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Preface

This two-volume book is based on a first-year graduate course on dynamic
programming and optimal control that I have taught for over twenty years
at Stanford University, the University of Illinois, and the Massachusetts In-
stitute of Technology. The course has been typically attended by students
from engineering, operations research, economics, and applied mathemat-
ics. Accordingly, a principal objective of the book has been to provide a
unified treatment of the subject, suitable for a broad audience. In par-
ticular, problems with a continuous character, such as stochastic control
problems, popular in modern control theory, are simultaneously treated
with problems with a discrete character, such as Markovian decision prob-
lems, popular in operations research. Furthermore, many applications and
examples, drawn from a broad variety of fields, are discussed.

The book may be viewed as a greatly expanded and pedagogically
improved version of my 1987 book “Dynamic Programming: Deterministic
and Stochastic Models,” published by Prentice-Hall. I have included much
new material on deterministic and stochastic shortest path problems, as
well as a new chapter on continuous-time optimal control problems and the
Pontryagin Maximum Principle, developed from a dynamic programming
viewpoint. I have also added a fairly extensive exposition of simulation-
based approximation techniques for dynamic programming. These tech-
niques, which are often referred to as “neuro-dynamic programming” or
“reinforcement learning,” represent a breakthrough in the practical ap-
plication of dynamic programming to complex problems that involve the
dual curse of large dimension and lack of an accurate mathematical model.
Other material was also augmented, substantially modified, and updated.

With the new material, however, the book grew so much in size that
it became necessary to divide it into two volumes: one on finite horizon,
and the other on infinite horizon problems. This division was not only
natural in terms of size, but also in terms of style and orientation. The
first volume is more oriented towards modeling, and the second is more
oriented towards mathematical analysis and computation. I have included
in the first volume a final chapter that provides an introductory treatment
of infinite horizon problems. The purpose is to make the first volume self-

xiii



xiv Preface

contained for instructors who wish to cover a modest amount of infinite
horizon material in a course that is primarily oriented towards modeling,
conceptualization, and finite horizon problems,

Many topics in the book are relatively independent of the others. For
example Chapter 2 of Vol. I on shortest path problems can be skipped
without loss of continuity, and the same is true for Chapter 3 of Vol. I,
which deals with continuous-time optimal control. As a result, the book
can be used to teach several different types of courses.

(a) A two-semester course that covers both volumes.

(b) A one-semester course primarily focused on finite horizon problems
that covers most of the first volume.

(¢) A one-semester course focused on stochastic optimal control that cov-
ers Chapters 1, 4, 5, and 6 of Vol. I, and Chapters 1, 2, and 4 of Vol.
IL.

(d) A one-semester course that covers Chapter 1, about 50% of Chapters
2 through 6 of Vol. I, and about 70% of Chapters 1, 2, and 4 of Vol.
I1. This is the course I usually teach at MIT.

(e) A one-quarter engineering course that covers the first three chapters
and parts of Chapters 4 through 6 of Vol. I.

(f) A one-quarter mathematically oriented course focused on infinite hori-
zon problems that covers Vol. II.

The mathematical prerequisite for the text is knowledge of advanced
calculus, introductory probability theory, and matrix-vector algebra. A
summary of this material is provided in the appendixes. Naturally, prior
exposure to dynamic system theory, control, optimization, or operations
research will be helpful to the reader, but based on my experience, the
material given here is reasonably self-contained.

The book contains a large number of exercises, and the serious reader
will benefit greatly by going through them. Solutions to all exercises are
compiled in a manual that is available to instructors from the author. Many
thanks are due to the several people who spent long hours contributing
to this manual, particularly Steven Shreve, Eric Loiederman, Lakis Poly-
menakos, and Cynara Wu.

Dynamic programming is a conceptually simple technique that can
be adequately explained using elementary analysis. Yet a mathematically
rigorous treatment of general dynamic programming requires the compli-
cated machinery of measure-theoretic probability. My choice has been to
bypass the complicated mathematics by developing the subject in general-
ity, while claiming rigor only when the underlying probability spaces are
countable. A mathematically rigorous treatment of the subject is carried
out in my monograph “Stochastic Optimal Control: The Discrete Time



Preface XV

Case,” Academic Press, 1978, coauthored by Steven Shreve. This mono-
graph complements the present text and provides a solid foundation for the
subjects developed somewhat informally here.

Finally, I am thankful to a number of individuals and institutions
for their contributions to the book. My understanding of the subject was
sharpened while I worked with Steven Shreve on our 1978 monograph.
My interaction and collaboration with John Tsitsiklis on stochastic short-
est paths and approximate dynamic programming have been most valu-
able. Michael Caramanis, Emmanuel Fernandez-Gaucherand, Pierre Hum-
blet, Lennart Ljung, and John Tsitsiklis taught from versions of the book,
and contributed several substantive comments and homework problems. A
number of colleagues offered valuable insights and information, particularly
David Castanon, Eugene Feinberg, and Krishna Pattipati. NSF provided
research support. Prentice-Hall graciously allowed the use of material from
my 1987 book. Teaching and interacting with the students at MIT have
kept up my interest and excitement for the subject.

Dimitri P. Bertsekas
November 1995

1 Note added in the 2nd edition: This monograph was republished by Athena
Scientific in 1996.
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Preface to the Second Edition

This second edition of Vol. II should be viewed as a relatively minor revision
of the original. The coverage was expanded in a few areas as follows:

(a) In Chapter 1, material was added on variants of the policy iteration
method.

(b) In Chapter 2, the material on neuro-dynamic programming methods
was updated and expanded to reflect some recent developments.

(¢) In Chapter 4, material was added on some new value iteration meth-
ods.

(d) In Chapter 5, the material on semi-Markov problems was revised,
with a significant portion simplified and shifted to Volume I.

There are also a few miscellaneous additions and improvements scattered
throughout the text. Finally, a new internet-based feature was added to
the book, which extends its scope and coverage. Many of the theoretical
exercises have been solved in detail and their solutions have been posted
in the book’s www page

http://www.athenasc.com/dpbook.html

These exercises have been marked with the symbol
I would like to express my thanks to the many colleagues who con-
tributed suggestions for improvement of the second edition.

Dimitri P. Bertsekas
June 2001
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Preface to the Third Edition

This is a major revision of the 2nd edition, and contains a substantial
amount of new material, as well as a major reorganization of old material.
The length of the text has increased by more than 50%, and more than
half of the old material has been restructured and/or revised. Most of the
added material is in four areas.

(a) The coverage of the average cost problem of Chapter 4 has greatly
increased in scope and depth. In particular, there is now a full anal-
ysis of multi-chain problems, as well as a more extensive analysis of
infinite-spaces problems (Section 4.6).

(b) The material on approximate dynamic programming has been col-
lected in Chapter 6. It has been greatly expanded to include new
research, thereby supplementing the 1996 book “Neuro-Dynamic Pro-
gramming.”

(¢) Contraction mappings and their role in various analyses have been
highlighted in new material on infinite state space problems (Sec-
tions 1.4, 2.5, and 4.6), and in their use in the approximate dynamic
programming material of Chapter 6.

(d) The mathematical measure-theoretic issues that must be addressed
for a rigorous theory of stochastic dynamic programming have been
illustrated and summarized in an appendix for the benefit of the math-
ematically oriented reader.

Also some exercises were added and a few sections were revised while pre-
serving their essential content.

I would like to express my thanks to many colleagues who contributed
valuable comments. I am particularly thankful to Ciamac Moallemi, Steven
Shreve, John Tsitsiklis, and Ben Van Roy, who reviewed some of the new
material and each contributed several substantial suggestions. I wish to
thank especially Janey Yu who read with great care and keen eye large parts
of the book, contributed important analysis and many incisive, substantive
comments, and also collaborated with me in research that was included in
Chapter 6.

Dimitri P. Bertsekas
November 2006
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Preface to the Fourth Edition

This is a major revision of Vol. I, and contains a substantial amount of
new material, as well as a reorganization of old material. The length has
increased by more than 60% from the third edition, and most of the old
material has been restructured and/or revised. Volume II now numbers
more than 700 pages and is larger in size than Vol. I. It can arguably be
viewed as a new book!

Approximate DP has become the central focal point of Vol. II, and
occupies more than half of the book (the last two chapters, and large parts
of Chapters 1-3). Thus one may also view Vol. II as a followup to my 1996
book “Neuro-Dynamic Programming” (coauthored with John Tsitsiklis).
The present book focuses to a great extent on new research that became
available after 1996. On the other hand, the textbook style of the book
has been preserved, and some material has been explained at an intuitive
or informal level, while referring to the journal literature or the Neuro-
Dynamic Programming book for a more mathematical treatment.

In the process of expansion and reorganization, the design of the book
became more modular and suitable for classroom use. The core material,
which can be covered in about a third to a half of one semester is Chapter
1 (except for the application-specific Sections 1.3 and 1.4), Chapter 2, and
Chapter 6, which are self-contained when taken together. This material
focuses on discounted problems, and may be supplemented by parts of
Chapter 3 and Section 7.1 on stochastic shortest path problems. Indeed,
this comprises half of what I cover in my MIT class (the remaining half
comes from Volume I, including Chapter 6 of that volume that deals with
finite horizon approximate DP). The material on average cost problems,
given in Chapter 5, and Sections 7.2 and 7.4, and the advanced material
on positive and negative DP models (Chapter 4), and Monte Carlo linear
algebra (Section 7.3) are terminal subjects that may be covered at the
instructor’s discretion.

As the book’s focus shifted, I placed increased emphasis on new or
recent research in approximate DP and simulation-based methods, as well
as on asynchronous iterative methods, in view of the central role of sim-
ulation, which is by nature asynchronous. A lot of this material is an
outgrowth of my research and the research of my collaborators, conducted
in the six years since the previous edition. Some of the highlights, in the
order appearing in the book, are:

(a) Computational methods for generalized discounted DP (Sections 2.5
and 2.6), including error bounds for approximations in Section 2.5,
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and the asynchronous optimistic policy iteration methods of Sections
2.6.2 and 2.6.3, and their application to game and minimax problems,
constrained policy iteration, and Q-learning.

(b) Policy iteration methods (including asynchronous optimistic versions)
for stochastic shortest path problems that involve improper policies
(Section 3.4).

(c) Extensive new material on various simulation-based, approximate
value and policy iteration methods in Sections 6.3-6.6 (projected
equation and aggregation methods).

(d) New reliable Q-learning algorithms for optimistic policy iteration (Sec-
tions 2.6.3 and 6.6.2).

(e) New simulation techniques for multistep methods, such as geometric
and free-form sampling (Sections 6.4.1 and 7.3.3).

(f) Extensive new material on Monte Carlo linear algebra in Section 7.3
(primarily the simulation-based and approximate solution of large
systems of linear equations), which extends the DP methodology of
approximate policy evaluation.

Much of the research in (a)-(e) is based on my work with Janey (Huizhen)
Yu, while most of the research in (f) is based on my work with Janey Yu and
Mengdi Wang. My collaboration with Janey and Mengdi has had a strong
impact on the book, and is greatly appreciated. Some of our work was
presented in summary only, and was adapted to fit the style and purposes
of this book; naturally, any shortcomings in its presentation are entirely
my responsibility. The reader is referred to our joint and individual papers,
which describe more fully our research, including material that could not
be covered in this book.

I want to express my appreciation to colleagues and collaborators in
approximate DP research, who contributed to the book in various ways,
particularly Vivek Borkar, Angelia Nedié¢, and Ben Van Roy. A special
thanks goes to John Tsitsiklis, with whom I have interacted extensively
through collaboration and sharing of ideas on DP and asynchronous al-
gorithms for more than 30 years. I also wish to acknowledge helpful in-
teractions with many colleagues, including Vivek Farias, Eugene Feinberg,
Warren Powell, Martin Puterman, Uriel Rothblum, and Bruno Scherrer.
Finally, I want to thank the many students in my DP classes of the last
decade, who patiently labored with a textbook under development, and
contributed their ideas and experiences through their research projects from
a broad variety of application fields.

Dimitri P. Bertsekas
May 2012
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NOTE ABOUT THIS UPDATED PRINTING

In this 2nd printing of the 4th edition of Vol. IT (2018) I have taken the
opportunity to make a few changes, primarily to make better interconnec-
tions and provide cross-references to three complementary works, which
share the style and notation of the present volume, but differ in the level
of mathematical sophistication:

(a) The new (4th) edition of Vol. I, which appeared in 2017 and is math-
ematically less demanding than the present volume. It contains a lot
of material on approximate DP that complements Chapters 6 and 7
of the present volume. Volume I also makes a connection with recent
high profile advances in the field, including the AlphaZero program
for Go and chess, and the use of deep reinforcement learning (or ap-
proximate dynamic programming using value and/or policy approxi-
mation with deep neural networks as an approximation architecture
in the terminology of this book).

(b) My research monograph “Abstract Dynamic Programming,” which
appeared in 2018 and is more mathematical than the present volume.
It contains an extensive unifying treatment of the discounted and
undiscounted problems of Chapters 1-4, in the spirit of Section 1.6.
It also contains a lot of advanced material on the stochastic shortest
path and undiscounted problems of Chapters 3 and 4, respectively.

(¢) The research monograph “Stochastic Optimal Control: The Discrete-
Time Case,” coauthored with Steven Shreve, which appeared in 1978,
and is a mathematically advanced treatment of the measure-theoretic
and other theoretical questions that arise in continuous-spaces stochas-
tic optimal control. Appendix B provides a summary of this work and
its connections to the present volume.

With these changes, the two volumes of “Dynamic Programming and
Optimal Control,” and the two research monographs above form a stream-
lined continuum, which covers the entire exact dynamic programming field,
and the extraordinary progress that has occurred in its theory and applica-
tions over the last 50 years, since Bellman laid its foundations in the 1950s
and early 60s.

These works, together with the 1996 “Neuro-Dynamic Programming”
book, coauthored with John Tsitsiklis, also provide an entry point to the
approximate dynamic programming/reinforcement learning field, and a
mathematical counterpoint to the artificial intelligence approach towards
the subject. This field is the focus of intensive research currently, and will
undoubtedly undergo major developments in the coming years. I believe,
however, that the principles laid out in the aforementioned books provide a
solid foundation for future progress. I also believe that in view of the diver-



Preface xxi

sity and complexity of the dynamic programming problems currently being
addressed, it is unlikely that a few dominant algorithms will emerge. In-
stead, a wide variety of techniques and combinations thereof will be needed.
In particular, practical experience suggests that it is important to bring to
bear the right mix of methodological ingredients into a given problem, and
this requires a mathematical as well as an intuitive understanding of the
properties of the broad range of available algorithmic approaches.

In addition to the connections and references to my other books,
I have added in the 2nd printing notes and sources relating to some of
the research progress that has occurred in the six years since the 2012 1st
printing, and I have also corrected the typos that have been listed in the on-
line errata sheet. Moreover, I replaced Section 4.5 on gambling strategies,
which had outlived its usefulness, with a new section (4.1.4) on the relation
between positive cost undiscounted problems and stochastic shortest path
problems. Aside from these updates and a general polish of the text, the
contents of this volume have not changed much.

Finally, let me note that during the period 2012-2018 the book has
been supplemented by quite a few on-line extensions and instructional
videos on exact, approximate, and abstract dynamic programming. This
material together with the two aforementioned 1978 and 2018 research
monographs, are freely accessible from my website:

http://web.mit.edu/dimitrib/www/home.html

Dimitri P. Bertsekas
January 2018
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2 Discounted Problems — Theory Chap. 1

In this volume we consider stochastic optimal control problems with an
infinite number of decision stages (an infinite horizon). We presented an
introduction to these problems in Chapter 5 of Vol. I. Here, we provide
a more comprehensive analysis. In particular, we do not assume a finite
number of states, and we also discuss the associated analytical and com-
putational issues in much greater depth.

As noted in Chapter 5 of Vol. I, we focus on four classes of infinite
horizon problems of major interest:

(a) Discounted problems with bounded cost per stage.

(b)

(¢) Discounted and undiscounted problems with unbounded cost per stage.
)

d

Stochastic shortest path problems.

Average cost per stage problems.

Throughout this volume we concentrate on the perfect information
case, where each decision is made with exact knowledge of the current
system state. Imperfect state information problems can be treated, as in
Chapter 4 of Vol. I, by reformulation into perfect information problems in-
volving a sufficient statistic. History-dependent policies, where the control
may depend on the entire system history up to the current stage, have been
excluded from our development. The reason is that they typically cannot
result in cost reduction, as we show in Section 1.1.4.

The first two chapters deal with discounted problems, covering the
case of bounded cost per stage, but also setting the stage for the analytical
and computational methodology to be used in other cases, both discounted
and undiscounted. Chapters 3, 4, and 5 consider the other three major
problem classes. The final two chapters discuss simulation-based meth-
ods that aim to compute approximations to the optimal cost-to-go func-
tion by using Monte-Carlo simulation and parametric architectures (such
as feature-based architectures or neural networks, which we discussed in
Chapter 6 of Vol. I). While this subject has been treated in several spe-
cialized books and monographs, the present volume includes a great deal
of material that has not yet appeared in book form.

For the sake of mathematical rigor, we explicitly assume that the
disturbance space is countable, so that the calculus of discrete probability
applies throughout our development. In particular, every expected value
arising in our analysis is defined as an infinite sum of a countable number
of terms. However, on occasion we pause to discuss how some of our results
can be used to solve problems with an uncountable disturbance space. For
the benefit of the mathematically advanced reader, we have also provided
in Appendix A an orientation on the central mathematical issues for a
rigorous theory of dynamic programming and stochastic control in general
spaces. For a detailed development, we refer to the research monograph
by Bertsekas and Shreve [BeS78|, which can be freely downloaded from the
internet.
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In this chapter, after providing a broad introduction to infinite hori-
zon problems involving minimization of total (discounted and undiscounted)
cost, we focus on discounted problems with bounded cost per stage. We
develop the basic theory of these problems in Section 1.2. We discuss mul-
tiarmed bandit problems (an important special case), and continuous-time
variations in Sections 1.3 and 1.4, respectively. We discuss some exten-
sions of the basic theory in Sections 1.5 and 1.6. After Section 1.2, the
reader may proceed directly to the development of computational methods
in Chapter 2, and return to the other sections of this chapter as necessary
later.

MINIMIZATION OF TOTAL COST — INTRODUCTION

We now formulate the total cost minimization problem, which is the subject
of this chapter and the next three. This is an infinite horizon, stationary
version of the basic problem of Chapter 1 of Vol. 1.

Total Cost Infinite Horizon Problem
Consider the stationary discrete-time dynamic system
xk+1:f(xk7uk7wk)a k:O,l,..., (11)

where for all k, the state xj is an element of a space X, the control uy
is an element of a space U, and the random disturbance wy is an element
of a space W.t1 We assume that W is a countable set. The control uy is
constrained to take values in a given nonempty subset U(xy) of U, which
depends on the current state xy [uy € U(xy), for all 2 € X|. The random
disturbances wg, k = 0,1, .. ., are characterized by probability distributions
P(- | z,ur) that are independent of k, where P(wy, | z, ux) is the proba-
bility of occurrence of wy, when the current state and control are x; and
uy, respectively. Thus the probability of wy may depend explicitly on xzy
and ug, but not on values of prior disturbances wg_1, ..., wp.

1 We consider both problems with infinite state and control spaces [like the
system of Eq. (1.1)], and problems with discrete (finite or countable) state space
(in which case the underlying system is a Markov chain, like the ones of Chapter
5 of Vol. I). In this chapter, with a few exceptions, we place emphasis on the
former case for generality. In the next chapter, we focus primarily on finite-state
Markov chain problems (also referred to as Markovian Decision Problems or MDP
for short), and we introduce compact Markov chain notation that is well-suited
for such problems. Generally, to distinguish the infinite and finite state space
cases, we denote an element of a continuous state space by = and an element of a
discrete state space by ¢. Our notational system is consistent with the traditional
optimal control notation that was established in the 1960s and 1970s.
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Given an initial state xo, we want to find a policy = = {po, p1, - ..},
where pi : X — U, pr(zg) € U(zy), for all 2, € X, k = 0,1,..., that
minimizes the cost function

N—-1
:=0,1,... =

subject to the system equation constraint (1.1).1 The cost per stage g :
X xU x W +— R is given, and « is a positive scalar.

If a < 1, the implication is that future costs are discounted, and then
« is referred to as the discount factor. The other major possibility is a = 1,
in which case the problem is referred to as undiscounted. Such problems
are considered in Chapters 3 and 4.1

1 In what follows we will generally impose appropriate assumptions on the
cost per stage g and the scalar «, which guarantee that the limit defining the
total cost Jr(zo) exists. If this limit is not known to exist, we implicitly assume
that Jx(zo) is defined as

N-1
Jrz(xzo) =limsup FE Z ak9($k7ﬂk(xk)7wk)
N—oo ok k=0

Note that the expected value of the N-stages cost of 7 is defined as a (possibly
infinite) sum, since the disturbances wi, k = 0,1,..., take values in a count-
able set. Indeed, the reader may verify that all the subsequent mathematical
expressions that involve an expected value can be written as summations over a
finite or a countable set, so they make sense without resort to measure-theoretic
integration concepts.

The cost Jr(xo) given by Eq. (1.2) represents the limit of expected finite
horizon costs, which in all problems that we consider are assumed to be well
defined and finite for all policies, in the sense discussed in Section 1.5 of Vol. 1.
Another possibility would be to minimize over 7 the expected infinite horizon
cost

p: Zakg(mk:,“k(xk):wk)

k=0,1,... k=0

Such a cost would require a far more complex mathematical formulation (a prob-
ability measure on the space of all disturbance sequences; see [BeS78]). However,
we mention that under the assumptions that we will be using, the preceding
expression is equal to the cost given by Eq. (1.2). This may be proved by us-
ing the monotone convergence theorem (see Section 4.1) and other stochastic
convergence theorems, which allow interchange of limit and expectation under
appropriate conditions.

I We will occasionally consider a slightly more general form of discounting,
where o may depend on the current state and control. The structure of these
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We denote by II the set of all admissible policies 7, i.e., the set of all
sequences of functions m = {uo, p1, ...} with pg : X — U, ux(z) € U(x)
forallz € X, k=0,1,... The optimal cost function J* is defined by

J*(z) = min Jx(z), reX.

mell

[Note that we continue the convention of Vol. I to use min S (rather than
inf S) to denote the greatest lower bound of a set of numbers S, even if the
minimum is not attained by an element of S.]

For a given initial state x, an optimal policy is one that attains the
optimal cost J*(z). This policy may depend on z, but we will generally
find that for most problems, an optimal policy, when it exists, may be
chosen to be independent of the initial state. Very often, such a policy
may be taken to be stationary, i.e., have the form © = {u, u, ...}, in which
case it is referred to as the stationary policy p. We say that p is optimal
if Ju(x) = J"(x) for all states .

Note that while we have restricted the disturbances to take values
in a countable set, our system model is considerably more general than a
controlled Markov chain with a countable number of states. For example
our model includes as a special case deterministic systems with arbitrary
state and control spaces.

1.1.1 The Finite-Horizon DP Algorithm

For any admissible policy m = {uo, f41,- ..}, suppose that we accumulate
the costs of the first N stages, and we add to them some terminal cost of
the form oV J(xn), where J : X — R is some function. The total expected
cost is N1

Wi
k=0,1,...

E {aNJ(xN)+ ozkg(a:k,,uk(:zrk),wk)}.

k=0

The minimum of this cost over 7 can be calculated by starting with aV.J ()
and by carrying out N iterations of the corresponding DP algorithm, as in
Section 1.3 of Vol. I. This algorithm is given for k =1,..., N, by

In_k(x) = uér%]l?z) E{aNkg(z,u,w) + In—pt1 (f(z, u,w)) }, (1.3)

with the initial condition

In(z) = aN J(z),

problems is not much different that the one of the present section. As we will
show in Sections 1.5 and 1.6, fundamentally what is important is that the form of
discounting used induces a contraction mapping structure in the associated DP
equations.
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Vi+1: (k + 1)-stages optimal cost vector
with terminal cost function J

»

Initial state z___ i >
/ -] Time
Vi: k-stages optimal cost vector

with terminal cost function J

Initial state f(x,u,w)

Figure 1.1.1 Interpretation of the DP recursion (1.4).

where Jy_r(z) denotes the optimal cost of the last k stages starting from
state z. For each initial state x, the optimal N-stage cost is Jo(z), obtained
from the last step of the algorithm.

To rewrite this DP algorithm in more convenient form, consider for
all k£ and z, the functions Vj given by

Vile) = 22D,

Then the DP recursion (1.3) becomes

Vier1(x) = ug}&) E{g(x,u, w) + oV (f(a:, u,w))}, (1.4)

with initial condition

Vo(x) = J(x).

Note the intuition here: to solve a (k 4 1)-stage problem, we minimize the
sum of the first-stage cost plus the optimal cost of the future k stages,
appropriately discounted to the present time by « (cf. Fig. 1.1.1).

The important feature of iteration (1.4) is that it can be used to
calculate all the optimal finite horizon cost functions using a single DP
recursion. With each iteration, we obtain the optimal cost function of
some finite horizon problem, whose horizon is longer by one stage over the
horizon of the preceding problem. This convenience is possible only because
we are dealing with a stationary system and a common cost function g for
all stages.

1.1.2 Shorthand Notation and Monotonicity

The preceding method of calculating finite horizon optimal costs motivates
the introduction of two mappings that play an important theoretical role,
and provide a convenient shorthand notation in expressions that would be
too complicated to write otherwise.
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For any function J : X — R, we consider the function obtained by

applying the DP mapping to J, and we denote it by
(TJ)(z) = min E {g(z,u,w) + aJ(f(z,u,w))}, ze X, (1.5)
ueU(x)

where FE{-} denotes expected value over w with respect to the distribution
P(w | z,u). T Since (T'J)(-) is itself a function defined on the state space
X, we view T as a mapping that transforms the function J on X into
the function T'J on X.} Note that T'J is the optimal cost function for the
one-stage problem that has stage cost g and terminal cost a.J.

Similarly, for any function J : X — R and any stationary policy pu,
we denote

(TpJ)(z) = E{g(z, p(z),w) + oJ (f (2, p(z),w)) }, zeX. (1.6

Again, T,,J may be viewed as the cost function associated with p for the
one-stage problem that has stage cost g and terminal cost aJ.

We denote by T* the composition of the mapping T with itself k
times; i.e.,

(T*J)(z) = (T(T*=1J)) (), reX, k=12,...,

with
(T9J)(x) = J(x), z e X.

Thus T*J is the function obtained by applying the mapping T to the
function T*=1J. Similarly, T/ J is defined by

(ThD)(@) = (TTE ' D) (@), we X,

with
(T2))(z) = J(z), z e X.

It can be seen that (T%.J)(z) is the optimal cost for the k-stage, a-discounted
problem with initial state x, cost per stage g, and terminal cost function
ak J [see Eq. (1.4); T*kJ is equal to Vj, as given by this equation]. Similarly,
(TkJ)(z) is the cost of a stationary policy u for the same problem.
Finally, consider a k-stage policy m = {po, pi1,-- ., ftk—1}. Then, the

expression (T}, Ty, -+ Ty, J)(2) is defined sequentially by

(TMTMH T T#kﬂ‘])(x) = (TM (TMH o 'T#kq‘]))(x)v 1=0,...,k—2,

and represents the cost of the policy w for the k-stage, a-discounted problem
with initial state x, cost per stage g, and terminal cost function ok J.

T Whenever we use the mapping T', we will impose sufficient assumptions to
guarantee that the expected value involved in Eq. (1.5) is well defined.

I To simplify notation, we try to avoid parentheses in function notation when-
ever there is no possibility of confusion, so for example we prefer to use 7'J in
place of T'(J) (which would also be correct), but we use (T'J)(z) rather than
TJzx.
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Example 1.1.1

The preceding abstract shorthand notation greatly simplifies long DP expres-
sions that would be cumbersome to use with a more conventional notation.
To illustrate the case where k = 2, let us write

(T?J)(z) = min E{g(x,u,w)—|—a(TJ)(f(:c,u,w))}

ueU (x)
= min F < g(x,uo,wo) + « min E < g(f(z,uo,wo),ur,wr
ug€U () wy { ( ) uy €U (f(z,ug,wp)) wy { ( ( ) )

—|—aJ(f(f(:c7uo7wo)7u17w1)>}}

E {ocg(f(m7uo7wo)7u17w1)

min
ul €U(f(z,ug,wq)) wy

= min FE < g(z,u0,wo) +
uOEU(z)wO{ ( )

—|—a2J(f(f(:c,u0,wg),ul,w1)>}}.

The last expression can be recognized as the DP algorithm for the 2-stage,
a-discounted problem with initial state x, cost per stage g, and terminal cost
function o?.J.

Consider also the calculation of (7,7, J)(x). We have

Ty Tin 7)(@) = E {g (2, 10(2), ) + (T 1) (£ (2, 10(2), w)) |

=F {g(x,uo(x),wo) +a£ {g(f(x,uo(:c),wg),ul((:c,,ug(:c),wo)),wl)

—|—aJ<f(f(x,uo(:c),w0),u1,wl)) }}

=F {g(:c,,ug(x),wg) +wE1 {ag(f(a:,,uo(x),wo),,ul(f(x,uo(:c),wo)),wl)

wg
+052J(f(f(507li0(50)7w0)7u1 (f(:c7/1’0(x)7w0))7w1>) }}

Again this expression can be recognized as the cost of the 2-stage policy
{uo, 1} from initial state x and with terminal cost function o?J.

The following monotonicity property plays a fundamental role in the
subsequent developments.
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Lemma 1.1.1: (Monotonicity Lemma) For any J : X — R and
J': X — R, such that for all z € X, J(z) < J'(x), and any stationary
policy p: X — U, we have

(TFJ)(x) < (T*J")(z), (TFI)(z) <(TFJ)(z), z€X, k=1,2,....
In particular, if J : X — R is such that for all z € X, J(z) < (TJ)(z),

(ThJ)(z) < (T*1))(z), ze€X, k=1,2,....

Proof: If we view (T*J)(x) and (T}J)(z) as k-stage problem costs with
the terminal cost function a*J, the result becomes clear: as the terminal
cost function increases uniformly so do the k-stage costs. (We may prove
the lemma by using a straightforward induction argument.) Q.E.D.

For any two functions J : X — R and J’ : X — R, we write
J<J if J(x) < J'(z) for all z € X.
With this notation, Lemma 1.1.1 is stated as
J<J = TkJ <TkJ, TEJ<TkJ, k=1,2,...,
J<TJ = TkJ < Tk1], k=1,2,....

Let us also denote by e : X — R the unit function that takes the
value 1 identically on X:

e(x) =1, z e X.

We have from the definitions (1.5) and (1.6) of T' and T}, for any function
J : X — R and scalar r

(T(J +re))(z) = (TJ)(z) + ar, r € X,
(Tu(J +7re)) () = (TuJ)(z) + ar, z e X.

More generally, the following lemma can be verified by induction using the
preceding two relations.

Lemma 1.1.2: (Constant Shift Lemma) For every k, function
J : X — R, stationary policy u, scalar r, and = € X,

(T*(J +re)) (z) = (TkJ)(z) + akr,

(TE(J +re)) (z) = (THJT)(x) + oFr.
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We introduce a final shorthand notation relating 7" and 7},. Let us
denote by M the set of all admissible stationary policies. Then, by viewing
M as the Cartesian product e xU(x), we have for every J : X — R

(T7)(a) = min(T,J)(a), v € X,

or more compactly
TJ = min(T,J),
min (T,.7)
where the minimum is understood to be separate for each component of
T.J.

1.1.3 A Preview of Infinite Horizon Results

Let us speculate on the type of results that we will be aiming for, based
also on the analysis of Chapter 5 of Vol. I.

(a) Convergence of the DP Algorithm. Let Jy denote the zero function
[Jo(x) = 0 for all z]. Since the infinite horizon cost of a policy is by
definition the limit of its k-stage costs as k — oo, it is reasonable to
speculate that the optimal infinite horizon cost is equal to the limit
of the optimal k-stage costs; i.e.,

J (z) = kli_}n;O(T’“JO)(:zr), z e X.

This means that if we start with the zero function Jy and iterate with
the DP algorithm indefinitely, we will get in the limit the optimal cost
function J*. Also, for & < 1 and a bounded function .J, a terminal
cost a*J diminishes with k, so it is reasonable to speculate that if
a < 1, the convergence property

J*(z) = lim (T*kJ)(z), z e X,

k—o00

holds regardless of the choice of J.
(b) Bellman’s Equation. Since by definition we have for all z € X

(TkJrlJO)(:E) = uglUl?m) g {g(:l?, u,w) + Q(Tkjo)(f(.r,u, w))} )

it is reasonable to speculate that if limg_, o T*Jy = J* as in (a) above,
then we must have by taking limit as k£ — oo,

J(z) = H}}?)E{g(:c,u,w)—I—aJ*(f(a:,u,w))}, reX,
uelU(z) w

or, equivalently,
J=TJ".
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This is known as Bellman’s equation and asserts that the optimal
cost function J* is a fixed point of the mapping 7. We will see that
Bellman’s equation holds for all the total cost minimization problems
that we will consider, although depending on our assumptions, its
proof can be quite complex.

(¢) Characterization of Optimal Stationary Policies. If we view Bellman’s
equation as the DP algorithm taken to its limit as k — oo, it is
reasonable to speculate that if u(x) attains the minimum in the right-
hand side of Bellman’s equation for all z, then the stationary policy
1 is optimal.

Most of the analysis of total cost infinite horizon problems revolves
around the above three issues, and also around the issue of efficient com-
putation of J* and an optimal stationary policy. For the discounted cost
problems with bounded cost per stage considered in this chapter, and for
stochastic shortest path problems under our assumptions of Chapter 3, the
preceding conjectures are correct. For problems with unbounded costs per
stage and for stochastic shortest path problems where our assumptions of
Chapter 3 are violated, there may be counterintuitive mathematical phe-
nomena that invalidate some of the preceding conjectures. This illustrates
that infinite horizon problems should be approached carefully and with
mathematical precision.

1.1.4 Randomized and History-Dependent Policies

Our formulation of the total cost infinite horizon problem involves certain
restrictions on the admissible policies that facilitate the analysis. In partic-
ular, we assume that at each time k, the control is applied with knowledge
of the current state xx. Such policies are called Markov because they do
not involve dependence on states beyond the current. However, what if the
control were allowed to depend on the entire past history

hi, = {zo,u0, ..., Th—1,Uk—1, Tk},

which ordinarily would be available at time k? Is it possible that better
performance can be achieved in this way?

Another related question is whether we can achieve better perfor-
mance with randomized policies where instead of choosing a single control
to apply at time k, we select a probability distribution over the control con-
straint set, and choose a control randomly according to this distribution.

To address this question, let us consider randomized history-dependent
policies m = {po, 1, ..}, where py is a function that maps a history hy
into a probability distribution py(ux | ki) over U(zy). For mathematical
simplicity, in this section we will assume that in addition to the disturbance
space, the control space is also countable. As a result, for a fixed initial
state, the set of possible histories hj is countable, so the distributions
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ux(ug | hy) are defined on countable sets and can be manipulated without
the need for tools from measure theoretic probability theory.

Let us also consider a special case, randomized Markov policies m =
{po, 1, ...}, where py is a function that maps the state xj into a proba-
bility distribution py(ug | 2x) over the control constraint set U(xy).

A given distribution over a countable subset of initial states and a
randomized history-dependent policy define a probability distribution on
the countable set of state-control pair (z, ux) of each stage k that will occur
with positive probability. An important result is that any such probability
distribution can also be generated by a randomized Markov policy, as shown
by the following proposition.

Proposition 1.1.1: (Adequacy of Markov Policies) Assume that
the control space is countable, and consider an initial state distribution
that takes values over a countable set. The probability distribution of
each pair (zy,ur) and the expected cost of each stage corresponding
to a randomized history-dependent policy can also be obtained with a
randomized Markov policy.

Proof: Let m = {uo,p1,...} be a randomized history-dependent policy,
and let &;(xx) and (x(wk,ur) be the corresponding distributions of
and (zg,uy), respectively. Consider a randomized Markov policy T =
{Fg, Hiys - - -}, where Ti;, is defined for all xy with & (x,) > 0 by

_ G, up)
Mk(uk | ‘Tk) - é.k(xk)

Let &, (zx) and (,(xk,ux) be the corresponding distributions of x; and
(zk,ur), respectively. We will show by induction that for all k, x, and uy,
we have

Er(xr) = Ex(z), Cr(h, ur) = Cp(wr, u). (1.7)

It is sufficient to show this for all k, ), and uj such that Cr(xp,ug) > 0.
Indeed, for k = 0, &o(x0) and & (z0) are both equal to the distribution
of the initial state, while

= Co(wo, uo)

Colzo,u0) = &o(wo) Thp(uo | zo) = Ey(xo) = o(z0, uo)-
§o(x0)

Suppose that Eq. (1.7) holds for some k. Then, we have

Zk+1($k+1) = Z Zk(zk7uk)p1k+1$k(uk>

Th, UL
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= Z Ek(xk)ﬁk(’(lk |J:k)pmk+1wk (uk)

= Z & (mk)% Pagyyay (Uk)
= j{: Cr(h, Uk) Py oy, (U)
= &kr1(Tht1),

where p;, +1wk(uk) are the transition probabilities of the system, and the
summation is over all pairs (2, ux) such that (g (zy, ug) > 0. Furthermore,

Cropr (@15 1) = Gy (@h) g (w1 | )
Crt1 (Tt 1, Uk+1)
Ert1(Tht1)

= Q1 (Thot 1, Ukt 1),

= Ek+1($k+l)

thereby completing the induction. Thus 7 and 7 generate the same state-
control pair distributions. From this it also follows that their corresponding
expected costs of every stage are equal. Q.E.D.

The preceding proposition shows that the expected cost of any history-
dependent randomized policy over a finite horizon can be replicated with
a Markov randomized policy. This implies that for a finite horizon prob-
lem, one can safely restrict attention to Markov policies, and need not
consider history-dependent policies. Furthermore, the same is true for an
infinite horizon problem, provided the N-stage costs of a history-dependent
randomized policy converge to its infinite horizon cost as N — oco. In par-
ticular this is true for the finite state and control spaces versions of the total
cost problems that we will discuss: discounted problems with bounded cost
per stage (the present chapter), problems with nonnegative cost per stage
(Chapter 4), and problems with nonpositive cost per stage (Chapter 4).

Is it possible to dispense with randomized policies and restrict one-
self to deterministic Markov policies? This is true very often. By this we
mean, that for many classes of interesting total cost problems, it can be
shown that the optimal cost using randomized policies is the same as the
optimal cost using deterministic policies, and that if there exists an optimal
(possibly randomized) policy, there exists an optimal deterministic policy.
Included are discounted cost problems with bounded cost per stage of the
present chapter, and the finite state and control spaces models of Chap-
ters 3 and 5; in fact for all these problems, it will be shown that one may
restrict attention to stationary deterministic Markov policies. The excep-
tions arise primarily in the unbounded cost per stage models of Chapter 4,
and also in some models not considered in this book, such as constrained
DP problems where policies are required to satisfy additional constraint
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inequalities (see e.g., FeS96], [FeS02]). The monograph [BeS78] delineates
some situations where randomized policies may be of genuine interest. Our
approach in this book is to formulate problems in terms of deterministic
Markov policies (which may depend, however, on the initial state), to dis-
cuss the existence of optimal policies within this class (or a subset thereof,
such as stationary policies), and to comment selectively on what may be
possible with randomized policies.

DISCOUNTED PROBLEMS - BOUNDED COST PER STAGE

In this section we develop the theory of the most well-behaved type of
infinite horizon problem, characterized by the following assumption.

Assumption D (Discounted Cost — Bounded Cost per Stage):
The cost per stage g satisfies for all (z,u) € X x U,

|E{g(;1c,u,w)}| <M,

where M is some scalar. Furthermore, 0 < o < 1.

The preceding boundedness assumption is not as restrictive as might
appear. It holds when the spaces X, U, and W either are finite sets, or
they are approximated by finite sets for the purposes of computation. Also,
it is often possible to reformulate the problem so that X, U, and W are
bounded subsets of Euclidean spaces, and as a result the cost is bounded.

The following proposition shows that the DP algorithm converges to
the optimal cost function J* for an arbitrary bounded starting function .J.
This will follow as a consequence of the preceding Assumption D, which
implies that the “tail” of the cost after stage NV,

K
KlgnooE { Z a’fg(a:k,uk(xk),wk)} ;

k=N
diminishes to zero as N — oo. Furthermore, when a terminal cost aN J(z )
is added to the N-stage cost, its effect diminishes to zero as N — oo if J
is bounded.

Proposition 1.2.1: (Convergence of the DP Algorithm) For
any bounded function J : X — R, we have for all x € X,

J*(x) = lim (TNJ)(z).

N —oc0
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Proof: For every positive integer N, initial state zog € X, and policy
m = {po, {41, - - .}, we break down the cost J(x¢) into the portions incurred
over the first N stages and over the remaining stages

K
Jx(zo) = lim E{Zakg(xk,uk(xk),wk)}

K—o0
k=0

= FE { z_: akg(ivmuk(iﬂk)awk)}

k=0

K
+ lim E{Zakg(xk,uk(xk),wk)}.

K—o0
k=N

Since by Assumption D,

9($k7ﬂk($k),wk)‘ < M, we obtain

K
lim E { Z akg(ivk,uk(iﬂk)awk)}

K—o0
k=N

Using the above relations, it follows that

aNM
Jr(z0) — T o alN ang:é(“](:z:)’
N—1
< E{OZNJ(IN)-F Oékg(xk,uk(xk),wk)}
k=0
aN N
< Jr(x0) + - + gcnea):}("](:z:)’

By taking the minimum over 7, we obtain for all zp and N,

aN M
* _ _aN
J"(z0) T ¢ rwnea?‘J(x)‘
< (TNJ)(x0) (1.8)
N
< J"(z0) + oM + oN max|J (z)],

11—« z€X

and by taking the limit as N — oo, the result follows. Q.E.D.

Note that based on the preceding proposition, the DP algorithm may
be used to compute an approximation to J*. This computational method,
called value iteration (cf. Chapter 5 of Vol. I), together with some additional
methods will be examined in the next chapter.

Given any stationary policy p, we can consider a modified discounted
problem, which is the same as the original except that the control constraint
set contains only one element for each state x, the control u(x); i.e., the
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control constraint set is U (x) = {u(z)} instead of U(x). Proposition 1.2.1
applies to this modified problem and yields the following:

Proposition 1.2.2: For every stationary policy u, the associated cost
function satisfies for all x € X,

Ju(z) = lim (TN J)(z).

N —oc0

The next proposition shows that J* is the unique solution of Bellman’s
equation.

Proposition 1.2.3: (Bellman’s Equation) The optimal cost func-
tion J* satisfies for all x € X,

J*(x) :ug}fi&)g{g(x,u,w)—|—on*(f(:z:,u,w))}, (1.9)

or, equivalently,
J=TJ".

Furthermore, J* is the unique solution of this equation within the
class of bounded functions. Moreover, for any bounded function J
with J > TJ (or J <T/J), we have J > J* (or J < J*, respectively).

Proof: From Eq. (1.8), we have for all x € X and N,

. aNM < (TNJQ)(:E) < J*(:E)—f— aN M

J*
(JI) 11—« 11—« ’

where Jo is the zero function [Jo(xz) = 0 for all x € X]. Applying the
mapping 7T to this relation and using the Monotonicity and Constant Shift

Lemmas 1.1.1 and 1.1.2, we obtain for all z € X and NV

N+1)0f N+1)f
(1) (@) = T < (TN 1)) < (1) (@) + T——
1—« 1—«

By taking the limit as N — oo in the preceding relation and using the fact

lim (TN+1Jo)(z) = J*(2)

N—o0

(cf. Prop. 1.2.1), we obtain J* = T'J".
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To show uniqueness, note that if J is bounded and satisfies J = T'J,
then J = limy_oo TVJ, so by Prop. 1.2.1, we have J = J*. Finally, for
any bounded J with J > TJ, using the Monotonicity Lemma 1.1.1, we
have for all k,

J>TJ> - >TkJ>Tk+1] > ...

and by taking limit as k — oo and by using Prop. 1.2.1, we obtain J >
limy_00 T*J = J*. The proof for the case J < T'J is similar. Q.E.D.

Based on the same reasoning we used to obtain Prop. 1.2.2 from Prop.
1.2.1, we have the following.

Proposition 1.2.4: For every stationary policy u, the associated cost
function satisfies for all x € X,

JN(CL') = g{g(w,u(x),w) + aJu(f(x,u(x),w))},
or, equivalently,
Jup=T,Jd,.

Furthermore, J,, is the unique solution of this equation within the class
of bounded functions. Moreover, for any bounded function J with
J>T,J (or J <T,J), we have J > J, (or J < J,, respectively).

The next proposition characterizes stationary optimal policies.

Proposition 1.2.5: (Necessary and Sufficient Condition for
Optimality) A stationary policy p is optimal if and only if u(x)
attains the minimum in Bellman’s equation (1.9) for each z € X; i.e.,

TJ =T,J*

Proof: If TJ* = T,J", then using Bellman’s equation (J* = TJ"), we
have J* = T, J", so by the uniqueness part of Prop. 1.2.4, we obtain J* =
Ju; ie., p is optimal. Conversely, if the stationary policy p is optimal, we
have J* = J,, which by Prop. 1.2.4, yields J* = T,J". Combining this
with Bellman’s equation (J* = TJ"), we obtain TJ* =T,,J". Q.E.D.

Note that Prop. 1.2.5 implies the existence of an optimal stationary
policy when the minimum in the right-hand side of Bellman’s equation is



18 Discounted Problems — Theory Chap. 1

attained for all € X. In particular, when U(z) is finite for each z € X,
an optimal stationary policy is guaranteed to exist.

We finally show the following convergence rate estimate for any func-
tion J that is bounded:

max|(TkJ)(z) — J*(z)| < ok rneaf%(‘J(:E) — J*(z)|, k=0,1,...

reX
This relation is obtained by using the fact T*J* = J* (which follows from
Bellman’s equation) and the following proposition, which is a fundamental
contraction property of T' that we will revisit in Section 1.5.

Proposition 1.2.6: (Convergence Rate) For any two bounded
functions J : X — R, J' : X — R, and for all k =0, 1,..., there holds

Ixnea))(<|(TkJ)(:z:) — (TkJ")(z)| < o® Igﬁnea))(ciJ(:z:) — J'(z)].

Proof: Denote
— — /
c glez?((w(x) J'(x)],
so that for all z € X,
J(x)—e< J(z) < J(z)+ec.

Applying T* in this relation and using the Monotonicity and Constant
Shift Lemmas 1.1.1 and 1.1.2, we obtain for all x € X,

(THJ)(x) — ake < (TEJ)(@) < (T+J)(@) + ake.
It follows that for all z € X,

(T%7) () — (T+J)(x)] < ake,
which proves the result. Q.E.D.

As earlier, by specializing Prop. 1.2.6 we obtain the following.

Proposition 1.2.7: For any two bounded functions J : X — R,
J': X — R, and any stationary policy u, we have

glea%\(zﬁj)(x) — (T} (z)| < ok anea}}ﬂj(x) - J'(z)], k=0,1,...
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Markov Chain Notation

Let us now describe the preceding results with a different notation, for
the case where the state space X is finite or countable. Then, similar to
Chapter 5 in Vol. I, states may be denoted by i = 1,2, ..., and the system
may be described in terms of transition probabilities p;;(u):

pij(u) = P(xps1 = J | @ =4, up = u), ,j€ X, ueU().

These may be given a priori or they may be calculated from the system
equation
Trt1 = [Tk, wr, wi)

and the known probability distribution P(- | ,u) of the input disturbance
wg. Indeed, we have

pij(u) = P(Wij(u) | i,u),
where Wj;(u) is the (finite) set
Wij(u) = {w e W | f(i,u,w) = j}.

The mappings T" and T}, are written in terms of transition probabili-
ties as

TJ)(i) = ; ) +ad(), ieX,
( ugl[}nZ)Zpg gli,u,j) +aJ(j), i

=3 pii (D) (9, ud), §) + I (j)),  i€X,
jeX
and the results of this section can be translated in the new notation. For
example, Bellman’s equation takes the form

JH(1) = mln Zpu g(i,u, j) + aJ*(j)), i€ X.

The following example illustrates, among others, this notation.
Example 1.2.1 (Machine Replacement)

Consider an infinite horizon discounted version of a problem we formulated in
Section 1.1 of Vol. I. Here, we want to operate efficiently a machine that can
be in any one of n states, denoted 1,...,n. State 1 corresponds to a machine
in perfect condition. The transition probabilities p;; are given. There is a
cost g(i) for operating for one time period the machine when it is in state
i. The options at the start of each period are to (a) let the machine operate
one more period in the state it currently is, or (b) replace the machine with a
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new machine (state 1) at a cost R. Once replaced, the machine is guaranteed
to stay in state 1 for one period; in subsequent periods, it may deteriorate
to states j > 1 according to the transition probabilities p1;. We assume an
infinite horizon and a discount factor a € (0, 1), so the theory of this section
applies.

Bellman’s equation (cf. Prop. 1.2.3) takes the form

J*() =min | R+ g(1) +aJ"(1), g() +a > _piyJ ()|, i=1,....n.
j=1
By Prop. 1.2.5, a stationary policy is optimal if it replaces at states ¢ where
R+g(1) +aJ (1) < g(i) +a > piyJ (),
j=1
and it does not replace at states ¢ where
R+g(1)+aJ (1) > g(i) +a > _piJ*(j)-
j=1

Based on the convergence of the DP algorithm (cf. Prop. 1.2.1), we can
characterize the optimal cost function using properties of the finite horizon
cost functions. In particular, the DP algorithm starting from the zero function
takes the form

Jo(2) =0,
(TJo)(i) = min R + g(1), g(3)],

(T*Jo) (i) = min | R+ g(1) + a(T" " Jo)(1), 9(i) + a Zpij(kalJO)(J)

Assume that g(i) is nondecreasing in ¢, and that the transition probabilities
satisfy

n

j=1

Jj=1

for all functions J(z), which are monotonically nondecreasing in ¢. This as-
sumption is satisfied if

pij =0, if 7 <1,
i.e., the machine cannot go to a better state with usage, and
Dij < Pi+1)j5 if 1 < 5,

i.e., the chance of going to a given bad state j from a better state ¢ < j
increases as i gets worse. Since ¢(i) is nondecreasing in i, we have that
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9(i) +a Y piy ()
J:1\

|
|
L J*(3)
|
|
i* =11 1 Set Xg .
lHe—» e >l 10 i
Do not Replace
Replace

Figure 1.2.1 Determining the optimal policy in the machine replacement Exam-
ple 1.2.1.

(T'Jo)(7) is nondecreasing in ¢, and in view of the assumption (1.10), the
same is true for (T2Jy)(7). Similarly, it is seen that, for all k, (T%Jo)(i) is
nondecreasing in ¢ and so is its limit

J*(i) = lim (T*Jo)(3).

k—oco

This is intuitively clear: the optimal cost should not decrease as the machine
starts at a worse initial state. It follows that the function

9(i) + @Y piJ ()

is nondecreasing in 7. Consider the set of states

XR_{i

= {smallest state in Xr if Xg is nonempty,
T ln+1 otherwise.

R+g(1)+aJ*(1) < g(i)+a )y PijJ*(J)} :
j=1
and let

Then, an optimal policy takes the form
replace if and only if i > 4",

as shown in Fig. 1.2.1.
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In the next two sections we illustrate the theory of the present section
with two interesting classes of problems: multiarmed bandit problems in
Section 1.3, and continuous-time semi-Markov problems in Section 1.4. The
material of these sections will not be used later and the reader may skip
them with no loss of continuity. Then, in Sections 1.5 and 1.6, we will
provide some extensions of the basic theory, which will be used sparingly
in Chapters 2-5 (mostly for Sections 2.5 and 2.6). Thus the reader may
proceed directly to the development of computational methods in Chapter
2 at this point, and return to this chapter when needed later.

SCHEDULING AND MULTIARMED BANDIT PROBLEMS

In this section we will discuss an important class of discounted cost prob-
lems with bounded cost per stage. There are n projects (or activities) of
which only one can be worked on at any time period. Each project ¢ is
characterized at time k by its state :vi. If project ¢ is worked on at time k,
one receives an expected reward ok R¢(zf), where o € (0,1) is a discount
factor; the state :vi then evolves according to the equation

zh = fiag,wp), if £ is worked on at time k,
where wf; is a random disturbance with probability distribution depending

on xi but not on prior disturbances. The states of all idle projects are
unaffected; i.e.,

:viﬂ = xf;, if £ is idle at time k.

We assume perfect state information and that the reward functions Rf(-)
are uniformly bounded above and below, so the problem comes under the
discounted cost framework of Section 1.2 and Assumption D.

We assume also that at any time & there is the option of permanently
retiring from all projects, in which case a reward a*M is received and
no additional rewards are obtained in the future. The retirement reward
M is given and provides a parameterization of the problem, which will
prove very useful analytically. Note that for M sufficiently small it is never
optimal to retire, thereby allowing the possibility of modeling problems
where retirement is not a real option.

The key characteristic of the problem is the independence of the
projects manifested in our three basic assumptions:

1. States of idle projects remain fixed.

2. Rewards received depend only on the state of the project currently
engaged.

3. Only one project can be worked on at a time.
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The rich structure implied by these assumptions makes possible a
powerful methodology. It turns out that optimal policies have the form of
an index rule; that is, for each project ¢, there is a function mf(z¢) such
that an optimal policy at time k is to

retire if M > max{mt(z})},
‘

(1.11)

work on project £ if mt(zt) = m?x{mz(ac‘;)} > M.

Thus mf(xf) may be viewed as an index of profitability of operating the
lth project, while M represents profitability of retirement at time k. The
optimal policy is to exercise the option of maximum profitability.

The problem has a colorful name. It is known as a multiarmed bandit
problem after an early and somewhat specialized paradigm, whereby one
is to select a sequence of plays on a slot machine that has several arms
corresponding to different but unknown probability distributions of payoff.
With each play the distribution of the selected arm is better identified,
so at each play, the tradeoff is between playing arms with high expected
payoff and exploring the winning potential of other arms.

Index of a Project

Let J(x, M) denote the optimal reward attainable when the initial state
is ¢ = (21,...,2™) and the retirement reward is M. From Section 1.2 we
know that, for each M, J(-, M) is the unique bounded solution of Bellman’s
equation

J(x, M) = max | M, m?xLl(x,M, |, (1.12)
where L? is defined by

Lz, M, J) = Rt(x?) +aE{J(3:1,...,xé—l,ff(xf,wé),x“l,...,:r",M)}.
ol

(1.13)
The next proposition gives some useful properties of J.

Proposition 1.3.1: Let B = max; max,¢|R!(2¢)|. For fixed , the
optimal reward function J(z, M) has the following properties as a
function of M:

(a) J(z, M) is convex and monotonically nondecreasing.
(b) J(x, M) is constant for M < —B/(1 — «).
(¢) J(z,M) =M for all M > B/(1 — a).
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Proof: Consider a DP iteration starting with the function
Jo(z, M) = max[0, M].

It has the form
Ji+1(x, M) = max M,m?XLf(x,M,Jk) , k=0,1,..., (1.14)

and from Prop. 1.2.1, we know that for all z and M,

lim Jy(x, M) = J(x, M).
k— o0

We show inductively that Ji(z, M) has the properties (a)-(c) stated in
the proposition and by taking the limit as k — co, we establish the same
properties for J. Indeed, clearly Jo(x, M) satisfies properties (a)-(c). As-
sume that Ji(z, M) satisfies (a)-(c). Then from Egs. (1.12) and (1.14),
Jk+1(x, M) is convex and monotonically nondecreasing in M, since the ex-
pectation and maximization operations preserve these properties. Hence
property (a) follows. Verification of (b) and (c) is similarly straightforward,
and is left for the reader. Q.E.D.

Consider now a problem where there is only one project that can be
worked on, say project £. The optimal reward function for this problem
is denoted J¢(xf, M) and has the properties indicated in Prop. 1.3.1. A
typical form for J¢(x¢, M), viewed as a function of M for fixed x¢, is shown
in Fig. 1.3.1. Clearly, there is a minimal value mf(zf) of M for which
Jxt, M) = M; i.e., for all z¢,

mt(zt) = min{M | J¢(zt, M) = M}. (1.15)

The function mf(x¢) is called the index function (or simply index) of project
¢. Tt provides an indifference threshold at each state; i.e., m¢(z?) is the re-
tirement reward for which we are indifferent between retiring and operating
the project when at state z¢.

Our objective is to show the optimality of the index rule (1.11) for
the index function defined by Eq. (1.15).

Project-by-Project Retirement Policies

Consider first a problem with a single project, say project £, and a fixed
retirement reward M. Then by the definition (1.15) of the index, an optimal
policy is to

retire project £ if mé(z¢) < M,

1.16
work on project £if mf(xt) > M. (1.16)
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JE(zt, M) 4
—B(1 - a) A mt(z?)
N 7y -
_l//, 0 M

Optimal reward over
policies that never retire

Figure 1.3.1 Form of the ¢th project reward function J¢ (:(:Z7 M) for fixed z¢ and
definition of the index mf ().

In other words, the project is operated continuously up to the time that
its state falls into the retirement set

X0 ={xt [ mt(at) < M}. (1.17)

At that time the project is permanently retired.

Consider now the multiproject problem for fixed retirement reward
M. Suppose that at some time we are at state x = (z1,...,2"). Let us
ask two questions:

1. Does it make sense to retire (from all projects) when there is still
a project ¢ with state xf such that mf(xf) > M? The answer is
negative. Retiring when mf(xf) > M cannot be optimal, since if
we operate project £ exclusively up to the time that its state x¢ falls
within the retirement set X¢ of Eq. (1.17) and then retire, we will gain
a higher expected reward. [This follows from the definition (1.15) of
the index and the nature of the optimal policy (1.16) for the single-
project problem.]

2. Does it ever make sense to work on a project ¢ with state in the
retirement set X¢ of Eq. (1.17)? Intuitively, the answer is negative;
it seems unlikely that a project unattractive enough to be retired if
it were the only choice would become attractive merely because of
the availability of other projects that are independent in the sense
assumed here.

We are led therefore to the conjecture that there is an optimal project-
by-project retirement (PPR) policy that permanently retires projects in the
same way as if they were the only project available. Thus at each time a
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PPR policy, when at state z = (z1,...,2"),

permanently retires project ¢ if  xfe X¢ (118)
works on some project if 27 ¢ X for some j, '

where X? is the (th project retirement set of Eq. (1.17). Note that a PPR
policy decides about retirement of projects but does not specify the project
to be worked on out of those not yet retired.

The following proposition substantiates our conjecture. The proof is
lengthy but quite simple.

Proposition 1.3.2: There exists an optimal PPR policy.

Proof: In view of Egs. (1.12), and (1.18), existence of a PPR policy is
equivalent to having, for all ¢,

max | M, max L¢(x, M, J)] > Li(x, M, J), for all z with zf € X?,
T#0
(1.19)
M < Lz, M, J), for all x with zf ¢ X, (1.20)

where L¢ is given by

LYz, M,J) = Rt(z)+a E {J(:z:l, coy bl f (gl wt) bt ,x",M)},
wt

(1.21)
and J(x, M) is the optimal reward function corresponding to x and M.
The /¢th single-project optimal reward function J¢ clearly satisfies, for
all z¢,
Jat, M) < J(2t,. ..zt al ot o an, M), (1.22)

since having the option of working at projects other than ¢ cannot decrease
the optimal reward. Furthermore, from the definition of the retirement set
X [cf. Eq. (1.17)],

xl ¢ XL, ifMSRf(xf)—l—aEe{ﬂ(fé(:ﬂ,wf),M)}. (1.23)

Using Egs. (1.21)-(1.23), we obtain Eq. (1.20).
It will suffice to show Eq. (1.19) for £ = 1. Denote:

x = (22,...,2n): The state of all projects other than project 1.

J(xz, M): The optimal reward function for the problem resulting after

project 1 is permanently retired.
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J(at,z, M): The optimal reward function for the problem involving
all projects and corresponding to state x = (21, z).

We will show the following inequality for all x = (1, z):
J(z, M) < J(z' 2, M) < J(z, M) + (J' (2!, M) = M). (1.24)

In words this expresses the intuitively clear fact that at state (a!,z) one
would be happy to retire project 1 permanently if one gets in return the
maximum reward that can be obtained from project 1 in excess of the
retirement reward M. We claim that to show Eq. (1.19) for £ = 1, it will
suffice to show Eq. (1.24). Indeed, when 2! € X1, then J1 (21, M) = M,
so from Eq. (1.24) we obtain J(x',z, M) = J(z, M), which is in turn
equivalent to Eq. (1.19) for ¢ = 1.

We now turn to the proof of Eq. (1.24). Its left side is evident. To
show the right side, we proceed by induction on the DP recursions

Jrt1(xt, ) = max [M, RY(z') + aB{Jp(f1(z', wh),z) },

max[R(a!) + aB { Ju (w1, F*(z, w)) }] |, (1:2)
t#1
Jjp1(z) = max {M, T?;lx[Ré(ﬂ) +aB{J (F'(z, wé))}]] ; (1.26)
Jiii(z') = max [M, R'(z') + aE{J} (f1(z',w)) }], (1.27)
where, for all £ # 1 and z = (22,...,z"),
Fllz,wt) = (:102, P T A € AR I W e ,x”).
The initial conditions for the recursions (1.25)-(1.27) are
Jo(z1,2) = M, for all (a1, z), (1.28)
Jolz) =M, for all z, (1.29)
Ji(zt) = M, for all z!. (1.30)

We know that Ji(2!,z) — J(2t, 2, M), J(z) — J(z, M), and J}(2!) —
J1(z1, M), so to show Eq. (1.24) it will suffice to show that for all k£ and
x = (z1,z) we have

Je(zt,z) < Jy(z) + (Ji(at) — M). (1.31)

In view of the definitions (1.28)-(1.30), we see that Eq. (1.31) holds for
k = 0. Assume that it holds for some k. We will show that it holds for
k+1. From Egs. (1.25)-(1.27) and the induction hypothesis (1.31), we have

Jea1(x!, 2) < max [M, R(z1) + aE{ik(g) + J} (fl(xl,wl)) — M}7

mas [RY(2!) + aB{ L (F/(z,w") + J}(a*) = M} } .
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Using the facts J,(z) > M and J}(z') > M [cf. Egs. (1.25)-(1.27)], and
the preceding equation, we see that

Jk+l($17£) S max[ﬂla [32]5
where

f1 = max [M, RY(z) + aE{J} (f1(z1,w)) }} + a(J(z) — M),

B2 = max [M, I?;?lx[Rl(xl) + aEB{J, (F(z, wz»}ﬂ + a(JE(zt) = M).
Using Egs. (1.26), (1.27), and the preceding equations, we see that
Jeg1 (@t z) <max[J}L (aV) + S () — M, Sy (z) + JE(21) — M]. (1.32)

It can be seen from Egs. (1.25)-(1.27) and (1.28)-(1.30) that J}(z!) <
Jiq(xt) and Jy(z) < Jpyq(z) for all k, 21, and z, so from Eq. (1.32) we
obtain that Eq. (1.31) holds for k4 1. The induction is complete. Q.E.D.

As a first step towards showing optimality of the index rule, we use
the preceding proposition to derive an expression for the partial derivative
of J(xz, M) with respect of M.

Proposition 1.3.3: For fixed z, let Kj; denote the retirement time
under an optimal policy when the retirement reward is M. Then for
all M for which 0J(z, M)/OM exists we have

oJ(x, M)

M = E{a®M | 2o = z}.

Proof: Fix x and M. Let n* be an optimal policy and let Kjs be the
retirement time under 7*. If 7* is used for a problem with retirement
reward M + e, we receive

E{reward prior to retirement} + (M + €)E{afm} = J(z, M) + eE{a®Mm}.

The optimal reward J(z, M + €) when the retirement reward is M + € is
no less than the preceding expression, so

J(@x, M +¢€) > J(x, M)+ eE{aKMm}.
Similarly, we obtain

J(@x, M —¢€) > J(x,M) — eE{aKMm}.
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For € > 0, these two relations yield

J(x, M) — J(x, M —¢€) < E{aku} < J(I,M—Fe)—J(x,M).

€ €

The result follows by taking e -+ 0. Q.E.D.

Note that the convexity of J(x,-) with respect to M (Prop. 1.3.1)
implies that the derivative 0J(z, M)/OM exists almost everywhere with re-
spect to Lebesgue measure. Furthermore, it can be shown that 0.J(x, M)/OM
exists for all M for which the optimal policy is unique.

For a given M, initial state x, and optimal PPR policy, let Ty be
the retirement time of project ¢ if it were the only project available, let T
be the retirement time for the multiproject problem. Both T, and T take
values that are either nonnegative or co. The existence of an optimal PPR
policy implies that we must have

T=Ti+ - +T,

and in addition 71, ...,y are independent random variables. Therefore,

E&ﬂ}:E&ﬂﬂm+ﬂ}:fiEmﬂ}

=1
Using Prop. 1.3.3, we obtain
OJ(x, M) 1 0Jxt, M)
= II IV (1.33)

14

1

Optimality of the Index Rule

We are now ready to show our main result.

Proposition 1.3.4: The index rule (1.11) is an optimal stationary
policy.

Proof: Fix z = (z1,...,2"), denote

m(x) = m%x{mz(:zrg)},

and let £ attain the maximum above, i.e.,

mt(xt) = m%x{mz(:zré)}.
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If m(z) < M the optimality of the index rule (1.11) at state = follows from
the existence of an optimal PPR policy. If m(z) > M, we note that

J(zt, M) = RY(z*) + aE{J¢(f4 (2, wt), M)}

and then use this relation together with Eq. (1.33) to write

oJ(x, M) _ OJ(xt, M) H OJi(xi, M)

oM oM oy oM
0 0Ji(xi, M)
= QWE JE(fe(at, wt), M) - H i
J#L
0 0Ji(zi, M)
=akF Wjé(fé(xg,wg),M)'HiaM
J#L
=aF iJ(:zcl ot f et wt), et e, M)
8M ) ) ) ) ) ) ) )
0
:aa—ME{J(:Cl,...,xf—l,ff(xé,wf),x“‘l,...,x",M)},
and finally
oJ(xz, M) 0 _,
ot~ o M)
where

LYz, M, J) = Rf(z?) + aE{J(xl, cooymtl fE (et wt) L ,a:",M)}.

(The interchange of differentiation and expectation can be justified for
almost all M; see [Ber73a].) By the existence of an optimal PPR policy,
we also have

J(z,m(z)) = Lt(z,m(z), J).

Therefore, the convex functions J(x, M) and L¢(x, M, J) viewed as func-
tions of M for fixed x are equal for M = m(z) and have equal derivative
for almost all M < m(x). It follows that for all M < m(z) we have

J(x, M) = Lt(z, M, J).

This implies that the index rule (1.11) is optimal for all x with m(z) > M.
Q.E.D.
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Deteriorating and Improving Cases

It is evident that great simplification results from the optimality of the
index rule (1.11), since optimization of a multiproject problem has been
reduced to n separate single-project optimization problems. Nonetheless,
solution of each of these single-project problems can be complicated. Under
certain circumstances, however, the situation simplifies.

Suppose that for all £, x¢, and w! that can occur with positive prob-
ability, we have either

mt(xt) < mt(fl(zt, wt)) (1.34)

mt(zt) > mt(ff(xt, wt)). (1.35)

Under Eq. (1.34) [or Eq. (1.35)] projects become more (less) profitable
as they are worked on. We call these cases improving and deteriorating,
respectively.

In the improving case the nature of the optimal policy is evident:
either retire at the first period or else select a project with maximal index
at the first period and continue engaging that project for all subsequent
periods.

In the deteriorating case, note that Eq. (1.35) implies that if retire-
ment is optimal when at state z¢ then it is also optimal at each state
fE(xzt wt). Therefore, for all 2¢ such that M = mf(z¢) we have, for all w¢,

Jt(zt, M) = M, JE(fY(xt wh), M) = M.
From Bellman’s equation

Jt(z¢, M) = max [M, Rf(xt) + aE{JZ(fg(xg’wé)’M)H

we obtain
mt(zt) = R¢(zt) + amt(xt)
or
(ol
mt(xt) = R )
l1-«a

Thus the optimal policy in the deteriorating case is

R (")

retire if M > max, ———

engage the project ¢ with maximal one-step reward R¢(z?) otherwise.

The following is an example of the deteriorating case.
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Example 1.3.1 (Treasure Hunting)

Consider a search problem involving N sites. Each site £ may contain a
treasure with expected value vy. A search at site £ costs ¢, > 0 and reveals
the treasure with probability 5, (assuming a treasure is there). Let P; be the
probability that there is a treasure at site £. We take P, as the state of the
project corresponding to searching site £. Then the corresponding one-step
reward is

RY(Py) = BePyog — (1.36)

with the retirement reward being M = 0. If a search at site ¢ does not reveal
the treasure, the probability P, drops to

P, — Pe(1 - Be)
eiPz(l—ﬂg)-‘rl—Pe’

as can be verified using Bayes’ rule. If the search finds the treasure, the
probability P, drops to zero, since the treasure is removed from the site.
Based on this and the fact that R’(P) is increasing with Py [cf. Eq. (1.36)], it
is seen that the deteriorating condition (1.35) holds. Therefore, it is optimal
to search the site £ for which the expression R*(P) of Eq. (1.36) is maximal,
provided max, R*(P;) > 0, and to retire if R*(P;) < 0 for all £.

1.4 DISCOUNTED CONTINUOUS-TIME PROBLEMS

In this section, we consider continuous-time semi-Markov problems of the
type that we discussed in Section 5.6 of Vol. I. We saw there that they are
closely connected to discrete-time problems, the main difference being that
the discount factor depends on the state and the control. In this section,
we reexamine these problems in the light of the framework of this chapter,
and we discuss some interesting special cases. We restrict attention to the
case of a finite or countable number of states.

We first focus on an important special case, where the times between
successive transitions have an exponential probability distribution. We show
that by using a conversion process called uniformization, the analysis of
these models and the relation to the discrete-time framework can be sim-
plified. Many of the practical systems of this type involve the Poisson
process, so for most of the examples discussed here and later in Section
4.6, we assume that the reader is familiar with this process at the level of
textbooks such as [Ros83b], [Gal95], and [BeT08].

We then discuss problems where the times between successive transi-
tions need not have an exponential distribution. This is the case discussed
for a finite number of states in Section 5.6 of Vol. I. Here we extend the
analysis to the case where the number of states is countably infinite.
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Uniformization

We consider a continuous-time system with a finite or a countable number
of states. Accordingly, states are denoted by i = 1,2,..., and the system
is described by transition distributions. In particular, state transitions
and control selections take place at discrete times, but the time from one
transition to the next is random. We first assume the following:

1. If the system is in state 7 and control u is applied, the next state will
be j with probability p;;(u).

2. The time interval 7 between transition to state 7 and transition to the
next state is exponentially distributed with parameter v;(u) > 0; i.e.,

P{transition time interval > 7 |i,u} = e (W7
or equivalently, the probability density function of 7 is
p(r) = vi(u)evilwr, — 7>0.

Furthermore, 7 is independent of earlier transition times, states, and
controls. The parameters v;(u) are uniformly bounded in the sense
that for some v we have

vi(u) < v, for all 4, u € U(i).

The parameter v;(u) is referred to as the transition rate associated
with state ¢ and control u. It can be verified that the corresponding average
transition time is

o 1
E{r} = /O rvr(w)e i@ dr =

so v;(u) can be interpreted as the average number of transitions per unit
time.

The state and control at any time t are denoted by i(t) and wu(t),
respectively, and stay constant between transitions. We use the following
notation:

tx: The time of occurrence of the kth transition. By convention, we
denote tg = 0.

T =t — tr_1: The kth transition time interval.
gy = i(tk): We have Z(t) =i for t, <t < tpyq.
ug = u(ty): We have u(t) = uy for t) <t < tgy1.

We consider a cost function of the form

lim E{/OtN eﬁtg(z'(t),u(t))dt}, (1.37)

N—o00
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where ¢ is a given function and 8 is a given positive discount parameter.
Similar to discrete-time problems, an admissible policy is a sequence m =
{po, 1, ...}, where each py is a function mapping states to controls with
ur (i) € U(4) for all states 7. Under 7, the control applied in the interval
[tk, te+1) is pi(ix). Because states stay constant between transitions, the
cost function of 7 is given by

o0

Jr(io) =Y E {
k=0

We first consider the case where the transition rate is the same for

all states and controls; i.e., for all ¢ and u,

tht1
/ et (i, e (ix))

23

vi(u) = v.

A little thought shows that the problem is then essentially the same as
the one where transition times are fixed, because the control cannot influ-
ence the cost of a stage by affecting the length of the next transition time
interval.

Indeed, the cost (1.37) corresponding to a sequence { (ix, uz)} can be
expressed as

Z E {/ o e~Ptg(i(t), u(t))dt} = Z E {/ o e—ﬂtdt} E{g(ir, uk)}.
k=0 k=0 23

2
(1.38)
We have (using the independence of the transition time intervals)
2% —Bt — —BT,
B / gy b = AT BT )
t B
B E{6_6(71+~~~+Tk)}(1 —_ E{6757k+1}) (139)
a B
okl -a)
ﬁ )
where
°° v
=F —BT :/ —pT 7U7d = .
! {e=B7} ; e Brve T i1

The above expression for « yields (1 — «)/8 = 1/(8 + v), so that from Eq.

(1.39), we have
tet1 k
E / e=Btdt b = >
t, pg+v
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From this equation together with Eq. (1.38) it follows that the cost of the
problem can be expressed as

1 o0
—g ak Edg(ix, uk)}
B+vi= Lot )}

Thus we are faced in effect with an ordinary discrete-time problem where

expected total cost is to be minimized. The effect of randomness of the

transition times has been simply to appropriately scale the cost per stage.
To summarize, a continuous-time Markov chain problem with cost

lim E{/OtN eﬁtg(z'(t),u(t))dt},

N—o00

and transition rate v that is independent of state and control is equivalent
to a discrete-time Markov chain problem with discount factor

v
o= ,
B+v
and cost per stage given by
" g(i,u)
1,u) = . 1.40
i = L2 (1.40)

In particular, Bellman’s equation takes the form

T0) = min |g(i.0) + o 3 pu(I0)| (1.41)
J

In some problems, in addition to the cost (1.37), there is an extra expected

stage cost §(i,u) that is incurred at the time the control u is chosen at

state 7, and is independent of the length of the transition interval. In that

case the expected stage cost (1.40) should be changed to (i, u) + §(i, u),

and Bellman’s equation (1.41) becomes

J(0) = min \g(i,u) + 5 w) +a ) py(I ()] - (142)

Example 1.4.1

A manufacturer of a specialty item processes orders in batches. Orders arrive
according to a Poisson process with rate v per unit time; i.e., the successive
interarrival intervals are independent and exponentially distributed with pa-
rameter v. There is a cost ¢(¢) per unit time that ¢ orders remain unfilled. We
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Figure 1.4.1 Transition diagram for the continuous-time Markov chain of Exam-
ple 1.4.1. The transitions associated with the first control (do not fill the orders)
are shown with solid lines, and the transitions associated with the second control
(fill the orders) are shown with broken lines.

assume that c(¢) is bounded and monotonically nondecreasing with i. Costs
are discounted with a discount parameter 8 > 0. The setup cost for pro-
cessing the orders is K. Upon arrival of a new order, the manufacturer must
decide whether to process the current batch or to wait for the next order.

Here the state is the number 4 of unfilled orders. If the decision to fill
the orders at state i is made, the cost is K and the next transition will be
to state 1. Otherwise, there will be an expected cost ¢(i)/(8 + v) up to the
transition to the next state ¢ + 1 [cf. Eq. (1.40)], as shown in Fig. 1.4.1. We
are in effect faced with a discounted discrete-time problem with bounded cost
per stage.

Bellman’s equation takes the form

c(i)

where a« = v/(8 + v) is the effective discount factor [cf. Eq. (1.5)]. [Note
that the setup cost K is incurred immediately after a decision to process
the orders is made, so K is not discounted over the time interval up to the
next transition; cf. Eq. (1.42).] Reasoning from first principles (or using the
value iteration algorithm and induction), we see that J(¢) is a monotonically
nondecreasing function of i, so from Bellman’s equation it follows that there
exists a threshold ¢* such that it is optimal to process the orders if and only
if their number exceeds 7*.

Nonuniform Transition Rates

We now argue that the more general case where the transition rate v;(u)
depends on the state and the control can be converted to the previous case
of uniform transition rate by using the trick of allowing fictitious transitions
from a state to itself. Roughly, transitions that are slow on the average are
speeded up with the understanding that sometimes after a transition the
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vi(u), pij(u) vi(u), pjk(w)

vk (), pri(u)

Transition rates and probabilities
for continuous-time chain

Transition rates for uniform version

Figure 1.4.2 Transforming a continuous-time Markov chain into its uniform
version through the use of fictitious self-transitions. The uniform version has a
uniform transition rate v, which is an upper bound for all transition rates v;(u)
of the original, and transition probabilities

Pij(u) = (vi(w)/v)pij (u), for i # j,
and
Pii(u) = (Vz(u)/V)p“(u) +1—vi(u)/v, for j = .

In the example of the figure we have p;;(u) = 0 for all 4 and u.

state may stay unchanged. To see how this works, let v be a new uniform
transition rate with v;(u) < v for all ¢ and w, and define new transition
probabilities by

vl - () if i # j,

pij(u) =9 . .
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We refer to this process as the wuniform version of the original (see Fig.
1.4.2). We argue now that leaving state ¢ at a rate v;(u) in the original
process is probabilistically identical to leaving state ¢ at the faster rate v,
but returning back to ¢ with probability 1 — v;(u)/v in the new process.
Equivalently, transitions are real (lead to a different state) with probability
vi(u)/v < 1. By probabilistic equivalence, we mean that for any given
policy m, initial state ig, and time ¢, the probabilities P{i(t) = i | 40,7}
are identical for the original process and its uniform version, for all ;. We
give a proof of this fact in Exercise 1.10 for the case of a finite number of
states (see [Lip75b] and [Ros83b] for further discussion).

To summarize, we can convert a continuous-time Markov chain prob-
lem with transition rates v;(u), transition probabilities p;;(u), and cost

Jim B {/OtN e~Ptg(i(t), u(t))dt} :

into a discrete-time Markov chain problem with discount factor

v

:m7

(0%

where v is a uniform transition rate chosen so that for all ¢ and wu,
vi(u) <w.

The transition probabilities are

v (u) e :
. o Pij(u) iti #j,
pij(u) = v () ’ vi(w) e
= pii(u) +1— == ifi =7,

and the cost per stage is for all ¢ and w,

(i, u)
B+v’

Q

g(iv u) =

In particular, Bellman’s equation takes the form

J(@) = min | 9(iw)+ad puyJ()|

which, after some calculation using the preceding definitions, can be written
as

J(i) = " min g(i,u)+(V—Vz'(U))J(i)+Vi(U)Zpij(U)J(j)

B+ v ueU(i)
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In the case where there is an extra expected stage cost §(i,u) that is in-
curred at the time the control u is chosen at state i, Bellman’s equation
becomes [cf. Eq. (1.42)]

L min |8+ v)d(,u) + 9(i,u)

) = B+ v uelU(i)

+ (v — vi(u)) J (@) + vi(u) szg(u)J(])

Example 1.4.2 (Priority Assignment and the uc Rule)

Consider r queues that share a single server. There is a positive cost ¢, per
unit time and per customer in each queue £ = 1,...,r. The service time of a
customer of queue /¢ is exponentially distributed with parameter p,, and all
customer service times are independent. Assuming that we start with a given
number of customers in each queue and no further arrivals occur, what is the
optimal order for serving the customers? The cost here is

tN T
lim E —he t)dt
g 54 [T e

=1

where z,(t) is the number of customers in the ¢th queue at time ¢, and 3 is a
positive discount parameter.

We first construct the uniform version of the problem. The construction
is shown in Fig. 1.4.3. The discount factor is

7
oa=—)
B+ u
where

p = max{pe},

and the corresponding cost is

r

— N oE chk, (1.43)
B+pe~

=1

where z% is the number of customers in the £th queue after the kth transition
(real or fictitious).

We now rewrite the cost in a way that is more convenient for analysis.
The idea is to transform the problem from one of minimizing waiting costs to
one of maximizing savings in waiting costs. For kK =0, 1,.. ., define

O = {4 if the kth transition corresponds to a departure from queue £,
0 if the kth transition is fictitious.
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L

Transition probabilities for the fth queue when service is provided
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He & e " e
M (L jz

Transition probabilities for the uniform version

Figure 1.4.3 Continuous-time Markov chain and uniform version for the ¢th

queue of Example 1.4.2 when service is provided. The transition rate for the
uniform version is p = maxg{p¢}-

Denote also
Coyg = 07
YA o egs .
xg : the initial number of customers in queue £.

Then the cost (1.43) can also be written as

1 - £ k
— E +§ E
Ce T 2 1a

=1

(]
o
8.
o

)

3

=1 m=0

- Za Sedt) - B{S Y b

=1 m=0k=m+1

T

_; CZL’Z o C
= FTRl D = T Z o)

= %Zq 1’6 — % ZakE{Cgk}.
=1

Therefore, instead of minimizing the cost (1.43), we can equivalently

oo
maximize ZakE{cek}, (1.44)
k=0

where c¢, can be viewed as the savings in waiting cost rate obtained from the
kth transition.



Sec. 1.4 Discounted Continuous-Time Problems 41

We now recognize problem (1.44) as a multiarmed bandit problem. The
r queues can be viewed as separate projects. At each time, a nonempty
queue, say /¢, is selected and served. Since a customer departure occurs with
probability we/u, and a fictitious transition that leaves the state unchanged
occurs with probability 1 — ue/u, the corresponding expected reward is

fhe
B, (1.45)
n

Note that the reward per stage is bounded, so we may use the framework
and results of Sections 1.2 and 1.3. It is evident that the problem falls in
the deteriorating case examined at the end of Section 1.3. Therefore, after
each customer departure, it is optimal to serve the queue with maximum
expected reward per stage (i.e., engage the project with maximal index; cf.
the end of Section 1.3). Equivalently [cf. Eq. (1.45)], it is optimal to serve the
nonempty queue ¢ for which pece is mazimum. This policy is known as the uc
rule. It plays an important role in several other formulations of the priority
assignment problem. We can view pece as the ratio of the waiting cost rate
¢¢ by the average time 1/u¢ needed to serve a customer. Therefore, the uc
rule amounts to serving the queue for which the savings in waiting cost rate
per unit average service time are maximized.

Discounted Semi-Markov Problems

We now consider a more general version of the continuous-time problem
where we cannot use uniformization, and as a result we cannot pose the
problem as a discounted problem that fits the framework of Section 1.2.
We instead formulate the problem as a discrete-time problem that nearly
fits that framework. The only difference is that the discount factor may
depend on the state and/or the control.

We continue to assume a finite or a countable number of states, but
we replace transition probabilities with ¢ransition distributions Qi;(T,u),
which for a given pair (¢, u), specify the joint distribution of the transition
interval and the next state:

Qij(T,U):P{thrl_tk ST, ik+1 :j|ik:i, uk:u}.

We assume that for all states ¢ and j, and controls u € U(i), Qs;(7,u) is
known and that the average transition time is finite:

/000 T7Qii (T,u) < 0.

Note that the transition distributions specify the ordinary transition prob-
abilities via

pij(u) = Pliyr = j [ ix = i, wp = u}p = Tim Qu5(7,w).
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Thus, contrary to the case where uniformization applies, Q;;(7, u) need not
be an exponential distribution.
As earlier, we consider a cost function of the form

lim E{/OtN e—Btg(z'(t),u(t))dt}, (1.46)

N—o0

where ty is the completion time of the Nth transition, and the function g
and the positive discount parameter [ are given. The cost function of an
admissible N-stage policy m = {po, pi1, ..., un—1} is given by

Z E {/tw e=Btg (i, p(ix) ) dt ’ io = z}

We see that for all states ¢ we have

IV (i) = Gi, o +Z/ =57 Quy (dr, p()) A1), (147)

where JX ~!(5) is the (N —1)-stage cost of the policy m1 = {1, pi2, ..., iN—1}
that is used after the first stage, and G(i,u) is the expected single stage
cost corresponding to (7, ). This latter cost is given by

Gliu) = g(i, u) Z/OOO </O eﬁtdt> Qi (dr, ),

or equivalently, since [ e=ftdt = (1 —e~57)/3,
1 —e b7

G(i,u) = g(i,u)Z/O TQij(dT, u). (1.48)

If we denote -
mig(w) = [ e Quldr.w).
0

we see that Eq. (1.47) can be written in the form

I (i) = G (i, po(i +me po()) Ja " (4), (1.49)

which is similar to the corresponding equation for discounted discrete-time
problems [we have m;;(u) in place of ap;;(u)].

The expression (1.49) motivates the use of mappings 7" and T}, that
are similar to those introduced in Section 1.1.2. For a function J and a
stationary policy u, let us define

(Tu7)(0) = G (i) + D s (D) T (), (1.50)
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TJ)(i) = min |G(i,u) + ) I | 1.51
(TD)G) = min GG, w) zj:ma(U) () (1.51)
Then by using Eq. (1.49), it can be seen that the cost function Jr of an
infinite horizon policy m = {uo, pi1, ...} can be expressed as

J=(i) = lim J¥(3)

N = ]\}Lmoo(TMOTM v 'TMN71JO)(")=
where Jy is the zero function [Jo(i) = 0 for all é]. The cost of a stationary
policy u can be expressed as

Ju(i) = lim (T Jo)(4).
N—o00
These expressions implicitly assume that the corresponding limits exist,
something that we will verify shortly under suitable conditions.
The discounted cost analysis of Section 1.2 carries through in its en-
tirety (see also Section 5.6 of Vol. I), provided we assume that:

(a) g(i,u) [and hence also G(i,u)] is a bounded function of i and u.

(b) The maximum over (i,u) of the sum ., m;;(u) is less than one; i.e.,

p= max Zmij(u) <1 (1.52)
’ J

Under these circumstances, analogs of the results of Section 1.2 can be
readily shown. In particular, the optimal cost function J* is the unique
bounded solution of Bellman’s equation J = T'J or

70 = jmin, | G6w)+ 36
What is happening here is that essentially we have the equivalent of a
discrete-time discounted problem where the discount factor depends on
and u.

We note that for the property p < 1 [cf. Eq. (1.52)] to hold, it is
sufficient that there exist 7 > 0 and € > 0 such that the transition time is
greater than 7 with probability greater than € > 0; i.e., we have for all 4
and u € U(i),

1= Qij(F,u) =Y P{r>7|i,u, j} >e
J J

We finally note that in some problems, in addition to the cost (1.46),
there is an extra expected stage cost §(i,u) that is incurred at the time
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the control u is chosen at state ¢, and is independent of the length of the
transition interval. In that case the mappings T" and 7}, should be changed
to

(TuT)(0) = §(i, n0)) + G (i, p(0)) + Z mij (u(2)) J (5),

(1)) = min |3.0)+ Gli.u) + 3 miy()I()

Another problem variation arises when the cost per unit time g depends
on the next state j. In this problem formulation, once the system goes into
state i, a control u € U(%) is selected, the next state is determined to be j
with probability p;;(u), and the cost of the next transition is g(, u, j)7i; (u)
where 7;;(u) is random with distribution Q;;(7,w)/pij(u). Then G(i,u)
should be defined by

> 1—e b7
G.a = .a 7.7 ’L”da )
(iru) Z/ oy, 1) Quydry)

[cf. Eq. (1.48)] and the preceding development goes through without mod-
ification.

Example 1.4.3 (Control of an M/D/1 Queue)

Consider a single server queue where customers arrive according to a Poisson
process with rate X\. The service time of a customer is deterministic and is
equal to 1/p where p is the service rate provided. The arrival and service rates
A and p can be selected from given subsets A and M, and can be changed
only when a customer departs from the system. There are costs g(A) and 7(u)
per unit time for using rates A and p, respectively, and there is a waiting cost
c¢(7) per unit time when there are ¢ customers in the system (waiting in queue
or undergoing service). We wish to find a rate-setting policy that minimizes
the total discounted cost.

Note that the rates can be changed only when a customer departs. Be-
cause the service time distribution is not exponential, it is necessary to make
this restriction in order to be able to use as state the number of customers
in the system; if we allowed the arrival rate to also change when a customer
arrives, the time already spent in service by the customer found in service by
the arriving customer would have to be part of the state.

The transition distributions are given by

1—e™ ifj=1,
0 otherwise,

Qo; (7_7 A, /J,) = {

. _[pii(Ap) i 1/p<T, .
Quis(m: A ) = {0 otherwise, i1
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where p;; (A, p) are the state transition probabilities. For ¢ > 1 and j > — 1,
pij (A, p) can be calculated as the probability that j — i+ 1 arrivals will occur
in an interval of length [0,1/u], which is given by the Poisson distribution
(see e.g., [BeT08]). In particular, we have

MEoywU—HD
piOp) =4 — Goenr - Hizi-l i>1
0 otherwise,

Using the above formulas, one can write Bellman’s equation and solve the
problem as if it were essentially a discrete-time discounted problem.

1.5 THE ROLE OF CONTRACTION MAPPINGS

Two key structural properties of DP models are responsible for most of the
mathematical results one can prove about them. The first is the monotonic-
ity property of the mappings T and T}, (cf. Lemma 1.1.1). This property is
fundamental for total cost infinite horizon problems. For example, it plays
an important role in the stochastic shortest path models of Chapter 3, and
it forms the basis for the analysis of positive and negative DP models, given
in Chapter 4.

When the cost per stage is bounded and there is discounting, however,
we have another property that strengthens the effects of monotonicity: the
mappings T and T}, are contraction mappings. In this section, we explain
the meaning and implications of this property.

Generally, given a real vector space Y with a norm || - || (i.e., a real-
valued function satisfying for all y € Y, [ly|]| > 0, |ly|]| = 0 if and only if
y = 0, |lay]| = |a|||y|| for all scalars a, and ||y + z|| < ||y|| + ||z|| for all
y,z €Y), afunction F : Y — Y is said to be a contraction mapping if for
some p € (0,1), we have

|Fy — Fz|| < plly — 2], VyzeY.

The scalar p is called the modulus of contraction of F. The space Y is said
to be complete under the norm || - || if every Cauchy sequence {yx} C Y is
convergent, in the sense that for some § € Y, we have ||lyx—g|| — 0.1 When

T In this section we will use some introductory material from real analysis;
we refer to textbooks such as [LiS61], [Roy88], [Rud76], who give alternative
treatments aimed at a variety of audiences. A sequence {yx} C Y is said to be a
Cauchy sequence if ||ym —yn|| — 0 as m,n — oo, i.e., given any € > 0, there exists
N such that ||ym — yn|| < € for all m,n > N. Note that a Cauchy sequence is
always bounded. Also, a Cauchy sequence of real numbers is convergent, implying
that the real line is a complete space and so is every real finite-dimensional vector
space. On the other hand, an infinite dimensional space may not be complete
under some norms, while it may be complete under other norms.
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Y is complete, an important property of a contraction mapping F': ¥ — Y
is that it has a unique fixed point, i.e., the equation

y="Fy
has a unique solution y*, called the fized point of F. Furthermore, the
sequence {yi} generated by the iteration
Yk+1 = Fyk

converges to y*, starting from an arbitrary initial point yo. We will shortly
prove this property in a specialized setting; our method of proof, however,
applies to the more general case as well.

Example 1.5.1 (Linear Contraction Mappings in }7)

Consider the case of a linear mapping F : R" — R" of the form
Fy=0b+ Ay,

where A is an n X n matrix and b is a vector in R". Let 0(A) denote the
spectral radius of A (the largest modulus among the moduli of the eigenvalues
of A). Then it can be shown that A is a contraction mapping with respect to
some norm if and only if o(A) < 1.

Specifically, given € > 0, there exists a norm || - ||s such that

IAyls < (o(A) +e)llylls,  VyeR™ (1.53)

Thus, if 0(A) < 1 we may select € > 0 such that p = 0(A)+e€ < 1, and obtain
the contraction relation

|Fy — Fzlls = [[A(y = 2)||, < plly—zlls;,  Vy,zeR™ (1.54)
The norm || - ||s can be taken to be a weighted Euclidean norm, i.e., it may
have the form |ly||s = ||My]||, where M is a square invertible matrix, and || - ||

is the standard Euclidean norm, i.e., ||z|| = V&'z. |

1 We may show Eq. (1.53) by using the Jordan canonical form of A, which is
denoted by J. In particular, if P is a nonsingular matrix such that P~'AP = J
and D is the diagonal matrix with 1,6,...,6" ! along the diagonal, where § > 0,
it is straightforward to verify that D"*P~'APD = J, where J is the matrix
that is identical to J except that each nonzero off-diagonal term is replaced by 6.
Defining P = PD, we have A = PJP™!. Now if || - || is the standard Euclidean
norm, we note that for some 8 > 0, we have ||Jz|| < (O'(A) + B5)Hz|| for all
z € R" and 6 € (0,1]. For a given 6 € (0,1], consider the weighted Euclidean

norm || - [|s defined by [ly|ls = |[P~ y]||. Then we have for all y € R",
[Aylls = 1P~ Ayl = |PT PIP Tyl = TPyl < (o(A) + B8) | Pyl

so that ||Aylls < (O'(A) + ﬂ(?)”st7 for all y € R™. For a given € > 0, we choose

0 = €/, so the preceding relation yields Eq. (1.53).
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Conversely, if Eq. (1.54) holds for some norm || - ||s and all real vectors
Y, z, it also holds for all complex vectors y, z with the squared norm ||c/|? of
a complex vector ¢ defined as the sum of the squares of the norms of the real
and the imaginary components. Thus from Eq. (1.54), by taking y — z = u,
where u is an eigenvector corresponding to an eigenvalue A with || = o(A),
we have o(A)|ulls = ||Aulls < p|lul|s. Hence o(A) < p, and it follows that if
F is a contraction with respect to a given norm, we must have o(A) < 1.

1.5.1 Sup-Norm Contractions

We will focus on contraction mappings within a specialized context that is
particularly important in DP. Let X be a set (typically the state space in
DP), and let v : X — R be a positive-valued function,

v(z) > 0, VaoelX.

Let B(X) denote the set of all functions J : X — R such that J(z)/v(x)
is bounded as x ranges over X. We define a norm on B(X), called the
weighted sup-norm, by

1] = mae 7

max (1.55)

(The maximum in the above equation need not be attained. We are still
following the convention of denoting by “max” the least upper bound of the
relevant set, regardless of whether it is attained.) It is easily verified that
||| thus defined has the required properties for being a norm. Furthermore,
B(X) is complete under this norm. f

T To see this, consider a Cauchy sequence {Jx} C B(X), and note that
|Jm — Jnl] = 0 as m,n — oo implies that for all x € X, {Jx(z)} is a Cauchy
sequence of real numbers, so it converges to some J*(z). We will show that
J* € B(X) and that ||Jy — J*|| — 0. To this end, it will be sufficient to show
that given any € > 0, there exists a K such that

| Tk (z) — J" ()] /v(z) < €
for all z € X and k > K; this will imply that

max|J" (2)|/v(z) < e+ || il

so that J* € B(X), and will also imply that ||Ji — J*|| <€, so that || Jx — J*|| —
0. Assume the contrary, i.e., that there exists an ¢ > 0 and a subsequence
{ZmysTmy,...} C X such that m; < mi;1 and

€ < | Jmy (@m;) = T (Tm,)

Jv(Tm, ), Vi>1.

The right-hand side above is less or equal to

Jmi (fcmz) - Jn(mmi)‘/v(mmi) +

In(Tm;) — J*(gr,yni)|/v(gr:mi)7 Vn>1,i>1.
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In what follows, we will always assume that B(X) is equipped with
the weighted sup-norm above, where the weight function v will be clear
from the context. There will be frequent occasions where the norm will be
unweighted, i.e., v(z) = 1 and ||J|| = maxgex |J(2)|, in which case we will
explicitly state so.

For a mapping F : B(X) — B(X) and a function J € B(X), the
function F'*.J obtained by applying I to .J successively k times belongs to
B(X). The following is the central result regarding contraction mappings,
specialized to the case of B(X). Assuming that F' is a contraction mapping,
it guarantees the convergence of F'*.J to the unique fixed point of F', and
provides the basis for an important algorithm for computing fixed points.

Proposition 1.5.1: (Contraction Mapping Fixed-Point Theo-
rem) If F: B(X) — B(X) is a contraction mapping with modulus
p € (0,1), then there exists a unique J* € B(X) such that

J=FJ".
Furthermore, {F¥.J} converges to J* for any J € B(X), and we have

[ERT =T < pll =T, k=1,2,....

Proof: Fix some J € B(X) and consider the sequence {J;} generated by
Ji+1 = FJg starting with Jo = J. By the contraction property of F,

HJk+1_JkHSpHJk_kalHa k:172a"'7
which implies that
[Je1 — Il < p*l[ L = Joll,  k=1,2,....

It follows that for every k > 0 and m > 1, we have
Tk = el < (kg = Tiyiall
i=1
<pEFA+p+-+pm Y= Jol|

k
<L jln -l
—p

The first term in the above sum is less than ¢/2 for ¢ and n larger than some
threshold; fixing ¢ and letting n be sufficiently large, the second term can also be
made less than €/2, so the sum is made less than € - a contradiction.
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Therefore, {J;} is a Cauchy sequence and must converge to a limit J* €
B(X), since B(X) is complete. We have for all k > 1,

[FT" = T < |\ FJ" = Jell + | Je = T < pllT* = Tp—all + [|Je — 7|

and since J;, converges to J”, we obtain F'.J* = J*. Thus, the limit J* of
Ji is a fixed point of F. It is a unique fixed point because if J were another
fixed point, we would have

177 = Jl| = |[FT" = FJ| < pllJ” = J|,

which implies that J* = .J.
To show the convergence rate bound of the last part, note that

|FkJ — J*|| = ||[F*kJ — FJ*|| < p|| Fk=1J — J*|.

Repeating this process for a total of k times, we obtain the desired result.

Q.E.D.

The convergence rate exhibited by F*.J in the preceding proposition
is said to be geometric, and F*.J is said to converge to its limit J* geomet-
rically. This is in reference to the fact that the error |[F¥.J — J*| converges
to 0 faster than some geometric progression.

Consider now the mappings T" and 7}, associated with the discounted
cost problem with bounded cost per stage [cf. Egs. (1.5) and (1.40)]. Propo-
sitions 1.2.6 and 1.2.7 show that T and T}, are contraction mappings (p = «)
with respect to the unweighted sup-norm, where v(z) = 1. Their unique
fixed points are J* (the optimal cost function) and J,, respectively. Fur-
thermore, the convergence of the DP recursion/value iteration to J* follows
from the general convergence result of Prop. 1.5.1. The same is true for the
mappings T and T}, corresponding to semi-Markov decision problems [cf.
Egs. (1.50) and (1.51)]. Later we will see some examples of DP problems
where the underlying DP mapping T is not a contraction with respect to
the unweighted sup-norm, but is instead a contraction with respect to a
suitable weighted sup-norm. An important such case arises in stochastic
shortest path problems (see Chapter 3).

Let us now focus on the finite-dimensional case X = {1,...,n}. Con-
sider a linear mapping F' : #* — R™ of the form

Fy=b+ Ay,

where A is an n X n matrix with components a;;, and b is a vector in £"
(cf. Example 1.5.1). Then it is straightforward to verify (see the following
proposition) that F' is a contraction with respect to the weighted sup-norm
[yl = maxi=1,....n sl /v(@) if and only if

> laig|v()
(i)

<1, i=1,...,n.
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Let us also denote by |A| the matrix whose components are the ab-
solute values of the components of A and let o(|A|) denote the spectral
radius of |A|. Then it can be shown that F is a contraction with respect
to some weighted sup-norm if and only if J(|A|) < 1. A proof of this may
be found in [BeT89], Ch. 2, Cor. 6.2. A proof may also be constructed
using the analysis of SSP problems in Chapter 3 (see Prop. 3.2.3), and the
fact that A is a weighted sup-norm contraction if and only if |A| is. Thus
any substochastic matrix P (p;; > 0 for all 4, j, and Z?Zl pij < 1, for all
1) is a contraction with respect to some weighted sup-norm if and only if
o(P) < 1.

Finally, let us consider a nonlinear mapping F' : R" — R” that has
the property

|Fy— Fz| < Ply — 2|, Vy,z e R,

for some matrix P with nonnegative components and o(P) < 1. Here, we
generically denote by |w| the vector whose components are the absolute
values of the components of w, and the inequality is componentwise. Then
we claim that F' is a contraction with respect to some weighted sup-norm.
To see this note that by the preceding discussion, P is a contraction with
respect to some weighted sup-norm ||w| = max;=1, . » |w(i)|/v(i), and we
have

(Fy—Fz)@) _ (Ply—=])()
v(1) - v(1)

<ally- =, Vi=1,...,n,

for some « € (0,1), so that F is a contraction with respect to || - ||. For ad-
ditional discussion of linear and nonlinear contraction mapping properties
and characterizations such as the one above, see the book [OrR70].

Some Special Cases for Countable State Space

The case where X is countable (or, as a special case, finite) is frequently
encountered in DP. The following proposition provides some useful criteria
for verifying the contraction property of mappings that are either linear or
are obtained via a parametric minimization of other contraction mappings.

Proposition 1.5.2: Let X = {1,2,...}.
(a) Let F : B(X) +— B(X) be a linear mapping of the form

(FD)(@) =bi+ Y _ayJ(j), i€X,
jeX
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where b; and a;; are some scalars. Then F' is a contraction with
modulus p with respect to the weighted sup-norm (1.55) if and only if

w <p,  ieX. (156)

(b) Let F: B(X) — B(X) be a mapping of the form

(FJ) (%) = min(F,J)(i), ieX,
pneM
where M is parameter set, and for each . € M, F), is a contrac-

tion mapping from B(X) to B(X) with modulus p. Then F is a
contraction mapping with modulus p.

Proof: (a) Assume that Eq. (1.56) holds. For any J,J’ € B(X), we have
| e aii (7G) = 7)) |

v(@)
5 jex o | vG) (17G) = 7()] /o))

|FJ — FJ'|| = max
i€X

< max -
i€X v(1)

< maxw [ea=eal
i€X v(i)

<pllJ =0,

where the last inequality follows from the hypothesis.

Conversely, arguing by contradiction, let’s assume that Eq. (1.56) is
violated for some ¢ € X. Define J(j) = v(j) sgn(ai;) and J'(j) = 0 for all
j € X. Then we have ||J — J'|| = ||J|| =1, and

(D)~ (FID)] _ Tiex ol v6)
v(1) v(1)

showing that F' is not a contraction of modulus p.

>p=p|J =T

(b) Since F), is a contraction of modulus p, we have for any J, J' € B(X),
(Fp ) _ (Fpd")(@)

v(i) v(i)
so by taking the minimum over y € M,
(FDG) _ (FI)()

v(@) T ()

< +oll7 =g, ieX,

+pllJ =T, i€X.
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Reversing the roles of J and J’, we obtain
[(FT) (@) — (FJ')(i))|
v(i)

and by maximizing over ¢, the contraction property of F'is proved. Q.E.D.

<plI-Tl.  ieX.

The preceding proposition assumes that F'.J € B(X) for all J € B(X).
The following proposition provides conditions, particularly relevant to the
DP context, which imply this assumption.

Proposition 1.5.3: Let X = {1,2,...}, let M be a parameter set,
and for each p € M, let F}, be a linear mapping of the form

(Fud)(i) = bilp) + Y aij(w) J(j), i€ X.
jeX

(a) We have F,,J € B(X) for all J € B(X) provided b(y) € B(X)
and V(u) € B(X), where

b(p) = {b1(w),b2(w), -}, V() = {Vi(w), Va(n),.- .},
with
Vi) = Y lag()] o), i€ X.
jeX

(b) Consider the mapping F’

(PI)6) = min(F )@, i€ X.

We have F'J € B(X) for all J € B(X), provided b € B(X) and
V € B(X), where

b={b1,b,...}, V={"1..},

with b; = max,en bi(p) and V; = max,enr Vi(p).

Proof: (a) For all y € M, J € B(X) and ¢ € X, we have
(Fu D) (@) < [bil)| + D Jais ()| [T () /o ()| v ()
jEX

< [bs()] + 1713 Jass ()] v(5)

JjeEX
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= |bi(p)| + [171] Vi(p),
and similarly (F,,J)(i) > —|bi(u)| — [|J|| Vi(1e). Thus
(B0 < [0i(o)] + 171 Vi), i€ X.

By dividing this inequality with v(i) and by taking the maximum over
i € X, we obtain

[ELT | < bl + [T IVl < oo

(b) By doing the same as in (a), but after first taking the minimum of
(F,J) (%) over u, we obtain

[EJI < {loll + IV < oo

Q.E.D.

m~Stage Sup-Norm Contractions

In some DP contexts, the mappings T" and T}, are not contraction mappings,
but become contractions when iterated a finite number of times. In this
case, one may use a slightly different version of the contraction mapping
fixed point theorem, which we now present.

Let us say that a function F : B(X) — B(X) is an m-stage con-
traction mapping if there exists a positive integer m and some p < 1 such
that

|FmJ — FmJ|| < pl|lJ —J||,  VJ,J € B(X),

where F'™ denotes the composition of F' with itself m times. Thus, F is
an m-stage contraction if F™ is a contraction. Again, the scalar p is called
the modulus of contraction. We have the following generalization of Prop.
1.5.1.

Proposition 1.5.4: (m-Stage Contraction Mapping Fixed-Point
Theorem) If F': B(X) — B(X) is an m-stage contraction mapping
with modulus p € (0, 1), then there exists a unique J* € B(X) such
that

J=FJ".

Furthermore, {F*.J} converges to J* for any J € B(X).

Proof: Since F™ maps B(X) into B(X) and is a contraction mapping,
by Prop. 1.5.1, it has a unique fixed point in B(X), denoted J*. Applying
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F to both sides of the relation J* = FmJ*, we see that F'J* is also a fixed
point of F', so by the uniqueness of the fixed point, we have J* = F.J".
Therefore J* is a fixed point of F. If F had another fixed point, say J,
then we would have J = F™m.J, which by the uniqueness of the fixed point
of F™ implies that J = J*. Thus, J* is the unique fixed point of F.

To show the convergence of { F*.J}, note that by Prop. 1.5.1, we have
for all J € B(X),

lim [|[Fmk] — J*|| = 0.
k—o0
Using F*J in place of J, we obtain

lim |[Fmk+e] — J*| =0, £=0,1,...,m—1,
k—o0

which proves the desired result. Q.E.D.

In the next subsection, we discuss an interesting discounted problem
that cannot be analyzed with the theory of Sections 1.1 and 1.2, but can
be addressed with m-stage contraction mapping theory.

1.5.2 Discounted Problems — Unbounded Cost per Stage

We have considered so far in this chapter discounted problems with a pos-
sibly infinite state space, but also a bounded cost per stage. This latter
assumption has been essential for the DP mapping T to be a contraction
with respect to the (unweighted) sup-norm. On the other hand the bound-
edness assumption on the cost per stage is often restrictive. For example,
in problems involving queues or inventory facilities with infinite storage
capacity, it is natural for the cost per stage to increase to infinity with
the system occupancy. It turns out that for many discounted problems
involving a countable state space and unbounded cost per stage there is a
method of analysis that relies on weighted sup-norm contractions.

Consider a problem where the state space is X = {1,2,...}, the dis-
count factor is o € (0,1), the transition probabilities are denoted pij(u)
for i, € X and u € U(i), and the expected cost per stage is denoted by
g(i,u), i € X, uw € U(i). The constraint set U (i) may be infinite. For a
positive weight sequence v = {v(1),v(2),...}, we consider the space B(X)
of sequences J = {J(1),J(2),...} such that ||J|| < oo, where || - || is the
weighted sup-norm

I
17 = max 201
ieX (i)
The following assumption will allow the use of Props. 1.5.2 and 1.5.3 for the
purpose of showing that the DP mappings T" and T}, are m-stage contraction
mappings. We assume the following.
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Assumption 1.5.1:
(a) The sequence G = {Gl, Go,.. .}, where

Gi; = max ‘g(i,u) , 1€ X,

weU (%)

belongs to B(X).
(b) The sequence V = {V1,Va,...}, where
Vi= ij ) € X,
max JZ pii(w) (), i
belongs to B(X).
(c) There exists an integer m > 1 and a scalar p € (0,1) such that

for every policy m, we have

mzjex P(xm =7 | To = i,TF)’U(j)
v(4) -

(07

Assumption 1.5.1(a) is satisfied if the absolute expected cost per stage
as a function of the state ¢ grows proportionally to v(¢). In particular, it is
satisfied when

) = 1, Wb, e X
v(1) max{ uréllz}é)|g(z u)}} i

Assumption 1.5.1(b) is a boundedness assumption on the ratio Vj/v(i),
i.e., the maximum over u of the expected value of the ratio v(j)/v(i).
Assumption 1.5.1(c) is satisfied if the expression

ZjeX P(zm =j |20 =1i,m)v(j)
v(i)

is uniformly bounded over all ¢, m, and 7 by some scalar B > 0, since then
it is sufficient to take m large enough so that a™B < p. This expression is
the expected value of v(j)/v(i), m stages after reaching state ¢ while using
policy .

Example 1.5.2

Let
v(i)=i, ieX.
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Then Assumption 1.5.1(a) is satisfied if the maximum expected absolute cost
per stage at state ¢ grows no faster than linearly with ¢. Assumption 1.5.1(b)
states that the maximum expected next state following state 1,

E{j|i,u},
Jnax {7 li,u}

also grows no faster than linearly with . Finally, Assumption 1.5.1(c) is
satisfied if

o™ Plam=jlwo=im)j<pi, i€X

jeX

It requires that for all 7, the expected value of the state obtained m stages
after reaching state 7 is no more than ™™ pi. In particular, if there is bounded
upward expected change of the state starting at ¢, there exists m sufficiently
large so that Assumption 1.5.1(c) is satisfied. Similar interpretations are
possible for other choices of v(2), such as

v(i) = i, i€ X,
for some positive integer t.

We now consider the DP mappings T}, and T,

(Tu 7)) = g(i, n(0)) +a > iy (u(i) J(§), i€ X,

jeX
TJ)(7) = min i, Uu) + o ii(w)J ()], 1€ X,
(T1)6) = i, o)+ 3 (w0

and show their contraction property.

Proposition 1.5.5: Under Assumption 1.5.1, the mappings 7" and
T, map B(X) into B(X), and are m-stage contraction mappings with
modulus p.

Proof: Assumptions 1.5.1(a) and 1.5.1(b), together with Prop. 1.5.3, show
that if J € B(X), then TJ € B(X) and T,,J € B(X) for all u. For any
J € B(X), and any policy 7 = {uo, i1, - - -}, we have for all i € X|

(Tuo =+ Ty J) (@) = bi + ™ Z P(am =j | o =i,m)J(j),
JjEX

where b; is the expected cost of the first m stages starting from state ¢« and
using policy 7 (with 0 terminal cost). Using Prop. 1.5.2(a) in conjunction
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with Assumption 1.5.1(c), it follows that T}, ---T}.,,_, is a contraction of
modulus p, and then using Prop. 1.5.2(b), it follows that the same is true
for Tm. Q.E.D.

The m-stage contraction property of T and Prop. 1.5.4 can now be
used to essentially replicate the analysis of Section 1.2, and to show the
standard results:

(a) The DP iteration Jg41 = T'Jx converges to the unique solution J* of
Bellman’s equation J =T'J.

(b) The unique solution J* of Bellman’s equation is the optimal cost
function of the problem.

(c) A stationary policy u is optimal if and only if T),J" = T'J".

Let us finally note that the preceding analysis generalizes to the undis-
counted case where a = 1 (under some additional conditions). Indeed, we
will revisit the corresponding contraction property of 7' in Section 3.6, in
the context of stochastic shortest path problems with a countable number
of states.

ABSTRACT FORMS OF DISCOUNTED DYNAMIC
PROGRAMMING

In the preceding sections we have investigated several analytical issues for
discounted problems, relating to:

(a) The existence of a unique solution of Bellman’s equation.
(b) The convergence of the DP recursion/value iteration.
(¢) Conditions for optimality of stationary policies.

Taking an abstract point of view, these results revolve around the mappings
T, and T introduced in Section 1.1.2, and their variants for semi-Markov
problems discussed in Section 1.4. In Section 1.5 we discussed how these
results derive their validity from a central characteristic of T, and T (in
addition to their monotonicity property), namely their contraction prop-
erty. This has motivated a powerful unifying analytical approach, whereby
for a given DP problem, we may investigate whether there is an underlying
contraction mapping and if so, address the issues (a)-(c) above using the
theory of Section 1.5. We saw an example of the utility of this approach in
the context of some discounted problems with unbounded cost per stage;
cf. Section 1.5.2.

In this section we develop further this abstract view, aiming at uni-
fication and generalization of the theory of discounted problems (in this
chapter) and the associated computational methods (in the next chap-
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ter).t We consider a general class of mappings that are patterned after
those appearing in stochastic DP, but are more general: for example they
apply to minimax problems, game theoretic problems, undiscounted DP
problems, and even to important problems beyond DP. We discuss the
properties of these mappings with the issues (a)-(c) above in mind, and
thus address interesting DP questions in substantially greater generality
than heretofore.

While in this section, we will focus on a connection with the con-
traction mapping material of Section 1.5, our viewpoint transcends con-
traction mappings and applies to problems that are undiscounted, such as
the stochastic shortest path problems of Chapter 3, and the undiscounted
problems of Chapter 4. Moreover, the abstract viewpoint of this section has
an algorithmic value, and will serve to unify and enhance the development
of algorithms in Chapters 2 and 3.

Let X and U be two sets, which in view of connections to DP that will
become apparent shortly, we will loosely refer to as a set of “states” and
a set of “controls.” For each z € X, let U(x) C U be a nonempty subset
of controls that are feasible at state x. Consistent with the DP context,
we refer to a function p : X — U with p(z) € U(x), for all z € X, as a
“policy.” We denote by M the set of all policies.

Let R(X) be the set of real-valued functions J : X — R, and let
H: X xU x R(X)+— R be a given mapping. We consider the mapping T
defined by

(TJ)(z) = min H(x,u,J), VzelX.
ueU(x)
We assume that (T'J)(x) > —oo for all z € X, so that 7' maps R(X) into
R(X). For each policy ;1 € M, we consider the mapping T}, : R(X) —
R(X) defined by

(T J)(x) = H(z, u(x), J), VzeX.
We want to find a function J* € R(X) such that
J*(r) = min H(z,u,J"), VrzelX,
ueU(x)
i.e., find a fixed point of T. We also want to obtain a policy u* such that
TyxJ" =TJ".
We give a few special cases. Additional examples will arise in the

development of DP models and algorithms with special structure, which
we will encounter later.

1 This section, the corresponding algorithmic Sections 2.5 and 2.6 in Chapter
2, and Sections 3.3.2 and 3.4.1 of Chapter 3 contain relatively advanced topics
that deal with abstract DP models, and may be skipped at first reading. This
material will be used sparingly in Chapter 6, and will not be used in Chapters
4, 5, and 7. The abstract point of view is developed in much greater detail in
the author’s monograph [Berl18], and several applications to stochastic optimal
control problems are discussed in greater depth than in the present volume.
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Example 1.6.1 (Discounted Problems)
Consider the a-discounted total cost problem of Section 1.1. For
H(z,u,J) = E{g(:c7u7w) + oeJ(f(:c7u7w))}7
the equation J =TJ, i.e.,

J(x) = min H(z,u,J)= min E , U, J , U, , VzelX,
(z) ulg%}l(nz) (z,u, J) urer%}l(nz) {g(:cuw)+a (f(xuw))} x

is Bellman’s equation. In the special case of an MDP involving states = =

1,...,n, controls u € U(z) at state z, transition probabilities pzy(u), and
cost per stage g(z,u,y), H takes the form

H(z,u, J) =Y poy(w) (9@, u,y) + @ (y)),
y=1
and again the equation J = T'J is Bellman’s equation for the MDP.

Example 1.6.2 (Discounted Semi-Markov Problems)

With z, y, u as in Example 1.6.1, consider the mapping
H(w,u,J) = G(z,u) + Y may(u)J(y),
y=1

where G is some function representing cost per stage, and mgqy(u) are non-
negative numbers with ZZ:I Maey(u) < 1 for all z € X and u € U(x). The
equation J = T'J is Bellman’s equation for a continuous-time semi-Markov
decision problem, after it is converted into an equivalent discrete-time prob-
lem (cf. Section 1.4).

Example 1.6.3 (Minimax Problems)

Consider a minimax version of Example 1.6.1, where an antagonistic player
chooses w from a set W (z,u), and let

H(w,u,J)= max [9(z,u,w) + aJ (f(z,u,w))].

Then the equation J = TJ is Bellman’s equation for an infinite horizon
version of the minimax control problem discussed in Section 1.6 of Vol. 1.
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Example 1.6.4 (Deterministic and Stochastic Shortest
Path Problems)

Consider a classical deterministic shortest path problem (cf. Vol. I, Chapter
2) involving a graph of m nodes x = 1,...,n, plus a destination ¢, an arc
length ag. for each arc (x,u), and the mapping

H(:@uJ):{Z%:‘*‘J(U) gzi?

Then the equation J = T'J is Bellman’s equation for the shortest distances
J*(x) from the nodes x to node t.
A generalization is a mapping of the form

H(a,u, J) = pre(u)g(a,u,t) + S pay(u) (g, u,y) + T(9).

It corresponds to a stochastic shortest path problem, which was discussed in
Section 5.2 of Vol. I and will be considered again in Chapter 3. A special case
is stochastic finite-horizon, finite-state DP problems.

Much of the theory of Sections 1.2 and 1.5 can be extended to the more
abstract framework of this section. In particular, for a function v : X — R
with

v(z) > 0, VoelX,

let us denote by B(X) the space of real-valued functions J on X such that
J(x)/v(z) is bounded as x ranges over X, and as in Section 1.5, consider
the weighted sup-norm
J
171 = mae 7
weX v(x)

on B(X). We introduce the following assumption.

Assumption 1.6.1: (Contraction) For all J € B(X) and u € M,
the functions T,J and T'J belong to B(X). Furthermore, for some
a € (0,1), we have

ITJ =T, J'|| < allJ =T, VJ,J €BX), pe M. (157)

An equivalent way to state the condition (1.57) is

|H(z,u,J) — H(z,u,J)|
v(z)

<al|lJ-J, Vze X, ueU(x), J,J € B(X).
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Note that Eq. (1.57) implies that
\TJ—TJ <a|J—J, v J,J' € B(X). (1.58)
To see this we write
(T))(@) < (L) (@) +allJ = Fllo),  ¥aeX,
from which, by taking infimum of both sides over u € M, we have

(TJ)(z) = (TJ")(x)
v(z)

Reversing the roles of J and J’, we also have

<oflJ-J|, VazeX.

(1) (x) = (TJ)(x)

<al|J-=J, VaoelX,
v(z)

and combining the preceding two relations, and taking the supremum of
the left side over x € X, we obtain Eq. (1.58).

It can be seen that the Contraction Assumption 1.6.1 is satisfied for
the mapping H in Examples 1.6.1-1.6.3, with v equal to the unit function
e, i.e.,, v(x) = 1. Generally, the assumption is not satisfied in Example
1.6.4, but we will see in Chapter 3 that it is satisfied for the special case of
the stochastic shortest path problem of Section 5.2 of Vol. I. In that case,
however, we cannot take v(x) = 1, and this is one of our main motivations
for considering the more general case where v # e.

The next two examples show how starting with mappings satisfying
the contraction assumption, we can obtain multistep mappings with the
same fixed points and a stronger contraction modulus. For any J € R(X),
we denote by T}, --- T}, J the composition of the mappings T},,,..., Ty,
applied to J, i.e,

Tyo -+ Ty, J = (Tuo(Tm "'(Tukq(TukJ))"'))-

Example 1.6.5 (Multistep Mappings)

Consider a set of mappings T, : R" — R", p € M, satisfying Assump-
tion 1.6.1, let m be a positive integer, and let M be the set of m-tuples
v = (fo,--.,m—1), where pup € M, k = 1,...,m — 1. For each v =

(4o, ..., pm—1) € M, define the mapping T, by
ToJ =Ty Ty, ,J, v J € B(X).

Then we have the contraction properties

T, J =T, J| <a™|]-J|, v J,J € B(X),
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and _ _
TJ-TJ| <a™|J =T, v J,J € B(X),

where T is defined by

(TJ)(z) = inf (Tuo -+ Ty J)(x), YV JEBX), z€X.

(u0,4.4,u7n,1)€m

Thus the mappings T, v € M, satisfy Assumption 1.6.1, and have contrac-
tion modulus ™.

The following example considers mappings underlying weighted Bell-

man equations that arise in various computational contexts in approximate
DP, and will be encountered in Chapters 6 and 7.

Example 1.6.6 (Weighted Multistep Mappings)

Consider a set of mappings L, : B(X) — B(X), u € M, satisfying Assump-
tion 1.6.1, i.e., for some a € (0, 1),

ILud = LS| Salld =T, V1,0 € BX), pe M.

Consider also the mappings T}, : B(X) — B(X) defined by
(TuT)(@) =Y we(@)(LyJ)(2), =€ X, JeR",
=1

where w¢(x) are nonnegative scalars such that for all z € X,

Zwe(x) =1.
=1

Then it follows that

|Tud = T < we(@)al ] = S|,
=1

showing that 7T}, is a contraction with modulus
oo
_ ¢
a = max E we(z) o < a.
zeX n E( ) -
=1

Moreover L, and T}, have a common fixed point for all 4 € M, and the same
is true for the corresponding mappings L and T'.

We will now consider some general questions, first under the Con-

traction Assumption 1.6.1, and then under an additional monotonicity as-
sumption.
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1.6.1 Basic Results Under Contraction and Monotonicity

The contraction property of 7, and T together with the theory of Section
1.5 can be used to show the following proposition.

Proposition 1.6.1: Let Assumption 1.6.1 hold. Then:

(a) The mappings 7}, and T are contraction mappings with modulus
« over B(X), and have unique fixed points in B(X), denoted J,
and J*, respectively.

(b) For any J € B(X) and p € M,

lim |[J, = T§J| =0,  lim [|J* = T*J| = 0.
k—o00 s

(c) We have T,,J" =T J" if and only if J, = J".
(d) For any J € B(X),

1 o
J=J| < —TJ—-J J=TJ| < —|TJ - J|.
A [P S N P (N S
(e) For any J € B(X) and p € M,

1 a
1= € =TT =TI, Wu=Tudll € =TT = ||

Proof: We have already shown that 7}, and 7" are contractions with mod-
ulus « over B(X) [cf. Egs. (1.57) and (1.58)]. Parts (a) and (b) follow
from Prop. 1.5.1. To show part (c), note that if 7,,J* = T'J*, then in
view of TJ* = J*, we have T,,J* = J*, which implies that J* = J,,
since J, is the unique fixed point of T),. Conversely, if J, = J*, we have
T, =TyJy=J,=J =TJ"

To show part (d), we use the triangle inequality to write for every k,

k k
TR —J|| <D NTET =TT <Y ot 1T = J|.
=1 (=1

Taking the limit as k — oo and using part (b), the left-hand side inequality
follows. The right-hand side inequality follows from the left-hand side and
the contraction property of T. The proof of part (e) is similar to part (d)
[indeed it is the special case of part (d) where T is equal to Ty, i.e., when
U(z) = {u(z)} for all z € X]. Q.E.D.
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Part (c) of the preceding proposition shows that there exists a p € M
such that J, = J* if and only if the minimum of H(x,u, J") over U(z) is
attained for all z € X. Of course the minimum is attained if U(z) is
finite for every x, but otherwise this is not guaranteed in the absence of
additional assumptions. Part (d) provides a useful error bound: we can
evaluate the proximity of any function J € B(X) to the fixed point J* by
applying T to J and computing ||T'J — J||. The left-hand side inequality of
part (e) (with J = J) shows that for every e > 0, there exists a . € M
such that ||.J,. —J*|| < €, which may be obtained by letting pe(z) minimize
H(z,u,J") over U(x) within an error of (1 — a)ev(zx), for all z € X.

The Role of Monotonicity

Our analysis so far in this section relies only on the contraction assumption.
We have made no use of the monotonicity property of the DP models of
this chapter (cf. Section 1.1.2). We now introduce a generalized form of
this property.

Assumption 1.6.2: (Monotonicity) If J,J' € R(X) and J < J/,
then
H(z,u,J) < H(x,u,J"), VeeX, uelU(x).

Note that the assumption is equivalent to
J<J = T,J<T,J, VpueM,

and implies that
J<J = TJLSTJ.

An important consequence of monotonicity of H, when it holds in addition
to contraction, is that it implies an optimality property of J*.

Proposition 1.6.2: Let Assumptions 1.6.1 and 1.6.2 hold. Then

J*(x):lfreli/\r}[JM(x), VaeX.

Furthermore, for every e > 0, there exists p. € M such that

J(x) < Ju(z) < J*(z) + ¢, VaoeX. (1.59)

Proof: We note that the right-hand side of Eq. (1.59) holds by Prop.
1.6.1(e) (see the remark following its proof). Thus ming,en Ju(x) < J*(2)
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for all z € X. To show the reverse inequality as well as the left-hand side
of Eq. (1.59), we note that for all u € M, we have T'J* < T, J", and since
J* =TJ", it follows that J* < T, J*. By applying repeatedly T}, to both
sides of this inequality and by using the Monotonicity Assumption 1.6.2,
we obtain J* < TFJ* for all k > 0. Taking the limit as k — oo, we see
that J* < J, for all y € M. Q.E.D.

Note that without monotonicity, we may have minyepq Ju(z) < J* ()
for some x. This is illustrated by the following example.

Example 1.6.7 (Counterexample without Monotonicity)
Let X = {z1,z2}, U = {u1,u2}, and let

) —ad(z2) if u = w1, 0 ifu=wu,
H(z1,u,J) = {—1—|—aJ(x1) if u = ug, H(wz,u, J) = {B if u = ua,
where B is a positive scalar. Then it can be seen that

1
11—«

I (1) = - » (@) =0,

and J,» = J* where p*(r1) = u2 and u*(x2) = ui. On the other hand, for
w(xz1) = wy and p(x2) = uz, we have Ju(z1) = —aB and J,(z2) = B, so
Ju(z1) < J*(z1) for B sufficiently large.

Propositions 1.6.1 and 1.6.2 collectively address the problem of find-
ing 4 € M that minimizes J,(z) simultaneously for all x € X, consistently
with DP theory. The optimal value of this problem is J*(z), and p is
optimal for all x if and only if T,,J* = T'J*. For this we just need the
contraction and monotonicity assumptions. We do not need any additional
structure of H, such as for example a discrete-time dynamic system, tran-
sition probabilities, etc. While identifying the proper structure of H, and
verifying its contraction and monotonicity may require some analysis that
is specific to each type of problem, once this is done significant results are
obtained quickly.

Nonstationary Policies

The connection with DP motivates us to consider the set II of all sequences
m = {uo, 1, ...} with g € M for all k (nonstationary policies in the DP
context), and define

J,T(x)zlikrgior.}f(T#O~-~T#kJ)(x), VrzelX,

with J being any function in R(X), where T}, --- T}, J denotes the com-
position of the mappings T}, ..., T}, applied to J, i.e,

Tho -+ TypJ = (TMO(TIH "'(Tukﬂ(TukJ))"'))'
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Note that the choice of J in the definition of J, does not matter since
for any two J, J' € B(X), we have from the Contraction Assumption 1.6.1,

1TuoThur -+ Ty = Tug Ty -+ - Ty || < @FH[T =7,

so the value of Jx(z) is independent of J. Since by Prop. 1.6.1(b), J.(z) =
limy o0 (T J) () for all p € M, J € B(X), and = € X, in the DP context
we recognize J, as the cost function of the stationary policy {u, i, ...}

We now claim that under our Assumptions 1.6.1 and 1.6.2, J*, the
fixed point of T', is equal to the optimal value of Jy, i.e.,

J*(z) = min Jr(z), VzelX.

mell

Indeed, since M defines a subset of II, we have from Prop. 1.6.2,

*N s > mi
J(x) fell/elJ”(x) _frnelﬁle(:v), VoelX,

while for every m € II and z € X, we have

Jn(@) = iminf (T Ty -+ Ty J)() 2 lim (TE1) () = T (x)

k—o0

[the Monotonicity Assumption 1.6.2 can be used to show that
THOTHI o 'Tuk‘] 2 T]H_lJv

and the last equality holds by Prop. 1.6.1(b)]. Combining the preceding
relations, we obtain J*(z) = mingen Jr ().

Thus, in DP terms, we may view J* as an optimal cost function over
all policies. At the same time, Prop. 1.6.2 states that stationary policies
are sufficient in the sense that the optimal cost can be attained to within
arbitrary accuracy with a stationary policy [uniformly for all x € X, as Eq.
(1.59) shows].

Periodic Policies

Consider the multistep mappings T = Ty -+ Ty, 1, v € M, defined in
Example 1.6.5, where M is the set of m-tuples v = (uo, ..., fm—1), with
e €M, k=1,...,m—1, and m is a positive integer. Assuming that the
mappings T}, satisfy Assumptions 1.6.1 and 1.6.2, the same is true for the
mappings T, (with the contraction modulus of T, being a™). Thus the
unique fixed point of T, is J,, where 7 is the nonstationary but periodic
policy
T = {l0s -y a1, 10, - - s fom—1, - - -}-
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Moreover it can be seen that the mappings Ty - - Ty 15 Tur - - Tpp—1 Lo s
cors Ty 1Ty -+ Ty, have unique corresponding fixed points Jo, Ji, . . .,
Jm—1, which satisfy

Jo=TuyJr, i =T Joy oo Ty o =Tpp 0dp1s S = L1 Jo.
To verify these equations, multiply the fixed point relation
Ji =Ty - Tpp Tuo 1

with 7}, to show that T),,J1 is the fixed point of T}, ---T},,_,, i.e., is
equal to Jy, etc. Note that even though T, defines the cost functions of
periodic policies, T has the same fixed point as 7', namely J*. This gives
rise to the computational possibility of working with T, in place of T), in
an effort to approximate J*. We will later discuss situations where this
may be advantageous.

Error Bounds Under Monotonicity

The assumptions of contraction and monotonicity together can be charac-
terized in a form that is useful for analysis. This form is reminiscent of the
Constant Shift Lemma 1.1.2, and is given in the following proposition.

Proposition 1.6.3: (Weighted Shift Property) The Contraction
and Monotonicity Assumptions 1.6.1 and 1.6.2 hold if and only if for
all J,J' € B(X), p € M, and scalar ¢ > 0, we have

J<J +cv = T,J<T,J +acwv, (1.60)

where v is the weight function of the weighted sup-norm || - ||.

Proof: Let the contraction and monotonicity assumptions hold. If J' <
J + cv, we have

H(z,u,J") < H(zx,u,J +cv) < H(zx,u,J)+acv(z), VzeX, uelU(x),

(1.61)
where the left-side inequality follows from the monotonicity assumption and
the right-side inequality follows from the contraction assumption, which
together with ||v|| = 1, implies that

H(z,u,J +cv) — H(xz,u,J)
v(x)

The condition (1.61) implies the desired condition (1.60). Conversely,
condition (1.60) for ¢ = 0 yields the monotonicity assumption, while for
¢ =||J" — J|| it yields the contraction assumption. Q.E.D.

<al|J+cv—J|| = ac
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We can use Prop. 1.6.3 to derive some useful variants of the bounds
of parts (d) and (e) of Prop. 1.6.1 (which assumes only the contraction
assumption). These variants will be used in the derivation of error bounds
for various computational methods in Chapter 2.

Proposition 1.6.4: (Error Bounds Under Contraction and
Monotonicity) Let Assumptions 1.6.1 and 1.6.2 hold.

(a) For any J € B(X) and ¢ > 0, we have

c

TJI<J+cv = J*§J+1_av,
J<TJ4+ev = J<T 41—
(b) For any J € B(X), u € M, and ¢ > 0, we have
T,.J<J+cv = J#SJ—I—lf v,
JLT,J+cv = JSJ#—Flc V.

(¢) For all J € B(X),¢>0,and k =0,1,..., we have

. ake

TJ<J+cwv = JSTkJ+1 v,
. okc

J<TJ+cv = Tk < J —|—1 V.
—«

Proof: (a) We show the first relation. Applying Eq. (1.60) with J’ and J
replaced by J and T'J, respectively, and taking minimum over u € U(x) for
all z € X, we see that if T'J < J + cv, then T2J < TJ + acv. Proceeding
similarly, it follows that

T¢T <T1J 4+ at-1co.
We now write for every k,

k k
Tk] —J =Y (Tt —T1]) <Y al-lew,
=1 =1

from which, by taking the limit as k — co, we obtain J* < J+(c/(1 — a))v.
The second relation follows similarly.
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(b) This part is the special case of part (a) where T is equal to T,.

(c) We show the first relation. From part (a), the inequality TJ < J 4 cwv

implies that
&

V.

Jr<J
< +1

Applying T* to both sides of this inequality, and using the monotonicity
and fixed point property of T, we have

J* < Tk (J+ < v>.
l-a
Using Eq. (1.60) with T, and « replaced by T and o, respectively, we
obtain

c oke

v,

— —

T’C(J—i—1 U)ngJ—i-l
and the first relation to be shown follows from the preceding two relations.

The second relation follows similarly. Q.E.D.

1.6.2 Discounted Dynamic Games

We will now discuss an application of the preceding framework to zero sum
games. In the simplest such game there are two players that choose actions
just once: the first (called the minimizer) may choose a move ¢ out of n
moves and the second (called the mazimizer) may choose a move j out of m
moves. Then the minimizer gives a specified amount a;; to the maximizer,
called a payoff. The minimizer wishes to minimize a;;, and the maximizer
wishes to maximize a;;.

The players use mixed strategies, whereby the minimizer selects a
probability distribution w = (u1, ..., uy) over his n possible moves and the
maximizer selects a probability distribution v = (v1,...,vm) over his m
possible moves. Since the probability of selecting ¢ and j is w;v;, the ex-
pected payoff is } 2, ; aijuiv; or uw/Av, where A is the n x m matrix with
components a;;. If each player adopts a worst case viewpoint, whereby he
optimizes his choice against the worst possible selection by the other player,
the minimizer must minimize max,cy v/ Av and the maximizer must maxi-
mize min,ecy u’ Av, where U and V are the sets of probability distributions
over {1,...,n} and {1,...,m}, respectively. A fundamental result (which
will not be proved here) is that these two optimal values are equal,

min max u’ Av = max min v/ Av, (1.62)
uelU veV veV uelU
implying that there is an amount that can be meaningfully viewed as the
value of the game for its participants.
We will now consider a dynamic zero-sum game, where a separate
game of the type just described is played at each stage. The game played at
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a given stage is represented by a “state” x that takes values in a finite set X.
The state evolves according to transition probabilities ¢z (%, j) where ¢ and
7 are the moves selected by the minimizer and the maximizer, respectively
(here y represents the next game to be played after moves ¢ and j are
chosen at the game represented by x). When the state is x, under u € U
and v € V, the one-stage expected payoff is u/A(x)v, where A(z) is the
n X m payoff matrix, and the state transition probabilities are

n m
Py (U, v) ZZ UiV Qzy (1, ) = W Qgyv,

where Qgy is the nm x m matrix that has components guy(7,j). Payoffs
are discounted by « € (0,1), and the objectives of the minimizer and
maximizer, roughly speaking, are to minimize and to maximize the total
discounted expected payoff.

We introduce the mappings G and H given by

G(z,u,v,J) =uwA(z)v + « Z Pay(u,v)J (y)
yeX
(1.63)

= | A@) +a Y Qud) | v
yeX

H(z,u,J) = ma‘icG(:v,u,v, J).

ve
It can be verified that H satisfies the Contraction Assumption 1.6.1 (with
v(z) = 1) and the Monotonicity Assumption 1.6.2, so Props. 1.6.1 and
1.6.2 apply. Thus the corresponding mapping 7" is an unweighted sup-norm
contraction, and its unique fixed point J* satisfies

J*(z) = min max G(x, u,v, J"), VrelX.
uelU veV

‘We now note that since

x) + Z QuyJ

yeX

[cf. Eq. (1.63)] is a matrix that is independent of u and v, we may view
J*(x) as the value of a static game the depends on the state z. In particular,
from the fundamental minimax equality (1.62), we have

min max G(x, u,v, J") = maxmin G(x, u,v, J"), VaoelX.
uelU veV veV uelU

This implies that J* is also the unique fixed point of the mapping

(TJ)(z) = E;Ileaé(H(I v, J),
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where

H(z,v,J) =minG(z,u,v,J),
uelU

i.e., J" is the fixed point regardless of the order in which minimizer and
maximizer select mixed strategies at each stage.

There is another interpretation of J*(z) as the value of a game where
the players choose policies u and v rather than (single-stage) moves u and v.
This interpretation requires additional analysis and will be described only
briefly. For given z, we may view J*(z) as the best possible payoff that the
minimizer (or maximizer) can achieve starting from x and using a policy
w:X — U (or v: X — V, respectively) against the worst possible policy
choice of the maximizer (or minimizer, respectively). More specifically, fix
a policy p of the minimizer, and consider the discounted DP problem of
maximizing the expected payoff of the maximizer by optimal choice of a
policy v. Then it can be shown that J, is the maximal value function of this
DP problem, and J* = min,ecpq J,. Similarly, by reordering minimization
and maximization, J* = max,enr J,, where N is the set of policies of the
maximizer, and for fixed v, J, is the optimal cost function of the discounted
DP problem of minimizing the expected payoff by optimal choice of u € M.

NOTES, SOURCES, AND EXERCISES

Sections 1.1-1.2: Many authors have contributed to the analysis of the
discounted problem with bounded cost per stage, most notably Shapley
[Sha53], Bellman [Bel57], and Blackwell [Bla65a]. For variations and ex-
tensions involving multiple criteria, weighted criteria, and constraints, see
Feinberg and Shwartz [FeS94], Ghosh [Gho90], Ross [Ros89], and White
and Kim [WhK80]. The mathematical issues relating to measurability
concerns are analyzed extensively in Bertsekas and Shreve [BeS78], Dynkin
and Yuskevich [DyY79], Hernandez-Lerma [Her89], and Hinderer [Hin70].
The lower semianalytic/universally measurable framework, described in
Appendix A, was first proposed by Bertsekas and Shreve [BeS78].

In this book, for mathematical rigor, we have assumed a countable
disturbance space. However, our analysis may still serve as the starting
point of the mathematical treatment of problems with uncountable distur-
bance space. This can be done by reducing such problems to deterministic
problems having as state space a set of probability measures. The basic
idea of this reduction is illustrated in Exercise 1.5. This line of analysis was
adopted in the book [BeS78] (Chapter 9) for the resolution of measurability
questions in infinite horizon stochastic control problems.

Section 1.3: The index rule solution of the multiarmed bandit problem
is due to Gittins [Git79], and Gittins and Jones [GiJ74]. Subsequent con-
tributions include Whittle [Whi80b], Kelly [Kel81], and Whittle [Whi81],
[Whi82]. The proof given here is due to Tsitsiklis [Tsi86], who simplified
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the earlier proof by Whittle [Whi80b]. Another simple proof for the case
of a finite state space was given by Tsitsiklis [Tsi94a], following an earlier
proof by Weiss [Wei88]. For additional analysis of the multiarmed bandit
problem, see Kumar [Kum85|, Varaiya, Walrand, and Buyukkoc [VWB85],
Kumar and Varaiya [KuV86], Nain, Tsoucas, and Walrand [NTW89], We-
ber [Web92], Bertsimas and Nino-Mora [BeN96], and Bertsimas, Pascha-
lidis, and Tsitsiklis [BPT94a], [BPT94b].

Section 1.4: The idea of using uniformization to convert continuous-
time stochastic control problems involving Markov chains into discrete-time
problems gained wide attention following the paper by Lippman [Lip75b].
Semi-Markov decision models were introduced by Jewell [Jew63] and are
also discussed by Ross [Ros70].

Section 1.5: The role of contraction mappings in discounted problems
was first recognized and exploited by Shapley [Sha53], who considered
two-player dynamic games. Countable-state discounted problems with
unbounded cost per stage (cf. Section 1.5.2) were discussed by Harrison
[Har72], Lippman [Lip73], [Lip75a], van Nunen [Van76], Wessels [Wes77],
van Nunen and Wessels [VaW78], and Cavazos-Cadena [Cav86].

Section 1.6: Abstract DP models under unweighted sup-norm contraction
assumptions were introduced by Denardo [Den67]. Our treatment here,
extends the theory to weighted sup-norm contractions, and was given in
the author’s survey paper [Berl2]. Abstract DP models were investigated
by the author [Ber77] in the absence of contraction properties, relying only
on the type of monotonicity properties that are common in DP, and they
were used extensively in the book [BeS78], Chapters 2-6. Abstract models
also served as the basis for the development of an associated asynchronous
distributed DP framework developed in the author’s paper [Ber82a], which
we will use on several occasions in this book, starting with Section 2.6 in the
next chapter. For related work, see Verd’u and Poor [VeP84], [VeP87]. The
author’s monograph [Berl8] provides an extensive treatment of abstract
models and includes several advanced applications to stochastic optimal
control, beyond the ones discussed in Chapters 3 and 4.

EXERCISES

1.1

The purpose of this exercise is to show that shortest path problems with a
discount factor may make little sense. Suppose that we have a graph with a
nonnegative length a;; for each arc (i,7). The cost of a path (i0,41,...,%m) is
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::Ol akaikik+17 where « is a discount factor from (0, 1). Consider the problem
of finding a path of minimum cost that connects two given nodes. Show that this
problem need not have a solution.

1.2

Consider a problem similar to that of Section 1.1 except that when we are at state
Zk, there is a probability 8 € (0,1) that the next state xr11 will be determined
according to xx+1 = f(xk,ur,wr) and a probability (1 — ) that the system
will move to a termination state, where it stays permanently thereafter at no
cost. Show that even if a = 1, the problem can be put into the discounted
cost framework. What happens if 5 is replaced by a state-dependent probability

Bz € (0,1)7

1.3 (Column Reduction [Por75])

The purpose of this exercise is to provide a transformation of a certain type
of discounted problem into another discounted problem with smaller discount
factor. Consider the n-state discounted problem where U(7) is a finite set for all
states . The cost per stage is g(,u), the discount factor is «, and the transition
probabilities are p;;(u). For each j =1,...,n, let

m; = min min p;(u).
i=1,...,n ueU (i)

For all 4, j, and u, let

Dij(u) =

assuming that » "' my < 1.
(a) Show that p;;(u) are transition probabilities.

(b) Consider the discounted problem with cost per stage g(¢, u), discount factor

n
o 1—5 mj |,
j=1

and transition probabilities p;;(u). Show that this problem has the same
optimal policies as the original, and that its optimal cost vector J’ satisfies

n 7.
’ n an:l ij (.7)

J=J
11—«

)

where J* is the optimal cost vector of the original problem and e is the
unit vector.
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1.4 (Data Transformations [Sch72])

A finite-state problem where the discount factor at each stage depends on the
state can be transformed into a problem with state-independent discount factors.
To see this, consider the following set of equations in the variables J(7):

J(i) = min [g(i7u)+zmij(u)J(j)]7 i=1,...,n, (1.64)

ueU (i)

where we assume that for all ¢, u € U(4), and j, mi;(u) > 0 and

Let
a = max —MZ(U) = mai(u) ,
i=1,..n 1 —mii(u)
5___{1 if 1 = 7,
Y10 if g # g,
and define, for all ¢ and 7,
, g(i,u)(1 — )
9(7'7“’) 1 _ M'L('U,) ’

(1 = &) (mij(u) — dsj)
1-— MZ(’U,)

mij(u) = i +

Show that for all ¢ and j,
S =a <1, myu) 20,
j=1

and that a solution {J() | ¢ = 1,...,n} of Eq. (1.64) is also a solution of the
equations

J() = min §<i7u>+a§;pij<u>J(j> o=l
p

where P, ;(u) are the transitions probabilities defined by

Pij(u) = %(u)
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1.5 (Stochastic to Deterministic Problem Transformation)

Consider the controlled system
Pr+1 = Pk Py, k=0,1,...,

where py is a probability distribution over X viewed as a row vector, and P, is
the transition probability matrix corresponding to the control function pj,. The
state is pi and the control is ;. Consider also the cost function

N-1
lim E akpkg
N — oo He
k=0

Show that the optimal cost and an optimal policy for the deterministic prob-
lem involving the above system and cost function yield the optimal cost and an
optimal policy of a corresponding discounted cost problem.

1.6

Assume that we have two gold mines, Anaconda and Bonanza, and a gold-mining
machine. Let x4 and zp be the current amounts of gold in Anaconda and
Bonanza, respectively. When the machine is used in Anaconda (or Bonanza),
there is a probability pa (or pp, respectively) that raza (or rpzp, respectively)
of the gold will be mined without damaging the machine, and a probability 1 —pa
(or 1 —pBg, respectively) that the machine will be damaged beyond repair and no
gold will be mined. We assume that 0 <r4 <1land 0 <rp < 1.

(a) Assume that pa = pp = p, where 0 < p < 1. Find the mine selection
policy that maximizes the expected amount of gold mined before the ma-
chine breaks down. Hint: This problem can be viewed as a discounted
multiarmed bandit problem with a discount factor p.

(b) Assume that p4a < 1 and pp = 1. Argue that the optimal expected amount
of gold mined has the form J*(za,zB) = jA(mA) + x5, where jA(acA) is
the optimal expected amount of gold mined if mining is restricted just to
Anaconda. Show that there is no policy that attains the optimal amount
J(xa,xB).

1.7 (The Tax Problem [VWBS85])

This problem is similar to the multiarmed bandit problem. The only difference
is that if we engage project ¢ at period k, we pay a tax akCe(me) for every other
project £ [for a total of a* EZ# C*(z")], instead of earning a reward o R’ (z").
The objective is to find a project selection policy that minimizes the total tax
paid. Show that the problem can be converted into a bandit problem with reward
function for project ¢ equal to

R'(z") = C*(a") — aB{C* (f'(=",w")) }.
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1.8 (The Restart Problem [KaV87])

The purpose of this exercise is to show that the index of a project in the multi-
armed bandit context can be calculated by solving an associated infinite horizon
discounted cost problem. In what follows we consider a single project with re-
ward function R(z), a fixed initial state xo, and the calculation of the value of
index m(xzo) for that state. Consider the problem where at state xx and time k
there are two options: (1) Continue, which brings reward o R(z},) and moves the
project to state zx+1 = f(zk, w), or (2) restart the project, which moves the state
to xo, brings reward o R(x¢), and moves the project to state xx+1 = f(zo,w).
Show that the optimal reward functions of this problem and of the bandit prob-
lem with M = m(xz¢) are identical, and therefore the optimal reward for both
problems when starting at zo equals m(xo). Hint: Show that Bellman’s equation
for both problems takes the form

J(z) = maX[R(:co) + er{J(f(gr:omu))}7 R(x) —l—ozE{J(f(:mw)) H

1.9 (Multiarmed Bandit Problems and Separable
Approximations)

Consider the multiarmed bandit problem of Section 1.3, but with two differences:
(1) When a project £ is not worked on, its state changes according to
¢ S
Try1 = f(k, W),

where f* is a given function and Wt is a random disturbance with distribu-
tion depending on :cﬁ but not on prior disturbances. Furthermore, a reward

R (z%) is earned, where R’ is a given function.
(2) Retirement is not an option. (Alternatively, we could allow the possibility

that no project is worked on at a given time. This would correspond to
introducing an artificial project that earns no reward when worked on.)

Suppose that the optimal reward function J*(z',...,2") is approximated by a
separable function of the form )" | J(x%), where each J* is a function corre-
sponding to the contribution of the ¢th project to the total reward. The corre-
sponding one-step lookahead policy selects the project ¢ that maximizes

Ry + S R(2h) + aB{J (@' ')} +a ) B {jf (f‘j(xf,wj)) } .
e £
Show that this policy takes the form

work on project £ if m(z%) = max{ﬁzj (xj)},
J

where for all £,
m'(z') = R'(z") — R (") + aB{J" (' (", w"))-J (f (=", 7)) }.

Thus, we may view mf(xf) as an approximate index for project £, induced by the
separable reward function approximation EZ:1 J* (:cz).
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1.10 (Proof of Validity of Uniformization)

Complete the details of the following argument, showing the validity of the uni-
formization procedure for the case of a finite number of states i = 1,...,n. We
fix a policy, and for notational simplicity we do not show the dependence of
transition rates on the control. Let p(t) be the row vector with components

pi(t) = P{i(t) =i|zo}, i=1,...,n.

We have
dp(t)/dt = p(t)A,

where p(0) is the row vector with ith component equal to one if zo =4 and zero
otherwise, and the matrix A has elements

a___{Vz'pij if i # j,
9T ifi=g.

From this we obtain
p(t) = p(0)e™,

AN~ (A
M= o
k=0

Consider the transition probability matrix B of the uniform version

where

A
B=1+—,
v
where v > v;, i = 1,...,n. Consider also the following equation:
At _ _—uvt But _ _—ut = (BVt)k
e =e"e =e Z TR
k=0

Use these relations to write

p(t) =p(0) Y T(k,t)B",
k=0
where
(Vt)k —ut ..
T'(k,t) = e = Prob{k transitions occur between 0 and ¢

in the uniform Markov chain}.
Verify that for ¢ = 1,...,n we have

pi(t) = Prob{i(t) = ¢ in the uniform Markov chain}.



78 Discounted Problems — Theory Chap. 1

1.11

A person has an asset to sell for which she receives offers that can take one of n
given values. The offer values and the times between successive offers are random,
independent, and identically distributed with given distributions. Find the offer
acceptance policy that maximizes E{osz}7 where T is the time of sale, s is the
sale price, and a € (0, 1) is a discount factor.

1.12

Consider a problem similar to that of Section 1.2 except that the discount factor
a depends on the current state xy, the control uy, and the disturbance wy; i.e.,
the cost function has the form

N-1
Jx(xo) = lim F Zaw,kg(xkvﬂk(xk)vwk) 5

N—oo Wi
k=0,1,... k=0

where

Qg = a(xo,uo(xo),wo)a(xl,ul(xl),wl) "'Oé(xk:,“k(xk):wk)7
and a(z,u,w) is a given function satisfying

Ogmin{a(mww) |z e X,ueUwe W}
§max{a(:c,u,w) |z e X,uelUwe W}
<1

Use the analysis of Section 1.6 to provide counterparts of the results of Section
1.2.

1.13 (Minimax Problems)

Use the analysis of Section 1.6 to provide counterparts of the results of Section
1.2 for the minimax problem where the cost is

N—1
Jr(x lim max a”“g(xk, Tr), W
(z0) = NﬂwwkEW(Ikuk(zk))zo 9 ks 1k (Tk)s k)7
k

g is bounded, zj is generated by zpy1 = f(xk,uk(xk),wk), and W(z,u) is a
given nonempty subset of W for each (z,u) € S x U. (Compare with Section 1.6
of Vol. I, and see the monograph [Ber18].)



Sec. 1.7 Notes, Sources, and Exercises 79
1.14 (Infinite Horizon Formulation of Finite Horizon Problems)

Consider the N-stage basic problem of Chapter 1 of Vol. I, and the following
special case of the abstract DP problem of Section 1.6. Let X = XoU---U X,
where Xo, ..., Xn are the state spaces of the N-stage problem, and for k < N —1
and z € Xy, let U(z) = Uk(x). For J : X — R, denote by Jj, the restriction of J
on Xy, ie., Jy(z) = J(z) for x € Xy, and J = (Jo, ..., Jn). Define

H(z,u,J) = E{gk(x,u,wk) + JkH(fk(x,u, wk))}
ifk <N—-1,z € Xyg, u€ U(x), and
H(z,u,J) = gn (@)
if x € Xn. Let T be the mapping defined by

(TJ)(z) = min H(z,u,J), z e X.
ueU (x)

(a) Show that the fixed point of T'is J* = (J§,. .., Jx), where J; is the optimal
cost-to-go function at stage k of the N-stage problem.

(b) Show that the finite horizon DP algorithm is equivalent to N + 1 applica-
tions of T starting with any J = (Jo,..., Jn), or equivalently N applica-
tions of T starting with any J = (Jo, ..., JJn) with Jy = gn.
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