head of state by
a local translator, who communicates in a common language to a peer translator, who
then delivers the message in the language of the peer head of state.

Note that there are two quite separate aspects to the communication between a
module, say at layer n, and its layer n peer at another node. The first is the protocol (or
distributed algorithm) that the peer modules use in exchanging messages or bit strings
so as to provide the required functions or service to the next higher layer. The second
is the specification of the precise interface between the layer n module at one node
and the layer n — 1 module at the same node through which the messages above are
actually exchanged. The first aspect above is more important (and more interesting) for
a conceptual understanding of the operation of a layered architecture, but the second is
also vital in the actual design and standardization of the system. In terms of the previous
example of communication between heads of state, the first aspect has to do with the
negotiation between the heads of state, whereas the second has to do with each head of
state ensuring that the translator can actually translate the messages faithfully.

Figure 1.8 illustrates such a layered architecture. The layers are those of the
reference model of open systems interconnection (OSI) developed as an international
standard for data networks by the International Standards Organization (ISO). Many
existing networks, including SNA, DECNET, ARPANET, and TYMNET, have somewhat
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Figure 1.8 Seven-layer OSI network architecture. Each layer presents a virtual communication
link with given properties to the next-higher layer.

different layers than this proposed standard. However, the OSI layers have a relatively
clean structure that helps in understanding the concept of layering. Some of the variations
used by these other networks are discussed later.

1.3.1 The Physical Layer

The function of the physical layer is to provide a virtual link for transmitting a sequence
of bits between any pair of nodes (or any node and external site) joined by a physical
communication channel. Such a virtual link is called a virtual bit pipe. To achieve
this function, there is a physical interface module on each side of the communication
channel whose function is to map the incoming bits from the next higher layer [i.e.,
the data link control (DLC) layer] into signals appropriate for the channel, and at the
receiving end, to map the signals back into bits. The physical interface module that
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performs these mapping functions is often called a modem (digital data modulator and
demodulator). The term modem is used broadly here to refer to any module that performs
the function above, whether or not modulation is involved; for example, if the physical
communication channel is a digital link (see Section 2.2), there is nothing for the modem
to do other than interface with the DLC module.

Modems and communication channels are discussed in Section 2.2. The modem
designer must be aware of the detailed characteristics of the communication channel (and
different modems must be designed for different types of channels). To the higher layers,
however, the black box formed by the modem—channel-modem combination appears as
a bit pipe with the complexities of the physical channel hidden. Even viewed as a bit
pipe, however, there are a few issues that must be discussed.

The first issue has to do with the timing of the bit sequence entering the bit pipe.
There are three common situations. The first is that of a synchronous bit pipe where
bits are transmitted and received at regular intervals (i.e., 1 bit per ¢ second interval
for some t). The higher-layer DLC module must supply bits at this synchronous rate
whether or not it has any real data to send. The second situation is that of an intermittent
synchronous bit pipe where the DLC module supplies bits at a synchronous rate when it
has data to send and stops sending bits when there are no data to send. The third situation
is that of asynchronous characters, usually used with personal computers and low-speed
terminals. Here, keyboard characters and various control characters are mapped into
fixed-length bit strings (usually, eight-bit strings according to a standard mapping from
characters to bit strings known as ASCII code), and the individual character bit strings
are transmitted asynchronously as they are generated.

The next issue is that of the interface between the DLC module and the modem.
One would think that not many problems should exist in delivering a string of bits from
one module to another, especially if they are physically close. Unfortunately, there are
a number of annoying details about such an interface. For example, the module on one
end of the interface might be temporarily inoperable, and when both become operable,
some initialization is required to start the flow of bits. Also, for synchronous operation,
one side or the other must provide timing. To make matters worse, many different
manufacturers provide the modules on either end, so there is a need for standardizing the
interface. In fact, there are many such standards, so many that one applauds the effort
but questions the success. Two of the better known are RS-232-C and the physical layer
of X.21.

The RS-232-C interface approaches the problem by providing a separate wire be-
tween the two modules for each type of control signal that might be required. These
wires from the modules are joined in a standard 25-pin connector (although usually many
fewer wires are required). In communication jargon, the interface is between a DCE (data
communication equipment), which is the modem in this case, and a DTE (data terminal
equipment), which is the DLC layer and higher layers in this case.

As an example of the interface use, suppose that the DTE wants to start sending
data (either on initialization or with a new data sequence in intermittent synchronous
transmission). The DTE then sends a signal to the DCE on a “request-to-send” wire.
The DCE replies with a signal on the “clear-to-send” wire. The DCE also sends a signal
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on the “DCE-ready” wire whenever it is operational and a signal on the “carrier detect”
wire whenever it appears that the opposite modem and channel are operational. If the
DTE receives all these signals (which are just level voltages), it starts to send data over
the interface on the DTE-to-DCE data wire.

This interchange is a very simple example of a protocol or distributed algorithm.
Each module performs operations based both on its own state and on the information
received from the other module. Many less trivial protocols are developed in subsequent
chapters. There are many other details in RS-232-C operation but no other new concepts.

It is sometimes helpful when focusing on the interface between the DLC module
and the modem to view the wires between the modules as a physical channel and to
view the DLC and modem as peer processes executing the interface protocol. To avoid
confusion between the DLC module’s major function as a peer process with the opposite
DLC module and its lower-level function of interfacing with the modem, an extra dummy
module is sometimes created (see Fig. 1.9) which exercises the interface protocol with
the modem.

The X.21 physical layer interface is similar in function to RS-232-C, but it uses
a smaller set of wires (eight wires are used, although there is a 15-pin connector) and
is intended as an interface to a digital communication link. The idea is to avoid using
a separate wire for each possible signal by doubling up on the use of wires by digital
logic in the modules. The X.21 physical layer is used as the physical layer for the X.25
protocol, which is discussed in Chapter 2.

It should be clear from the above that there is a great conceptual advantage in
removing the question of modem and modem interfaces from the higher-level aspects
of networks. Note that this has already been done, in essence, in previous sections in
referring to the number of bits per second that could be transmitted over communication
links. It should also be noted, however, that modems cannot be totally segregated from
network issues. For example, is it better to have a modem that transmits R bits/sec with
an error rate of 107° or a modem that transmits 2R bits/sec with an error rate of 10=4?
This cannot be answered without some knowledge of how errors are eliminated at higher
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Data link Data link
control control
Frames Virtual synchronous unreliable bit pipe
RS-232-C RS-232-C
interface Modem Modem interface
Interface wires Communication link Interface wires

Figure 1.9 Layering with the interface between the DLC and the modem viewed as an
interface over a physical medium consisting of a set of wires.
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layers of the architecture. Conversely, decisions on how and where to eliminate errors
at higher layers should depend on the error rate and error characteristics at the physical
layer.

1.3.2 The Data Link Control Layer

The second layer in Fig. 1.8 is the data link control (DLC) layer. Each point-to-point
communication link (i.e., the two-way virtual bit pipe provided by layer 1) has data link
control modules (as peer processes) at each end of the link. The customary purpose of
data link control is to convert the unreliable bit pipe at layer 1 into a higher-level, virtual
communication link for sending packets asynchronously but error-free in both directions
over the link. From the standpoint of the DLC layer, a packet is simply a string of bits
that comes from the next higher layer.

The communication at this layer is asynchronous in two ways. First, there is a
variable delay between the entrance of a packet into the DLC module at one end of the
link and its exit from the other end. This variability is due both to the need to correct the
errors that occur at the physical layer and to the variable length of the packets. Second,
the time between subsequent entries of packets into the DLC module at one end of the
link is also variable. The latter variability is caused both because higher layers might
have no packets to send at a given time and also because the DLC is unable to accept
new packets when too many old packets are being retransmitted due to transmission
€ITOorS.

Data link control is discussed in detail in Chapter 2. In essence, the sending DLC
module places some overhead control bits called a header at the beginning of each packet
and some more overhead bits called a trailer at the end of each packet, resulting in a
longer string of bits called a frame. Some of these overhead bits determine if errors have
occurred in the transmitted frames, some request retransmissions when errors occur, and
some delineate the beginning and ending of frames. The algorithms (or protocols) for
accomplishing these tasks are distributed between the peer DLC modules at the two ends
of each link and are somewhat complex because the control bits themselves are subject
to transmission errors.

The DLC layers in some networks do not retransmit packets in the presence of
errors. In these networks, packets in error are simply dropped and retransmission is
attempted on an end-to-end basis at the transport layer. The relative merits of this are
discussed in Section 2.8.2. Typically, the DLC layer ensures that packets leave the
receiving DLC in the same order in which they enter the transmitting DL.C, but not all
data link control strategies ensure this feature; the relative merits of ordering are also
discussed in Section 2.8.2.

Our previous description of the physical layer and DLC was based on point-to-
point communication links for which the received waveform at one end of the link is a
noisy replica of the signal transmitted at the other end. In some networks, particularly
local area networks, some or all of the communication takes place over multiaccess
links. For these links, the signal received at one node is a function of the signals from
a multiplicity of transmitting nodes, and the signal transmitted from one node might be
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heard at a multiplicity of other nodes. This situation arises in satellite communication,
radio communication, and communication over cables, optical fibers, and telephone lines
with multiple taps. Multiaccess communication is treated in Chapter 4.

The MAC sublayer The appropriate layers for multiaccess communication are
somewhat different from those in networks of point-to-point links. There is still the
need for a DLC layer to provide a virtual error-free packet link to higher layers, and
there is still the need for a physical layer to provide a bit pipe. However, there is also
a need for an intermediate layer to manage the multiaccess link so that frames can be
sent by each node without constant interference from the other nodes. This is called
medium access control (MAC). It is usually considered as the lower sublayer of layer
2 with the conventional DLC considered as the higher sublayer. Figure 1.10 illustrates
the relationship between these layers. The service provided by the MAC to the DLC is
that of an intermittent synchronous bit pipe. The function of the MAC sublayer is to
allocate the multiaccess channel so that each node can successfully transmit its frames
without undue interference from the other nodes; see Chapter 4 for various ways of
accomplishing this function.
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Figure 1.10 Layering for a multiaccess
channel. The physical medium is accessed
by all three users, each of whom hears the
transmitted signals of the others. The DLC
sublayer sees virtual point-to-point bit
Physical pipes below it. The MAC sublayer sees
multiaccess a multiaccess bit pipe, and the modems
medium access the actual channel.
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1.3.3 The Network Layer

The third layer in Fig. 1.8 is the network layer. There is one network layer process
associated with each node and with each external site of the network. All these processes
are peer processes and all work together in implementing routing and flow control for the
network. When a frame enters a node or site from a communication link, the bits in that
frame pass through the physical layer to the DLC layer. The DLC layer determines where
the frame begins and ends, and if the frame is accepted as correct, the DLC strips off the
DLC header and trailer from the frame and passes the resulting packet up to the network
layer module (see Fig. 1.11). A packet consists of two parts, a packet header followed by
the packet body (and thus a frame at the DLC layer contains first the DLC header, next
the packet header, next the packet body, and then the DLC trailer). The network layer
module uses the packet header of an incoming packet, along with stored information at
the module, to accomplish its routing and flow control functions. Part of the principle
of layering is that the DLC layer does not look at the packet header or packet body in
performing its service function, which is to deliver the packet reliably to the network
layer at the next node. Similarly, the network layer does not use any of the information
in the DLC header or trailer in performing its functions of routing and flow control. The
reason for this separation is to allow improvements, modifications, and replacements in
the internal operation of one layer without forcing the other to be modified.

Newly generated messages from users at an external site are processed by the
higher layers, broken into packet-sized pieces if need be, and passed down from the
transport layer module to the network module. These packet-sized pieces constitute the
packet body at the network layer. The transport layer also provides additional information
about how to handle the packet (such as where the packet is supposed to go), but this
information is passed to the network layer as a set of parameters in accordance with the
interfacing protocol between transport and network layer. The network layer module uses
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Y layer for each incoming link and (in the
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link 1 link 2 link 3 can send these packets out to the same set
of modules.
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these parameters, along with its own stored information, to generate the packet header
in accordance with the protocol between peer network layer modules.

Along with the transit packets arriving at the network layer module from the lower
layer, and the new packets arriving from the higher layer, the network layer can generate
its own control packets. These control packets might be specific to a given session,
dealing with initiating or tearing down the session, or might have a global function,
informing other nodes of link congestion, link failures, and so on.

For networks using virtual circuit routing (i.e., in which the route for a session
is fixed over the life of the session), the routing function at the network layer module
consists of two parts. The first is to select a route when the virtual circuit is being
initiated, and the second is to ensure that each packet of the session follows the assigned
route. The selection of a route could be carried out in a distributed way by all the
nodes, or could be carried out by the source node or by some central node entrusted
with this task. No matter how the job is allocated between the different nodes, however,
there is need for considerable communication, via network control packets, concerning
the operating characteristics and level of traffic and delay throughout the network. This
subject is treated in considerable depth in Chapter 5. Ensuring that each packet follows
the assigned route is accomplished by placing enough information in the packet header
for the network layer module at each node of the route to be able to forward the packet
on the correct outgoing link (or to pass the packet body up to the transport layer when
the destination is reached). Ways of doing this are discussed in Section 2.8.

Datagram networks, on the other hand, do not have a connection phase in which a
route for a session is determined. Rather, each packet is routed individually. This appears
to be a very natural and simple approach, but as Chapter 5 shows, the dynamics of the
traffic patterns in a network and the lack of timely knowledge about those patterns at the
nodes make this much more difficult than one would think. Most wide area networks
use virtual circuits for this reason.

It is necessary here to make a distinction between virtual circuit or datagram oper-
ation at the network layer and virtual circuit or datagram service. The discussion above
concerned the operation of the network layer; the user of the network layer (usually
the transport layer) is concerned only with the service offered. Since successive pack-
ets of a session, using datagram operation, might travel on different routes, they might
appear at the destination out of order. Thus (assuming that the network layer module
at the destination does not reorder the packets), the service offered by such a network
layer allows packets to get out of order. Typically, with datagram operation, packets are
sometimes dropped also. As a result, datagram service is usually taken to mean that the
network layer can deliver packets out of order, can occasionally fail to deliver packets,
and requires no connection phase at the initiation of a session. Conversely, virtual circuit
service is taken to mean that all packets are delivered once, only once, and in order, but
that a connection phase is required on session initiation. We will often use the term
connectionless service in place of datagram service and connection-oriented service in
place of virtual circuit service. We shall see that the difference between connectionless
and connection-oriented service has as much to do with quality of service, flow control,
and error recovery as it does with routing.
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The other major function of the network layer, along with routing, is flow control, or
congestion control. Some authors make a distinction between flow control and congestion
control, viewing the first as avoiding sending data faster than the final destination can
absorb it, and the second as avoiding congestion within the subnet. Actually, if the
destination cannot absorb packets as fast as they are sent, those packets will remain in
the subnet and cause congestion there. Similarly, if a link in the subnet is congested (i.e.,
many packets are buffered in an adjacent node waiting for transmission on the link), then
there are a number of mechanisms that cause the congestion to spread. Thus congestion
is a global issue that involves both the subnet and the external sites, and at least at a
conceptual level, it is preferable to treat it as a single problem.

Fundamentally, congestion occurs when the users of the network collectively de-
mand more resources than the network (including the destination sites) has to offer. Good
routing can help to alleviate this problem by spreading the sessions out over the avail-
able subnet resources. Good buffer management at the nodes can also help. Ultimately,
however, the network layer must be able to control the flow of packets into the network,
and this is what is meant by flow control (and why we use the term flow control in place
of congestion control).

The control of packet flow into the network must be done in such a way as to
prevent congestion and also to provide equitable service to the various sessions. Note
that with connection-oriented service, it is possible for a session to negotiate its require-
ments from the network as a compromise between user desires and network utilization.
Thus in some sense the network can guarantee the service as negotiated. With con-
nectionless service, there is no such opportunity for negotiation, and equitable service
between users does not have much meaning. This is another reason for the preva-
lence of connection-oriented service in wide area networks. In Chapter 6 we develop
various distributed algorithms for performing the flow control function. As with rout-
ing, flow control requires considerable exchange of information between the nodes.
Some of this exchange occurs through the packet headers, and some through control
packets.

One might hope that the high link capacities that will be available in the future
will make it possible to operate networks economically with low utilization, thus making
flow control unnecessary. Unfortunately, this view appears overly simplistic. As link
capacities increase, access rates into networks will also increase. Thus, even if the
aggregate requirements for network service are small relative to the available capacity,
a single malfunctioning user could dump enough data into the network quickly to cause
serious congestion; if the network plays no regulatory role, this could easily lead to very
chaotic service for other users.

The discussion of routing and flow control above has been oriented primarily toward
wide area networks. Most local area networks can be viewed as using a single multiaccess
channel for communication, and consequently any node is capable of receiving any
packet. Thus routing is not a major problem for local area networks. There is a possibility
of congestion in local area networks, but this must be dealt with in the MAC sublayer.
Thus, in a sense, the major functions of the network layer are accomplished in the MAC
sublayer, and the network layer is not of great importance in local area networks. For
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this reason, the arguments for virtual circuit operation and connection oriented service
in the network layer do not apply to local area networks, and connectionless service is
common there.

The network layer is conceptually the most complex of the layered hierarchy since
all the peer processes at this layer must work together. For the lower layers (except for
the MAC sublayer for multiaccess), the peer processes are paired, one at each side of a
communication link. For the higher layers, the peer processes are again paired, one at
each end of a session. Thus, the network layer and the MAC sublayer are the only layers
in which the overall algorithms are distributed between many geographically separated
processes.

Acquiring the ability to design and understand such distributed algorithms is one
of the basic objectives of this book. Chapter 2 covers the simpler forms of distributed
algorithms involving just two peer processes at opposite ends of a link. In Chapter 4 we
treat distributed algorithms involving many peer processes in the context of the MAC
sublayer, and Chapters 5 and 6 deal with distributed algorithms involving many peer
processes at the network layer.

When the network layer and lower layers at all nodes and sites are regarded as
one black box, a packet entering the network layer from the next higher layer at a site
reappears at some later time at the interface between the network layer and the next
higher layer at the destination site. Thus, the network layer appears as a virtual, packet-
carrying, end-to-end link from origin site to destination site. Depending on the design
of the network layer, this virtual link might be reliable, delivering every packet, once
and only once, without errors, or might be unreliable, failing to deliver some packets
and delivering some packets with errors. The higher layers then might have to recover
from these errors. The network layer might also deliver all packets for each session in
order or might deliver them out of order. The relative merits of these alternatives are
discussed further in Section 2.8.

The internet sublayer Despite all efforts at standardization, different networks
use different algorithms for routing and flow control at the network layer. We have
seen some of the reasons for this variety in our discussion of wide area versus local
area networks. Since these network layer algorithms are distributed and require close
coordination between the various nodes, it is not surprising that one cannot simply connect
different subnetworks together. The accepted solution to this problem is to create a new
sublayer called the internet sublayer. This is usually regarded as being the top part of
the network layer. Several subnets can be combined by creating special nodes called
gateways between them. A gateway connecting two subnets will interface with each
subnet through a network layer module appropriate for that subnet. From the standpoint
of the subnet, then, a gateway looks like an external site.

Each gateway will have an internet sublayer module sitting on top of the network
layer modules for the individual subnets. When a packet arrives at a gateway from one
subnet, the corresponding network layer module passes the packet body and subsidiary
information about the packet to the internet module (which thus acts like a transport layer
module to the network layer module). This packet body and subsidiary information is
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then passed down to the other network layer module for forwarding on through the other
subnet.

The internet modules also must play a role in routing and flow control. There
is not a great deal of understanding in the field yet as to the appropriate ways for the
internet sublayer and the various network layers to work together on routing and flow
control. From a practical standpoint, the problem is exacerbated by the fact that the
network layers for the subnets are usually in place, designed without the intention of
later being used in a network of networks. Thus the internet layer must of necessity be
somewhat ad hoc.

When combining local area networks, where routing and flow control are exercised
at the MAC sublayer, it is often possible to replace the gateway between subnets with a
bridge. Bridges interface different subnets at the DLC layer rather than at the network
layer; for local area networks, this is possible because the routing and flow control are
done in the MAC sublayer. In Chapter 5 we discuss gateways and bridges in greater
detail, particularly with respect to routing.

1.3.4 The Transport Layer

The fourth layer in Fig. 1.8 is the transport layer. Here, for each virtual end-to-end link
provided by the network layer (or internet sublayer), there is a pair of peer processes, one
at each end of the virtual end-to-end link. The transport layer has a number of functions,
not all of which are necessarily required in any given network.

First, the transport layer breaks messages into packets at the transmitting end and
reassembles packets into messages at the receiving end. This reassembly function is
relatively simple if the transport layer process has plenty of buffer space available, but
can be quite tricky if there is limited buffer space that must be shared between many
virtual end-to-end links. If the network layer delivers packets out of order, this reassembly
problem becomes even more difficult.

Second, the transport layer might multiplex several low-rate sessions, all from the
same source site and all going to the same destination site, into one session at the network
layer. Since the subnet sees only one session in this case, the number of sessions in the
subnet and the attendant overhead is reduced. Often this is carried to the extreme in which
all sessions with a common source site and common destination site are multiplexed into
the same session. In this case, the addressing at the network layer need only specify the
source and destination sites; the process within the source site and destination site are
then specified in a transport layer header.

Third, the transport layer might split one high-rate session into multiple sessions
at the network layer. This might be desirable if the flow control at the network layer
is incapable of providing higher-rate service to some sessions than others, but clearly a
better solution to this problem would be for the network layer to adjust the rate to the
session requirement.

Fourth, if the network layer is unreliable, the transport layer might be required to
achieve reliable end-to-end communication for those sessions requiring it. Even when the
network layer is designed to provide reliable communication, the transport layer has to be
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involved when one or the other end site fails or when the network becomes disconnected
due to communication link failures. These failure issues are discussed further in Section
2.8 and in Chapters 5 and 6.

Fifth, end-to-end flow control is often done at the transport layer. There is little
difference between end-to-end flow control at the transport layer and network layer (or
internet sublayer if it exists). End-to-end flow control at the transport layer is common
in practice but makes an integrated approach to avoiding congestion somewhat difficult.
This is discussed further in Section 2.9.4 and in Chapter 6.

A header is usually required at the transport layer; this transport header, combined
with the data being transported, serves as the packet body passed on to the network layer.
Thus the actual body of data is encapsulated in a sequence of headers with the lowest
layers on the outside (see Fig. 1.12). At the destination, these layer headers are peeled
off in passing up through the various layers. In ISO terminology, the body of data shown
in the figure is referred to as a transport service data unit (T-SDU). This data unit, along
with the transport header, is referred to as a transport protocol data unit (T-PDU). This
unit is also the body of the packet at the network layer, which is sometimes referred to
as a network service data unit (N-SDU). Similarly, the packet body plus packet header
is referred to as a network protocol data unit (N-PDU). Similarly, each layer in the
hierarchy has an SDU, as the unit coming in from the higher layer, and a PDU as the
unit going down to the next-lower layer. It is difficult to know where to take a stand
against acronymitis in the network field, but we will continue to use the more descriptive
terminology of messages, packets, and frames.

1.3.5 The Session Layer

The session layer is the next layer above the transport layer in the OSI hierarchy of
Fig. 1.8. One function of the session layer is akin to the directory assistance service
in the telephone network. That is, if a user wants an available service in the network

Host Host
Transport layer Transport layer
Network layer Network layer Network layer
DLC DLC DLC bLC

lFHIPH |TH| Packet [FH[PH | Th] Packet | [FH]pH]TH] Packet | [Fr]pu]TH] packet |

Figure 1.12 Illustration of various headers on a frame. Note that each layer looks only
at its own header.
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but does not know where to access that service, this layer provides the transport layer
with the information needed to establish the session. For example, this layer would be
an appropriate place to achieve load sharing between many processors that are sharing
computational tasks within a network.

The session layer also deals with access rights in setting up sessions. For example,
if a corporation uses a public network to exchange records between branch offices, those
records should not be accessible to unauthorized users. Similarly, when a user accesses
a service, the session layer helps deal with the question of who pays for the service.

In essence, the session layer handles the interactions between the two end points
in setting up a session, whereas the network layer handles the subnet aspects of setting
up a session. The way that session initiation is divided between session layer, transport
layer, and network layer varies from network to network, and many networks do not
have these three layers as separate entities.

1.3.6 The Presentation Layer

The major functions of the presentation layer are data encryption, data compression, and
code conversion. The need for encryption in military organizations is obvious, but in
addition, corporations and individual users often must send messages that should only
be read by the intended recipient. Although data networks should be designed to prevent
messages from getting to the wrong recipients, one must expect occasional malfunctions
both at the external sites and within the subnet; this leads to the need for encryption of
critical messages.

The desirability of data compression in reducing the number of bits to be com-
municated has already been mentioned. This function could be performed at any of the
layers, but there is some advantage in compressing the data for each session separately,
in the sense that different sessions have different types of redundancy in their messages.
In particular, data compression must be done (if at all) before encryption, since encrypted
data will not have any easily detectable redundancy.

Finally, code conversion is sometimes necessary because of incompatible terminals,
printers, graphics terminals, file systems, and so on. For example, some terminals use
the ASCII code to represent characters as 8-bit bytes, whereas other terminals use the
EBCDIC code. Messages using one code must be converted to the other code to be
readable by a terminal using the other code.

1.3.7 The Application Layer

The application layer is simply what is left over after the other layers have performed their
functions. Each application requires its own software (i.e., peer processes) to perform
the desired application. The lower layers perform those parts of the overall task that are
required for many different applications, while the application layer does that part of the
task specific to the particular application.

At this point, the merits of a layered approach should be clear, but there is some
question about which functions should be performed at each layer. Many networks omit
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the session and presentation layers, and as we have seen, the lower layers are now divided
into sublayers. An even more serious issue is that in an effort to achieve agreement on
the standards, a number of alternatives have been introduced which allow major functions
to be either performed or not at various layers. For example, error recovery is sometimes
done at the DLC layer and sometimes not, and because of this, the higher layers cannot
necessarily count on reliable packet transfer. Thus, even within the class of networks
that conform to the OSI reference model, there is considerable variation in the services
offered by the various layers. Many of the existing networks described later do not
conform to the OSI reference model, and thus introduce even more variation in layer
services. Broadband ISDN networks, for example, do routing and flow control at the
physical layer (in a desire to simplify switch design), thus making the network look like
an end-to-end bit pipe from the origin to destination.

Even with all these problems, there is a strong desire for standardization of the
interfaces and functions provided by each layer, even if the standard is slightly inap-
propriate. This desire is particularly strong for international networks and particularly
strong among smaller equipment manufacturers who must design equipment to operate
correctly with other manufacturers’ equipment. On the other hand, standardization is an
impediment to innovation, and this impediment is particularly important in a new field,
such as data networks, that is not yet well understood. Fortunately, there is a constant
evolution of network standards. For example, the asynchronous transfer node (ATM)
protocol of broadband ISDN circumvents the ISO network layer standard by performing
the function of the network layer at the physical layer (see Section 2.10).

One particular difficulty with the seven layers is that each message must pass
through seven processes before even entering the subnet, and all of this might generate
considerable delay. This text neither argues for this particular set of layers nor proposes
another set. Rather, the objective is to create an increased level of understanding of the
functions that must be accomplished, with the hope that this will contribute to standard-
ization. The existing networks examined in subsequent chapters do not, in fact, have
layers that quite correspond to the OSI layers.

1.4 A SIMPLE DISTRIBUTED ALGORITHM PROBLEM

All of the layers discussed in Section 1.3 have much in common. All contain peer
processes, one at each of two or more geographically separated points, and the peer
processes communicate via the communication facility provided by the next lower layer.
The peer processes in a given layer have a common objective (i.e., task or function) to
be performed jointly, and that objective is achieved by some combination of processing
and interchanging information. The algorithm to achieve the objective is a distributed
algorithm or a protocol. The distributed algorithm is broken down into a set of local
algorithms, one of which is performed by each peer process. The local algorithm per-
formed by one process in a set of peers consists of carrying out various operations on
the available data, and at various points in the algorithm, either sending data to one or
more other peer processes or reading (or waiting for) data sent by another peer process.
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In the simplest distributed algorithm, the order in which operations are carried
out by the various local algorithms is completely determined. For example, one local
algorithm might perform several operations and then reliably send some data to the other
local algorithm, which then carries out some operations and returns some data. Only one
local algorithm operates at a time and the distributed algorithm is similar to a centralized
algorithm that performs all operations sequentially at one location.

In more complex cases, several local algorithms might operate concurrently, but
each still waits at predetermined points in the local algorithm for predetermined messages
from specific other local algorithms. In this case, the overall distributed algorithm still
operates in a deterministic fashion (given the input data to the peer processes), but the
lockstep ordering of operations between different local algorithms is removed.

In the most complex case (which is of most interest), the order in which a local al-
gorithm performs its operations depends on the order in which data arrive (either from the
next higher layer or from a peer process). Also, if the underlying communication facility
is unreliable, data sent by a peer process might never arrive or might arrive with errors.

Most people are very familiar with the situation above, since people must often
perform tasks requiring interacting with others, often with unreliable communication. In
these situations, however, people deal with problems as they arise rather than thinking
through all possible eventualities ahead of time, as must be done with a distributed
algorithm.

To gain some familiarity with distributed algorithms, a very simple problem is
presented, involving unreliable communication, which in fact has no solution. Analogous
situations arise frequently in the study of data networks, so it is well to understand such
a problem in its simplest context.

There are three armies, two colored magenta and one lavender. The lavender army
separates the two magenta armies, and if the magenta armies can attack simultaneously,
they win, but if they attack separately, the lavender army wins. The only communication
between the magenta armies is by sending messengers through the lavender army lines,
but there is a possibility that any such messenger will be captured, causing the message
to go undelivered (see Fig. 1.13). The magenta armies would like to synchronize their
attack at some given time, but each is unwilling to attack unless assured with certainty
that the other will also attack. Thus, the first army might send a message saying, “Let’s
attack on Saturday at noon; please acknowledge if you agree.”

The second army, hearing such a message, might send a return message saying,
“We agree; send an acknowledgment if you receive our message.” It is not hard to see
that this strategy leads to an infinite sequence of messages, with the last army to send a
message being unwilling to attack until obtaining a commitment from the other side.

What is more surprising is that no strategy exists for allowing the two armies to
synchronize. To see this, assume that each army is initially in state 0 and stays in this
state if it receives no messages. If an army commits itself to attack, it goes to state 1, but
it will not go to state 1 unless it is certain that the other army will go to state 1. We also
assume that an army can change state only at the time that it receives a message (this
assumption in essence prevents side information other than messages from synchronizing
the armies). Now consider any ordering in which the two armies receive messages. The
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Lavender army

Magenta
army 1

Magenta
army 2

Messenger

Figure 1.13 A messenger carries a message through enemy lines from magenta army
1 to magenta army 2. If the messenger is caught, the message is undelivered. Magenta
army 1 is unaware of capture and magenta army 2 is unaware of existence of message.

first army to receive a message cannot go to state 1, since it has no assurance that any
message will be received by the other army. The second army to receive a message also
cannot go to state 1 since it is not assured that the other side will receive subsequent
messages, and even if it knows that the other side received a first message, it knows that
the other side is not currently in state 1. Proceeding in this way (or more formally by
induction), neither army can ever go to state 1.

What is surprising about this argument is the difficulty in convincing oneself that
it is correct. The difficulty does not lie with the induction argument, but rather with the
question of whether the model fairly represents the situation described. It appears that
the problem is that we are not used to dealing with distributed questions in a precise way;
classical engineering problems do not deal with situations in which distributed decisions
based on distributed information must be made.

If the conditions above are relaxed somewhat so as to require only a high probability
of simultaneous attack, the problem can be solved. The first army simply decides to attack
at a certain time and sends many messengers simultaneously to the other side. The first
army is then assured with high probability that the second army will get the message,
and the second army is assured that the first army will attack.

Fortunately, most of the problems of communication between peer processes that
are experienced in data networks do not require this simultaneous agreement. Typically,
what is required is for one process to enter a given state with the assurance that the peer
process will eventually enter a corresponding state. The first process might be required
to wait for a confirmation of this eventuality, but the deadlock situation of the three-army
problem, in which neither process can act until after the other has acted, is avoided.
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NOTES AND SUGGESTED READING

The introductory textbooks by Tanenbaum [Tan88], Stallings [Sta85], and Schwartz
[Sch87] provide alternative treatments of the material in this chapter. Tanenbaum’s text
is highly readable and contains several chapters on the higher levels of the OSI archi-
tecture. Stalling’s text contains a wealth of practical detail on current network practice.
Schwartz’s text also includes several chapters on circuit switching. Some perspectives
on the historical evolution of data networks are given in [Gre84].

New developments in technology and applications are critically important in both
network design and use. There are frequent articles in the IEEE Spectrum, IEEE Com-
munications Magazine, and IEEE Computer that monitor these new developments. Sil-
icon Dreams: Information, Man and Machine by Lucky [Luc90] provides an excellent
overview of these areas. A good reference on layered architecture is [Gre82], and some
interesting commentary on future standardization of layers is given in [Gre86].

PROBLEMS

1.1. A high quality image requires a spatial resolution of about 0.002 inch, which means that
about 500 pixels (i.e. samples) per inch are needed in a digital representation. Assuming
24 bits per pixel for a color image of size 8.5 by 11 inches, find the total number of bits
required for such an image representation.

1.2. (a) Suppose a city of one million inhabitants builds a data network. Suppose that each
inhabitant, during the busiest hour of the day, is involved in an average of 4 transactions
per hour that use this network (such as withdrawing money from a cash machine, buying
some item in a store and thus generating an inventory control message, etc.). Suppose
that each transaction, on the average, causes 4 packets of 1000 bits each to be sent.
What is the aggregate average number of bits per second carried by the network? How
many 64 kbit/sec voice telephone links are required to carry this traffic assuming that
each packet travels over an average of 3 links?

(b) Suppose that the inhabitants use their telephones an average of 10% of the time during
the busy hour. How many voice telephone links are required for this, assuming that all
calls are within the city and travel over an average of three links?

1.3. Suppose packets can get dropped or arbitrarily delayed inside a packet network. Suppose
two users are communicating in a session and want to terminate the session. We would
like a protocol that exchanges packets in such a way that both users know that they can
terminate with the knowledge that no further packets will arrive from the other user. Can
such a protocol be designed? What is the relation between this problem and the three-army
problem of Section 1.10?
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ABM. See Asynchronous balanced mode
ADCPP, 72, 97-103
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AM. See Amplitude modulation
ARM. See Asynchronous response mode
ARPANET, 2, 4, 19-20

ARQ, 84-86

flow control, 515

framing, 87

routing, 374-76, 404-6, 412
ARQ. See Automatic repeat request
ASCII code, 21, 31, 58, 86
ATM. See Asynchronous transfer mode
Abort capability for frames, 89
Access rights, 31
Acks, 66, 500

end-to-end, 115-16
Adaptive equalizers, 45, 49, 140
Addressing, 40, 111-14

in TCP, 124-25
Age field, 422, 425
Aggregation of queues, 254
Airline reservation systems, 7, 9, 10
Allocate message, 500
Aloha, 275-89, 352

slotted, 277-87

stabilized, 282-86

unslotted, 287-89
American National Standards Institute, 97
Amplitude modulation, 48
Application layer, 31-32
Arc, 387, 394
Arrival rate, 12, 152
Arrival theorem, 239, 256
Asynchronous balanced mode, 98-103
Asynchronous character pipes, 38
Asynchronous response mode, 98
Asynchronous transfer mode, 32, 40, 55,
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adaptation layer, 135-39

call size, 132

congestion, 138-39

CRC on header, 133-34

flow control, 138-39

use of SONET, 134-35

virtual channel and path ID, 133
Attenuation, 56
Automatic repeat request, 39, 64-80, 272

ARPANET, 84-86

delay analysis, 190

go back n, 72-81, 190

packet radio, 34748

ring networks, 323

selective repeat, 81-84

stop and wait, 66—71

B

BRAM, 333

BSC. See Binary synchronous
communication

Backlog, 276, 279

Backlog estimation, 283, 286

Backpressure, 507

Bandwidth, 50-51
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Bellman’s equation, 399
Bellman-Ford algorithm, 396-400,
404410, 424, 481, 492

Binary exponential backoff, 286-87, 352

Binary synchronous communication, 87

Birth-death processes, 184, 215, 261

Bisynch, 87

Bit pipes, 20-23, 38, 65, 86
intermittent synchronous, 38
synchronous, 38

Bit stuffing, 88-90, 145, 320

Bits, 10

Black box, 17

Blocking probability, 180, 185

Bottleneck link, 526

Branch exchange heuristic, 444, 448

Bridge learning, 384

Bridged local area networks, 382-87

Bridges, 4, 29, 380

Broadband ISDN, 5, 11-12, 32, 55,

128-32

Broadcasting, 369, 375-76, 433, 485

Buffer management, 496-98

Buffer overflow, 496-99

Burke’s theorem, 218, 255

Burst detection, 60-61

Bursty sessions, 14-15

Bus systems, 271, 274, 331-33
undirectional, 33441

Busy tones, 350-51

C

CCITT, 97
CRC. See cyclic redundancy checks
CRC-16 polynomial, 64
CRC-32 IEEE polynomial, 64
CRC-CCITT polynomial, 64, 98
CRP. See Collision resolution period
CSMA. See Carrier sense multiple access
CSMA/CD. See Carrier sense multiple
access/collision detection
Cable TV, 56, 341-42
Call blocking, 494
Call-request packet X.25, 119
Capacity assignment, 439-44
Capacity, 51, 150
Capture effects, slotted Aloha, 355
Carrier offset, 53
Carrier sense multiple access, 272,
304-12, 352
collision avoidance, 333
collision detection, slotted, 317-18
collision detection, unslotted, 318-20
FCFS splitting, 310-12
nonpersistent, 305
packet radio, 350-51
persistent, 305
P-Persistent, 305, 307
pseudo-Bayesian stabilization, 307-9
slotted Aloha, 305-9
unslotted Aloha, 309-10
variable delay, 358
Cellular radio system, 247
Character based framing, 86-88
Choke packet, 510
Circuit switching, 14-17, 180, 185, 379
Coaxial cable, 7, 56
Code conversion, 31

Codex networks, 141
data link control, 518
flow control, 518
routing, 378, 417, 476-77
session identification, 113—15
Coding. See Data compression,
Encryption, Error detection, or
Error correction
Collision resolution, 276-77
packet radio, 347-49
Collision resolution period, 291, 295-300
Collision-free set, 345
Communication channels, 20, 38, 40-57
analog, 40
bandpass, 47-52
digital, 40, 53-54
voice-grade, 49-50, 52
Concentrator location problem, 448
Concentrators, 1
Congestion control, 27, 11617
in ATM, 138-39 See also Flow control
Connected graph, 387, 394
Connectionless service, 26
in ATM, 137-39
Connectivity, 445
Constrained MST problem, 447
Convergence sublayer in ATM, 136-39
Convex set or function, 453, 486
Convolution, 43
Convolutional codes, 61
Correctness, stop-and-wait, 69-70
Cut-through routing, 373
Cycle, 387
Cyclic redundancy check, 61-64, 140
on ATM header, 133-34
end-to-end, 116

D

db. See Decibels
DC component, 47, 48
DCE. See Data communication equipment
DECNET, 2, 19-20, 91, 93, 404
DLC. See Data link control
DLE (data link escape), 87
DNA. See Digital network architecture
DQDB. See Distributed queue dual bus
DTE. See Data terminal equipment
Data bases, remote access, 7-8
Data communication equipment, 21, 118
Data compression, 10, 31
Data link control, 20, 23-24, 37-40,
57-110, 271

correctness, 76-79, 140

standards, 97-103, 141
Data terminal equipment, 21, 118
Datagram:

networks, 115

routing, 16

service, 26
Datagram routing, 363
Deadlock, 497-99
Decibels, 51
Decomposition of gueues, 254
Deflection routing, 372
Delay, 13

CSMA, 308-9

CSMA/CD, 318, 360

FCFS splitting algorithm, 300301



Delay cont.
Fiber distributed data interface, 329-30
processing, 150
propagation, 150
queueing, 150
satellite systems, 314-15
slotted Aloha, 284-86
token buses and polling systems,
331-32
token ring, 324-25
transmission, 150
Demand sharing, 274
Descent direction, 456
Designated port, 383
Detailed balance equations, 182, 214,
216, 218, 261, 263
Digital network architecture, 404
Digraph, 394
Dijkstra’s algorithm, 401-3, 481
Directed arc, 394
Directed cycle, 394
Directed graph, 394
Directed walk, 394
Directory assistance, 30
Disconnect command, 100
Disconnect protocols, 103-10
Distributed algorithms, 28, 32-34, 39,
139

Distributed queue dual bus, 335-39, 353

Distributed shortest path construction,
04-10

Distributed spanning tree construction,

Drift, 264
Drift analysis:
CSMA, 306
FCFS splitting algorithm, 300
slotted Aloha, 280
Dynamic programming, 395
Dynamic routing, 16-17, 436-38, 491
Dynamic window adjustment, 510

E

EXT (end of text), 87
Electronic mail, 8, 9
Embedded chain, 262
Encryption, 31
End-to-end CRC, 116
End-to-end acks, 115-16, 119
End-to-end windows, 506-8, 515-17
Entropy, 91, 140
Ergodic system, 156
Erlang B formula, 179, 167
Erlang C formula, 175, 267
Error correction, 52, 61, 140
Error detection, 39, 53, 57-64, 140
bursts, 60-61
random strings, 60-61
Error recovery, 23, 32, 115-16
in TCP, 125-27
transport vs. network layer, 117-18
Essau-Williams algorithm, 448
Ethernet, 4, 48, 52, 274, 286, 317-20
degradation with size and speed, 334
Exponential distribution, 164, 266
Expressnet, 33941
External site, 19

F

FDDI. See Fiber distributed data interface

FDM. See Frequency division
multiplexing

Facsimile, 8

Feasible direction, 456

Feedback, multiaccess:
delayed, 3034
immediate, 276
Feedback shift register, 62
Fiber distributed data interface, 326-30,
334, 339, 353
delay, 329-30
throughput, 330
File transfer, 13
Filtering, 41-53
First derivative length, 452
First-come first-serve splitting, 293-304
CSMA, 310-12
Flags, 88-90, 320
Flooding, 369, 419-25, 432, 490
Flooding with sequence numbers, 420
Flow control, 25-29, 30, 116-17, 158
combined with optimal routing,
519-24
fairness, 498-99, 505, 507, 524-29
in ARPANET, 515
in ATM, 138-39
in Codex network, 518
in PARIS network, 518
in SNA, 517
in TCP, 127-28
in TYMNET, 517
in X.25, 519
input rate adjustment, 519-29
max-min, 524-29, 534
means, 494-95
objectives, 496-99
optimal, 519-24
satellite links, 506-8, 517
transport layer, 509
window, 500-510
Flow deviation method, 458-64
Flow models, 433-37
Floyd-Warshall algorithm, 4034
Forwarding database, 383
Fourier transforms, 44, 45
Fragment, 389
Fragmentation, internet protocol, 122
Frames, 23, 52, 65
internet protocol, 122
maximum fixed length, 97
maximum length, 14041
maximum variable length, 93-97
Framing, 39, 86-97
bit-oriented, 88-90
characted based, 86-88
length fields, 90-92
overhead, 87, 89-90, 90-92
with errors, 92-93
Frank-Wolfe method, 458-64, 471, 488
Free-for-all multiaccess, 272
Frequency division multiplexing, 52, 151,
170, 177, 194
in satellite channels, 273
Frequency response, 43—-46
Front end, 1

G

G/G/1 queue. See Queueing System
Gateways, 4, 28-29, 120, 380
Generator polynomials, 62-64, 142
Global balance equations, 168, 260, 263
Go back » ARQ, 72-81, 113, 143-44,
501
correctness proof, 76-79
efficiency, 80-81, 144
ideal, 82
rules, 74-76
rules with mod m, 80
Gradient project method, 459, 467-77,
486-87, 489
Graph, 387

Graphics, 8, 13
Guaranteed data rate, 494

H

HDLC, 39, 72, 97-103
faulty initialization, 106
Header:
frame, 23, 39, 65
packet, 25
Hessian matrix, 465
Hierarchy of modules, 17
Homenets, 34142
Horizontal and vertical parity checks,
58-59
Hot potato routing, 372
Hybrids, 56

I

IEEE 802 standards, 48, 320, 323-24,
332-33, 335
IMP. See Interface message processor
IP. See Internet protocol
ISDN. See Integrated services digital
network
ISO. See International Standards
Organization
Idle fill, 38, 90, 321
Image transmission systems, 9
Implicit tokens, 333
Impulse response, 42
Incident arc, 387
Infinite node assumption, 276
Initialization protocols, 147
ARQ, 103-10
balanced, 107-9
fault in HDLC, 106
with link failures, 103-9
master-slave, 104-7
with node failures, 109-10
in TCP, 126
use of stop-and-wait, 104
Integrated services digital network, 5,
11-12, 54-56
basic service, 55
primary service, 55
Interactive sessions, 13, 15
Interface message processor, 2
Internal signaling network, 55
International Consultative Committee on
Telegraphy and Telephony. See
CCITT
International Standards Organization, 19,

terminology, 30
Internet protocol, 40, 120-23, 141
addressing, 121-22
datagrams, 120
fragmentation, 122
time to live, 123
Internet sublayer, 28-29
Internetworking, 28-29
Intersymbol interference, 42, 45-47, 49
Isarithmic method, 508

J

Jackson’s theorem:
closed networks, 234
heuristic explanation, 227
with limit on the number of customers,
56

multiple classes of customers, 231

open networks, 223
state-dependent rates, 230
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K

Kleitman’s algorithm, 445-47
Kruskal algorithm, 390, 448

L

LAN. See Local area network
LAPB, 72, 97-103, 118
Last-come first-serve splitting algorithm,
302-3
Layering, 17-32, 35
Leaky bucket, 245, 511-15, 535
Linear codes, 59
Linear systems, 41-46, 140
Little’s theorem, 152-62, 250-51
slotted Aloha, 280
Liveness:
go back n, 77-78
stop-and-wait, 69-70
Load sharing, 8
Local access network, 438
Local access network design, 448-51
Local area networks, 4, 7, 29, 56,
271-72, 31742, 352-53
Local loop, telephone network, 54, 56

M

M/D/1 queue. See Queueing system
M/G/1 queue. See Queueing system
M/G/oc queue. See Queueing system
M/M/1 approximation. See Networks of
queues

M/M/1 queue. See Queueing system
M/M/1/m queue. See Queueing system
M/M/oo queue. See Queueing system
M/M/m queue. See Queueing system
M/M/m/m queue. See Queueing system
MAC. See Medium access control
MAN. See Metropolitan area network
MSAP, 333
Manchester coding, 48
Markov chain:

aperiodic, 260

continuous-time, 262-63

discrete-time, 259-62

FCFS splitting algorithm, 297

instability, 265

irreducible, 260

M/M/1 system, 166

M/M/oc system, 177

M/M/m system, 174

M/M/m/m system, 179

multidimensional, 180-86

queueing networks, 223

reversible, 182

slotted Aloha, 279, 353

stability, 264

time reversible, 215
Max-min fairness, 328
Max-min flow control, 524-29, 534
Mean residual service time, 187
Mean value analysis, 238-40
Media access control, 24, 27, 29, 271
Memoryless property, 165
Message switching, 16
Messages, 10

arrival rate, 12

delay, 13

length, 12-13

ordering, 13
Metering, 214, 436
Metropolitan area networks, 271-72,

326-30, 33342

Micro-processors, 5
Microwave channels, 56
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Min-hop path, 370
Minimum distance, 60
Minimum weight spanning tree, 389, 484
Modems, 21, 38, 40, 48-52
Modularity, 17
Modulation, 140
amplitude, 48-49
phase-shift keying, 50
quadrature amplitude, 49-52
Module, 17
Modulo arithmetic, 58
Multiaccess communication, 24, 195,
271-362
canonic reservation system, 312
Multidrop telephone lines, 271, 274, 331,
342

Multiplexers, 1
Multiplexing, in TCP, 124-25
Multicap bus systems, 271, 274

N

NRM. See Normal response mode
NRZ code, 42, 48
Nak, 66
Network layer, 25-29
point to point protocols, 110-20
Networks of queues:
acyclic, 221
closed, 233
Jackson’s theorem, 212, 221, 434
Kleinrock independence approximation,
212, 221, 434, 440
M/M/1 approximation, 213, 221, 434,
440, 453, 476
multiple classes of customers, 230
state dependent service rates, 229
tandem queues, 209, 220
with multiple classes of customers, 222
Newton’s method, 467
Node of a graph, 387
Node-by-node windows, 501-6, 517
Noise, 45, 51
Nonlinear distortion, 53
Normal response mode, 98-101
Nyquist criterion, 47

(6]

OD pair. See Origin-destination pair
OSI. See Open systems interconnection
On-off flow, 11
Open systems interconnection, 19-20, 35
Optical fibers, 6-7, 15, 56, 326, 333
Optimal routing:

algorithms, 455-75

dynamic, 436-38, 491

formulation, 433-36
Origin-destination pair, 434

P

PARIS network, 392, 518
PERT networks, 395
PSK. See Phase-shift keying
Packet blocking, 495
Packet discarding, 495
Packet radio nets, 57, 273, 275, 286,
344-51
collision resolution, 34749
TDM, 346-47
transmission radii, 349-50, 353
Packet scheduling, 495
Packet switching, 131
why used in ATM, 16

Packets, 10, 39
ordering, 13, 86
Parity check codes, 59-64, 140
Parity checks, 58
Partial balance equations, 262
Path in a graph, 387
Peer process (modules), 18, 23, 25, 28,
39

Periodic routing updates, 422

Permit, 117, 500

Permit (window) in TCP, 127

Phase jitter, 53

Phase-shift keying, 50

Physical layer, 20-23, 37-38, 40-57

Piggybacked requests, 67

Pipelining, 94-96

Point to point protocols, 37

Poisson distributing, 164, 266

Poisson process, 11, 164-65, 172-73,
275

combined, 244
merged, 165
properties, 243
split, 165, 245
Poll final bit, 99
Pollaczek-Khinchin formula, 186
Polling, 274, 331-32, 342-44
generalized, 342-44
hub, 331
queueing analysis, 195-203
Polynomial division, 62
Port, 382
in TCP, 124
Positive definite matrix, 465
Positive semidefinite matrix, 465
Presentation layer, 31
Prim-Dijkstra algorithm, 390, 448, 484
Primitive polynomials, 64
Priorities, FDDI, 326-27
Priority queueing system. See Queueing
system
Product form, 182
Product form solution, 220, 223-25
Promiscuous mode, 382
Protocols. See Automatic regeat request,
Distributed algorithms, HDLC,
X.25,X.21
Pseudo-Bayesian algorithm, 283-86, 352
CSMA slotted Aloha, 307-9
CSMA unslotted Aloha, 359
Pure Aloha, 287-89

Q

QAM. See Quadrature amplitude
modulation
Quasistatic assumption, 177
Queueing system:
closed, 158, 233, 25658
discrete-time M/M/1, 246
G/G/1, 206-9, 253, 269
last-come first-serve, 232
last-come first-serve M/G/1 system,
253
M/G/1 system, 267
with arbitrary order of service, 248
with batch arrivals, 251
with busy period overhead, 251
with delay for new busy period, 252
with vacations, 192-95, 252, 268
M/G/m/m, 179
M/G/xc, 252
M/M/1, 162-73, 175, 216, 266
shared service, 247
with multiple classes of customers.
258

with state-dependent rates, 246
M/M/1/m, 247, 255



M/M/2 with heterogeneous servers,
47

M/M/oc, 177-78, 216, 247

M/M/m, 174-77, 216, 266

M/M/m/m, 175, 179, 216, 267

networks. See Networks of queues

nonpreemptive priority, 203-5,
249-50, 269

with phase-type distributions, 232

polling, 160, 195, 268 !

preemptive resume priority, 2056,
249, 269

priority with multiple servers, 249

processor sharing, 232

reservation, 195-204, 268

time reversible, 214

R

RN. See Request number
RS-232-¢ interface, 21-22
Radio channels, 56, 271 See also Packet
radio nets)
Randomization, 214, 222, 436
Rate control schemes, 510-15
Real time computation, 8
Real time control, 13
Reassembly, 29
Receive-not-ready:
supervisory frame, 99-100
X.25 packet, 119
Receive-ready:
supervisory frame, 99-100
X.25 packet, 119
Register insertion rings, 330-31
Regular chain, 262
Reject supervisory frame, 99-100
Reject X.25 packet, 119
Reliability, 9, 13, 29, 44348
Repeaters, 53-54
Request number, 67
Reservation system:
canonic multiaccess system, 312
exhaustive, 195
gated, 195
limited service, 201, 249
multiaccess, 272, 31244
multiuser, 198
partially gated, 195
satellites 313-17
single-user 196
Reset command, 103
Reversibility, 214-21
Ring networks, 320-31
Ringing, 48
Round-robin scheduling, 495
Router, 380
Routing, 25-29, 363-491
adaptive, 368, 41017, 455
asynchronous, 375, 404-10, 425
broadcast, 487
centralized, 367, 418
distributed, 367
hierarchical, 379-82
in the ARPANET, 374
in Codex network, 476-77
in circuit switching networks, 379
in SNA, 378
in the TYMNET, 376
interaction with flow control, 365
interconnected network, 379-87
main issues, 365-68
nonhierarchical, 380-82
optimal, 372, 433, 451-75
oscillations, 371, 374, 410-17
shortest path, 374-76, 387417
shortest path first, 375, 382
static, 368

Routing cont.
tables, 365, 375-76, 377, 382
with frequently changing topology, 491

S

SDLC, 72, 97-103

SN. See Sequence number

SNA. See System network architecture

SONET, 54, 141

use in ATM, 134-35

SPTA. See Shortest path topology
algorithm

STX (start of text), 87

SYN (synchronous idle), 86

Sampling theorem, 4647, 51

Satellite channels, 56-57, 271, 273-74,
313-17, 352-53

Saturated cut method, 81-84, 14041,

444

Scheduling for multiaccess, 272 (See also
Reservations)

Segmentation and reassembly, in ATM,
136-39

Selective repeat ARQ, 144

ideal, 82

Selective-reject supervisory frame,
99-100

Sequence number, 66

Service rate, 152

Session holding time, 12

Session identification, 111-14

Session initiation, 31

Session layer, 30-31

Sessions, 11-14

Shannon capacity theorem, 50-51, 53,
140

Shortest path problem, 394
Shortest path routing, 370
Shortest path spanning tree, 400
Shortest path topology algorithm,
425-33, 483
Signal constellations, 50-51
Signal power, 51
Simulated annealing, 443
Sliding window, 72 (See also Go back n
ARQ)
Slotted Aloha:
capture, 355
delay, 354
stability, 353
Slotted frequency-division multiplexing,
194

Slotted multiaccess sytems, 275-88
Slotted ring, 330
Socket in TCP, 124
Solid state technology, 5
Source coding theorem, 91-92, 140
Source routing, 385-87
Spanning tree, 369, 388
Spanning tree routing, 383-85
Spanning tree topoligy design, 44748
Splitting algorithms, 289-304
first-come first-serve, 293-304, 352
LCFS, 302-3
round robin, 304
with delayed feedback, 303-4
zero or positive feedback, 34244
Stability:
CSMA, 307-12
datagram networks, 410-14
FCFS splitting algorithm, 300
shortest path routing algorithm,
410417
slotted Aloha, 281-86, 352
unslotted Aloha, 288, 359
virtual circuit networks, 414-17

Stack algorithms, 291 (See also Tree
algorithms)
unblocked stack, 293
Standardization, 19-20, 32
Star configuration for rings, 324
Stationary distribution, 260, 263
Statistical multiplexing, 113, 150, 170,
176, 214
Steepest descent method, 465
Stop-and-wait, 142-43
ARQ, 66-69
correctness proof, 69-70
in initialization protocols, 104
Store-and-forward switching, 14-17
Strongly connected graph, 394
Subgraph, 388
Sublinear convergence rate, 461
Subnet, 2-3, 10
Subnet design, 43948
Supercomputers, 8
Supervisory frames, 99-100
System network architecture (SNA),
19-20
explicit route control, 378
flow control, 501, 517
path control layer, 378
routing, 378
SDLC, 72, 97-103
session level pacing, 517
transmission control layer, 378
transmission group control, 378
virtual route control, 378, 517
virtual route pacing scheme, 501, 517

T

TCP. See Transport control protocol
TCP/IP. See Internet protocol, Transport
control protocol
TDM. See Time-division multiplexing
TP4 (ISO transport protocol), 128
T1 carrier, 53-54
T3 carrier, 54
TYMNET, 2, 4, 19-20, 141
flow control, 517
routing, 376-78
session identification, 112-13
Technology:
communication, 6-7
computer, 5-6
Three army problem, 33-34, 71
Throughput:
CSMA FCFS splitting, 311
CSMA slotted Aloha, 306
CSMA unslotted Aloha, 310
CSMA/CD:
slotted, 318
unslotted, 319
FCFS splitting algorithm, 300-301
slotted Aloha, 282-83
token buses and polling systems,
331-32
unslotted Aloha, 288
Time invariance, 41
Time sharing system, 160, 236
Time to live, internet protocol, 123
Time window flow control, 511
Time-division multiplexing, 52, 151, 170,
177, 194, 214, 273, 277
for packet radio, 34647
Time-outs, 67-70, 73
Token buses, 331-33
degradation with size and speed, 334
implicit tokens, 333
Token rings, 4, 320-30
Topological design, 437-51, 464
Topology, 418
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Trailer frame, 23, 39, 65

Transition rate, 262

Transmission delay. See Delay

Transparent mode, 87

Transport control protocol, 40, 124-28,
141

addressing, 124-25
error recovery, 117-18, 125-27
flow control, 127-28
initialization, 126
multilexing, 124-25
Transport layer, 29-30, 123-28
standards, 123-24
Transport layer flow control, 509
Tree, 388
Tree algorithms, 290-93, 352
Truncation of Markov chains, 182, 254
Twisted pair, 7, 56

U
Unary-binary encoding, 91, 114
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Undetectable errors, 60, 64, 114-15
Unnumbered acks, 100
Unnumbered frames, 100
Unslotted Aloha, 287-89
precise feedback, 356
throughput, 357
Unstable equilibrium for Aloha, 281
Utilization factor, 157, 169

\'

VLSI. See Very large scale integration

Vacation Queueing system. See Queueing
system

Very large scale integration, 5

Video conferencing, 12

Virtual channel number, X.25, 118

Virtual channels, 111

Virtual circuit routing, 16, 26, 111, 116,
363, 476-77, 490

Voice:
digitized, 11
packetized, 13-14
Voice mail, 8
Voice network, 5, 8
Voice-grade. See Communication
channels

w

WAN. See Wide area network

Walk in a graph, 387

Wide area network, 4, 6

Window (permit) in TCP, 127

Window flow control, 117, 158, 500-10

X
X.21 interface, 21-22, 118

X.25 standard, 40, 118-20, 500-10
LAPB, 97-103
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CHAPTER 1 SOLUTIONS

1.1

There are 250,000 pixels per square inch, and multiplying by the number of square inches
and the number of bits per pixel gives 5.61 x 108 bits.

1.2

a) There are 16 x 109 bits going into the network per hour. Thus there are 48 x 109 bits per
hour traveling through the network, or 13.33 million bits per second. This requires 209
links of 64 kbit/sec. each.

b) Since a telephone conversation requires two people, and 10% of the people are busy on
the average, we have 50,000 simultaneous calls on the average, which requires 150,000
links on the average. Both the answer in a) and b) must be multiplied by some factor to
provide enough links to avoid congestion (and to provide local access loops to each
telephone), but the point of the problem is to illustrate how little data, both in absolute and
comparative terms, is required for ordinary data transactions by people.

1.3

There are two possible interpretations of the problem. In the first, packets can be arbitrarily
delayed or lost and can also get out of order in the network. In this interpretation, if a

packet from A to B is sent at time T and not received by some later time t, there is no way to
tell whether that packet will ever arrive later. Thus if any data packet or protocol packet
from A to B is lost, node B can never terminate with the assurance that it will never receive
another packet.

In the second interpretation, packets can be arbitrarily delayed or lost, but cannot get out of
order. Assume that each node is initially in a communication state, exchanging data
packets. Then each node, perhaps at different times, goes into a state or set of states in
which it sends protocol packets in an attempt to terminate. Assume that a node can enter
the final termination state only on the receipt of one of these protocol packets (since timing
information cannot help, since there is no side information, and since any data packet could
be followed by another data packet). As in the three army problem, assume any particular
ordering in which the two nodes receive protocol packets. The first node to receive a
protocol packet cannot go to the final termination state since it has no assurance that any
protocol packet will ever be received by the other node, and thus no assurance that the other
node will ever terminate. The next protocol packet to be received then finds neither node
in the final termination state. Thus again the receiving node cannot terminate without the
possibility that the other node will receive no more protocol packets and thus never
terminate. The same situation occurs on each received protocol packet, and thus it is
impossible to guarantee that both nodes can eventually terminate. This is essentially the
same argument as used for the three army problem.



CHAPTER 2 SOLUTIONS

2.1

Let x(t) be the output for the single pulse shown in Fig. 2.3(a) and let y(t) be the output for
the sequence of pulses in Fig. 2.3(b). The input for 2.3(b) is the sum of six input pulses
of the type in 2.3(a); the first such pulse is identical to that of 2.3(a), the second is delayed
by T time units, the third is inverted and delayed by 2T time units, etc. From the time
invariance property, the response to the second pulse above is x(t-T) (i.e. x(t) delayed by
T); from the time invariance and linearity, the response to the third pulse is

-x(t-2T). Using linearity to add the responses to the six pulses, the overall output is

y(®) = x(t) + x(t-T) - x(t-2T) + x(t-3T) -x(t-4T) - x(t-5T)

To put the result in more explicit form, note that

0 : t<0
x(t) = 1—c_2l/T ;0 0<5t<T
-Vt t>T

Thus the response from the ith pulse (1 <i < 6) is zero up to time (i-1)T. For t <0, then,
yt)=0; from0<t<T

y =x®)=1-¢2T . 0<t<T
From T <t < 2T,
y(©) = x(t) + x(t-T)
= (e2-1)e 2T + [1 - 20 DTy
=1- e2VT
Similarly, for 2T <t < 3T,
y(t) = x(t) + x(t-T) - x(t-2T)
= (ez_l)e-2lfr + (62_1)6-20-'1‘)/1' -[1- e-2(:2T)/T 1
=-1+Qe41e T ; 2T<t<3T
A similar analysis for each subsequent interval leads to
y(t) =1 - (2e6 - 2e4 + 1)e 2T ; 3T <t<4T
=-1+(28-2e8+2e4-1)e?T ; 4T<t<6T

=-(e12-2e8 +2e6-2et+ 1)e?VT ; 26T



The solution is continuous over t with slope discontinuities at 0, 2T, 3T, 4T, and 6T; the
value of y(t) at these points is y(0) = 0; y(2T) = .982; y(3T) = -.732; y(4T) = .766; y(6T) =
-968. Another approach to the problem that gets the solution with less work is to use x(t)
to first find the response to a unit step and then view y(t) as the response 10 a sum of
displaced unit steps.

2.2

From the convolution equation, Eq. (2.1), the output r(t) is
oo T
(t) = J- s(th(t-t)dt = J h(t—t)dt
oo =0

Note that h(t-t) = ae-%t-1) for t-1> 0, (i.e. for T<t), and h(t-t) =0 for t>t. Thus fort<
0, h(t-t) = 0 throughout the integration interval above. For 0 <t < T, we then have

t T
rt) = J ac " Vdr+ | 0dr=1-¢* ;0<t<T
=0 =t

Fort2T, h(t-1) = 0e (D over the entire integration interval and
T
(t) = J e gt = D™ L >T
=0

Thus the response increases towards 1 for 0 < t < T with the exponential decay factor .,
and then, for t = T, decays toward 0.

2.3
From Eq. (2.1),

() = J & h(t-t)dt
Using ©' = t-1 as the variable of integration for any given t,

I(t) = rez"f““"h(f )dt

= eiz“‘J e 2™ h(t )dr

—o00

- ejantH(f)
where H(f) is as given in Eq. (2.3).

2.4

+00
h(t) = I H(f)ej2nfidf

-00



Since H(f) is 1 from -f( to fo and O elsewhere, we can integrate exp(j2rft) from -f to fo,
obtaining
sin(2nfyt)

1 : .
h(t) = mlexp(2nfot) - exp(-i2nfon)] = —

Note that this impulse response is unrealizable in the sense that the response starts before
the impulse (and, even worse, starts an infinite time before the impulse). None the less,
such ideal filters are useful abstractions in practice.

2.5

The function sj(t) is compressed by a factor of 3 on the time axis as shown below

s(t) Sl(l)

A A AR AR

S,(h) = rsl(t)e'ﬂ"f‘dt = rs(ﬁt)e‘jz"f‘d:

—00 —00

= J:s(t)c_jznﬁ/ﬁ% = %S(%)

S

. 10

Thus S1(f) is attenuated by a factor of § in amplitude and expanded by a factor of B on the
frequency scale; compressing a function in time expands it in frequency and vice versa.

2.6

a) We use the fact that cos(x) = [exp(jx) + exp(-jx)}/2. Thus the Fourier transform of
s(t)cos(2rfpt) is

= exp(j2nfyt) + exp(—j2nfyt)
J‘ s(t)

5 exp(—j2nft) dt

% exp[—j2r(f—fo)t] dt + % exp[—j2n(f+fo)t] dt

S(E—fy)  S(f+fy)
=T T3




b) Here we use the identity cos2(x) = [1+cos(2x)}/2. Thus the Fourier transform of
s(t)cos2(2pf0t) is the Fourier transform of s(t)/2 plus the Fourier transform of
s(t)cos[2p(2fp)t]/2. Using the result in part a, this is S(f)/2 + S(f-2fg)/4 +S(f+2fp)/4.

2.7
a) E{frame time on 9600 bps link} = 1000 bits / 9600 bps = 0.104 sec.
E{frame time on 50,000bps link} = 0.02 sec.

b) E{time for 100 frames on 9600 bps link} = 1.04-105 sec.

E{time for 100 frames on 50,000 bps link} = 2:104 sec.

Since the frame lengths are statistically independent, the variance of the total number of bits
in 106 frames is 106 times the variance for one frame. Thus the standard deviation of the
total number of bits in 106 frames is 103 times the standard deviation of the bits in one frame
or 5-10° bits. The standard deviation of the transmission time is then

S.D.{time for 106 frames on 9600 bps link} = 5105 / 9600 = 52 sec.

S.D.{time for 106 frames on 50,000 bps link} = 5:105/ 50,000 = 10 sec.

¢) The point of all the above calculations is to see that, for a large number of frames, the
expected time to transmit the frames is very much larger than the standard deviation of the
transmission time; that is, the time per frame, averaged over a very long sequence of frames,
1s close to the expected frame time with high probability. One's intuition would then
suggest that the number of frames per unit time, averaged over a very long time period, is
close to the reciprocal of the expected frame time with high probability. This intuition is
correct and follows either from renewal theory or from direct analysis. Thus the reciprocal
of the expected frame time is the rate of frame transmissions in the usual sense of the word
"rate”.

2.8
Let xij be the bit in row i, column j. Then the ith horizontal parity check is
hi = Zj xjj

where the summation is summation modulo 2. Summing both sides of this equation
(modulo 2) over the rows i, we have

Zihj = Zjjxjj
This shows that the modulo 2 sum of all the horizontal parity checks is the same as the

modulo 2 sum of all the data bits. The corresponding argument on columns shows that the
modulo 2 sum of the vertical parity checks is the same.



2.9
a) Any pattern of the form

—110--
—011--
101 -

will fail to be detected by horizontal and vertical parity checks. More formally, for any three
Tows iy, i, and i3, and any three columns jy, j2, and j3, a pattern of six errors in positions
(i1j1), (1 j2), (12 j2), (12 j3), (i3 j1), and (i3 j3) will fail to be detected.

b) The four errors must be confined to two rows, two errors in each, and to two columns,
two errors in each; that is, geometrically, they must occur at the vertices of a rectangle
within the array. Assuming that the data part of the array is J by K, then the array including
the parity check bits is J+1 by K+1. There are (J+1)J/2 different possible pairs of rows
(counting the row of vertical parity checks), and (K+1)K/2 possible pairs of columns
(counting the column of horizontal checks). Thus there are (J+1)(K+1)JK/4 undetectable
patterns of four errors.

2.10

Let x = (x1, X2, - XN) and x' = (x'1, X'2, ... X'N) be any two distinct code words in a parity
check code. Here N = K+L is the length of the code words (K data bits plus L check bits).
Let y = (y1, -- YN) be any given binary string of length N. Let D(x,y) be the distance
between x and y (i.e. the number of positions i for which x; # y;j). Similarly let D(x',y) and
D(x,x") be the distances between x' and y and between x and x'. We now show that

D(x,x") < D(x,y) + D(x',y)

To see this, visualize changing D(x,y) bits in x to obtain y, and then changing D(x',y) bits

in y to obtain x'. If no bit has been changed twice in going from x to y and then to x', then
it was necessary to change D(x,y) + D(x',y) bits to change x to x' and the above inequality
is satisfied with equality. If some bits have been changed twice (i.e. xj = x'; # y; for some
1) then strict inequality holds above.

By definition of the minimum distance d of a code, D(x,x") 2 d. Thus, using the above
inequality, if D(x,y) < d/2, then D(x',y) > d/2. Now suppose that code word x is sent and
fewer than d/2 errors occur. Then the received string y satisfies D(x,y) < d/2 and for every
other code word x', D(x',y) > d/2. Thus a decoder that maps y into the closest code word
must select x, showing that no decoding error can be made if fewer than d/2 channel errors
occur. Note that this argument applies to any binary code rather than just parity check
codes.

2.11

The first code word given, 1001011 has only the first data bit equal to 1 and has the first,
third, and fourth parity checks equal to 1. Thus those parity checks must check on the first
data bit. Similarly, from the second code word, we see that the first, second, and fourth
parity checks must check on the second bit. From the third code word, the first, second,
and third parity check each check on the third data bit. Thus



C1 =81+ 52 +5S3

Cr=82 + 83
C3 =81 +S3
C4=81+$S

The set of all code words is given by

0000000 0011110
1001011 1010101
0101101 0110011
1100110 1111000

The minimum distance of the code is 4, as can be seen by comparing all pairs of code
words. An easier way to find the minimum distance of a parity check code is to observe that
if x and x' are each code words, then x + x' (using modulo 2 componentwise addition) is
also a code word. On the other hand, x + x' has a 1 in a position if and only if x and x'
differ in that position. Thus the distance between x and x' is the number of ones in x + x".
It follows that the minimum distance of a parity check code is the minimum, over all non-
zero code words, of the number of ones in each code word.

2.12
D
D4+D2+D+1) D’+D°+ D%
D +D+D*+D’
D3 = Remainder

2.13

Let z(D) = Dj + zj.;D¥"1 + ..+ Di and assume i<j. Multiplying G(D) times Z(D) then
yields

g(D)z(D) = DL + (zj1+ gL__l)DI-*j'.l +(zj2 + 8L-1Zj-1 + gL_Z)DL-&-j-Z + ...
+ (g1 + zi41)D*1 + D!

Clearly the coefficient of DL*i and the coefficient of Di are each 1, yielding the desired two
non-zero terms. The above case i<j arises whenever z(D) has more than one non-zero term.
For the case in which z(D) has only one non-zero term, i.e. z(D) = Dj for some j, we have

g(D)z(D) = DL+ + g1 | DL*-1 + ..+ Di
which again has at least two non-zero terms.
2.14

Suppose g(D) contains (1+D) as a factor; thus g(D) = (1+D)h(D) for some polynomial h(D).
Substituting 1 for D and evaluating with modulo 2 arithmetic, we get g(1) = 0 because of
the term (1+D) = (1+1) =0. Let e(D) be the polynomial for some arbitrary undetectable
error sequence. Then e(D) = g(D)z(D) for some z(D), and hence e(1) = g(1)z(1) = 0. Now

e(D) = Zj e;D}, so e(1) = Zi e;. Thuse(1) =0 implies that an even number of elements ¢;



are 1; i.e. that e(D) corresponds to an even number of errors. Thus all undetectable error
sequences contain an even number of errors; any error sequence with an odd number of
errors is detected.

2.15

a) Let Di*L, divided by g(D), have the quotient zZ®(D) and remainder c(®(D) so that
Di*L = g(D)z(D) + c(D)

Multplying by s; and summing over i,
s(D)DL = Z; 5iz0(D) + Z; sic)(D)

Since 3 sic@®(D) has degree less than L, this must be the remainder (and Z; siz®(D) the
quotient) on dividing s(D)DL by g(D). Thus c(D) = Z; sici)(D).

b) Two polynomials are equal if and only if their coefficients are equal, so the above
polynomial equality implies

Cj = 21 Slcj(l)

2.16

a) Consider the two scenarios below and note that these scenarios are indistinguishable to
the receiver.

0 X 0 X, 1 X

‘Ack

packet 1
accepted

-9 4]



packet 1
accepted

If the receiver releases the packet as x3 in the questioned reception, then an error occurs on
scenario 2. If the receiver returns an ack but doesn't release a packet (i.e. the appropriate
action for scenario 2), then under scenario 1, the transmitter erroneously goes on to packet
3. Finally, if the receiver returns a nak, the problem is only postponed since the transmitter
would then transmit (2,x2) in scenario 1 and (2,x;) in scenario 2. As explained on page 66,
packets x1 and x, might be identical bit strings, so the receiver can not resolve its ambiguity
by the bit values of the packets.

b) The scenarios below demonstrate incorrect operation for the modified conditions.

0 X 0 X, 1 X,
Ack
ak
packet 1 9
accepted )
O Xl 1 xl 1 X 1
Nak

!

packet 1 9
accepted



2.17

a) T=T+ Tg+2T4

b) q = (1-p(1-pf)

A packet is transmitted once with probability q, twice with probability (1-q)q, three times

with probability (1-q)2q, etc. Thus the expected number of transmissions of a given packet
is

Nl N

E{transmissions per packet} = z iq(l—q)i_1 =

=1

To verify the above summation, note that for any x,0 <x <1,

Using x for (1-q) above gives the desired result.
c) E{time per packet} = (T, + Tf + 2Tg)/q
= (1.3)/0.998 = 1.303

Note that p; and pr have very little effect on E[time per packet] in stop and wait systems
unless they are unusually large.

2.18
0
RS S S U T,
RN 0 0 1 1 2 3 4 5 6L
Node A f t —p
Node B
SN 0 1 2 3 4 516 7

Window  [0,3] ] [1.4] I[z,s] |[3,61|[4,71|



Assume that the transmitter always sends the next packet in order until reaching the end of
the window, and then goes back to the beginning of the window.

0
Packets 1 2
delivered
RN[ 0 0 0] 1 1 1 1 1 | 2
Node A t—=>p
Node B
sN| O 1 2 3 4 1 2 3
Window  [0,3] | [1.4] [2,5]
2.19

The simplest such deadlock occurs if there is sufficient propagation delay in the system that
each side can send n-1 frames (containing packets numbered O to n-2) before finishing
receipt of the first frame from the other side. In this case, the nth frame from each side will
carry the packet numbered n-1 without acking any packets from the other side. Thus each
side will go back to packet 0, but in the absence of errors, each side will be looking for
packet n by time the repeat of packet 0 occurs. Each side will then cycle from 0 to n-1, and
neither side will ever receive any acks. The diagram below illustrates this for n=3. The
first number in each frame position is SN and the second is RN.

t t t

0,0) (1,0 2,0) 0,0 (1,0)

0,0) (1,0) (2,0) (0,0) (1,0)

Wow oW

2.20

The simplest example is for node A to send packets O through n-1 in the first n frames. In
case of delayed acknowledgements (i.e. no return packets in the interim), node A goes back
and retransmits packet 0. If the other node has received all the packets, it is waiting for
packet n, and if the modulus m equals n, this repeat of packet O is interpreted as packet n.



The right hand side of Eq. (2.24) is satisfied with equality if SN = SNpyn(t;)+n-1. This
occurs if node A sends packets 0 through n-1 in the first n frames with no return packets
from node B. The last such frame has SN = n-1, whereas SN, at that time (say t;) is O.

Continuing this scenario, we find an example where the right hand side of Eq. (2.25) is
satisfied with equality. If all the frames above are correctly received, then after the last
frame, RN becomes equal to n. If another frame is sent from A (now call this time t;) and
if SNin is still 0, then when it is received at B (say at t), we have RN(t2) = SNpin(t)+n.

2.21

Let RN(t) be the value of RN at node B at an arbitrary time T; SNpjn is the smallest packet
number not yet acknowledged at A at time t (which is regarded as fixed) and SNpax -1 is

the largest packet number sent from A at time t. Since RN(1) is non decreasing in 7, it is
sufficient to show that RN(t+Tp+T4) € SNmax and to show that RN(t-Tpy-Tq) 2 SNpin.

For the first inequality, note that the packet numbered SNyax (by definition of SNmax) has
not entered the DLC unit at node A by time t, and thus can not have started transmission by
time t. Since there is a delay of at least Ty +Tq from the time a packet transmission starts
until the completion of its reception, packet SNimax can not have been received by time
t+Ty+Tgq. Because of the correctness of the protocol, RN(t+Ty,+Tq) can be no greater than
the number of a packet not yet received, i.e. SNmax.

For the second inequality, note that for the transmitter to have a given value of SNp;n at
time t, that value must have been transmitted earlier as the request number in a frame
coming back from node B. The latest time that such a frame could have been formed is t-
Tm-T4, so by this ime RN must have been at least SNpjp.

2.22

a) If the transmitter never has to go back or wait in the absence of errors, then it can send a
continuous stream of new packets in the absence of errors. In order for such a continuous
stream to be sent, each packet must be acknowledged (i.e. SNp;p must advance beyond the
packet's number) before the next n-1 frames complete transmission. Thus these n-1 frame
transmission times are in a race with the time, first, for the given packet to propagate over
the channel and, second, for the acknowledgement to wait for the feedback frame in
progress, then wait to be transmitted in the next feedback frame and propagated back to the
original transmitter. In order for the feedback to always win the race, the minimum time
for the n-1 frames to be transmitted must be greater than the maximum time for the
feedback, i.e.,

Tmax < [(n-1)/2]Tmin - T4

b) If an isolated error occurs in the feedback direction, the feedback could be held up for
one additional frame, leading to

(n-1)Tmin > 2T4 + 3Tmax
Tmax < [(n-1)/3]Tmin - (2/3)Tq



2.23

After a given packet is transmitted from node A, the second subsequent frame transmission
termination from B carries the acknowledgement (recall that the frame transmission in
progress from B when A finishes its transmission cannot carry the ack for that
transmission; recall also that propagation and processing delays are negligible. Thus q is
the probability of n-1 frame terminations from A before the second frame termination from
B. This can be rephrased as the probability that out of the next n frame terminations from
either node, either n-1 or n come from node A. Since successive frame terminations are
equally likely and independently from A or B, this probability is

n
_ n! -n _ -n
a= 2, T 2 - (D)2

i=n-1
2.24

If an isolated error in the feedback direction occurs, then the ack for a given packet is held
up by one frame in the feedback direction (i.e., the number RN in the feedback frame
following the feedback frame in error reacknowledges the old packet as well as any new
packet that might have been received in the interim). Thus q is now the probability of n-1
frame terminations from A before 3 frame terminations from B (one for the frame in
progress, one for the frame in error, and one for the frame actually carrying the ack; see the
solution to problem 2.23). This is the probability that n-1 or more of the next n+1 frame
terminations come from A; since each termination is from A or B independently and with
equal probability,

n
= ﬂ -n-1 _ -1
1= i=2n-‘1 (i!(n+1-i)!)2 = [n+2+(n+1)n/2]2

2.25

As in the solution to problem 2.23, q is the probability of n-1 frame terminations coming
from node A before two frame terminations come from node B. Frame terminations from
A (and similarly from B) can be regarded as alternate points in a Poisson point process
from A (or from B). There are two cases to consider. In the first, the initial frame is
received from A after an even numbered point in the Poisson process at B, and in the
second, the initial frame is received after an odd numbered point. In the first case, q is the
probability that 2n-2 Poisson events from A occur before 4 Poisson events occur from B.
This is the probability, in a combined Poisson point process of Poisson events from A and
B, that 2n-2 or more Poisson events come from A out of the next 2n+1 events in the
combined process. In the second case, q is the probability that 2n-2 Poisson events from A
occur before 3 events occur from B. Since these cases are equally likely,

: ( 1)' 2 ( )'
1 2n+1)! 2n-1 1 2n)! -2n
q 2 1! -1 l) Z 1! !
2i 0.2 1.(2n+1 1). 2i i 1.(2n—1).

2.26

We view the system from the receiver and ask for the expected number of frames, 7,
arriving at the receiver starting immediately after a frame containing a packet that is accepted



and running until the next frame containing a packet that is accepted. By the assumptions
of the problem, if the packet in a frame is accepted, then the next frame must contain the
next packet in order (if not, the transmitter must have gone back to some earlier packet,
which is impossible since that earlier packet was accepted earlier and by assumption was
acked in time to avoid the go back).

Since the next frame after a packet acceptance must contain the awaited packet, that packet
is accepted with probability 1-p. With probability p, on the other hand, that next frame
contains an error. In this case, some number of frames, say j, follow this next frame
before the awaited packet is again contained in a frame. This new frame might again
contain an error, but the expected number of frames until the awaited packet is accepted,
starting with this new frame, is again y. Thus, given an error in the frame after a packet
acceptance, and given j further frames before the awaited packet is repeated, the expected

number of frames from one acceptance to the next is 1+j+Y.

Note that j is the number of frames that the transmitter sends, after the above frame in error,
up to and including the frame in transmission when feedback arrives concerning the frame
in error. Thus the expected value of j is f. Combining the events of error and no error on
the next frame after a packet acceptance, we have

Y= (1-p) + p(1+p+y) = 1 + p(B+Y)
Solving for v and for v = 1/y,

Y= (1+Bp)/(1-p) v = (1-p)/(1+Bp)
2.27

Note that the sending DLC could save only one packet if it waited for acknowledgements
rather than continuing to transmit. Similarly the sending DLC could save an arbitrarily
large number of packets by taking packets from the network layer at a rate faster than they
can be transmitted. Thus what is desired is to show that at most B+1 packets need be
stored without ever forcing the transmitter to wait. Thus we assume that a new packet is
admitted from the network layer only when there are no previously transmitted packets that
are known to have been unsuccessful on the last transmission (i.e. the system repeats
nak'ed packets before accepting and transmitting new packets; the system accepts and
transmits new packets while waiting for feedback information on old packets).

When the system is first initiated, one packet is admitted to the sending DLC from the
network layer. We use this as the basis of an inductive argument on successive times at

which a new frame is generated. By the inductive hypothesis, at most B+1 packets were
stored at the end of the previous frame generatdon instant. At the time of generating the

new frame, there are at most 3 outstanding frames (including the one just being completed)
for which feedback has not been received. A new packet will be accepted from the network
layer only if all packets stored are also in frames for which no feedback has yet been
received. Thus if a new packet is accepted, the total number saved is increased to at most

B+1, and if no new packet is accepted, the total number saved remains (by the inductive
hypothesis) no more than B+1.



2.28

Under the given assumptions, the ARPANET ARQ works like ideal select repeat. That is,
frames from the 8 channels can be sent in round robin order and the feedback for a channel
is always available by time the channel is to be reused. Thus a packet is repeated if and
only if the previous transmission was unsuccessful. Since all channels are constantly busy
and only the frames in error lead to retransmission, the efficiency is 1-p.

2.29

a) When packet z is transmitted, the transmitter rule ensures that z < SNmin+n-1. At that
time, SNmin < RN since a packet cannot be acked before being received. Thus, at transmit
time

z<RN+n-1
Since RN is nondecreasing, this is also satisfied at receive time. To derive the lower bound
on z, note that the transmitter rule specifies z 2 SNmpin. Since SNmin+n has never been
sent before the current transmission of z, the first come first serve order on the link ensures

that it is not received before z. Thus yiop at receive time is less than SNpjn+n at transmit
time, SO

z 2 SNmin > Ytop - D

Z2ypp-n+ 1
b) We must ensure that m is large enough to always satisfy

z+m>ypp+k
We know from a) that z > yyop-n, and adding n+k to both sides of this equation, we know
that z+n+k > yiop+k. Thus, choosing m = n+k (or, more generally, m = n+k) always
satisfies the above equation. If m is chosen any smaller (say m = n+k-1), then when z =
yiop-n+1 (which can happen after a goback), z+m will equal yioptk, causing erroneous
operation.

¢) From b), m 2 n+k > n. From Eq. (2.47),z < RN+n-1 < RN+m; thus z-m < RN.

d) From b) and c), m2>n+k assures correct operation at the receiver. Since m > n, correct
operation at the transmitter is assured as in goback n.

e) Initially yiop = RN-1, so for k=1, the receiver can initially accept only RN. On each

accepted packet, RN and yyop are each incremented by 1, so at all times only RN can be

accepted. Thus k=1 is ordinary goback n ARQ. For k=n, all received z must satisfy z <

Yiop +k, and we have ordinary selective repeat ARQ.

2.30

a) The sequence below shows the stuffed bits underlined for easy readability:
011011111000111110101011111011111001111010

b) Here the flags are shown underlined and the removed (destuffed) bits as x's:



0111111011111x110011111x011111x11111x11

00011111101011111x
2.31

The modified destuffing rule starts at the beginning of the string and destuffs bit by bit. A
zero is removed from the string if the previous six bits in the already destuffed portion of
the string have the value 015. For the given example, the destuffed string, with flags
shown underlined and removed bits shown as X's, is as follows:

011011111x111111011111x1Q1111110
2.32

The hint shows that the data string 01501x1x7... must have a zero stuffed after 015, thus
appearing as 01500xx2.... This stuffed pattern will be indistinguishable from the original
string 01500x1x2... unless stuffing is also used after 015 in the string 01500x1x2.... Thus
stuffing must be used in this case. The general argument is then by induction. Assume
that stuffing is necessary after 015 on all strings of the form 0150kx;x5.... Then such a
stuffed sequence is 0150k+1x1x3.... It follows as before that stuffing is then necessary after
015 in the sequence 0150k+1xx7.... Thus stuffing is always necessary after 015.

2.33

The stuffed string is shown below with the stuffed bits underlined and a flag added at the
end.

11011010001001001110100101

The destuffing rule is to decode (destuff) the string bit by bit starting at the beginning. A
given O bit is then deleted from the string if the preceding three decoded bits are 010. The
flag is detected when a 1 is preceded by the three decoded bits 010 and the most recently
decoded bit was not deleted. The above is a general rule for detecting any type of flag
sequence, rather than just 0101; for this special case, it is sufficient to look for the
substring 0101 in the received string; the reason for the simplification is that if an insertion
occurs within the flag, it has to occur by simply a repetition of the first flag bit.

2.34

Let vy be logoE{K]} - j. Since j is the integer part of logoE{K}, we see that y must lie
between O and 1. Expressing A = E{K}Z'—i +j+ lin terms of yand E{K}, we get

A=2" +logE{K}-y+1
A-logE{K} =2"-y+1

This function of 7y is easily seen to be convex (i.e., it has a positive second derivative). It
has the value 2 at y=0 and at Y = 1 and is less than 2 for 0 <y< 1. This establishes that



A <logrE{K} +2
Finding the minimum of 2Y - y +1 by differentiation, the minimum occurs at
Y = -loga(ln 2)
The value of 2Y - y + 1 at this minimizing point is [In 2] +loga(n 2) + 1 = 1.914..., s0

A 210gE{K} + (In 2)'! +loga(n 2) + 1
2.35

Stuffed bits are always 0's and always follow the pattern 01°. The initial O in this pattern
could be a bit in the unstuffed data string, or could itself be a stuffed bit. As in the analysis
of subsection 2.5.2, we ignore the case where this initial 0 is a stuffed bit since it is almost
negligible compared with the other case (also a well designed flag detector would not allow
a stuffed bit as the first bit of a flag). If a stuffed bit (preceded by 013 in the data) is
converted by noise into a 1, then it is taken as a flag if the next bit is 0 and is taken as an
abort if the next bit is 1. Thus an error in a stuffed bit causes a flag to appear with
probability 1/2 and the expected number of falsely detected flags due to errors in stuffed
bits is K2-7. If one is less crude in the approximations, one sees that there are only K-6
places in the data stream where a stuffed bit could be inserted following 013 in the data;
thus a more refined answer is that the expected number of falsely detected flags due to
errors in stuffed bits is (K-6)2-7.

There are eight patterns of eight bits such that an error in one of the eight bits would turn
the pattern into a flag. Two of these patterns, 017 and 170, cannot appear in stuffed data.
Another two of the patterns, 01500 and 00150, can appear in stuffed data but must contain
a stuffed bit (i.e. the 0 following 15). The first of these cases corresponds to the case in
which an error in a stuffed bit causes a flag to appear, and we have already analyzed this.
The second corresponds to a data string 0015. Thus the substrings of data for which a
single error in a data bit can cause a flag to appear are listed below; the position in which
the error must appear is shown underlined:

0011111

01011110
01101110
01110110
01111010

For any given bit position j in the K bit data string (j < K-7), the probability that one of
these patterns starts on bit j is 2-7 + 4.2-8 = 3.2-7. Thus the probability of a false flag being
detected because of an error on a data bit, starting on bit j of the data is 3p2-7. This is also
the expected number of such flags, and summing over the bits of the data stream, the
expected number is (K-7)3p2-7. Approximating by replacing K-7 by K, and adding this to
the expected number of false flags due to errors in stuffed bits, the overall probability of a
false flag in a frame of length K is (1/32)Kp. If K-7 is not approximated by K, and if we
recognize that the first pattern above can also appear starting at j=K-6, then the overall
probability of a false flag is approximated more closely by (1/32)(K-6.5)p.



2.36

Let N be the number of overhead bits per packet, F the number of flag bits per packet, U
the number of unary code bits per packet, and I the number of insertions per packet. Then

N=F+U+1I E{N} =E{F)} + E{U} + E{I}

A flag will occur at the end of a packet if the next session has nothing to send; thus a flag
(containing K bits) occurs at the end of a packet with probability p. It follows that

E{F} = pK

The number of unary bits following a packet is 0 if the next session has something to send
and is j > 1 if the number of following sessions with nothing to send is j. Thus P{U=j} =

(1-p)pi forj = 1.

E{U} = D j(1-p)p' =
=1

Finally an insertion occurs if a packet starts with 01k-2. Assuming independent equally
likely binary digits in the packets (this is not particularly realistic for packet headers, but it
is the only reasonable assumption without looking at the details of some particular
protocol), the probability of an insertion at the beginning of a packet is 2-K-1). Thus

E{l} = 2-K-D
E{N} = pK + p/(1-p) + 2-K-D

Note that it is not really necessary to do insertions at the beginning of the first packet
following a flag; if one assumes that such insertions are not made, E{I} changes to
(1-p)2-K-D,

b) No problems occur using flags both for addressing as above and for DLC. The DLC
regards the addressing flags as part of the data (which can be arbitrary anyway), and the
stuffing due to the DLC flags is removed before the network layer sees it. This is one of
the advantages of layering, that one doesn't have to worry about such interactions. Note
however that the use of this particular flag for addressing will cause a slight increase in the
number of insertions required at the DLC layer. When efficiency is important, one can not
necessarily ignore the interactions between different layers.

2.37

a) Note that a given packet n can never be sent untl after n-1 is acked; this is true even
without the possibility of packets getting out of order on the line. To see this, consider the
example below.



n-1 n n-1

Yo', ot

n+1?

Note also that there is no possible reason to want to send a packet after it has been acked.
Thus the only question here is whether it is possible, or sensible, to retransmit a given
packet without waiting for an ack or a period 2T . The simplest rule for the transmitter (and
probably the most practical unless T is very large) is for the transmitter to wait after sending
each packet for either an ack or nak (i.e. RN equal to the sequence number just transmitted)
or for a period of 2T, which guarantees that nothing remains on the link.

In order to leave the transmitter with more freedom than the above, we observe that there
are three restrictions on when a given packet n can be transmitted. The first, that n-1 must
be acknowledged, was mentioned above. The second is that no transmission of packet n-1
can be on the forward channel. The third is that no ack of packet n-2 can be on the return
channel. The reason for the second restriction is that a transmission of packet n could
arrive before that of n-1, causing n-1 to be mistaken for n+1. The reason for the third
restriction is to avoid the ack for n-2 being mistaken for the ack for n. Letting t; be the ime
at which n-1 was last transmitted, we see that the second restriction above leads to the
following rule. In order to transmit packet n at time t, one or more of the following
conditions must be satisfied:

t2ty+T
ii) The number of acks of n-1 equals the number of transmissions of n-1 up to t
iii) The last ack of n-1 is over 2T seconds after the next to last transmission of n-1.

In addition, from restriction 2, one or more of the following conditions must also be
satisfied, where t; is the time at which n-2 was last transmitted:

)t2tp +2T

ii) The number of acks of n-2 equals the number of transmissions of n-2

iii) The last ack of n-2 is over 2T seconds after the next to last transmission of n-2.
b) An algorithm must deal with the possibility of a frame that is lost (i.e., never arrives),
and must successfully transmit packets after a frame is lost. If an algorithm succeeds in
this case, then it must fail if a frame, regarded as lost, later arrives when a new packet of
the same sequence number modulo 2 is expected.

2.38

For simplicity, look first at the case in which A and B both start at the same time.
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It can be seen that the above pattern is periodic with period D+R+2P, with one packet in

each direction per period. Thus the rate is (D+R+2P)-1,
Next, without loss of generality, suppose B starts its first transmission after A:

¢— D —> R D —¥ m

Node A

Node B

In the figure above, the pattern is periodic after the first frame in each direction. In general,
if B completes its first transmission at time t and A completes its first transmission at T<t,

then B starts its first ACK transmission at max(t, T+P), since T+P is the time at which B
has completely received the first packet from A and t is the first time that the link is free
from A to B. Node A starts to send its first ACK to B at t+P, which is thus received at B at
t+R+2P. Similarly, node A receives the first ACK from B at max(t, T+P)+R+P, at which
time it starts to send its second packet.

b) The diagram below makes it clear that the two way transmission pattern is periodic with
a period of 2D+2D, leading to rate (2D+2P)-1.

<e—pD —»| P - «— D —»

Node A

Node B

2.39
a) TC = (K+V)(-1) + K+V) M/K]

b) E{TC} = (K+V)[j-1+(M/K)+1/2]

Differentiating with respect to K and setting the result equal to 0, we get




c¢) For j=1, it can be seen directly from Eq. (2.42) that TC is minimized by choosing
KMAXx greater than the largest possible value of M (thus making all messages one packet
long). The approximation in Eq. (2.43) is very poor in this case, but the solution
KMmax=e in Eq. (2.44) is still valid, as seen above. For fixed length packets, the amount
of fill required for very large K is prohibitive, so the approximation used in part b) above is
reasonable and the resulting finite value for K is certainly reasonable.

2.40

a) Using the properties of the A->B master slave protocol, B eventually receives the
DISC message from A (perhaps after many attempts, using the assumption that each frame
is correctly received with some probability bounded away from 0). Node B, if it has not
already started to disconnect, will start to send DISC, which by the same argument is
eventually received by A. Similarly B sends ACKD, which is eventually received by A
(perhaps after many receptions of DISC at B and retransmissions of ACKD to A), and A
regards the link as down after receiving both DISC and ACKD. Finally, when A receives
DISC, it sends ACKD, which is eventually received by B, perhaps after many
retransmissions of DISC from B and ACKD from A.

b) In the argument above, A regards the link as down upon receiving both DISC and
ACKD, but there is no need for B to have received ACKD by this time. Thus A can start to
re-initialize the link before B receives ACKD, and thus before B regards the link as down.

c) Note that the case being investigated here is symmetric (interchanging initialize and
disconnect) to the example in part b, and thus the demonstration here shows that the
example there causes no problems. Node B continues to send INIT (according to the B->A
master/slave protocol) until receiving ACKI. Node A responds to each of these messages,
but also sends a piggybacked ACKI when it attempts to disconnect by sending DISC.

Thus node B must receive ACKI before or simultaneously with receiving DISC; in the
simultaneous case, B regards the link as up instantaneously before starting to disconnect,
and from this point, the scenario is the same as in part a). Note that the piggybacking is
essential here, although alternate ways exist of co-ordinating the two master/slave
protocols.

2.41

a)
DISd Fail [DIsC| |INrT| Fail DISC|{INIT| | po| Fan  |DISC||INIT| | D' 0

ACKD ACKD| [ACKI ACKI} ACKI| RN O

b)
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2.42

The protocol requires each node to respond to each INIT or DISC message with an ACKI
or ACKD message. Thus if an additional INIT or DISC message were sent with each such
ack, the protocol would continue to bounce messages back and forth forever, whereas there
should be no need to continue to send INIT messages during up periods or DISC messages
during down periods.

2.43

Consider integer numbering rather than numbering modulo m. Suppose packet number SN
is sent at time t; and received at t3. Let SNpin(t1) be the lower edge of the window at t;
and RN(t2) be the lowest numbered packet not received by t2. Because of the window, we
have

Since SNmin(t}) is the greatest value of RN received up to t1, and since RN(t) is increasing
with t at node B,

SNmin(t1) < RN(t2)

Combining these equations, SN < RN(tp) + n - 1. Conversely, at most M packets can be
sent after packet number SN and before SN arrives at node B. Also, the packets on the
link or already received at t] have numbers at most SNpin(t1)+n-1. Thus the highest
consecutive numbered packet received by time t must be at most SNpin(t1)+n+M-1, and
RN(t2) £ SNnin(t1)+n+M. Combining these relationships,

RN(t2) -n- M <SN <RN(t2) +n-1

Thus the range of possible values of SN that could be received at tp, including the end
points, is 2n+M, and the modulus m must be that large to enable the sequence numbers to
be properly interpreted at the receiver.

Next suppose a receive number RN = RN(t;) is sent at t] from B and is received at t3 at
node A. The largest possible value of SNpin(t2) occurs if node B receives packet RN at
t;* and has already received RN+1,..RN+n-1. Node B then sends RN+n as a receive
number, which can be received by A by t;*. Node A then sends RN+n, ...RN+n+M-1
before ty, and node B can send at most RN+n+M before tp. Thus, SNmpin(t2) £ RN+n+M.
It follows that SNmax(t2) < RN+2n+M-1. Thus, m>2n+M guarantees that RN, arriving at
t, will not be falsely interpreted as a request for SNpax(t2).



CHAPTER 3 SOLUTIONS

3.1

A customer that carries out the order (eats in the restaurant) stays for 5 mins (25 mins).
Therefore the average customer time in the system is T = 0.5*5 + 0.5%25 = 15. By Little's

Theorem the average number in the system is N = A*T = 5*15=75.

3.2

/ 3%
— ] 2

We represent the system as shown in the figure. The number of files in the entire system is
exactly one at all times. The average number in node i is AjRj and the average number in
node 3 is A1P1 + A2P5. Therefore the throughput pairs (A1,A2) must satisfy (in addition to
nonnegativity) the constraint

AM(R1 + P+ ARy +Py) = 1.

If the system were slightly different and queueing were allowed at node 3, while
nodes 1 and 2 could transmit at will, a different analysis would apply. The transmission
bottleneck for the files of node 1 implies that

1
< —
ll_Rl

Similarly for node 2 we get that

Node 3 can work on only one file at a time. If we look at the file receiving service at node 3
as a system and let N be the average number receiving service at node 3, we conclude from

Little's theorem that



XIP1+ )‘2 P, = N

and N<1
This implies that
KIPI + XZPZ <1

3.3
“r
1
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We represent the system as shown in the figure. In particular, once a machine breaks
down, it goes into repair if a repairperson is available at the time, and otherwise waits in a
queue for a repairperson to become free. Note that if m=1 this system is identical to the one
of Example 3.7.

Let A be the throughput of the system and let Q be the average time a broken down
machine waits for a repairperson to become free. Applying Little's theorem to the entire
system, we obtain

A(R+Q+P) =N (D
from which
A(R+P) <N ()

Since the number of machines waiting repair can be at most (N-m), the average waiting
time AQ is at most the average time to repair (N-m) machines, which is (N-m)P. Thus,
from Eq. (1) we obtain

AR+ (N-m)P+P)>N 3)
Applying Little's theorem to the repairpersons, we obtain

AP<m 4



The relations (2)-(4) give the following bounds for the throughput A

N SkSnﬁn{

m_N
R+ (N-m+1)P P'R+P (5)

Note that these bounds generalize the ones obtained n Example 3.7 (see Eq. (3.9)).
By using the equation T=N/A for the average time between repairs, we obtain from Eq. (5)

min{NP/m,R + P} <T<R + (N -m+1)P

3.4

If A is the throughput of the system, Little's theorem gives N = AT, so from the relation T=
o + BN2 we obtain T = o +BA2T2 or

lz\/% (1)

This relation betweeen A ands T is plotted below.
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The maximum value of A is attained for the value T* for which the derivative of (T - c)/BT2
is zero (or 1/(BT2) - 2(T - a)/(BT3) = 0). This yields T* = 2 and from Eq. (1), the
corresponding maximal throughput value

*

A=l
VoB Q)

(b) When A < A*, there are two corresponding values of T: a low value corresponding to an
uncongested system where N is relatively low, and a high value corresponding to a
congested system where N is relatively high. This assumes that the system reaches a
steady-state. However, it can be argued that when the system is congested a small increase
in the number of cars in the system due to statistical fluctuations will cause an increase in
the time in the system, which will tend to decrease the rate of departure of cars from the
system. This will cause a further increase in the number in the system and a further increase
in the time in the system, etc. In other words, when we are operating on the right side of



the curve of the figure, there is a tendency for instability in the system, whereby a steady-
state is never reached: the system tends to drift towards a traffic jam where the car depature
rate from the system tends towards zero and the time a car spends in the system tends
towards infinity. Phenomena of this type are analyzed in the context of the Aloha
multiaccess system in Chapter 4.

3.5
The expected time in question equals

E{Time} = (5 + E{stay of 2nd student})*P{ 1st stays less or equal to 5 minutes}
+ (E{stay of 1st | stay of 1st > 5} + E{stay of 2nd })*
P{1st stays more than 5 minutes}.

We have E{stay of 2nd student} = 30, and, using the memoryless property of the
exponential distribution,

E(stay of 1st|stay of 1st>5} =5 + E(stay of 1st} = 35.
Also

P{1st student stays less or equal to 5 minutes} = 1 - e-530
P{1st student stays more than 5 minutes}= e-3/30.

By substitution we obtain
E{Time} = (5 + 30)*(1 - e-330) + (35 + 30)* e-330=35 + 30*e->730 = 60.394.
3.6

(a) The probability that the person will be the last to leave is 1/4 because the exponential
distribution is memoryless, and all customers have identical service time distribution. In
particular, at the instant the customer enters service, the remaining service time of each of
the other three customers served has the same distribution as the service time of the
customer.

(b) The average time in the bank is 1 (the average customer service time) plus the expected
time for the first customer to finish service. The latter ime is 1/4 since the departure
process is statistically identical to that of a single server facility with 4 times larger service
rate. More precisely we have

P{no customer departs in the next t mins} = P{1st does not depart in next t mins}
* P{2nd does not depart in next t mins}
* P{3rd does not depart in next t mins}
* P{4th does not depart in next t mins}
= (e—t)4 = et

Therefore

P(the first departure occurs within the next t mins} =1 - e,



and the expected time to the next depature is 1/4. So the answer is 5/4 minutes.

(c) The answer will not change because the situation at the instant when the customer
begins service will be the same under the conditions for (a) and the conditions for (c).

3.7

In the statistical multiplexing case the packets of at most one of the streams will wait upon
arrival for a packet of the other stream to finish transmission. Let W be the waiting time ,
and note that 0 < W < T/2. We have that one half of the packets have system time T/2 + W
and waiting time in queue W. Therefore

Average System Time = (1/2)T/2 + (1/2)(T/2+W) = (T+W)/2
Average Waiting Time in Queue = W/2
Variance of Waiting Time = (1/2)(W/2)2+(1/2)(W/2)2 = W2/4.

So the average system time is between T/2 and 3T/4 and the variance of waiting time is
between 0 and T2/16.

3.8
Packet Arrivals
l l l Time
—ple >l >
I‘l 1'2

Fix a packet. Let r; and 1, be the interarrival times between a packet and its immediate
predecessor, and successor respectively as shown in the figure above. Let X; and X, be the
lengths of the predecessor packet, and of the packet itself respectively. We have:

P{No collision w/ predecessor or successor} = P{r; > X;, 1, > X,}
= P{I’l > XI}P{rz > Xz}.

P{No collision with any other packet} = P, P{r, > X}
where
P, = P{No collision with all preceding packets}.

(a) For fixed packet lengths (= 20 msec)

P{rl > XI} = P{r2 > Xz} = 220 = ¢-0.01*20 — -0.2
Pl = P{rl _<_X1}.

Therefore the two probabilities of collision are both equal to e-04 = 0.67.



(b) For X exponentially distributed packet length with mean 1/4 we have

P{r, >X,}=P{r, >X,} =JP{r1 >X1X, =X}p{X, =X}dX
0

=je-xxpc-uxdx =—L
0 A+l

Substituting A = 0.01 and p= 0.05 we obtain P{r; > X,} = P{r, > X,} = 5/6, and
P{No collision w/ predecessor or successor} = (5/6)% = 0.694.

Also P, is seen to be the steady-state probability of a customer finding an empty system in
the M/M/e= system with arrival and service rate A and p respectively. Therefore P; = e-Mt =
e02, Therefore

P{No collision with any other packet} = ¢0-25/6 = 0.682.

3.9

(a) For each session the arrival rate is A = 150/60 = 2.5 packets/sec. When the line is
divided into 10 lines of capacity 5 Kbits/sec, the average packet transmission time is 1/1u=
0.2 secs. The corresponding utilization factor is p = A/u = 0.5. We have for each session
Ng = p2/(1-p)=0.5, N=p/(1 -p)=1, and T = N/A = 0.4 secs. For all sessions
collectively N and N must be multiplied by 10 to give Ng =5 and N = 10.

When statistical multiplexing is used, all sessions are merged into a single session with 10
times larger A and w; A = 25, 1/ =0.02. We obtain p=0.5,Nq=0.5,N=1,and T =
0.04 secs. Therefore NQ, N, and T have been reduced by a factor of 10 over the TDM
case.

(b) For the sessions transmitting at 250 packets/min we have p = (250/60)*0.2 = 0.833
and we have Nq, = (0.833)/(1 - 0.833) = 4.158, N = 5, T = N/A = 5/(250/60) = 1.197
secs. For the sessions transmitting at 50 packets/min we have p = (50/60)*0.2 = 0.166, Ng
=0.033, N =0.199, T = 0.199/(50/60) = 0.239.

The corresponding averages over all sessions are Ng = 5%(4.158 + 0.033) =21, N =5*(5
+0.199) = 26, T = N/A = N/(5*A+ 5*A,) = 26/(5*(250/60)+5*(50/60)) = 1.038 secs.

When statistical multiplexing is used the arrival rate of the combined session is 5¥(250 +
50) = 1500 packets/sec and the same values for NQ, N, and T as in (a) are obtained.

3.10



(a) Lett, be the time of the nth arrival, and T,=t,,; - t,. We have fors 20
P{1, >s} =P{A(t, +s) - A(t,)=0} = e*s

(by the Poisson distribution of arrivals in an interval). So
P{t,<s}=1-ebs

which is (3.11).

To show that 1;, T,, . . . are independent, note that (using the independence of the numbers
of arrivals in disjoint intervals)

P{1,>s |1, =t} =P{0 arrivals in (1, T+s] | T, = T}
= P{0 arrivals in (1, T+s]} = e-*s =P{1, > s}

Therefore 1, and T, are independent.
To verify (3.12), we observe that
P{A(t+8)-A() =0} = e
so (3.12) will be shown if
limg_,o ™ - 1+238)/86=0
Indeed, using L'Hospital's rule we have

limg_, (€3 — 1 + A8)/8 = lims_,o (-Ae*¥+21) =0

To verify (3.13) we note that
P{A(t+8)- A(t) =1} =A3e™
so (3.13) will be shown if
limg_,q (ASe-M —A3)/6 =0
This is equivalent to
limg_,o (Ae*® -24)=0
which is clearly true.
To verify (3.14) we note that

P{A(t+3)-A(t)=2} =1-P{A(t+3d)- A(t) =0} - P{A(t+d) - A(t) =1}



=1-(1-2A8 + 0(8))-(Ad + 0(8))=0(d)

(b) Let Ny, N, be the number of arrivals in two disjoint intervals of lengths T; and T,. Then

P(Ny+N, =1} = 5 _P(N, =k, N, = nk} = Zn,_P{N, =k}P{N, = n-k}
= In e MI[(AT) k! Je A2 (ATy) @ B)/(n-k)!]
= e M+ )z, _[(AT))K(ATy)®D]/[k!(n-k)!]
= e Mt + D[(A1; + ATy)¥/n!]

(The identity
n _o[akb®@-b)]/[k!(n-k)!] = (a + b)¥/n!
can be shown by induction.)
(c) The number of arrivals of the combined process in disjoint intervals is

clearly independent, so we need to show that the number of arrivals in an
interval is Poisson distributed, i.e.

P{A(+T) +...+ A+T) - A0 -...-At)=n)
=e Al +. . +MIT[(A; +. ..+ A)T]Vn!

For simplicity let k=2; a similar proof applies for k > 2. Then

P{A;(t+T) + Ax(t+ 1) - Ay(t) - Ay(t)=n]}
=30 _P{A(t+7T)- A(t) =m, Ay(t+T) - Ax(t)=n-m}
=2 0P {A(t+7) - Ay(t) =m}P{Ax(t+1T) - Ax(t) =n-m}

and the calculation continues as in part (b). Also

P{1 arrival from A, prior to t | 1 occured}
= P{1 arrival from A, 0 from A,}/P{1 occured}

= (A te-MieA2y/(hte-M) = A, /A

(d) Let t be the time of arrival. We have

P{t<s |1 arrival occured} = P{t <s, 1 arrival occured}/P{1 arrival occured}
= P{1 arrival occured in [t;, s), O arrivals occured in [s, t,]}/P{1 arrival occured}

= ()\.(S - tl)C'MS - tl)C'Ms - t‘2))/ (}.(tz - tl)C'MQ - t1)) = (S - tl)/(tZ - tl)

This shows that the arrival time t is uniformly distributed in [t;, t,].

3.11



(a) Let us call the two transmission lines 1 and 2, and let N (t) and N,(t) denote the
respective numbers of packet arrivals in the interval [0,t]. Let also N(t) = N; (t) + N,(1). We
calculate the joint probability P{N;(t) = n, N,(t) = m}. To do this we first condition on N(t)
to obtain

P{N;(t) = n, Ny(t) = m} = Z,_o=P{N,(t) = n, No(t) = m | N(t) = k}P{N(®) = k}.
Since

P{N;(t) =n, Ny() =m [N(1) =k} =0 when k#n+m
we obtain

P{N;(t) = n, Ny(t) =m} = P{N;(t) =n, Np(t) =m I N(t) = n + m}P{N(t) = n + m}
=P{Ni(t) =n, Ny(t) =m IN(t) =n + m}e-M[(At)™*M/(n + m)!]

However, given that n+m arrivals occurred, since each arrival has probability p of being a
line 1 arrival and probability 1-p of being a line 2 arrival, it follows that the probability that
n of them will be line 1 and m of them will be line 2 arrivals is the binomial probability

(n-(—m)p"(l -p"

n
Thus
NI m_-— )‘t i
P{N;(t)=n, Ny(t)=m} = (n+m p(l-p)e M-E;')mj
n .
_ c—xcp(lép!) e—m(l—p)(lt(:!P)) (1)
Hence

P{N,(® =n} = D _P{Ny() = n, Ny(®) = m}
m=0

(n)! m

_ (Atp)™ Z c_x«l_p)(?»t(l—!p))‘“
m=0

- e-ktp (ti)

(n)!

That is, {N;(1), t 2 0} is a Poisson process having rate Ap. Similarly we argue that {Ny(t),
t> 0} is a Poisson process having rate A(1 — p). Finally from Eq. (1) it follows that the
two processes are independent since the joint distribution factors into the marginal
distributions.



(b) Let A, A1, and A3 be as in the hint. Let I be an interarrival interval of Aj and consider
the number of arrivals of A that lie in I. The probability that this number is n is the

probability of n successive arrivals of A followed by an arrival of A, which is p7(1 - p).
This is also the probability that a customer finds upon arrival n other customers waiting in
an M/M/1 queue. The service time of each of these customers is exponentially distributed

with parameter p, just like the interarrival times of process A. Therefore the waiting time of
the customer in the M/M/1 system has the same distribution as the interarrival time of

process Ajp. Since by part (a), the process A3 is Poisson with rate [t - A, it follows that the
waiting time of the customer in the M/M/1 system is exponentially distributed with

parameter | - A.

3.12
For any scalar s we have using also the independence of 71 and 12
P(min{t1,12} 25)=P(1125,7225)=P(1125) P(12 2 5)
= ghs ehos = e- (M +Ag)s
Therefore the distribution of min{t;,73} is exponential with mean 1/(A1 + A2).

By viewing 11 and 17 as the arrival times of the first arrivals from two independent

Poisson processes fwith rates A and A3, we see that the equation P(T1 < 72) =A1/(A1 + A2)
follows from Problem 3.10(c).

Consider the M/M/1 queue and the amount of time spent in a state k>0 between
transition into the state and transition out of the state. This time is min{7},T2}, where 7 is

the time between entry to the state k and the next customer arrival and 15 is the time
between entry to the state k and the next service completion. Because of the memoryless

property of the exponential distribution, T1 and 17 are exponentially distributed with means
1/A and 1/u, respectively. It follows using the fact shown above that the time between
entry and exit from stae k is exponentially distributed with mean 1/(A+u). The probability
that the transition will be from k to k+1 is A/(A+L) and that the transition will be from k to
k-1 is p/(A+u). For state O the amount of time spent is exponentially distributed with mean
1/A and the probability of a transition to state 1 is 1. Because of this it can be seen that

M/M/1 queue can be described as a continuous Markov chain with the given properties.
3.13
(a) Consider a Markov chain with state
n = Number of people waiting + number of empty taxi positions
Then the state goes from n to n+1 each time a person arrives and goes fromn ton-1 (if n 2

1) when a taxi arrives. Thus the system behaves like an M/M/1 queue with arrival rate 1 per
min and departure rate 2 per min. Therefore the occupancy distribution is



n=(1'p)/ pn

where p=1/2. State n, for 0 <n <4 corresponds to 5, 4, 3, 2, 1 taxis waiting while n > 4
corresponds to no taxi waiting. Therefore

P{5 taxis waiting} = 1/2
P{4 taxis waiting} = 1/4
P{3 taxis waiting} = 1/8
P{2 taxis waiting} = 1/16
P{1 taxi waiting} = 1/32

and P{no taxi waiting} is obtained by subtracting the sum of the probabilities above from
unity. This gives P{no taxi waiting} = 1/32.

(b) See the hint.
(c) This system corresponds to taxis arriving periodically instead of arriving according to a

Poisson process. It is the slotted M/D/1 system analyzed in Section 6.3.

3.14

(a) The average message transmission time is 1/i = L/C so the service rate is i = C/L.
When the number of packets in the system is larger than K, the arrival rate is A,. We must
have

0<A,<p
0<A,

in order for the arrival rate at node A to be less than the service rate for large state values.
For these values, therefore, the average number of packets in the system will stay bounded.

(b) The corresponding Markov chain is as shown in the figure below. The steady-state
probabilities satisfy

Mth,  NHA, M+, N A
OO0 OOE
B il il 1l il il
Pn = P"Po for n<k
Pn=P1™*pkpy for n>k

where p = (A + A)/H, p; = A,/i. We have

an:O Pn= 1

or

p(}z“k n=0P" + 2°<’n=l<+lpln-kl:)k =1



from which we obtain after some calculation
Po=[(1-p)1 - pUI1 - p; - PX(P-py)] for p <1
and
po=(1-pD/N1 +k(1-p1)] forp=1
For packets of source 1 the average time in A is
T,= /WA +N)
where
N =2 np,

is the average number in the system upon arrival. The average number in A from source 1
is

Nl = )"ITI
For packets of source 2 the average time in A is
T, = (1/n)(1+ N')

where
k-1
2 1y
N' = n=0
k-1
2 P
n=0

is the average number in the system found by an accepted packet of source 2. To find the
average number in the system from source 2 we must find the arrival rate into node A of
packets from source 2. This is

A’y = A,P{arriving packet from source 2 is accepted} = A, 2kl p.

and the average number from source 2 in A is

N2 = l’sz

3.15



The transition diagram of the corresponding Markov chain is shown in the figure. We have
introduced states 1', 2, . . ., (k-1)' corresponding to situations where there are customers
in the system waiting for service to begin again after the system has emptied out. Using
global balance equations between the set of states {1',2', ... ,i") and all other states, for i’

=1,..., (k-1)", we obtain Apy =Ap; =Apy =...=APx.1y> SO
Po=P1r=P2=...=Px-1y

Also by using global balance equations we have

Mp1 = Apo
1p2 = A(p; + p1) = A(p; + Po)

HPx = APx.1 + Pgk-1y) = MPi-1 + Po)
Hpis1 = Ap; izk

By denoting p = A/1L we obtain

pi=p(l+p+...+p"po 1<i<k
p;=pHk(1+p+...+pkl)p, i>k.
Sub§tituting these expressions in the equation pyr +. ..+ Pg.1y +Po +P1 +... =1 we
obtain pg

k .
1-pH 1-p*
po[k+24pl—pp + 1_% p2(1+p+...)J=1

K 5 -1
p i p k
po=|k+ o (1—p)+——(1—p>)
° ( I le (1-p)

After some calculation this gives pp = (1 - p)/k (An alternative way to verify this formula is
to observe that the fraction of time the server is busy is equal to p by Little's theorem).
Therefore, the fraction of time the server is idle is (1 - p). When this is divided among the k



equiprobable states 0, 1', . . ., (k-1)' we obtain pg = (1 - p)/k. The average number in the
system is

=3 Kk-1) O,
N=p; +2py +... + (k= Dpgyy + E}Pi=P0 > +2‘Pi
i=0 i=0

where the probabilities p; are given in the equations above. After some calculation this
yields

N = (k-1)/2 + p/(1 - p).

The average time in the system is (by Little's Theorem) T = N/A.

3.16

The figure shows the Markov chain corresponding to the given system. The local balance
equation for it can be written down as :

PoPo=P;
P P=P,

= Pha =pnpn= pn-lpnpn-l= = (p Op 1 "pn)pO
but,

Zpi =po(4p P P * 1) =1

i=0 -
e Sles o)
k=0



3.17

The discrete time version of the M/M/1 system can be characterized by the same Markov
chain as the continuous time M/M/1 system and hence will have the same occupancy
distribution.

3.18

1 1 1 1
2 2 2 2

1
P, =3P
1
Py =5 P for 1<n<4
4
Zpi =1
i=0

Solving the above equations we get,

24-n
P, = 3 for 0<n<4
3 26
N=Dnp, = 3T
n=0

P(a customer arrives but has to leave) = 1/31
Hence the arrival rate of passengers who join the queue =
(1-p,) A= g—?- per minute =2 _ (say)

26/31 13

——30/31 = meutes

T=NA, =

3.19



We have here an M/M/m/m system where m is the number of circuits provided by the
company. Therefore we must find the smallest m for which p,, < 0.01 where py, is given
by the Erlang B formula

__(vw"™/m!

i MJp)"/n!
=0

We have A = 30 and p = 1/3, so A/ = 30-3 =90. By substitution in the equation above we
can calculate the required value of m.
3.20
We view this as an M/M/m problem. We have
2=0.5, EX) = 1/u = 3, m=? so that W<0.5

We know that the utilization factor has to be less than 1 or m has to be greater than or equal
to 2. By the M/M/n results we have

A p
w=ZH R
A(Q-Ay  mu-A
my
pp A"
where PQ= S —
m! (1--2)

myL

o
- ™ m! (1- A/)

and p, =

As can be seen from the expressions above m should be at most 5 because at m=5 , W is
less than 0.5 because Pg is less than 1.

The following C program calculates the optimum m.

double PO(lambda,mu,m) {
mrho = lambda/mu;
rho = mrho/m;
for(n=0; n<m; n++)
templ = pow(mrho,n)/ fact(n);



temp2 = pow(mrho,m)/(fact(m)*(1-rho));
return(1/( temp1 + temp2 )); /* this returns py */

}

int fact(n){
if (n==0) return (1);
else
return(n* fact (n-1));

}

double W(lambda,mu,m){
PQ = PO(lambda,mu,m) * pow(mrho,m) /
(fact(m) * (1-rho));
return(PQ/(m *mu - lambda));
} /* this returns W for a given m */

main() {
lambda = 0.5; mu = 0.333; previous_W = 100.0;
for(m=2; m<=5; m++)
if ((temp = W(lambda,mu,m)) < Previous_W)
previous_W = temp;
else
{ print(m-1);
break

ed

et

3.21

We have py = pipo where p = A/p. Using the relation

we obtain
__1 1-p
Po m 1 pm+1
>
n=0
Thus
p“(l P) 0<n<m
l_pm+1
3.22

(a) When all the courts are busy, the expected time between two departures is 40/5 = 8
minutes. If a pair sees k pairs waiting in the queue, there must be exactly k+1 departures
from the system before they get a court. Since all the courts would be busy during this
whole time, the average waing time required before k+1 departures is 8(k+1) minutes.



(b) Let X be the expected waiting time given that the courts are found busy. We have
A =1/10, u = 1/40, p=A/(5n) =028
and by the M/M/m results

__PPo
A(1-p)

Since W = XPq, we obtain X = W/Pq = p/[A(1 - p)] = 40 min.

3.23

P = P{the 1st m servers are busy}
as given by the Erlang B formula. Denote

1, = Arrival rate to servers (m+1) and above
A, = Arrival rate to server m.

We have

Im = Pm7L
A'm =Im-1-Im ™ (pm-l - pm)}-

The fraction of time server m is busy is

by = An/l.

3.24

We will show that the system is described by a Markov chain that is identical to the M/IM/1

chain. For small § we have
P{k arrivals and j departures} = 0(3) if k+j=2

P{0 arrivals and 1 departure | starting state =121}
=P{0 arrivals | starting state i > 1} e P{1 departure | starting state i > 1}



We have
P{ O arrivals | starting state i > 1} = P{0 arrivals} = 1 - A8 + 0(d).

The probability P{1 departure | starting state i > 1} is obtained from the binomial
distribution or sum of i Bernoulli trials, each with a probability of success equal to (/i) &
+0(8). We need the probability of one success, which is

1
( 1 ) (1- (W) 8+ 0(8))1 ((Wh) &+ 0(3))

Therefore

P{O arrival§ and 1 departure | starting state =i > 1}
1
= ( 1 )(1- (Wi) & + 0(8))i1 (/i) & + 0(8))e (1-A8 + 0(3)) = ud + 0(3)
Similarly

P{1 arrival and 0 departure | starting state =1}
=P{1 arrival} ¢ P{0 departure | starting state =1}

i

=(A8+0) e[ ( 0 )(1 - (W) & +0(8))i] = A8+ 0(8)

Thus the transition rates are the same as for the M/M/1 system.

3.25

Let n; be the number of radio-to-radio calls and ny be the number of radio-to-nonradio calls
which have not finished yet. Then we have the following Markov chain:



all states such that

n <
2n1+ 2 <m

Pl=—~>}‘11
Pz=——}ﬁ2

The occupancy distribution p(ny,n) is of the form

p(n,n,) = p’l"(l-p PP52(1-p »)/G, for 2n;+ny < m

and O otherwise (it is easy to check that this formula satisfies the global balance equations).
To calculate G note that

Y Xphpn)=1=G= 3 plUpppidpy=

{(n pN)I2n ﬁm} {(n pnI2nzn 2Sm}

m2n, l?] - m-2n,+1
2P (P PP = 2 PR YIP ) —E—
nz=0 nld) 2
EJ I;J 1 p n)
=1pp X pi-2ap 5 (——;)
n‘=0 n‘=0 p2

3]

n =0
1



2
LY Y] p2
=1-p |'12'| -(1-p 1)p2 p
1- L
2
P2
2[EJ +2 l.mJH
m m; p t24  -pt2
- 1-plzJ+1 -(-p ) m12 5| Uy -
1 P2~ Py
f
m m+2 _ sm/2+l
l-p?"1 ~1-p p zpi—z—p—l—— if m even
{ 27 Py
=G= m+l
m+l prt-p 2
1-p 2 —(1-p Ppp;————— ifmodd
1 2_
Y P2-P,
Let
p1 = blocking probability of radio-to-radio calls
p2 = blocking probability of radio-to-nonradio calls
Then
p,= Y, Py
2n 4N =m
p,= Y ppn)=p,+ »  pgny).
m1< 2n 40 Sm 2nn,=m1l
But

2] z
p,= 2p(ny, m2n) = 3, piil-p p T (1-p /G =

n =0 n =0
1 1

L S|
_-p U-p 3 1-{p Jp §)L2J
G P

and



1-
(1-p )(1-p Jp 7" (p2

5 2
P=P,+ gp(nl,m-l-2n1)= P,+ G P
P2

3.26

Define the state to be the number of operational machines. This gives a Markov chain,
which is the same as in an M/M/1/m queue with arrival rate A and service rate . The
required probability is simply p, for such a queue.

3.27

Assume 1 > U2 .

We have the following Markov chain:

horizontal cut

B+l ‘
2 vertical cut
|

Let state 1 represent 1 customer in the system being served by server 1
Let state 1' represent 1 customer in the system being served by server 2

i) Flow across a vertical cut

A
H1+ H2

pi= pi-1 foriz2

Therefore



i-2

_ N )
(A foriz?2
Pi (ul +uz) P2

ii) Flow in and out of state 1'

(A +12) P1r =p2 U1

Therefore

i=py —HL
PI=P2 7= 1

ii1) Flow across horizontal cut

p1A=(Pr+P2)u2

Therefore

p1=%2-(p2 +py —HL—

A

iv) Flow in and out of state 0

POA =T M1 +P1' M2

+ U2

Cpp b2 e Bl
Jom ()

Therefore
Y (1S %) 23] B po
PO=3 p2( A (l TR uz) e uz)
We have
Zpi=1
1
from which
1 (1 + (u2/) 1 (1+@ui/A)) p2
p2= + +
i A A+ o A
L1+ M2

3.28

(1 +

A+ 2

)

-1



We have

N N
E{f’} =E {Zyi] = { E{ (Zyi] | nH = E{ns2+ n(n-1)I}
=1 =1

= E{n}(s3- I’) + E{n*}I"

Since

E{n} = My, E{n } =02+ (/) =M/ + (M)
we obtain

o= E{f’} - F2= E{f’} - (MWT’= (M) 3- T + (M) + M)A = AT

= (Mws}
so finally
Of= O"/I-L)l/zs'y

3.29

For each value of x, the average customer waiting time for each of the two types of
customers (x items or less, vs more than x) is obtained by the P-K formula for an M/G/1
system with arrival rate and service time parameters depending on x. By computing the
overall customer waiting time for each x in the feasible range [1,40], we can numerically
compute the optimal value of x.

Here is a program to find x to minimize the average waiting time:

Lambda=1; Past_T= 1000000; T=0; x=-1;
while (x<=40) do
if (T> Past_T) do
begin
Past T=T;
X = Xx+1;
lambdal = lambda * x/40;
E_service_time_1 = (1+x)/2;
E_service_time_2 = (41+x)/2;
E_service_time_squarel = 0;
E_service_time_square2 = 0;
fori=1to x do
E_service_time_squarel =
E_service_time_squarel+(i*i);



for i=x+1 to 40 do
E_service_time_square2 =
E_service_time_square2+(i*i);
E_service_time_squarel =
E_service_time_squarel/x;
E_service_time_square2 =
E_service_time_square2/(40-x);
T1 =E_service_time_1 +
(lambda*E_service_time_square1/(2.0%(1-
lambdal*E_service_time_1)));
T2 =E_service_time_2 +
(lambda*E_service_time_square2/(2.0*(1-
lambda2*E_service_time_2)));
T = (T1*x + T2*(40-x))/40;
end;
print(x);

3.30

From Little's Theorem (Example 1) we have that P{the system is busy} = AE{X} .
Therefore P{the system is empty} =1 - AE{X]}.

The length of an idle period is the interarrival time between two typical customer arrivals.
Therefore it has an exponential distribution with parameter A, and its average length is 1/A.

Let B be the average length of a busy period and let I be the average length of an idle
period. By expressing the proportion of time the system is busy as B/(I + B) and also as
AE{X} we obtain

B =E{X}/(1- AE{X}).

From this the expression 1/(1 - AE{X}) for the average number of customers served in a
busy period is evident.

3.31

The problem with the argument given is that more customers arrive while long-service
customers are served, so the average service time of a customer found in service by another
customer upon arrival is more than E{X]}.

3.32

Following the hint we write for the ith packet



N.
Ui=R;+ Xxi-j
j=

where

: Unfinished work at the time of arrival of the ith customer
: Residual service time of the ith customer

: Number found in queue by the ith customer

: Service time of the jth customer

A_.>< ....Z »-w ...(.::

Hence

N

i
E{U;} =E{R;} + E{X;_; IN;}
Fl

Since X ; and N; are independent
E{U;} =E{R;} + E{X]E{N;}

and by taking limit as i—ee we obtain U =R + (1/)Ng =R + W)W =R + pW, so
W = (U -R)/p.

Now the result follows by noting that both U and R are independent of the order of
customer service (the unfinished work is independent of the order of customer service, and
the steady state mean residual time is also independent of the customer service since the
graphical argument of Fig. 3.16 does not depend on the order of customer service).

3.33

Consider the limited service gated system with zero packet length and reservation interval
equal to a slot. We have

Trpm = Waiting time in the gated system
For E{X2} =0, E{V} =1, 6y2 =0, p = 0 we have from the gated system formula (3.77)
Waiting time in the gated system = (m + 2 - 24)/(2(1 - X)) = m/(2(1 - X)) +1

which is the formula for Ttpy given by Eq. (3.59) .

3.34



(a) The system utilization is p, so the fraction of time the system transmits data is p.
Therefore the portion of time occupied by reservation intervals is 1 - p.

(b) If
p: Fraction of time a reservation interval is followed by an empty data interval
and M(t) is the number of reservation intervals up to time t, then the number of packets

transmitted up to time t is = (1 - p)M(t). The time used for reservation intervals is =
M()E{V}, and for data intervals = (1 - p)M(t)E{X]}. Since the ratio of these times must be

(1 - p)/p we obtain

(1-p)/p=MEOE{VH/A(1 - pMME{X}) = E{V}/(( - p)E{X})
or

1-p=(E{V)A( - pE{X})
which using A = p/E{X}, yields p = (1 - p - AE{V})/(1 - p)

3.35

Consider a gated all-at-once version of the limited service reservation system. Here there

are m users, each with independent Poisson arrival rate A/u1. Each user has a separate
queue, and is allowed to make a reservation for at most one packet in each reservation
interval. This packet is then transmitted in the subsequent data interval. The difference with
the limited service system of Section 3.5.2 is that here users share reservation and data
intervals.

Consider the ith packet arrival into the system and suppose that the user associated with
packet i is user j. We have as in Section 3.5.2

E(W,} =E(R;} + E(N;}/u+ (1 + E(Q)} - E{m, JE{V)

i
where W;, R;, N;, i, E{V} are as in Section 3.5.2, Q; is the number of packets in the queue
of user j found by packet i upon arrival, and m; is the number (0 or 1) of packets of user j

that will start transmission between the time of arrival of packet i and the end of the frame
in which packet i arrives. We have as in Section 3.5.2

R=lim __E(R) +E{N}/u+(1+E{Q}-E(m)E(V)
N =lim;_.. E{N;,} =AW
Q=lim; ., E{Q} =AW/m
so there remains to calculate lim;,_, E{m;].

There are two possibilities regarding the time of arrival of packet i.



a) Packeti arrives during a reservation interval. This event, call it A, has steady
state probability (I-p)

P{A} =

Since the ratio of average data interval length to average reservation interval length
is p/(1-p) we see that the average steady state length of a data interval is pE{V}/(1-
p). Therefore the average steady state number of packets per user in a data interval
is pE{V}/((1-p)mE{X}) = AE{V}/((1-p)m). This also equals the steady state value
of E{mi| A} in view of the system symmetry with respect to users

lim, E{mil A) =.2~M,
100 (1 _ p)m

b) Packet i arrives during a data interval. This event, call it B, has steady state
probability p

P{B} =p.
Denote
o =lim;_, E{m; B},

oy=lim;_,. E{m, | B, the data interval of arrival of packet i contains k
packets}.

Assuming k > 0 packets are contained in the data interval of arrival, there is equal
probability 1/k of arrival during the transmission of any one of these packets.
Therefore

k
21 -n k(k-l) k-1
—= k m m

Let P(k) be the unconditional steady-state probability that a nonempty data interval
contains k packets, and E{k }and E{k2} be the corresponding first two moments.
Then we have using Bayes' rule

lim;_,.. P{The data interval of arrival of packet i contains k packets} = kP(k)/E{k}.

Combining the preceding equations we have

kP(k) o POk(k-1)  E{(K} 1
E{k} ~ 2E{k}m  2mE{k} 2m "




We have already shown as part of the analysis of case a) above that
E{k} =AE{V}/(1-p)

so there remains to estimate E{k2}. We have

B¢} = ) KP(K)

k=1

If we maximize the quantity above over the distribution P(k), k = 0,1,..., m subject
to the constramts 2m _, kP(k) = E{k}, ka_o P(k) =1, P(k) 20 ( a simple linear
pro g problem) we find that the maximum is obtained for P(m) = E{k}/m,
P(0) = 1 -E{k}/m, and P(k) =0, k = 1,2,...,m-1. Therefore

E{k?} <mE{k}.
Similarly if we minimize E{k2} subject to the same constraints we find that the
minimum is obtained for P(k'-1) = k' - E{k}, P(k) =1 - (k' - E{k}) and P(k') =
for k # k' - 1, k' where k' is the integer for which k' - 1 £ E{k} < k. Therefore
E{k2?} 2 (k' -DX(K' - E{k}) + (K')?[1 - (k' - E{k})]
After some calculation this relation can also be written

E{k2} 2 E{k} + (k' -1)(2E{k} - k") for E{k} e (k'- 1,k),
k=1,2, .., m

Note that the lower bound above is a piecewise linear function of E{k}, and equals
(E{k})? at the breakpoints k' = 1,2,....,m. Summarizing the bounds we have

E{k} + (k' - DQE{k} - k)
2mE (k) " 2m 2 2m’

where k' is the positive integer for which

k'-1<E{k} <k'.
Note that as E{k} approaches its maximum value m (i.e., the system is heavily

loaded), the upper and lower bounds coincide. By combmmg the results for cases
a) and b) above we have

im __E(m) = P(A}lim _E(m]A}+P(B} lim__E(m,|B)



E
= (1-p)_“_"}_+pa
(1- p)m

or finally

AE(V]}

h'm,_mE{mi} = +pa

1

where « satisfies the upper and lower bounds given earlier. By taking limitasi —
< in the equation

E{W;} =E{R;} + E{N;}/u + (1 + E{Q;} - E{m; DE{V}

and using the expressions derived we finally obtain

(1 -pa— )‘E{V})E{V}

Wo_ ME{X} . A-pE(VY m
- AE AE AE
(1-p-57) Ai-e - 1-p-

where o satisfies

E{k}) + - DQE{k} - k) 1 ___

2mE{k} 2m

1
2m

R

| =

E{k} is the average number of packets per data interval
E{k} =AE{V}/(1-p)

and k' is the integer for which k' - 1 < E{k} < k'. Note that the formula for the
waiting time W becomes exact in the limit both as p — 0 (light load), and as p — 1
- AE{V}/m (heavy load) in which case E{k} - m and a— 1/2 - 1/2m. Whenm =
1 the formula for W is also exact and coincides with the one derived for the
corresponding single user one-at-a-time limited service system.

3.36

For each session, the arrival rates, average transmission times and utilization factors for the
short packets (class 1), and the long packets (class 2) are

A, = 0.25 packets/sec, 1/y, = 0.02 secs, p; =0.005
A, = 2.25 packets/sec, 1/u, = 0.3 secs, p, = 0.675.



The corresponding second moments of transmission time are

E{X,2} = 0.0004 E{X,2} = 0.09.

The total arrival rate for each session is A = 2.5 packets/sec. The overall 1st and 2nd
moments of the transmission time, and overall utilization factors are given by

/i = 0.1%(1/;) + 0.9%(1/p,) = 0.272
E{X2} = 0.1*E{X,2} + 0.9¥E{X,2} = 0.081
p = ML = 2.5%0.272 = 0.68.

We obtain the average time in queue W via the P - K formula W = (AE{X?2})/(2*(1 - p)) =
0.3164. The average time in the system is T = 1/u + W = 0.588. The average number in
queue and in the system are Ng =AW =0.791, and N =T = 1.47.

The quantities above correspond to each session in the case where the sessions are time -
division multiplexed on the line. In the statistical multiplexing case W, T , Ng and N are
decreased by a factor of 10 (for each session).

In the nonpreemptive priority case we obtain using the corresponding formulas:

Wi = (ME{X;2} + MLE(X2})/(2*(1 - p) = 0.108

W, = (LE(X,2) + LE{X,2)/2*(1 - pp*(1 - py - py) = 0.38
T, = U, + W, =0.128

T2 = 1/}12 + W2 = 1.055

No1 = M*W, = 0.027 Nga = A*W, = 0.855
N, = A *T; = 0.032 N, = A,*T, = 2.273.

3.37

(a)
A = 1/60 per second
E(X) = 16.5 seconds
E(X?) = 346.5 seconds
T = E(X) + AE(X2)/2(1-AE(X))
= 16.5 + (346.5/60)/2(1- 16.5/60) = 20.48 seconds

(b) Non-Preemptive Priority
In the following calculation, subscript 1 will imply the quantities for the priority 1

customers and 2 for priority 2 customers. Unsubscripted quantities will refer to the overall
system.



E(X)=16.5, E(X,)=4.5,E(X,) =195

ECC) = 346.5

R = % A E(X?) = 2.8875
p, =% E(X,)=0015
p, =%, E(X,) =0.26

W, = = 2031

l-p1
W2 = —E— =4.043
l-p2
T, =7.4315, T2 = 23.543
AT +AT

(c) Preemptive Queueing

The arrival rates and service rates for the two priorities are the same for preemptive
system as the non-preemptive system solved above.

E(X’) = 22.5, E(X}) = 427.5
1 2
R, == E(X}) =0.0075

R, =R+ .;. A, E(X2) = 2.8575

T - EX)(1p ) +R,

l-p1

r, 2 B P Ry
(1-p )(1-p -P,)

T=(\T, + LT,/ =19.94



3.38

(a) The same derivation as in Section 3.5.3 applies for Wy, i.e.

Wie=R/(1-py-...-p)d-pr-...- Py

where p; = A;/(myL), and R is the mean residual service time. Think of the system as being
comprised of a serving section and a waiting section. The residual service time is just the
time until any of the customers in the waiting section can enter the serving section. Thus,
the residual service time of a customer is zero if the customer enters service immediately
because there is a free server at the time of arrival, and is otherwise equal to the time
between the customer's arrival, and the first subsequent service completion. Using the
memoryless property of the exponential distribution it is seen that

R = PqE{Residual service time | queueing occurs} = Po/(mL).
(b) The waiting time of classes 1, . . ., k is not influenced by the presence of classes
(k+1), ..., n. All priority classes have the same service time distribution, thus,
interchanging the order of service does not change the average waiting time. We have
W ) = Average waiting time for the M/M/m system with rate A+ o+ A

By Little's theorem we have

Average number in queue of class k = Average number in queue of classes 1 to k
- Average number in queue of classes 1 to k-1

and the desired result follows.
3.39

Let k be such that

Pr+...+tpPeSl<py+...+pg

Then the queue of packets of priority k will grow infinitely, the arrival rate of each priority
up to and including k-1 will be accomodated, the departure rate of priorities above k will be
zero while the departure rate of priority k will be

~ (1_p1_'“—pk_])
M= X

In effect we have a priority system with k priorities and arrival rates



i’i'—' }“i fori<k

_(d=py= = pyy)
= '

M

For priorities i < k the arrival process is Poisson so the same calculation for the waiting
time as before gives

k
DAX?
=1 .
W. = , k
R <

For priority k and above we have infinite average waiting time in queue.

3.40

(a) The algebraic verification using Eq. (3.79) listed below
We=R/I(1-py-...-pe)d-py-.o-po)

is straightforward. In particular by induction we show that

R(pi+ +py
l-pp— =g

P1Wy + -+ oWy =
The induction step is carried out by verifying the identity

R(py+ "+ py N Pr1R
I=-pi==px d=p1=pP)A=pP1="" = Prs1)

P1W1+  + P Wi+ P Wi =
The alternate argument suggested in the hint is straightforward.

(b) Cost

C= ZCkNlé= Z cklka = z
k=1 k=1

k=1

Cx
=—|p. W
Xk)pk k

We know that W1 < W <..... < Wj. Now exchange the priority of two neighboring
classes i and j=i+1 and compare C with the new cost

WSk '
C'= Z(X= pkW k

PERRINN




In C' all the terms except k =1 and j will be the same as in C because the interchange does
not affect the waiting time for other priority class customers. Therefore

C; A
C-C=ZLpW, +Idpw;-3 2
X PjYY; X Pi X, Pl i~ X, p_]

We know from part (a) that

2 P W = constant.
k=1

Since Wk is unchanged for all k except k =1 and j (= i+1) we have
pW;+ ijj = piW'i+ij'j.
Denote

B = p;W - piW; = pjW;-p;W'

Clearly we have B > 0 since the average waiting time of customer class i will be increased
if class i is given lower priority. Now let us assume that
Sigl

i

.

B

Then

C; C'
C-C==(p W -pW)- J W W B =

Therefore, only if =i <L can we reduce the cost by exchanging the priority
i i+l
order of i and i+1. Thus, if (1,2,3,...,n) is an optimal order we must have

3.41

Let D(t) and Tj(t) be as in the solution of Problem 3.31. The inequality in the hint is evident
from Figure 3.30, and therefore it will suffice to show that



t
. 1 . 1
bm <+ Z Ti=bm T i T; (1)

ieD(t) 1=1
We first show that
T/t =0 as k— oo (2)

where t, is the arrival time of the kth customer. We have by assumption
limy _, . (k/ty) =2,
and by taking the limit as k—<o in the relation

k+1ftgq - Ky = gy - (e - )/t )(k/ty)

we obtain
i/t — 1 as k> oo 3)
We also have
Kk k
=1l ‘=L — AT as k — oo )
Y% b
o)
k +1 k
S 1 3
. l . 1
1=1 _ i=1 -0
t'k-e—l (k
or

which proves (2).

Let € > 0 be given. Then, from (2), there exists k such that T; < t; € for all i > k. Choose t
large enough so that a(t) > k. Then



B(t) af)

> Ms< Er(r)dx <S> M
=1 i=1

or

B() aft)
ZMi ZMi

B(1) i=1 1 a(t) =1
t BO S?J.or(ﬂdm—t— (1)

Under the assumptions

e 20 _ o BO
t—o0 t t—o0 t
) k
M= E&EEM
1=
we have
R=AM
where

t

R = lim 1 1(T)dt

t—el Jy

is the time average rate at which the system earns.

(b) Take r;(t) =1 for all t for which customer i resides in the system, and ry(t) = 0 for all
other t.

(c) If X; and W; are the service and queueing times of the ith customer we have
M, = XiW; + X2
where the two terms on the right above correspond to payment while in queue and service

respectively. Applying part (a) while taking expected values and taking the limit as i — e,
and using the fact that X; and W; are independent we obtain

U =ME{X}W + E{(X;%/2})

where U, the rate at which the system earns, is the average unfinished work in the system.
Since the arrival process is Poisson, U is also the average unfinished work seen by an
arriving customer. Therefore U =W, and the P = K formula follows.
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We have similar to Section 3.5
W=R+pW+ \EVB (1)
where the mean residual service time is

ATX2

R=2

We derive the average waiting time of a customer for other customers that arrived in the
same batch

Wy = erE{wB | batch has size j}

J

where
P; = Probability a batch has size ]
1; = Proportion of customers arriving in a batch of size j
We have
I
2ok "
n=1
Also since the customer is equally likely to be in any position within the batch
. o sl j-1g
E{Wp | barch is of size j} = ) (k~ I)Xj-= -—2-—X

k=1

Thus from (2)

iP.G-DX  X(n?-n
E{WB}=ZJ J(J_) _X(n' -n
J 2n 2n

Substituting in (1) we obtain
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(a) Let pg be the steady state probability that an arriving packet finds the system empty.
Then, in effect, a packet has service time X with probability 1 - pg, and service time X + A
with probability p,. The fraction of time the system is busy is obtained by applying Little's
Theorem to the service portion of the system

ME{X}(1 - pp) + (E{X} + E{A})po] = ME{X} + E{A}po)

This is also equal to P{system busy} =1 - p,, so by solving for p,, we obtain
Po = (1 - AE{X})/(1 + AE{A}) = (1 - p)/(1 + AE{A})

where p = AE{X]}.

(b) Let

E{I} = average length of an idle period
E{B} = average length of a busy period

Since the arrival process is Poisson we have

E{I} = 1/A = average time betwen last departure in a busy period and the
next arrival in the system

B IA 1-AE{X}
POSE{T} +E{B} ~ 1A+E{B} _1+AE{A}

E{X}+E{A} E{X}+E{A}

BB =—""Ex2 -~ 1-p

(c) We calculate the mean residual time using a graphical argument



R(7)

A X X, X, Ay

From the figure we have

M( N(t)

t
1 1
J’oR(T)drz Zixiz““ ij(i»Ai + 502
i=1 1:1

where Xj; is the service time of the first packet of the ith busy period, and

M(t) =# of arrivalsup to t
N(t) = # of busy periodsup to t

Taking the limit as t—ee, and using the fact
Ny 1-p_ Ml-p)

=== E{B] - T+AE(A]

we obtain
M(I)1 N(t) .
t ~x? DA 4 =A2
Jl R(7)dt szx ZX_](I)AI + 2A1
R = lim d U M(1) i=1 + N(t) i=1
t—oo t t— t M(t) 1 N(t)

We have, as in Section 3.5, W =R +pW or
W=R/1l-p)

Substituting the expression for R obtained previously we obtain

tle—»le «—» ‘;5’""'



_AE(X} A

2 2
=50=p) " T+ AEAD XA }-E{X}]

Y
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(a) It is easy to see that
Pr (system busy serving customers) = p

Pr (system idle) = 1-p = P(0 in system) + P(1 in idle system) + ...
+ P(k-1 in idle system)

It can be seen that

P(0 in system) = P(1 in idle system) = ... = P(k-1 in idle system) = (1-p)/k
implying that
(1-p)k-1)
P(nonempty and waiting) = k

(b) A busy period in this problem is the length of time the system is nonempty. The end of
each busy period is a renewal point for the system. Between two renewal points, the
system is either waiting (with O or more customers) or serving.

Let W be the expected length of a waiting period.
Since arrivals are poisson, we have

% _k
W ==
)\'.

Let S be the expected length of a serving period.
_S
S+

Then the probability that the system is serving = p =

3]

implying that

-1 =

ol
vl|€|

or

_A

S = T

1

k
_ ow P
-p 1-p



Let I be the expected length of time the system is empty

The expected length of a busy period = S + W -1

PN k1

Ip A A
pk+(1 p)(k—l) k+p-1
Ml-p) A(1-p)

p (k/A) .
1—

is k times the average length of an M/G/1 busy period and k;“l

is the average time from the first arrival until the system starts serving.

(c) We will call the k packets that are in the system at the beginning of the busy period
"old" packets. Those that come during the busy period (and are therefore served during
this period) are called "new" packets.

We consider the following service discipline: the server transmits old packets only when it
doesn't have new packets available at that moment (so it's not FCFS). Since this discipline
doesn't depend on the length of the packets it will give the same average number of packets
in the system. Thus a busy period looks as illustrated below:

by l b, ’ I‘ b1 + by
R DAY AU N B P SR B

old 1 ew old2 new  old3 oldk-1 new oldk new
< >
Busy period

In a subperiod b; of the busy period, the old packet i and the new packets combine to give
the same distribution as a normal M/G/1 busy period except that there are an extra k-i old
packets in the system. It is easy to see that the distribution of the length of by,bp, ... bx is
the same since each of them is exactly like an M/G/1 busy period.

= E(N | serving) = E(N | by) P(by | serving) + ... + E(N | bx) P(bg | serving)

P(b; | serving) =



E(N | b)) = ENMyG/1 | busy) +k-i

implying that
. 1 k .
E(N | serving) = k E(NMm/G/1 | busy) + ¥ (k-1)
i=1
k-1
==—+EMNwm/c1 | busy)
We have

ENM/G/1) = E(NMG/1 | busy) p

from which

E(Nm/G/1 | busy) = ?QipMGal

or

E(N | serving) = _]_E(I‘I_I\;m +%l

Also
E(N | busy waiting) = E(N | waiting with 1) P(waiting with 1 | busy waiting) + ...

+ E(N | waiting with k-1) P(waiting with k-1 | busy waiting)

P(waiting with i | busy waiting)
= P(waiting with j | busy waiting) = oy forall 0 <i, j <k

from which

. 1 k1 k
E(N | busy waiting) == i =3
1

i=

(d) EQN) = E(N | busy waiting) P(busy waiting) + E(N | busy serving) P(busy serving)

_k (D -p) . (EMwmgn) k-1
-k &l +f 2o, z)p

k-1
=ENMm/G/) + -
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We have

W=R/1-p)

R = lim hﬁ X2+ = 1y V2
t—>o0 2

where L(t) is the number of vacations (or busy periods) up to time t. The average length of
an idle period is

oo A\ oo
1=J p(v“ vxe*“dwj rxe'“dz]dv
0 0 \Y

and it can be seen that the steady-state time average number of vacations per unit time

where

L®) _1-p
t—oo  , t I
We have
Lo V2
Lo 27‘ -
lim, 12 L) =1 © 0 LOV2_Vd-p)
X0 4 lrm,_eq t L@ =22 ¢+ 21 21
Therefore
—
g, V-p)
R= o+
and
_AxXE VP
Wesi-p T
3.47

(a) Since arrival times and service times are independent, the probability that there was an
arrival in a small interval d at time 7T - x and that this arrival is still being served at time T is
AQ[1 - Fx(x)].



(b) We have

X = j:’xdFX(x)
0

and by calculating the shaded area of the figure below in two different ways we obtain

oo

j xdFX(x) = j: [1- FX(x)]dx
0 0

This proves the desired expression.

E, (x) A

dF (x)

>
—>» 4 X
X X + dx

(c) Letp,(x) be the steady state probability that the number of arrivals that occurred prior to
time T — x and are still present at time T is exactly n.

Forn > 1 we have
Pa(x - 8) = {1 - A[1 - Fx(x)]8}pa(x) + A[1 - Fx(x)18py1(x)
and for n =0 we have
Po(x - 8) = {1 - A[1 - Fx(x)]8}po(x).
Thus pp(x), n =0, 1,2, . . . are the solution of the differential equations

dp,/dx = a(x)py(x) - a(X)pp.1(X) for n>1



dpy/dx = a(x)pg(x) for n=0
where

a(x) = A[1 - Fx(x)].
Using the known conditions

Pp(2) =0 forn>1
pole) = 1

it can be verified by induction starting with n = 0 that the solution is

-jra@)dy [J a(y)dyl"

p,(x)=[e ]—)L_n-!_’ x20,n=0,1,2,..
Since
[y =2f 11 - Egiay = 1E(X)
0 0
we obtain

AE(x) AE{X)]"

— n=0,1,2,..

p,0)=¢

Thus the number of arrivals that are still in the system have a steady state Poisson
distribution with mean AE{X}.
3.48
(a) Denote
f(x) = E[(max{0,r-x})?]
and
g(x) = (Ef[max{0,r-x}])%
where E;[-] denotes expected value with respect to r (x is considered constant). We will

prove that f(x)/g(x) is montonically nondecreasing for x nonnegative and thus attain its
minimum value for x=0. We have



§_§§2=E,{-a—<max{o,r-x}) 2E,[max{0r-x} 2 (max(05x))),
X ox
where

o(max{0,r-x}) _

X - u(r-x)

where u(-) is the step function. Thus

of(x)
ox

Assume for simplicity that r has a probability density function (the solution is similar in the
more general case). Then

=2E, [(max{0,r-x})- u(r—x)] =-2E [max{0,-x}]

98 _ 5F [max(0,r-x}| E la max{0,r-x)

£0 = 2E,[max{0,r-x}] - [_p(r)dr

Thus

ag(_;) g(x) - f(x }_g@ 2E, max (0,1-x) E, [(max (0,r-x)) ][ _p@)ar

- 2E, [max{0,r-x }JE; ([max{0,r-x } ]

(X) ag(X)

X)

For g((x) monotonically nondecreasing we must have

g(x) - f(x) === 2 0 or equivalently

E, [(rnax{O,r-x})z]J p(r)dr - (E, [max{0,r-x}])

>X

2
- (r-x)2p(r)drj p()dr - ([ (r-x)p@dr) 20

>X
X

which is true by Schwartz's inequality. Thus the ratio

f(x) _ Ed(max{0sx})?]
gX)  (E[max{0,-x}])?

is monotonically nondecreasing and attains its minimum value at x=0. On the other hand,
we have



£0) _ E(?)

since r 2 0, and the result follows.

(b) We know (cf. Eq. (3.93)) that
Ix = - min{0,Wy + X - Tk} = max{0,tx — Wy - Xk}
= max{O,‘tk— Sk}’

where Sy is the time in the system. Since the relation in part (a) holds for any nonnegative
scalar x, we can take expected values with respect to x as well, and use the fact that for any

function of x, g(x), E(g(x)2) = E2(g(x)), and find that

E; x[(max{0,r-x})?] 2 Sl (Erx[max{0,r-x}1)%,
@) (1)

where x is considered to be a random variable this time. By letting r = T, x = Sk, and
k—oo, we find from (1) that

B> P i
(T)?
or
2.M2 2.2
£-0°,2-@
@®? @
or
2 (@
of 2~ 62  (since 62 is defined as the variance of interarrival times)
@
Sincei=1;xp—andf=%we get
2 2 2

By using Eq. (3.97), we then obtain

W< k(o§+ oﬁ) _AM1-p) Gi
2(1-p) 2




3.49

(a) Since the arrivals are Poisson with rate A, the mean time until the next arrival starting
from any given time (such as the time when the system becomes empty) is 1/A. The time
average fraction of busy time is AE[X]. This can be seen by Little's theorem applied to the
service facility (the time average number of customers in the server is just the time average
n

fraction of busy time), or it can be seen by letting 'ElXi represent the time the server is

1=
busy with the first n customers, dividing by the arrival time of the nth customer, and going
to the limit.

Let E[B] be the mean duration of a busy period and E[I] = 1/A be the mean duration
of an idle period. The time average fraction of busy time must be E[B]/(E[B]+E[I]). Thus

AE[X] = E[BJ/(E[B]+1/A); E[B]= %

This is the same as for the FCFS M/G/1 system (Problem 3.30).

(b) If a second customer arrives while the first customer in a busy period is being served,
that customer (and all subsequent customers that arrive while the second customer is in the
system) are served before the first customer resumes service. The same thing happens for
any subsequent customer that arrives while the first customer is actually in service. Thus
when the first customer leaves, the system is empty. One can view the queue here as a
stack, and the first customer is at the bottom of the stack. It follows that E[B] is the
expected system time given a customer arriving to an empty system.

The customers already in the system when a given customer arrives receive no
service until the given customer departs. Thus the system time of the given customer
depends only on its own service time and the new customers that arrive while the given
customer is in the system. Because of the memoryless property of the Poisson arrivals and
the independence of service times, the system time of the given customer is independent of
the number of customers (and their remaining service times) in the system when the given
customer arrives. Since the expected system time of a given customer is independent of the
number of customers it sees upon arrival in the system, the expected time is equal to the
expected system time when the given customer sees an empty system,; this is E[B] as
shown above.

(c) Given that a customer requires 2 units of service time, look first at the expected system
time until 1 unit of service is completed. This is the same as the expected system time of a
customer requiring one unit of service (i.e., it is one unit of time plus the service time of all
customers who arrive during that unit and during the service of other such customers).
When one unit of service is completed for the given customer, the given customer is in
service with one unit of service still required, which is the same as if a new customer
arrived requiring one unit of service. Thus the given customer requiring 2 units of service
has an expected system time of 2C. Extending the argument to a customer requiring n units
of service, the expected system time is nC. Doing the argument backwards for a customer
requiring 1/n of service, the expected system time is C/n. We thus conclude that E[system

time | X=x] = Cx.

(d) We have



1

E[B] = JCx dF(x) = CE[X]; C=m-m

3.50

(a) Since {pj} is the stationary distribution, we have for all je S
Pj(z%i +2 gji ) = ZPiQij 2 Pidij
S @S S S

Using the given relation, we obtain for all je§
p j;;qji =§ Pg;
Dividing by z P, it follows that
€5

51’2%‘1 = z Piq;;
€S €S

for all je S, showing that {pj} is the stationary distribution of the truncated chain.
(b) If the original chain is time reversible, we have pjq;i = pig;j for all i and j, so the

condition of part (a) holds. Therefore, we have pjgji = pig;j for all states i and j of the
truncated chain.

(c) The finite capacity system is a truncation of the two independent M/M/1 queues system,

which is time reversible. Therefore, by part (b), the truncated chain is also time reversible.
The formula for the steady state probabilities is a special case of Eq. (3.39) of Section 3.4.

3.51

(a) Since the detailed balance equations hold, we have
Pjdji = Pidij

Thus for i, j € Sk, we have

oy 45 T g 9 {95 = T4

and it follows that the Tj, i € Sk satisfy the detailed balance equations. Also



) fzs-pi-u_k=

€S, 1 uk Uy

Therefore, {m; i€ Sk} as defined above, is the stationary distribution of the Markov chain
with state space Sk.

(b) Obviously

K
S =

K
k=1 k=

zpj=1.

tiES ¢))

Also we have

Udm= 2 T9;:%0
JESy
€S,

which in view of the fact Tjuk = pj for je Sk, implies that

ukakm = z qujl

JESy
€S,
2
and
U e = anqji“m = Z 9;P; = Zqij P
j€Sn j€Sy €5,
i€S, i€S, JES,
(3)
Since the detailed balance equations pjgji = qijp;i hold, we have
2 PE= 2 9P
jesk iesm
€8, JES, 4)

Equations (2)-(4) give

uk?lkm% Ul - (5)



Equations (1) and (5) imply that {ug | k=1,...,K} is the stationary distribution of the
Markov chain with states 1,....k, and transition rates Qim.

(c) We will deal only with Example 3.13. (Example 3.12 is a special case with k=m).

A

Ll 2

1

For i =0,1,....k we define S; as the set of states (i,0), (i,1),..., (i,m-i), (see Figure 1).
Then the truncated chain with state space S;j is

m B

7\'l )\.1 7\«1

We denote by wt;() the stationary probability of state j of the truncated chain S; and we let
] y

M
pl ul'
Then
0 0
T = P17

Thus



(1) ij =1.

or
a®o_1P1
0 1 p{n—i+l

Therefore,

a®= AP g 520,12,k j=0,1,2,...mi

J 1 m-1+1

The transition probabilities of the aggregate chain are

m-1-1

~ - O, _ Dy _ (1))
ql, 1+1 — z TC_j qjl—z nj ?"Z_KZ(I_nm_l)

JES,i€Sy, =
1
=)\7{1_ l—pl prln 1) l_pm
+1 1+1
l_pT + _prln +
(141) — (l+1)_
A, 1= 27‘ 9; “22“ Ho
J€S JE€Sw
i€S§,

The aggregate chain is given by the following figure.

021@‘_@ @'T@

_plm+1 _ 1 1 pf'nk+2

Thus we have

from which



121—[1'1 l—p’l"j 1p™- 141
U p2 1= mj+1 =P2 m+1 0
l—p 1 l_p 1
Furthermore, we have
k
z Uj 1,
)=
or
x m-1+1
1 l-P
2 P m+l
1
from which
1
0= 1_p’1“+
k+1 )k+1
I-p
1p, 1-P2
P1
and
m-1+1
=t p plm+ 1
1-p;
Thus
n n
uep, 1-p Jp
— -
P(nny) =7\ Uy, = 1pm+1
from which we obtain the product form
&)kﬂ -1
p(ning) = Lp3” -pT! —L (1-pD) PP

1-p 1-22
P

(d) We are given that the detailed balance equations hold for the truncated chains. Thus for
1, je S, we have pigij = pjqji. Furthermore,



S St

€Sy €Sy

Thus (| je Sk} is the distribution for the truncated chain Sk and the result of part (a)
holds.

To prove the result of part (b), we have to prove that the global balance equations
hold for the aggregate chain, i.e.,

k k
D = 2 Ul
m=1 m=1

or equivalently
k k
2 2 7tj“kqji=24 2 ;7 i%m
m=1jeS i€S m=1 jeS i€S

For j € S, we have mjuk = pj, and for i € Sy, we have Tjuy, = pj, SO we must show
k k
Z Z ijjfz Z 4a;;P;
m=1jES i€S m=1 jES, €S
or
ZZ Pa;; = Z zpiqij
jESkall 1 JES, all i (6)

Since {pj} is the distribution of the original chain, the global balance equations

2P;= D P

all i all i

By summing over all je Sk, we see that Eq. (6) holds. Since
ZUk =1
k=1

and we just proved that the uk's satisfy the global balance equations for the aggregate
chain, {ug | k = 1,...,K} is the distribution of the aggregate chain. This proves the result
of part (b).
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Consider a customer arriving at time t; and departing at time t. In reversed system terms,
the arrival process is independent Poisson, so the arrival process to the left of t; is
independent of the times spent in the system of customers that arrived at or to the right of
tp. In particular, t; - t; is independent of the (reversed system) arrival process to the left of
t2. In forward system terms, this means that t - t; is independent of the departure process
to the left of tp.

3.53

(a) If customers are served in the order they arrive then given that a customer departs at
time t from queue 1, the arrival time of that customer at queue 1 (and therefore the time
spent at queue 1), is independent of the departure process from queue 1 prior tot. Since
the departures from queue 1 are arrivals at queue 2, we conclude that the time spent by a
customer at queue 1 is independent of the arrival times at queue 2 prior to the customer's
arrival at queue2. These arrival times, together with the corresponding independent (by
Kleinrock's approximation) service times determine the time the customer spends at queue
2 and the departure process from queue 2 before the customer's departure from queue 2.

(b) Suppose packets with mean service time 1/p arrive at the tandem queues with some rate
A which is very small (A << ). Then, the apriori probability that a packet will wait in
queue 2 is very small.

Assume now that we know that the waiting time of a packet in queue 1 was
nonzero. This information changes the aposteriori probability that the packet will wait in
queue 2 to at least 1/2 (because its service time in queue 1 will be less than the service time
at queue 2 of the packet in front of it with probability 1/2). Thus the knowledge that the
waiting time in queue 1 is nonzero, provides a lot of information about the waiting time in
queue 2.

3.54
The Markov chain for an M/M/1/m system is

m=3
@ﬁ“ Z :ﬁ ; ﬁ !; DA

i H blocked
arrivals

Since this is a birth/death process, the chain is reversible. If we include

the arrivals that are blocked from the system, then the arrival process is Poisson (by
definition of M/M/1/m). If we include the blocked arrivals also as departures, then the
departure process is also Poisson (by reversibility).

Blocked arrivals apd departing blocked arrivals
aﬂ\ﬁ\ g

LN
__l—rjuj_‘ﬂ_

If we omit the blocked arrivals from consideration, the admitted arrival process has rate
A(1-Pm), but this process is definitely not Poisson. One could, if one were truly maso-
chistic, calculate things like the interarrival density, but the only sensible way to charac-
terize the process is to characterize it jointly with the state process, in which case it is
simply the process of arrivals during intervals when the state is less than m. The depar-
ture process, omitting the departures of blocked arrivals, is the same as the process of
admitted arrivals, as can be seen by reversibility.




Let
_M
p1 _—}’1—1
Ao
pgzu_z
A
M=
A, CPU Py N
m servers -
+ Ky
/O u, AD
2
= —=
Py

Using Jackson's Theorem and Egs. (3.34)-(3.35) we find that

r

@p )™
n
p()—_nl_l!—_' p22(1—p2), nlsm

P(nl’n?)= < mMmpy ™

n
Po—a‘l— P22(1-P »» N >m

3

where

-1
m-1 n m
(mp,) (mp,)
po=[z L ]

= n! m!(1-p )
3.56
(a) We have
PXy=i) =(1-p)pi; i20; p=Au

P(Xp=i, Dy=j) = P(Dp=j | Xp=i) P(Xp=i) = pA(l-p)pl ;  i21, j=1
0.

= 0; ~i=0,j=1
= (14A)1-p)pl; i21,j=0
= 1-p; =0, j=0

(b) P(Dp=1) = Zi=1 HA((1-p)p! = nAp =2A

© PCXomil Dy=l) =2IREET = (WAU-pIPHIAA = (L-pipi ;21

0; =0




(d) PXns1=il Dp=1) = PXp=i+1l Dp=1) = (1-p)p! ; i20

In the first equality above, we use the fact that, given a departure between nA and (n+1)A,
the state at (n+1)A is one less than the state at nA; in the second equality, we use part d).

Since PXp+1=1) = (l-p)pi, we see that Xp41 is statistically independent of the event Dp=1.
It is thus also independent of the complementary event Dy=0, and thus is independent of
the random variable Dy,.

(©) P(Xp+1=1, Dn+15j I Dn) = P(Dn+15j I Xn+1=1, Dp)P(Xn+1=1 | Dp)
= P(Dp+1=) | Xn+1=1)P(Xn+1=1)

The first part of the above equality follows because Xp+1 is the state of the Markov process

at time (n+1)A, so that, conditional on that state, Dp4] is independent of everything in the
past. The second part of the equality follows from the independence established in €).
This establishes that Xp41, Dn+1 are independent of Dy; thus their joint distribution is given

by b).
(f) We assume the inductive result for k-1 and prove it for k; note that part f establishes the
result for k=1. Using the hint,
P(Xn+k=il Dn+k-1=1, Dn+k-2,--., Dn) = P(Xn+k-1=i+1l Dp4k-1=1,Dn4k-2,-.., Dn)
- P(Xp+k-1=i+1, Dp+k-1=1|Dpk-2,..., Dn)
P(Dm-k-l:ll Dn+k-2,---» Dn)

P(Xn+k-1=1+1,Dp4k-1=1)
P(Dp+k-1=1)

P(Xn+k-1=i+1] Dpyk-1=1) = P(Xn+k=i | Dnsk-1=1)

The third equality above used the inductive hypothesis for the independence of the pair
(Xn+k-1,Pn+k-1) from Dp4k-2,...Dp in the numerator and the corresponding independence

of Dpyk-1 in the denominator. From part e), with n+k-1 replacing n, P(Xp4k=i | Dpsk-1) =
P(Xp+k=i), so

P(Xn+k=i| Dn+k-1=1, Dn4k-2,-.., Dn) = P(Xn+k)
Using the argument in e), this shows that conditional on Dp4k-2,..., Dp, the variable Xp4k

is independent of the event Dp4k-1=1 and thus also independent of Dp4k-1=0. Thus Xp4k
is independent of Dp4k-1,..., Dn. Finally,

P(Xn+k=1, Dn+k=j | Dn+k-15---» Dn) = P(Dn4k=j l Xn+k=i)P(Xn+k=i| Dn+k-15-+-» Dn)
= P(Dp+k=] I Xn+k=1)P(Xn+k=1)
which shows the desired independence for k.

(g) This shows that the departure process is Bernoulli and that the state is independent of
past departures; i.e., we have proved the first two parts of Burke's theorem without using



reversibility. What is curious here is that the state independence is critical in establishing
the Bernoulli property.

3.57

The session numbers and their rates are shown below:

Session Session number p Session rate x,
ACE 1 100/60 = 5/3
ADE 2 200/60 = 10/3
BCEF 3 500/60 = 25/3
BDEF 4 600/60 = 30/3

The link numbers and the total link rates calculated as the sum of the rates of the sessions
crossing the links are shown below:

Link Total link rate
AC Xl = 5/3

CE Xl + X3 = 30/3
AD Xp = 10/3

BD x4 =10

DE X2 + X4 = 40/3
BC X3 = 25/3

EF X3 + X4 = 55/3

For each link (i,j) the service rate is

K35 = 50000/1000 = 50 packets/sec,
and the propagation delay is D;; = 2 x 10-3 secs. The total arrival rate to the system is

Y= x;=5/3 +10/3 +25/3 + 30/3 =70/3

The average number on each link (i, j) (based on the Kleinrock approximation formula) is:

Aj

From this we obtain:

Link Average Number of Packets on the Link
AC (5/3)/(150/3 - 5/3) + (5/3)(2/1000) = 5/145 + 1/300
CE 1/4 + 1/50

AD 1/14 + 1/150

BD 1/4 +1/50



DE 4/11 + 275
BC 1/5 + 1/60
EF 11/19 +11/300

The average total number in the system is N = Z; ;) N;; = 1.84 packet. The average delay

over all sessions is T = N/y = 1.84 x (3/70) = 0.0789 secs. The average delay of the
packets of an individual session are obtained from the formula

A 1
1]
- 3 [+ n)
@(i,j)onp u’] (JJ'IJ 1J) “13

For the given sessions we obtain applying this formula

Session p Average Delay T,
1 0.050
2 0.053
3 0.087
4 0.090

3.58

We convert the system into a closed network with M customers as indicated in the hint.
The (k+1)st queue corresponds to the "outside world". It is easy to see that the queues of
the open systems are equivalent to the first k queues of the closed system. For example,
when there is at least one customer in the (k+1)st queue (equivalently, there are less than M
customers in the open system) the arrival rate at queue i is

k
Srn s
I'm ™% =T
DY
<
Fl1
Furthermore, when the (k+1)st queue is empty no external arrivals can occur at any queue

i,i=1,2,...k. If we denote with p(nj,...,ng) the steady state distribution for the open
system, we get

k
0 if Zni >M
p(ny,ng,...,ny) =
M- irx
PP PRP .
k+] otherwise

G'(M)



where

pi=phi= L2k,

k k
21 ri(l'z le)
= =

pk+1 = k
2
=l
and G(M) is the normalizing factor.

3.59

If we insert a very fast M/M/1 queue (LL—>eo) between a pair of queues, then the probability
distribution for the packets in the rest of the queues is not affected. If we condition on a
single customer being in the fast queue, since this customer will remain in this queue for

1/u (—0) time on the average, it is equivalent to conditioning on a customer moving from
one queue to the other in the original system.

If P(ny,...,ng) is the stationary distribution of the original system of k queues and
P'(n1,...,nk.Nk+1) is the corresponding probability distribution after the insertion of the fast
queue k+1, then

P(ny,...,ng | arrival) = P'(ny,...,nk, nk+1 = 1 [ ngeq = 1),

which by independence of ny, ...,nk nk+1, is equal to P(nj,...,nk).

3.60
Let Uj = utility function of jth queue.
We have to prove that
. . A M)
lim e U;(M)) = M ——=1

H;

But from problem 3.65 we have

__ GM-1)
V=P

Thus it is enough to prove that



GM) _

where p; = max{pj,..., px}. We have

_ n n; n,__ n n; n n n; n
GM) = E pl‘...pje..pkk— E pl‘...pja..pk*+ E pl‘...pje..pkk
B +..+0 M D 440 M 0 4.4 .=M
”fo n#%0

= AM) + B(M) (1)
Since pj= max{p;,...,px} we have that

M é@_zo.
" BM)

Thus, Eq. (1) implies that

ni nj U,
> pI-pli.py

n,+...-m.M
fim o =1
M= GM)
or, denoting n'j = nj- 1,
D VR A AN
lim Dy#. g +n=M-1 =1
M—00 G ™)
or
limyy _,‘,,——pj GM-1) =1
GM)
3.61

We have Zpi =1.
=0

The arrival rate at the CPU is A/p, and the arrival rate at the ith I/O port is Ap;/p,. By
Jackson's Theorem, we have



m
P(n07 ng, ... ,nm) = H pinl (1 - pl)
1=0

where p = A
Ho PO

and pi=x i fori>0
Hi PO

The equivalent tandem system is as follows:

CPU
0

o /IO 1 | - - —» /IOm |—»

The arrival rate is A. The service rate for queue 0 is pgpy and for queue i (i > 0) is W;po/p;.

3.62
Let Ag be the arrival rate at the CPU and let A; be the arrival rate at I/O uniti. We have

Ai =pikg, 1=1,.,m

and

By Jackson's Theorem, the occupancy distribution is
Ng . N, n

po pl A p -

P(ng,ny,...,np) = —G—(I\T)_m’

where G(M) is the normalization constant corresponding to M customers,

GM)= D, poopjL.phe

n m +..+n =M
o 1 m

Let



be the utilization factor of the CPU. We have

U0= P(noz 1) = nm;n ﬂp(n()ynlr--anm)
.y PRIy
B GM)

n'gin +.+n =M-1
1 m

_ GM:-1) _ 1 G(M-1)
“PoGM) "R, GO °

where we used the change of variables n'g = ng-1. Thus the arrival rate at the CPU is

x _ G(M'l)
07 "GMm)

and the arrival rate at the I/O unitiis

_ plG(M"l)

Xi— W‘»

i=1,....m.

3.63

(a) We have A = N/T and
T=T;+T,+T;
where

T, = Average time at first transmission line
T, = Average time at second transmission line

T3 = Z
We have
X <T; <NX ¢y

Y<T, <NY

SO



N N
—— SAS —
NX+Y)+Z X+Y+2Z

Also

>
IN

alla
>
IA

so finally
—%——:sksm{g 2, %‘:‘}
NX+Y)+Z XY X+Y+Z
(b) The same line of argument applies except that in place of (1) we have

X<T;<(N-K+DX

3.64

(a) The state is determined by the number of customers at node 1 (one could use node 2
just as easily). When there are customers at node 1 (which is the case for states 1, 2, and

3), the departure rate from node 1 is p1; each such departure causes the state to decrease as
shown below. When there are customers in node 2 (which is the case for states 0, 1, and

2), the departure rate from node 2 is pp; each such departure causes the state to increase.

25} Ky 29
(b) Letting pj be the steady state probability of state i, we have p;j = pi-1 p, where p = U/p1.
Thus p;j = pop’. Solving for po,

po=[1+p+ p2+p3'L, pi=pop} i=1,23.

(c) Customers leave node 1 at rate ] for all states other than state 0. Thus the time
average rate r at which customers leave node 1 is {11(1-Pg), which is

oD
L+p+p2+p3

(d) Since there are three customers in the system, each customer cycles at one third the rate
at which departures occur from node 1. Thus a customer cycles at rate 1/3.

(e) The Markov process is a birth-death process and thus reversible. What appears as a
departure from node i in the forward process appears as an arrival to node i in the backward



process. If we order the customers 1, 2, and 3 in the order in which they depart a node,
and note that this order never changes (because of the FCES service at each node), then we
see that in the backward process, the customers keep their identity, but the order is reversed
with backward departures from node i in the order 3, 2, 1,3, 2, 1, ....

3.65

Since pj(m) = p; for all m, and the probability distribution for state n = (ny,...,ng) is

1 Ik
Py = Bk,

where

pj=

L2

The utilization factor U;j (M) for queue j is

n, .n
2P
U= 2 PO =g

:.z.n;'o
Denoting n'j = nj-1, we get

n n', Ny, .
Z pll...pj ...p k“ pJ ) ij(M-l)

n +...4n';’...+nl=M—l
UM = GM) -~ T GM)

3.66
Let cj indicate the class of the ith customer in queue.

We consider a state (c1,¢2,...,cp) such that Hep # Hep:



m (c 1,€2 5oee Cp)

If the steady-state distribution has a product form then the global balance equations for this
state give

p(c)p(en)(Hc, + A1+ + Ac) = p(c1)--P(Cn-1)Acn
+ (L1p(1) + p2p(2) +- + Kep(e)) p(c1)-...-p(Cn)

or

plcp)(ey + A1 + - + Ac) = Acp + (L1p(1) + Hop(2) + -+ + Kep(€))- p(Cn)

Denote
M = p1p(1) + H2p(2) + -+ + Hep(c)
A=A1+ +Ac

Then

p(cn)(Kc1 +A) = Acn + M-p(cp)

or

n

TR

This is a contradiction because even if 7‘c1 =0, p(cp) still depends on Hep- The
contradiction gives that Hc, = W = constant for every class. Thus we can model this

system by a Markov chain only if gy =2 = = L.



(b) We will prove that the detailed balance equations hold. Based on the following figure

ucn f

(C 1 c2 yoee cn-l) »L(c 1, cZ yure cn)
J e,

state z state z
1 2

the detailed balance equations are

Ac. - P(21)= He, - P(z2)

or

AePesP o =He Poos

n-1 n ©i

P

which obviously holds.



CHAPTER 4 SOLUTIONS

4.1
a) State n can only be reached from states 0 to n+1, so, using Eq. (3A.1),
n+1
pﬂ=ZpiPin ; 0<n<m
i=0

m
an=1

n=0
b) Solving for the final term, pp+1, in the first sum above,
n-1
pn(l— nn) - Zpipin

i=0

Pn+1 = Pn+1.n

c) p1 = po(1-Pgo)/P10

_ P1(1-Py1)-poPor 0[(1'1)00)(1—1’11) _ Poz]
P2 P2 P P1oP2 P21

d) Combining the above equations with po+p1+p2 = 1, we get

_ PyoPy;
P0 = B P21 +(1-Pgo)P, +(1-Poo)(1-P11)-Pg,P 10

4.2
a) PSUCC = Qa(l,n)Qr(Ovn) + Qa(o,n)Qr(l,n)
Using Eqs(4.1) and (4.2),

Psuce = [(m-n)(1-q2)™ ™ 1qa) (1-gn)" + (1-q2)™"[n(1-gr)n-1qy]

+n—

da A
1q, 1—q,

= (l—qa)m—n(l—%)'{ (m-n)
b) Approximate qa/(1-qa) by qa in the bracketed espression above. This is a good
approximation for q, small, whereas we cannot similarly approximate (1-ga)™™ by 1 since
m-n might be large. We also approximate qr/(1-gr) by q. Using the approximation (1-x)¥
= eXY, we then get

Psucc = exp[-(m-n)qa - ngy] {(m-n)qa + ngr} = G(n)e 6@



c) (1-x)Y = exp[y In(1-x)] = exp[y (X - x2/2 - x3/3 ..)]

= exp(-yx) exp[-x%y/2 - x3y/3 ..]

which is equivalent to the desired relation. Nute that for the approximation to be close (in
terms of percentage error), xzy must be close to 0.

4.3
a)
el
e-l — —_—
GeG
|
‘\l\ Arrival rate
| (1-n/m)e-!
G= G=1

G = ¢(1-n/m) + n/m

b) Psucc = mg(1-qp™! = 1/e
where we have used mq, = 1 and the result of problem 4.2.

c) Note that a straight line from (mq,, mq,) to the point (1, 0) can only cross the curve
GeS once. For mg, < 1 this crossing corresponds to a stable point by the argument in fig.
4.4. Formga > 1, we have g, > qy; when the departure rate exceeds the arrival rate, then n
tends to decrease, which corresponds to motion toward the right on the figure. Thus the
crossing corresponds to a stable point in this case also.

d) The stable point occurs at the intersection of the curve and straight line above, i.e. where
Ge G = (1-G)/(e-1)
Solving numerically, G = 0.4862.

e) Solving for n/m from G, we have n/m = (eG-1)/(e-1) = 0.1872. Thus at equilibrium a
rather large fraction of the arriving packets (i.e., 0.1872) are not accepted by the system.

4.4
a) Let E{n} be the expected number of backlogged nodes, averaged over time. Since

m-E{n} is the expected number of nodes that can accept packets, and g, is the probability
that each receives a packet in a slot, the expected number of accepted arrivals per slot is



E{Na} = ga(m-E{n})

b) Since a limited number (i.e., m) arrivals can be in the system at any time, the time
average accepted arrival rate must equal the time average departure rate, which is the tme
average success rate, E{Pgycc}. Thus

E{Psucc} = E{Na}= qa(m-E{n})

c) The expected number of packets in the system, E{Ngys} immediately after the beginning
of a slot is the expected backlog, E{n}, plus the expected number of arrivals accepted
during the previous slot, E{N,}. Thus,

E{Ngys}=E{n} + E{Na} = E{n}(1-qa) + gam

d) From Little's theorem, the expected delay T is E{Ngys} divided by the accepted arrival
rate E{Na]} Note that we are only counting the delay of the packets accepted into the
system and note also that we are regarding accepted arrivals as arriving discretely at the slot
boundaries.

T = E{Nsys}/E{Na} = 1 + E{n}/[qa(m-E{n})]

e) The above equations express the relevant quantities in terms of E{n} and make clear that
E{N,} and E{Pgycc} decrease and E{Ngys) and T increase as n is decreased. Thus it
makes no difference which of these quantities is optimized; improving one improves the
others.

4.5

a) The probability that a packet is successful on the first slot is p, and given that it has not
been successful before the ith slot, the probability that it is successful there is pqp, i.e., the
probability of retransmission times the probability of success. Thus the unconditioned
probability of success on the second slot is (1-p)pqy. Similarly, the probability of success
on the third slot is (1-p)(1-pqr)pqr, and in general on the ith slot, i>2, is (1-p)(1-pqr)-2pqs.
Thus, multiplying each term above by i and summing,

2 1-
T=p + 2(1-p)(1-pq,)’ Py, =1+—>
i=2 Pq,

The solution to problem 2.17 b shows how to sum the above series.
b) The probability that a given packet transmission is successful is the probability that no

other packets are transmitted in the same slot. If the given transmitted packet is a
backlogged packet, then

p = (1-qa™"(1-gp™!
Approximating (1-x)k by e-k* and approximating (1-x)k-1 also by e¥*, we get
p=eCm ; G(n) = (m-n)qs + ngr
If the given transmitted packet is a new arrival, then p changes to (1-qa)™™1(1-gp)", but the

final result with the above approximation is the same. See the solution to problem 4.2 for a
more complete discussion of these approximations.



¢) Letting G = G(n*) and substituting e-G for p in the solution to a),
T=1+(1-e9)/(geC) =1+ (C-1)/qr

Since G = (m-n*)qa+ n*qr and Ge"C = (m-n*)q,, the ratio of these equations yields
G n*q,

e =1+———
(m-n*)q,

n*
+ —
(m-n*)q,

d) The two equations above relating G and n* can be solved simultaneously (numerically)
to yield n*/m = 0.124...= 1/8. Using this in the equation for T above yields 1 + 0.472m.
Thus, T = m/2. We can compare this with TDM in two ways. First, if only one packet can
be saved at a node, then a fraction 1-e-03 = 0.259... of the slots carry packets, so a fraction
0.136 of the arriving packets are discarded and the delay is roughly m/2 (slightly larger if
the latest arrival for a node is discarded when a packet is already there, and slightly less if
the later arrival is kept and the earlier thrown away). Alternatively, if no packets are
thrown away, then the delay (from Eq. (3.58)) is m/1.4. Whichever way one looks at it,
slotted Aloha does not look attractive from a delay standpoint if one achieves stability by
choosing gym = 1.

4.6
a) Substituting Egs. (4.1) and (4.2) into (4.5),
Puce = (m-n)qa(1-ga)™m1(1-gr)" + ngr(1-ga)™(1-go)™ !

Differentiating this with respect to g (for n > 1) and consolidating terms, we get

succ

5. =n(1—q,,)'“‘“(1—q,>“‘l[

1 Qu(m-n) gmn ]
1—q, 1—q, 1—q,

The quantity inside brackets is decreasing in gy; it is positive for gr = 0 and negative as gr
approaches 1. Thus there is a point at which this quantity is 0 and that point maximizes
PSUCC°

b) If we set qr equal to q, in the bracketed quantity above, it becomes (1-qam)/(1-qr). This
is positive under the assumption that gz < 1/m. Thus, since the quantity in brackets is
decreasing in q, it is zero for gr > qa.

)
dPSllCC _ aPSUCC + dqx(qa) aPsucc _ aPSUCC

dg,  dq, dg, dq, ~ dq,

The above relation follows because dPgycc/dqr = 0 at qr(qa). We then have




o(m-n) _ qn il

aPSUCC m-n—1 1 q

a

Note that the bracketed term here differs from the bracketed term in part a) only in the first
term. Since the bracketed term in part a) is 0 at gr(qa) and qr(qa) > qa, it follows that the
bracketed term here is negative. Thus the total derivative of Psycc With respect to ga is
negative.

d) If arrivals are immediately regarded as backlogged, then an unbacklogged node
generates a transmission with probability gagr. Thus the probability of success is modified
by replacing g, with qaqr. This reduces the value of ga in Pgycc and therefore, from part ¢),
increases the value of Pgycc at the optimum choice of g;.

4.7

a) Note that one packet successfully leaves the system each slot in which one or more
packets are transmitted. Thus if all waiting packets attempt transmission in every slot, a
successful transmission occurs in every slot in which packets are waiting. Since the
expected delay is independent of the order in which packets are successfully transmitted
(since each packet requires one slot), we see that the expected delay is the same as that of a
centralized slotted FCFS system. Now compare this policy with an arbitrary policy for
transmitting waiting packets; assurne any given sequence of packet arrival times. Each time
the arbitrary policy fails to attempt a transmission in a slot with waiting packets, the FCFS
system (if it has waiting packets) decreases the backlog by 1 while the other policy does not
decrease the backlog. Thus the backlog for the arbitrary system is always greater than or
equal to that of the FCFS system (a formal proof of this would follow by induction on
successive slots). Thus, by Little's relation, the arbitrary system has an expected delay at
least as great as the FCFS system.

b) This is just the slotted FDM system of section 3.5.1 with m=1 (i.e., a slotted M/D/1
queueing system). From Eq. (3.58), the queueing delay is 1/[2(1-A)] slot times. The total
delay, including service time, is then 1 + 1/[2(1-A)].

c) The solution to b) can be rewritten as 1 + 1/2 + A/[2(1-A)] where the first term is the
transmission time (i.e., 1 slot), the second term is the waiting time from an arrival to the
beginning of a slot, and the third term is the delay due to collisions with other packets. If
each subsequent attempt after an unsuccessful attempt is delayed by k slots, this last term is

multiplied by k. Thus the new total delay is 3/2 + kA/[(1-A)].
4.8
a) Let X be the time in slots from the beginning of a backlogged slot until the completion of
the first success at a given node. Let q = q;p and note that q is the probability that the node
will be successful at any given slot given that it is still backlogged. Thus

P{X=i} = q(l-q)i-1;i>1

) i-1
E{X} = Zlqu-q)’ =

i=1



The above summation uses the identity

St - Zdzi _Z dwaa) 1
i=1 i=1 dz dz dz ( 1-z)2
Taking q = 1-z gives the desired result. A similar identity needed for the second moment is

zizzm:z a*z! Zd &1 /(1 2] 1 - 1+z3

i=1 z (1-2) (1-2)
Using this identity w1th q=l-z, we havc
2 2 -1 2- 2-pq
E(C) = D iq(i-g) = o
i=1 qQ (pq)

b) For an individual node, we have an M/G/1 queue with vacations. The vacations are
deterministic with a duration of 1 slot, and the service time has the first and second
moments found in part a). Thus, using Eq. (3.55) for the queueing delay and adding an
extra service time to get the system delay,

T= M)_(_l-i- +l .—.M-}-l-{-l
2. 2 9 2q%1-pm 2 9

Since the arrival rate is A/m and the service rate is q, we have p = A/(mq). Substituting this
into the above expression for T and simplifying,

1 + 1-2p
q.p(1-p) 2(1-p)
¢) For p=1 and qr=1/m, we have p = A, so that

T=

m 1-2A
T=—+
I-A 2(1-A)

In the limit of large m, this is twice the delay of TDM as given in Eq. (3.59).

4.9

a) Let v be the mean number of packets in the system. Given n packets in the system, with
each packet independently transmitted in a slot with probability v-1, the probability of an

idle slot, P{I|n} is (1-v-1)». The joint probability of an idle slot and n packets in the
system 1s then

exp(-v)vn -1\n

P{nI} = P{n}P{l|n} = (1-v)



P(I} = ZP{“I} Zexp(v)(v " =é

n=0

b) Using the results above, we can find P{n |1}

P(n,J} _exp(-v+l) (v-1)"
P(I} n!

Thus, this probability is Poisson with mean v-1.

P{nlI} =

c) We can find the joint probability of success and n in the system similarly

- n 3 -1 n-1
P{n,S} = P{n}P{S |} = ﬂv)_v. n(l-\fl)n'lv-'l _ exp(-v) (v-1)
! (n—1)!
n-1
_Ntexp(-v) (v-1) 71
PIS)= 2 oDl e

n=0
d) From this, the probability that there were n packets in the system given a success is

P{n,S}  exp(-v+l) (v-l)n’l

P{S} (n-1)!
Note that n-1 is the number of remaining packets in the system with the successful packet
removed, and it is seen from above that this remaining number is Poisson with mean v-1.

P{nlS} =

4.10

a) All nodes are initially in mode 2, so when the first success occurs, the successful node
moves to mode 1. While that node is in mode 1, it transmits in every slot, prcventmg any
other node from entering mode 1. When that node eventually transmits all its packets and
moves back to mode 2, we return to the initial situation of all nodes in mode 2. Thus at
most one node at a time can be in mode 1.

b) The probab1hty of successful transmission, pi, is the probability that no other node is
transmitting. Thus p1= (1 -gr)™ 1. The first and second moment of the time between
successful transmissions is the same computation as in problem 4.8a. We have

1 X_z 2-p,

X=—
P, P2

c) The probability of some successful dummy transmission in a given slot when all nodes
are in mode 2 is pp = mqy(1-q;)™-1. The first two moments of the time to such a success is
the same problem as above, with p7 in place of p;. Thus

1 7 2P

V= V = c——

E P,?



d) The system is the same as the exhaustive multiuser system of subsection 3.5.2 except
for the random choice of a new node to be serviced at the end of each reservation interval.
Thus for the ith packet arrival to the system as a whole, the expected queueing delay before
the given packet first attempts transmission is

E{W.} =E(R;} + E{N,JX + E(Y }

where R; is the residual time to completion of the current packet service or reservation
interval and Y; is the duration of all the whole reservation intervals during which packet i
must wait before its node enters mode 1. Since the order of serving packets is independent
of their service time, E{N;} = AE{W} in the limit as i approaches infinity. Also, since the
length of each reservation interval is independent of the number of whole reservation
intervals that the packet must wait, E{Y;} is the expected number of whole reservation
intervals times the expected length of each. Thus

W =B—t—E_{.§.}_v. N p = m
1-p
e) As in Eq. (3.64),

AX:  (1-p)v°
+ -
2 2v
Finally, the number of whole reservation intervals that the packet must wait is zero with
probability 1/m, one with probability (1-1/m)/m, and in general i with probability

(1-1/m)Y/m. Thus E{S} = m-1. Substituting these results and those of parts b) and c) into
the above expression for W, we get the desired expression.

R=

4.11

a) Since all nodes receive feedback at the same time, and the first node involved in a
collision waits one time unit for transmissions currently in progress to cease, all
retransmissions must be successful. We assume here that if feedback for one collision

arrives while previous retransmissions are taking place (this can happen if 7 is large), then
the new retransmissions follow the old. Under heavy loading, we note that many packets
will typically arrive and become backlogged during the retransmissions for the previous
period. These will all be transmitted (and thus establish a reservation order for
retransmission) in the first time unit of the next reservation interval. Feedback for other
collisions during the reservation interval will normally arrive before the retransmissions for

these backlog collisions are completed. If T is large, there will be occasional successful

transmissions during the reservation period, but only a small fraction (about e2M) of the
transmissions during the reservation period are successful and only a small fraction of time
is occupied by reservation periods. Thus it is reasonable to approximate all arrivals during
one retransmission period and the following reservation period as being retransmitted in the
following retransmission period. This corresponds to the partially gated single user system
of subsection 3.5.2 with deterministic service X=1 and deterministic reservation period

A=1+1. From Eq. (3.73) with m=1, the queueing delay is then
WeA . (1+1)(1+A)
2(1-2) 2(1-A)




The system delay is T = W+1.

b) The above equation shows that W and T are finite for A < 1

4.12

a) Let T; be the interval between the ith and i+1% injtiation of a k packet transmission
group; thus 7; is exponentially distributed with rate G and ..-j-1, Tj , - are independent.
The j® packet in the ith transmission group will be successful if tj 2 j and if Tj-1 2 k-j+1
(see the diagram below). Thus

Pgycc = €-CieCk-j+1) = eGlk+1)

< Tjoproem>feee ol -] | |
]< k >] I ]

b) Since the group attempt rate is G, the packet attempt rate is Gk. A fraction e-Gk+1) of the
packets are successful, so the throughput is Gk e-G&+1), This is maximized by G =
1/(k+1), leading to a maximum throughput of k/[e(k+1)]. This can be made as close to 1/e
as desired by increasing k.

4.13

a) The tree and the corresponding operations for each slot are shown below

Success  Success Slot Transmit Waiting Feedback
Set Sets
1 S - e
Idle 2 L R 0
3 R - e
Ide 4 RL RR e
Collision 5 RLL RLR,RR 1
6 RLR RR 1
7 RR - 0

Collision

b) The second collision (i.e., that on slot 3) would have been avoided by the first
improvement to the tree algorithm.

¢) e,0,e,1,1; the final set, RR, would have been incorporated into the next collision
resolution period in the second improvement.

4.14



Note that collisions correspond to non-leaf nodes of the tree and idles or successes
correspond to leaves. In the process of building a binary tree from the root, we start with
one leaf (the root). In each successive step, one leaf node is converted to a non-leaf node
and two new leaves are added, yielding a net gain of one leaf and one non-leaf. Thusin a
binary rooted tree, the number of leaves exceeds the number of non-leaves by one. This
means that the total number of nodes (which is the number of slots in a CRP) is one plus
twice the number of collisions. In Figure 4.9, there are four collisions and nine slots, as
predicted.

For the alternate approach, note that the stack depth increases by one for each collision and
decreases by one for each success or idle. Viewing the stack as starting with the original
set (one element) on the stack and terminating with an empty stack, we see that the number
of decreases exceeds the increases by one, leading to the same answer as above.

4.15

a) The probability of i packets joining the left subset, given k packets in the original set, is
given by the binomial distribution

k12

il (k-1)!

b) Assuming k = 2, the CRP starts with an initial collision that takes one slot. Given that i
packets go into the left subset, Aj is the expected number of additional slots required to
transmit the left subset and Ag; is the expected number on the right. Taking the expectation
over the number i of packets in the left subset, we get the desired result,

k '-k

k!2
Ak=1+zx'(k o7 A+ A

¢) Note that
k -k

k -k
k12 k12
= il(k-i)! A= Z RICE

Thus
k k-1 X
k! 2 k!2
A = = —_—
(=14 2 1'(k BT A 1 +2 Ak+ 2 - D! Al

Taking the Ay term to the left side of the equation, we have

-k+1
k!2 1
c. = — o i<k; Co = —
il(k-0)1(1-2") 1-27*

Evaluating this numerically, A3 = 5 and A3 = 23/3.



4.16

a) Given an original set of k>2 packets and given that i>1 packets join the left subset, the
expected number of slots required is 1 + Bj + Bk.j (i.e., one slot for the original collision,
B; slots on the average for the left subset and By for the right. Given that i=0 packets join
the left subset, however, the expected number of slots required is 1 + 1 + (Bx-1) (1.e., one
slot for the original collision, one for the left subset, and, since the first collision is avoided
in the resolution of the right subset, Bx-1 for that final resolution. Thus, since 1is
binomially distributed,

k -k

z k!2 -k
Bk=1+ . lm(Bi+Bk‘i)+2 Bk

1=

k-1 -k

k!2 k+1 X
=1+ z D! (B,+B, ) +2 B, +2 B,

i=1

b) Noting the symmetry between i and k-i above, noting that Bo = 1, and taking the Bx
terms to the left,

k-1 -k+1
k+1 X k!2
B, (1-2 =1+2 + —— B.
2= 102 Ly
-k -k+1
' 1+2 ' 12
Ckk= C., = K ; i<k
k+1 ik | . k+1
1-2 ilk-D)I(1-2 )

4.17
a) The joint event X = 0 and X +XR 2 2 is equivalent to X = 0 and Xg 2 2. so

P{X,=0}P(Xp22} e[t - (1+G)e ]

P(X,=01X, +Xg22) = P(X +X22)

1 - (142G)e’ @

This uses the fact that X and XR are independent and X=X +XR is Poisson with mean
2G. The other equalities use these same facts.

PIX =1)P(X21}  GeC(1-¢®)
PIX +Xg22)

b)  P{X =11X +X 22} = o
- €

P(X 22)P(X20)  1-(1+G)e®
P(X, +Xg22)

) P{XLzzle+szz}= _1 o —
- (1+2G)e



P(Xg=1)P(X =1} Ge*

P(X =11P(X21} | .G

d)  P(Xg=1lX =1, X +X22} = )
-€

Note that this is just P{Xgr=1|Xg21}.

P(Xg=i)P(X;=0)  G'®
PX=0PIXe22) 1 [1.14G)e

e P(Xg=ilX =0, X +X 22} =

Note that this is P{Xg=i|Xr>2}.

P{X, =i}P(X, >2} i,-G
D P(Xg=ilX 22, X +X 22) = — L= _G¢

P{X,22} i!
Note that this is P{Xr=i}.
4.18
a) and b)
< >
<< >
< >
4>
4+
<>
4 S —
left interval right feedback rule
boundary  size boundary atend for next
Tk a0 T+ e 4.15
Tk /2 Ti+0g/2 1 4.16
Tr+0ap/2 ag/2 Tx+o e 4.15
Tr+0o/2 ag/4 Tr+30p/4 e 4.15
Ti+og/2 /8 Tix+504/8 1 4.16
Ti+500/8 /8 Tx+300/4 1 4.18

¢) The diagram below shows the path through the Markov chain for the given sequence of
events:



O

4.19

a) Consider first the expected number of successes on all but the final slot of a CRP and
then the expected number on the final slot. Each non-final success occurs on a left interval,
and, in terms of the Markov chain of Figure 4.13, corresponds to a transition from a left
interval (top row of states) to a right interval (bottom row of states). Thus, for any given
CRP, the number of non-final successes is the number of transitions from left to right
states. Since the right states (i>1) are entered only by these transitions, the number of non-
final successes is the number of visits to right states (other than the state (R,0). Thus the
expected number of non-final successes is the expected number of visits to right states,
i>1. Finally note that, except when the CRP consists only of a single idle slot (which
occurs with probability exp(-Gg)), the final slot of a CRP is a success. Thus

n=1-exp(-Gy) + zp(R,i)

i=1

b) Whenever a collision occurs in a left interval, the corresponding right interval is returned
to the waiting interval. The number of packets successfully transmitted in a CRP is the
number in the original allocation interval less the number returned by the mechanism above.
Thus the expected number transmitted is the expected number in the original interval less
the expected number returned; this is true despite statistical dependencies between the
original number and the returned number. Given that an interval of size x is returned, the

number of packets in the returned interval is Poisson with mean Ax, independent of the past
history of the CRP. Thus, given that a fraction f of the interval is returned (via one or more

intervals), the expected number of returns is Aopf. Averaging over f (which is dependent
on the number in the original interval), the expected number of returns is AagE{f}. Thus

n =2iqy[1 - E{f}]

4.20

Let nk (or n, suppressing the subscript for slot time) be the backlog at slot k and assume n
is Poisson with known mean v. Each of the n packets is independently transmitted in slot k

with probability q(V), so the probability that the kth slot is idle, given n, is P{I | n} =
[1-g(v)]. Thus the joint probability of n backlogged packets and an idle slot is



exp(-v)vn
!

P{nI} = P{n}P{Iln} = [1-q )]

exp(-V)[v - vq,(V)]"
P = D PnT) = D, e explva V)]

|
n=0 n=0 n:

P(nI} expl-v+vq ()] [v-vq (V)]"
P(n|I} = IE?I}}= —

Thus, this probability is Poisson with mean v-vgr(v). Next consider a success

exp(-v) V'

—— [l W)™ g,

P{n,S} = P{n}P{S )} =

_exp(-v) [v-vg I Vg v)
- (n-1)!

[v-vg 1™

P{S} = ZP{n,S} = vq, (V)exp(-V) @0

n=1 n=1

= vq,(v)exp[-vq, (V)]

exp[-v+vq (V)] [v-vg (W)]™
(n-1)!

This says that the aposteriori distribution of n-1, given S, is Poisson with mean v-vqr(v).

P{nl|S} =

4.21

a) Since X and X are non-negative random variables, max(X, X3) < X;+X> for all
sample values. Taking expectations,

Y<2X=2
Suppose X takes values 3 with probability 1-€ and kP with probability €. Since
- 1-B
X =pB(1-e) +kPe =1, we have €=
Bk-1)

Y takes on the value B with probability (1-€)2 and the value kP with probability 2¢-€2, so

< 2

Y = B[1+(k-1)(2e-e)] =B + (1-B)(2-€)
As k gets large, € gets small and the final € in the above expression is negligible. Thus, for
small B, E{Y)} = 2.



b) With a collision between two packets, the time until both transmissions are finished is
the maximum of the two transmission times; the expected value of this is at most 2 from a),

and the following idle slot adds a final B (A more refined analysis, using [ as the minimum
packet length, would show that E{Y} < 2-B, so the final B could be omitted).

c) The time between state transitions is B with probability e-8(), (1+f) with probability
g(n)e8®), and at most (2+f) with probability [gZ(n)/2]e-8(™ (ignoring collisions of more
than two packets). Thus the expected time between transitions is at most

Be*™ + (1+B)g(me ™™ + (1+p/2)g (e *

d) The success probability in state n is g(n)e-8™, so the expected number of departures per
unit time is the ratio of this to expected time between transitions (this can be justified
rigorously by renewal theory). Thus the expected number of departures per unit time is at
least

g(n)e*™ B g(n)

Be ™ + (1+B)gm)e E® +(1+B2)g e ™ Pr(1+P)gm)+(1+B/2)g (n)

e) Taking the derivative of this with respect to g(n), we find a maximum where g2(n) =

B/(1+B/2). Thus for small B, g(n) is approximately the square root of 3. Substituting this
back into the expression in d), the maximum throughput (i.e., departures per unit time), is

approximately 1-2Vp.
4.22

a) Let v be the mean of the number n of backlogged packets. Then the unconditional
probability density of the time to the first packet transmission attempt is

p(t) = g)p(ﬂn)P{n} = rl2:3(7»+xn)<=,xp[-(7k+xn)‘c] ° n:’
= 2(l+xn)exp(-kt-v) (ve )
— n!

Splitting this into two terms, the first multiplied by A and the second by xn, we get

p(t) =+ xve exp[-AT-v+ve ]

b) The joint probability of a backlog n, a backlogged packet starting first (denoted by b),
and a starting time 7 (as a density) is given by

-(A+xn)T -V n -AT-v -XT.n
xne e Vv Xe (ve )

n! - (n-1)

P{n,b,t} =



Using the result in a),

xv' v™lex (-v")
P{nbl1} = P
A+V' (n-1)!

where V' = ve &,

c) The joint probability of backlog n, a new arrival starting first (denoted by a), and starting
time 7T (as a density) is given by

. R ATV, -
Ae (l+nx)te vvn Ae T-v (e xtv)n

P{n,a,t} = = = —

A v'nexp(-v') ) , X

P{n,alt} = — © Vi=ve

A+xV

d) Let n' be n-1 if a backlogged packet starts and n' be n if a new arrival starts. Adding the
result in b) to that in ¢), we have

v'n'exp(-v')

P{n'|1:} = —

That is, n' is Poisson with mean V' = ve&,
4.23

In both systems, the maximum throughput depends on what happens with large backlogs.
For slotted Aloha, the expected number of transmissions in state n (for n large) is g(n),

which is optimally chosen as V(2B). For large backlogs, the state can be estimated
relatively accurately, so that the probability of a successful slot following any given idle

slot is approximately V(2B). For the FCFS algorithm, the allocation interval at the

beginning of a CRP is chosen to make V(2B) the probability of an initial successful slot.

Thus, the two systems perform in essentially the same way except when a collision is being
resolved in the FCFS algorithm. On the first slot after a collision, the FCFS algorithm

sends a fraction VP of the colliding interval, which yields a success with probability

approximately 2VB. This is an improvement over slotted Aloha, and the improvement is
still greater on the right interval of the CRP. Thus the number of idle slots required to
transmit the next two packets after a collision for FCFS is smaller than for slotted Aloha.

However, for small B, collisions occur in slotted Aloha on a fraction of packets roughly
equal to g, which is V(2B); the additional idle time required for each of these is proportional
to VB. This means that the idle time per packet to resolve collisions in slotted Aloha is
proportional to B, which is negligible to order VB.

4.24

a) Let E{t} be the expected time between initiations of successful packet transmissions,
assuming a backlogged system with the number of transmissions after each idle slot having



a Poisson distribution with mean g. Using the same argument as in Eq. (4.43), but

recognizing that the time occupied by a collision is now 2, including the idle slot after the
collision, we have

E{t} = [B+E{t}]e:t + [1+Blge-e + [2B+E{t}][1-(1+g)eE]

_Be® + (1+B)ge™ + 2B[1-(+gle®] _ |, Be*1-g)

ge® g

E{t}

Minimizing numerically gives E{t} =1 + 3.31B at g=0.77.

b) Using Little's relation on the time average of Eq. (4.42),
W= R+y _ R+y
1-AE{t} 1-A(1+3.31PB)

¢) For small B, the contribution of the idle and collision intervals to the residual time R can
be ignored since they are proportional to 32. Thus,

—  AE{X+B)?] AX*+2AB
R = =
7] 2
Asin CSMA,

y =E{t} - (1+B) = 2.31PB
Substituting these results into the result in part b),
_AX? + B(4.62421)
2[1-A(143.31B)]

w

d) Clearly the Poisson approximation is very poor for a backlog of one, since collisions
cannot occur. On the other hand, each interval tj involves at least a backlog of two, so the
effect of backlogs of one is seen only in the expected value of y, which is almost
negligible.

4.25

We want to find the maximum time from when a given node starts to transmit in a collision
until that node both stops transmitting and hears the channel become idle. Suppose a given

node j starts to transmit at time t. By time t+f all other nodes must have ceased

transmission. Thus, by time t+2f, node j ceases to hear these other transmissions. On the
other hand, since by assumption a collision occurred, at least one other node started to

transmit before t+f, so that node j must have ceased transmission also by t+2. Note,
however, that the definition of a collision is somewhat fuzzy. For example two nodes at
one end of a bus could start transmitting almost simultaneously and then stop very quickly.
A node at the other end of the bus could start transmitting almost b time units later and then



stop almost immediately because of the detected collision. A node at the first end of the
bus, having heard the collision from the first two nodes cease, could start transmitting just
before hearing the transmission from the second end of the bus, and another node at the

second end could start transmitting after another B time units. Thus even though each node

hears the channel become idle at most 2f3 time units after being involved in a collision, later
collisions could be regarded as part of the same larger collision event.

4.26

a) The first transmission after a given idle detection will be successful if no other

transmission starts within the next B time units. Since the process of initiations is Poisson
with rate G, the probability of this is

Psycc = e-BG

b) The mean time until the first inidation after an idle detection is 1/G (note that all nodes
detect the channel as being idle at the same time). If this first initiation is successful, 1+

time units are required until the next idle detection; if the initiation is unsuccessful, 23 time
units are required. Thus

E{time between idle detects} = G + (1+B)e-BG +2B(1-e-BS)

c¢) The throughput T is the ratio of Pgyc to the expected time between idle detects,

-BG
T= e 1

G l+(1+B)e PO428(1-ePC) (G 142B)ePC(1-B)

d) We can maximize this by minimizing 1/T. Taking the derivative of 1/T with respect to

G and setting it equal to 0, we find that the minimum of 1/T occurs at G = 1/2.
Substituting this into the expression for T, we get

1 1

T: =
1+B@afe - 1) 1+5.5958

4.27

Each packet transmission is effectively extended by a round trip delay, mv. That s, if X is
the time for a node to transmit a given packet plus token, then X is extended to X+mv if the
token is not sent until the packet has returned to the sending node. The effective utilization

factor then becomes p = A(E{X }+mv) = A(1+mv). Using Eq. (3.76) with these modified
values for p and X, we have

_ )\.(X+mv)2 + [m+A(1+mv)]v

2[1 - A(1+mv+v)]

W




Note that if the round trip delay is large relative to the packet transmission time, tnis causes
a major increase in delay and a major decrease in maximum throughput.

4.28

Suppose a given node has a full transit buffer, and suppose the previous node on the ring
has a never empty input buffer. Then that previous node will send a constant stream of
packets (either from its transit buffer or input buffer) to the given node. If none of these
packets are addressed to the given node, the hapless node must continue to transmit from
its transit buffer, which remains full due to the constant input. In essence, in a fully loaded
register insertion ring, the nodes that receive the most traffic are the ones permitted to
transmit the most traffic. This problem could, of course, be overcome by a more complex
protocol that prevents nodes from monopolizing the ring.

4.29

Given the placement of the first node at a given distance X from the left end of the bus, the
other node will be to the left of the first node with probability X; and to the right with
probability 1-Xj. Given that it is to the left, its expected distance from X is X1/2, and
given that it is to the right, its expected distance is (1-X1)/2. Thus the expected distance
between X and X», given Xj, is

2 2
X)? (X))

E(X, X, | X} =——+—
Averaging over X, we then have
1 2 2
(Xl) (l-Xl) 1
E{IX,-X,I} = > +—3 dX, =3
0

4.30

a) Node i is the lowest numbered node with a packet to send if nodes O, 1, ..., i-1 have no
packets (which occurs with probability (1-q)!) and node i has a packet . Thus

P{i} =q(1-9)'; 120.

b) k > 0 is the number of successive sets of 2J nodes that contain no packets. Thus k+1
sets of 2J nodes each must be tested to find the first set with a packet, and j additional tests

are necessary to find i within the final set of 2. Thus the required number of reservation
slots is k+1+j.

¢) For a given value of j, the expected number of reservation slots is E{k}+1+j. By the
suggested approximation k = i27, we have E{k} = 27E{i}. Thus

3 i _ ] NSRS
E{k) =2 ziqu-q) =27q(1-q) Za-q) P R

1=1 i=1 q



5 1-
E {reservation slots} = 21-q-3+ 1+]

It is not much more difficult to find the exact value of E{k}. We note that k is the integer
part of 27, and thus P{k=n} = P{i>n2)}. We then have

E(k) = gkp{k} = nz;lP{an} = ;P{ian}

= ZCXP[anln(l-q)] = c”‘I’["fh{l(l-q)]
n=1 1- exp[nzjln(l_q)]

The exact value of E{k} is less than the approximate value by a quantity somewhat less
than 1/2.

d) Using the approximation for E{k} again, we want to choose the integer j20 that
minimizes E{reservation slots}. Observe that the expression for E{reservation slots}
above (temporarily regarding j as a real number) has a positive second derivative with
respect to j. Thus the expression is minimized over integer j>0 by choosing the smallest

integer j for which the expression increases in going from j to j+1, i.e, for which
2’jl--q-+ 1+j < 2'j'1-1-ﬂ+2+j
q q

This means that the minimum occurs at the smallest value of j for which 2i*! > (1-q)/q.
Thus the minimizing j is the integer part of log2[(1-q)/q].

We can find the minimizing j for E{reservation slots} using the exact expression for E{k}
in the same way. Let f(j) = exp[2jln(1-q)] and note that f(j+1) = £2(j). Thus we want to
find the smallest value of j for which

9 __£6
HO 17

This inequality is equivalent to f(j) < 1 - f2(j). The two sides of this inequality are equal for
f(j) = (V5 - 1)/2, so the minimizing j is the smallest intc§er j for which £(j) < (V5 - 1)/2.
Thus j is the smallest integer for which 2jln(1-q) < In[(V5 - 1)/2].

+1

4.31

a) A simultaneous transmission on links 1 and 3 causes a collision for the transmission on
link 1; similarly, a collision on link 2 occurs if 2 and 3 are used simultaneously. Finally,
simultaneous transmissions on links 1 and 2 cause a collision for both transmissions. Thus
at most one link can be used successfully at a time and f1+f2+f3<1. To view this in terms
of Eg. (4.75), we let x1, X2, and x3 be the collision free vectors ( 100), (010), and (001)
respectively, and we let x4 be the trivial CFV (000). Then, for 1<i<3, fj corresponds to aj
in Eq. (4.75) and the constraints a;20 and aj+ap+a3+as=1 is equivalent to f1+f2+£3<1.



b) From Eq. (4.77), we have
p1 = (1-g3)(1-q2)
p2 = (1-q3)(1-q1)
p3=1
Eq. (4.78) then gives us the fractional utilizations

f =f1 =qi1(1-q3)(1-q2) ®
f =f=q2(1-q3)(1-q1) (i)
2f=f3=q3 (iii)
Taking the ratio of (ii) and (i),
= q2(1-q1) ; thus q, =
= ql(l-qz) 5 ql - q2

c) Using q1 = q2 and q3 = 2f in (i) above, we have f = q1(1-2f)(1-q1). Thus

f 1
— = - < -
o - G =z
The inequality above follows by taking the maximum of q1(1-q1) over q; between 0 and 1.
It follows from this that f < 1/6.

4.32

Let g; be the attempt rate on link i and p; be the probability of successful transmission on
link i. A transmission on link 1 will be successful if no transmission is simultaneously
taking place on link 3 (since link 5 is never used). Thus, assuming independent attempts,
p1 = 1-q3. Similarly, a transmission on link 2 is successful if link 4 is not simultaneously
carrying transmitting, so p = 1-q4. Transmissions on links 3 and 4 are always successful,
so p3 =1 and p4 = 1. Finally, a transmission on link 7 is successful if neither links 3 nor 4
are carrying transmissions simultaneously, so p3 = (1-q3)(1-q4). Eq. (4.78) states that the
throughput on each link, f;, is equal to pjgi. Combining these equations with the values for
pi found above and with the given throughputs, we have the equations

1/3 =f1=q1(1-q3)
1/3 =f2 = q2(1-q4)
1/3=f3=q3
1/3=f4=q4
4/9 = f7=q7(1-q3)(1-q4)
These throughputs will be feasible (under the assumptions given) if we can find values

between 0 and 1 for the attempt rates q; that satisfy these equations and if the node
transmission rates are also between 0 and 1. The third and fourth equations show that q3 =



g4 = 1/3. Using these values in the first two equations, we find that q; = q2 = 1/2. This
indicates that the attempt rate from the left most node is 1, which is permissible. Finally,
using q3 = q4 = 1/3 in the final equation gives us q7 = 1. Thus we see that the given
throughputs are feasible. The success probabilities are then easily found to be p; =p2 =
2/3, p3 =p4 =1, and p7 = 4/9.

b) Since links 1 and 2 can not be used simultaneously, and links 3 and 4 always transmit
on the slot following a successful transmission from 1 or 2 respectively, links 3 and 4
cannot be used simultaneously. Thus 2/3 of the slots are used to carry packets on either
links 3 or 4. Thus at most 1/3 of the slots can carry packets successfully on link 7. What
has happened here is that the assumption that nodes transmit independently of each other
has been violated by the fact that links 3 and 4 are both forwarding traffic from the same
node.

c) Since links 1 and 2 carry packets alternately, two successive attempts are never made on
link 1, and thus (since link 3 always transmits only on the slot after receiving a packet on
link 1) no packet on link 1 is ever subject to a collision. The same result holds for link 2,
and thus f] = f2 = f3 =f4 = 1/2. In this case, links 3 and 4 transmit on alternate slots, and
all packets on link 7 suffer collisions.

4.33

The token arrival times, starting at tj, are 4, 5, 6, 8, 9, 10, 12, 13, 14,... . This can be
expressed analytically as t; = 3+i +.(i-1)/3] for i21. The result as given in the bound is t; =
i+2+Li/3] for i>1. The corresponding token times, starting at t;, are 4, 5,7, 8, 9,11, 12,
13, ... . The difference results from the bound taking tg as T rather than as 0.

4.34

From Eq. (4.82), we see that the asymptotic round trip token time is Tm/(m+1) + T/(m+1).

Node i receives o of that time for high priority traffic and (t-T)/(m+1) for low priority
traffic. Thus the fraction of traffic received by node i is

(t-T)m
m+T

o;(m+1)
Tm+T

high priority; low priority

Fortunately this adds up to 1.
b) Since each node i requires only a fraction o/t of the ring capacity for its high priority

traffic, a fraction (1-T)/t is left over for low priority. Since this is shared equally by each
node, each node receives (t-T)/(mt) for low priority traffic.

4.35
First assume A=1 and C1>0 where C1 is the value in counter 1.
On the arrival of an idle slot in the downstream direction, decrement C1.

On the arrival of a request bit in the upstream direction, increment C2 (the value of
counter 2).



Next assume A=1 and C1=0.

On the arrival of an idle slot in the downstream direction,
1) Place the frame in the idle slot, setting the busy bit;
2) If there is a waiting frame in the supplementary queue, put it in the virwal queue,
place C2 in counter 1 and set C2 to 0;
3) If there is no waiting frame, set A=0.
On the arrival of a request bit in the upstream direction, increment C2.

Next assume A=0.

On the arrival of an idle slot in the downstream direction, decrement C2.

On the arrival of a request bit in the upstream direction, increment C2.

On the arrival of a frame to be transmitted, put it in the virtual queue, place C2 in
counter 1 and set C2 to 0.



2.1

Chapter 5 Solutions

The Prim-Dijkstra Algorithm Arbitrarily select node e as the initial frag-
ment. Arcs are added in the following order: (d,e), (b,d), (b,c) {tie with (a,b)
is broken arbitrarily}, (a,b), (a, f).

Kruskal’s Algorithm Start with each node as a fragment. Arcs are added
in the following order: (a,f), (b,d), (a,b) {tie with (b,c) is broken arbitrarily},
(b,e), (d,e).

The weight of the MST in both cases is 15.

9.2

The Bellman-Ford Algorithm By convention, Dgh) = 0, for all A. Initially
Dgl) = dy;, for all ¢ # 1. For each successive h > 1 we compute th“) =

min; [D}h) + d;;], for all ¢ # 1. The results are summarized in the following
table.

i| D} D? D? D} D} |Shortest path arcst
1 0 0 0 0 0

2| 4 4 4 4 4 (1,2)

3| 5 5 5 5 5 (1,3)
4o 7 1T T 7 (2,4)

5| 00 14 13 12 12 (6,5)

6| 0o 14 10 10 10 (4,6)

7] © oo 16 12 12 6,7)

tThe arcs on the shortest path tree are computed after rﬁnning the Bellman-
Ford algorithm. For each i # 1 we include in the shortest path tree one arc (j,i)
that minimizes Bellman’s equation.

Dijkstra’s Algorithm Refer to the algorithm description in the text. Ini-
tially: D; = 0; D; = dy; for i # 1; P = {1}. The state after each iteration is



shown in the table below. P is not shown but can be inferred from ¢. Only the
D;’s which are updated at each step are shown.

Iteration | ¢ { Dy D, Ds Dy Ds De¢ D7 | Arc added
nitial 0 4 5 00 o0 00 oo
1 2 5 7 14 o0 o© (1,2)
2 3 7 14 14 o~ (1,3)
3 4 13 10 oo (2,4)
4 6 12 12 (4,6)
5 5 12 (6,5)
6 7 (6,7)

2.3

Let p;; be the probability that link (7, ) fails during the lifetime of a virtual
circuit. Let P; be the probability that a path k = (4,4,...,j, B) remains intact.
Since links fail independently we have:

Py =(1-pai)---(1-pjB)

We want to find the path k for which P; is maximized. Equivalently, we can
find the path k for which —In Py is minimized.

—~InP = —In(l —pa;)— - —In(1 - p;B)

Since the arc weights p;; are small, 1 — p;; is close to 1 and we may use the
approximation In z &~ z — 1. This gives:

—InPy ~ pai+---+pjB

Therefore, the most reliable path from A to B is the shortest path using the
weights given in the figure. Applying Dijkstra’s algorithm gives the shortest
path tree. We proceed as in problem 5.2.

Iteration | ¢« | Dy Dp D¢ Dp Dg Dg Dg | Arc added
initial 0 oo 001 o0 003 o0 o
1 C 00 0.06 0.02 oo 00 (A4,C)
2 E 00 0.04 0.06 oo (C,E)
3 D 0.1 0.05 0.06 (E,D)
4 F 0.1 0.06 (D, F)
5 G 0.09 (D,G)
6 B (G, B)

The most reliable path from A to B is (A,C, E,D,G, B). The probability
that this path remains intact is

Pacepcs = (0.99)(0.99)(0.98)(0.98)(0.97) = 0.913



2.4

Let the weights for arcs AB, BC, and CA be 1, 2, and 2, respectively. Then an
MST is {AB, BC} whereas the shortest path tree rooted at C is {CA,CB}.

2.9

a) We consider the following network with an initial routing similar to example
1in 5.2.5. A routing can be completely specified by indicating the link at which

FLOW ON EACH LINK
SHOWN NEXT TO THE LINK

the traffic changes from clockwise to counterclockwise. This link always carries
zero traffic in both directions. For example, the routing in the above diagram
would be called (2,3). With this as the initial routing, the subsequent routings
would be: (4,5), (1,6), (5,6), (1,6)....

b) We proceed as in a) but add 1 to each length.

With an initial routing of (2,3), subsequent routings are: (3,4), (2,3)....
Notice that the oscillations have been damped as compared to part a), and a
reasonable routing is always maintained.

With an initial routing of (1,2), subsequent routings are: (4,5), (1,2)....
There are still undesirable oscillations, but the situation is not quite as bad as
in a).

With an initial routing of (1,6), subsequent routings are: (5,6), (1,6).... For
this initial condition, the constant bias factor has had no effect on the oscillatory
behavior.

By symmetry, the remaining three cases are equivalent to the above.

c) Notice that regardless of the choice of @, node 3 reverses its routing at each
iteration. Therefore, the best that can be hoped for is oscillation between the
two reasonable routings (2,3) and (3,4). In order to reduce oscillations with a



routing of (1,6), node 5 must continue to route counterclockwise. This requires
that:
Sa>a+4+e¢ = a>1+¢e/4

In order to reduce oscillations with a routing of (1,2), node 4 must continue to
route counterclockwise. This requires that:

4a+1>2a+54+2 = a>2+¢

By symmetry, the remaining routings result is the same conditions. Therefore,
for values of @ > 2+ ¢ the routing of all nodes except node 3 eventually remains
constant.

d) For this particular example, the averaging changes the link lengths, but
has no effect on the routing decisions. The resulting routings are the same as

in part a).

2.6

(a) Let D; be the shortest distance from node i to node 1 corresponding to
lengths d;;. We claim that

D; < D?, Vi
Given the definition of D?, it will suffice to show that
D,‘SD,’, Vi¢UkaU{1}.

Indeed consider any node i & Uy N U {1}, and let B; be a shortest path from i
to 1 corresponding to lengths J,-j. We have Dy = dpnn + D, for all arcs (m,n)
of B;, so by the definition of the sets N, we must have dm, < dmn for all arcs
(m,n) of P;. Therefore, the length of P; with respect to arc lengths d;; is no
more than its length with respect to arc lengths ciij, implying that D; < D;.
Thus we have D; < D; for all i ¢ Uy Nz U {1} and D; < D? for all 4.

Now consider the Bellman-Ford method corresponding to arc lengths d;; and
starting from two different initial conditions. The first set of initial conditions is
the standard D¢ = oo for i # 1 and DY = 0, and the corresponding iterates are
denoted D?. The second set of initial conditions is D{ as given in the problem
statement and the corresponding iterates are denoted D!. Since

D;<DP< DY Vi,
we can show by using induction and the equations

b?'H = !T‘ljin[dl‘j + [);‘],



D+ = min{d;; + D}),
Di = mjm[d,] + D]],

that R
D; < D} < D}, Vi, h.

Since b," = D; for h > N — 1, it follows that D? = D; for h > N — 1, proving
the desired result.

(b) As stated in the hint, when the length of a link (¢, j) on the current shortest
path tree increases, the head node 7 of the link should send an estimated distance
D; = oo to all nodes m such that (m,z) is a link. These nodes should send
Dy, = oo to their upstream neighbors if ¢ is their best neighbor, that is, if link
(m, ©) lies on the shortest path tree, etc. Before any of the nodes k that sent
D, = oo to its upstream neighbors recalculates its estimated shortest distance,
it should wait for a sufficient amount of time to receive from its downstream
neighbors n any updated distances D, = oo that may have resulted from the
transmission of D; = oo.

2.7

Using the hint, we begin by showing that h; > hj;, for all 7 # 1. Proof by
contradiction. Suppose that there exists some 7 # 1 for which h; < h;,. From
the Bellman-Ford algorithm we have D,(h_l) > D,(h). We define h; = 0 for
completeness. Therefore, DJ(-?‘—I) > D;flj‘). However, if this held with equality
it would contradict the definition of h;, as the largest h such that D™ # D{"~%).
Therefore, D(h'—l) D(hj‘) Using this strict inequality in the definition of j;,
D(h - D(h '1) + d;,i, gives D(h 9 D(h") + dj;i. From the Bellman-Ford
algorithm, we know that D(h"H) < D(h") + d;,;. Using this in the previous

expression gives th Js th"+ ) which contradicts the definition of h; as the

largest h such that D,(h) # D,(h_l). Therefore, the supposition that h; < hj, is
incorrect. This proves the claim.

The subgraph mentioned in the problem contains N — 1 arcs. To show that
it is a spanning tree, we must show that it connects every node to node 1. To
see this label each node 7 with h;. Since the Bellman-Ford algorithm converges
in at most N — 1 iterations, we have 0 < h; < N — 1 for all 7 # 1. Furthermore,
hy = 0 and h; > hj, for all ¢ # 1. Each node ¢ # 1 is connected to a neighbor
with a smaller label. We can trace a path in the subgraph from every node to
node 1, therefore the subgraph must be a spanning tree.

Since the path lengths Dgh') along the subgraph satisfy Bellman’s equtation,
the spanning tree is a shortest path spanning tree rooted at node 1.



2.8

Bellman’s equation is
r; = m_in{:z:j—i-dj,-}, t=2,...,N
j
Xy = 0

in the unknown vector £. One solution is the set of shortest distances d; from
node 1 to each node i. Consider the subgraph G of all arcs (j,7) which are such
that D; = D; + dji.

Claim: Every cycle of zero length not containing node 1 belongs to G.

Proof: If (i1, 12), (?2,23), - ., (ik,%1) is such a zero length cycle, we have
0 < D +dii,— D,
0 < Di,+di, —Di,

IA -

0 D,’k -+ dikil - D,'l.
The sum of the right sides is 0, so the right side of each inequality is zero
implying that the cycle belongs to G. This proves the claim.

Let C be the set of nodes that participate in a cycle of zero length not
containing node 1. Let C be the set of nodes i that either belong to C or for
which there is a node j € C and a directed path from j to ¢ in the graph G.
Note that 1 ¢ C. For any § > 0 let

l‘,’:D,’—é VlEC
J:iZ.D,' Vi¢c.

It is easily verified by substitution that the vector Z defined above is a solution
to Bellman’s equation.

5.9
Define S* = {1} and for k = 1,2, ... define

S = all nodes 7 such that either 7 € Sip_, or all
=3 arcs (4,7) have their head node j in Six_;

Claim: After some index k, S; equals the entire set of nodes N .

Proof: Let Sy = N'— Sk and suppose that S; is non empty. Take any node
i € Sk. Then by the connectivity assumption, ¢ will have at least one incoming
arc with its head node in Si. Either all arcs (j,¢) have their head node j in
Sk, in which case i € Sy, or else there is a node j; € S; for which (j;,4) is an



arc. In the former case we see that Si4; will be larger than Si. In the latter
case we repeat the process with i replaced by j;. Eventually, we will obtain a
node that belongs to Sk, since otherwise a node in Sk would be reencountered
thereby closing a directed cycle not containing node 1. This proves that Si4,
is larger than S;. Therefore, Sy will be enlarged if it does not equal A" and for
k sufficiently large will equal N. This proves the claim.

Now if m; is the number of nodes in Si, renumber the nodes in S; — Sg
as 2,3,...,my, then the nodes in S2 — §; as m; + 1,...,my etc. With this
numbering each arc (7, j) with j # 1 is such that i € S, and j € S, — Sk, for
some k; < k2. The requirement of the problem is satisfied.

If the nodes are renumbered as indicated above, Bellman’s equation can be
written as

D; = IIlin{Dj+dji}, t=2,...,N
<1
Dl = 0

and can be solved by successive substitution, i.e., first solve for D, then for Ds,
etc. This requires at most O(N?) operations.

5.10

(a) Refer to the algorithm statement in the text. Let B be the lower bound on
the arc lengths. Then in step 1, each node 7 ¢ P with

D; < mip{D;} + B

can be added to P. To see why this is correct, recall that, at the start of each
iteration, D; for 7 &€ P is the shortest distance from 1 to 7 for which all nodes
on the path except ¢ lie in P. The inductive argument which proved Dijkstra’s
algorithm required that each node added to P must have a shortest path for
which all but the final node lie in P. This must be true for each node i which
meets the above condition, since any path which included another node not in
P would have a length of at least D;.

(b) Assume that the shortest paths from node 1 to all other nodes have
been found and have lengths Dj, j # 1. If link (3, k) increases in length, paths
which do not traverse link & are not affected by this change. Therefore, we can
initialize Dijkstra’s algorithm as

j such that a shortest path from 1 to j
P= .
does not traverse arc (i, k)

D; = Dj for allj € P

D; = min;e p[D; +d1j] for allj ¢ P

and continue with the ordinary algorithm.



.11

(a) We have D; = 0 throughout the algorithm because initially D; = 0, and by
the rules of the algorithm, D; cannot change.

We prove property (1) by induction on the iteration count. Indeed, initially
(1) holds, since node 1 is the only node j with D; < co. Suppose that (1) holds
at the start of some iteration at which a node 7 is removed from V. If i = 1,
which happens only at the first iteration, then at the end of the iteration we
have D; = aj; for all inward neighbors j of 1, and D; = oo for all other j # 1,
so D; has the required property. If j # 1, then D; < oo (which is true for all
nodes of V' by the rules of the algorithm), and (by the induction hypothesis)
D; is the length of some walk P; starting at j, ending at 1, without going twice
through 1. When D; changes as a result of the iteration, D; is set to d;; + Dj,
which is the length of the walk P; consisting of P; preceded by arc (z, ). Since
i # 1, P; does not go twice through 1. This completes the induction proof of
property (1).

To prove property (2), note that for any j, each time j is removed from
V, the condition D; < d;; + Dj is satisfied for all (¢,j) € A by the rules of
the algorithm. Up to the next entrance of j into V, D; stays constant, while
the labels D; for all ¢ with (Z,j) € A cannot increase, thereby preserving the
condition D; < d;; + D;. ’

(b) We first introduce the sets

= {i| D; < oo upon termination},

T = {i | d; = oo upon termination},

and we show that we have D; € T if and only if there is no walk to 1 from j.
Indeed, if i € I, then, since i ¢ V upon termination, it follows from condition
(2) of part (a) that j € I for all (j,i) € A. Therefore, if j € I, there is no walk
from node j to any node of I (and in particular, node 1). Conversely, if there
is no‘walk from j to 1, it follows from condition (1) of part (a) that we cannot
have D; < oo upon termination, so j € T.

We show now that for all j € I, we have d; = min(; ;)ea{dj;i + D;} upon
termination. Indeed, conditions (1) and (2) of part (a) imply that upon termi-
nation we have, for all 71 € I,

D; <d;; + D;, V j such that (j,7) € A

while D; is the length of some walk P; from 7 to 1. Fix a node m € I. By
adding this condition over the arcs (j,7) of any walk P from m to 1, we see that
the length of P is no less than D,,. Hence P,, is a shortest walk from m to
1. Furthermore, the equality D; = d;; + D; must hold for all arcs (j,7) on the
shortest walks P, m € I, implying that D; = min; s)ea{dji + D;}.

(c) If the algorithm never terminates, some D; must decrease strictly an infinite
number of times, generating a corresponding sequence of distinct walks P; as



per condition (1) of part (b). Each of these walks can be decomposed into a
path from j to 1 plus a collection of cycles. Since the number of paths from j to
1 is finite, and the length of the walk P; is monotonically decreasing, it follows
that P; eventually must involve a cycle with negative length. By replicating
this cycle a sufficiently large number of times, one can obtain walks from j to 1
with arbitrarily small length.

(d) Clear from the statement of Dijkstra’s algorithm.

3.12

(a) We first note that the properties of part (a) of Problem 5.11. If upon
termination we have D; = oo, then the extra test d;; + D; +u; < d; for entering
V is always passed, so the algorithm generates the same label sequences as
the (many destinations) shortest path algorithm of Problem 5.11. Therefore,
part(b) of Problem 5.11 applies and shows that there is no path from ¢ to 1.

Let _ﬁj be the final value of D; obtained upon termination and suppose
that D; < co. Assume, to arrive at a contradiction, that there is a path P, =
(t,3%,Jk=1,--->J2,J1,t) that has length L, with L, < D,. For m=1,...,k, let
L;, . be the length of the path Py, = (Jm,jm—1,---,J2,J1,1)-

Let us focus on the node j; following ¢ on the path P,. We claim that
L; < ﬁjk‘ Indeed, if this were not so, then j; must have been removed at
some iteration from V with D;, satisfying D;, < Lj,. If D, is the estimate of ¢
at the start of that iteration, we would then have

dfjk + Djk < d‘jk + ij =L < 5t < Dy,

implying that the shortest distance estimate of ¢t would be reduced at that
iteration from D, to di;, + Dj,, which is less than the final estimate D; -a
contradiction.

Next we focus on the node j;_; following j; and ¢ on the path P,. We use
a similar (though not identical) argument to show that L;, , < Dj,_,. Indeed,
if this were not so, then ji;_; must have been removed at some iteration from
V with D;,_, satisfying Dj, _, < Lj,_,. If D;, and D, are the shortest distance
estimates of j;x and t at the start of that iteration, we would then have

djkjl—l + Djk—) < djkjl:—l + ij—l = ij < Djk < Dju
and since Lj, + uj, < L; < D, < D, we would also have
djkjk—l + Djk—x < D - Ujy -

From the above two equations, it follows that the shortest distance estimate of
Jk would be reduced at that iteration from Dj, to d;;, + Dj,, which is less than
the final label Dj, - a contradiction.



Proceeding similarly,_we obtain L; < _ﬁjm foralm = 1,...k, and in
particular d;,; = Lj, < Dj,. Since

djll +u;, < L, < —D-;,

and D, is monotonically nonincreasing throughout the algorithm, we see that
at the first iteration, j, will enter V' with the label a;,;, which cannot be less
than the final estimate D;,. This is a contradiction; the proof of part (b) is
complete.

(b) The proof is identical to the proof of Problem 5.11(c).



5.13

Suppose that the sequence number field is finite with maximum equal to M.
The exceptional circumstances referred to in the problem statement arise when the
sequence number for updates of some node 1 becomes M within the memory of some
other node, say j, due to a memory or communication error. Then the next time
node ¢ floods a new update into the network, it will receive M from node ; through

the feedback mechanism described at the end of section 5.3.2. The question now is
how node : can convince node j to reduce its stored sequence number so that it can

listen to a new update from node 1.

The remedy is for node 1, once it detects an error of the type described above,
to issue a special “reset” packet which is flooded through the network. A node
receiving a reset packet originated at node 1 sets its stored sequence number for
node 1 to zero, and sends the reset packet to all its neighbors except the one from
which the reset packet was received. In this way all nodes connected with node
¢ will reset their sequence numbers to zero and the wraparound condition will be
corrected.

There are two issues here: first how to avoid indefinite circulation of reset pack-
ets, and second how to guarantee that reset packets will not interfere with regular
update packets or other reset packets from the same node. A clean way to ensure
this (even if the links can reverse the order of reception of packets) is to add an age
field to a reset packet which makes it “live” for exactly A seconds. The age limit
A should be larger than the known upper bound for the time required for the reset
packet to reach all nodes, so that the reset packet will live long enough to reset the
sequence numbers of all nodes to zero. To avoid confusion node 1 should not issue
any other update or reset packet for A seconds after issuing a reset packet. Finally,
unlimited circulation of a reset packet, and confusion with other packets from node
¢, are avoided by requiring a node j # ¢ not to accept a reset packet or any update
packet issued by node 1 if node 7 has received a reset packet from node : which is
still “live.” This is so because update packets from node 1 issued before the reset
packet was issued cannot arrive at another node after the reset packet’s age has
expired under the assumption that an update packet reaches all nodes in time less
than A. Note that this protocol could be used to operate flooding with a relatively
small sequence number field. On the other hand, knowing an upper bound on the
time required for an update packet to reach all nodes is a strong assumption, and
one would like to minimize reliance on it.

5.14

A node is considered adjacent to the directed links for which it is the head node.
Each node : decides upon a value associated with each of its adjacent links. We
wish to find an algorithm which will reliably broadcast these values to each network
node. To accomplish this we augment the SPTA as follows.



In addition to the main and port topology tables, let each node & keep similarly
organized main and port information tables (I' and I} respectively) which contain
entries for each directed link. The communication rules for these tables are the same
as for the topology tables. When an entry for a non-adjacent link (m,n) changes
in one of node 1’s port information tables, it updates the corresponding entry in its
main table by setting

I'(m,n) = I (m)(m,n),
where L(m) is the label for node m which was assigned by the main topology table
update algorithm. When the labels L(m) are updated due to a topology change,
each entry in I' for a non adjacent link must be updated in this manner.

The value of I'(m,n) can be easily proven to be correct at each node : by using
the fact that L(m) at node 1 is the first hop on a shortest hop path from i to m.
We first show that it is correct for nodes ¢ which are 1 hop from m, then 2 hops etc.

5.15

(a) The algorithm can fail in the network shown below.

3 Link B /él Link A @

The table below shows a sequence of link status changes and message exchanges
which lead the algorithm to fail. These events have been divided into numbered
sections for reference purposes. The notation “(i—j,l])” is used to indicate that
node ¢ sends a message to node ; indicating that link / is down. The entries
in the topology column give the perceived status of link A at nodes 1 through
4 respectively. All links are initially up. We are only interested how the nodes
determine the status of link A; messages concerning link B are not shown.

[ # [ Description [ Topology}
1 | Link A fails.

(2—1, A]) sent and received.
(2—3, A]) send and received. dddd
2 | Link B fails.

(1—3, Al) sent and received.
(3—1, A]) sent. dddd
3 | Link A is repaired.
(2—1, A7) sent and received. uudu
4 | (3—1,A]) from #2 is received.
(13, AT) sent and received. duuu
5 | Link A fails.

(1—2, A]) sent and received.
(2—1, A}) sent and received. ddud




After #35, the algorithm terminates with node 3 having an incorrect status for
link A.

(b) We use the same scenario as in part (a) up to #4. The extra messages sent,
due to the “including” rule, have no effect on the topology up to this point. The
table below shows a scenario illustrating failure of the algorithm.

. # | Description | Topology |
4

3—1,A]) from #2 is received. duuu

sent and received. uudu

1—2, A1) sent and received. duuu
7 | Same as #35. uudu

Nodes 1 and 3 can oscillate indefinitely concerning their opinion of link A’s
status, and the algorithm never terminates. Although node 2 has the correct infor-
mation, unfortunate message timing can stop it from helping the situation. This
failure mode is at least as serious as that in part (a).

5.16

The ARPANET and the other algorithms which use sequence numbers are not
affected. The sequence numbers can be used to sort out the correct message order.
However, SPTA is clearly affected by a change in message order. For example,
suppose that a link goes down and then up. If the adjacent nodes reverse the order
of the two messages, the algorithm will fail to arrive at the correct topology.

5.17

(a) In the algorithm that follows, each node has two possible states, “connected”
or “not connected”. In addition, each node marks each of its neighbors with one
of the following: “unknown”, “not in tree”, “incoming”, or “outgoing”. There are
two kinds of messages used: “attach” and “ack”. The following are the procedures
executed at each node s.

Initially at each node s
state = “not connected”
mark(y) = “unknown” for each neighbor j

Start (Node 1 only)
state = “connected”
send “attach” to each neighbor




Receive “attach” from 3
if state = “not connected”
then state = “connected”
mark(y) = “outgoing”
if node : has neighbors other than ;
then send “attach” to each neighbor except j
else send “ack” to j
end
else mark(j) = “not in tree”
if mark(k) # “unknown” for each neighbor k
then send “ack” to the neighbor k such that mark(k) = “outgoing™+t
end

Receive “ack” from 7
mark(y) = “incoming”
if mark(k) # “unknown” for each neighbor &
then send “ack” to the neighbor k such that mark(k) = “outgoing”t
end
tNode 1 just terminates the algorithm; it has no “outgoing” neighbor

The above algorithm sends one “attach” and one “ack” message on each span-
ning tree link, and sends two “attach” messages (one in each direction) on each link
not in the tree. Therefore, it sends a total of 24 messages.

(b) We use the spanning tree constructed in part (a) to simplify counting the
nodes. Each node marks its “incoming” neighbors with either “heard from™ or
“not heard from”. There are two messages used: “count nodes”, and a messages
containing a single number j : 0 < 7 < N. The following is the procedure for each
node 1.

Initialization
mark(y) = “not heard from” for all “incoming” neighbors
children =0

Start (node 1 only)
send “count nodes” to all “incoming” neighbors

Receive “count nodes” from “outgoing” neighbor j
if there are any “incoming” neighbors
then send “count nodes” on all incoming links
else send “1” to j
end

Receive n from “incoming” neighbor j
children = children + n




mark(j) = “heard from” :
if mark(k) = “heard from” for all “incoming” neightors &
then send (children + 1) to the “outgoing” neighbort
end

*Node 1 has no outgoing neighbor. When it reaches this step, N = children + 1.

(¢) The worst case for both algorithms is a linear network. Messages must prop-
agate from node 1 to the end of the tree and then back again. This gives an upper
bound of 2(N — 1)T for both algorithms.

5.18

[n the algorithm, for j € P, D; is the minimum 1 hop distance from Jtoa
member of P, and a; is the member of P for which this minimum is obtained.

To show that this implements the Prim-Dijkstra algorithm, we must show that
the graph defined by G = (P,T) is a fragment of an MST, and that this fragment
is enlarged at each iteration by the addition of a minimum weight outgoing arc.
Then, by Proposition 1 in section 2.2, G will eventually be an MST.

Assume that P contains k nodes, that a; is the closest member of P to J, and
that D; = wy,, for j € P. Then step 1 chooses the minimum weight outgoing arc,
and step 2 reestablishes the above assumptions abouf a; and D; for the new set P.
The hypothesis is clearly true for £ = 1 and by induction is true for all k.

Each iteration of steps 1 and 2 requires a number of operations proportional
to the number of nodes i : 1 € P. The algorithm terminates in N — 1 iterations.
Therefore, O(N?) operations are required.



5.19

Choose n;, n;, n, as shown below

Ny is 3-connected with every other
node

n, is 2-connected with every other
node

n, is 1-connected with every other
node

The network is not 4 - connected as shown below. (Removal of nodes ny, n;, and n, leaves
node n; disconnected from the others.) The maximum k for which the network is k -
connected is k = 3.




5.20
Modification of Kleitman's algorithm:
1st Step:

Choose a node ng and let k, be the maximum number k for which ng is k - connected to all
other nodes. Set k' = k. If kg = 1 terminate, else delete ny and its adjacent arcs.

(m+1)st Step:

Choose a node n, and let k, be the maximum number k for which n,, is k - connected to
all other nodes. Set k' := min{k', k, + m}. If k; <1 terminate, else delete n,;, and its
adjacent arcs and go to the (m + 2)nd step.

Claim: At termination the desired maximum number is k'.

Proof: The network cannot be k" - connected with k" > k' because the construction of k'
is such that Kleitman's test of k" - connectedness for the sequence of nodes ny ny, . . .,
would fail. Also the algorithm will eventually terminate, and we will have k| < k' - m for
every m. It follows that Kleitman's test of k' - connectivity is passed.

Application of the modified algorithm to the graph of Problem 5.19 works as
follows:

k, =3, k'=3 Kk, =2 K=3
n, Ny
k. =2, K=3 kg=1,k'=3



5.21

The sequence of generated spanning trees is shown below:

NS AN

Initial MST After 1 iteration
After 2 iterations After 3 iterations

After 4 iterations

5.22

(a) Suppose every i to j walk contains an arc with weight greater or equal to ajj. Consider
an MST and the (unique) walk from i to j on the MST. If this walk does not consist of just
arc (i,j), then replace an arc of this walk with weight greater or equal to ajj with arc (i,j),
thereby obtaining an MST.

Conversely suppose to obtain a contradiction, that (i,j) belongs to an MST and that there
exists a walk W from i to j with all arcs having weight smaller than ajj. We remove (i,j)
from the MST obtaining two subtrees Tj and Tj containing i and j, respectively. The walk
W must contain an arc that connects a node of Tj to a node of Tj. Adding that arc to the
two subtrees T; and Tj creates a spanning tree with smaller weight than that of the original,
which is a contradiction.

(b) Walks from i to j that use nodes 1 through k+1 are of two types: 1) walks that use only



nodes 1 through k or 2) walks that go from i to k+1 using nodes 1 through k and then from
k+1 to j using nodes 1 through k. The minimum critical weight of walks of type 1) is xijk,
while the critical weight over walks of type 2) is max{xix+1)%X+1){}. The
characterization of xijk given in the exercise follows.

5.23

(a) Let T* be the given tree that spans the given subset of nodes and has minimal total

weight W*. Let T be a minimum weight spanning tree of I(G) and let W be its total weight.
Finally, let R be a minimum weight tour of I(G) and let Y be its total weight.

By deleting any arc of R we obtain a spanning tree R' of I(G), which must have weight no
more than the weight Y of R (since arc weights are nonnegative), and no less than the
weight W of T [since T is a minimum weight spanning tree of I(G)]. Therefore

W<Y M)
We will also show that
Y <2W* )

so that from (1) and (2), the desired result
W <2W*
follows.

By selecting an arbitrary node r of T* as root we can view T* as a tree rooted at r. Consider
a depth-first traversal of T* as illustrated in the following figure.

Traversal Order: 3,2,1,5,4,6,9,8,7, 14,11, 12,13,10,3

This traversal corresponds to a tour R' of I(G). Each arc (i,j) of the tour has length which



is less than or equal to the length of the unique path of T* that connects i and j. The lengths
of all these paths add up to 2W*, as can be seen from the figure. Therefore, the length Y’
of the tour is no more than 2W*. Since Y is the weight of the minimum weight tour, we
have Y <Y, so it follows that Y < 2W*.

(b) Consider the following grpah G with the weights shown next to the arcs, and let
{1,2,3} be the subset of nodes that must be spanned by T*.

We have T * = {(1,4), (2,4), (3,4)} with total weight W* = 3. On the other hand T =
{(1,2), (2,3)} and W =4, so that

W* < W <2W*

(c) Construct the minimum spanning tree T of I(G). For each arc (i,j) of T, consider a
shortest path of G that starts at i and ends at j. Consider the subgraph G' of G that consists
of the arcs of all the shortest paths corresponding to all the arcs of T. The sum of the
weights of the arcs of G' is no more than the total weight W of T (it could be less because
some arc of G' may be contained in more than one shortest path). Clearly G' is connected.
Delete as many arcs as necessary to make it a tree. This tree, call it T', spans the required
nodes and has total weight that is less or equal to W and therefore also less or equal to
2W*. Thus, the broadcasting algorithm that uses T' comes within a factor of 2 of being
optimal.

5.24
See the hint.

5.25
If x; is the flow carried by link i (i = 1, 2, 3), the corresponding path lengths are C;/(C;-



x;)2. At an optimum X, and x5 must be equal since if, for example, x; >x3 we will have that
the length of x, is larger than the length of path 1 is larger than that of path 3 which
contradicts the shortest path optimality condition.

Let x be the common value of x; and x5 at the optimum. Then x, =1 - 2x and the solution
of the problem follows the lines of the example of Section 5.5. We argue that, because C,
> C, the only two possibilities are:

1) x, =0 and x =1/2, which will occur for
C/(C-1/2)2<1/C,

2) X, >0, and x = (r - X5)/2 > 0 in which case x, and x are determined using the condition

C/(C - /2 + %9/2)2 = Cy/(C, - x)2.

5.26
(a) We have at x*
odD(x*)/0x; = x1* = 2/3, dD(x*)/0xy=2x,* =2/3, JID(x*)/0x3=1+x3* = 1.

Therefore x* satisfies the shortest path condition and is optimal.

5.27

a) If the cost function is D(x) where x is the path flow vector, the first derivatives become

D) _§ Dy

axp @) axp

A shortest path for a given OD pair is a path with minimal first derivative over all paths of
the OD pair. The first derivatives of the reduced cost D*(x), i.e. the cost function obtained
after the flows of the shortest paths are expressed in terms of the flows of the nonshortest
paths in the cost function D(x), are given by

oD (x) _9D(x) aD(x)

ox ox ox
P P Pw

, forall pe P

where p,, is the path from P, that is shortest (has smallest BD/axp). The second derivatives
are



?D(x) _ D) D) _, 3°D)
Ox)  Ox)’ @x) 9%

The iteration for nonshortest paths becomes

2
X, = max {0, x_ - [a Dr();)]_l 9D (x) }.
(axp) axp

The optimality condition is the same as in Section 5.5 (cf. eq. (5.59)).

b) In the special case where
DW= ), D,F . Fy)
((8))
we have for a path p of priority class k

oD.. dD.
eSS L T

X, Gponpanp 3F .  OFy
1)

9°D. #?D. 3D,
D) _ L P T
2 kK~ k T 2
©@x,)"  G.j) o path p OF ;) oF | .9F, (OF;,)

and from here everything is the same as in part a).

5.28

The key in this problem is to calculate the 1st derivatives of the cost with respect to the
portion x, of R broadcast on any one spanning tree t € T. We have:

daD

ij
axt (i,j)ont

as well as the constraint Z,.t x, = R. By the same argument used in Section 5.5, this leads
to the following necessary and sufficient optimality condition (in addition to the ones of
Section 5.5 for ordinary paths)



x*>0 = tisshortestin that it has minimum Xy, Dij' over all trees in T.



(This means that at an optimum only the trees with minimum 2 je, Dij' can carry a portion
of R. Those that do must, of course, have equal Z ;. D;; .) Given these facts, the gradient
projection method generalizes easily. The iteration for flows on trees is the same as that for
paths with the derivative i ;e, Dij' for a tree t used in place of the 1st derivative length of a
path flow. Similarly the case of multiple root nodes is a straightforward extension. The

optimality conditions and gradient projection iterations for different roots are decoupled.
5.29

The length of a path is

dD ' '
T Z (D + €y Dy )-
axp (i.j)onp

The optimality condition is

x,*>0 = pis shortest over all paths of the same OD pair with respect to length
of link (1,j) = Dy + Cyw Dy

The extension of the gradient projection method is straightforward using the expression for
path lengths given above.
5.30
For simplicity we drop the subscripts. Let Q(F) = a + bF + 0.5 cF2 be the quadratic
function where a, b, ¢ are its unknown coefficients. Denote D(F) = F/(C - F). The
derivatives are

D'(F) = C/(C - F)2, D"(F)=2C/(C-F)3
and

Q) =b +cF, Q'(F) =c.

We determine a, b, ¢ via the condition that D and its derivatives should equal Q and its
corresponding derivatives at F = pC. This leads to the equations

c=2/(1-p)3C?
b+pcC=1/1-p)*C
a+ pbC +0.5 p2cC2/2 = p/(1 - p),

which can be easily solved to give the values of a, b, c. D(F) is then replaced by the
function



D(F)

which equals D(F) for F < pC and equals Q(F) otherwise.

The last assertion of the problem follows from the fact that the necessary condition for the
F;* to minimize

(i.e. the shortest path condition of Section 5.5) is also a sufficient condition for minimizing

PRAGH

((8))

when F;. < pUClJ for all (I,J).

=

5.31

(a) For every x and y we have (by Taylor's theorem)

1
J- Vi + ty)'ydt = f(x +y) - f(x)
0

so by applying this formula for y = aAx we obtain

1

f(x + aAx) = f(x) + VI(x)'(xAx) + J’ [Vi(x + taAx) - VI(x)]' (aAx)dt

0
1

<f(x)+ oVi(x)'Ax + | [VI(x + taAx) - VI(x)! |AxI dt
0

2
L
<(x) + QVE(x)'AX + 9‘_2_ At )

which 1s the desired relation.

(b) Minimizing both sides of (1) over ae [0, 1] we obtain



2

i 1 ' o L 2
min o1 f(x + 0Ax) < f(x) + min_ o1 {aVI(x)'Ax + —— A"} (2)

Since Vf(x)'Ax < 0 the minimum on the right is attained for some ' > 0. The
unconstrained minimum is attained at the scalar o* for which the derivative Vf(x)'Ax +

o*L IAx[? is zero or

Vi)' Ax
L IAx”

a*_

If o* > 1 or Vf(x)'Ax + L 1Ax]? < O the minimum on the right side of (2) is attained
for a'=1, and we obtain

Flx + 0A%) < () + VEG)'Ax + 2 Axl < Vi) + Vit Ax

Imnae [0,1] 2 &)

where the last inequality follows from the relation V{(x)'Ax + L IAx]2 < 0.

If o* < 1 then the minimum over [0, 1] is attained for o' = a* and substitution in (2)
yields

IVE(x)' Ax . IVE(x)' Ax? L 1AxP

in f(x + aAx) < f(x) -
o<[0.1] L 1ax L2iaxi® 2
IVE(x)'AxP IVE(x) AxP*
= £(x) - o € (%) - e .
2L IAXI 2LR

c) If {xk} has a limit point x*, then since {f(xk)} is monotonically decreasing, we must
have f(xk)—f(x*) which implies 8—0. Therefore Vf(xk)'Axk—0, and the result follows as
stated in the hint.

5.32

(a) Applying the necessary condition for the projection problem with x = xk we obtain

SVE) R - x5 < - 1% - P (1)

Using the conclusion of part b) of Problem 5.31 we obtain



. k k k
<
min O+ sAXY) < f(x) +8

where

and where, [using also (1)],

c  IAXS? . ko k K2
o <- 5 if VE(x)'Ax +LIAxI"<O
k4
IAX]
s <- 2x > otherwise
2s"LR

Therefore if {xk} has a limit point x* we must have f(xk)—f(x*) and 8*—0. Therefore

=k
Axk—>0, {x } - x*,

and by taking limit in the condition
-k -k
[xk-sz(xk)-x 'x-x)<£0

for all xe X we obtain Vf(x*)'(x - x*) = 0 for all xe X.

(b) Using (1) and part a) of Problem 5.31 we obtain (for a=1)

£ < £5) + Vi AxS + ; IAx<P

k2
IAX" +;IAxk32

< £(x5) -
S 165 - (- Dy axk?
s 2
If s < 2/L then the cost is reduced by at least a positive constant multiple of IAxI2 at the kth

iteration. The result follows similarly as for part a).

5.33



Consider the change of variables y = T-1x or x = Ty. Then the problem can be written in
terms of the y variables as

min f(Ty)
subjectto Ty 20

or equivalently, because T is diagonal with positive diagonal elements,

min h(y)
subjecttoy 20

The second iteration in the problem is the gradient projection iteration for the second
problem above. We have

Substituting this expression in the second iteration and multiplying throughout by \/bi we
obtain the first iteration of the problem. So the diagonally scaled version of the gradient
projection iteration is the same as the ordinary version applied to a problem involving the
diagonally scaled variables y;.

5.34

(a) Since an arrival comes every T time units, the system starts empty, and each arrival

stays for H time units, we see that just after time H-t there will be a total of H/t arrivals.
The first departure occurs at time H and at the same time an arrival occurs, which maintains

the total number N1(t) + N2(t) in the system at the level H/t. Similarly, this number is
maintained for all t.

(b) We first calculate N1* and N2*. The optimality condition is that the partial cost
derivatives with respect to N1 and N2 are equal, so we have

YIN1* = 12N2*.

By combining this equation with the constraint
* * _ _I.l
N;+N;= T 1)

we obtain

- Y2 H N H
'y]+'yz‘t’ T

Define forall t
N(t) = N1(t) + N2(1v), 2



N® = —2 N,

Yl +Y2 (3)
* YI
N(t) = N(v),
2(t) T ® @

and note that for t > H we have

N®=N+N;=H5 Njo=N, No =N

(5)
The relation
T1N1(t) < 12N2(t)
is equivalent to
YIN1(t) < 2(N(D)-N1())
or
Y *
N, () € —2—N() = N; (1),
1T 72
where the last equation follows by using Eq. (3). Thus, we have
Y, N1(®) S 7,No0 & Ny <Nj(), ©
and similarly
Y,No(t) 7, Nj(®) & Not) < N3(0). o

We will now prove by induction that all k =0,1,..., and all t € [kT,(k+1)T), we
have

NI®O-NikT) _Vi+% T
* Y K
Ny 1 (®)

No®-NoKT) _V,+% T
* - Y, H
N, 1 ©

We claim that these relations are true for k = 0. Indeed we have

N1(0) = N,(0) = N»0) =0,

so by the rules of the algorithm, all VCs arriving in the interval [0,T] will be assigned to
link 1. Since the number of these VCs is at most T/t, we have



N0 < N(O) + 1.
(10)
By using Eq. (1), we see that

T YR T
T Y, H 'V

so Eq. (10) yields

N1O-NIO) Y+ T

N T, H

thus verifying Eq. (8) for k=0. Eq. (9) holds for k=0 since N2*(t) = 0.

We will now show that Egs. (8) and (9) hold for the typical k, assuming they hold
for all preceding k.

We assume without loss of generality that Y] N1(kT) <y2N2(kT) or equivalently
by Eq. (6),

N1(kT) < N1*(T). (11)

Then by the rules of the algorithm, all VCs arriving in the interval [kT, (k+ 1)T) will be
assigned to link 1. Since the number of these VC's is at most T/t, we have

N, <NJKD) + L, Ve KT+, 12)

By using Eq. (1), we see that

T_YPN T
T Y, H Ny
so Eq. (12) yields

N,O-NIKD _Y+h T
N Y, H

(13)
proving Eq. (8) for the typical k.

In view of Eq. (11), we also have
No(kT) 2 Ny(kT)
as well as

No(t) SN, (kT), Vte [KT,(k+D)T).



Therefore we have
No(T) - N; kT)2> N2(t)-N;(kT), YV te [kT,(k+1)T)

and Eq. (9) holds in view of the induction hypothesis. Thus the induction proof of Egs.
(8) and (9) is complete.

From Eqgs. (8) and (9), since N1*(t) = N1*, N2*(t) = N2* for t > H, we have for
allt>H

Ny@®-Ni _YithaT

* - ﬁ’

N, *2 (14)
No®) -N; _Ni*haT
* - H

N, N (15)

Since N1(t) - N1* = N2 = N2(1), from Eq. (14) we obtain

*- < =
NrNW == =g N1=-y

s

or equivalently

N3No® _Yi+h T
Ny Y, H

Combining this relation with Eq. (15), we obtain

%
N, O-Nal _ Y+
N, Y, H

and we similarly prove the remaining relation

*
IN;(t)-N,! < Nte T
NCE A

5.35

To make the protocol workable it is essential to number sequentally the exploratory
packets. (This is needed, for example, in order to avoid confusion between transmitter and
receiver regarding two distinct VC setup requests. There are also other reasons for this as
will be seen shortly.) There should be a separate sequence number for each origin -
destination (OD) pair, and it will be assumed that the sequence number field is so large that
wraparound never occurs in the absence of memory or transmission errors.

Indefinite circulation can be avoided if each node relays a received exploratory packet only
to neghbor nodes not yet visited by the packet (i.e., the nodes that are not stamped on the



packet). This rule guarantees that the exploratory packet will travel on all possible routes
from origin to destination that contain no loops. Thus the destination will receive one copy
of the exploratory packet for each distinct route that was up (roughly) at the time the
exploratory packet was being flooded through the network. This gives the greatest choice
of routes to the receiver, but creates a problem with excessive number of packets being
communicated.

To limit circulation of exploratory packets a number of schemes is possible provided each
node stores the largest sequence number received for every OD pair. One possibility is to
flood the exploratory packet to all neighbors (except the one from which the packet was
received) only once - the first time the packet is received. Another possibility is to check the
number of nodes the exploratory packet has visited and to relay the packet only if either it
has a larger sequence number than the number of the packet latest flooded for the same OD
pair, or if it has visited fewer nodes than the previous packet with the same sequence
number. This last scheme guarantees that an exploratory packet will be received via a route
with minimal number of nodes.

There is a problem if the receiver's response to a VC request never reaches the transmitter
because of link or node failures along the chosen route. This can be handled by the
transmitter using a time out, and transmitting a new exploratory packet for the same VC
carrying, however, a new sequence number. Note that the transmitter should have ultimate
responsibility for accepting or rejecting a VC connection, and the receiver is passive in this
regard.

Finally if a node can crash, and not remember the sequence numbers last used, a scheme
such as the one of Section 5.3.2 can be used.

5.36

(a) For small values of r,, the first derivative length of a path is almost equal to D'(0) times
the number of links of the path. Therefore a path that does not have minimum number of
links cannot be shortest and therefore cannot carry flow at the optimum.

(b) Consider the single OD pair network shown below:

>

Each link has cost function D(F) = F + 0.5F2. Then, by applying the shortest path
condition, it is seen that for r < 1 the optimal routing is to send all flow on the one-link
path, but for r > 1 the optimal routing is to send (1 + 2r)/3 on the one-link path and (r - 1)/3
on the two-link path.

5.37

The origin of each OD pair w sends a message carrying the value of r,, along the shortest
path for the current iteration. Each link (i,j) accumulates the shortest path link flow



ij
and sends it together with Fy, D'j; and D"}; to all origins. All origins can then calculate the
stepsize a* of (5.69) and change the path ﬂows Xp according to the iteration

X =X +a*(;( -X),
P P P P

where

ip =r,, if p is the shortest path and )_cp = 0 otherwise.

5.38

(a) The average round trip delays on paths 1 and 2 corresponding to x are T;(x) and T(x).
These are used to estimate the average number of unacknowledged packets on paths 1 and
2 according to

N, =x, T, (%), N, =x,T,(x).

The actual average number on the two paths are

N1 =x1T1(x), N2=x2T2(x).
Therefore if the routing method used equalizes the ratios

N.
i

N,
1
the relation of part (a) must hold.

(b) We assume with no loss of generality

Therefore, by the hypothesis of part (b), we must have

x;<x; = TE>T® ad T,K <T,x.

From the relation of part (a) we have



x, T, T, x,

1 —
X

1 -)22 Tl (;) Tz(X) xz

1> % and,smcex1+x2=x1 +x2,wemusthavex2<x2.

Therefore x
(c) The vectors x, x , and X lie on the same line of the 2-dimensional plane, and x lies between
x and x. We now argue that a convex function that has a lower value at x than at x must also
have a lower value at X than at x

5.39

See the references cited.

5.40
(a) Let D;" be the correct shortest distance to 1 from each node i.
Claim 1: Eventually, D; = D;* for all nodes i.

Proof: Assume that D; = Di* for all nodes i that have a k hop shortest path to node 1.
Consider a node j that has a k+1 hop shortest path to node 1 of the form (j,i,...,1). This
node will receive D™ + djj from i and therefore will have D; = Dj*. The assumption is
clearly true for k = 0, and by induction it is true for all k.

Claim 2: A finite time after claim 1 is satisfied, node 1 receives an ACK from each of its
neighbors.

Proof: When claim 1 is satisfied, the set of arcs connecting each node i # 1 with its
predecessor forms a directed shortest path spanning tree rooted at node 1. (For a proof of
this, see the discussion in the text following Bellman's equation.) Consider a leaf node j on
the tree. Each of its neighbors must send an ACK in response to its last distance
measurement. Therefore, j sends an ACK to its predecessor. By induction on the depth of
the tree, node 1 eventually receives an ACK from each neighbor for which it is the
predecessor. Node 1 clearly receives ACK's from its other neighbors as well.

(b) The main advantage of this algorithm over the one in Section 5.2.4 is that node 1 is
notified of termination, and hence knows when its estimates are correct. The main
disadvantage is that this algorithm requires a specific initial condition at each node, making
it difficult to restart when a distance measurement or link status changes.



CHAPTER 6 SOLUTIONS

6.1

The window size required is at least 101 packets since the delay from the time a packet
begins transmission to the time its permit returns is 505 msecs. If the transmission time of
the permit or the time the permit is delayed at the receiver are nonzero then the window size
should be accordingly larger. See the figure below.

5 msecs Fum
packet
500 msecs Total window size needed = 101 packets
(assuming zero transmission time for the permit
permit
v
\4 v
Time at the Time at the
Transmitter Receiver
6.2

The Maximum throughput is limited by the transmission rate of the terrestrial link (50
packets/sec). The timing diagrams below show that an end-to-end window size of [525/20]
= 27 packets is required to achieve full speed transmission in both cases where the
terrestrial link comes before and after the satellite link.
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6.3

We need a window of at least 1 for the terrestrial link, and a window of at least 26 in the
satellite link. If the permit transmission delays are nonzero, larger windows are required for

nonstop transmission to be possible.

6.4
See the following timing diagrams:
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6.5

The following example shows that the alternative scheme requires a larger window, and
therefore also more memory. Note also that if link (i, i+1) is a satellite link, the window of
link (i-1, i) must also be large if a permit is sent by i after an ACK is received from (i+1).
This is not so if a permit can be sent upon delivery of a packet to the DLC.
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6.6

The augmented network including the overflow links for the two OD pairs is shown in the

figure below:

= PERMIT TRANSMISSION




Consider three cases:

<1, b) I, =T. ,r1<rl,c) I, =1,, I; =T, .

a)r2<r,r A

1
Case a): By symmetry here r; =r,. The optimality condition is
2r; + 2(r; +1p) = a/ry?

which implies r; =, = (a/6)1/3. This case is in effect for
/6 <t, =1

which yields a < 6.

Case b): Here the optimality condition is

2r, +2(r, + }2) =

or equivalently 4r,3 + 2r;2 = a which can be solved for r;. This case holds for

3 -2
6'£a<4rl +2r1 = 4,200

Case ¢): This case where no flow control is exercised holds for a 2 4200. |

6.7

The number of sessions for each network link are shown in the figure below:



NUMBER OF SESSIONS ON
EACH LINK SHOWN NEXT
TO THE LINK

There are nine counterclockwise sessions and they all go through arc (1,6). At Step 1 this
arc is saturated, and the rate of all counterclockwise sessions is fixed at 1/9. At Step 2 of
the algorithm arc (4,5) (the one that carries the most clockwise seesions) is saturated and
the rate of the sessions going through it is fixed at 1/7. There are only two sessions (5 to 6
and 3 to 4 clockwise) that don't go through this arc. At Step 3 the arc (3,4) becomes
saturated and the rate of session 3 to 4 (clockwise) is fixed at 2/7. Finally at Step 4 of the
algorithm arc (5,6) becomes saturated and the rate of session 5 to 6 gets fixed at 3/7. The
solution is now complete since the rate of all sessions has been fixed.

6.8

For each session p add an artificial node p and a link from p to the entry node of the session
having capacity by,

6.9

(a) The Markov chain is shown in the figure below. The state gives the session and the
order of arrival (and also transmission) of the packets in link L. Note that because the
permit delay of the session B packets is zero, there are always two packets from B in link
L. All transition probabilities for a small interval & are 8 + 0(8) corresponding to a unity
transition rate. To see that the steady state occupancy probability is 1/10 for every state
verify that these probabilities satisfy the global balance equations. This is seen from the fact
that there are as many transition arcs coming into each state as there are going out. The total
steady state throughput is one packet/sec which is the transmission rate of link L. The
steady state throughput from session A is 0.4 because only 4 out of 10 states correspond to
transmission of a packet from A, while the remaining states correspond to transmission of
packets from B.



(b) The state transition diagram is given below. The state is the triple

(number in L from A, number in L from B, session currently transmitting)



A arrives

A exits

B exits

B exits

A arrives

All transitions have unity rate. Applying the global balance equations to states (02B), and
(22B) we see that

steady state prob. of (02B) = steady state prob. of (12A) =x
steady state prob. of (12B) = steady state prob. of (22A) =y

z = steady state prob. of (22A)
Applying the global balance equations to nodes (12B) and (22A) we obtain

X +z =2y, z=X+Yy
Combining these equations with 2x + 2y + z = 1 we obtain

x =1/9, y =2/9, z=1/3.
A transmission of a B packet is completed from states (02B), (12B), (22B) with rate 1,
while a transmission of an A packet is completed from states (12A), and (22A) with rate 1.
Therefore the ratio of throughputs for B and A is

(x +2y)/(x+z)=5/4
The throughput of the entire system is 1 since there is always a packet from B to transmit
on link L. Therefore the throughput for A is 4/9 and the throughput for B is 5/9. Note that
this throughput allocation (corresponding to the round robin discipline) is more fair than for

the case of part a) (first - come first - serve discipline).

(c) The state transition diagram for the nonpreemptive priority case is given below. The
state is again the triple



(number in L from A, number in L from B, session currently transmitting)

X .
A arrives 2
22A
A exits
B exits
A arrives
y

All transitions have unity rate. Similarly as in case b) we see that
steady state prob. of (02B) = steady state prob. of (12A) =x
steady state prob. of (12B) = steady state prob. of (22A) =y
Let
z = steady state prob. of (22A)
Applying the global balance equations to nodes (12B) and (22A) we obtain
X =2y, z=X+Yy
Combining these equations with 2x + 2y + z = 1 we obtain
x =2/9, y =1/9, z=1/3.
A transmission of a B packet is completed from states (02B), (12B), (22B) with rate 1,
while a transmission of an A packet is completed from states (12A), and (22A) with rate 1.
Therefore the ratio of throughputs for B and A is
(x +2y)/(x +z) =4/5
Again the throughput of the entire system is 1. Therefore the throughput for A is 5/9 and

the throughput for B is 4/9. As expected, the throughput of A increases over the previous
cases since A is now given priority.



6.10

(a) Letstatei (i =0, 1, 2) denote the number of permits available at the source. Then, for
small § the Markov chain for successive d intervals is given below

nd ud
60> 7/\\‘1 (2 D+
1-pd AS AS 1-28
<4
1 -0 -ud

(b) The steady state probabilities are found from Py + P; + P, = 1, Pgud = P;A8, and P, ud
= P,A8. The probability that an arriving packet will be discarded is

1

p0=_____
2

1+8 4+ &
AA

(c) The probability of a discard increases as delay from source to node (and/or node to
source) is taken into account. This is easy to see as the delay becomes very large, since
then the permits are very slow to return to the source and almost all source packets are
rejected. Analytically, this is not hard to establish for exponentially distributed delays.

(d) A buffer at the source simply adds states to the Markov chain above. Let B; be the state
where there are i packets in the buffer but there are no available permits. The corresponding
Markov chain is shown in the figure below. It is seen from the figure that the probability of
an arriving packet finding the buffer full is

1

Pk=
1+8 e 2y 4 @y
s (x) (k)
ud ud ud ud ud
O QM O =" = O B
. Ad . Ad Ad Ad Ad
< - N
1 -8 —pd 1 -Ad - ud
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6.11

(a) Suppose that the protocol has worked correctly up to a time t (e.g. the initial time), and
at that time the source knows that the destination is awaiting a packet n. Then, for a
window size W, the next acknowledgement to be received by the source should distinguish
between whether the destination is awaiting packet n, n+1, . . ., n+W-1 or n+W. If the
modulus m exceeds W then these possibilities can be distinguished. If m <'W then the
source can be confused. Thus the protocol works correctly for W < m - 1, and incorrectly
for W 2 m.

(b) The window size W is no longer restricted by the modulus m. The source can
determine the number of the packet being awaited by the destination by counting the
number of modulo numbers contained in the acknowledgements.

(c) The destination does not need to know the window size W to perform its part of the
protocol. Therefore, the source can change the window size without prior agreement from
the destination. However, for the scheme in (a), the window size is still restricted by the
modulus.

(d) If the destination delays acknowledging the last packet it has received until it receives
the next packet, 1 unit of the window size W is held at the destination and from then on the
number of packets sent by the source but not yet received by the destination can be W - 1 at
most. Thus the window size can, effectively, be reduced.

6.12

(2) In the memory of node i at any one time there can be at most 2 packets destined for
node j that have arrived at node i via a particular incoming link of i, or from a particular
external site connected to node i. If the number of links coming into node i, and the number
of sites connected to node i that can carry or send packets destined for node j is n ;, then in
order to guarantee that every arriving packet for j can be placed in a buffer, node 1 must
have 2n;; packet buffers for packets destined for j.

(b) This scheme constrains all packets with the same destination to use the same link
outgoing from a node at every node in the network, thus using paths from a spanning tree.
Therefore, not all routings are permissible. Also if the routing changes the buffering
scheme ought to be adjusted. Furthermore the scheme is unfair to sessions that go to
unpopular destinations. The scheme has the advantage that the required buffering at node i
is determined by the degrees n; ; of the node rather than by the potentially large number of
sessions that use the node.

6.13

Three rules are needed:

a) At the time a VC is established no permits should become available to the transmitting

node of each link on the VC's path.
b) A permit that cannot be used by a VC because no packet is available to send should be

returned to the receiver (perhaps after a ime out).



c) A node should keep track of the number of outstanding permits it has sent to the
transmitter nodes at the other end of its incoming links. The strategy should ensure that this
number times the maximum packet length should not exceed the amount of free storage
available at the node.

6.14

For full speed transmission the window size W of each session must satisfy WX >d,
where X is the packet transmission time at the origin node of the session and d is the round
trip delay. If the trnsmission capacity is increased by a factor K, X will be decreased by a
factor K. If propagation delay is dominated by transmission delay, d will also be decreased
by a factor K, so the window size of each session should not change. However, the total
window size will increase by a factor K, since the total number of sessions is increased by
a factor K.

If transmission delay is dominated by propagation delay, d will not change, so the window
size of each session should increase by a factor K. The total window size will then increase

by a factor K2, since the total number of sessions is increased by a factor K.

6.15

The formulation as a Markov chain is similar to the case considered in Section 3.1. The
states and their interpretation does not change. In particular, the states are 0,1,..., and for i
=0,1,...,W, state i corresponds to W-i permits available and no packets without permits
waiting. The states i = W+1, W+2,..., correspond to i-W packets without permits waiting
and no permits available. However, the state transitions occur at the times 0, Wi,
2WIr,..., just after a set of permits arrives. The probability of k packets arriving in W/r
seconds are

_ e MWiawn
ak bt —E!_o

The transition probabilities are as follows:

r

Wi
Ya, ifi<w-1
=0

a;w otherwise

W+
Ya, ifi<W-1
Poi= < =

a;w otherwise




and fori#0and j#0,

P..= ai_j+w lf_] <i+W
i 0 otherwise

6.16

We assume here that the desired OD pair input rates are known, and that each node knows
all link cost functions, and its own input rate penalty function. The simplest distributed
scheme that can be used is for the links to broadcast to all nodes the values of their total
flows (using a flooding scheme for example). Then each node can execute the gradient

projection iteration and change accordingly the values of its path flows and the flow on its
own overflow link.

6.17

Suppose there are three nodes 1, 2, 3, and two links (1,2) and (2,3), with capacities 2 and
4, respectively. Consider three sessions with paths

p1=(12), p2=(@23), p3=(123).
The max-min fair rate is
r; =1, =3, r3 = 1.
If session 1 is eliminated, the new max-min fair rate is
=2, 13 = 2.
If the capacity of link (1,2) is increased to 4 units, the new max-min fair rate is
r1 =2, =2, r3 =2.

Thus by reducing the load of the network either by eliminating sessions or by increasing
some link capacities the minimal rate will not decrease, but not necessarily all the rates.

6.18

See the second reference cited.

6.19



(a) Suppose iis backlogged in some interval [t,t]. Then for each j,

1.
T, ()

!
T

T ()
Summing over j

1, r;(t-7)
T > i
i (502 p(y) (*)

Thus a session i backlog of size q is always cleared in g/r; time units. Now letting Q;(t) be
the size of the backlog at time t, we obtain
T

QO = AT - Ty (L) S Wi+ (ri i p-(ﬁ) 1) < W,

where the last inequality follows from the assumption p(l;) < 1. Finally, since session i
backlogs are cleared at a rate greater than tj, it follows that a bit is never backlogged for
more than Wj/rj time units.

(b) Since Eq. (6.11) holds at each link it follows that (*) must hold as well. Thus the
guaranteed backlog clearing rate over the session i route is

o ri _ ri
8 =miMeLpmy= o7
max

where L is the set of links traversed by i. Now if session i is backlogged in at least one

link during the interval [7,t], then since we are ignoring propagation delay and the traffic is
perfectly pipelined, it follows that

Ti‘ (T.1) > —r‘(t—-T)

p max
The bounds on delay and backlog follow directly from this fact.

(c) This problem can be solved analogously to parts (a) and (b). The key observation is
that when gj > rj, we have at link ]; (the first link traversed by session 1)

li
Ty (1) 2 g0

during all intervals [t,t] that session i is backlogged at link l;. By reasoning similar to part
(b) we see that this property holds at all links traversed by session i. Thus there are never
more than Wj bits in the network, and no bit spends more than W;/g; time units in the
network.



	Data Networks
	Contents
	Preface
	Chapter 1: Introduction and Layered Network Architecture
	Chapter 2: Point-to-Point Protocols and Links
	Chapter 3: Delay Models in Data Networks
	Chapter 4: Multiclass Communication
	Chapter 5: Routing in Data Networks
	Chapter 6: Flow Control
	References
	Index
	Solutions Manual
	Chapter 1 Solutions
	Chapter 2 Solutions
	Chapter 3 Solutions
	Chapter 4 Solutions
	Chapter 5 Solutions
	Chapter 6 Solutions

