
APPENDIX A:

Measure Theoretic Issues in

Dynamic Programming

A general theory of stochastic dynamic programming must deal with the
formidable mathematical questions that arise from the presence of uncount-
able probability spaces. The purpose of this appendix is to orient the
mathematically advanced reader on these questions.†

The appendix is based on the research monograph by Bertsekas and
Shreve [BeS78] (freely available from the internet), to which we refer for a
detailed analysis, for references to earlier research, and for the development
of mathematical background and terminology on Borel spaces and related
subjects. We will explore here the main questions by means of a simple
two-stage example described in Section A.1. In Section A.2, we develop
a framework, based on universally measurable policies, for the rigorous
mathematical development of the standard DP results for this example
and for more general finite horizon models.

A.1 A TWO-STAGE EXAMPLE

Suppose that the initial state x0 is a point on the real line !. Knowing
x0, we must choose a control u0 ∈ !. Then the new state x1 is generated

† The style and terminology of this appendix assume a reader who has knowl-
edge of the basic notions of measure theory and is also familiar with finite horizon

DP. In particular, we freely use basic notions of measurability and integration.

We also use “inf” notation rather than “min” in various optimization equations,
when the infimum is not known to be attained.
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according to a transition probability measure p(dx1 | x0, u0) on the Borel
σ-algebra of ! (the one generated by the open sets of !). Then, knowing
x1, we must choose a control u1 ∈ ! and incur a cost g(x1, u1), where g is
a real-valued function that is bounded either above or below. Thus a cost
is incurred only at the second stage.

A policy π = {µ0, µ1} is a pair of functions from state to control, i.e.,
if π is employed and x0 is the initial state, then u0 = µ0(x0), and if x1 is
the subsequent state, then u1 = µ1(x1). The expected value of the cost
corresponding to π when x0 is the initial state is given by

Jπ(x0) =

∫

g
(

x1, µ1(x1)
)

p
(

dx1 | x0, µ0(x0)
)

. (A.1)

We wish to find π to minimize Jπ(x0).
To formulate the problem properly, we must insure that the integral

in Eq. (A.1) is defined. Various sufficient conditions can be used for this;
for example it is sufficient that g, µ0, and µ1 be Borel measurable, and
that p(B | x0, u0) is a Borel measurable function of (x0, u0) for every Borel
set B (see [BeS78]). However, our aim in this example is to discuss the
necessary measure theoretic framework not only for the cost Jπ(x0) to be
defined, but also for the major DP-related results to hold. We thus leave
unspecified for the moment the assumptions on the problem data and the
measurability restrictions on the policy π.

The optimal cost is

J∗(x0) = inf
π

Jπ(x0),

where the infimum is over all policies π = {µ0, µ1} such that µ0 and µ1 are
measurable functions from ! to ! with respect to σ-algebras to be specified
later. Given ε > 0, a policy π is ε-optimal if

Jπ(x0) ≤ J∗(x0) + ε, ∀ x0 ∈ !.

A policy π is optimal if

Jπ(x0) = J∗(x0), ∀ x0 ∈ !.

The DP Algorithm

The DP algorithm for the preceding two-stage problem takes the form

J1(x1) = inf
u1∈#

g(x1, u1), ∀ x1 ∈ !, (A.2)

J0(x0) = inf
u0∈#

∫

J1(x1) p
(

dx1 | x0, u0), ∀ x0 ∈ !, (A.3)



Sec. A.1 A Two-Stage Example 643

and assuming that

J0(x0) > −∞, ∀ x0 ∈ !, J1(x1) > −∞, ∀ x1 ∈ !,

the results we expect to be able to prove are:

R.1: There holds
J∗(x0) = J0(x0), ∀ x0 ∈ !.

R.2: Given any ε > 0, there is an ε-optimal policy.

R.3: If µ∗
1(x1) and µ∗

0(x0) attain the infimum in the DP algorithm (A.2),
(A.3) for all x1 ∈ ! and x0 ∈ !, respectively, then π∗ = {µ∗

0, µ
∗
1} is

optimal.

We will see that to establish these results, we will need to address
two main issues:

(1) The cost function Jπ of a policy π, and the functions J0 and J1 pro-
duced by DP should be well-defined, with a mathematical framework,
which ensures that the integrals in Eqs. (A.1)-(A.3) make sense.

(2) Since J0(x0) is easily seen to be a lower bound to Jπ(x0) for all x0

and π = {µ0, µ1}, the equality of J0 and J∗ will be ensured if the
class of policies has an ε-selection property, which guarantees that
the minima in Eqs. (A.2) and (A.3) can be nearly attained by µ1(x1)
and µ0(x0) for all x1 and x0, respectively.

To get a better sense of these issues, consider the following informal deriva-
tion of R.1:

J∗(x0) = inf
π

Jπ(x0)

= inf
µ0

inf
µ1

∫

g
(

x1, µ1(x1)
)

p
(

dx1 | x0, µ0(x0)
)

(A.4a)

= inf
µ0

∫
{

inf
µ1

g
(

x1, µ1(x1)
)

}

p
(

dx1 | x0, µ0(x0)
)

(A.4b)

= inf
µ0

∫
{

inf
u1

g(x1, u1)

}

p
(

dx1 | x0, µ0(x0)
)

= inf
µ0

∫

J1(x1) p
(

dx1 | x0, µ0(x0)
)

(A.4c)

= inf
u0

∫

J1(x1) p(dx1 | x0, u0) (A.4d)

= J0(x0).

In order to make this derivation meaningful and mathematically rigorous,
the following points need to be justified:

(a) g and µ1 must be such that g
(

x1, µ1(x1)
)

can be integrated in a well-
defined manner in Eq. (A.4a).
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(b) The interchange of infimization and integration in Eq. (A.4b) must
be legitimate.

(c) g must be such that the function

J1(x1) = inf
u1

g(x1, u1)

can be integrated in a well-defined manner in Eq. (A.4c).

We first discuss these points in the easier context where the state space is
essentially countable.

Countable Space Problems

We observe that if for each (x0, u0), the measure p(dx1 | x0, u0) has count-
able support , i.e., is concentrated on a countable number of points, then for
a fixed policy π and initial state x0, the integral defining the cost Jπ(x0)
of Eq. (A.1) is defined in terms of (possibly infinite) summation. Simi-
larly, the DP algorithm (A.2), (A.3) is defined in terms of summation, and
the same is true for the integrals in Eqs. (A.4a)-(A.4d). Thus, there is no
need to impose measurability restrictions of any kind for the integrals to
make sense, and for the summations/integrations to be well-defined, it is
sufficient that g is bounded either above or below.

It can also be shown that the interchange of infimization and sum-
mation in Eq. (A.4b) is justified in view of the assumption

inf
u1

g(x1, u1) > −∞, ∀ x1 ∈ !.

To see this, for any ε > 0, select µ̄1 : ! '→ ! such that

g
(

x1, µ̄1(x1)
)

≤ inf
u1

g(x1, u1) + ε, ∀ x1 ∈ !. (A.5)

Then

inf
µ1

∫

g
(

x1, µ1(x1)
)

p
(

dx1 | x0, µ0(x0)
)

≤

∫

g
(

x1, µ̄1(x1)
)

p
(

dx1 | x0, µ0(x0)
)

≤

∫

inf
u1

g(x1, u1) p
(

dx1 | x0, µ0(x0)
)

+ ε.

Since ε > 0 is arbitrary, it follows that

inf
µ1

∫

g
(

x1, µ1(x1)
)

p
(

dx1 | x0, µ0(x0)
)

≤

∫

inf
u1

g(x1, u1) p
(

dx1 | x0, µ0(x0)
)

.
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The reverse inequality also holds, since for all µ1, we can write
∫

inf
u1

g(x1, u1) p
(

dx1 | x0, µ0(x0)
)

≤

∫

g
(

x1, µ1(x1)
)

p
(

dx1 | x0, µ0(x0)
)

,

and then we can take the infimum over µ1. It follows that the interchange
of infimization and summation in Eq. (A.4b) is justified, with the ε-optimal
selection property of Eq. (A.5) being the key step in the proof.

We have thus shown that when the measure p(dx1 | x0, u0) has count-
able support, g is bounded either above or below, and J0(x0) > −∞ for
all x0 and J1(x1) > −∞ for all x1, the derivation of Eq. (A.4) is valid and
proves that the DP algorithm produces the optimal cost function J∗ (cf.
property R.1).† A similar argument proves the existence of an ε-optimal
policy (cf. R.2); it uses the ε-optimal selection (A.5) for the second stage
and a similar ε-optimal selection for the first stage, i.e., the existence of a
µ̄0 : ! '→ ! such that

∫

J1(x1) p
(

dx1 | x0, µ̄0(x0)
)

≤ inf
u0

∫

J1(x1) p(dx1 | x0, u0) + ε. (A.6)

Also R.3 follows easily using the fact that there are no measurability re-
strictions on µ0 and µ1.

Approaches for Uncountable Space Problems

To address the case where p(dx1 | x0, u0) does not have countable support,
two approaches have been used. The first is to expand the notion of inte-
gration, and the second is to place appropriate measurability restrictions
on g, p, and {µ0, µ1}. Expanding the notion of integration is possible by
interpreting the integrals appearing in the preceding equations as outer
integrals. Since the outer integral can be defined for any function, mea-
surable or not, there is no need to impose any measurability assumptions,
and the arguments given above go through just as in the countable dis-
turbance case. We do not discuss this approach further except to mention
that the Bertsekas and Shreve book [BeS78] shows that the basic results
for finite and infinite horizon problems of perfect state information carry
through within an outer integration framework. However, there are inher-
ent limitations in this approach centering around the pathologies of outer
integration, as discussed in [BeS78].

The second approach is to impose a suitable measurability structure
that allows the key proof steps of the validity of the DP algorithm. These
are:

† The condition that g is bounded either above or below may be replaced by

any condition that guarantees that the infinite sum/integral of J1 in Eq. (A.3)

is well-defined. Note also that if g is bounded below, then the assumption that
J0(x0) > −∞ for all x0 and J1(x1) > −∞ for all x1 is automatically satisfied.
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(a) Properly interpreting the integrals in the definition (A.2)-(A.3) of the
DP algorithm and the derivation (A.4).

(b) The ε-optimal selection property (A.5), which in turn justifies the
interchange of infimization and integration in Eq. (A.4b).

To enable (a), the required properties of the problem structure must include
the preservation of measurability under partial minimization. In particu-
lar, it is necessary that when g is measurable in some sense, the partial
minimum function

J1(x1) = inf
u1

g(x1, u1)

is also measurable in the same sense, so that the integration in Eq. (A.3) is
well-defined. It turns out that this is a major difficulty with Borel measur-
ability, which may appear to be a natural framework for formulating the
problem: J1 need not be Borel measurable even when g is Borel measurable.
For this reason it is necessary to pass to a larger class of measurable func-
tions, which is closed under the key operation of partial minimization (and
also under some other common operations, such as addition and functional
composition).†

One such class is lower semianalytic functions and the related class
of universally measurable functions , which will be the focus of the next
section. They are the basis for a problem formulation that enables a DP
theory as powerful as the one for problems where measurability is of no
concern (e.g., those where the state and control spaces are countable).

A.2 RESOLUTION OF THE MEASURABILITY ISSUES

The example of the preceding section indicates that if measurability re-
strictions are necessary for the problem data and policies, then measurable
selection and preservation of measurability under partial minimization, be-
come crucial parts of the analysis. We will discuss measurability frame-
works that are favorable in this regard, and to this end, we will use the
theory of Borel spaces.

† It is also possible to use a smaller class of functions that is closed under the

same operations. This has led to the so-called semicontinuous models, where the
state and control spaces are Borel spaces, and g and p have certain semicontinuity

and other properties. These models are also analyzed in detail in the Bertsekas
and Shreve book [BeS78] (Section 8.3). However, they are not as useful and widely

applicable as the universally measurable models we will focus on, because they

involve assumptions that may be restrictive and/or hard to verify. By contrast,
the universally measurable models are simple and very general. They allow a

problem formulation that brings to bear the power of DP analysis under minimal

assumptions. This analysis can in turn be used to prove more specific results
based on special characteristics of the model.
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Borel Spaces and Analytic Sets

Given a topological space Y , we denote by BY the σ-algebra generated by
the open subsets of Y , and refer to the members of BY as the Borel subsets
of Y . A topological space Y is a Borel space if it is homeomorphic to a
Borel subset of a complete separable metric space. The concept of Borel
space is quite broad, containing any “reasonable” subset of n-dimensional
Euclidean space. Any Borel subset of a Borel space is again a Borel space,
as is any homeomorphic image of a Borel space and any finite or countable
Cartesian product of Borel spaces. Let Y and Z be Borel spaces, and
consider a function h : Y '→ Z. We say that h is Borel measurable if
h−1(B) ∈ BY for every B ∈ BZ .

Borel spaces have a deficiency in the context of optimization: even in
the unit square, there exist Borel sets whose projections onto an axis are
not Borel subsets of that axis. In fact, this is the source of the difficulty
we mentioned earlier regarding Borel measurability in the DP context: if
g(x1, u1) is Borel measurable, the partial minimum function

J1(x1) = inf
u1

g(x1, u1)

need not be, because its level sets are defined in terms of projections of the
level sets of g as

{

x1 | J1(x1) < c
}

= P
(

{

(x1, u1) | g(x1, u1) < c
}

)

,

where c is a scalar and P (·) denotes projection on the space of x1. As an
example, take g to be the indicator of a Borel subset of the unit square
whose projection on the x1-axis is not Borel. Then J1 is the indicator
function of this projection, so it is not Borel measurable. This leads us to
the notion of an analytic set.

A subset A of a Borel space Y is said to be analytic if there exists
a Borel space Z and a Borel subset B of Y × Z such that A = projY (B),
where projY is the projection mapping from Y × Z to Y . It is clear that
every Borel subset of a Borel space is analytic.

Analytic sets have many interesting properties, which are discussed
in detail in [BeS78]. Some of these properties are particularly relevant to
DP analysis. For example, let Y and Z be Borel spaces. Then:

(i) If A ⊂ Y is analytic and h : Y '→ Z is Borel measurable, then h(A)
is analytic. In particular, if Y is a product of Borel spaces Y1 and
Y2, and A ⊂ Y1 × Y2 is analytic, then projY1

(A) is analytic. Thus,
the class of analytic sets is closed with respect to projection, a critical
property for DP, which the class of Borel sets is lacking, as mentioned
earlier.

(ii) If A ⊂ Z is analytic and h : Y '→ Z is Borel measurable, then h−1(A)
is analytic.
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(iii) If A1, A2, . . . are analytic subsets of Y , then ∪∞
k=1 Ak and ∩∞

k=1 Ak

are analytic.

However, the complement of an analytic set need not be analytic, so the
collection of analytic subsets of Y need not be a σ-algebra.

Lower Semianalytic Functions

Let Y be a Borel space and let h : Y '→ [−∞,∞] be a function. We say
that h is lower semianalytic if the level set

{y ∈ Y | h(y) < c}

is analytic for every c ∈ !. The following proposition states that lower
analyticity is preserved under partial minimization, a key result for our
purposes. The proof follows from the preservation of analyticity of a subset
of a product space under projection onto one of the component spaces, as
in (i) above (see [BeS78], Prop. 7.47).

Proposition A.1: Let Y and Z be Borel spaces, and let h : Y ×Z '→
[−∞,∞] be lower semianalytic. Then h∗ : Y '→ [−∞,∞] defined by

h∗(y) = inf
z∈Z

h(y, z)

is lower semianalytic.

By comparing the DP equation J1(x1) = infu1
g(x1, u1) [cf. Eq. (A.2)]

and Prop. A.1, we see how lower semianalytic functions can arise in DP. In
particular, J1 is lower semianalytic if g is. Let us also give two additional
properties of lower semianalytic functions that play an important role in
DP (for a proof, see [BeS78], Lemma 7.40).

Proposition A.2: Let Y be a Borel space, and let h : Y '→ [−∞,∞]
and l : Y '→ [−∞,∞] be lower semianalytic. Suppose that for every
y ∈ Y , the sum h(y) + l(y) is defined, i.e., is not of the form ∞−∞.
Then h+ l is lower semianalytic.

Proposition A.3: Let Y and Z be Borel spaces, let h : Y '→ Z be
Borel measurable, and let l : Z '→ [−∞,∞] be lower semianalytic.
Then the composition l ◦ h is lower semianalytic.
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Universal Measurability

To address questions relating to the definition of the integrals appearing in
the DP algorithm, we must discuss the measurability properties of lower
semianalytic functions. In addition to the Borel σ-algebra BY mentioned
earlier, there is the universal σ-algebra UY , which is the intersection of all
completions of BY with respect to all probability measures. Thus, E ∈ UY

if and only if, given any probability measure p on (Y,BY ), there is a Borel
set B and a p-null set N such that E = B ∪N . Clearly, we have BY ⊂ UY .
It is also true that every analytic set is universally measurable (for a proof,
see [BeS78], Corollary 7.42.1), and hence the σ-algebra generated by the
analytic sets, called the analytic σ-algebra, and denoted AY , is contained
in UY :

BY ⊂ AY ⊂ UY .

Let X , Y , and Z be Borel spaces, and consider a function h : Y '→ Z.
We say that h is universally measurable if h−1(B) ∈ UY for every B ∈ BZ .
It can be shown that if U ⊂ Z is universally measurable and h is universally
measurable, then h−1(U) is also universally measurable. As a result, if
g : X '→ Y , h : Y '→ Z are universally measurable functions, then the
composition (g ◦ h) : X '→ Z is universally measurable.

We say that h : Y '→ Z is analytically measurable if h−1(B) ∈ AY

for every B ∈ BZ . It can be seen that every lower semianalytic function is
analytically measurable, and in view of the inclusion AY ⊂ UY , it is also
universally measurable.

Integration of Lower Semianalytic Functions

If p is a probability measure on (Y,BY ), then p has a unique extension to a
probability measure p̄ on (Y,UY ). We write simply p instead of p̄ and

∫

hdp
in place of

∫

hdp̄. In particular, if h is lower semianalytic, then
∫

h dp is
interpreted in this manner.

Let Y and Z be Borel spaces. A stochastic kernel q(dz | y) on Z given
Y is a collection of probability measures on (Z,BZ) parameterized by the
elements of Y . If for each Borel set B ∈ BZ , the function q(B | y) is Borel
measurable (universally measurable) in y, the stochastic kernel q(dz | y)
is said to be Borel measurable (universally measurable, respectively). The
following proposition provides another basic property for the DP context
(for a proof, see [BeS78], Props. 7.46 and 7.48).

Proposition A.4: Let Y and Z be Borel spaces, and let q(dz | y) be
a stochastic kernel on Z given Y . Let also h : Y × Z '→ [−∞,∞] be a
function that is bounded either above or below.
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(a) If q is Borel measurable and h is lower semianalytic, then the
function l : Y '→ [−∞,∞] given by

l(y) =

∫

Z

h(y, z)q(dz | y)

is lower semianalytic.

(b) If q is universally measurable and h is universally measurable,
then the function l : Y '→ [−∞,∞] given by

l(y) =

∫

Z

h(y, z)q(dz | y)

is universally measurable.

Note that the boundedness above or below assumption on h in the
preceding proposition aims to ensure that l(y) is well-defined for every y
as an integral.†

Returning to the DP algorithm (A.2)-(A.3) of Section A.1, note that
if the cost function g is lower semianalytic and bounded either above or
below, then the partial minimum function J1 given by the DP Eq. (A.2)
is lower semianalytic (cf. Prop. A.1), and bounded either above or below,
respectively. Furthermore, if the transition kernel p(dx1 | x0, u0) is Borel
measurable, then the integral

∫

J1(x1) p
(

dx1 | x0, u0) (A.7)

is a lower semianalytic function of (x0, u0) (cf. Prop. A.4), and in view of
Prop. A.1, the same is true of the function J0 given by the DP Eq. (A.3),
which is the partial minimum over u0 of the expression (A.7). Thus, with

† We use here the classical definition of integral, whereby for a probability
measure p, the integral of an extended real-valued function f , with positive and
negative parts f+ and f−, is defined as

∫

fdp =

∫

f+dp−

∫

f−dp,

provided
∫

f+dp < ∞ or
∫

f−dp < ∞. The book [BeS78] (Section 7.4.4) uses a
more general definition, which adopts the rule ∞ − ∞ = ∞ for the case where
∫

f+dp = ∞ and
∫

f−dp = ∞. With this expanded definition of integral, there

is no need for the boundedness assumption in Prop. A.4 (cf. [BeS78], Props. 7.46
and 7.48).
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lower semianalytic g and Borel measurable p, the integrals appearing in
the DP algorithm make sense.

Note that in the example of Section A.1, there is no cost incurred in
the first stage of the system operation. When such a cost, call it g0(x0, u0),
is introduced, the expression minimized in the DP Eq. (A.3) becomes

g0(x0, u0) +

∫

J1(x1) p
(

dx1 | x0, u0),

which is still a lower semianalytic function of (x0, u0), provided g0 is lower
semianalytic and the sum above is not of the form ∞−∞ for any (x0, u0)
(Prop. A.2). Also, for alternative models defined in terms of a system func-
tion rather than a stochastic kernel (e.g., the total cost model of Chapter
1), Prop. A.3 provides some of the necessary machinery to show that the
functions generated by the DP algorithm are lower semianalytic.

Universally Measurable Selection

The preceding discussion has shown that if g is lower semianalytic and
bounded either above or below, and p is Borel measurable, the DP algo-
rithm (A.2)-(A.3) is well-defined and produces lower semianalytic functions
J1 and J0. However, this does not by itself imply that J0 is equal to the
optimal cost function J∗. For this it is necessary that the chosen class
of policies has the ε-optimal selection property (A.5). It turns out that
universally measurable policies have this property.

The following is the key selection theorem given in a general form,
which also addresses the question of existence of optimal policies that can
be obtained from the DP algorithm (for a proof, see [BeS78], Prop. 7.50).
The theorem shows that if any functions µ̄1 : ! → ! and µ̄0 : ! → ! can
be found such that µ̄1(x1) and µ̄0(x0) attain the respective minima in Eqs.
(A.2) and (A.3), for every x1 and x0, then µ̄1 and µ̄0 can be chosen to be
universally measurable, the DP algorithm yields the optimal cost function
and π = (µ̄0, µ̄1) is optimal, provided that g is lower semianalytic and the
integral in Eq. (A.3) is a lower semianalytic function of (x0, u0).

Proposition A.5: (Measurable Selection Theorem) Let Y and
Z be Borel spaces and let h : Y ×Z '→ [−∞,∞] be lower semianalytic.
Define h∗ : Y '→ [−∞,∞] by

h∗(y) = inf
z∈Z

h(y, z),
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and let

I =
{

y ∈ Y | there exists a zy ∈ Z for which h(y, zy) = h∗(y)
}

,

i.e., I is the set of points y for which the infimum above is attained. For
any ε > 0, there exists a universally measurable function φ : Y '→ Z
such that

h
(

y,φ(y)
)

= h∗(y), ∀ y ∈ I,

h
(

y,φ(y)
)

≤

{

h∗(y) + ε, ∀ y /∈ I with h∗(y) > −∞,
−1/ε, ∀ y /∈ I with h∗(y) = −∞.

Universal Measurability Framework: A Summary

In conclusion, the preceding discussion shows that in the two-stage example
of Section A.1, the measurability issues are resolved in the following sense:
the DP algorithm (A.2)-(A.3) is well-defined, produces lower semianalytic
functions J1 and J0, and yields the optimal cost function (as in R.1), and
furthermore there exist ε-optimal and possibly exactly optimal policies (as
in R.2 and R.3), provided that:

(a) The stage cost function g is lower semianalytic and is bounded ei-
ther above or below . Lower analyticity is needed to show that the
function J1 of the DP Eq. (A.2) is lower semianalytic and hence also
universally measurable (cf. Prop. A.1). Boundedness either above or
below is needed to ensure the respective boundedness property for J1,
which will be needed to guarantee that the integral of J1 in Eq. (A.3)
is defined (according to the classical definition). The more “natural”
Borel measurability assumption on g implies lower analyticity of g,
but will not keep the functions J1 and J0 produced by the DP algo-
rithm within the domain of Borel measurability. This is because the
partial minimum operation on Borel measurable functions takes us
outside that domain (cf. Prop. A.1).

(b) The stochastic kernel p is Borel measurable. This is needed in order
for the integral in the DP Eq. (A.3) to be defined as a lower semi-
analytic function of (x0, u0) (cf. Prop. A.4). In turn, this is used to
show that the function J0 of the DP Eq. (A.3) is lower semianalytic
(cf. Prop. A.1).

(c) The control functions µ0 and µ1 are allowed to be universally mea-
surable, and we have J0(x0) > −∞ for all x0 and J1(x1) > −∞ for
all x1. This is needed in order for the calculation of Eq. (A.4) to go
through (using the measurable selection property of Prop. A.5), and
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show that the DP algorithm produces the optimal cost function (cf.
R.1). It is also needed (using again Prop. A.5) in order to show the
associated existence of solutions results (cf. R.2 and R.3).

Extension to General Finite-Horizon DP

Let us now extend our analysis to an N -stage model with state xk and
control uk that take values in Borel spaces X and U , respectively. We
assume stochastic/transition kernels pk(dxk+1 | xk, uk), which are Borel
measurable, and stage cost functions gk : X × U '→ (−∞,∞], which are
lower semianalytic and bounded either above or below.† Furthermore, we
allow policies π = {µ0, . . . , µN−1} that are randomized: each component
µk is a universally measurable stochastic kernel µk(duk | xk) from X to U .
If for every xk and k, µk(duk | xk) assigns probability 1 to a single control
uk, π is said to be nonrandomized .

Each policy π and initial state x0 define a unique probability measure
with respect to which gk(xk, uk) can be integrated to produce the expected
value of gk. The sum of these expected values for k = 0, . . . , N − 1, is the
cost Jπ(x0). It is convenient to write this cost in terms of the following
DP-like backwards recursion (see [BeS78], Section 8.1):

Jπ,N−1(xN−1) =

∫

gN−1(xN−1, uN−1)µN−1(duN−1 | xN−1),

Jπ,k(xk) =

∫
(

gk(xk, uk) +

∫

Jπ,k+1(xk+1) pk(dxk+1 | xk, uk)

)

µk(duk | xk), k = 0, . . . , N − 2.

The function obtained at the last step is the cost of π starting at x0:

Jπ(x0) = Jπ,0(x0).

We can interpret Jπ,k(xk) as the expected cost-to-go starting from xk at
time k, and using π. Note that by Prop. A.4, the functions Jπ,k are all
universally measurable.

The DP algorithm is given by

JN−1(xN−1) = inf
uN−1∈U

gN−1(xN−1, uN−1), ∀ xN−1,

Jk(xk) = inf
uk∈U

[

gk(xk, uk) +

∫

Jk+1(xk+1) pk
(

dxk+1 | xk, uk)

]

, ∀ xk, k.

† Note that since gk may take the value ∞, constraints of the form uk ∈

Uk(xk) may be implicitly introduced by letting gk(xk, uk) = ∞ when uk /∈
Uk(xk).
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By essentially replicating the analysis of the two-stage example, we can
show that the integrals in the above DP algorithm are well-defined, and
that the functions JN−1, . . . , J0 are lower semianalytic.

It can be seen from the preceding expressions that we have for all
policies π

Jk(xk) ≤ Jπ,k(xk), ∀ xk, k = 0, . . . , N − 1.

To show equality within ε ≥ 0 in the above relation, we may use the
measurable selection theorem (Prop. A.5), assuming that

Jk(xk) > −∞, ∀ xk, k,

so that ε-optimal universally measurable selection is possible in the DP
algorithm. In particular, define π = {µ0, . . . , µN−1} such that µk : X '→ U
is universally measurable, and for all xk and k,

gk
(

xk, µk(xk)
)

+

∫

Jk+1(xk+1) pk
(

dxk+1 | xk, µk(xk)
)

≤ Jk(xk) +
ε

N
.

(A.8)
Then, we can show by induction that

Jk(xk) ≤ Jπ,k(xk) ≤ Jk(xk) +
(N − k)ε

N
, ∀ xk, k = 0, . . . , N − 1,

and in particular, for k = 0,

J0(x0) ≤ Jπ(x0) ≤ J0(x0) + ε, ∀ x0.

and hence also
J∗(x0) = inf

π
Jπ(x0) = J0(x0).

Thus, the DP algorithm produces the optimal cost function, and via the
approximate minimization of Eq. (A.8), an ε-optimal policy. Similarly,
if the infimum is attained for all xk and k in the DP algorithm, then
there exists an optimal policy. Note that both the ε-optimal and the exact
optimal policies can be taken be nonrandomized.

An interesting characteristic of the preceding line of development is
that it decouples the issue of the definition of the DP algorithm from the
question of whether it yields the optimal cost function and ε-optimal or
nearly optimal policies. In the former question, the key fact is the preser-
vation of lower semianalyticity under partial minimization and integration,
while in the latter question, the key fact is whether ε-optimal selection is
possible in the DP algorithm within the class of policies stipulated. To
illustrate this point, suppose that we are interested in optimizing the cost
Jπ(x0) over a restricted subset Π of the randomized universally measurable
policies. For example in problems with special structure, Π may be a class
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of continuous functions, or linear functions, or functions with some special
structural characteristics [e.g., (s, S) or other threshold policies in inven-
tory control]. Then, Borel measurability of the stochastic kernels and lower
semianalyticity of the costs per stage will guarantee that the functions Jk
produced by the DP algorithm are well-defined and can be analyzed. If
the analysis shows that the class of policies Π has the ε-selection property
(A.8), then it follows that J0(x0) is equal to the optimal cost over the
restricted class Π, and that ε-optimal policies exist within this class.

The assumptions of Borel measurability of the stochastic kernels,
lower semianalyticity of the costs per stage, and universally measurable
policies, are the basis for the framework adopted by Bertsekas and Shreve
[BeS78], which provides a comprehensive analysis of finite and infinite hori-
zon total cost problems. The results obtained there using this framework
closely parallel the results of Chapters 1 and 3 of the present volume, but
apply to the more general case of uncountable disturbance spaces. There
is also additional analysis in [BeS78] on problems of imperfect state in-
formation, as well as various refinements of the measurability framework
just described. Among others, these refinements involve analytically mea-
surable policies, and limit measurable policies (measurable with respect to
the, so-called, limit σ-algebra, the smallest σ-algebra that has the proper-
ties necessary for a DP theory that is comparably powerful to the one for
the universal σ-algebra).

Issues of Policy Iteration

A difficulty with the universally measurable framework, which was left
unresolved in [BeS78], relates to the standard policy iteration method.
The issue is that the selection of an admissible measurable policy can fail
at the policy improvement step because the cost function of an analytically
or universally measurable policy, produced by policy evaluation, need not
have the lower semianalytic structure for exact or ε-exact selection of an
improved policy, which is required by Prop. A.5. This causes the policy
iteration procedure to break down.

The recent paper by Yu and Bertsekas [YuB15] provides an algorith-
mic approach to circumvent this difficulty, and to allow stationary policies
to be used in computing the optimal cost function, in a manner that resem-
bles policy iteration (even when ε-optimal stationary policies do not exist).
The approach is based on an algorithm that combines characteristics of
both value and policy iteration.

Algorithmically, compared to standard policy iteration, the main dif-
ference of this method is in the policy evaluation phase: instead of comput-
ing the cost function of a given policy, it solves exactly or approximately an
optimal stopping problem defined by a stationary policy of interest and by
a stopping cost that is an estimate of the optimal cost. The stopping costs
are then adjusted and the procedure is repeated. This is a similar idea to
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the one used to construct a policy iteration method with a uniform fixed
point (Sections 2.6.3 and 3.5.4), but it serves here the different purpose of
circumventing the measure-theoretic difficulties.

To avoid measurability issues, the fact that every universally mea-
surable stationary policy has Borel measurable portions is used, and the
optimal stopping problems are defined accordingly so that the iterative
method just mentioned can operate within the family of functions with the
desired semianalytic structure. We refer to [YuB15] for the details of the
analysis.

Let us finally note that the paper [YuB15] contains several new re-
sults for the undiscounted problems of Section 4.1 under Assumption P
and N (but always within a measure-theoretic framework). Noteworthy in
this regard is a convergence result for value iteration under Assumption P,
starting from initial conditions J satisfying J* ≤ J ≤ cJ* for some scalar
c > 1 (Section 5.1 of [YuB15]).
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