Dynamic Programming
and Optimal Control

Volume I

FOURTH EDITION

Dimitri P. Bertsekas

Massachusetts Institute of Technology

WWW site for book information and orders

http://www.athenasc.com

Athena Scientific, Belmont, Massachusetts

Athena Scientific
Post Office Box 805
Nashua, NH 03060
U.S.A.

Email: info@athenasc.com
WWW: http://www.athenasc.com

Cover photography: Dimitri Bertsekas

(© 2020, 2017, 2005, 2000, 1995 Dimitri P. Bertsekas

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.

Dynamic Programming and Optimal Control

Includes Bibliography and Index

1. Mathematical Optimization. 2. Dynamic Programming. I. Title.
QA402.5 .B465 2019 519.703 00-91281

ISBN-10: 1-886529-43-4, ISBN-13: 978-1-886529-43-4

Updated 2nd Printing (2020)

ABOUT THE AUTHOR

Dimitri Bertsekas studied Mechanical and Electrical Engineering at the
National Technical University of Athens, Greece, and obtained his Ph.D.
in system science from the Massachusetts Institute of Technology. He has
held faculty positions with the Engineering-Economic Systems Department,
Stanford University, and the Electrical Engineering Department of the Uni-
versity of Illinois, Urbana. Since 1979 he has been teaching at the Electrical
Engineering and Computer Science Department of the Massachusetts Insti-
tute of Technology (M.I.T.), where he is McAfee Professor of Engineering.
In 2019, he joined the School of Computing, Informatics, and Decision Sys-
tems Engineering at the Arizona State University, Tempe, AZ, as Fulton
Professor of Computational Decision Making.

Professor Bertsekas’ teaching and research have spanned several fields,
including deterministic optimization, dynamic programming and stochastic
control, large-scale and distributed computation, artificial intelligence, and
data communication networks. He has authored or coauthored numerous
research papers and eighteen books, several of which are currently used as
textbooks in MIT classes, including “Dynamic Programming and Optimal
Control,” “Data Networks,” “Introduction to Probability,” and “Nonlinear
Programming.”

Professor Bertsekas was awarded the INFORMS 1997 Prize for Re-
search Excellence in the Interface Between Operations Research and Com-
puter Science for his book “Neuro-Dynamic Programming” (co-authored
with John Tsitsiklis), the 2001 AACC John R. Ragazzini Education Award,
the 2009 INFORMS Expository Writing Award, the 2014 AACC Richard
Bellman Heritage Award, the 2014 INFORMS Khachiyan Prize for Life-
Time Accomplishments in Optimization, and the 2015 MOS/SIAM George
B. Dantzig Prize. In 2018 he shared with his coauthor, John Tsitsiklis, the
2018 INFORMS John von Neumann Theory Prize for the contributions
of the research monographs “Parallel and Distributed Computation” and
“Neuro-Dynamic Programming.” Professor Bertsekas was elected in 2001 to
the United States National Academy of Engineering for “pioneering con-
tributions to fundamental research, practice and education of optimiza-
tion/control theory, and especially its application to data communication
networks.”

iii

10.

11.

12.

13.

14.

15.

16.

ATHENA SCIENTIFIC
OPTIMIZATION AND COMPUTATION SERIES

. Rollout, Policy Iteration, and Distributed Reinforcement Learning, by

Dimitri P. Bertsekas, 2020, ISBN 978-1-886529-07-6, 376 pages

Reinforcement Learning and Optimal Control, by Dimitri P. Bert-
sekas, 2019, ISBN 978-1-886529-39-7, 388 pages

Abstract Dynamic Programming, 2nd Edition, by Dimitri P. Bert-
sekas, 2018, ISBN 978-1-886529-46-5, 360 pages

. Dynamic Programming and Optimal Control, Two-Volume Set, by

Dimitri P. Bertsekas, 2017, ISBN 1-886529-08-6, 1270 pages

Nonlinear Programming, 3rd Edition, by Dimitri P. Bertsekas, 2016,
ISBN 1-886529-05-1, 880 pages

Convex Optimization Algorithms, by Dimitri P. Bertsekas, 2015, ISBN
978-1-886529-28-1, 576 pages
Convex Optimization Theory, by Dimitri P. Bertsekas, 2009, ISBN
978-1-886529-31-1, 256 pages

Introduction to Probability, 2nd Edition, by Dimitri P. Bertsekas and
John N. Tsitsiklis, 2008, ISBN 978-1-886529-23-6, 544 pages

Convex Analysis and Optimization, by Dimitri P. Bertsekas, Angelia
Nedi¢, and Asuman E. Ozdaglar, 2003, ISBN 1-886529-45-0, 560 pages

Network Optimization: Continuous and Discrete Models, by Dimitri
P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages

Network Flows and Monotropic Optimization, by R. Tyrrell Rockafel-
lar, 1998, ISBN 1-886529-06-X, 634 pages

Introduction to Linear Optimization, by Dimitris Bertsimas and John
N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages

Parallel and Distributed Computation: Numerical Methods, by Dim-
itri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-01-9,
718 pages

Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John N.
Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages

Constrained Optimization and Lagrange Multiplier Methods, by Dim-
itri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages

Stochastic Optimal Control: The Discrete-Time Case, by Dimitri P.
Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5, 330 pages

iv

Contents

1.

2.

3.

The Dynamic Programming Algorithm

1.1. Introduction
1.1.1. General Structure of Flmte Hor1zon Optlmal
Control Problems
1.1.2. Discrete-State and Finite- State Problems
1.2. The Basic Problem . .
1.3. The Dynamic Programming Algorlthm . .
1.4. State Augmentation and Other Reformulations
1.5. Some Mathematical Issues
1.6. Dynamic Programming and Mlnlmax Control
1.7. Notes, Sources, and Exercises

Deterministic Systems and the Shortest Path Problem

2.1. Finite-State Systems and Shortest Paths
2.2. Some Shortest Path Applications
2.2.1. Critical Path Analysis
2.2.2. Hidden Markov Models and the Vlterbl Algorlthm
2.3. Shortest Path Algorithms . .
2.3.1. Label Correcting Methods .
2.3.2. Label Correcting Variations - A* Algorlthm
2.3.3. Branch-and-Bound . .
2.3.4. Constrained and Multlobjectlve Problems .
2.4. Notes, Sources, and Exercises

Problems with Perfect State Information

3.1. Linear Systems and Quadratic Cost
3.2. Inventory Control

3.3. Dynamic Portfolio Analys1s

3.4. Optimal Stopping Problems .

TTTTTT
>~
>~

TTTTVTVYT

69
72
72
74
81
82
91
92
.95

p. 101

p. 110
p- 125
p. 134
p- 140

vi

4. Problems with Imperfect State Information

4.1.

5.

3.5.
3.6.

3.7.

4.2.
4.3.

4.4.

Scheduling and the Interchange Argument

Set-Membership Description of Uncertainty .

3.6.1. Set-Membership Estimation .
3.6.2. Control within a Target Tube
Notes, Sources, and Exercises

Reduction to the Perfect Information Case
Linear Systems and Quadratic Cost
Sufficient Statistics . . .
4.3.1. The Conditional State D1str1but1on .
4.3.2. Finite-State Systems

Notes, Sources, and Exercises

Introduction to Infinite Horizon Problems

5.1.
5.2,

5.3.

5.4.
9.5.

5.6.
5.7.

An Overview .
Stochastic Shortest Path Problems .
Computational Methods

5.3.1. Value Iteration .

5.3.2. Policy Iteration

5.3.3. Linear Programming
Discounted Problems . .
Average Cost per Stage Problems
Semi-Markov Problems .

Notes, Sources, and Exercises

6. Approximate Dynamic Programming

6.1. Approximation in Value Space
6.1.1. Variants of Approximation in Value Space
6.1.2. Multistep Lookahead

6.1.3. Simplifying the Minimization Over All Controls .

6.1.4. Error Bounds and Cost Improvement
6.2. Problem Approximation .
6.2.1. Enforced Decomposition

6.2.2. Probabilistic Approximation - Certalnty Equwalent

Control

6.3. Aggregation
6.4. Parametric Cost Approxunamon

6.4.1. Linear and Nonlinear Feature- Based Archltectures .

6.4.2. Neural Networks

6.4.3. Sequential Dynamic Programmlng Parametrlc

Approximation — Fitted Value Iteration

T T T T T

o

TTT VY

TTTT VT VTV TTT TV

TTTTTTT

Contents

150
154
155
161
165

184
195
202
204
209
221

232
236
245
245
246
248
249
253
267
277

295
296
298
300
303
307
307
314
320
325
326
336

342

Contents

6.5.

6.6.
6.7.
6.8.
6.9.

6.4.4. Q-Factor Parametric Approximation .

6.4.5. Parametric Approximation in Infinite Horizon
Problems

On-Line Approximation and Optlmlzatlon

6.5.1. Rollout Algorithms .

6.5.2. Rollout for Discrete Determlmstlc Problems

6.5.3. Model Predictive Control .

6.5.4. Open-Loop Feedback Control . .

Stochastic Rollout - Monte Carlo Tree Search .

Approximation in Policy Space

Adaptive Control . .

Discretization and Implementatlon Issues

6.9.1. Continuous-Space Discretization .

6.9.2. Continuous-Time Discretization .

6.9.3. Use of Stochastic Programming .

6.10. Notes, Sources, and Exercises

7. Deterministic Continuous-Time Optimal Control

7.1. Continuous-Time Optimal Control .
7.2. The Hamilton-Jacobi-Bellman Equation
7.3. The Pontryagin Minimum Principle

7.3.1. An Informal Derivation Using the HJ B Equatlon

7.3.2. A Derivation Based on Variational Ideas

7.3.3. Minimum Principle for Discrete-Time Problems
7.4. Extensions of the Minimum Principle

7.4.1. Fixed Terminal State

7.4.2. Free Initial State

7.4.3. Free Terminal Time .

7.4.4. Time-Varying System and Cost

7.4.5. Singular Problems
7.5. Notes, Sources, and Exercises

Appendix A: Mathematical Review

A.1. Sets . .

A.2. Euclidean Space .

A.3. Matrices

A.4. Analysis .
A.5. Convex Sets and Functlons .

Appendix B: On Optimization Theory

B.1. Optimal Solutions .
B.2. Optimality Conditions

ie)

T TW VT TTTTTTVTVT

o]

TTTVTVVTTT VT TV

TTT VY

vii

. 344

347
350
350
358
374
383
387
392
395
402
403
404
405
407

426
429
435
435
445
449
451
451
455
455
459
459
461

467
468
469
473
475

. 476
477

viii Contents

B.3. Minimization of Quadratic Forms p.479

Appendix C: On Probability Theory

C.1. Probability Spaces . e e e p-480
C.2. Random Variables p481
C.3. Conditional Probability p. 482
Appendix D: On Finite-State Markov Chains
D.1. Stationary Markov Chains p. 485
D.2. Classification of States . p. 486
D.3. Limiting Probabilities p. 487
D.4. First Passage Times . p. 488

Appendix E: Least Squares Estimation and Kalman Filtering

E.1. Least-Squares Estimation p.489
E.2. Linear Least-Squares Estimation p. 491
E.3. State Estimation — Kalman Filter p- 499
E.4. Stability Aspects . p. 504
E.5. Gauss-Markov Estimators R p- 507
E.6. Deterministic Least-Squares Estimation p- 509

Appendix F: Formulating Problems of Decision Under Uncer-
tainty

F.1. The Problem of Decision Under Uncertainty p.511
F.2. Expected Utility Theory and Risk p.515
F.3. Stochastic Optimal Control Problems p.528
References pb33

Index p-bdl

Contents ix

CONTENTS OF VOLUME II

1. Discounted Problems — Theory

2.

1.1.

1.2.
1.3.
1.4.
1.5.

1.6.

1.7.

Minimization of Total Cost - Introduction

1.1.1. The Finite-Horizon DP Algorithm

1.1.2. Shorthand Notation and Monotonicity

1.1.3. A Preview of Infinite Horizon Results

1.1.4. Randomized and History-Dependent Policies
Discounted Problems - Bounded Cost per Stage
Scheduling and Multiarmed Bandit Problems
Discounted Continuous-Time Problems

The Role of Contraction Mappings

1.5.1. Sup-Norm Contractions

1.5.2. Discounted Problems - Unbounded Cost per Stage
General Forms of Discounted Dynamic Programming
1.6.1. Basic Results Under Contraction and Monotonicity
1.6.2. Discounted Dynamic Games

Notes, Sources, and Exercises

Discounted Problems — Computational Methods

2.1.
2.2.

2.3.

2.4.
2.5.

2.6.

Markovian Decision Problems

Value Iteration

2.2.1. Monotonic Error Bounds for Value Iteration
2.2.2. Variants of Value Iteration

2.2.3. Q-Learning

Policy Iteration

2.3.1. Policy Iteration for Costs

2.3.2. Policy Iteration for Q-Factors

2.3.3. Optimistic Policy Iteration

2.3.4. Limited Lookahead Policies and Rollout
Linear Programming Methods

Methods for Abstract Discounted Problems
2.5.1. Limited Lookahead Policies and Approximations
2.5.2. Abstract Value Iteration

2.5.3. Approximate Value Iteration

2.5.4. Abstract Policy Iteration

2.5.5. Abstract Optimistic Policy Iteration
2.5.6. Approximate Policy Iteration

2.5.7. Mathematical Programming
Asynchronous Algorithms

2.6.1. Asynchronous Value Iteration

3.

4.

5.

2.7.

Contents

2.6.2. Asynchronous Policy Iteration
2.6.3. Policy Iteration with a Uniform Fixed Point
Notes, Sources, and Exercises

Stochastic Shortest Path Problems

3.1.
3.2.
3.3.
3.4.

3.5.

3.6.
3.7.

Problem Formulation

Main Results

Underlying Contraction Properties

Value Iteration

3.4.1. Conditions for Finite Termination
3.4.2. Asynchronous Value Iteration

Policy Iteration

3.5.1. Optimistic Policy Iteration

3.5.2. Approximate Policy Iteration

3.5.3. Policy Iteration with Improper Policies
3.5.4. Policy Iteration with a Uniform Fixed Point
Countable-State Problems

Notes, Sources, and Exercises

Undiscounted Problems

4.1.

4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

Unbounded Costs per Stage

4.1.1. Main Results

4.1.2. Value Iteration

4.1.3. Other Computational Methods
4.1.4. Finite-State Positive Cost Models
Linear Systems and Quadratic Cost
Inventory Control

Optimal Stopping

Continuous-Time Problems - Control of Queues
Nonstationary and Periodic Problems
Notes, Sources, and Exercises

Average Cost per Stage Problems

5.1.

5.2.
5.3.

5.4.

Finite-Spaces Average Cost Models

5.1.1. Relation with the Discounted Cost Problem
5.1.2. Blackwell Optimal Policies

5.1.3. Optimality Equations

Conditions for Equal Average Cost for all Initial States
Value Iteration

5.3.1. Single-Chain Problems - Relative Value Iteration
5.3.2. Contracting Value Iteration and the A-SSP

5.3.2. Multi-Chain Value Iteration

Policy Iteration

Contents xi

5.4.1. Single-Chain Policy Iteration
5.4.2. Multi-Chain Policy Iteration
5.5. Linear Programming
5.6. Infinite-Spaces Average Cost Models
5.6.1. A Sufficient Condition for Optimality
5.6.2. Finite State Space and Infinite Control Space
5.6.3. Countable States — Vanishing Discount Approach
5.6.4. Countable States — Contraction Approach
5.6.5. Linear Systems with Quadratic Cost
5.7. Notes, Sources, and Exercises

6. Approximate Dynamic Programming - Discounted Models

6.1

6.2.
6.3.

6.4.

6.5.

6.6.

6.7.

. General Issues of Simulation-Based Cost Approximation
6.1.1. Approximation Architectures
6.1.2. Simulation-Based Approximate Policy Iteration
6.1.3. Direct and Indirect Approximation
6.1.4. Monte Carlo Simulation
6.1.5. Simplifications
Direct Policy Evaluation - Gradient Methods
Projected Equation Methods for Policy Evaluation
6.3.1. The Projected Bellman Equation
6.3.2. The Matrix Form of the Projected Equation
6.3.3. Simulation-Based Model-Free Methods
6.3.4. LSTD, LSPE, and TD(0) Methods
6.3.5. Optimistic Versions
6.3.6. Multistep Simulation-Based Model-Free Methods
6.3.7. A Synopsis
Policy Iteration Issues
6.4.1. Exploration Enhancement by Geometric Sampling
6.4.2. Exploration Enhancement by Off-Policy Methods
6.4.3. Policy Oscillations - Chattering
Aggregation Methods
6.5.1. Cost Approximation via the Aggregate Problem
6.5.2. Cost Approximation via the Enlarged Problem
6.5.3. Multistep Aggregation
6.5.4. Asynchronous Distributed Hard Aggregation
Q-Learning
6.6.1. Q-Learning: A Stochastic VI Algorithm
6.6.2. Q-Learning and Policy Iteration
6.6.3. Q-Factor Approximation and Projected Equations
6.6.4. Q-Learning for Optimal Stopping Problems
6.6.5. Q-Learning and Aggregation
6.6.6. Finite Horizon Q-Learning
Notes, Sources, and Exercises

xii Contents

7. Approximate Dynamic Programming - Nondiscounted
Models and Generalizations

7.1. Stochastic Shortest Path Problems
7.2. Average Cost Problems
7.2.1. Approximate Policy Evaluation
7.2.2. Approximate Policy Iteration
7.2.3. Q-Learning for Average Cost Problems
7.3. General Problems and Monte Carlo Linear Algebra
7.3.1. Projected Equations
7.3.2. Matrix Inversion and Iterative Methods
7.3.3. Multistep Methods
7.3.4. Extension of Q-Learning for Optimal Stopping
7.3.5. Equation Error Methods
7.3.6. Oblique Projections
7.3.7. Generalized Aggregation
7.3.8. Deterministic Methods for Singular Linear Systems
7.3.9. Stochastic Methods for Singular Linear Systems
7.4. Approximation in Policy Space
7.4.1. The Gradient Formula
7.4.2. Computing the Gradient by Simulation
7.4.3. Essential Features for Gradient Evaluation
7.4.4. Approximations in Policy and Value Space
7.5. Notes, Sources, and Exercises

Appendix A: Measure-Theoretic Issues in Dynamic Programming

A.1. A Two-Stage Example
A.2. Resolution of the Measurability Issues

References

Index

Preface

This two-volume book is based on a first-year graduate course on dynamic
programming and optimal control that I have taught for over twenty years
at Stanford University, the University of Illinois, and the Massachusetts In-
stitute of Technology. The course has been typically attended by students
from engineering, operations research, economics, and applied mathemat-
ics. Accordingly, a principal objective of the book has been to provide a
unified treatment of the subject, suitable for a broad audience. In par-
ticular, problems with a continuous character, such as stochastic control
problems, popular in modern control theory, are simultaneously treated
with problems with a discrete character, such as Markovian decision prob-
lems, popular in operations research. Furthermore, many applications and
examples, drawn from a broad variety of fields, are discussed.

The book may be viewed as a greatly expanded and pedagogically
improved version of my 1987 book “Dynamic Programming: Deterministic
and Stochastic Models,” published by Prentice-Hall. I have included much
new material on deterministic and stochastic shortest path problems, as
well as a new chapter on continuous-time optimal control problems and the
Pontryagin Minimum Principle, developed from a dynamic programming
viewpoint. I have also added a fairly extensive exposition of simulation-
based approximation techniques for dynamic programming. These tech-
niques, which are often referred to as “neuro-dynamic programming” or
“reinforcement learning,” represent a breakthrough in the practical ap-
plication of dynamic programming to complex problems that involve the
dual curse of large dimension and lack of an accurate mathematical model.
Other material was also augmented, substantially modified, and updated.

With the new material, however, the book grew so much in size that
it became necessary to divide it into two volumes: one on finite horizon,
and the other on infinite horizon problems. This division was not only
natural in terms of size, but also in terms of style and orientation. The
first volume is more oriented towards modeling, and the second is more
oriented towards mathematical analysis and computation. I have included
in the first volume a final chapter that provides an introductory treatment
of infinite horizon problems. The purpose is to make the first volume self-

xiii

xiv Preface

contained for instructors who wish to cover a modest amount of infinite
horizon material in a course that is primarily oriented towards modeling,
conceptualization, and finite horizon problems,

Many topics in the book are relatively independent of the others. For
example Chapter 2 of Vol. I on shortest path problems can be skipped
without loss of continuity, and the same is true for Chapter 3 of Vol. I,
which deals with continuous-time optimal control. As a result, the book
can be used to teach several different types of courses.

(a) A two-semester course that covers both volumes.

(b) A one-semester course primarily focused on finite horizon problems
that covers most of the first volume.

(¢) A one-semester course focused on stochastic optimal control that cov-
ers Chapters 1, 4, 5, and 6 of Vol. I, and Chapters 1, 2, and 4 of Vol.
IL.

(d) A one-semester course that covers Chapter 1, about 50% of Chapters
2 through 6 of Vol. I, and about 70% of Chapters 1, 2, and 4 of Vol.
I1. This is the course I usually teach at MIT.

(e) A one-quarter engineering course that covers the first three chapters
and parts of Chapters 4 through 6 of Vol. I.

(f) A one-quarter mathematically oriented course focused on infinite hori-
zon problems that covers Vol. II.

The mathematical prerequisite for the text is knowledge of advanced
calculus, introductory probability theory, and matrix-vector algebra. A
summary of this material is provided in the appendixes. Naturally, prior
exposure to dynamic system theory, control, optimization, or operations
research will be helpful to the reader, but based on my experience, the
material given here is reasonably self-contained.

The book contains a large number of exercises, and the serious reader
will benefit greatly by going through them. Solutions to all exercises are
compiled in a manual that is available to instructors from the author. Many
thanks are due to the several people who spent long hours contributing
to this manual, particularly Steven Shreve, Eric Loiederman, Lakis Poly-
menakos, and Cynara Wu.

Dynamic programming is a conceptually simple technique that can
be adequately explained using elementary analysis. Yet a mathematically
rigorous treatment of general dynamic programming requires the compli-
cated machinery of measure-theoretic probability. My choice has been to
bypass the complicated mathematics by developing the subject in general-
ity, while claiming rigor only when the underlying probability spaces are
countable. A mathematically rigorous treatment of the subject is carried
out in my monograph “Stochastic Optimal Control: The Discrete Time

Preface XV

Case,” Academic Press, 1978, coauthored by Steven Shreve. This mono-
graph complements the present text and provides a solid foundation for the
subjects developed somewhat informally here.

Finally, I am thankful to a number of individuals and institutions
for their contributions to the book. My understanding of the subject was
sharpened while I worked with Steven Shreve on our 1978 monograph.
My interaction and collaboration with John Tsitsiklis on stochastic short-
est paths and approximate dynamic programming have been most valu-
able. Michael Caramanis, Emmanuel Fernandez-Gaucherand, Pierre Hum-
blet, Lennart Ljung, and John Tsitsiklis taught from versions of the book,
and contributed several substantive comments and homework problems. A
number of colleagues offered valuable insights and information, particularly
David Castanon, Eugene Feinberg, and Krishna Pattipati. NSF provided
research support. Prentice-Hall graciously allowed the use of material from
my 1987 book. Teaching and interacting with the students at MIT have
kept up my interest and excitement for the subject.

Dimitri P. Bertsekas
Spring, 1995

1 This monograph was republished by Athena Scientific in 1996, and can also
be freely downloaded from the author’s www site.

xvi

Preface

Preface to the Second Edition

This second edition has expanded by nearly 30% the coverage of the origi-
nal. Most of the new material is concentrated in four areas:

(a)

In Chapter 4, a section was added on estimation and control of sys-
tems with a non-probabilistic (set membership) description of uncer-
tainty. This subject, a personal favorite of the author since it was
the subject of his 1971 Ph.D. thesis, has become popular, as minimax
and Hs control methods have gained increased prominence.

Chapter 6 was doubled in size, to reflect the popularity of subopti-
mal control and neuro-dynamic programming methods. In particular,
the coverage of certainty equivalent, and limited lookahead methods
has been substantially expanded. Furthermore, a new section was
added on neuro-dynamic programming and rollout algorithms, and
their applications in combinatorial optimization and stochastic opti-
mal control.

In Chapter 7, an introduction to continuous-time, semi-Markov deci-
sion problems was added in a separate last section.

A new appendix was included, which deals with various formulations
of problems of decision under uncertainty. The foundations of the
minimax and expected utility approaches are framed within a broader
context, and some of the aspects of utility theory are discussed.

There are also miscellaneous additions and improvements scattered through-
out the text, and a more detailed coverage of deterministic problems is
given in Chapter 1. Finally, a new internet-based feature was added to
the book, which extends its scope and coverage. Many of the theoretical
exercises have been solved in detail and their solutions have been posted
in the book’s www page

http://www.athenasc.com/dpbook.html

These exercises have been marked with the symbol Gwwy

I would like to express my thanks to the many colleagues who con-

tributed suggestions for improvement of the second edition.

Dimitri P. Bertsekas
Fall, 2000

Preface xvii

Preface to the Third Edition

The third edition contains a substantial amount of new material, particu-
larly on approximate dynamic programming, which has now become one
of the principal focal points of the book. In particular:

(a) The subject of minimax control was developed in greater detail, in-
cluding a new section in Chapter 1, which connects with new material
in Chapter 6.

(b) The section on auction algorithms for shortest paths in Chapter 2 was
eliminated. These methods are not currently used in dynamic pro-
gramming, and a detailed discussion has been provided in a chapter
from the author’s Network Optimization book. This chapter can be
freely downloaded from

http://web.mit.edu/dimitrib/www/net.html

(¢) A section was added in Chapter 2 on dynamic programming and
shortest path algorithms for constrained and multiobjective problems.

(d) The material on sufficient statistics and partially observable Markov
decision problems in Section 5.4 was restructured and expanded.

(e) Considerable new material was added in Chapter 6:

(1) An expanded discussion of one-step lookahead policies and as-
sociated performance bounds in Section 6.3.1.

(2) A discussion of aggregation methods and discretization of conti-
nuous-state problems (see Subsection 6.3.4).

(3) A discussion of model predictive control and its relation to other
suboptimal control methods (see Subsection 6.5.2).

(4) An expanded treatment of open-loop feedback control and re-
lated methods based on a restricted structure (see Subsection
6.5.3).

I have also added a few exercises, and revised a few sections while
preserving their essential content. Thanks are due to Haixia Lin, who
worked out several exercises, and to Janey Yu, who reviewed some of the
new sections and gave me valuable feedback.

Dimitri P. Bertsekas
http://web.mit.edu/dimitrib/www/home.html
Summer 2005

xviii Preface

Preface to the Fourth Edition

The fourth edition contains a substantial amount of new material, par-
ticularly on approximate DP in Chapter 6. This chapter was thoroughly
reorganized and rewritten, to bring it in line, both with the contents of Vol.
II, whose latest edition appeared in 2012, and with recent developments,
which have propelled approximate DP to the forefront of attention.

Some of the highlights of the revision of Chapter 6 are an increased
emphasis on one-step and multistep lookahead methods, parametric ap-
proximation architectures, neural networks, rollout, and Monte Carlo tree
search. Among other applications, these methods have been instrumental
in the recent spectacular success of computer Go programs. The material
on approximate DP also provides an introduction and some perspective for
the more analytically oriented treatment of Vol. II.

The material of the chapters other than Chapter 6 has been reorga-
nized and somewhat enriched, but not nearly as much. I have just added
a few exercises and illustrative examples, and revised a few sections while
preserving their essential content. The material on minimum variance con-
trol of autoregressive and moving average linear models (Sections 5.3, 6.1.4,
and Appendix F in the 3rd edition) was eliminated in this edition, as over
time it became disconnected from the remainder of the book. This mate-
rial is now covered far more comprehensively in specialized textbooks. The
material on adaptive control (Section 6.1 in the 3rd edition) has also been
substantially reduced. A copy of the 3rd edition material that has been
omitted from the 4th edition is posted at the book’s web site

http://www.athenasc.com/dpbook.html

together with other instructional resources, such as my classroom slides
and solutions to the exercises marked with the symbol Gww). The course
material from several offerings of my class can be found at the MIT Open
CourseWare (OCW) site:

https://ocw.mit.edu/index.htm

Links to a series of video lectures on approximate DP and related topics
may be found at my website, which also contains my research papers on
the subject.

Another change is this edition is that the chapter sequence has been
reordered, so that the book is now naturally divided in two parts. Part I
consists of Chapters 1-4 that are fundamental and ideally should be read

Preface xix

as a group. Part IT consists of Chapters 5, 6 and 7, each of which is
terminal. These chapters can be read independently of each other, and in
fact they may be attempted by some readers immediately after Chapter
1, with relatively little loss of continuity. The introductory Section 1.1
explains in more detail the new structure of the book.

Together with Vol. I, this volume provides an instructor with flexibil-
ity to follow several different pathways though the material. In my recent
graduate offerings of the subject at MIT, I have covered most of Chapters 1
and 2, parts of Chapters 3 and 4, and most of Chapter 5, in the first half of
a semester, and then spent the second half of the semester on approximate
DP using Chapter 6 and Vol. II.

As always, many thanks are due to the students in my classes at
MIT and elsewhere for stimulating interactions. I would like to single out
Thomas Stahlbuhk, who has been very helpful with his comments. Thanks
are also due to colleagues and collaborators, particularly John Tsitsiklis,
Ben Van Roy, Mengdi Wang, and Huizhen Yu, for valuable interactions
and suggestions for revision.

Dimitri P. Bertsekas
http://web.mit.edu/dimitrib/www/home.html
Winter 2017

XX Preface

On this 2nd Printing

In the 2nd printing of the 4th edition the approximate DP Chapter 6 has
been updated and rewritten to bring it in line with the two reinforcement
learning books written by the author in the interim [Ber19a], [Ber20a]. The
remainder of the book was essentially left unchanged, and the total number
of pages was also unchanged.

Dimitri P. Bertsekas
http://web.mit.edu/dimitrib/www/home.html
Summer 2020

The Dynamic Programmaing

Algorithm

1.1.

1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

Contents

Introduction

1.1.1. General Structure of Finite Horizon Optimal

Control Problems C e e
1.1.2. Discrete-State and Finite-State Problems .
The Basic Problem Ce e
The Dynamic Programming Algorithm
State Augmentation and Other Reformulations .
Some Mathematical Issues Ce e
Dynamic Programming and Minimax Control
Notes, Sources, and Exercises .

SRR R

1.1

2 The Dynamic Programming Algorithm Chap. 1

Life can only be understood going backwards,
but it must be lived going forwards.
Kierkegaard

INTRODUCTION

This book deals with situations where decisions are made in stages. The
outcome of each decision may not be fully predictable but can be antici-
pated to some extent before the next decision is made. The objective is
to minimize a certain cost over a given number of stages — a mathematical
expression of what is considered an undesirable outcome.

A key aspect of such situations is that decisions cannot be viewed
in isolation since one must balance the desire for low present cost with
the undesirability of high future costs. The dynamic programming (DP)
technique captures this tradeoff. At each stage, it ranks decisions based on
the sum of the present cost and the expected future cost, assuming optimal
decision making for subsequent stages.

There is a very broad variety of practical problems that can be treated
by DP. In this book, we try to keep the main ideas uncluttered by irrelevant
assumptions on problem structure. To this end, we formulate a broadly
applicable model of stochastic optimal control of a dynamic system with
perfect state observations over a finite number of stages (a finite horizon).
This model will be the starting point for our development, and will occupy
us for the first four of the seven chapters of this volume (which may be
viewed as Part I of the book). The last three chapters (which may be
viewed as Part II of the book) deal with related topics, and are terminal
chapters for the purposes of this volume. In fact each of these chapters may
be attempted by some readers immediately after Chapter 1, with relatively
little loss of continuity. In summary, the seven chapters are structured as
follows (see Fig. 1.1.1):

(1) The first chapter deals with the formulation of a general optimal
control problem over a finite horizon, it demonstrates its broad ap-
plicability in deterministic and stochastic settings, and develops the
DP algorithm for its solution.

(2) The second chapter considers the deterministic finite-state case of the
problem. It explores the connections with the classical shortest path
problem, and the special algorithms that this connection brings to
bear.

Sec. 1.1 Introduction 3

PART | | PART Il
|
Finite Horizon |
Problems
Ch. 1 |
I Infinite Horizon
> Problems
| Ch. 5
Deterministic Stochastic |
Problems Pl |
Ch. 2 [
l Approximate
| ~ DP
| Ch. 6
Perfect-State Imperfect-State !
Info Info I
Ch. 3 Ch. 4 |
Continuous Time
l »| Optimal Control
| Ch. 7
I

Figure 1.1.1 Illustration of the structure of the seven chapters of the present
volume.

3)

(4)

The third chapter considers the stochastic general-state case of the
problem, and illustrates various aspects of the solution process by
means of some important applications.

The fourth chapter also considers the stochastic general-state case,
but contrary to the third chapter, it considers the situation where
the exact state of the system is not observed perfectly by the decision
maker/controller. This is a much harder problem, but conceptually
it is closely related to the case of perfect state observation. Much
of the chapter is devoted to explaining this important conceptual
connection.

The fifth chapter is an introduction to the theory of infinite horizon
problems. It focuses on the relatively easy but important case of
finite state problems. Volume II considers infinite horizon problems
in greater generality and depth.

The sixth chapter considers approximations to the exact DP solution
method. This is a subject of great importance in practice, with a rich
algorithmic methodology and very broad applications. We focus here
primarily on finite horizon problems, so that this chapter can be read
independently of Chapter 5. However, much of the discussion extends
to infinite horizon problems, and on occasion we pause to indicate the

4 The Dynamic Programming Algorithm Chap. 1

nature of the extension. We will consider approximate DP for infinite
horizon problems in greater detail in Vol. II.

(7) The seventh chapter is a terminal chapter on deterministic optimal
control in continuous space and time. It may be skipped without
loss of continuity. Alternatively, it may be read immediately follow-
ing Chapter 1. Among others, we emphasize here the methodological
connections with DP and the analog of the DP algorithm in continu-
ous time, which is the Hamilton-Jacobi-Bellman equation.

1.1.1 General Structure of Finite Horizon Optimal Control
Problems

Our finite horizon model has two principal features: (1) a discrete-time
dynamic system, and (2) a cost function that is additive over time. The
dynamic system expresses the evolution of some variables, the system’s
“state,” under the influence of decisions made at discrete instances of time.
The system has the form

xk-‘rl:fk(xkaukawk)u k:0717"'7N_17
where

k indexes discrete time,

x) is the state of the system and summarizes past information that is
relevant for future optimization,

ug is the control or decision variable to be selected at time k,

wy, is a random parameter (also called disturbance or noise depending on
the context),

N is the horizon or number of times control is applied,

and fy is a function that describes the system and in particular the mech-
anism by which the state is updated.

The cost function is additive in the sense that the cost incurred at
time k, denoted by g (zk,ur, wy), accumulates over time. The total cost

18
N-1

gn(zN) + Z G (Th, Uk, W),
k=0
where gy (2n) is a terminal cost incurred at the end of the process. How-
ever, because of the presence of wy, the cost is generally a random variable
and cannot be meaningfully optimized. We therefore formulate the problem
as an optimization of the expected cost

N-1
E {gN(iEN) +) gk(d?k,uk,wk)} ;
k=0

Sec. 1.1 Introduction 5

Wk | Demand at Period k

Stock at Period k Stock at Period k + 1

Tk w! Inventory System ——— w

Tk4+1 = Tk + Up — Wk

Stock Ordered at
Period k

Cost of Period k
r(ugk) + cug

Figure 1.1.2 Inventory control example. At period k, the current stock
(state) zp, the stock ordered (control) ug, and the demand (random dis-
turbance) wy determine the cost r(zy) + cug of period k and the stock
Tpy1 = Tk + up — wy, at the next period.

where the expectation is with respect to the joint distribution of the random
variables involved. The optimization is over the controls wg, w1, ..., un—1,
but some qualification is needed here: each control wg is selected with
some knowledge of the current state zj (either its exact value or some
other related information).

A more precise definition of the terminology just used will be given
shortly. We first provide some orientation by means of examples.

Example 1.1.1 (Inventory Control - Open-Loop and Closed-
Loop Optimization)

Consider a problem of ordering a quantity of a certain item at each of N
periods so as to (roughly) meet a stochastic demand, while minimizing the
incurred expected cost. Let us denote

x) stock available at the beginning of the kth period,

ug stock ordered (and immediately delivered) at the beginning of the kth
period,
wy demand during the kth period with given probability distribution.
We assume that wo,wi,...,wn—1 are independent random variables,
and that excess demand is backlogged and filled as soon as additional inven-

tory becomes available. Thus, stock evolves according to the discrete-time
equation

Tht1 = Tk + Uk — Wk,

where negative stock corresponds to backlogged demand (see Fig. 1.1.2).
The cost incurred in period k consists of two components:

The Dynamic Programming Algorithm Chap. 1

(a) A cost r(zk) representing a penalty for either positive stock x (holding
cost for excess inventory) or negative stock z, (shortage cost for unfilled
demand).

(b) The purchasing cost cux, where c is cost per unit ordered.

There is also a terminal cost R(zn) for being left with inventory zn at the
end of N periods. Thus, the total cost over N periods is

N—1
E< R(zn) + Z (T(xk) + cuk)
k=0
We want to minimize this cost by proper choice of the orders uo,...,un—1,

subject to the natural constraint us > 0 for all k.

At this point we need to distinguish between closed-loop and open-
loop minimization of the cost. In open-loop minimization we select all orders
ug, ..., uN—1 at once at time 0, without waiting to see the subsequent demand
levels. In closed-loop minimization we postpone placing the order uj until the
last possible moment (time k) when the current stock x5 will be known. The
idea is that since there is no penalty for delaying the order uy up to time k,
we can take advantage of information that becomes available between times
0 and k (the demand and stock level in past periods).

Closed-loop optimization is of central importance in DP and is the type
of optimization that we will consider almost exclusively in this book. Thus, in
our basic formulation, decisions are made in stages while gathering informa-
tion between stages that will be used to enhance the quality of the decisions.
The effect of this on the structure of the resulting optimization problem is
quite profound. In particular, in closed-loop inventory optimization we are
not interested in finding optimal numerical values of the orders but rather we
want to find an optimal rule for selecting at each period k an order uy for
each possible value of stock xi that can conceivably occur. This is an “action
versus strategy” distinction.

Mathematically, in closed-loop inventory optimization, we want to find
a sequence of functions px, k=0, ..., N — 1, mapping stock x; into order us
so as to minimize the expected cost. The meaning of uy is that, for each k
and each possible value of xy,

ux(zr) = amount that should be ordered at time k if the stock is x.

The sequence m = {uo,...,un—1} will be referred to as a policy or
control law. For each 7, the corresponding cost for a fixed initial stock x is

N-1

Jr(mo) = E{ R(zn) + Z (T(xk) + Cuk(xk)) ;
k=0

and we want to minimize Jr(zo) for a given xo over all 7 that satisfy the
constraints of the problem. This is a typical DP problem. We will analyze
this problem in various forms in subsequent sections. For example, we will

Sec. 1.1 Introduction 7

show in Section 3.2 that for a reasonable choice of the cost function, the
optimal ordering policy is of the form

(@)_{Sk—xk if xx < Sk,
FE\TR) = otherwise,

where S}, is a suitable threshold level determined by the data of the problem.
In other words, when stock falls below the threshold Sk, order just enough to
bring stock up to Sk.

The preceding example illustrates the main ingredients of our formu-

lation:

(a)

(e)

A discrete-time system of the form

Ty = fr(Tr, wp, wi),

where fj, is some function; for example in the inventory case, we have
Jr (T, up, wi) = T + up — wy.

Independent random parameters wy. This will be generalized by al-
lowing the probability distribution of wy to depend on xy and wug; in
the context of the inventory example, we can think of a case where
the level of demand wy, is affected by the current stock level xy.

A control constraint; in the example, we have up > 0. In general,
the constraint set will depend on z; and the time index k, that is,
ug € Uk(xg). To see how constraints dependent on xj can arise in the
inventory context, think of a situation where there is an upper bound
B on the level of stock that can be accommodated, so ur < B — .

An additive cost of the form

N—-1
E {gN(iL’N) +) gk(Ik,Uk,wk)} ;

k=0
where gi are some functions; in the inventory example, we have
gn(zn) = R(zn) and gi(xk, uk, wg) = r(xg) + cug.

Optimization over (closed-loop) policies, i.e., rules for choosing uy, for
each k and each possible value of xy.

We next consider the important special case where in addition to

discrete time, the problem has a discrete state structure.

1.1.2 Discrete-State and Finite-State Problems

In the preceding example, the state xj was a continuous real variable, and
it is easy to think of multidimensional generalizations where the state is

8 The Dynamic Programming Algorithm Chap. 1

an n-dimensional vector of real variables. It is also possible, however, that
the state takes values from a discrete set, such as the integers.

A version of the inventory problem where a discrete viewpoint is more
natural arises when stock is measured in whole units (such as cars), each
of which is a significant fraction of xy, ug, or wg. It is more appropriate
then to take as state space the set of all integers rather than the set of real
numbers. The form of the system equation and the cost per period will, of
course, stay the same.

Generally, there are many situations where the state is naturally dis-
crete and there is no continuous counterpart of the problem. Such sit-
uations are often conveniently specified in terms of the probabilities of
transition between the states. What we need to know is p;;(u, k), which
is the probability at time k that the next state will be j, given that the
current state is ¢, and the control selected is u, i.e.,

pij(u, k) = P{aszrl =j|xr=1t,u, = u}

This type of state transition can alternatively be described in terms of the
discrete-time system equation

Tp41 = Wk,
where the probability distribution of the random parameter wy is
Plwy =j |z = i,up = u} = pij (u, k).
Conversely, given a discrete-state system in the form

Trr1 = [r(Tk, uk, W),
together with the probability distribution Py(wy | xg,uxr) of wk, we can
provide an equivalent transition probability description. The corresponding
transition probabilities are given by

pij(u, k) = Po{Wi(i,u, j) | o) =i, ux, = u},
where W (i, u, j) is the set

Wk(ivuvj) = {’LU | Jj= fk(ivuvw)}'

Thus a discrete-state system can equivalently be described in terms
of a difference equation or in terms of transition probabilities. Depend-
ing on the given problem, it may be notationally or mathematically more
convenient to use one description over the other.

The following examples illustrate discrete-state problems. The first
example involves a deterministic problem, i.e., a problem where there is no
stochastic uncertainty. In such a problem, when a control is chosen at a
given state, the next state is fully determined; i.e., for any state ¢, control
u, and time k, the transition probability pi;(u, k) is equal to 1 for a single
state 7, and it is O for all other candidate next states. The other three
examples involve stochastic problems, where the next state resulting from
a given choice of control at a given state cannot be determined a priori.

Sec. 1.1 Introduction 9

Figure 1.1.3 The transition graph of the deterministic scheduling problem of
Example 1.1.2. Each arc of the graph corresponds to a decision leading from
some state (the start node of the arc) to some other state (the end node of the
arc). The corresponding cost is shown next to the arc. The cost of the last
operation is shown as a terminal cost next to the terminal nodes of the graph.

Example 1.1.2 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cry for passing from any operation m to any
other operation n is given. There is also an initial startup cost Sa or Sc for
starting with operation A or C, respectively (cf. Fig. 1.1.3). The cost of a
sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost

Sa+Cac +Ccp +Cbs.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.1.3. Here the problem is deterministic, i.e., at

10

The Dynamic Programming Algorithm Chap. 1

a given state, each choice of control leads to a uniquely determined state.
For example, at state AC the decision to perform operation D leads to state
ACD with certainty, and has cost Cop. Deterministic problems with a finite
number of states can be conveniently represented in terms of transition graphs
such as the one of Fig. 1.1.3. The optimal solution corresponds to the path
that starts at the initial state and ends at some state at the terminal time
and has minimum sum of arc costs plus the terminal cost. We will study
systematically problems of this type in Chapter 2.

Example 1.1.3 (Machine Replacement)

Consider a problem of operating efficiently over IV time periods a machine
that can be in any one of n states, denoted 1,2, ...,n. We denote by g(i) the
operating cost per period when the machine is in state ¢, and we assume that

g(1) <g(2) <--- < g(n).

The implication here is that state ¢ is better than state ¢ 4+ 1, and state 1
corresponds to a machine in best condition.

During a period of operation, the state of the machine can become worse
or it may stay unchanged. We thus assume that the transition probabilities

pij = P{next state will be j | current state is i}

satisfy
pij =0 if 7 < d.

We assume that at the start of each period we know the state of the
machine and we must choose one of the following two options:

(a) Let the machine operate one more period in the state it currently is.
(b) Repair the machine and bring it to the best state 1 at a cost R.

We assume that the machine, once repaired, is guaranteed to stay in state
1 for one period. In subsequent periods, it may deteriorate to states j > 1
according to the transition probabilities p1;.

Thus the objective here is to decide on the level of deterioration (state)
at which it is worth paying the cost of machine repair, thereby obtaining the
benefit of smaller future operating costs. Note that the decision should also
be affected by the period we are in. For example, we would be less inclined
to repair the machine when there are few periods left.

The system evolution for this problem can be described by the graphs
of Fig. 1.1.4. These graphs depict the transition probabilities between vari-
ous pairs of states for each value of the control and are known as transition
probability graphs or simply transition graphs. Note that there is a different
graph for each of the two controls.

Sec. 1.1 Introduction 11

Pin

Do not Repair Repair

Figure 1.1.4 Machine replacement example. Transition probability graphs
for each of the two possible controls (repair or not repair). At each stage and
state 4, the cost of repairing is R + g(1), and the cost of not repairing is g(2).
The terminal cost is 0.

Example 1.1.4 (Control of a Queue)

Consider a queueing system with room for n customers operating over N
time periods. We assume that service of a customer can start (end) only
at the beginning (end) of the period and that the system can serve only
one customer at a time. The probability p,, of m customer arrivals during
a period is given, and the numbers of arrivals in two different periods are
independent. Customers finding the system full depart without attempting
to enter later. The system offers two kinds of service, fast and slow, with cost
per period ¢y and cs, respectively. Service can be switched between fast and
slow at the beginning of each period. With fast (slow) service, a customer in
service at the beginning of a period will terminate service at the end of the
period with probability g (respectively, gs) independently of the number of
periods the customer has been in service and the number of customers in the
system (qf > gs). There is a cost r(i) for each period for which there are ¢
customers in the system. There is also a terminal cost R(¢) for ¢ customers
left in the system at the end of the last period.

The problem is to choose, at each period, the type of service as a func-
tion of the number of customers in the system so as to minimize the expected
total cost over N periods. One expects that when there is a large number of

12

The Dynamic Programming Algorithm Chap. 1

customers i in queue, it is better to use the fast service, and the question is
to find the values of 7 for which this is true.

Here it is appropriate to take as state the number 7 of customers in the
system at the start of a period and as control the type of service provided.
Then, the cost per period is r(#) plus ¢y or ¢s depending on whether fast or
slow service is provided. We derive the transition probabilities of the system.

When the system is empty at the start of the period, the probability
that the next state is j is independent of the type of service provided. It
equals the given probability of j customer arrivals when j < n,

pOj(uf):p()j(us):pj, jZO,l,...,Tl—l,

and it equals the probability of n or more customer arrivals when j = n,

oo
Pon(ty) = pon(us) = Z D
When there is at least one customer in the system (¢ > 0), we have
pij(uy) =0, if j <i—1,
pij(us) = qrpo, ifj=i—1,
pij(uy) = P{j — ¢ + 1 arrivals, service completed}

+ P{j — 4 arrivals, service not completed }

= qspj—it1+ (L —qf)pi—i, ifi—-1<j<n-—1,

oo
Pitn—1)(uf) = qs Z pm + (1 — qf)pn—1-4,

oo
pin(ur) =(1=q5) Y pm.

The transition probabilities when slow service is provided are also given by
these formulas with uy and ¢y replaced by us and ¢, respectively.

Example 1.1.5 (Optimizing a Chess Match Strategy)

A player is about to play a two-game chess match with an opponent, and
wants to maximize his winning chances. Each game can have one of two
outcomes:

(a) A win by one of the players (1 point for the winner and 0 for the loser).
(b) A draw (1/2 point for each of the two players).

If the score is tied at 1-1 at the end of the two games, the match goes into
sudden-death mode, whereby the players continue to play until the first time

Sec. 1.1 Introduction 13

one of them wins a game (and the match). The player has two playing styles
and he can choose one of the two at will in each game, independently of the
style he chose in previous games.

(1) Timid play with which he draws with probability ps > 0, and he loses
with probability (1 — pa).

(2) Bold play with which he wins with probability p., and he loses with
probability (1 — pw).

e
SO

1st Game / Timid Play 1st Game / Bold Play

2nd Game / Timid Play 2nd Game / Bold Play

Figure 1.1.5 Chess match problem for Example 1.1.5. Transition probability
graphs for each of the two possible controls (timid or bold play). Note here
that the state space is not the same at each stage. The terminal cost is -1 at
the winning final scores 2-0 and 1.5-0.5, 0 at the losing final scores 0-2 and
0.5-1.5, and —p,, at the tied score 1-1.

Thus, in a given game, timid play never wins, while bold play never draws.
The player wants to find a style selection strategy that maximizes his proba-

14 The Dynamic Programming Algorithm Chap. 1

bility of winning the match. Note that once the match gets into sudden death,
the player should play bold, since with timid play he can at best prolong the
sudden death play, while running the risk of losing. Therefore, there are only
two decisions for the player to make, the selection of the playing strategy in
the first two games.

We can model the problem as one with two stages, and with states the
possible scores at the start of each of the first two stages (games), as shown in
Fig. 1.1.5. The initial state is the initial score 0-0. The transition probabilities
for each of the two different controls (playing styles) are also shown in Fig.
1.1.5. There is a cost at the terminal states: a cost of -1 at the winning scores
2-0 and 1.5-0.5, a cost of 0 at the losing scores 0-2 and 0.5-1.5, and a cost of
—pw at the tied score 1-1 (since the probability of winning in sudden death
is pw). Note that to maximize the probability P of winning the match, we
must minimize —P.

This problem has an interesting feature. One would think that if p,, <
1/2, the player would have a less than 50-50 chance of winning the match,
even with optimal play, since his probability of losing is greater than his
probability of winning any one game, regardless of his playing style. This is
not so, however, because the player can adapt his playing style to the current
score, but his opponent does not have that option. In other words, the player
can use a closed-loop strategy, and it will be seen later that with optimal
play, as determined by the DP algorithm, he has a better than 50-50 chance
of winning the match provided p., is higher than a threshold value p, which,
depending on the value of pq, may satisfy p < 1/2.

1.2 THE BASIC PROBLEM

We now formulate a general problem of decision under stochastic uncer-
tainty over a finite number of stages. This problem, which we call basic,
is central in this book. We will discuss solution methods based on DP in
the first five chapters, and we will extend our analysis to versions of this
problem involving an infinite number of stages in Chapter 5 and in Vol. II
of this work.

The basic problem is very general. In particular, we will not require
that the state, control, or random parameter take a finite number of values
or belong to a space of n-dimensional vectors. A surprising aspect of DP is
that its applicability depends very little on the nature of the state, control,
and random parameter spaces. For this reason it is convenient to proceed
without any assumptions on the structure of these spaces; indeed such
assumptions would become a serious impediment later.

Basic Problem

We are given a discrete-time dynamic system

xk-‘rl:fk(xkaukawk)u k:0717"'7N_17

Sec. 1.2 The Basic Problem 15

where the state xj is an element of a space Si, the control uy is an element
of a space C}, and the random “disturbance” wy is an element of a space
Dy.

The control uy is constrained to take values in a given nonempty
subset U(xr) C Cf, which depends on the current state zy; i.e., up €
Ui (z) for all zj € Sy, and k.

The random disturbance wy, is characterized by a probability distri-
bution Py(- | 2x,ur) that may depend explicitly on x and ug but not on
values of prior disturbances wg_1, ..., wo.

We consider the class of policies (also called control laws) that consist
of a sequence of functions

™= {:LLO""’:U’N_l}7

where p maps states xy into controls ur = wuk(xk) and is such that
uk(xg) € Uk(xy) for all xp € Sk. Such policies will be called admissible.

Given an initial state xp and an admissible policy 7 = {uo, ..., un—-1},
the states x; and disturbances wj are random variables with distributions
defined through the system equation

Ik+1:fk($k;,uk(xk)awk); k:O,l,,N—l (11)

Thus, for given functions gi, £k = 0,1, ..., N, the expected cost of 7 starting
at X0 is

N-1
Jr(wo) = E {QN(IN) + Z gk(ﬂﬁk,uk(ﬂik)vu%)}

k=0

where the expectation is taken over the random variables wy and zy. An
optimal policy 7* is one that minimizes this cost; i.e.,

e+ (20) = min Jx(20),

where II is the set of all admissible policies.

Note that the optimal policy 7* is associated with a fixed initial state
xo. However, an interesting aspect of the basic problem and of DP is that
it is typically possible to find a policy 7* that is simultaneously optimal
for all initial states.

The optimal cost depends on xp and is denoted by J*(xo); i.e.,

J*(zo) = mig Jr(20).

kS

16 The Dynamic Programming Algorithm Chap. 1

It is useful to view J* as a function that assigns to each initial state xo the
optimal cost J*(xzo) and call it the optimal cost function or optimal value
function.t

The Role and Value of Information

We noted earlier the distinction between open-loop minimization, where
we select all controls ug, ..., ux—1 at once at time 0, and closed-loop mini-
mization, where we select a policy {po, ..., un—1} that applies the control
pr(zy) at time k with knowledge of the current state xj (see Fig. 1.2.1).
With closed-loop policies, it is possible to achieve lower cost, essentially by
taking advantage of the extra information (the knowledge of the current
state). The reduction in cost may be called the walue of the informa-
tion and can be significant indeed. If the information is not available, the
controller cannot adapt appropriately to unexpected values of the state,
and as a result the cost can be adversely affected. For example, in the
inventory control example of the preceding section, the information that
becomes available at the beginning of each period k is the inventory stock
xj. Clearly, this is important information to the inventory manager, who
will want to adjust the amount uy to be purchased depending on whether
the current stock xj is running high or low.

Wi
up, = pig(Tr) System Tk
> Tht1 = [r(Tr, up, wi) >
- 1223 ~t

Figure 1.2.1 Information gathering in the basic problem. At each time k the
controller observes the current state x and applies a control ur = pk(zy) that
depends on that state.

1 For the benefit of the mathematically oriented reader we note that in the
preceding equation, “min” denotes the greatest lower bound (or infimum) of
the set of numbers {Jx(zo) | # € II}. A notation more in line with normal
mathematical usage would be to write J*(xo) = infrem Jr(zo). However (as
discussed in Appendix B), we find it convenient to use “min” in place of “inf”
even when the infimum is not attained. It is less distracting, and it will not lead
to any confusion.

Sec. 1.2 The Basic Problem 17

Example 1.2.1

To illustrate the benefits of the proper use of information, let us consider
the chess match example of the preceding section (Example 1.1.5). There,
a player can select timid play (probabilities pq and 1 — pq for a draw and a
loss, respectively) or bold play (probabilities p,, and 1 — p,, for a win and a
loss, respectively) in each of the two games of the match. Suppose the player
chooses a policy of playing timid if and only if he is ahead in the score, as
illustrated in Fig. 1.2.2; we will see in the next section that this policy is
optimal, assuming pg > pw. Then after the first game (in which he plays
bold), the score is 1-0 with probability p,, and 0-1 with probability 1 — p.
In the second game, he plays timid in the former case and bold in the latter
case. Thus after two games, the probability of a match win is pwpq, the
probability of a match loss is (1 — pw)27 and the probability of a tied score is
pw(l—pa) + (1 — pw)pw, in which case he has a probability p,, of winning the
subsequent sudden-death game. Thus the probability of winning the match
with the given strategy is

Pwpd + Pu(pu(l = pa) + (1 = pu)puw),
which, with some rearrangement, gives

Probability of a match win = p2 (2 — pw) + Pw (1l — puw)pa- (1.2)

Bold Play

Figure 1.2.2 Illustration of the policy used in Example 1.2.1 to obtain a
greater than 50-50 chance of winning the chess match and associated transition
probabilities. The player chooses a policy of playing timid if and only if he is
ahead in the score.

Suppose now that p,, < 1/2. Then the player has a greater probability
of losing than winning any one game, regardless of the type of play he uses.

18 The Dynamic Programming Algorithm Chap. 1

From this we can infer that no open-loop strategy can give the player a greater
than 50-50 chance of winning the match. Yet from Eq. (1.2) it can be seen
that with the closed-loop strategy of playing timid if and only if the player
is ahead in the score, the chance of a match win can be greater than 50-50,
provided that p,, is close enough to 1/2 and pgq is close enough to 1. As an
example, for p,, = 0.45 and pg = 0.9, Eq. (1.2) gives a match win probability
of roughly 0.53.

To calculate the value of information, let us consider the four open-loop
policies, whereby we decide on the type of play to be used without waiting to
see the result of the first game. These are:

(1) Play timid in both games; this has a probability p2p. of winning the
match.

(2) Play bold in both games; this has a probability p2 + 2p% (1 — pw) =
p2(3 — 2py) of winning the match.

(3) Play bold in the first game and timid in the second game; this has a
probability pupa + pZ (1 — pa) of winning the match.

(4) Play timid in the first game and bold in the second game; this also has
a probability pwpa 4+ p%(1 — pg) of winning the match.

The first policy is always dominated by the others, and the optimal
open-loop probability of winning the match is

Open-loop probability of win = max (pi(S — 2Dw), Pwpd + P (1 — pd)) (13)
= P + Pu(l = puw) max(2pw, pa).

Thus if pq > 2pw, we see that the optimal open-loop policy is to play timid
in one of the two games and play bold in the other, while if pg < 2py, it is
optimal to play bold in both games.

As an example, for p, = 0.45 and pg = 0.9, Eq. (1.3) gives an optimal
open-loop match win probability of roughly 0.425. Thus, the value of the
information (the outcome of the first game) is the difference of the optimal
closed-loop and open-loop values, which is approximately 0.53—0.425 = 0.105.
More generally, by subtracting Egs. (1.2) and (1.3), we see that

Value of information = p2, (2 = pw) + pw(l — puw)pa
— Py — pu(l — puw) max(2pw, pa)
= pw(l = pw) min(pw, pa — puw).

We note, however, that whereas availability of the state information
cannot hurt, it may not result in an advantage either. For instance, in
deterministic problems, where no random disturbances are present, one
can predict the future states given the initial state and the sequence of
controls. Thus, optimization over all sequences {ug,u1,...,un—1} of con-
trols leads to the same optimal cost as optimization over all admissible
policies. The same can be true even in some stochastic problems (see for

Sec. 1.2 The Basic Problem 19

example Exercise 1.27). This brings up a related issue. Assuming no in-
formation is forgotten, the controller actually knows the prior states and
controls xg,uo,...,Tk_1,ur_1 as well as the current state xj. Therefore,
the question arises whether policies that use the entire system history can
be superior to policies that use just the current state. The answer turns
out to be negative although the proof is technically complicated (see, e.g.,
[BeS78]). The intuitive reason is that, for a given time k and state zy, all
future expected costs depend explicitly just on xj and not on prior history.

Encoding Risk in the Cost Function

As mentioned above, an important characteristic of stochastic problems
is the possibility of using information with advantage. Another distin-
guishing characteristic is the need to take into account risk in the problem
formulation. For example, in a typical investment problem one is not only
interested in the expected profit of the investment decision, but also in its
variance: given a choice between two investments with nearly equal ex-
pected profit and markedly different variance, most investors would prefer
the investment with smaller variance. This indicates that expected value
of cost or reward need not be the most appropriate yardstick for expressing
a decision maker’s preference between decisions.

As a more dramatic example of the need to take risk into account
when formulating optimization problems under uncertainty, consider the
so-called St. Petersburg paradox. Here, a person is offered the opportunity
of paying x dollars in exchange for participation in the following game: a
fair coin is flipped sequentially and the person is paid 2% dollars, where k
is the number of times heads have come up before tails come up for the
first time. The decision that the person must make is whether to accept
or reject participation in the game. Now if he accepts, his expected profit
from the game is

=1

.9k _ —_
ngﬂ 28—z = oo,
k=0

so if his acceptance criterion is based on maximization of expected profit,
he is willing to pay any amount = to enter the game. This, however, is in
strong disagreement with observed behavior, due to the risk element in-
volved in entering the game, and shows that a different formulation of the
problem is needed. The formulation of problems of decision under uncer-
tainty so that risk is properly taken into account is a deep subject with an
interesting theory. An introduction to this theory is given in Appendix F.
It is shown in particular that minimization of expected cost is appropriate
under reasonable assumptions, provided the cost function is suitably chosen
so that it properly encodes the risk preferences of the decision maker.

1.3

20 The Dynamic Programming Algorithm Chap. 1
THE DYNAMIC PROGRAMMING ALGORITHM

The DP algorithm rests on a very simple idea, the principle of optimality.
The name is due to Bellman, who contributed a great deal to the popular-
ization of DP and to its transformation into a systematic tool. Roughly,
the principle of optimality states the following rather obvious fact.

Principle of Optimality

Let m* = {ug, 15, ..., Wy_1} be an optimal policy for the basic prob-
lem, and assume that when using 7*, a given state x; occurs at time
1 with positive probability. Consider the subproblem whereby we are
at x; at time ¢ and wish to minimize the “cost-to-go” from time ¢ to
time N

N-1
E {QN(J?N) +> gk(ﬂck,uk(xk),wk)} :
k=1

Then the truncated policy {s, p1f, 1, ..., i _, } is optimal for this sub-
problem.

The intuitive justification of the principle of optimality is very simple.
If the truncated policy {u;, 1y 1, - -, #}y_1} were not optimal as stated, we
would be able to reduce the cost further by switching to an optimal policy
for the subproblem once we reach x;. For an auto travel analogy, suppose
that the fastest route from Los Angeles to Boston passes through Chicago.
The principle of optimality translates to the obvious fact that the Chicago
to Boston portion of the route is also the fastest route for a trip that starts
from Chicago and ends in Boston.

The principle of optimality suggests that an optimal policy can be
constructed in piecemeal fashion, first constructing an optimal policy for
the “tail subproblem” involving the last stage, then extending the optimal
policy to the “tail subproblem” involving the last two stages, and continuing
in this manner until an optimal policy for the entire problem is constructed.
The DP algorithm is based on this idea: it proceeds sequentially, by solving
all the tail subproblems of a given time length, using the solution of the
tail subproblems of shorter time length. We introduce the algorithm with
two examples, one deterministic and one stochastic.

The DP Algorithm for a Deterministic Scheduling Example

Let us consider the scheduling Example 1.1.2, and let us apply the princi-
ple of optimality to calculate the optimal schedule. We have to schedule
optimally the four operations A, B, C, and D. The numerical values of the
transition and setup costs are shown in Fig. 1.3.1 next to the corresponding
arcs.

Sec. 1.3 The Dynamic Programming Algorithm 21

According to the principle of optimality, the “tail” portion of an op-
timal schedule must be optimal. For example, suppose that the optimal
schedule is CABD. Then, having scheduled first C and then A, it must
be optimal to complete the schedule with BD rather than with DB. With
this in mind, we solve all possible tail subproblems of length two, then all
tail subproblems of length three, and finally the original problem that has
length four (the subproblems of length one are of course trivial because
there is only one operation that is as yet unscheduled). As we will see
shortly, the tail subproblems of length k 4 1 are easily solved once we have
solved the tail subproblems of length k, and this is the essence of the DP
technique.

(=]

-

w

w

N

-

Figure 1.3.1 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf. the
principle of optimality). The optimal cost for the original problem is equal to
10, as shown next to the initial state. The optimal schedule corresponds to the
thick-line arcs.

Tail Subproblems of Length 2: These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.3.1)

State AB: Here it is only possible to schedule operation C as the next
operation, so the optimal cost of this subproblem is 9 (the cost of

22 The Dynamic Programming Algorithm Chap. 1

scheduling C after B, which is 3, plus the cost of scheduling D after
C, which is 6).

State AC': Here the possibilities are to (a) schedule operation B and
then D, which has cost 5, or (b) schedule operation D and then B,
which has cost 9. The first possibility is optimal, and the correspond-
ing cost of the tail subproblem is 5, as shown next to node AC in Fig.
1.3.1.

State CA: Here the possibilities are to (a) schedule operation B and
then D, which has cost 3, or (b) schedule operation D and then B,
which has cost 7. The first possibility is optimal, and the correspond-
ing cost of the tail subproblem is 3, as shown next to node CA in Fig.
1.3.1.

State CD: Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3: These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B
(cost 2) and then solve optimally the corresponding subproblem of
length 2 (cost 9, as computed earlier), a total cost of 11, or (b) sched-
ule next operation C (cost 3) and then solve optimally the correspond-
ing subproblem of length 2 (cost 5, as computed earlier), a total cost
of 8. The second possibility is optimal, and the corresponding cost of
the tail subproblem is 8, as shown next to node A in Fig. 1.3.1.

State C': Here the possibilities are to (a) schedule next operation A
(cost 4) and then solve optimally the corresponding subproblem of
length 2 (cost 3, as computed earlier), a total cost of 7, or (b) schedule
next operation D (cost 6) and then solve optimally the corresponding
subproblem of length 2 (cost 5, as computed earlier), a total cost of
11. The first possibility is optimal, and the corresponding cost of the
tail subproblem is 7, as shown next to node A in Fig. 1.3.1.

Original Problem of Length 4: The possibilities here are (a) start with op-
eration A (cost 5) and then solve optimally the corresponding subproblem
of length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start
with operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 3 (cost 7, as computed earlier), a total cost of 10. The
second possibility is optimal, and the corresponding optimal cost is 10, as
shown next to the initial state node in Fig. 1.3.1.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the opti-
mal schedule by starting at the initial node and proceeding forward, each
time choosing the operation that starts the optimal schedule for the cor-

Sec. 1.3 The Dynamic Programming Algorithm 23

responding tail subproblem. In this way, by inspection of the graph and
the computational results of Fig. 1.3.1, we determine that CABD is the
optimal schedule.

The DP Algorithm for the Inventory Control Example

Consider the inventory control Example 1.1.1. Similar to the solution of
the preceding deterministic scheduling problem, we calculate sequentially
the optimal costs of all the tail subproblems, going from shorter to longer
problems. The only difference is that the optimal costs are computed as
expected values, since the problem here is stochastic.

Tail Subproblems of Length 1: Assume that at the beginning of period
N — 1 the stock is xny—_1. Clearly, no matter what happened in the past,
the inventory manager should order the amount of inventory that mini-
mizes over uy—1 > 0 the sum of the ordering cost and the expected termi-
nal holding/shortage cost. Thus, he should minimize over uy_; the sum
cun—1 + E{R(xn)}, which can be written as

cun-1+ E {R(zn-1+un-1—wn-1)}.

WN-—1

Adding the holding/shortage cost of period N — 1, we see that the optimal
cost for the last period (plus the terminal cost) is given by

In_1(zn_1) =7r(xN-1)

+ min Jeuyoi+ E {R(zn_1+un—1—wn-1)}

UN-—12> WN -1

Naturally, Jy_1 is a function of the stock zy_1. It is calculated either
analytically or numerically (in which case a table is used for computer
storage of the function Jy_1). In the process of calculating Jy_1, we obtain
the optimal inventory policy & _;(xn—1) for the last period: p}_;(zn—1)
is the value of uy_1 that minimizes the right-hand side of the preceding
equation for a given value of zy_1.

Tail Subproblems of Length 2: Assume that at the beginning of period
N — 2 the stock is xny_2. It is clear that the inventory manager should
order the amount of inventory that minimizes not just the expected cost
of period N — 2 but rather the

(expected cost of period N — 2) + (expected cost of period N — 1,
given that an optimal policy will be used at period N — 1),

which is equal to

r(zn—2) + cun—2 + E{Jn_1(zn_1)}.

24 The Dynamic Programming Algorithm Chap. 1

Using the system equation xy_1 = xny_2 + un_2 — WN_2, the last term is
also written as Jy_1(xN_2 + unN_2 — WN_2).

Thus the optimal cost for the last two periods given that we are at
state xy_2, denoted Jy_a(xn_2), is given by

In_2(zn_2) = r(zNn_2)

+ min |cun—2+ E {Jv_i(en—2+un—2—wNn_2)}
unN—220 wWN_2

Again Jy_o(xn_2) is calculated for every zy_o. At the same time, the
optimal policy py_o(zn—2) is also computed.

Tail Subproblems of Length N — k: Similarly, we have that at period k,
when the stock is xy, the inventory manager should order uj to minimize

(expected cost of period k) 4 (expected cost of periods k+1,..., N —1,

given that an optimal policy will be used for these periods).

By denoting by Ji(zx) the optimal cost, we have
Je(wg) = r(zp) + Ini>1% cuy + E{Jk+1(:vk 4+ up — wk)} , (1.4)
uk7 wk

which is actually the DP equation for this problem.

The functions Jy(zx) denote the optimal expected cost for the tail
subproblem that starts at period k with initial inventory x;. These func-
tions are computed recursively backward in time, starting at period NV — 1
and ending at period 0. The value Jo(zo) is the optimal expected cost
when the initial stock at time 0 is zg. During the calculations, the optimal
policy is simultaneously computed from the minimization in the right-hand
side of Eq. (1.4).

The example illustrates the main advantage offered by DP. While
the original inventory problem requires an optimization over the set of
policies, the DP algorithm of Eq. (1.4) decomposes this problem into a
sequence of minimizations carried out over the set of controls. Each of
these minimizations is much simpler than the original problem.

The DP Algorithm

We now state the DP algorithm for the basic problem and show its opti-
mality by translating into mathematical terms the heuristic argument given
above for the inventory example.

Sec. 1.3 The Dynamic Programming Algorithm 25

Proposition 1.3.1: For every initial state 2, the optimal cost J*(x)
of the basic problem is equal to Jo(zo), given by the last step of the
following algorithm, which proceeds backward in time from period
N — 1 to period 0:

In(zN) = gn(2N), (1.5)

Jr(zr) = min E{gk(ﬂﬁk,uk,wk)+Jk+1(fk(33k,1tk,wk))},

ug €Uk (zg) wi
k=0,1,...,N —1,
(1.6)
where the expectation is taken with respect to the probability distribu-
tion of wy, which depends on x) and uy. Furthermore, if u}, = uj, (k)
minimizes the right side of Eq. (1.6) for each z; and k, the policy
7 ={pug,- .., _y} is optimal.

Proof:f For any admissible policy © = {po, pt1,...,un—1} and each k =
0,1,...,N —1, denote 7* = {pug, k41, , un-1}. For k=0,1,...,N—1,
let J}(x1) be the optimal cost for the (IV — k)-stage problem that starts at
state x, and time k, and ends at time N,

N-1
Ji(ey) =min E {gN(IN) +> gi(ﬂci,m(xi),wi)}.

1=

For k = N, we define J§(zn) = gn(zn). We will show by induction
that the functions J;| are equal to the functions Jy generated by the DP
algorithm, so that for k£ = 0, we will obtain the desired result.

Indeed, we have by definition J3 = Jy = gn. Assume that for
some k and all zy1, we have Jy | (zxy1) = Jer1(@h41). Then, since
7wk = (ug, 7%+1), we have for all xy,

Ji(xrr) = min E {gk(ﬂck,uk(ﬂik),wk)

(g, b +1Y W, wn 1

N-1
bontan) 4 Y gi<wi7ui<wi>vwi>}

i=k+1

T Our proof is somewhat informal and assumes that the functions Jy are
well-defined and finite. For a strictly rigorous proof, some technical mathemat-
ical issues must be addressed; see Section 1.5. These issues do not arise if the
disturbance wy, takes a finite or countable number of values and the expected
values of all terms in the expression of the cost function (1.1) are well-defined
and finite for every admissible policy 7.

26 The Dynamic Programming Algorithm Chap. 1

=min F {gk (ks (1), wr)

N-1
E {QN(JCN)+ > gi(a?i,ui(xi),wi)H }

W15 WN—1 i—ht 1

+ min
akt1

= min E {gk (zh, (), wr) + Ty (fr (s uk(xk),wk))}

min F {gk(l'kaﬂk(xk)awk) + Jk+1(fk($kaﬂk(xk)awk))}

M wp

= min E {gk(xk,uk,wk)+Jk+1(fk(:ck,uk,wk))}

up €U, () wg

Jk(xk)v

completing the induction. In the second equation above, we moved the
minimum over 7%+ inside the braced expression, using a principle of opti-
mality argument: “the tail portion of an optimal policy is optimal for the
tail subproblem” (a more rigorous justification of this step is given in Sec-
tion 1.5). In the third equation, we used the definition of Jiy1> and in the
fourth equation we used the induction hypothesis. In the fifth equation, we
converted the minimization over u; to a minimization over uy, using the
fact that for any function F' of x and u, we have

- i B
wmin F(z, u(x)) Jin F(e,u),

where M is the set of all functions p(z) such that u(z) € U(z) for all z.
Q.E.D.

The argument of the preceding proof provides an interpretation of
Ji(x1) as the optimal cost for an (N — k)-stage problem starting at state
x and time k, and ending at time N. We consequently call Ji(zx) the
cost-to-go at state x and time k, and refer to Jj, as the cost-to-go function
or optimal cost function at time k.}

Ideally, we would like to use the DP algorithm to obtain closed-form
expressions for Ji or an optimal policy. In this book, we will discuss quite
a few models that admit analytical solution by DP. Even if such models
rely on oversimplified assumptions, they are often very useful. They may
provide valuable insights about the structure of the optimal solution of
more complex models, and they may form the basis for suboptimal control
schemes. Furthermore, the broad collection of analytically solvable models
provides helpful guidelines for modeling: when faced with a new problem it

1 In maximization problems the DP algorithm (1.6) is written with maxi-
mization in place of minimization, and then Jj, is referred to as the optimal value
function at time k.

Sec. 1.3 The Dynamic Programming Algorithm 27

is worth trying to pattern its model after one of the principal analytically
tractable models.

Unfortunately, in many practical cases an analytical solution is not
possible, and one has to resort to numerical execution of the DP algorithm.
This may be quite time-consuming since the minimization in the DP Eq.
(1.6) must be carried out for each value of ;. The state space must be
discretized in some way if it is not already a finite set. The computa-
tional requirements are proportional to the number of possible values of
Tk, so for complex problems the computational burden may be excessive.
Nonetheless, DP is the only general approach for sequential optimization
under uncertainty, and even when it is computationally prohibitive, it can
serve as the basis for more practical suboptimal approaches, which will be
discussed in Chapter 6. Moreover, the DP computation is still far more
economical than a brute force search, as the following example illustrates.

Example 1.3.1 (Complexity Aspects of DP)

Let us calculate more precisely the computational requirements of DP in a
finite-spaces context. Assume that the state spaces Xo, X1,...,Xn—1 have
no more than n elements each, and that at each state there are no more than
m control elements available. Then the total number of state-control-time
triples is no more than nmN. Thus nmN is an upper bound to the total
number of times that expressions of the form

E {gk(l’mumwk) + Jr41 (fk($k7uk7wk))}7

W

need to be calculated in the course of the DP algorithm [cf. Eq. (1.6)].

Of course the preceding expression may involve potentially significant
computation. In particular, the expected value requires a number of calcula-
tions of the form

gr(@r, uk, wi) + Jrgr (Fe (@, uk, we)). (1.7)

This number is between 1 (for a deterministic problem) to n (typically, for
a stochastic problem if the distribution of wy is known). In either case, the
number of times the expression (1.7) needs to be calculated is polynomial in
n, m, and N.

Let us compare this computation with a brute force approach, which
enumerates and compares all the possible solutions. A closed-loop policy
{po,...,un—1} is characterized by a single control at each state-time pair
(zk,k), and there are no more than nN such pairs. With as many as m
controls available at each of these pairs, we see that the number of distinct
policies can be as many as m™Y. If we restrict ourselves to open-loop se-
quences (which we can for deterministic problems), still for a given initial
condition, the number of possible sequences is as many as m”~. Thus the
size of the solution space grows exponentially with N for both stochastic and
deterministic problems.

28

The Dynamic Programming Algorithm Chap. 1

A final observation is that the favorable complexity properties of DP de-
pend critically on the additive structure of the cost function. We will see later
in Section 1.4 that we can convert problems with a nonadditive cost structure
to the basic problem format through a technique called state augmentation.
However, in doing so the number of states grows again exponentially with N.

Dynamic Programming Examples

Let us now illustrate some of the analytical and computational aspects of
DP by means of examples.

Example 1.3.2

We will go through the details of the DP algorithm for a stochastic inventory
control problem that is similar to the one of Sections 1.1 and 1.2, but slightly
different in some details. In particular, we assume that the inventory wg
and the demand wy are nonnegative integers, and that the excess demand
(wg — Tk — ug) is lost. As a result, the stock equation takes the form

ZTr+1 = max(0, zp + up — wg).
We also assume that there is an upper bound of 2 units on the stock that can
be stored, i.e. there is a constraint xy + ur < 2. The holding/storage cost for
the kth period is given by
(zr + up — wy)?,
implying a penalty both for excess inventory and for unmet demand at the
end of the kth period. The ordering cost is 1 per unit stock ordered. Thus
the cost per period is
gk(xkvukvwk) = ug + (iCk + ur — wk)2.
The terminal cost is assumed to be 0,

gN(l’N) =0.

The planning horizon N is 3 periods, and the initial stock x¢ is 0. The demand
wy, has the same probability distribution for all periods, given by

p(wr = 0) = 0.1, p(wr =1) =0.7, p(wr = 2) =0.2.
The system can also be represented in terms of the transition probabilities
pij(u) between the three possible states, for the different values of the control

(see Fig. 1.3.2).
The starting equation for the DP algorithm is

Ja(x3) =0,

Sec. 1.3 The Dynamic Programming Algorithm 29

0.1

Stock = 2 . . Stock = 2 Stock = QO . Stock = 2

Stock =1 : Stock =1 Stock =1 : Stock =1
O O O

Stock =0 . : . Stock =0 Stock =0 . . Stock =0
Stock purchased =0 Stock purchased =1
Stock = 2 O Stock = 2
0.1
Stock =1 O Stock =1
0.7
0.2
Stock =0 Stock =0

Stock purchased = 2

Stage 0 Stage 0 Stage 1 Stage 1 Stage 2 Stage 2
Stock | Cost-to-go | Optimal | Cost-to-go | Optimal | Cost-to-go | Optimal
stock to stock to stock to
purchase purchase purchase
0 3.7 2.5 1.3
2.7 0 1.5 0 0.3 0
2 2.818 0 1.68 0 1.1 0

Figure 1.3.2 System and DP results for Example 1.3.2. The transition proba-
bility diagrams for the different values of stock purchased (control) are shown.
The numbers next to the arcs are the transition probabilities. The control
u = 1 is not available at state 2 because of the limitation zj + ux < 2. Simi-
larly, the control w = 2 is not available at states 1 and 2. The results of the
DP algorithm are given in the table.

since the terminal state cost is 0 [cf. Eq. (1.5)]. The algorithm takes the form
[cf. Eq. (1.6)]

Je(zk) = min E {Uk+($k+uk—wk)2+<]k+1 (HlaX(O,xk-Fuk—wk))}y
0Sup <2—zp wy
ug=0,1,2

where k =0, 1,2, and xk, ur, wr can take the values 0, 1, and 2.

30 The Dynamic Programming Algorithm Chap. 1

Period 2: We compute J2(z2) for each of the three possible states. We have

J2(0)

min E {ug + (u2 — wz)z}

ug=0,1,2 wy

= min [uz +0.1(u2)? + 0.7(uz — 1)* + 0.2(uz2 — 2)%].
ug=0,1,

We calculate the expectation of the right side for each of the three possible
values of us:

up=0: F{}=0.7-14+02-4=1.5,
up=1: F{}=1401-1402-1=1.3,
up=2:F{}=2+4+01-4407-1=3.1
Hence we have, by selecting the minimizing us,
J2(0) = 1.3, w3 (0) = 1.
For xo = 1, we have

(1) = min, UJE2{U2 + (1 +uz —w)”}

= min [us +0.1(1 4+ u2)® + 0.7(u2)” + 0.2(uz — 1)%].
ug=0,

The expected value in the right side is

up=0: F{}=01-140.2-1=0.3,
up=1: F{}=1+401-4407-1=2.1.
Hence
J2(1) = 0.3, us(1) = 0.

For x2 = 2, the only admissible control is uz = 0, so we have

J2(2) = E{(2—w)*} =0.1-4+40.7-1=11,
w2

J2(2) =11, pi(2)=0.

Period 1: Again we compute Ji(z1) for each of the three possible states
z1 = 0,1,2, using the values J2(0), J2(1), J2(2) obtained in the previous
period. For z; = 0, we have

Ji(0)= min F {ul + (u1 —w1)* + Jo (max(O, U — w1))}

w1 =0,1,2 wy ’

ur =0: E{} =0.1-J2(0) +0.7(1 + J2(0)) + 0.2(4 + J2(0)) =2
up =1: E{} =1+40.1(1+ J2(1)) +0.7- J2(0) + 0.2(1 + J2(0)) 5
u =2: B{} =2+01(4+ J2(2)) +0.7(1+ J2(1)) + 0.2 - J2(0) = 3.68,

8,

Sec. 1.3 The Dynamic Programming Algorithm 31

Ji(0) =25, pi(0)=1.

For x; = 1, we have

Ji(1) = min E {ul + (14w — w1)2 + Jz(max(O, 14+u — wl))},

u1=0,1 w1y

u =0: E{} =0.1(1+ J2(1)) + 0.7+ J2(0) + 0.2(1 + J2(0)) = 1.5,
up=1:EB{}=1+01(4+ J2(2)) +0.7(1+ J2(1)) + 0.2 - J2(0) = 2.68,
(1) =15 ui(1)=0.

For x1 = 2, the only admissible control is u; = 0, so we have

Ji(2)=E {(2 —w1)® + J (max(O7 2— wl))}

=0.1(4 4 J2(2)) +0.7(1 + J2(1)) + 0.2 J2(0)
= 1.68,

Ji(2) =168, ui(2)=0.

Period 0: Here we need to compute only Jo(0) since the initial state is known
to be 0. We have

Jo(()) = uolil(i)l,ll,z wEO {UO + (7.L() — w0)2 + J1 (max(O, ug — w())) },

uo=0: E{} =0.1-J1(0) + 0.7(1 + J1(0)) 4+ 0.2(4 + Ji(0)) = 4.0,

uo=1: E{-} =1+0.1(1+ J1(1)) +0.7- J1(0) + 0.2(1 + J1 (0):

uo=2: E{} =2+0.1(4+ J1(2)) +0.7(1+ Ji(1)) + 0.2 - J1(0) =
Jo(0) =37, us(0)=1.

If the initial state were not known a priori, we would have to compute
in a similar manner Jy(1) and Jo(2), as well as the minimizing ug. The reader
may verify (Exercise 1.1) that these calculations yield

Jo(1) =27, us(1) =0,

Jo(2) =2.818, u5(2) = 0.

Thus the optimal ordering policy for each period is to order one unit if the
current stock is zero and order nothing otherwise. The results of the DP
algorithm are given in tabular form in Fig. 1.3.2.

32

The Dynamic Programming Algorithm Chap. 1

Example 1.3.3 (A Linear-Quadratic Problem)

This is an example involving a one-dimensional linear system and a quadratic
cost function. It illustrates an important class of problems that admit an
analytical solution, and will be discussed in much greater detail later.

A certain material is passed through a sequence of two ovens (see Fig.
1.3.3). Denote

xo: initial temperature of the material,
zr, k = 1,2: temperature of the material at the exit of oven k,
uk—1, k = 1,2: prevailing temperature in oven k.

We assume a model of the form

ze+1 = (1 — a)zg + auy, k=0,1,

where a is a known scalar from the interval (0,1). The objective is to get
the final temperature z2 close to a given target T', while expending relatively
little energy. This is expressed by a cost function of the form

r(ze —T)° + ug + uj,

where r > 0 is a given scalar. We assume no constraints on uy. (In reality,
there are constraints, but if we can solve the unconstrained problem and
verify that the solution satisfies the constraints, everything will be fine.) The
problem is deterministic; i.e., there is no stochastic uncertainty. However,
such problems can be placed within the basic framework by introducing a
fictitious disturbance taking a unique value with probability one.

Initial Final
Tcmpgggaturc Oven 1 x1 Oven 2 Temp;;ature
Temperature Temperature F———=
uo Uy

Figure 1.3.3 The linear-quadratic problem of Example 1.3.3. The tempera-

ture of the material evolves according to zx4+1 = (1 — a)xg + aug, where a is
some scalar with 0 < a < 1.

We have N = 2 and a terminal cost ga2(z2) = r(2z2 — T)?, so the initial
condition for the DP algorithm is [cf. Eq. (1.5)]

JQ(JZQ) = 7‘(232 — T)2.

For the next-to-last stage, we have [cf. Eq. (1.6)]

J1 (:El) = m

1

= min
uy

in [uf + Js (xg)}

{uf + Jg((l —a)r1 + aul)].

Sec. 1.3 The Dynamic Programming Algorithm 33

Substituting the previous form of J2, we obtain

Ji(z1) = min {u% + 7'((1 —a)z1 + auy — T)z} . (1.8)

u1

This minimization will be done by setting to zero the derivative with respect
to ui. This yields

0=2u1 + 2ra((1 —a)x1 + aur — T),

and by collecting terms and solving for u1, we obtain the optimal temperature

for the last oven:
ra(T —(1- a)xl)

1+ ra?

p (1) =

Note that this is not a single control but rather a control function, a rule that
tells us the optimal oven temperature u; = pj(z1) for each possible value of
the state x1.

By substituting the optimal u; in the expression (1.8) for Ji, we obtain

_ r2a2((1 —a)ry — T)2 ra? (T -(1- a)ml) ’
Ji(z1) = AT ra9)? +r|(1—-a)z1+ 52 -T

r2a? 1—-a)x1 —T ? ra? 2 2
((1—|—7‘az)2) +T(1+ra2_1> ((1—a):c1—T)
r((l —a)ry — T)2
1+ ra?

We now go back one stage. We have [cf. Eq. (1.6)]

Jo(zo) = min [ug + Jl(xl)} = min {ug + J1 ((1 —a)zo + auo)} ,

uo ©o

and by substituting the expression already obtained for Ji, we have

Jo(zo) = min

uo

5 r((l —a)?z0 + (1 — a)aug — T)2
ot 1+ra?

We minimize with respect to up by setting the corresponding derivative to
zero. We obtain

2r(1 — a)a((l —a)?z0 + (1 — a)auo — T)
1+ ra? '

0= 2uo +

This yields, after some calculation, the optimal temperature of the first oven:

r(l— a)a(T —-(1- a)2:c0)
1+ ra2(1 +(1- a)z)

HS(HCO) =

34

The Dynamic Programming Algorithm Chap. 1

The optimal cost is obtained by substituting this expression in the formula
for Jo. This leads to a straightforward but lengthy calculation, which in the
end yields the rather simple formula

r((l —a)?zo — T)2

1—|—ra2(1+(1—a)2)'

Jo(mo) =

This completes the solution of the problem.

One noteworthy feature in this example is the facility with which we
obtained an analytical solution. A little thought while tracing the steps of
the algorithm will convince the reader that what simplifies the solution is
the quadratic nature of the cost and the linearity of the system equation.
In Section 3.1 we will see that, generally, when the system is linear and the
cost is quadratic, the optimal policy and cost-to-go function are given by
closed-form expressions, regardless of the number of stages N.

Another noteworthy feature of the example is that the optimal policy
remains unaffected when a zero-mean stochastic disturbance is added in the
system equation. To see this, assume that the material’s temperature evolves
according to

ZTr+1 = (1 — a)zi + aur + wy, k=0,1,

where wo, w1 are independent random variables with given distribution, zero
mean
E{wo} = E{wl} = 07

and finite variance. Then the equation for Jy [cf. Eq. (1.6)] becomes

Ji(x1) = min E {uf + r((l —a)x1 + aur + wi — T)z}

Ul wq

= min [u% + r((l —a)r1 + aur — T)2

uy
+ 2TE{w1}((1 —a)zr1 +auy — T) + rE{w%}} .
Since E{w;} = 0, we obtain

Ji(x1) = min [u% + r((l —a)z1 + auy — T)2} + rE{wi}.
uy

Comparing this equation with Eq. (1.8), we see that the presence of w1 has
resulted in an additional inconsequential constant term, rE{w%}. Therefore,
the optimal policy for the last stage remains unaffected by the presence of wi,
while Ji(z1) is increased by rE{w?}. It can be seen that a similar situation
also holds for the first stage. In particular, the optimal cost is given by the
same expression as before except for an additive constant that depends on
E{w3} and E{w?}.

If the optimal policy is unaffected when the disturbances are replaced by
their means, we say that certainty equivalence holds. We will derive certainty
equivalence results for several types of problems involving a linear system and
a quadratic cost (see Sections 3.1, 4.2, and 4.3).

Sec. 1.3 The Dynamic Programming Algorithm 35

Example 1.3.4 (Optimizing a Chess Match Strategy)

Consider the chess match Example 1.1.5. There, a player can select timid
play (probabilities pq and 1 — pg for a draw or loss, respectively) or bold play
(probabilities p,, and 1 — p,, for a win or loss, respectively) in each game of
the match. We want to formulate a DP algorithm for finding the policy that
maximizes the player’s probability of winning the match. Note that here we
are dealing with a maximization problem. We can convert the problem to a
minimization problem by changing the sign of the cost function, but a simpler
alternative, which we will generally adopt, is to replace the minimization in
the DP algorithm with maximization.

Let us consider the general case of an N-game match, and let the state
be the net score, i.e., the difference between the points of the player minus
the points of the opponent (so a state of 0 corresponds to an even score). The
optimal cost-to-go function at the start of the kth game is given by the DP
recursion

Ji(xr) = max [paJit1(z) + (1 = pa) Jur1 (zr, — 1),
Puwditr(@r + 1) + (1 = puw)Jesar (zx — 1)].

The maximum above is taken over the two possible decisions:

(1.9)

(a) Timid play, which keeps the score at x;, with probability p4, and changes
i to xr — 1 with probability 1 — pg.

(b) Bold play, which changes zy to zx + 1 or to xx — 1 with probabilities
Pw or (1 — pw), respectively.

It is optimal to play bold when
pudit1(@r + 1) + (1 = puw) i1 (zr — 1) > padi+i(zr) + (1 — pa) Jet1(ze — 1)

or equivalently, if

Pw Jov1(@k) = Jpt1(zr — 1) (1.10)
pa — Jrt1(ze +1) — Jepa(zp — 1) '
The DP recursion is started with
1 if zxy > 0,
JIn(zn) = {pw ifzy =0, (1.11)
0 if zy <O.

In this equation, we have Jn(0) = pw because when the score is even after N
games (zny = 0), it is optimal to play bold in the first game of sudden death.

By executing the DP algorithm (1.9) starting with the terminal condi-
tion (1.11), and using the criterion (1.10) for optimality of bold play, we find
the following, assuming that pg > puw:

Jn-1(zy-1) =1for zy_1 >1; optimal play: either
In-1(1) = max[pa + (1 = pa)pw, pw + (1 = pw)pu]
=pa+ (1 — pa)pw; optimal play: timid
Jn-1(0) = pw; optimal play: bold
Jn—_1(=1) =pZ; optimal play: bold

Jn-1(zn-1) =0 for xxy—1 < —1; optimal play: either.

36

The Dynamic Programming Algorithm Chap. 1

Also, given Jy—_1(zn—-1), and using Egs. (1.9) and (1.10), we obtain

Jn-2(0) = max [pdpw + (1= pa)pi, Pw(pa+ (1 = pa)pw) + (1 — puw)pis

and that if the score is even with 2 games remaining, it is optimal to play
bold. Thus for a 2-game match, the optimal policy for both periods is to
play timid if and only if the player is ahead in the score. The region of pairs

(pw,pa) for which the player has a better than 50-50 chance to win a 2-game
match is

R = { (usp) | J0(0) = pu (b + (u + pa)(1 =) > 1/2},

and, as noted in Example 1.2.1, it includes points where p,, < 1/2.

Example 1.3.5 (Finite State Systems)

We mentioned earlier (cf. the examples in Section 1.1) that systems with
a finite number of states can be represented either in terms of a discrete-
time system equation or in terms of the probabilities of transition between
the states. Let us work out the DP algorithm corresponding to the latter
case. We assume for the sake of the following discussion that the problem is
stationary, i.e., the transition probabilities, the cost per stage, and the control
constraint sets do not change from one stage to the next. Then, if

pij(u) = P{zry1 =7 | 2p = i, up = u}

are the transition probabilities, we can alternatively represent the system by
the system equation (cf. the discussion of the previous section)

Tk+1 = Wk,
where the probability distribution of the disturbance wy, is
Plwr =j | xx = t,ur = u} = pij(u).

Using this system equation and denoting by g (¢, u) the expected cost per stage
at state ¢ when control u is applied, the DP algorithm can be rewritten as

By = min [, u) + B{ s (w0}

or equivalently (in view of the distribution of wy given previously)

Ji(i) = min [Q(Z}U) +sz‘j(u)Jk+1(j)1 :

weU (i)

Sec. 1.4 State Augmentation and Other Reformulations 37

As an illustration, in the machine replacement Example 1.1.3, this al-
gorithm takes the form

() =0, i=1,...,n,

Ji(i) = min lR-Fg(l) + Jir1 (1), 9(8) + ZPz‘ijH(j)] :

The two expressions in the above minimization correspond to the two available
decisions (replace or not replace the machine).
In the queueing Example 1.1.4, the DP algorithm takes the form

Jk(i) = min

(i) +er + Y pis(us)Jer1(5), 7(6) +es + Y pig (usmﬂu)] :

j=0 j=0
The two expressions in the above minimization correspond to the two possible
decisions (fast and slow service).

1.4 STATE AUGMENTATION AND OTHER REFORMULATIONS

We now discuss how to deal with situations where some of the assumptions
of the basic problem are violated. Generally, in such cases the problem can
be reformulated into the basic problem format. This process is called state
augmentation because it typically involves the enlargement of the state
space. The general guideline in state augmentation is to include in the
enlarged state at time k all the information that is known to the controller
at time k and can be used with advantage in selecting uy. Unfortunately,
state augmentation often comes at a price: the reformulated problem may
have very complex state and/or control spaces. We provide some examples.

Time Delays

In many applications the system state x;4; depends not only on the pre-
ceding state x; and control u; but also on earlier states and controls. In
other words, states and controls influence future states with some time de-
lay. Such situations can be handled by state augmentation; the state is
expanded to include an appropriate number of earlier states and controls.

For simplicity, assume that there is at most a single period time delay
in the state and control; i.e., the system equation has the form

Tk+4+1 :fk(xk,:ck,l,uk,uk,l,wk), kZl,Q,...,N—l, (112)

z1 = fo(zo,uo, wo).

38 The Dynamic Programming Algorithm Chap. 1

Time delays of more than one period can be handled similarly.
If we introduce additional state variables y; and sj, and we make the
identifications y; = xg_1, Sk = ug—1, the system equation (1.12) yields

Thi1 Se(Tr, Yr, ur, sk, w)
Yk+1 | = Tk . (1.13)
Sk+1 Uk

By defining Zy, = (xk, yk, Sk) as the new state, we have

Trr = fr(@r, up, wy),

where the system function fy, is defined from Eq. (1.13). By using the pre-
ceding equation as the system equation and by expressing the cost function
in terms of the new state, the problem is reduced to the basic problem with-
out time delays. Naturally, the control u; should now depend on the new
state Ty, or equivalently a policy should consist of functions pu of the cur-
rent state zj, as well as the preceding state xy_; and the preceding control
Uk—1-
When the DP algorithm for the reformulated problem is translated
in terms of the variables of the original problem, it takes the form

In(zn) = gn(zN),

In_1(@N—1,TN—2,uN—2)

= min E {QN—1($N—1aUN—17wN—1)
uN_1€UN_1(zN_1) wN_1

+ JIn(fv-1(zN_1, BN 2, uN -1, uN—2,WN 1)) }7

Ji(Th, Th—1,up—1) = min E {gk(xkaukawk)
up €U (zg) wy

+ Jk+1(fk(xbfﬂkflvukvukflvwk)aIkvuk)}a k=1,...,N =2,

JQ(IE()) = min E {go(:to,UQ,wO)—|—Jl(fo(xo,uO,wo),Io,uO)}.
ug€Up(z0) wo

Similar reformulations are possible when time delays appear in the
cost; for example, in the case where the cost has the form

N-1
E {QN(CCN,le) + go(zo, uo, wo) + Z gk(xkafﬂk—laukawk)} .
=1

The extreme case of time delays in the cost arises in the nonadditive form

E{gn(ZN,TN-1,. ., B0, UN-1, ..., U0, WN—1,...,W0)}.

Sec. 1.4 State Augmentation and Other Reformulations 39

Then, the problem can be reduced to the basic problem format, by taking
as augmented state

Tk = (:Ekuxk—lu'"7x07uk—17"'7u07wk—17"'7w0)

and F { gn(Z N)} as reformulated cost. Policies consist of functions uy of
the present and past states xy, ..., xo, the past controls ug_1,...,up, and
the past disturbances wg—_1,...,wp. Naturally, we must assume that the
past disturbances are known to the controller. Otherwise, we are faced
with a problem where the state is imprecisely known to the controller.
Such problems are known as problems with imperfect state information
and will be discussed in Chapter 4.

Correlated Disturbances

Consider the case where the disturbances wy are correlated over time. A
common situation that can be handled efficiently by state augmentation
arises when the process wo, ..., wy—1 can be represented as the output of
a linear system driven by independent random variables. As an example,
suppose that by using statistical methods, we determine that the evolution
of wy, can be modeled by an equation of the form

Wi = AWk—1 + &k,

where X is a given scalar and {;} is a sequence of independent random
vectors with given distribution. Then we can introduce an additional state
variable

Yk = Wk—-1

and obtain a new system equation

Thi1 | _ Fr(@r, ur, Aye + &)
Yk+1 Yk + & ’
where the new state is the pair Z; = (2, yx) and the new disturbance is

the vector &.
More generally, suppose that wy can be modeled by

Wi, = CrlYk+1,
where
Y1 = Aryr + &k, k=0,...,N—1,

Ay, Cy are known matrices of appropriate dimension, and & are indepen-
dent random vectors with given distribution (see Fig. 1.4.1). By viewing
yr as an additional state variable, we obtain the new system equation

($k+1> _ (fk (&, u, Cr(Aryr + &))
Yk+1 Aryr + &k '

40 The Dynamic Programming Algorithm Chap. 1

§k Yk+1 (o
— | Ukt1 = Aryr + &k > O —>

Figure 1.4.1 Representing correlated disturbances as the output of a linear sys-
tem driven by independent random vectors.

Note that in order to have perfect state information, the controller
must be able to observe yi. Unfortunately, this is true only in the minority
of practical cases; for example when CY is the identity matrix and wg_1 is
observed before uy is applied. In the case of perfect state information, the
DP algorithm takes the form

IN(zN,yn) = gn(zN),

Je(®k,yp) = min F {gk (2, u, Cr(Aryr + &)

up €U (zg) &k

+ Jit1 (fk (2, wr, Cr(Apyr + &), Aryr + §k) }

Forecasts

Consider the case where at time k the controller has access to a forecast
yr. that results in a reassessment of the probability distribution of wy and
possibly of future disturbances. For example, yx may be an exact prediction
of wy or an exact prediction that the probability distribution of wy is a
specific one out of a finite collection of distributions. Forecasts of interest
in practice are, for example, probabilistic predictions on the state of the
weather, the interest rate for money, and the demand for inventory.

Generally, forecasts can be handled by state augmentation although
the reformulation into the basic problem format may be quite complex. We
will treat here only a simple special case.

Assume that at the beginning of each period k, the controller re-
ceives an accurate prediction that the next disturbance wj will be selected
according to a particular probability distribution out of a given collection
of distributions {Q1,...,Q@m}; i.e., if the forecast is 7, then wy is selected
according to ;. The a priori probability that the forecast will be i is
denoted by p; and is given.

For instance, suppose that in our earlier inventory example the de-
mand wy, is determined according to one of three distributions @1, @2, and
@3, corresponding to “small,” “medium,” and “large” demand. Each of the
three types of demand occurs with a given probability at each time period,
independently of the values of demand at previous time periods. However,

Sec. 1.4 State Augmentation and Other Reformulations 41

the inventory manager, prior to ordering uy, gets to know through a fore-
cast the type of demand that will occur. (Note that it is the probability
distribution of demand that becomes known through the forecast, not the
demand itself.)

The forecasting process can be represented by means of the equation

Yr+1 = &k,

where yx41 can take the values 1,..., m, corresponding to the m possible
forecasts, and & is a random variable taking the value 7 with probability
pi- The interpretation here is that when & takes the value ¢, then wg41
will occur according to the distribution Q;.

By combining the system equation with the forecast equation yx11 =
&k, we obtain an augmented system given by

<$k+1> B (fk(ﬂﬁk,uk,wk))
Yk+1) &k '

jk = (Ika yk)a

The new state is

and because the forecast yi is known at time k, perfect state information
prevails. The new disturbance is

Wy, = (Wi, &),

and its probability distribution is determined by the distributions @; and
the probabilities p;, and depends explicitly on Zx (via yx) but not on the
prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
into the basic problem format. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

IN(zN,yYN) = gn(2N),

Je(@k,yx) = min F {gk(fck,w,wk)
up €UL(7g) wy

m (1.14)
+ > pidke (filwn, uk, wi),6) | yk},
i=1
where y; may take the values 1,...,m, and the expectation over wy is

taken with respect to the distribution @, .

It should be clear that the preceding formulation admits several ex-
tensions. One example is the case where forecasts can be influenced by
the control action and involve several future disturbances. However, the
price for these extensions is increased complexity of the corresponding DP
algorithm.

42 The Dynamic Programming Algorithm Chap. 1
Simplification for Uncontrollable State Components

When augmenting the state of a given system we often end up with com-
posite states, consisting of several components. It turns out that if some
of these components cannot be affected by the choice of control, the DP
algorithm can be simplified considerably, as we will now describe.

Let the state of the system be a composite (z, yx) of two components
x and yi. The evolution of the main component, xy, is affected by the
control u according to the equation

Try1 = [r(Th, Yr, Uk, W),

where the probability distribution Py(wy | @k, Yk, uk) is given. The evolu-
tion of the other component, yx, is governed by a given conditional distri-
bution Py (yx | 1) and cannot be affected by the control, except indirectly
through zx. One is tempted to view y as a disturbance, but there is a
difference: yj is observed by the controller before applying wug, while wy
occurs after uy is applied, and indeed wy may probabilistically depend on
UL -

We will formulate a DP algorithm that is executed over the control-
lable component of the state, with the dependence on the uncontrollable
component being “averaged out.” In particular, let Jg(zg,yx) denote the
optimal cost-to-go at stage k and state (zx,yx), and define

Tr(zr) = E{Jk(xrp0) | 71}
Yk
We will derive a DP algorithm that generates Jy(z).

Indeed, we have
Tr(@r) = By {Jk(r,yx) | 21}

=K { min E {9r (ks Yis uk, wi)
Yk W Tkt 1,Yk+1 » Yk Uk,
up €U (2, Y1) IR

+ Jig1 (Tt 1, Yos1) | Too Yo ui) | Ik}

= Euk{ min - Eyy {gk(ka, Yk, Uk, W)
up €U (TE,yk)

+ By {1 (g1, ykr1) | 2o)| Cck,yk,uk} | wk}7

and finally

jk(ﬂik) = E{ min E{gk(xkvykaukvwk)
i | uk€UL(Th,yk) wg

(1.15)
+jk+1(fk(17k,yk,w,wk))}’ xk}

Sec. 1.4 State Augmentation and Other Reformulations 43

The advantage of this equivalent DP algorithm is that it is executed
over a significantly reduced state space. For example, if xj, takes n possible
values and yj takes m possible values, then DP is executed over n states
instead of nm states. Note, however, that the minimization in the right-
hand side of the preceding equation yields an optimal control law as a
function of the full state (xg, yx).

As an example, consider the augmented state resulting from the in-
corporation of forecasts, as described earlier in this section. Then, the
forecast yi represents an uncontrolled state component, so that the DP
algorithm can be simplified as in Eq. (1.15). In particular, by defining

Je(wr) =Y pidilar,i), k=0,1,...,N—1,
=1

and

Jn(zn) = gn(zN),
we have, using Eq. (1.14),

m

Je(wg) =) pi min E {gk(xkaukawk)

o1 ukCUk(zr) wi
+ jk+1(fk($k,uk,wk)) |y = i},

which is executed over the space of zj rather than z; and yi. This is a
simpler algorithm than the one of Eq. (1.14).

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.15). Here is another example of similar type.

Example 1.4.1 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top.” The squares fill up as blocks of different shapes fall from
the top of the grid and are added to the top of the wall. As a given block
falls, the player can move horizontally and rotate the block in all possible
ways, subject to the constraints imposed by the sides of the grid and the
top of the wall. The falling blocks are generated independently according to
some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this

44 The Dynamic Programming Algorithm Chap. 1

row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
within NV steps or up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a stochastic DP problem. The control, denoted by wu, is the horizontal
positioning and rotation applied to the falling block. The state consists of
two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by .

(2) The shape of the current falling block, denoted by y.

There is also an additional termination state which is cost-free. Once the
state reaches the termination state, it stays there with no change in cost.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.15) is executed over the space of « and has
the intuitive form

jk(x) = ZP(Z/) max [9(1’7% u) + jk+1 (f(:c7y7 u))}7 for all x,

where g(x,y,u) and f(z,y,u) are the number of points scored (rows removed),
and the board position (or termination state) when the state is (z,y) and con-
trol u is applied, respectively. Note, however, that despite the simplification
in the DP algorithm achieved by eliminating the uncontrollable portion of
the state, the number of states = is enormous, and the problem can only be
addressed by suboptimal methods, which will be discussed in Chapter 6 and
in Vol. II.

1.5 SOME MATHEMATICAL ISSUES

Let us now discuss some technical issues relating to the basic problem
formulation and the validity of the DP algorithm. The reader who is not
mathematically inclined need not be concerned about these issues and can
skip this section without loss of continuity; the mathematical fine points do
not contribute significantly to the intuition for solving practical problems
and do not matter if the disturbances wy can take only a finite number of
values.

Once an admissible policy {uo,...,un—1} is adopted, the following
sequence of events is envisioned at the typical stage k:

1. The controller observes xj and applies uy = ux(xy).

2. The disturbance wy, is generated according to the given distribution
Pi(- | g, pr(zn)).

3. The cost g (wk, wr(xk), wk) is incurred and added to previous costs.

Sec. 1.5 Some Mathematical Issues 45

4. The next state x4 is generated according to the system equation

Trgr = fi(Th, (@), we).
If this is the last stage (k = N — 1), the terminal cost gn(zn) is
added to previous costs and the process terminates. Otherwise, k is
incremented, and the same sequence of events is repeated at the next
stage.

For each stage, the above process is well-defined and is couched in
precise probabilistic terms. Matters are, however, complicated by the need
to view the cost as a well-defined random variable with well-defined ex-
pected value. The framework of probability theory requires that for each
policy we define an underlying probability space, i.e., a set 2, a collection
of events in €2, and a probability measure on these events. In addition, the
cost must be a well-defined random variable on this space in the sense of
Appendix C (a measurable function from the probability space into the real
line in the terminology of measure-theoretic probability theory). For this
to be true, additional (measurability) assumptions on the functions f%, gx,
and pr may be required, and it may be necessary to introduce additional
structure on the spaces Si, C, and Dy. Furthermore, these assumptions
may restrict the class of admissible policies, since the functions pg may be
constrained to satisfy additional (measurability) requirements.

Thus, unless these additional assumptions and structure are specified,
the basic problem is formulated inadequately from a mathematical point
of view. Unfortunately, a rigorous formulation for general state, control,
and disturbance spaces is well beyond the mathematical framework of this
introductory book and will not be undertaken here. Nonetheless, it turns
out that these difficulties are mainly technical and do not substantially
affect the basic results to be obtained. For this reason, we find it convenient
to proceed with informal derivations and arguments; this is consistent with
most of the literature on the subject.

We would like to stress, however, that under at least one frequently
satisfied assumption, the mathematical difficulties mentioned above disap-
pear. In particular, let us assume that the disturbance spaces Dy, are all
countable and the expected values of all terms in the cost are finite for every
admissible policy (this is true in particular if the spaces Dy, are finite sets).
Then, for every admissible policy, the expected values of all the cost terms
can be written as (possibly infinite) sums involving the probabilities of the
elements of the spaces Dy, and no measurability framework is needed.

Alternatively, one may write the cost as
N—-1

T, TN

Jx(z0) = FE {gzv(xzv) +) 0k (xk,uk(xk))} ; (1.16)

k=0
where

9 (ks (1)) =F {gk(xk,uk(xk),wk) | Ikvﬂk(ilfk)},

46 The Dynamic Programming Algorithm Chap. 1

with the preceding expectation taken with respect to the distribution Py (|
Th, [k (x;g)) defined on the countable set Dj. Then one may take as the ba-

sic probability space the Cartesian product of the spaces Sk, k=1,...,N,
given for all k by

Skt = {@k+1 € Ski1 | Tha1 = (o, (k) w), 2k € Sk, wi € Dy},

where Sy = {zo}. The set S, is the subset of all states that can be reached
at time k when the policy {uo, ..., pun—1} is used. Because the disturbance
spaces Dy, are countable, the sets S’k are also countable (this is true since the
union of any countable collection of countable sets is a countable set). The
system equation xx11 = fx (azk, i (xg), wk), the probability distributions
Pk(~ | zk, ,uk(a:k)), the initial state zo, and the policy {uo, ..., un—1} define
a probability distribution on the countable set Sp x -+ x Sy, and the
expected value in the cost expression (1.16) is defined with respect to this
latter distribution.

Let us now give a more detailed proof of the validity of the DP al-
gorithm (Prop. 1.3.1). We assume that the disturbance wy, takes a finite
or countable number of values and the expected values of all terms in the
expression of the cost function are finite for every admissible policy 7. Fur-
thermore, the functions Ji(xj) generated by the DP algorithm are finite
for all states xp and times k. We do not need to assume that the minimum
over uy, in the definition of Ji(zy) is attained by some uy € U(xy).

For any admissible policy # = {po,u1,...,un-1} and each k =
0,1,...,N —1, denote 7% = {pug, k41, -, un-1}. For k=0,1,...,N—1,
let J}(x1) be the optimal cost for the (IV — k)-stage problem that starts at
state xp and time k, and ends at time N; i.e.,

N-1
Jp(z) = min £ {QN(iUN) +> gi(wi,ui(fﬂi)awi)} :

1=

For k = N, we define Jy(zn) = gn(zn). We will show by induction
that the functions J; are equal to the functions J; generated by the DP
algorithm, so that for £ = 0, we will obtain the desired result.

For any € > 0, and for all k and xy, let uf(xs) attain the minimum
in the equation

Je(zr) = min E{gr(@r, uk, wi) + Jog1 (folzr, we, wi)) },
u €U (z1) w (1.17)
k=01,....N—1,

within €; i.e., for all z;, and k, we have uf(x) € Uk(zi) and

u%;{gk (Ik,,ui(:zrk),wk) + Jr+1 (fk (a:k,,u;(a:k), wk))} < Jk(Ik) + €. (118)

Sec. 1.5 Some Mathematical Issues 47

Let J{(xk) be the expected cost starting at state xj, at time k, and using
the policy {uf, t5,1,--->uy_1}- We will show that for all), and &, we
have

Je(zr) < Ji(wr) < Jre(xr) + (N — E)e, (1.19)
Ji(xy) < Ji(xk) < T (k) + (N = k), (1.20)
Jk(ack) = J,:(CC]C) (1.21)

It is seen using Eq. (1.18) that the inequality (1.19) holds for k = N — 1.
Also since Gy = Jn, we have Jy_1 = J3_;, which together with Eq.
(1.19), implies Eq. (1.20) for k = N — 1. Thus Egs. (1.19)-(1.21) hold for
index k = N — 1. Assume that Eqgs. (1.19)-(1.21) hold for index k + 1. We
will show that they also hold for index k.

Indeed, we have

Ji(ak) = g{gk(wk,ui(wk),wk) g (i (e g () wr)) }
< ﬂ{gk(:vk,u;(:vk),wk) + Jigr (fr (rs g, (), wi)) } + (N — k= 1)e

< Jip(zg)+e+ (N —k—1)e
= Jp(z) + (N — k)e,

where the first equation holds by the definition of J§, the first inequality
holds by the induction hypothesis, and the second inequality holds by Eq.
(1.18). We also have

Ji(zr) = ﬂ{gk(ﬂﬂk,ﬂi(ﬂ?k),wk) + Iy (fr(hs g (k) wi)) }
> E{gr(wr, pf(zr), wr) + Jegr (e (zr, p (2r), wi)) }
Wi
> min E{gc(®k, vk, wi) + Jog1 (fr(@r, ur, wr)) }
up €U (z) wy,

= Jk(‘rk)v

where the first inequality holds by the induction hypothesis. Combining
the preceding two relations, we see that Eq. (1.19) holds for index k.
For every policy # = {uo, 11, - - -, in—1}, we have

35 = a0 + 3 o o))
< g{gk(ﬂfkvﬂi(ﬂfk),wk) + Tt (fo (2n pf, (), wie)) |+ (N =k = 1)e

< Ji(wk) +e+ (N —k—1)e
= min B {gr(@r, vk, wr) + Jerr (fa(2n, up, wi)) } + (N — k)e

up €U (z) wy,

< ﬂ{gk(wmuk(iﬂk)awk) + s (fr(2r (), i)) b+ (N — ke

= Te(a) + (N = B)e,

48 The Dynamic Programming Algorithm Chap. 1

where the first inequality holds by the induction hypothesis, and the sec-
ond inequality holds by Eq. (1.18). Taking the minimum over 7% in the
preceding relation, we obtain for all xj

Ji(xr) < Ji(xr) + (N — k)e.
We also have by the definition of J;, for all xy,
Ji (k) < Ji(zn).

Combining the preceding two relations, we see that Eq. (1.20) holds for
index k. Finally, Eq. (1.21) follows from Egs. (1.19) and (1.20), by taking
€ — 0, and the induction is complete.

Note that by using € = 0 in the relation

J(zx) < Ji (k) + Ne,

[cf. Eq. (1.20)], we see that a policy that attains the minimum for all z
and k in Eq. (1.17) is optimal.

In conclusion, the basic problem has been formulated rigorously, and
the DP algorithm has been proved rigorously only when the disturbance
spaces Do, ..., Dyn_1 are countable sets, and the expected values of all
the cost expressions associated with the problem and the DP algorithm are
finite. In the absence of these assumptions, the reader should interpret sub-
sequent results and conclusions as essentially correct but mathematically
imprecise statements. In fact, when discussing infinite horizon problems
(where the need for precision is greater), we will make the countability
assumption explicit.

We note, however, that the advanced reader will have little difficulty
in establishing most of our subsequent results concerning specific finite
horizon applications, even if the countability assumption is not satisfied.
This can be done by using the DP algorithm as a verification theorem.
In particular, if one can find within a subset of policies II (such as those
satisfying certain measurability restrictions) a policy that attains the min-
imum in the DP algorithm, then this policy can be readily shown to be
optimal within II. This result is developed in Exercise 1.29, and can be
used by the mathematically oriented reader to establish rigorously many
of our subsequent results concerning specific applications. For example, in
linear-quadratic problems (Section 3.1) one determines from the DP algo-
rithm a policy in closed form, which is linear in the current state. When wy,
can take uncountably many values, it is necessary that admissible policies
consist of Borel measurable functions uy. Since the linear policy obtained
from the DP algorithm belongs to this class, the result of Exercise 1.29
guarantees that this policy is optimal.

For a rigorous mathematical treatment of DP that resolves the asso-
ciated measurability issues and supplements the present text, we refer to
the book [BeS78]. Appendix A of Vol. I provides a more accessible survey.
The paper [YuB15] describes some recent related developments relating to
the policy iteration method (cf. Section 5.3.2).

1.6

Sec. 1.6 Dynamic Programming and Minimax Control 49
DYNAMIC PROGRAMMING AND MINIMAX CONTROL

The problem of optimal control of uncertain systems has traditionally been
treated in a stochastic framework, whereby all uncertain quantities are de-
scribed by probability distributions, and the expected value of the cost is
minimized. However, in many practical situations a stochastic description
of the uncertainty may not be available, and one may have information with
less detailed structure, such as bounds on the magnitude of the uncertain
quantities. In other words, one may know a set within which the uncertain
quantities are known to lie, but may not know the corresponding prob-
ability distribution. Under these circumstances one may use a minimax
approach, whereby the worst possible values of the uncertain quantities
within the given set are assumed to occur.

The minimax approach for decision making under uncertainty is de-
scribed in Appendix F and is contrasted with the expected cost approach,
which we have been following so far. In its simplest form, the corresponding
decision problem is described by a triplet (IT, W, J), where II is the set of
policies under consideration, W is the set in which the uncertain quantities
are known to belong, and J : TI Xx W +— [—00, +00] is a given cost function.
The objective is to

minimize max J (7, w)
weW
over all 7 € II.

It is possible to formulate a minimax counterpart to the basic prob-
lem with perfect state information. This problem is a special case of the
abstract minimax problem above, as discussed more fully in Appendix F.
Generally, it is unusual for even the simplest special cases of this problem to
admit a closed-form solution. However, a computational solution using DP
is possible, and our purpose in this section is to describe the corresponding
algorithm.

In the framework of the basic problem, consider the case where the
disturbances wop, w1, ...,wn—1 do not have a probabilistic description but
rather are known to belong to corresponding given sets Wi (xg, ux) C Dy,
k=0,1,..., N —1, which may depend on the current state zj; and control
ug. Consider the problem of finding a policy # = {po,...,un—1} with
ur(zg) € Uk(ay) for all 2 and k, which minimizes the cost function

N-1
Jr(x0) = max TN) + T Tr), W
w(@0) pew X) gn @)+ g (@ (e, wr)
k=0,1,...,N—1 k=0

The DP algorithm for this problem takes the following form, which resem-
bles the one corresponding to the stochastic basic problem (maximization
is used in place of expectation):

In(zn) = gn(2N), (1.22)

50 The Dynamic Programming Algorithm Chap. 1

Jk;(xk;) —u IIllI(l)w IIla(X) gk(mk,uk,wk) +Jk;+ (?k;(xk,uk;,wk;)) .

This algorithm can be explained by using a principle of optimality
type of argument. In particular, we consider the tail subproblem whereby
we are at state xj at time k, and we wish to minimize the “cost-to-go”

w; EW; (24,14 (@

N-—1
max [QN(CCN) + Z gi(:vi,ui(:vi),wi)] 7
’Ll

i=k,k+1,...,N— i=k
and we argue that if 7 = {uf,pf,...,uy_;} is an optimal policy for
the minimax problem, then the truncated policy {,u,’;,,u,’;ﬂ, Co N) I8

optimal for the tail subproblem. The optimal cost of this subproblem is
Jr(xk), as given by the DP algorithm (1.22)-(1.23). The algorithm ex-
presses the intuitively clear fact that when at state xzj, at time k, then
regardless of what happened in the past, we should choose u; that mini-
mizes the worst/maximum value over wy, of the sum of the current stage
cost plus the optimal cost of the tail subproblem that starts from the next
state.

We will now give a mathematical proof that the DP algorithm (1.22)-
(1.23) is valid, and that the optimal cost is equal to Jo(zo). For this it is
necessary to assume that Ji(xg) > —oo for all x; and k. This is analogous
to the assumption we made in the preceding section for the validity of the
DP algorithm under stochastic disturbances, i.e., that the values Jj(z)
generated by the DP algorithm are finite for all states z; and stages k. In
the stochastic case the key step of the proof was to bring the minimization
over the controls of future stages inside the expectation over the disturbance
of the current stage. Similarly, in the minimax case the key step is to bring
the minimization over the controls of future stages inside the maximization
over the disturbance of the current stage. The following lemma provides
the key argument for doing so.

Lemma 1.6.1: Let f : W — X be a function, and M be the set of
all functions p : X — U, where W, X, and U are some sets. Then for
any functions Gop : W — (—o0, 0] and G1 : X x U — (—o00, 00| such
that

Enei[r]lGl (f(w),u) > —00, for all w € W,

we have

min max [Go(w)—FGl (f(w), u(f(w)))} = max [GO(wH?SEGl (f(w),u)}.

HEM weW weWw

Sec. 1.6 Dynamic Programming and Minimax Control 51

Proof: We have for all p € M

max | Go(w) + G (f(w), p(f(w))) | = max|Go(w) + min G1 (f(w).u)|

weW

and by taking the minimum over u € M, we obtain

min max [Go(w)-+Ga (f(w), p(f(w)))] > max | Go(w)-+min G (f(w). u)].
(1.24)

To show the reverse inequality, for any € > 0, let ue € M be such that

G1(f(w), pe(f(w))) gLnEiIIJlGl(f(w),u)—i—e, for all w € W.

[Such a pe exists because of the assumption minyey G1(f(w),u) > —o00.]
Then

min max {Go(w) + G1(f(w), u(f(w)))}

neEM weWw
< max[Go(w) + Ga (f(w), pe(F(w))]

we

< max {Go(w) —i—umei[rlel (f(w),u)} +e.

Since € > 0 can be taken arbitrarily small, we obtain the reverse to Eq.
(1.24), and the desired result follows. Q.E.D.

To see how the conclusion of the lemma can fail without the condition

Lnei[r]lGl (f(w),u) > —o0

for all w, let u be a scalar, let w = (w1, ws2) be a two-dimensional vector,
and let there be no constraints on v and w (U = R, W = R x R, where R
is the real line). Let also

Go(w) = wr, f(w) = wa, G1(f(w),u) = f(w) + u.

Then, for all 4 € M we have,

1r:§1€av)l§ [Go(w) + Gl(f(w)’ p(f (w)))] = w1619131,a7i;(2€§ﬁ[w1 + w2 + ,u(wz)} = 00,
so that

min max {Go(w) + G1(f(w), u(f(w)))} = 0.

peEM weW

On the other hand,

1 (000 + iy ()] =, e, o+ gl] = o

52 The Dynamic Programming Algorithm Chap. 1

since min,ep|ws + u] = —oo for all ws.

We now turn to proving the DP algorithm (1.22)-(1.23). The proof
is similar to the one for the DP algorithm for stochastic problems. The
optimal cost J*(x) of the problem is given by

J*(x9) = min - - - min max e max
) EN—-1 woEW[zg,n0(w0)] wy_1€EW[zy_1,0un—1(zN-1)]
N-1
E gk (zk, e (2n), wi) + gn(zw)
k=0
= min--- min | min max cee max
Ho KN—2 | PFN—1 woEW[z0,p0(®0)] wN_2EW[zN_2,uN—2(zN_2)]
N-—2
E i (@i, (@), wi) + max
0 wy_1EW[zN_1.uN—1(zN_1)]

[ngl(«TNfl, pN—1(xN_1),wN_1) + JN($N)}]] .

We can interchange the minimum over py—1 and the maximum over wo, ..., WN—2
by applying Lemma 1.6.1 with the identifications

w = (wo, w1, ..., WN-2), U =UN-1, flw) =2zN-1,

Go(w) = {ij_o“’ g (ks pe (), wi) if wy, € Wi (2, (1)) for all k,
00 otherwise,

G (f(w),u) = {él(f(w),u) i u € Un_1(f(w)),

00 otherwise,
where
G (f(w),u) = max {gN,l(f(w),u,wN,l)
wy_1€EWN_1 (f(IU);U)
+ In(fn-1(f(w), u,wal))},
to obtain

J*(z0) = min-- - min

1o BN -2
max e max
woEW[zo,pu0(x0)] wn_26W[rN_2,uN—2(ZN—2)] (1.25)
N—2
Z gk (zhy b (k) wi) + JNl(iUNl)] .
k=0

The required condition minyey G1(f(w),u) > —oo for all w (required for
application of Lemma 1.6.1) is implied by the assumption Jy_1(zn_1) >

1.7

Sec. 1.7 Notes, Sources, and Exercises 53

—oo for all zy_1. Now, by working with the expression for J*(z¢) in Eq.
(1.25), and by similarly continuing backwards, with N — 1 in place of N,
etc., after IV steps we obtain

J*(z0) = Jo(z0),

which is the desired relation. The line of argument just given also shows
that an optimal policy for the minimax problem can be constructed by
minimizing in the right-hand side of the DP Eq. (1.23), similar to the case
of the DP algorithm for the stochastic basic problem.

Unfortunately, as mentioned earlier, there are hardly any interesting
examples of an analytical, closed-form solution of the DP algorithm (1.22)-
(1.23). A computational solution, requires qualitatively comparable effort
to the one of the stochastic DP algorithm. Instead of the expectation
operation, one must carry out a maximization operation for each x; and k.

Minimax control problems will be revisited in Chapter 3 in the con-
text of reachability of target sets and target tubes (Section 3.6.2), and in
Chapter 6 in the context of model predictive control (Section 6.5.3).

NOTES, SOURCES, AND EXERCISES

Dynamic programming is a simple mathematical technique that has been
used for many years by engineers, mathematicians, and social scientists in
a variety of contexts. It was Bellman, however, who realized in the early
fifties that DP could be developed (in conjunction with the then appearing
digital computer) into a systematic tool for optimization. In his influential
books [Bel57], [BeD62], Bellman demonstrated the broad scope of DP and
helped streamline its theory.

Following Bellman’s works, the mathematical and algorithmic aspects
of infinite horizon problems were extensively investigated, extensions to
continuous-time problems were formulated and analyzed, and the mathe-
matical issues discussed in Section 1.5 were addressed. In addition, DP was
used in a broad variety of applications, ranging from many branches of en-
gineering to statistics, economics, finance, and some of the social sciences.
Samples of these applications will be given in subsequent chapters.

A major methodological advance has been the use of various types
of approximations in DP methods for large-scale applications, starting in
the late 80s. Considerable success has been obtained in a variety of fields,
including prominent achievements with programs that have learned how to
play games, such as backgammon, Go, chess, and others, at impressive and
sometimes above human level. We collectively refer to these methods as
“approximate DP”; the name “reinforcement learning” is also often used
in artificial intelligence, and the names “neuro-dynamic programming” and
“adaptive dynamic programming” are often used in automatic control, with

54 The Dynamic Programming Algorithm Chap. 1

essentially the same meaning. We discuss these methods in Chapter 6 and
also, more extensively, in Vol. IT of this work. The author’s reinforcement
learning books [Ber19a], [Ber20a] are focused on approximate DP, using
the basic problem of the present chapter as a starting point.

EXERCISES

1.1

Complete the calculations needed to verify that Jo(1) = 2.7 and Jo(2) = 2.818
in Example 1.3.2.

1.2
Consider the system
Tyl = Tk + Uk + Wk, k=0,1,2,3,

with initial state xo = 5, and the cost function

3

> (@i + i)

k=0

Apply the DP algorithm for the following three cases:

(a) The control constraint set Uy (zx) is {u | 0 < zp +u < 5, u : integer} for
all x; and k, and the disturbance wy, is equal to zero for all k.

(b) The control constraint and the disturbance wy, are as in part (a), but there
is in addition a constraint x4 = 5 on the final state. Hint: For this problem
you need to define a state space for x4 that consists of just the value
x4 = 5, and also to redefine Us(z3). Alternatively, you may use a terminal
cost ga(za) equal to a very large number for x4 # 5.

(c) The control constraint is as in part (a) and the disturbance wy takes the
values —1 and 1 with equal probability 1/2 for all x; and uy, except if
Tk + ug is equal to 0 or 5, in which case wr = 0 with probability 1.

1.3

Suppose we have a machine that is either running or is broken down. If it runs
throughout one week, it makes a gross profit of $100. If it fails during the week,
gross profit is zero. If it is running at the start of the week and we perform
preventive maintenance, the probability that it will fail during the week is 0.4. If

Sec. 1.7 Notes, Sources, and Exercises 55

we do not perform such maintenance, the probability of failure is 0.7. However,
maintenance will cost $20. When the machine is broken down at the start of the
week, it may either be repaired at a cost of $40, in which case it will fail during
the week with a probability of 0.4, or it may be replaced at a cost of $150 by a
new machine that is guaranteed to run through its first week of operation. Find
the optimal repair, replacement, and maintenance policy that maximizes total
profit over four weeks, assuming a new machine at the start of the first week.

1.4

A game of the blackjack variety is played by two players as follows: Both players
throw a die. The first player, knowing his opponent’s result, may stop or may
throw the die again and add the result to the result of his previous throw. He then
may stop or throw again and add the result of the new throw to the sum of his
previous throws. He may repeat this process as many times as he wishes. If his
sum exceeds seven (i.e., he busts), he loses the game. If he stops before exceeding
seven, the second player takes over and throws the die successively until the sum
of his throws is four or higher. If the sum of the second player is over seven, he
loses the game. Otherwise the player with the larger sum wins, and in case of a
tie the second player wins. The problem is to determine a stopping strategy for
the first player that maximizes his probability of winning for each possible initial
throw of the second player. Formulate the problem in terms of DP and find an
optimal stopping strategy for the case where the second player’s initial throw is
three. Hint: Let N = 6 and consider a state space consisting of the following 15
states:
z* : busted

1" : already stopped at sum 4 1<i<7),

287" ¢ current sum is i but the player has not yet stopped (1 <7 < 7).

The optimal strategy is to throw until the sum is four or higher.

1.5 (Computer Assignment)

In the classical game of blackjack the player draws cards knowing only one card
of the dealer. The player loses upon reaching a sum of cards exceeding 21. If
the player stops before exceeding 21, the dealer draws cards until reaching 17 or
higher. The dealer loses upon reaching a sum exceeding 21 or stopping at a lower
sum than the player’s. If player and dealer end up with an equal sum no one
wins. In all other cases the dealer wins. An ace for the player may be counted
as a 1 or an 11 as the player chooses. An ace for the dealer is counted as an 11
if this results in a sum from 17 to 21 and as a 1 otherwise. Jacks, queens, and
kings count as 10 for both dealer and player. We assume an infinite card deck so
the probability of a particular card showing up is independent of earlier cards.

(a) For every possible initial dealer card, calculate the probability that the
dealer will reach a sum of 17, 18, 19, 20, 21, or over 21.

56 The Dynamic Programming Algorithm Chap. 1

(b) Calculate the optimal choice of the player (draw or stop) for each of the
possible combinations of dealer’s card and player’s sum of 12 to 20. Assume
that the player’s cards do not include an ace.

(c) Repeat part (b) for the case where the player’s cards include an ace.

1.6 (Knapsack Problem)

Assume that we have a vessel whose maximum weight capacity is z and whose
cargo is to consist of different quantities of N different items. Let v; denote
the value of the ith type of item, w; the weight of ith type of item, and z; the
number of items of type ¢ that are loaded in the vessel. The problem is to find
the most valuable cargo, i.e., to maximize Efil x;v; subject to the constraints

Zﬁil ziw; < z and x; = 0,1,2,... Formulate this problem in terms of DP.

1.7 (Traveling Repairman Problem)

A repairman must service n sites, which are located along a line and are sequen-
tially numbered 1,2, ...,n. The repairman starts at a given site s with 1 < s < n,
and is constrained to service only sites that are adjacent to the ones serviced so
far, i.e., if he has already serviced sites 7,7 + 1,...,j, then he may service next
only site ¢ — 1 (assuming 1 < i) or site j+ 1 (assuming j < n). There is a waiting
cost ¢; for each time period that site ¢ has remained unserviced and there is a
travel cost t;; for servicing site j immediately after servicing site 4. Formulate a
DP algorithm for finding a minimum cost service schedule.

1.8 (Ordering Matrix Multiplications) Gww
Given a sequence of matrix multiplications
MiMs -+ MyMy41 -+ Mn,

where each M}, is a matrix of dimension nx X ngy1, the order in which multipli-
cations are carried out can make a difference. For example, if n1 = 1, ny = 10,
ns = 1, and ng = 10, the calculation ((M1M2)M3) requires 20 scalar multi-

plications, but the calculation (Ml (MzMg)) requires 200 scalar multiplications
(multiplying an m X n matrix with an n x k matrix requires mnk scalar multi-
plications).

(a) Derive a DP algorithm for finding the optimal multiplication order [any
order is allowed, including orders that involve multiple partial products
each consisting of two or more adjacent matrices, e.g., ((MlMg)(M3M4))].
Solve the problem for N =3, n1 = 2, ne =10, ng = 5, and n4 = 1.

(b) Derive a DP algorithm for finding the optimal multiplication order within
the class of orders where at each step, we maintain only one partial product
that consists only of adjacent matrices, e.g., ((Ml (MzMg))M4).

Sec. 1.7 Notes, Sources, and Exercises 57
1.9 (Paragraphing Problem)

The paragraphing problem deals with breaking up a sequence of N words of given
lengths into lines of length A. Let wi,...,wnx be the words and let L1, ..., Ly be
their lengths. In a simple version of the problem, words are separated by blanks
whose ideal width is b, but blanks can stretch or shrink if necessary, so that a
line wi, Wi+1,...,w;+xr has length exactly A. The cost associated with the line
is (k+ 1)|o' — b|, where b’ = (A — L; — -+ — Li1x)/(k + 1) is the actual average
width of the blanks, except if we have the last line (N = i+ k), in which case the
cost is zero when b’ > b. Formulate a DP algorithm for finding the minimum cost
separation. Hint: Consider the subproblems of optimally separating w;, ..., wnN
fori=1,...,N.

1.10 (Interval Scheduling)

We have N intervals labeled 1,..., N. The ¢th interval has start point y;, end
point z;, and value v;. We want to select a subset of these intervals that has
maximum total value, and such that no pair overlaps. Formulate a DP algorithm
to solve this problem. Hint: Suppose the intervals are ordered so that z; <--- <
zn. Let the number of periods be N and the states be z1,...,zn. Let also the
optimal value at state z; be the maximal value over nonoverlapping intervals
whose start time is greater than z;.

1.11

Consider a smaller version of a popular puzzle game. Three square tiles numbered
1, 2, and 3 are placed in a 2 X 2 grid with one space left empty. The two tiles
adjacent to the empty space can be moved into that space, thereby creating new
configurations. Use a DP argument to answer the question whether it is possible
to generate a given configuration starting from any other configuration.

1.12

From a pile of eleven matchsticks, two players take turns removing one or four
sticks. The player who removes the last stick wins. Use a DP argument to show
that there is a winning strategy for the player who plays first.

1.13 (Counterfeit Coin Problem)

We are given six coins, one of which is counterfeit and is known to have different
weight than the rest. Construct a strategy to find the counterfeit coin using a
two-pan scale in a minimum average number of tries. Hint: There are two initial
decisions that make sense: (1) test two of the coins against two others, and (2)
test one of the coins against one other.

58 The Dynamic Programming Algorithm Chap. 1
1.14 (Multiplicative Cost)

In the framework of the basic problem, consider the case where the cost has the
multiplicative form

E {gN(xN) cgn—1(ZN—1,uN—1,WN—1) - - - go(Z0, Lo, wo)}-

Develop a DP-like algorithm for this problem assuming that g (zk, ur,wr) > 0
for all zy, uk, wk, and k.

1.15

Consider a device consisting of N stages connected in series, where each stage
consists of a particular component. The components are subject to failure, and
to increase the reliability of the device duplicate components are provided. For
j=1,2,...,N, let (1+ m;) be the number of components for the jth stage, let
pj(m;) be the probability of successful operation of the jth stage when (1 4 m;)
components are used, and let ¢; denote the cost of a single component at the jth
stage. Formulate in terms of DP the problem of finding the number of components
at each stage that maximize the reliability of the device expressed by

p1(ma) - p2(mz) - pn(mn),

subject to the cost constraint Z;V:1 cjm; < A, where A > 0 is given.

1.16 Gwvw

An innkeeper charges a different rate for a room as the day progresses, depending
on whether he has many or few vacancies. His objective is to maximize his
expected total income during the day. Let x be the number of empty rooms at
the start of the day, and let y be the number of customers that will ask for a
room in the course of the day. We assume (somewhat unrealistically) that the
innkeeper knows y with certainty, and upon arrival of a customer, quotes one of
m prices 7, i = 1,...,m, where 0 < r; <rg < --- < rpy. A quote of a rate 7;
is accepted with probability p; and is rejected with probability 1 — p;, in which
case the customer departs, never to return during that day.

(a) Formulate this as a problem with y stages and show that the maximal
expected income, as a function of x and y, satisfies the recursion

J,y) = max [pi(ri+J(e =1y = 1)+ (1 -p)Iay 1),

1=1,....m
for all z > 1 and y > 1, with initial conditions

J(z,0) = J(0,y) =0, for all and y.

Sec. 1.7 Notes, Sources, and Exercises 59

Assuming that the product p;r; is monotonically nondecreasing with i,
and that p; is monotonically nonincreasing with ¢, show that the innkeeper
should always charge the highest rate 7.

(b) Consider a variant of the problem where each arriving customer, with prob-
ability pi, offers a price r; for a room, which the innkeeper may accept or
reject. In the latter case the customer departs, never to return during that
day. Show that an appropriate DP algorithm is

J(w,y) =Y pimax[r, + J(@— 1,y = 1), J(z,y - 1)],

i=1
with initial conditions
J(z,0) = J(0,y) =0, for all z and y.

Show also that for given x and y it is optimal to accept a customer’s offer
if it is larger than some threshold 7(z,y). Hint: This part is related to DP
for uncontrollable state components (cf. Section 1.4).

1.17 (Investing in a Stock) Gww

An investor observes at the beginning of each period k the price xj of a stock and
decides whether to buy 1 unit, sell 1 unit, or do nothing. There is a transaction
cost ¢ for buying or selling. The stock price can take one of n different values

v, ..., v" and the transition probabilities

i = Plowpr =’ | an = v'}

are known. The investor wants to maximize the total worth of his stock at a
fixed final period N minus his investment costs from period 0 to period N — 1
(revenue from a sale is viewed as negative cost). We assume that the function

Py(z)=FE{zn |z =2} —=x

is monotonically nonincreasing as a function of x; i.e., the expected profit from
a purchase is a nonincreasing function of the purchase price.

(a) Assume that the investor starts with N or more units of stock and an
unlimited amount of cash, so that a purchase or sale decision is possible
at each period regardless of the past decisions and the current price. For
every period k, let x, be the largest value of x € {vl, ...,v"} such that
Py(z) > ¢, and let Ty be the smallest value of € {v',...,v"} such that
Py (xz) < —c. Show that it is optimal to buy if xx < z,, sell if T, < xx, and
do nothing otherwise. Hint: Formulate the problem as one of maximizing

N-1

E Z(ukPk(xk)—dukl))

k=0

60 The Dynamic Programming Algorithm Chap. 1

where ui, € {—1,0,1}.

(b) Formulate an efficient DP algorithm for the case where the investor starts
with less than N units of stock and an unlimited amount of cash. Show
that it is still optimal to buy if zx < z, and it is still not optimal to sell if
2 < Tp. Could it be optimal to buy at any prices z) greater than z,?

(c) Consider the situation where the investor initially has N or more units of
stock and there is a constraint that for any time k the number of purchase
decisions up to k should not exceed the number of sale decisions up to k by
more that a given fixed number m (this models approximately the situation
where the investor has a limited initial amount of cash). Formulate an
efficient DP algorithm for this case. Show that it is still optimal to sell if
T < 2, and it is still not optimal to buy if z; < x&.

(d) Consider the situation where there are restrictions on both the initial
amount of stock as in part (b), and the number of purchase decisions as in
part (c). Derive a DP algorithm for this problem.

(e) How would the analysis of (a)-(d) be affected if cash is invested at a given
fixed interest rate?

1.18 (Regular Polygon Theorem) Gww

According to a famous theorem (attributed to the ancient Greek geometer Zen-
odorus), of all N-side polygons inscribed in a given circle, those that are regular
(all sides are equal) have maximal area.

(a) Prove the theorem by applying DP to a suitable problem involving sequen-
tial placement of N points in the circle.

(b) Use DP to solve the problem of placing a given number of points on a subarc
of the circle, so as to maximize the area of the polygon whose vertices are
these points, the endpoints of the subarc, and the center of the circle.

1.19 (Inscribed Polygon of Maximal Perimeter)

Consider the problem of inscribing an N-side polygon in a given circle, so that
the polygon has maximal perimeter.

(a) Formulate the problem as a DP problem involving sequential placement of
N points in the circle.

(b) Use DP to show that the optimal polygon is regular (all sides are equal).

1.20 Gwvw

A decision maker must continually choose between two activities over a time
interval [0,T]. Choosing activity 7 at time ¢, where ¢ = 1,2, earns reward at a
rate ¢;(t), and every switch between the two activities costs ¢ > 0. Thus, for

Sec. 1.7 Notes, Sources, and Exercises 61

example, the reward for starting with activity 1, switching to 2 at time ¢;, and
switching back to 1 at time t2 > t1 earns total reward

t1 to T
/ g1(t) dt + / g2(t) dt + / g1(t) dt — 2c.
0 t1 to

We want to find a set of switching times that maximize the total reward. As-
sume that the function g1(t) — g2(t) changes sign a finite number of times in the
interval [0, 7]. Formulate the problem as a finite horizon problem and write the
corresponding DP algorithm. See Shreve [Shr81] for a fuller development of this
problem.

1.21

A farmer annually producing zj units of a certain crop stores (1 — ug)xx units
of his production, where 0 < uy < 1, and invests the remaining uxxy units, thus
increasing the next year’s production to a level 41 given by

Tkl = Tk + WrULTE, k=0717...7N—1.

The scalars wy are independent random variables with identical probability dis-
tributions that do not depend either on zj or uy. Furthermore, E{wy} =w > 0.
The problem is to find the optimal investment policy that maximizes the total
expected product stored over N years

Wi
k=0,1,...,N—1

N-1
E :CN+Z(1—uk)$Ck
k=0
Show the optimality of the following policy that consists of constant functions:
(8) 6% > 1, iy (w0) = -+ = iy (1) = 1.
(b) f0<w < 1/N, pi(zo) =+ = py_1(zn-1) =0.
(¢) f1/N<w<1,

Ho(zo) = -+ = by 7@y 5,) =1,
py 7@N_p) = =pn_a(zn-1) =0,
where k is such that 1/(k +1) <@ < 1/k.
1.22
Let xi denote the number of educators in a certain country at time k and let yx
denote the number of research scientists at time k. New scientists (potential edu-

cators or research scientists) are produced during the kth period by educators at
a rate 7y per educator, while educators and research scientists leave the field due

62 The Dynamic Programming Algorithm Chap. 1

to death, retirement, and transfer at a rate d5. The scalars v¢, k =0,1,...,N—1,
are independent identically distributed random variables taking values within a
closed and bounded interval of positive numbers. Similarly éx, k =0,1,..., N—1,

are independent identically distributed and take values in an interval [§,d'] with
0 < 6 < ¢ < 1. By means of incentives, a science policy maker can determine
the proportion uy of new scientists produced at time k£ who become educators.
Thus, the number of research scientists and educators evolves according to the
equations

Trt1 = (1 — 0n)xk + UkTVeTk,

Y1 = (1 = 0n)yr + (1 — u)vexr.

The initial numbers xo, yo are known, and it is required to find a policy

{ms (o, o), - un—1(zn—1,yn—1)}
with
0<a<pplzry) <B <, for all zy, yx,and k,

which maximizes E,, s, {yn} (i-e., the expected final number of research scientists
after N periods). The scalars o and 8 are given.

(a) Show that the cost-to-go functions Jx(xk,yr) are linear; i.e., for some
scalars &, Ck,
Ji(Tr, yk) = Euxr + ColY-

(b) Derive an optimal policy {ug, ..., #x—_1} under the assumption
E{v} > E{0x}
and show that this optimal policy can consist of constant functions.

(c) Assume that the proportion of new scientists who become educators at
time k is ug + € (rather than wy), where ¢, are identically distributed
independent random variables that are also independent of v, d; and take
values in the interval [—«, 1—]. Derive the form of the cost-to-go functions
and the optimal policy.

1.23 (Discounted Cost per Stage)

In the framework of the basic problem, consider the case where the cost is of the

form
N-—1
E {ocNgN(xN) + Z akgk(xk,uk7wk)} 7

w
k=0,1,...,N—1 k=0

where « is a discount factor with 0 < o < 1. Show that an alternate form of the
DP algorithm is given by
Vn(zn) = gn(2N),

Vk(:ck) = min E {gk(xk,uk,wk) + aVk+1(fk(xk,uk,wk))}.
ukEUk(ack)wk

Sec. 1.7 Notes, Sources, and Exercises 63

1.24 (Exponential Cost Function)

In the framework of the basic problem, consider the case where the cost is of the

form
N—-1
E ex TN) + Tk, Uk, Wk .
wkNl{ p(gN(N) ng(k k k))}

k=0,1,... k=0

(a) Show that the optimal cost and an optimal policy can be obtained from
the DP-like algorithm

JIn(zn) = exp(gn(2n)),

Ji(xr) = min E{Jk+1(fk(fck7uk7wk))exp(gk(fclwulwwk))}‘
ukEUk(ack)wk

(b) Define the functions Vi(xx) = In Ji(zr). Assume also that g is a function
of z and wuy only (and not of wg). Show that the above algorithm can be
rewritten as

Vn(zn) = gn(zN),

Vi(zr) = min {gk(:cmuk) + lnEC {exp(VkH (fk(mk7uk7wk)))}} .

up €U (x,)

Note: The exponential is an example of a risk-sensitive cost function that
can be used to encode a preference for policies with a small variance of the
cost gy (zN) +ZkN;)1 gk (K, uk, wy). The associated problems have a lot of
interesting properties, which are discussed in several sources, e.g., [DeR79],
[Whi90], [FeM94], [JBE94], [BaB95], [Bas00], [Pat01], [Berl6b].

1.25 (Terminating Process)

In the framework of the basic problem, consider the case where the system evo-
lution terminates at time ¢ when a given value w; of the disturbance at time ¢
occurs, or when a termination decision u; is made by the controller. If termina-
tion occurs at time i, the resulting cost is

T+ ng(xmuk,wk),
k=0

where T is a termination cost. If the process has not terminated up to the final
time N, the resulting cost is gn(zn) + E;f;ol gk (xk, uk, wr). Reformulate the
problem into the framework of the basic problem. Hint: Augment the state space
with a special termination state.

64 The Dynamic Programming Algorithm Chap. 1

1.26

Alexei plays a game that starts with a deck with b “black” cards and r “red”
cards. At each time period he draws a random card and decides between the
following two options:

ithout looking a e card, “predic at it is black, in which case he

1) Without looki t th d, “predict” that it is black, i hich h
wins the game if the prediction is correct and loses if the prediction is
incorrect.

(2) “Discard” the card, after looking at its color, and continue the game with
one card less.

If the deck has only black cards he wins the game, while if the deck has only
red cards he loses the game. Alexei wants to find a policy that maximizes his
probability of a win.

(a) Formulate Alexei’s problem into the format of the finite-horizon basic prob-
lem with perfect state information. Identify states, controls, and distur-
bances, and write the DP algorithm.

(b) Use induction to show that the optimal probability of a win starting with

b black cards and r red cards is .
r
(c) Characterize the optimal policies.
(d) Suppose that Alexei is given the additional option to randomize his decision
at each time period. In particular, he may choose a probability p € [0, 1],
flip a coin that has probability of head equal to p, and decide upon option

1 or 2 above depending on the outcome of the flip. What would then be
the optimal policies?

1.27 (Semilinear Systems) Gww

Consider a problem involving the system
Tir = Ay + fi(uk) + wi,

where z € R", fir are given functions, and Ay and wy are random n X n matri-
ces and n-vectors, respectively, with given probability distributions that do not
depend on xk, uy or prior values of Ay and wy. Assume that the cost function is
linear in the states and has the form

N—1

E nen + Y (C;gl’k + gk (/Jk(l’k))) :
Ag ok k=0
k=0,1,...,N—1 =
where ¢, are given vectors and g are given functions. Show that if the optimal
cost for this problem is finite and the control constraint sets U (z1) are indepen-
dent of xy, then the cost-to-go functions of the DP algorithm are affine (linear
plus constant). Assuming that there is at least one optimal policy, show that
there exists an optimal policy that is open-loop, i.e., uj(xx) = constant for all
Tk € .

Sec. 1.7 Notes, Sources, and Exercises 65
1.28 (Monotonicity Property of DP) Gww)

An evident, yet very important property of the DP algorithm is that if the termi-
nal cost gn is changed to a uniformly larger cost gy [i-e., gn(zn) < Gy (zn) for all
xn], then the last stage cost-to-go Jn—1(zn—1) will be uniformly increased. More
generally, given two functions Jy+1 and Jxi1 with Jei1(ze41) < Je1 (k1) for
all xg+1, we have, for all xy and ug € Uy (zk),

E {gk(l’mumwk) + Jrt1 (fk($k7uk7wk))}
wg,

<E {gk(wkmk,wk) + jk+1(fk(xk,uk,wk))}.
W

Suppose now that in the basic problem the system and cost are time invariant;
ie, Sy, =85, Ch=C, Dy =D, fr=f, U, =U, P, = P, and gy = g for some
S, C, D, f, U, P, and g. Use induction to show that if in the DP algorithm we
have Jy_1(z) < Jy(z) for all z € S, then

Ji(x) < Jpg1(z), for all x € S and k.
Similarly, if we have Jy_1(z) > Jn(z) for all z € S, then

Ji(x) > Tt (), for all x € S and k.

1.29 (DP Algorithm for Minimization over a Subset of Policies)

This exercise is primarily of theoretical interest (see the discussion at the end of
Section 1.5), but also relates to situations where we can guess that an optimal
policy may be found within a special class of policies. Consider a variation of the
basic problem whereby we want to find

min Jy (20),
mwell

where II is some given subset of the set of sequences {po, pt1, ..., un—1} of func-
tions pk : Sk — Ck with pr(zk) € Ug(zy) for all z, € Sk. Assume that for every
7 = {po, ..., un—1} € II, the sequence of cost-to-go functions J, x, k=0,..., N,
generated by

Jan(zN) = gn(TN),

Jrr(zp) = E {gk ($k7ﬂk(fck)7wk) + jrr,k+1(fk(13k7Mk(xk)7wk))}7

Wi

is well-defined in the sense that the functions jmk are real-valued, and that the
expected value in the preceding equation is well-defined and finite. Suppose also
that

7= {fo, fir, ..., fin-1}

66 The Dynamic Programming Algorithm Chap. 1

is a policy that belongs to II and attains the minimum in the DP algorithm, in
the sense that for all x, and k =0,...,N — 1, we have

E {gk (ivk7 e (Tk), wk) + J& k+1 (fk(ivm fk(zk), wk))}
wi

= min E{gk(ﬂfk,uk,wk)+Jﬁ,k+1(fk(xkvukvwk))}'
ukEUk(ack)wk

Show that 7 is optimal within IT in the sense that Jx (o) < Jxo(xo) for all 7 € II
and states zo. Hint: Use backwards induction to show that Jak(zr) < Jrk(xk)
for all m € 11, k, and states .

1.30 (Post-Decision States)

Consider the basic problem and assume that the system equation has a special
structure whereby from state xj after applying ur we move to an intermediate
“post-decision state” yr = pr(Tk,ur) at cost gr(xk,ur). Then from yi we move
at no cost to the new state xr41 according to

Tk4+1 = hk(ykv wk)v

where the distribution of the disturbance wy depends only on y, and not on
prior disturbances, states, and controls. The purpose of this exercise is to show
that it is possible to exploit the structure of the problem to execute the DP
algorithm more efficiently. Denote by Jx(zx) the optimal cost-to-go starting at
time k from state xi, and by Vi (yx) the optimal cost-to-go starting at time k
from post-decision state y.

(a) Show that a DP algorithm that generates only Jj is given by

Jk(xk:) = min [g(l’k,uk) +Ewk{Jk:+1 (hk(pk(xkyuk)7wk)) }}
up €U (zg)

(b) Show that a DP algorithm that generates both Ji and Vi is given by

Jp(rx) = min [g(l’muk)+Vk(pk($k7uk))}
ukEUk(:vk)

Vi(yx) = Euw,, {Jk+1 (hk(yk7 W), wk) }
(c) Show that a DP algorithm that generates only Vj for all k is given by

(g1 (P (Y, i), wn g 1)

Vi(yr) = Euw, {

min
U1 E€UE41 (hg (g wi))

+ Vier 1 (Prg1 (b (Yr, wie), Uk+1))] }

References

[ABC65] Atkinson, R. C., Bower, G. H., and Crothers, E. J., 1965. An Introduction to
Mathematical Learning Theory, Wiley, N. Y.

[ABF93] Arapostathis, A., Borkar, V., Fernandez-Gaucherand, E., Ghosh, M., and Mar-
cus, S., 1993. “Discrete-Time Controlled Markov Processes with Average Cost Criterion:
A Survey,” STAM J. on Control and Optimization, Vol. 31, pp. 282-344.

[ABG49] Arrow, K. J., Blackwell, D., and Girshick, M. A., 1949. “Bayes and Minimax
Solutions of Sequential Design Problems,” Econometrica, Vol. 17, pp. 213-244.

[AGKT77] Athans, M., Ku, R., and Gershwin, S. B., 1977. “The Uncertainty Threshold
Principle,” IEEE Trans. on Automatic Control, Vol. AC-22, pp. 491-495.

[AHM51] Arrow, K. J., Harris, T., and Marschack, J., 1951. “Optimal Inventory Policy,”
Econometrica, Vol. 19, pp. 250-272.

[AKS58] Arrow, K. J., Karlin, S., and Scarf, H., 1958. Studies in the Mathematical
Theory of Inventory and Production, Stanford Univ. Press, Stanford, CA.

[Abr90] Abramson, B., 1990. “Expected-Outcome: A General Model of Static Evalu-
ation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, pp.
182-193.

[AdG86] Adams, M., and Guillemin, V., 1986. Measure Theory and Probability, Wads-
worth and Brooks, Monterey, CA.

[AnH14] Antunes, D., and Heemels, W.P.M.H., 2014. “Rollout Event-Triggered Control:
Beyond Periodic Control Performance,” IEEE Transactions on Automatic Control, Vol.
59, pp. 3296-3311.

[AnM79] Anderson, B. D. O., and Moore, J. B., 1979. Optimal Filtering, Prentice-Hall,
Englewood Cliffs, N. J.

[AoL69] Aoki, M., and Li, M. T., 1969. “Optimal Discrete-Time Control Systems with
Cost for Observation,” IEEE Trans. Automatic Control, Vol. AC-14, pp. 165-175.

[AsW94] Astrom, K. J., and Wittenmark, B., 1994. Adaptive Control, 2nd Edition,
Prentice-Hall, Englewood Cliffs, N. J.

[Ash70] Ash, R. B., 1970. Basic Probability Theory, Wiley, N. Y.
[Ash72] Ash, R. B., 1972. Real Analysis and Probability, Academic Press, N. Y.

[Ast83] Astrom, K. J., 1983. “Theory and Applications of Adaptive Control — A Survey,”
Automatica, Vol. 19, pp. 471-486.

[AtF66] Athans, M., and Falb, P., 1966. Optimal Control, McGraw-Hill, N. Y.

533

534 References

[BBC11] Bertsimas, D., Brown, D. B., and Caramanis, C., 2011. “Theory and Applica-
tions of Robust Optimization,” SIAM Review, Vol. 53, pp. 464-501.

[BBD10] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., 2010. Reinforcement
Learning and Dynamic Programming Using Function Approximators, CRC Press, N. Y.

[BBG13| Bertazzi, L., Bosco, A., Guerriero, F., and Lagana, D., 2013. “A Stochastic
Inventory Routing Problem with Stock-Out,” Transportation Research, Part C, Vol. 27,
pp. 89-107.

[BBM17] Borelli, F., Bemporad, A., and Morari, M., 2017. Predictive Control for Linear
and Hybrid Systems, Cambridge Univ. Press, Cambridge, UK.

[BCN18] Bottou, L., Curtis, F. E., and Nocedal, J., 2018. “Optimization Methods for
Large-Scale Machine Learning,” SIAM Review, Vol. 60, pp. 223-311.

[BGM95] Bertsekas, D. P., Guerriero, F., and Musmanno, R., 1995. “Parallel Short-
est Path Methods for Globally Optimal Trajectories,” High Performance Computing:
Technology, Methods, and Applications, (J. Dongarra et al., Eds.), Elsevier.

[BGM96] Bertsekas, D. P., Guerriero, F., and Musmanno, R., 1996. “Parallel Label
Correcting Methods for Shortest Paths,” J. Optimization Theory Appl., Vol. 88, 1996,
pp. 297-320.

[BKB20] Bhattacharya, S., Kailas, S., Badyal, S., Gil, S., and Bertsekas, D. P., 2020.
“Multiagent Rollout and Policy Iteration for POMDP with Application to Multi-Robot
Repair Problems,” Working paper, Arizona State University, and Harvard University.

[BKMO05] de Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. 2005. “A
Tutorial on the Cross-Entropy Method,” Annals of Operations Research, Vol. 134, pp.
19-67.

[BMO14] Boyd, S., Mueller, M. T., O’Donoghue, B., and Wang, Y., 2014. “Performance
Bounds and Suboptimal Policies for Multi-Period Investment,” Foundations and Trends
in Optimization, Vol. 1, pp. 1-72.

[BMS99] Boltyanski, V., Martini, H., and Soltan, V., 1999. Geometric Methods and
Optimization Problems, Kluwer, Boston.

[BNOO3] Bertsekas, D. P., Nedi¢, A., and Ozdaglar, A. E., 2003. Convex Analysis and
Optimization, Athena Scientific, Belmont, MA.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algorithms for
Combinatorial Optimization,” Heuristics, Vol. 3, pp. 245-262.

[BYB94] Bradtke, S. J., Ydstie, B. E., and Barto, A. G., 1994. “Adaptive Linear
Quadratic Control Using Policy Iteration,” Proc. IEEE American Control Conference,
Vol. 3, pp. 3475-3479.

[BaB95] Basar, T., and Bernhard, P., 1995. Ho, Optimal Control and Related Minimax
Design Problems: A Dynamic Game Approach, Birkhuser, Boston, MA.

[Bai93] Baird, L. C., 1993. “Advantage Updating,” Report WL-TR-93-1146, Wright
Patterson AFB, OH.

[Bai94] Baird, L. C., 1994. “Reinforcement Learning in Continuous Time: Advantage
Updating,” International Conf. on Neural Networks, Orlando, Fla.

[Bar81] Bar-Shalom, Y., 1981. “Stochastic Dynamic Programming: Caution and Prob-
ing,” IEEE Trans. on Automatic Control, Vol. AC-26, pp. 1184-1195.

[Bas91] Basar, T., 1991. “Optimum Performance Levels for Minimax Filters, Predictors,
and Smoothers,” Systems and Control Letters, Vol. 16, pp. 309-317.

References 535

[Bas00] Basar, T., 2000. “Risk-Averse Designs: From Exponential Cost to Stochastic
Games,” In T. E. Djaferis and I. C. Schick, (Eds.), System Theory: Modeling, Analysis
and Control, Kluwer, Boston, pp. 131-144.

[BeC99] Bertsekas, D. P., and Castanon, D. A.; 1999. “Rollout Algorithms for Stochastic
Scheduling Problems,” Heuristics, Vol. 5, pp. 89-108.

[BeC04] Bertsekas, D. P., and Castanon, D. A., 2004. Unpublished Collaboration.

[BeC08] Besse, C., and Chaib-draa, B., 2008. “Parallel Rollout for Online Solution of
DEC-POMDPs,” Proc. of 21st International FLAIRS Conference, pp. 619-624.

[BeD62] Bellman, R., and Dreyfus, S., 1962. Applied Dynamic Programming, Princeton
Univ. Press, Princeton, N. J.

[BeG92] Bertsekas, D. P., and Gallager, R. G., 1992. Data Networks, 2nd Edition,
Prentice-Hall, Englewood Cliffs, N. J.

[BeL14] Beyme, S., and Leung, C., 2014. “Rollout Algorithm for Target Search in a
Wireless Sensor Network,” 80th Vehicular Technology Conference (VTC2014), IEEE,
pp. 1-5.

[Bel96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iter-
ation and Applications in Neuro-Dynamic Programming,” Lab. for Info. and Decision
Systems Report LIDS-P-2349, Massachusetts Institute of Technology.

[BeNO1] Ben-Tal, A., and Nemirovski, A., 2001. Lectures on Modern Convex Optimiza~
tion: Analysis, Algorithms, and Engineering Applications, STAM, Phila., PA

[BeP03] Bertsimas, D., and Popescu, I., 2003. “Revenue Management in a Dynamic
Network Environment,” Transportation Science, Vol. 37, pp. 257-277.

[BeRT1a] Bertsekas, D. P., and Rhodes, I. B., 1971. “On the Minimax Reachability of
Target Sets and Target Tubes,” Automatica, Vol. 7, pp. 233-247.

[BeR71b] Bertsekas, D. P., and Rhodes, I. B., 1971. “Recursive State Estimation for a
Set-Membership Description of the Uncertainty,” IEEE Trans. Automatic Control, Vol.
AC-16, pp. 117-128.

[BeR73] Bertsekas, D. P., and Rhodes, I. B., 1973. “Sufficiently Informative Functions
and the Minimax Feedback Control of Uncertain Dynamic Systems,” IEEE Trans. Au-
tomatic Control, Vol. AC-18, pp. 117-124.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control: The
Discrete Time Case, Academic Press, N. Y.; republished by Athena Scientific, Belmont,
MA, 1996 (can be downloaded from the author’s website).

[BeS18] Bertazzi, L., and Secomandi, N., 2018. “Faster Rollout Search for the Vehicle
Routing Problem with Stochastic Demands and Restocking,” European J. of Operational
Research, Vol. 270, pp.487-497.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Distributed Computa-
tion: Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J.; republished by Athena
Scientific, Belmont, MA, 1997.

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N., 1991. “An Analysis of Stochastic Shortest
Path Problems,” Math. Operations Res., Vol. 16, pp. 580-595.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming,
Athena Scientific, Belmont, MA.

[BeT97] Bertsimas, D., and Tsitsiklis, J. N., 1997. Introduction to Linear Optimization,
Athena Scientific, Belmont, MA.

536 References

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence of Gradient
Methods with Errors,” SIAM J. on Optimization, Vol. 36, pp. 627-642.

[BeT08] Bertsekas, D. P., and Tsitsiklis, J. N., 2008. Introduction to Probability, 2nd
Edition, Athena Scientific, Belmont, MA.

[BeY09] Bertsekas, D. P.; and Yu, H., 2009. “Projected Equation Methods for Approxi-
mate Solution of Large Linear Systems,” J. of Computational and Applied Mathematics,
Vol. 227, pp. 27-50.

[BeY16] Bertsekas, D. P., and Yu, H., 2016. “Stochastic Shortest Path Problems Under
Weak Conditions,” Lab. for Information and Decision Systems Report LIDS-2909, MIT.

[Bel57] Bellman, R., 1957. Dynamic Programming, Princeton University Press, Prince-
ton, N. J.

[Ber70] Bertsekas, D. P.; 1970. “On the Separation Theorem for Linear Systems, Quadratic
Criteria, and Correlated Noise,” Unpublished Report, Electronic Systems Lab., Mas-
sachusetts Institute of Technology.

[Ber71] Bertsekas, D. P., 1971. “Control of Uncertain Systems With a Set-Member-
ship Description of the Uncertainty,” Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA (available from the author’s website).

[Ber72a] Bertsekas, D. P., 1972. “Infinite Time Reachability of State Space Regions by
Using Feedback Control,” IEEE Trans. Automatic Control, Vol. AC-17, pp. 604-613.

[Ber72b] Bertsekas, D. P., 1972. “On the Solution of Some Minimax Control Problems,”
Proc. 1972 IEEE Decision and Control Conf., New Orleans, LA.

[Ber74] Bertsekas, D. P., 1974. “Necessary and Sufficient Conditions for Existence of an
Optimal Portfolio,” J. Econ. Theory, Vol. 8, pp. 235-247.

[Ber75] Bertsekas, D. P., 1975. “Convergence of Discretization Procedures in Dynamic
Programming,” IEEE Trans. Automatic Control, Vol. AC-20, pp. 415-419.

[Ber76] Bertsekas, D. P., 1976. Dynamic Programming and Stochastic Control, Academic
Press, N. Y.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Trans. Au-
tomatic Control, Vol. AC-27, pp. 610-616.

[Ber91] Bertsekas, D. P., 1991. Linear Network Optimization: Algorithms and Codes,
M.I.T. Press, Cambridge, MA.

[Ber93] Bertsekas, D. P., 1993. “A Simple and Fast Label Correcting Algorithm for
Shortest Paths,” Networks, Vol. 23, pp. 703-709.

[Ber97] Bertsekas, D. P., 1997. “Differential Training of Rollout Policies,” Proc. of the
35th Allerton Conference on Communication, Control, and Computing, Allerton Park,
I11.

[Ber98a] Bertsekas, D. P., 1998. Network Optimization: Continuous and Discrete Mod-
els, Athena Scientific, Belmont, MA.

[Ber98b] Bertsekas, D. P., 1998. “A New Value Iteration Method for the Average Cost
Dynamic Programmming Problem,” SIAM J. on Control and Optimization, Vol. 36, pp.
742-759.

[Ber05a] Bertsekas, D. P., 2005. “Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC,” European J. of Control, Vol. 11, pp. 310-334.

References 537

[Ber05b] Bertsekas, D. P., 2005. “Rollout Algorithms for Constrained Dynamic Pro-
gramming,” LIDS Report 2646, MIT.

[Ber07] Bertsekas, D. P., 2007. “Separable Dynamic Programming and Approximate
Decomposition Methods,” IEEE Trans. on Aut. Control, Vol. 52, pp. 911-916.

[Ber09] Bertsekas, D. P., 2009. Convex Optimization Theory, Athena Scientific, Belmont,
MA.

[Ber11] Bertsekas, D. P., 2011. “Approximate Policy Iteration: A Survey and Some New
Methods,” J. of Control Theory and Applications, Vol. 9, pp. 310-335.

[Berl3a] Bertsekas, D. P., 2013. Abstract Dynamic Programming, Athena Scientific,
Belmont, MA; a 2nd edition appeared in 2018, and can be downloaded from the author’s
website.

[Ber13b| Bertsekas, D. P., 2013. “Rollout Algorithms for Discrete Optimization: A Sur-
vey,” Handbook of Combinatorial Optimization, Springer.

[Ber14] Bertsekas, D. P., 2014. “Robust Shortest Path Planning and Semicontractive
Dynamic Programming,” Lab. for Information and Decision Systems Report LIDS-
P-2915, MIT; arXiv preprint arXiv:1608.01670; Naval Research Logistics, Vol. 66, pp.
15-37.

[Berlba] Bertsekas, D. P., 2015. Convex Optimization Algorithms, Athena Scientific,
Belmont, MA.

[Ber15b] Bertsekas, D. P., 2015. “Regular Policies in Abstract Dynamic Programming,”
Lab. for Information and Decision Systems Report LIDS-P-3173, MIT; arXiv preprint
arXiv:1609.03115.

[Berl5c] Bertsekas, D. P., 2015. “Value and Policy Iteration in Deterministic Optimal
Control and Adaptive Dynamic Programming,” arXiv preprint arXiv:1507.01026; to
appear in IEEE Transactions on Neural Networks and Learning Systems.

[Ber16a] Bertsekas, D. P., 2016. Nonlinear Programming, 3rd Edition, Athena Scientific,
Belmont, MA.

[Ber16b] Bertsekas, D. P., 2016. “Affine Monotonic and Risk-Sensitive Models in Dy-
namic Programming,” Lab. for Information and Decision Systems Report LIDS-3204,
MIT; arXiv preprint arXiv:1608.01393.

[Ber19a] Bertsekas, D. P., 2019. Reinforcement Learning and Optimal Control, Athena
Scientific, Belmont, MA.

[Ber19b| Bertsekas, D. P., 2019. “Multiagent Rollout Algorithms and Reinforcement
Learning,” arXiv preprint arXiv:1910.00120.

[Ber19c| Bertsekas, D. P., 2019. “Constrained Multiagent Rollout and Multidimensional
Assignment with the Auction Algorithm,” arXiv preprint, arxiv.org/abs/2002.07407.

[Ber20a] Bertsekas, D. P., 2020. Rollout, Policy Iteration, and Distributed Reinforcement
Learning, Athena Scientific, Belmont, MA.

[Ber20b] Bertsekas, D. P.; 2020. “Multiagent Value Iteration Algorithms in Dynamic
Programming and Reinforcement Learning,” arXiv preprint, arxiv.org/abs/2005.01627.

[BiL97] Birge, J. R., and Louveaux, 1997. Introduction to Stochastic Programming,
Springer, New York, N. Y.

[Bis95] Bishop, C. M, 1995. Neural Networks for Pattern Recognition, Oxford University
Press, N. Y.

538 References

[BIT00] Blondel, V. D., and Tsitsiklis, J. N., 2000. “A Survey of Computational Com-
plexity Results in Systems and Control,” Automatica, Vol. 36, pp. 1249-1274.

[Bla99] Blanchini, F., 1999. “Set Invariance in Control — A Survey,” Automatica, Vol.
35, pp. 1747-1768.

[BoVT79] Borkar, V., and Varaiya, P. P., 1979. “Adaptive Control of Markov Chains, I:
Finite Parameter Set,” IEEE Trans. Automatic Control, Vol. AC-24, pp. 953-958.

[BoV04] Boyd, S., and Vandenbergue, L., 2004. Convex Optimization, Cambridge Univ.
Press, Cambridge, U.K.

[CFHO5] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2005. “An Adaptive
Sampling Algorithm for Solving Markov Decision Processes,” Operations Research, Vol.
53, pp. 126-139.

[CFH13] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. L., 2013. Simulation-Based
Algorithms for Markov Decision Processes, (2nd Ed.), Springer, N. Y.

[CFH16] Chang, H. S., Hu, J., Fu, M. C., and Marcus, S. I., 2016. “Google DeepMind’s
AlphaGo,” ORMS Today, Informs, Vol. 43.

[CGCO04] Chang, H. S., Givan, R. L., and Chong, E. K. P., 2004. “Parallel Rollout
for Online Solution of Partially Observable Markov Decision Processes,” Discrete Event
Dynamic Systems, Vol. 14, pp. 309-341.

[CHHO2] Campbell, M., Hoane, A. J. and Hsu, F. H., 2002. “Deep Blue,” Artificial
Intelligence, Vol. 134, pp. 57-83.

[CaB04] Camacho, E. F., and Bordons, C., 2004. Model Predictive Control, 2nd Edition,
Springer, New York, N. Y.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based
Approach, Springer, N. Y.

[ChT89] Chow, C.-S., and Tsitsiklis, J. N., 1989. “The Complexity of Dynamic Pro-
gramming,” J. of Complexity, Vol. 5, pp. 466-488.

[ChT91] Chow, C.-S., and Tsitsiklis, J. N., 1991. “An Optimal One-Way Multigrid
Algorithm for Discrete-Time Stochastic Control,” IEEE Trans. on Automatic Control,
Vol. AC-36, 1991, pp. 898-914.

[ChV12] Chacon, A., and Vladimirsky, A., 2012. “Fast Two-Scale Methods for Eikonal
Equations,” SIAM J. on Scientific Computing, Vol. 34, pp. A547-A578.

[ChV13] Chacon, A., and Vladimirsky, A., 2013. “A Parallel Heap-Cell Method for
Eikonal Equations,” arXiv preprint arXiv:1306.4743.

[ChV15] Chacon, A., and Vladimirsky, A., 2015. “A Parallel Two-Scale Method for
Eikonal Equations,” SIAM J. on Scientific Computing, Vol. 37, pp. A156-A180.

[CheT72] Chernoff, H., 1972. “Sequential Analysis and Optimal Design,” Regional Con-
ference Series in Applied Mathematics, SIAM, Philadelphia, PA.

[CoL55] Coddington, E. A., and Levinson, N., 1955. Theory of Ordinary Differential
Equations, McGraw-Hill, N. Y.

[Cou06] Coulom, R., 2006. “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” International Conference on Computers and Games, Springer, pp. 72-83.

[Cyb89] Cybenko, 1989. “Approximation by Superpositions of a Sigmoidal Function,”
Math. of Control, Signals, and Systems, Vol. 2, pp. 303-314.

[DeG70] DeGroot, M. H., 1970. Optimal Statistical Decisions, McGraw-Hill, N. Y.

References 539

[DeP84] Deo, N., and Pang, C., 1984. “Shortest Path Problems: Taxonomy and Anno-
tation,” Networks, Vol. 14, pp. 275-323.

[DeR79] Denardo, E. V., and Rothblum, U. G., 1979. “Optimal Stopping, Exponential
Utility, and Linear Programming,” Math. Programming, Vol. 16, pp. 228-244.

[Del89] Deller, J. R., 1989. “Set Membership Identification in Digital Signal Processing,”
IEEE ASSP Magazine, Oct., pp. 4-20.

[DoS80] Doshi, B., and Shreve, S., 1980. “Strong Consistency of a Modified Maximum
Likelihood Estimator for Controlled Markov Chains,” J. of Applied Probability, Vol. 17,
pp. 726-734.

[Dre65] Dreyfus, S. D., 1965. Dynamic Programming and the Calculus of Variations,
Academic Press, N. Y.

[Dre69] Dreyfus, S. D., 1969. “An Appraisal of Some Shortest-Path Algorithms,” Oper-
ations Research, Vol. 17, pp. 395-412.

[Eck68] Eckles, J. E., 1968. “Optimum Maintenance with Incomplete Information,” Op-
erations Research, Vol. 16, pp. 1058-1067.

[Elm78] Elmaghraby, S. E., 1978. Activity Networks: Project Planning and Control by
Network Models, Wiley-Interscience, N. Y.

[FGL13] Festa, P., Guerriero, F., Lagana, D. and Musmanno, R., 2013. “Solving the
Shortest Path Tour Problem,” European J. of Operational Research, Vol. 230, pp. 464-
474.

[FYGO6] Fern, A., Yoon, S. and Givan, R., 2006. “Approximate Policy Iteration with a
Policy Language Bias: Solving Relational Markov Decision Processes,” J. of Artificial
Intelligence Research, Vol. 25, pp. 75-118.

[Fal87] Falcone, M., 1987. “A Numerical Approach to the Infinite Horizon Problem of
Deterministic Control Theory,” Appl. Math. Opt., Vol. 15, pp. 1-13.

[FeM94] Fernandez-Gaucherand, E., and Marcus, S. I., 1994. “Risk Sensitive Optimal
Control of Hidden Markov Models,” Proc. 33rd IEEE Conf. Dec. Control, Lake Buena
Vista, Fla.

[FeV02] Ferris, M. C., and Voelker, M. M., 2002. “Neuro-Dynamic Programming for
Radiation Treatment Planning,” Numerical Analysis Group Research Report NA-02/06,
Oxford University Computing Laboratory, Oxford University.

[FeV04] Ferris, M. C., and Voelker, M. M., 2004. “Fractionation in Radiation Treatment
Planning,” Mathematical Programming B, Vol. 102, pp. 387-413.

[Feil6] Feinberg, E. A, 2016. “Optimality Conditions for Inventory Control,” INFORMS
Tutorials in Operations Research, Online, pp. 14-45.

[Fel68] Feller, W., 1968. An Introduction to Probability Theory and its Applications,
Wiley, N. Y.

[Fis70] Fishburn, P. C., 1970. Utility Theory for Decision Making, Wiley, N. Y.

[For56] Ford, L. R., Jr., 1956. “Network Flow Theory,” Report P-923, The Rand Cor-
poration, Santa Monica, CA.

[For73] Forney, G. D., 1973. “The Viterbi Algorithm,” Proc. IEEE, Vol. 61, pp. 268-278.

[Fox71] Fox, B. L., 1971. “Finite State Approximations to Denumerable State Dynamic
Progams,” J. Math. Anal. Appl., Vol. 34, pp. 665-670.

540 References

[Fun89] Funahashi, K., 1989. “On the Approximate Realization of Continuous Mappings
by Neural Networks,” Neural Networks, Vol. 2, pp. 183-192.

[GBC16] Goodfellow, I., Bengio, J., and Courville, A., Deep Learning, MIT Press, Cam-
bridge, MA.

[GGS13] Gabillon, V., Ghavamzadeh, M., and Scherrer, B., 2013. “Approximate Dy-
namic Programming Finally Performs Well in the Game of Tetris,” in Advances in
Neural Information Processing Systems, pp. 1754-1762.

[GTO15] Goodson, J. C., Thomas, B. W.; and Ohlmann, J. W., 2015. “Restocking-
Based Rollout Policies for the Vehicle Routing Problem with Stochastic Demand and
Duration Limits,” Transportation Science, Vol. 50, pp. 591-607.

[GaP88] Gallo, G., and Pallottino, S., 1988. “Shortest Path Algorithms,” Annals of
Operations Research, Vol. 7, pp. 3-79.

[Gal13] Gallager, R. G., 2013. Stochastic Processes, Cambridge Univ. Press.

[GIS71] Glover, J., and Schweppe, F., 1971. “Control of Linear Dynamic Systems with
Set Constrained Disturbances,” IEEE Trans. on Automatic Control, Vol. 16, pp. 411-
423.

[GoR&5] Gonzalez, R., and Rofman, E., 1985. “On Deterministic Control Problems: An
Approximation Procedure for the Optimal Cost, Parts I, II,” SIAM J. Control Opti-
mization, Vol. 23, pp. 242-285.

[GoS84] Goodwin, G. C., and Sin, K. S. S., 1984. Adaptive Filtering, Prediction, and
Control, Prentice-Hall, Englewood Cliffs, N. J.

[Gos15] Gosavi, A., 2015. Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning, 2nd Edition, Springer, N. Y.

[GrA66] Groen, G. J., and Atkinson, R. C., 1966. “Models for Optimizing the Learning
Process,” Psychol. Bull., Vol. 66, pp. 309-320.

[Grell] Grewal, M. S., 2011. Kalman Filtering, Springer, Berlin.

[GuF63] Gunckel, T. L., and Franklin, G. R., 1963. “A General Solution for Linear
Sampled-Data Control,” Trans. ASME Ser. D. J. Basic Engrg., Vol. 85, pp. 197-201.

[GuMO01] Guerriero, F., and Musmanno, R., 2001. “Label Correcting Methods to Solve
Multicriteria Shortest Path Problems,” J. Optimization Theory Appl., Vol. 111, pp.
589-613.

[GuMO03] Guerriero, F., and Mancini, M., 2003. “A Cooperative Parallel Rollout Algo-
rithm for the Sequential Ordering Problem,” Parallel Computing, Vol. 29, pp. 663-677.

[HJG16] Huang, Q., Jia, Q. S., and Guan, X., 2016. “Robust Scheduling of EV Charging
Load with Uncertain Wind Power Integration,” IEEE Transactions on Smart Grid.

[HMS55] Holt, C. C., Modigliani, F., and Simon, H. A., 1955. “A Linear Decision Rule
for Production and Employment Scheduling,” Management Sci., Vol. 2, pp. 1-30.

[HNR68] Hart, P. E., Nilsson, N. J. and Raphael, B., 1968. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Trans. on Systems Science
and Cybernetics, Vol. 4, pp. 100-107.

[HNRT72] Hart, P. E., Nilsson, N. J. and Raphael, B., 1972. “Correction to a Formal Basis
for the Heuristic Determination of Minimum Cost Paths,” ACM SIGART Bulletin, Vol.
37, pp. 28-29.

[HPC96] Helmsen, J., Puckett, E. G., Colella, P., and Dorr, M., 1996. “Two New Meth-

References 541

ods for Simulating Photolithography Development,” SPIE’s 1996 International Sympo-
sium on Microlithography, pp. 253-261.

[HSW89] Hornick, K., Stinchcombe, M., and White, H., 1989. “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, Vol. 2, pp. 359-159.

[HaA15] Hansen, E. A. and Abdoulahi, I., 2015. “Efficient Bounds in Heuristic Search
Algorithms for Stochastic Shortest Path Problems,” in AAAI, pp. 3283-3290.

[Hal.82] Hajek, B., and van Loon, T., 1982. “Decentralized Dynamic Control of a Mul-
tiaccess Broadcast Channel,” IEEE Trans. Automatic Control, Vol. AC-27, pp. 559-569.

[Hak70] Hakansson, N. H., 1970. “Optimal Investment and Consumption Strategies un-
der Risk for a Class of Utility Functions,” Econometrica, Vol. 38, pp. 587-607.

[Hak71] Hakansson, N. H., 1971. “On Myopic Portfolio Policies, With and Without
Serial Correlation of Yields,” The J. of Business of the University of Chicago, Vol. 44,
pp- 324-334.

[Han80] Hansen, P., 1980. “Bicriterion Path Problems,” in Multiple-Criteria Decision
Making: Theory and Applications, Edited by G. Fandel and T. Gal, Springer Verlag,
Heidelberg, Germany, pp. 109-127.

[Han06] Hansen, N., 2006. “The CMA Evolution Strategy: A Comparing Review,” in
Towards a New Evolutionary Computation, Springer Berlin Heidelberg, pp. 75-102.

[Hanl17] Hansen, E. A., 2017. “Error Bounds for Stochastic Shortest Path Problems,”
Math. of Operations Research, forthcoming.

[Hay09] Haykin, S., 2009. Neural Networks and Learning Machines, (3rd Edition),
Prentice-Hall, Englewood-Cliffs, N. J.

[Her89] Hernandez-Lerma, O., 1989. Adaptive Markov Control Processes, Springer, N.
Y.

[Hes66] Hestenes, M. R., 1966. Calculus of Variations and Optimal Control Theory,
Wiley, N. Y.

[HoK71] Hoffman, K., and Kunze, R., 1971. Linear Algebra, 2nd ed., Prentice-Hall,
Englewood Cliffs, N. J.

[IEET1] IEEE Trans. Automatic Control, 1971. Special Issue on Linear-Quadratic Gaus-
sian Problem, Vol. AC-16.

[I0S96] Ioannou, P. A.; and Sun, J., 1996. Robust Adaptive Control, Prentice-Hall,
Englewood Cliffs, N. J.

[JBE94] James, M. R., Baras, J. S., and Elliott, R. J., 1994. “Risk-Sensitive Control
and Dynamic Games for Partially Observed Discrete-Time Nonlinear Systems,” IEEE
Trans. on Automatic Control, Vol. AC-39, pp. 780-792.

[Jac73] Jacobson, D. H., 1973. “Optimal Stochastic Linear Systems With Exponential
Performance Criteria and their Relation to Deterministic Differential Games,” IEEE
Trans. Automatic Control, Vol. AC-18, pp. 124-131.

[Jaf84] Jaffe, J. M., 1984. “Algorithms for Finding Paths with Multiple Constraints,”
Networks, Vol. 14, pp. 95-116.

[Jew63] Jewell, W., 1963. “Markov Renewal Programming I and II,” Operations Re-
search, Vol. 2, pp. 938-971.

[JoT61] Joseph, P. D., and Tou, J. T., 1961. “On Linear Control Theory,” AIEE Trans.,
Vol. 80 (II), pp. 193-196.

542 References

[Jon90] Jones, L. K., 1990. “Constructive Approximations for Neural Networks by Sig-
moidal Functions,” Proceedings of the IEEE, Vol. 78, pp. 1586-1589.

[KGB82] Kimemia, J., Gershwin, S. B., and Bertsekas, D. P., 1982. “Computation of
Production Control Policies by a Dynamic Programming Technique,” in Analysis and
Optimization of Systems, A. Bensoussan and J. L. Lions (eds.), Springer, N. Y., pp.
243-269.

[KKK95] Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive
Control Design, J. Wiley, N. Y.

[KLB92] Kosut, R. L., Lau, M. K., and Boyd, S. P., 1992. “Set-Membership Identifi-
cation of Systems with Parametric and Nonparametric Uncertainty,” IEEE Trans. on
Automatic Control, Vol. AC-37, pp. 929-941.

[KLC98] Kaelbling, L.P., Littman, M. L., and Cassandra, A. R., 1998. “Planning and
Acting in Partially Observable Stochastic Domains,” Artificial Intelligence, Vol. 101, pp.
99-134.

[KaD66] Karush, W., and Dear, E. E., 1966. “Optimal Stimulus Presentation Strategy
for a Stimulus Sampling Model of Learning,” J. Math. Psychology, Vol. 3, pp. 15-47.

[KaK58] Kalman, R. E., and Koepcke, R. W., 1958. “Optimal Synthesis of Linear Sam-
pling Control Systems Using Generalized Performance Indexes,” Trans. ASME, Vol. 80,
pp. 1820-1826.

[KaW94] Kall, P., and Wallace, S. W., 1994. Stochastic Programming, Wiley, Chichester,
UK.

[Kal60] Kalman, R. E., 1960. “A New Approach to Linear Filtering and Prediction
Problems,” Trans. ASME Ser. D. J. Basic Engrg., Vol. 82, pp. 35-45.

[KeG88] Keerthi, S. S., and Gilbert, E. G., 1988. “Optimal, Infinite Horizon Feedback
Laws for a General Class of Constrained Discrete Time Systems: Stability and Moving-
Horizon Approximations,” J. Optimization Theory Appl., Vo. 57, pp. 265-293.

[Kim82] Kimemia, J., 1982. “Hierarchical Control of Production in Flexible Manufac-
turing Systems,” Ph.D. Thesis, Dep. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

[KoC15] Kouvaritakis, B., and Cannon, M., 2015. Model Predictive Control: Classical,
Robust and Stochastic, Springer, N. Y.

[KoS06] Kocsis, L., and Szepesvari, C., 2006. “Bandit Based Monte-Carlo Planning,”
Proc. of 17th European Conference on Machine Learning, Berlin, pp. 282-293.

[KuA77] Ku, R., and Athans, M., 1977. “Further Results on the Uncertainty Threshold
Principle,” IEEE Trans. on Automatic Control, Vol. AC-22, pp. 866-868.

[KuD92] Kushner, H. J., and Dupuis, P. G., 1992. Numerical Methods for Stochastic
Control Problems in Continuous Time, Springer, N. Y.

[KuL82] Kumar, P. R., and Lin, W., 1982. “Optimal Adaptive Controllers for Unknown
Markov Chains,” IEEE Trans. Automatic Control, Vol. AC-27, pp. 765-774.

[KuV86] Kumar, P. R., and Varaiya, P. P., 1986. Stochastic Systems: Estimation, Iden-
tification, and Adaptive Control, Prentice-Hall, Englewood Cliffs, N. J.

[KuV97] Kurzhanski, A., and Valyi, I., 1997. Ellipsoidal Calculus for Estimation and
Control, Birkhauser, Boston, MA.

[Kum83] Kumar, P. R., 1983. “Optimal Adaptive Control of Linear-Quadratic-Gaussian
Systems,” SIAM J. on Control and Optimization, Vol. 21, pp. 163-178.

References 543

[Kum85] Kumar, P. R., 1985. “A Survey of Some Results in Stochastic Adaptive Con-
trol,” STAM J. on Control and Optimization, Vol. 23, pp. 329-380.

[LGW16] Lan, Y., Guan, X., and Wu, J., 2016. “Rollout Strategies for Real-Time Multi-
Energy Scheduling in Microgrid with Storage System,” IET Generation, Transmission
and Distribution, Vol. 10, pp. 688-696.

[LLLO8] Lewis, F. L., Liu, D., and Lendaris, G. G., 2008. Special Issue on Adaptive
Dynamic Programming and Reinforcement Learning in Feedback Control, IEEE Trans.
on Systems, Man, and Cybernetics, Part B, Vol. 38, No. 4.

[LLP93] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S., 1993. “Multilayer Feed-
forward Networks with a Nonpolynomial Activation Function can Approximate any
Function,” Neural Networks, Vol. 6, pp. 861-867.

[LWW17] Liu, D., Wei, Q., Wang, D., and Yang, X., 2017. Adaptive Dynamic Program-
ming with Applications in Optimal Control, Springer, Berlin.

[LaW17] Lam, R., and Willcox, K., 2017. “Lookahead Bayesian Optimization with In-
equality Constraints,” in Advances in Neural Information Processing Systems, pp. 1890-
1900.

[Las85] Lasserre, J. B., 1985. “A Mixed Forward-Backward Dynamic Programming
Method Using Parallel Computation,” J. Optimization Theory Appl., Vol. 45, pp. 165-
168.

[LeL13] Lewis, F. L., and Liu, D., (Eds), 2013. Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control, Wiley, Hoboken, N. J.

[Lev84] Levy, D., 1984. The Chess Computer Handbook, B. T. Batsford Ltd., London.

[LiR71] Lippman, S. A., and Ross, S. M., 1971. “The Streetwalker’s Dilemma: A Job-
Shop Model,” SIAM J. of Appl. Math., Vol. 20, pp. 336-342.

[LiR06] Lincoln, B., and Rantzer, A., 2006. “Relaxing Dynamic Programming,” IEEE
Trans. Automatic Control, Vol. 51, pp. 1249-1260.

[LiW15] Li, H. and Womer, N. K., 2015. “Solving Stochastic Resource-Constrained
Project Scheduling Problems by Closed-Loop Approximate Dynamic Programming,”
European J. of Operational Research, Vol. 246, pp. 20-33.

[LjS83] Ljung, L., and Soderstrom, T., 1983. Theory and Practice of Recursive Identifi-
cation, MIT Press, Cambridge, MA.

[Lov91a] Lovejoy, W. S., 1991. “Computationally Feasible Bounds for Partially Observed
Markov Decision Processes,” Operations Research, Vol. 39, pp. 162175.

[Lov91b] Lovejoy, W. S., 1991. “A Survey of Algorithmic Methods for Partially Observed
Markov Decision Processes,” Annals of Operations Research, Vol. 18, pp. 47-66.

[Lue69] Luenberger, D. G., 1969. Optimization by Vector Space Methods, Wiley, N. Y.

[Lue84] Luenberger, D. G., 1984. Linear and Nonlinear Programming, Addison-Wesley,
Reading, MA.

[MHK98] Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L. K., and
Dean, T., 1998. “Solving Very Large Weakly Coupled Markov Decision Processes,” Proc.
of the Fifteenth National Conference on Artificial Intelligence, Madison, WI, pp. 165-172.

[MMBO02] McGovern, A., Moss, E., and Barto, A., 2002. “Building a Basic Building
Block Scheduler Using Reinforcement Learning and Rollouts,” Machine Learning, Vol.
49, pp. 141-160.

544 References

[MPP04] Meloni, C., Pacciarelli, D., and Pranzo, M., 2004. “A Rollout Metaheuristic for
Job Shop Scheduling Problems,” Annals of Operations Research, Vol. 131, pp. 215-235.

[MRRO0] Mayne, D., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., 2000. “Con-
strained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, pp.
789-814.

[MVZ95] Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A., 1995. “Robust Optimization
of Large-Scale Systems,” Operations Research, Vol. 43, pp. 264-281.

[MaJ15] Mastin, A., and Jaillet, P., 2015. “Average-Case Performance of Rollout Algo-
rithms for Knapsack Problems,” J. of Optimization Theory and Applications, Vol. 165,
pp- 964-984.

[Mac02] Maciejowski, J. M., 2002. Predictive Control with Constraints, Addison-Wesley,
Reading, MA.

[Mar84] Martins, E. Q. V., 1984. “On a Multicriteria Shortest Path Problem,” European
J. of Operational Research, Vol. 16, pp. 236-245.

[May14] Mayne, D. Q., 2014. “Model Predictive Control: Recent Developments and
Future Promise,” Automatica, Vol. 50, pp. 2967-2986.

[McQ66] MacQueen, J., 1966. “A Modified Dynamic Programming Method for Marko-
vian Decision Problems,” J. Math. Anal. Appl., Vol. 14, pp. 38-43.

[Mik79] Mikhailov, V. A.,; 1979. Methods of Random Multiple Access, Candidate Engi-
neering Thesis, Moscow Institute of Physics and Technology, Moscow.

[MoL99] Morari, M., and Lee, J. H., 1999. “Model Predictive Control: Past, Present,
and Future,” Computers and Chemical Engineering, Vol. 23, pp. 667-682.

[Mos68] Mossin, J., 1968. “Optimal Multi-Period Portfolio Policies,” J. Business, Vol.
41, pp. 215-229.

[MuS08] Munos, R., and Szepesvari, C, 2008. “Finite-Time Bounds for Fitted Value
Iteration,” J. of Machine Learning Research, Vol. 1, pp. 815-857.

[Mun14] Munos, R., 2014. “From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning,” Foundations and Trends in Machine
Learning, Vol. 7, pp. 1-129.

[NeW88] Nemhauser, G. L., and Wolsey, L. A., 1988. Integer and Combinatorial Opti-
mization, Wiley, N. Y.

[New75] Newborn, M., 1975. Computer Chess, Academic Press, N. Y.

[Nic66] Nicholson, T., 1966. “Finding the Shortest Route Between Two Points in a
Network,” The Computer Journal, Vol. 9, pp. 275-280.

[Nil71] Nilsson, N. J., 1971. Problem-Solving Methods in Artificial Intelligence, McGraw-
Hill, N. Y.

[Nil80] Nilsson, N. J., 1980. Principles of Artificial Intelligence, Morgan-Kaufmann, San
Mateo, Ca.

[OBP16] Osband, I., Blundell, C., Pritzel, A., and Van Roy, B., 2016. “Deep Exploration
Via Bootstrapped DQN,” Advances in Neural Information Processing Systems, Vol. 29.

[OVW16] Osband, I., Van Roy, B., and Wen, Z., 2016. “Generalization and Explo-
ration Via Randomized Value Functions,” Proc. of the 33rd International Conference on
Machine Learning, pp. 2377-2386.

References 545

[Osb16] Osband, I., 2016. Deep Exploration via Randomized Value Functions, Ph.D.
Dissertation, Stanford University.

[PBG65] Pontryagin, L. S., Boltyanski, V., Gamkrelidze, R., and Mishchenko, E., 1965.
The Mathematical Theory of Optimal Processes, Interscience Publishers, Inc., N. Y.

[PBT98] Polymenakos, L. C., Bertsekas, D. P., and Tsitsiklis, J. N., 1998. “Efficient
Algorithms for Continuous-Space Shortest Path Problems,” IEEE Trans. on Automatic
Control, Vol. 43, pp. 278-283.

[PaT87] Papadimitriou, C. H., and Tsitsiklis, J. N., 1987. “The Complexity of Markov
Decision Processes,” Math. Operations Res., Vol. 12, pp. 441-450.

[Pap74] Pape, V., 1974. “Implementation and Efficiency of Moore Algorithms for the
Shortest Path Problem,” Math. Progr., Vol. 7, pp. 212-222.

[Pat01] Patek, S. D., 2001. “On Terminating Markov Decision Processes with a Risk
Averse Objective Function,” Automatica, Vol. 37, pp. 1379-1386.

[Pea84] Pearl, J., 1984. Heuristics, Addison-Wesley, Reading, MA.

[Pic90] Picone, J., 1990. “Continuous Speech Recognition Using Hidden Markov Mod-
els,” IEEE ASSP Magazine, July Issue, pp. 26-41.

[Pin95] Pinedo, M., 1995. Scheduling: Theory, Algorithms, and Systems, Prentice-Hall,
Englewood Cliffs, N. J.

[Pos14] Post, H. N., 2014. The Shortest Path Problem on Real Road Networks: Theory,
Algorithms and Computations, TU Delft, Delft University of Technology.

[Pow07] Powell, W. B., 2007. Approximate Dynamic Programming: Solving the Curses
of Dimensionality, J. Wiley and Sons, Hoboken, N. J; a 2nd edition appeared in 2011.

[PrS94] Proakis, J. G., and Salehi, M., 1994. Communication Systems Engineering,
Prentice-Hall, Englewood Cliffs, N. J.

[Pra64] Pratt, J. W., 1964. “Risk Aversion in the Small and in the Large,” Econometrica,
Vol. 32, pp. 300-307.

[Pre95] Prekopa, A., 1995. Stochastic Programming, Kluwer, Boston.

[RMD17] Rawlings, J. B., Mayne, D. Q., and Diehl, M. M., 2017. Model Predictive
Control: Theory, Computation, and Design, 2nd Ed., Nob Hill Publishing.

[RSS12] Runarsson, T. P., Schoenauer, M., and Sebag, M., 2012. “Pilot, Rollout and
Monte Carlo Tree Search Methods for Job Shop Scheduling,” in Learning and Intelligent
Optimization, Springer, Berlin, pp. 160-174.

[Rab89] Rabiner, L. R., 1989. “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. of the IEEE, Vol. 77, pp. 257-286.

[Roc70] Rockafellar, R. T., 1970. Convex Analysis, Princeton University Press, Prince-
ton, N. J.

[Ros70] Ross, S. M., 1970. Applied Probability Models with Optimization Applications,
Holden-Day, San Francisco, CA.

[Ros83] Ross, S. M., 1983. Introduction to Stochastic Dynamic Programming, Academic
Press, N. Y.

[Ros85] Ross, S. M., 1985. Probability Models, Academic Press, Orlando, Fla.
[Ros12] Ross, S. M., 2012. Simulation, 5th Edition, Academic Press, Orlando, Fla.

546 References

[RuK04] Rubinstein, R. Y., and Kroese, D. P., 2004. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Springer, N. Y.

[RuK17] Rubinstein, R. Y., and Kroese, D. P.; 2017. Simulation and the Monte Carlo
Method, 3rd Edition, J. Wiley, N. Y.

[Rud76] Rudin, W., 1976. Real Analysis, 3rd Edition, McGraw-Hill, N. Y.

[Rus97] Rust, J., 1997. “Using Randomization to Break the Curse of Dimensionality,”
Econometrica, Vol. 65, pp. 487-516.

[SBB89] Sastry, S., Bodson, M., and Bartram, J. F., 1989. Adaptive Control: Stability,
Convergence, and Robustness, Prentice-Hall, Englewood Cliffs, N. J.

[SBP04] Si, J., Barto, A., Powell, W., and Wunsch, D., (Eds.) 2004. Learning and
Approximate Dynamic Programming, IEEE Press, N. Y.

[SGCO02] Savagaonkar, U., Givan, R., and Chong, E. K. P., 2002. “Sampling Techniques
for Zero-Sum, Discounted Markov Games,” in Proc. 40th Allerton Conference on Com-
munication, Control and Computing, Monticello, Il1.

[SGG15] Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., and Geist, M., 2015.
“Approximate Modified Policy Iteration and its Application to the Game of Tetris,” J.
of Machine Learning Research, Vol. 16, pp. 1629-1676.

[SHB15] Simroth, A., Holfeld, D., and Brunsch, R., 2015. “Job Shop Production Plan-
ning under Uncertainty: A Monte Carlo Rollout Approach,” Proc. of the International
Scientific and Practical Conference, Vol. 3, pp. 175-179.

[SHM16] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and Dieleman,
S., 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search,”
Nature, Vol. 529, pp. 484-489.

[SHS17] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and Lillicrap, T., 2017. “Mastering
Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” arXiv
preprint arXiv:1712.01815.

[SLA12] Snoek, J., Larochelle, H., and Adams, R. P., 2012. “Practical Bayesian Opti-
mization of Machine Learning Algorithms,” in Advances in Neural Information Process-
ing Systems, pp. 2951-2959.

[SLJ13] Sun, B., Luh, P. B, Jia, Q. S., Jiang, Z., Wang, F., and Song, C., 2013. “Build-
ing Energy Management: Integrated Control of Active and Passive Heating, Cooling,
Lighting, Shading, and Ventilation Systems,” IEEE Trans. on Automation Science and
Engineering, Vol. 10, pp. 588-602.

[SNC18] Sarkale, Y., Nozhati, S., Chong, E. K., Ellingwood, B. R., and Mahmoud, H.,
2018. “Solving Markov Decision Processes for Network-Level Post-Hazard Recovery via
Simulation Optimization and Rollout,” in 2018 IEEE 14th International Conference on
Automation Science and Engineering, pp. 906-912.

[SZL08] Sun, T., Zhao, Q., Lun, P., and Tomastik, R., 2008. “Optimization of Joint Re-
placement Policies for Multipart Systems by a Rollout Framework,” IEEE Transactions
on Automation Science and Engineering, Vol. 5, pp. 609-619.

[SaB11] Sastry, S., and Bodson, M., 2011. Adaptive Control: Stability, Convergence and
Robustness, Courier Corporation.

[Sam69] Samuelson, P. A., 1969. “Lifetime Portfolio Selection by Dynamic Stochastic
Programming,” Review of Economics and Statistics, Vol. 51, pp. 239-246.

References 547

[Sar87] Sargent, T. J., 1987. Dynamic Macroeconomic Theory, Harvard Univ. Press,
Cambridge, MA.

[Sca60] Scarf, H., 1960. “The Optimality of (s,.S) Policies for the Dynamic Inventory
Problem,” Proceedings of the 1st Stanford Symposium on Mathematical Methods in the
Social Sciences, Stanford University Press, Stanford, CA.

[Sch68] Schweppe, F. C., 1968. “Recursive State Estimation; Unknown but Bounded
Errors and System Inputs,” IEEE Trans. Automatic Control, Vol. AC-13.

[Sch97] Schaeffer, J., 1997. One Jump Ahead, Springer, N. Y.

[Sch13] Scherrer, B., 2013. “Performance Bounds for Lambda Policy Iteration and Appli-
cation to the Game of Tetris,” J. of Machine Learning Research, Vol. 14, pp. 1181-1227.

[Sec00] Secomandi, N., 2000. “Comparing Neuro-Dynamic Programming Algorithms for
the Vehicle Routing Problem with Stochastic Demands,” Computers and Operations
Research, Vol. 27, pp. 1201-1225.

[Sec01] Secomandi, N., 2001. “A Rollout Policy for the Vehicle Routing Problem with
Stochastic Demands,” Operations Research, Vol. 49, pp. 796-802.

[Sec03] Secomandi, N., 2003. “Analysis of a Rollout Approach to Sequencing Problems
with Stochastic Routing Applications,” J. of Heuristics, Vol. 9, pp. 321-352.

[Set99a] Sethian, J. A., 1999. Level Set Methods and Fast Marching Methods Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Mate-
rials Science, Cambridge University Press, N. Y.

[Set99b] Sethian, J. A., 1999. “Fast Marching Methods,” SIAM Review, Vol. 41, pp.
199-235.

[Sha50] Shannon, C., 1950. “Programming a Digital Computer for Playing Chess,” Phil.
Mag., Vol. 41, pp. 356-375.

[Shi64] Shiryaev, A. N., 1964. “On Markov Sufficient Statistics in Non-Additive Bayes
Problems of Sequential Analysis,” Theory of Probability and Applications, Vol. 9, pp.
604-618.

[Shi66] Shiryaev, A. N., 1966. “On the Theory of Decision Functions and Control by an
Observation Process with Incomplete Data,” Selected Translations in Math. Statistics
and Probability, Vol. 6, pp. 162-188.

[Shr81] Shreve, S. E., 1981. “A Note on Optimal Switching Between Two Activities,”
Naval Research Logistics Quarterly, Vol. 28, pp. 185-190.

[Sim56] Simon, H. A., 1956. “Dynamic Programming Under Uncertainty with a Quadratic
Criterion Function,” Econometrica, Vol. 24, pp. 74-81.

[Sim06] Simon, D., 2006. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear
Approaches, J. Wiley, N. Y.

[Sk188] Sklar, B., 1988. Digital Communications: Fundamentals and Applications, Pren-
tice-Hall, Englewood Cliffs, N. J.

[SIL91] Slotine, J.-J. E., and Li, W., Applied Nonlinear Control, Prentice-Hall, Engle-
wood Cliffs, N. J.

[SmS73] Smallwood, R. D., and Sondik, E. J., 1973. “The Optimal Control of Partially
Observable Markov Processes Over a Finite Horizon,” Operations Res., Vol. 11, pp.
1071-1088.

548 References

[SmaT7l] Smallwood, R. D., 1971. “The Analysis of Economic Teaching Strategies for a
Simple Learning Model,” J. Math. Psychology, Vol. 8, pp. 285-301.

[Sob75] Sobel, M. J., 1975. “Ordinal Dynamic Programming,” Management Science, Vol.
21, pp. 967-975.

[Son71] Sondik, E. J., 1971. “The Optimal Control of Partially Observable Markov
Processes,” Ph.D. Dissertation, Department of Engineering-Economic Systems, Stanford
University, Stanford, CA.

[StL89] Stokey, N. L., and Lucas, R. E., 1989. Recursive Methods in Economic Dynamics,
Harvard University Press, Cambridge, MA.

[StW91] Stewart, B. S., and White, C. C., 1991. “Multiobjective A*,” J. ACM, Vol. 38,
pp. 775-814.

[Sti94] Stirzaker, D., 1994. Elementary Probability, Cambridge University Press, Cam-
bridge.

[Str65] Striebel, C. T., 1965. “Sufficient Statistics in the Optimal Control of Stochastic
Systems,” J. Math. Anal. Appl., Vol. 12, pp. 576-592.

[Str76] Strang, G., 1976. Linear Algebra and its Applications, Academic Press, N. Y.

[SuB98] Sutton, R., and Barto, A. G., 1998. Reinforcement Learning, MIT Press, Cam-
bridge, MA.

[SzL06] Szita, I., and Lorinz, A., 2006. “Learning Tetris Using the Noisy Cross-Entropy
Method,” Neural Computation, Vol. 18, pp. 2936-2941.

[Szel0] Szepesvari, C., 2010. Algorithms for Reinforcement Learning, Morgan and Clay-
pool Publishers, San Franscisco, CA.

[TGL13] Tesauro, G., Gondek, D. C., Lenchner, J., Fan, J., and Prager, J. M., 2013.
“Analysis of Watson’s Strategies for Playing Jeopardy!,” J. of Artificial Intelligence
Research.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using
Monte Carlo Search,” presented at the 1996 Neural Information Processing Systems
Conference, Denver, CO; also in M. Mozer et al. (eds.), Advances in Neural Information
Processing Systems 9, MIT Press (1997).

[Tes89] Tesauro, G., “Connectionist Learning of Expert Preferences by Comparison
Training,” in D. Touretzky (Ed.), Advances in Neural Information Processing Systems,
(NIPS-88), Morgan Kaufmann, San Mateo, CA, pp. 99-106.

[Tes01] Tesauro, G., “Comparison Training of Chess Evaluation Functions,” in J. Furnk-
ranz, M. Kumbat (Eds.), Machines that Learn to Play Games, Nova Science Publishers,
pp- 117-130.

[ThS09] Thiery, C., and Scherrer, B., 2009. “Improvements on Learning Tetris with
Cross-Entropy,” International Computer Games Association J., Vol. 32, pp. 23-33.

[The54] Theil, H., 1954. “Econometric Models and Welfare Maximization,” Weltwirtsch.
Arch., Vol. 72, pp. 60-83.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-
Scale Dynamic Programming,” Machine Learning, Vol. 22, pp. 59-94.

[Tsi84a] Tsitsiklis, J. N., 1984. “Convexity and Characterization of Optimal Policies in
a Dynamic Routing Problem,” J. Optimization Theory Appl., Vol. 44, pp. 105-136.

References 549

[Tsi84b] Tsitsiklis, J. N., 1984. “Periodic Review Inventory Systems with Continuous
Demand and Discrete Order Sizes,” Management Sci., Vol. 30, pp. 1250-1254.

[Tsi87] Tsitsiklis, J. N., 1987. “Analysis of a Multiaccess Control Scheme,” IEEE Trans.
Automatic Control, Vol. AC-32, pp. 1017-1020.

[Tsi95] Tsitsiklis, J. N., 1995. “Efficient Algorithms for Globally Optimal Trajectories,”
IEEE Trans. Automatic Control, Vol. AC-40, pp. 1528-1538.

[TuP03] Tu, F., and Pattipati, K. R., 2003. “Rollout Strategies for Sequential Fault
Diagnosis,” IEEE Trans. on Systems, Man and Cybernetics, Part A, pp. 86-99.

[UGM18] Ulmer, M. W., Goodson, J. C., Mattfeld, D. C., and Hennig, M., 2018. “Offline-
Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochas-
tic Requests,” Transportation Science, Vol. 53, pp. 185-202.

[Ulm17] Ulmer, M. W., 2017. Approximate Dynamic Programming for Dynamic Vehicle
Routing, Springer, Berlin.
[VVL13] Vrabie, D., Vamvoudakis, K. G., and Lewis, F. L., 2013. Optimal Adaptive

Control and Differential Games by Reinforcement Learning Principles, The Institution
of Engineering and Technology, London.

[VaW89] Varaiya, P., and Wets, R. J-B., 1989. “Stochastic Dynamic Optimization Ap-
proaches and Computation,” Mathematical Programming: State of the Art, M. Iri and
K. Tanabe (eds.), Kluwer, Boston, pp. 309-332.

[Vei65] Veinott, A. F., Jr., 1965. “The Optimal Inventory Policy for Batch Ordering,”
Operations Res., Vol. 13, pp. 424-432.

[Vei66] Veinott, A. F., Jr., 1966. “The Status of Mathematical Inventory Theory,” Man-
agement Sci., Vol. 12, pp. 745-777.

[Vin74] Vincke, P., 1974. “Problemes Multicriteres,” Cahiers du Centre d’ Etudes de
Recherche Operationnelle, Vol. 16, pp. 425-439.

[Vit67] Viterbi, A. J., 1967. “Error Bounds for Convolutional Codes and an Asymp-
totically Optimum Decoding Algorithm,” IEEE Trans. on Info. Theory, Vol. IT-13, pp.
260-269.

[V1a08] Vladimirsky, A., 2008. “Label-Setting Methods for Multimode Stochastic Short-
est Path Problems on Graphs,” Math. of Operations Research, Vol. 33, pp. 821-838.

[WCGO03] Wu, G., Chong, E. K. P., and Givan, R. L., 2003. “Congestion Control Using
Policy Rollout,” Proc. 2nd IEEE CDC, Maui, Hawaii, pp. 4825-4830.

[Wald7] Wald, A., 1947. Sequential Analysis, Wiley, N. Y.

[WeB99] Weaver, L., and Baxter, J., 1999. “Reinforcement Learning From State and
Temporal Differences,” Tech. Report, Department of Computer Science, Australian Na-
tional University.

[WeP80] Weiss, G., and Pinedo, M., 1980. “Scheduling Tasks with Exponential Service
Times on Nonidentical Processors to Minimize Various Cost Functions,” J. Appl. Prob.,
Vol. 17, pp. 187-202.

[Wen14] Wen, Z., 1014. Efficient Reinforcement Learning with Value Function General-
ization, Ph.D. Dissertation, Stanford University.

[WhHS80] White, C. C., and Harrington, D. P., 1980. “Application of Jensen’s Inequality
to Adaptive Suboptimal Design,” J. Optimization Theory Appl., Vol. 32, pp. 89-99.

550 References

[WhS89] White, C. C., and Scherer, W. T.; 1989. “Solution Procedures for Partially
Observed Markov Decision Processes,” Operations Res., Vol. 30, pp. 791-797.

[Whi69] White, D. J., 1969. Dynamic Programming, Holden-Day, San Francisco, CA.

[Whi78] Whitt, W., 1978. “Approximations of Dynamic Programs I,” Math. Operations
Res., Vol. 3, pp. 231-243.

[Whi79] Whitt, W., 1979. “Approximations of Dynamic Programs II,” Math. Operations
Res., Vol. 4, pp. 179-185.

[Whi82] Whittle, P., 1982. Optimization Over Time, Wiley, N. Y., Vol. 1, 1982, Vol. 2,
1983.

[Whi88] Whittle, P., 1988. “Restless Bandits: Activity Allocation in a Changing World,”
J. of Applied Probability, pp. 287-298.

[Whi90] Whittle, P., 1990. Risk-Sensitive Optimal Control, Wiley, N. Y.

[Wil71] Willems, J., 1971. “Least Squares Stationary Optimal Control and the Algebraic
Riccati Equation,” IEEE Trans. on Automatic Control, Vol. 16, pp. 621-634.

[Wit66a] Witsenhausen, H. S.; 1966. “Minimax Control of Uncertain Systems,” Ph.D.
Dissertation, Massachusetts Institute of Technology, Cambridge, MA.

[Wit66b] Witsenhausen, H. S., 1966. “A Comparison of Closed-Loop and Open-Loop
Optimum Systems,” IEEE Trans. Automatic Control, Vol. AC-11, pp. 619-621.

[Wit68] Witsenhausen, H. S., 1968. “Sets of Possible States of Linear Systems Given
Perturbed Observations,” IEEE Trans. Automatic Control, Vol. AC-13, pp. 556-558.

[Wit69] Witsenhausen, H. S., 1969. “Inequalities for the Performance of Suboptimal
Uncertain Systems,” Automatica, Vol. 5, pp. 507-512.

[Wit70] Witsenhausen, H. S., 1970. “On Performance Bounds for Uncertain Systems,”
SIAM J. on Control, Vol. 8, pp. 55-89.

[Wit71] Witsenhausen, H. S., 1971. “Separation of Estimation and Control for Discrete-
Time Systems,” Proc. IEEE, Vol. 59, pp. 1557-1566.

[Wol98] Wolsey, L. A., 1998. Integer Programming, Wiley, N. Y.

[WuB99] Wu, C. C., and Bertsekas, D. P., 1999. “Distributed Power Control Algorithms
for Wireless Networks,” unpublished report, available from the author’s www site.

[YDRO4] Yan, X., Diaconis, P., Rusmevichientong, P., and Van Roy, B., 2004. “Solitaire:
Man Versus Machine,” Advances in Neural Information Processing Systems, Vol. 17, pp.
1553-1560.

[YuB04] Yu, H., and Bertsekas, D. P., 2004. “Discretized Approximations for POMDP
with Average Cost,” Proc. of 20th Conference on Uncertainty in Artificial Intelligence,
Banff, Canada.

[YuB12] Yu, H., and Bertsekas, D. P., 2012. “Weighted Bellman Equations and their
Applications in Dynamic Programming,” Lab. for Information and Decision Systems
Report LIDS-P-2876, MIT.

[YuB15] Yu, H., and Bertsekas, D. P., 2015. “A Mixed Value and Policy Iteration Method
for Stochastic Control with Universally Measurable Policies,” Math. of Operations Re-
search, Vol. 40, pp. 926-968.

	Dynamic Programming and Optimal Control: Vol. I
	Contents
	Preface
	Chapter 1: The Dynamic Programming Algorithm
	Chapter 2: Deterministic Systems and the Shortest Path Problem
	Chapter 3: Problems with Perfect State Information
	Chapter 4: Problems with Imperfect State Information
	Chapter 5: Introduction to Infinite Horizon Problems
	Chapter 6: Approximate Dynamic Programming
	Chapter 7: Deterministic Continuous-Time Optimal Control
	Appendix A: Mathematical Review
	Appendix B: On Optimization Theory
	Appendix C: On Probability Theory
	Appendix D: On Finite-State Markov Chains
	Appendix E: Least Squares Estimation and Kalman Filtering
	Appendix F: Formulating Problems of Decision Under Uncertainty
	References
	Index
	Selected Theoretical Problem Solutions

