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Preface 

This book evolved from teaching a course on Dynamic Programming and 
Stochastic Control over a fourteen-year period at Stanford University, the 
University of Illinois, and the Massachusetts Institute of Technology. The 
purpose of the book is to provide a unified treatment of the subject suitable 
for a broad audience from engineering, operations research , and, to some 
extent, economics and applied mathematics. Thus, for example, we treat 
simultaneously stochastic control problems popular in modem control theory, 
Markovian decision problems popular in operations research, and a number 
of combinatorial problems usually addressed in computer science courses. 
The theory is illustrated through a large variety of examples , many of them 
involving applications that are importan,t in their own right. These examples 
can be covered in class independently of one another , so an instructor can 
tailor a course to his/her awhcnce by emphasizing the appropriate set of 
applications. 

The mathematical prerequisite for the text is a good knowledge of 
introductory probability and undergraduate mathematics. This includes the 
equivalent of a one-semester first course in probability theory together with 
the usual calculus , real analysis, vector-matrix algebra, and elementary 
optimization theory almost all undergraduates are exposed to by their fourth 
year of studies. A summary of this material is provided in the appendixes. 
While prior courses or background on dynamic system theory , optimization , 
or control will undoubtedly be helpful to the reader, it is felt that the material 
in the text is reasonably self-contained . 

Dynamic programming is a conceptually simple technique that can be 

vii 



viii Preface 

adequately explained using elementary analysis. Yet a mathematically rig-
orous treatment of general, stochastic dynamic programming requires the 
complicated machinery of measure-theoretic probability. My choice has 
been to bypass the complicated mathematics by carrying out the analysis 
in a general setting while claiming rigor only when the underlying probability 
spaces are countable. A mathematically rigorous treatment of the subject 
is carried out in my monograph "Stochastic Optimal Control: The Discrete 
Time Case," Academic Press, 1978, coauthored with Steven Shreve. This 
monograph complements the present text and provides a solid foundation 
for the subjects developed somewhat informally here. 

I am thankful to a number of individuals and institutions for their 
contributions to the book. My understanding of the subject was sharpened 
while I worked with Steven Shreve on our 1978 monograph. Several proofs 
and results dealing with infinite horizon problems were improved during 
that time, and they are now part of the present text. Michael Caramanis, 
Lennart Ljung, and John Tsitsiklis taught from versions of the book and 
contributed several substantive comments and homework problems. I had 
the benefit of interaction with several able teaching assistants over the years 
and in this connection I would like to mention Paris Canellakis, Panos 
Constantopoulos, and John Tsitsiklis. A number of colleagues contributed 
valuable insights and information, particularly David Castanon and Krishna 
Pattipati. NSF supported the research on infinite horizon problems reported 
in Chapter 5. MIT, with its stimulating teaching and research environment, 
was an ideal setting for carrying out this project. 

Dimitri P. Bertsekas 



CHAPTER ONE 

Life can only be understood going backwards, 
but it must be lived going forwards. 

Kierkegaard 

The Dynamic Programming 
Algorithm 

1.1 THE BASIC PROBLEM 

This text looks at situations where decisions are made in stages. The 
outcome of each decision is not fully predictable but can be observed before 
the next decision is made. The objective is to minimize a certain cost-
a mathematical expression of what is considered desirable outcome. 

A key aspect of such problems is that decisions cannot be viewed in 
isolation since one must balance the desire for low present cost with the 
possibility of high future costs being inevitable. This idea is captured in 
the dynamic programming technique whereby at each stage one selects a 
decision that minimizes the sum of the current stage cost, and the best cost 
that can be expected from future stages. 

A very wide class of problems can be treated in this way and in this 
text we make an effort to keep the main ideas uncluttered by irrelevant 
assumptions on problem structure. To this end we formulate in this section 
a broadly applicable model of optimal control of a dynamic system over a 
finite number of stages (a finite horizon). This model will occupy us for 
the first four chapters; its infinite horizon version will be the subject of the 
last three chapters. 

Two main features of the basic problem determine its structure: 
(1) an underlying discrete-time dynamic system, and (2) a cost functional 
that is additive over time. The dynamic system is of the form 

xk+t = fk(xk, uk, wk), k = 0, 1, ... , N - 1, 
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where 

k indexes discrete time, 
xk is the state of the system and summarizes past information that is relevant 

for future optimization, 
uk is the control or decision variable to be selected at time k with knowledge of 

the state xk , 
wk is a random parameter (also called disturbance or noise) , 
N is the horizon or number of times control is applied. 

The cost functional is additive in the sense that a cost gixk, uk, wk) 
is incurred at each time k, and the total cost along any system sample 
trajectory is 

N - 1 

gN(xN) + L gixk, uk, w k) , 
k=O 

where gN(xN) is a terminal cost incurred at the end of the process. However, 
because of the presence of wk, cost is generally a random variable and 
cannot be meaningfully optimized. We therefore formulate the problem as 
one whereby we wish to select controls u0, u 1 , ••• , u N _ 1 so as to minimize 
the expected cost 

N - 1 

E{gN(xN) + L gixk, uk, wk)}, 
k=O 

where the expectation is taken with respect to the joint distribution of the 
random variables involved. 

A more precise definition of the terminology just used will be given 
shortly. We first provide some orientation by means of examples. 

Inventory Control Example 

Consider a problem of ordering a quantity of a certain item at the 
beginning of each of N time periods so as to meet a stochastic demand. 
Let us denote 

xk stock available at the beginning of the kth period, 
uk stock ordered (and immediately delivered) at the beginning of the kth period, 
wk demand during the kth period with given probability distribution. 

We assume that w0, ... , wN I are independent random variables and that 
excess demand is backlogged and filled as soon as additional inventory 
becomes available. Thus stock evolves according to the discrete-time (or 
difference) equation 

Xk+ I = xk + Uk - w k, 
where negative stock corresponds to backlogged demand (see Figure l. I). 
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Stock at Period k 

wk Demand at Period k 

Inventory 
System Stock at Period k + 1 

Stock Ordered at 7 
Period k Cost of Period k 

cu k + H ( X k + I ) 

Figure I.I Inventory control example The stock (state) x k at period k, the 
stock ordered (control) uk at period k, and the demand (random disturbance) 11·1. 

at period k determine the stock at the next period k + 1 and the cost of the kth 
period using the difference equation xk+J = xk + u k - w k. 

3 

The cost incurred at each period k consists of two components: 
(1) the purchasing cost cuk, where c is cost per unit ordered, and (2) a cost 
H(xk+,) representing a penalty for either positive stock xk + 1 > 0 at the end 
of the period (holding cost for excess inventory) or negative stock xk + 1 < 
0 (shortage cost for unfilled demand). Using the equation xh 1 = xk + uk 
- wk, we can write the cost for period k as 

cuk + H(xk -+ uk - wd 
and the total expected cost over N periods as 

E{I cu,+ H(x, + u, - w,)} 
Our objective is to minimize this cost by proper choice of the orders 

u0 , • •• , uN- i subject to the natural constraint uk 0, k = 0, ... , 
N - I. One possibility would be to choose at time O all the orders u0 , 

.•. , uN-i without waiting to see subsequent levels of demand. However, 
a clearly better choice would be to postpone ordering of uk until time k 
when the current stock level xk will be known. This mode of operation 
involves information gathering and sequential decision making based on 
information as it becomes available and is of central importance in dynamic 
programming. It implies that we are not really interested in selecting optimal 
numerical values for inventory orders, but rather we are interested in finding 
an optimal rule for choosing at each period k an order uk /<Jr each pnssible 
value of stock xk that can occur. This is an '"action versus strategy" 
distinction. Mathematically, the problem is one of finding a sequence of 
functions µ,k, k = 0, ... , N - l, mapping stock x" into order th so as to 
minimize the total expected cost. The meaning of f-Lk is that, for each k and 
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each possible value of xk, 
µ.,ixk) = amount that should be ordered at time k if 

stock is xk. 
The sequence 1r = {µ.,0 , µ., 1, ••• , µ.,N- 1} will also be referred to as a 

control law or a policy. For each such 1r, the corresponding cost for a 
fixed initial stock x0 is 

I .(x,) = E { ~: cµ,,(x,) + Hix, + µ,,(x,) - w,]}. 
and our objective will be to minimize J 1lx0 ) for fixed x0 over all admissible 
1r. This is a typical dynamic programming problem. We will show in Section 
2.2 that, for a reasonable choice of the cost function H, the optimal ordering 
rule is of the form 

if Xk < Sk, 
ifxk;;::::Sk, 

where Skis a suitable threshold level determined by the data of the problem. 
In other words, when stock falls below the threshold S"', order just enough 
to bring stock up to S k. 

The preceding example illustrates the main ingredients of the basic 
problem formulation: 

l. A discrete-time system of the form 

Xk+t = fixb uk, wd, 
where .fie is some function ; in this example fixk, uk, wk) = xk + uk - wk. 

2. Independent random parameters wk. This will be generalized by allowing the 
probability distribution of wk to depend on xk and u,; in the context of the 
example we can think of a situation where the level of demand w, is influenced 
by the current stock level. 

3. A control constraint; in the example u, 0. In general, the constraint set 
will depend on xk and the time index k, that is, u, E Vk(xd. To see how 
constraints dependent on xk can arise in the inventory context, think of a 
situation where there is an upper bound B on the level of stock that can be 
accommodated, so uk B - xk. 

4. An additive cost of the form 

E {gN(xN) + gbk, Uk, wd}, 

where gk> k = 0, ... , N, are some functions; in the preceding example 
gN(xN) = 0, and gixk, uk, wk) = cuk + H(xk + uk - wk). 

5. Optimization over control laws, that is, rules for choosing u, for each k and 
possible value of xk. 

In the preceding example, the state x" was a real number. In other 
cases the state is an n-dimensional vector. It is also possible, however, 
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that the state takes values from a discrete set , such as the integers, or even 
a finite set. 

A version of the inventory problem where a discrete viewpoint is more 
natural arises when stock is measured in whole units (such as cars), each 
of which is a significant fraction of xk, uk, or wk. It is more appropriate 
then to take as state space the set of all integers, rather than the set of 
real numbers. The form of the system equation and the cost per period 
will , of course, stay the same. 

In other systems the state is naturally discrete and there is no continuous 
counterpart of the problem. Such systems are often conveniently specified 
in terms of the probabilities of transition between the states. What we need 
to know is pu(u, k) defined as the probability at time k that the next state 
xk+1 will bej, given that the current state xk is i, and the control ut. selected 
is u; that is, 

pu(u , k) = P{xk+t = j I xk = i, uk = u}. 
flf the system is stationary, i.e. the previous probabilities do not depend 
on k , we will suppress the argument k and write Pu(u) in place of 
pu(u , k).] Such a system can be described alternatively in terms of a 
discrete-time system equation of the form 

Xk+I = Wk, 

where the probability distribution of the random parameter wk is 
P {wk = j I xk = i, uk = u} = pu(u, k). 

Depending on the situation at hand, it may be preferable to use a system 
description in terms of a difference equation or in terms of transition prob-
abilities. We illustrate these ideas with an example. 

Queueing Example 

Consider a queueing system with room for n customers operating over 
N time periods (see Figure I .2). We assume that service of a customer 
can start (end) only at the beginning (end) of a period. The probability p 111 

of m customers arriving during a time period is given, and the numbers of 
arrivals in two different periods are independent. Custon1ers finding the 
system full depart without attempting to enter later. The system offers two 
kinds of service, fast and slow, with cost per period er and c,, respectively. 
Service can be switched between fast and slow at the beginning of each 
period. Iffast (slow) service is provided during a certain period, a customer 
in service at the beginning of the period will terminate service at the end 
of the period with probability qr (respectively, q_,) independently of the 
number of periods the customer has been in service and the number of 
customers in the system (qr> q_, ). There is a cost c(i) for each period for 
which there are i customers in the system. There is also a terminal cost 
C(i) for i customers left in the system at the end of the last period. The 
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Pm = Probability of 

Fast or slow server 
with probability of 
service completion 
within a period q1 

--...,.....------,--
3
-r---

2
-"T"----,I or q·" respective!~ 

m arrivals for 

caoh period • I n I n - I I · . . . . . . . 
(a) 

Number in Number in Number in Number in 
the System at the System at the System at the System at 
Time k 

3 

2 

0 

Time k + l Time k Time k + l 
3 3 

2 2 

0 0 

Fast Service Slow Service 

(b) 

Figure 1.2 Queueing system with room for n customers . The service can be 
switched between fast and slow at any time period so as to minimize the sum 
of customer waiting and service costs: (a) Queueing system with room for n 
customers and two kinds of service . (b) Transition probability graphs for fast 
and slow service . The data assumed are n = 3, Po = 0.2 , p 1 = 0.5, p 2 = 0.3, 
Pm = 0 for m > 2, and q1 = 0.8, q, = 0.3. 

3 

2 

0 

problem is to choose the kind of service provided at each time period as 
a function of the number of customers in the system at the start 0f the 
period so as to minimize the expected total cost over N periods. 

It is appropriate to take as state here the number i of customers in 
the system at the start of a period and as decision variable (control) the 
kind of service provided . The cost per period then is c(i) plus c1 or c" 
depending on whether fast or slow service is provided. We derive the 
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transition probabilities of the system. When the system is empty at the 
start of a period, the probability that the next state is j is independent of 
the kind of service provided. It equals the given probability of j customer 
arrivals when j < n 

Poiu1) = Poius) = Pi, j = 0, 1, . .. , n - l, 
and it equals the probability of n or more customer arrivals when j n: 

1n=n 

When there is at least one customer in the system (i > 0), we have 
pu(u1) = 0, if j < i - l, 

P;c; - o(u1) = qJPo, 

pu(u1) = P{j - i + I arrivals, service completed} 
+ P{j - i arrivals, service not completed} 

= qfp i- ; + 1 + (1 - qr) Pi-;, if i - I < j < n - l , 

Pi(n-o(u1) = qf L Pm + (l - q1)Pn - 1-;, 
m=n -i 

m=n i 

The transition probabilities when slow service is provided are also given 
by these formulas with u1 and q1 replaced by us and qs, respectively. 

Transition probabilities are sometimes shown on a graph whose arcs 
represent transitions between various states. This is known as the transition 
probability graph, or simply transition graph, and is illustrated in Figure 
1.2 for the special case where n = 3, Po = 0.2, p 1 = 0.5 , p2 = 0.3, 
Pm = 0 for m > 2, and q1 = 0.8, qs = 0.3. 

In our subsequent formulation we will assume that the state xk takes 
values from some set Sk called the state space. We will not require that 
Sk be a finite set or a space of n-dimensional vectors. A surprising aspect 
of dynamic programming is that its applicability depends very little on the 
nature of the state space Sk (although its effectiveness certainly does depend 
on Sd. For this reason we find it convenient to proceed without imposing 
any assumptions on Sk; indeed, such assumptions would become a serious 
impediment later. We similarly allow uk and w" to take values from some 
unspecified spaces Ck and Dk , respectively. 

Basic Problem 

We are given the discrete-time dynamic system 
xk f 1 = fk(xk, lh, wd, k = 0. I ..... N ·- I. (l.l) 
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where the state x1-; is an element of a space SJ... the control uJ.. is an element 
of a space C1-;, and the random "disturbance .. u-J.. is an element of a space 
Dk. The control 111-; is constrained to take values from a given nonempty 
subset Vixk) of C1-;, which depends on the current state xJ.. [uJ.. E VJ..(xd 
for all xk E Sk and k]. The random disturbance u-J.. is characterized by a 
probability measure Pi·lx1-;, ud that may depend explicitly on xJ.. and llJ.. but 
not on values of prior disturbances u-1-; _ 1 , •••• w 0 . We consider the class 
of control laws (also called policies) that consist of a sequence of functions 
1T = {µ,0 , µ, 1 , ••• , µ,N _ 1}, where µ,1-; maps states xJ.. into controls llJ.. = µ, J.. (xd, 
and is such that µ,ixd E U1-;(xd for all x1-; E SJ... Such control laws will be 
termed admissible . 

Given an initial state x0 , the problem is to find an admissible control 
law 1r = {µ, 0 , µ, 1 , ••• , µ,N _ 1} that minimizes the cost functional 

{ 

N - 1 } 

Jrr(x0 ) = gN(xN) + k~o gJxJ.., µ,1c(xd. wJ.. l ( 1.2) 

k =O ..... N-1 

subject to the system equation constraint 
xk+t = f k[xk, µ,J.;(x!-;), wd , k = 0, I , ... , N - 1. ( l.3) 

The cost functions gk, k = 0, I , . .. , N , are given. 
For a given initial state x0 , an optimal control law 1r* 1s one that 

minimizes the corresponding cost 
Jrr*(x0 ) = min l rr(x0 ) , 

rrEO 
where TT is the set of all admissible control laws. The optimal cost cor-
responding to x0 will be denoted J* (x0 ) ; that is , 

J* (x0 ) = min l rr(x0 ) . 
rrEO 

We view J* as a function that assigns to each initial state x0 the optimal 
cost J*(x0 ) and call it the optimal cost function or optimal value function. 

[For the benefit of the mathematically oriented reader we note that 
in the preceding equation min denotes the greatest lower bound (or infimum) 
of the set of numbers {J rr(.t0 ) I 1r E TI}. A notation more in line with normal 
mathematical usage would be to write J*(x0 ) = infrrEn Jrr(x0 ). However 
(as discussed in Appendix B). we find it convenient to use min in place of 
inf even when the infimum is not attained. It is less distracting and will 
not lead to any confusion.] 

Role of Information in the Basic Problem 

We mentioned earlier that a policy {µ,0 , µ, 1 ••••• µ,N 1} may be viewed 
as a plan that specifies the control to be applied at each time for every 
state that may occur at that time. It is important to realize that this mode 
of operation implies information gathering. The information received by 
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the controller is the value of the current state at each time and is utilized 
directly during the control process, since the control at time k depends on 
the current state xk via the function µ.,k (cf. Figure 1.3). The effects of the 
availability of this information may be significant indeed. If this information 
is not available, the controller cannot adapt appropriately to unexpected 
values of the state, and as a result the cost can be adversely affected. For 
example, in the inventory control problem considered earlier, the information 
that becomes available at the beginning of each period k is the inventory 
stock xk. Clearly, this information is very important to the inventory manager, 
who will want to adjust the amount uk to be purchased depending on whether 
the current stock xk is running high or low. 

Note, however, that whereas availability of the state information cannot 
hurt, it may not result in an advantage either. For instance, in deterministic 
control problems, where no random disturbances are present, one can 
predict the future states given the initial state and the sequence of controls. 
Therefore, optimization over all sequences {u0 , u 1 , ... , uN_ 1} of controls 
leads to the same optimal cost as optimization over all admissible policies. 
The same fact may be true even in some stochastic control problems (see 
Problem 13). This brings up a related issue. Assuming no information is 
forgotten, the controller actually knows the prior states and controls x0 , 

u0 , ••• , xk-i, uk-i, as well as the current state xk. Therefore, the question 
arises whether policies that use the entire system history can be superior 
to policies that use just the current state. The answer turns out to be 
negative (see (8231). The intuitive reason is that. for a given problem, time 
k and state xk, all future expected costs depend explicitly just on xk and 
not on prior history. 

Theoretical Limitations of the Formulation of the 
Basic Problem 

Before proceeding with the development of the dynamic programming 
algorithm, we try to clarify certain aspects of our problem that do not lie 
on firm mathematical ground. The issue here is one of mathematical rigor 
and is highly technical in nature. The reader who is not mathematically 

Figure 1.3 Information gathering in the 
basic problem. At each time k the con-
troller observes the current state xk and 
applies control uk = µ,k(x.) that depends 
on that state. 

Uk= µk(xk ) System 
xk + 1 = fk(xk• Uk• wk) 
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inclined need not be concerned about it and can skip the rest of this section 
without loss of continuity. 

First, once an admissible control law {µ,0 , µ, 1, ••• , µ,N_,} is adopted, 
the following sequence of events is envisioned for each stage k = 0, 1, 
... , N - I: 

1. The controller observes xk and applies uk = µixk). 
2. The disturbance wk is generated according to the given probability measure 

Pklxk, µbk))· 
3. The cost gk[xk, µixk), wd is incurred and added to previous costs. 
4. The next state xk+ 1 is generated according to the system equation 

Xk+I = fk[xk, µixk), wk]. 
If this is the last stage (k = N - 1), the terminal cost gN(xN) is added to 
previous costs and the process terminates. Otherwise, k is incremented, and 
the same sequence of events is repeated for the next stage. 

This process is well defined and couched in precise probabilistic terms. 
Things are complicated, however, by the need to view the cost 

N-l 

gN(xN) + L gk[xb µ,k(xk), wd 
k=O 

as a well-defined random variable with well-defined expected value. The 
framework of probability theory requires that for each {µ,0 , µ, 1 , ••• , µ,N- 1} 

we define an underlying probability space, that is, a set f!, a collection of 
events in f!, and a probability measure on these events. Furthermore, the 
cost must be a well-defined random variable on this space in the sense of 
Appendix C (a measurable function from the probability space into the real 
line in the terminology of measure-theoretic probability theory). For this 
to be true, additional (measurability) assumptions on the functions fk, gk, 
and µ,k may be required, and it may be necessary to introduce additional 
structure on the spaces Sk, Ck, and Dk. Furthermore, these assumptions 
may restrict the class of admissible control laws since the functions µ,k may 
be constrained to satisfy additional (measurability) requirements. 

Thus, unless these additional assumptions and structure are specified, 
the problem is formulated inadequately. On the other hand, a rigorous 
formulation of the basic problem for general state, control, and disturbance 
spaces is well beyond the mathematical framework of this introductory text 
and will not be undertaken here (see [B23]). Nonetheless, these difficulties 
are mainly technical and do not substantially affect the basic results to be 
obtained. For this reason we find it convenient to proceed with informal 
derivations and arguments in much the same way as in all introductory 
texts and most journal literature on the subject. 

We would like to stress, however, that under the assumption that the 
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disturbance spaces Dk, k = 0, I, ... , N - I, are countable sets all the 
mathematical difficulties mentioned disappear since, for this case, with 
the only additional assumption that the expected values of all terms in the 
cost (1.2) exist and are finite for every admissible policy 1r, one can provide 
a sound framework for the problem. 

One easy way to do this when Dk are countable is to rewrite all 
expected values in the cost as infinite sums in terms of the probabilities of 
the elements of Dk. Another way is to write the cost J 1T(x0 ) as 

(1.4) 

where 

with the preceding expectation taken with respect to the probability distribution 
Pd·lxk> µ,k(xk)) defined on the countable set Dk. Then one may take as 
the basic probability space the Cartesian product of 5\, 5\, ... , SN, where 

5\ = {x1 E S1 I X1 = fo[xo, JJ,oC-to), Wo], Wo E Do}, 

Sk+I = {xk+1 E Sk+t I xk+1 = fk[xk> µ,,,.(xk), wd, 
k = l , 2, .. . , N - l. 

The set S k is the subset of S k of all states that can be reached at time k 
when the control law {µ,0 , µ, 1 , ••• , µ,N-,} is employed. The fact that D0 , 

D,, ... , D N I are countable sets ensures that the sets 5\, ... , SN are also 
countable (this is true since the union of any countable collection of countable 
sets is a countable set). Now the system equation ( 1.3), the probability 
distributions Pk(·lxk, µ,k(xd), the initial state x0 , and the control law {µ,0 , 

µ, 1, ••• , µ,N , } define a probability distribution on the countable set S, x 
52 x · · · x SN, and the expectation in (I .4) is defined with respect to this 
latter distribution . 

In conclusion, the basic problem has been formulated rigorously only 
when the disturbance spaces D0 , ••• , DN-, are countable sets. In the 
absence of countability of Dk, the reader should interpret subsequent results 
and conclusions as essentially correct but mathematically imprecise state-
ments. In fact, when discussing infinite horizon problems (where the need 
for precision is greater), we will make the countability assumption explicit. 
We note, however, that the advanced reader will have little difficulty in 
establishing rigorously most of our subsequent results concl;'rning specific 
applications in Chapters 2 and 3. This can be done as explained in the 
Notes to this chapter and in Problem 12. 



12 The Dynamic Programming Algorithm Chap. 1 

1.2 THE DYNAMIC PROGRAMMING ALGORITHM 

The dynamic programming (DP) technique rests on a very simple idea, the 
principle of optimality. The name is due to Bellman, who contributed a 
great deal to the popularization of DP and to its transformation into a 
systematic tool. Roughly, the principle of optimality states the following 
rather obvious fact. 

Let 1r* = {µ,6 , µ,f, ... , µ,.t,_ ,} be an optimal control law for the basic 
problem. Consider the subproblem whereby we are at state x,- at time i 
and wish to minimize the "cost-to-go" from time i to time N; 

N-1 

E{gN(xN) + L gdxk> J..lk(xd, wd }, 
k = i 

and assume that when using 1r* the state x ,- occurs with positive probability. 
Then the truncated control law {µ,7 , µ,;t 1 , ••• , µ,.t, _ 1} is optimal for this 
subproblem. 

The intuitive justification of the principle of optimality is very simple . 
If the truncated control law {µ,; , J.LT+ 1 , ••• , µ,.t, _ 1} were not optimal as 
stated, we would be able to reduce the cost further by switching to an 
optimal policy for the subproblem once we reach x,.. For an auto travel 
analogy, suppose we have found the fastest route from Los Angeles to 
Boston and this route passes through Chicago. The principle of optimality 
translates to the obvious fact that the Chicago to Boston portion of the 
route is also a fastest route for a trip that starts from Chicago and ends in 
Boston. 

It is perhaps best to introduce the DP algorithm by means of an 
example . 

Inventory Control Example (continued) 

Consider the inventory control example of the previous section and 
the following procedure for determining the optimal inventory ordering 
policy starting with the last time period and proceeding backward in time. 

N - I Period Assume that at the beginning of period N - I the 
stock available is xN _ 1• Clearly, no matter what happened in the past, the 
inventory manager should order inventory u.t, _ 1 = µ,.t, _ 1 (xN 1), which min-
imizes over uN - i the sum of the ordering, holding , and shortage costs for 
the last time period , which is equal to 

E {cuN-1 + H(xN-1 + uN- 1 - wN_i)}. 
l1' N 1 

Let us denote the optimal cost for the last period by J N 1 (x N 1): 

JN-1(xN-1) = min E { cuN-I + H(xN- I + uN-t - w N_ 1)}. 
UN t;e.O IVN-1 
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Naturally, J N-1 is a function of the stock xN _ 1• It is calculated for each 
xN- 1 either analytically or numerically (in which case a table is used for 
computer storage of the function JN _1). In the process of calculating JN 1 
we obtain the optimal inventory ordering policy µ,X,_ 1(xN _ 1) for the last 
period, where µ,X,_1(xN-i) 0 minimizes the right side of the preceding 
equation for each value of xN- 1 • 

N - 2 Period Assume that at the beginning of period N - 2 the 
inventory is xN _ 2 • Now it is clear that the inventory manager should order 
inventory uN- 2 = µ,,t _2 (xN_ 2), which minimizes not just the expected cost 
of period N - 2 but rather the 

(expected cost of period N - 2) + (expected cost of period N - I, 
given that an optimal policy will be used at period N - I). 

This, however, is equal to 

E {cuN-2 + H(xN-2 + uN-2 - wN_z)} + E VN-1(xN-1H-
wN-2 

Using the system equation xN- i = xN 2 + uN 2 - wN_ 2, the last term is 
also written EWN-i {JN_1(xN -z + uN-2 - wN-2)}. 

Thus the optimal cost JN _2(xN _2) for the last two periods, given that 
we are at state xN-z, is given by 

JN_z(XN_z) = min E {cuN-2 + H(xN-2 + uN-2 - wN_z) 
UN-2;;;,,Q WN-2 

+ JN-J(XN-2 + UN-2 - WN_z)}. 
Again J N i(xN _2 ) is calculated for every xN _ 2 • At the same time the optimal 
ordering policy µ,t;_ 2(xN_2) is also computed. 

k Period Similarly, we have that at period k and for initial inventory 
xk the inventory manager should order u" to minimize 
(expected cost of period k) + (expected cost of periods k + I, ... , N - I, 

given that an optimal policy will be used for these periods). 
By denoting by Jk(xk) the optimal cost, we have 

Jk(xk) = min E {cuk + H(xk + uk - wk) 

+ lk+ 1(X" + u" - wiJ}, (1.5) 
which is actually the dynamic programming equation for this problem. 

The functions J"(xd denote the optimal expected cost for the remaining 
periods when starting at period k and with initial inventory x,. These 
functions are computed recursively backward in time, starting at period 
N - 1 and ending at period 0. The value l 0 (x0 ) is the optimal expected 
cost for the process when the initial inventory at time O is x0 • During the 
calculations the optimal inventory policy, {111r (Xo). µ,i' (X1). .... µ,~, I (Xv I)} 
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is simultaneously computed from minimization of the right side of (1.5) for 
every xk and k. 

The example illustrates the main advantage offered by DP. Our original 
inventory problem requires an optimization over the set of policies, that 
is, the set of sequences of functions of the current stock (more generally 
the current state). The DP algorithm of (1.5) decomposes this problem into 
a sequence of minimization problems that is carried out over the set of 
orders (more generally the space of controls). Each of these problems is 
far simpler than the original. 

We now state the DP algorithm for the basic problem and show its 
optimality. 

Proposition. Let J*(x0) be the optimal cost. Then 
J *(xo) = lo(Xo) , 

where the function 10 is given by the last step of the following algorithm, 
which proceeds backward in time from period N - 1 to period 0: 

JN(xN) = gN(xN) (1.6) 

Jk(xk) = min E {gk(xk> uk, wk) + lk+i[fk(xk, uk, wk)]}, (l.7)t 
UkEUk(Xk) Wk 

k=0,l, ... ,N- 1. 
Furthermore, if ut = /.LI (xk) minimizes the right side of ( I. 7) for each xk 
and k, the control law Tr* = {µ,t, ... , µ,,t_ 1} is optimal. 

Proof. The fact that the probability measure characterizing wk depends 
only on xk and uk and not on prior values of disturbances w0, ... , wk- 1 
allows us to write J *(x0) in the form 

J*(xo) ,.,_m_i:N ,[~{go lxo, JLo(xo), woJ + ~{ g, [x., µ, (x, ), w,) + .. · 

+ w~,{gN- 1[XN - 1, /LN-o(XN-1), WN-tl + gN(xN)) .. , } } l 
where the expectation over wk, k = 0, I, ... , N - I, is conditional on 
xk and µ,k(xk). This expression may also be written 

t Both the DP algorithm and its proof are, of course, rigorous only if the basic problem 
is rigorously formulated. As explained in the previous section, this is the case when the 
disturbance spaces D,, k = 0, I, ... , N - I, are countable sets and the expected values of 
all terms in the expression of the cost functional ( 1.2) arc well defined and finite for every 
admissible policy TT. In addition, it is assu med that the expected value in (1.7) exists and is 
finite for all u, E Vdx.> and all x, E S,. We further note that, although not explicitly denoted, 
the expectation in (I. 7) is taken with respect to the probability measure characterizing w,. 
which depends on both x* and u* . 
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In this equation the minimizations are over all functions J-lk such that 
J-lk(xk) E Uk(xk) for all xk and k. In addition, the minimization is subject 
to the system equation constraint 

Xk r 1 = fdxk, J..lk(xk), wd. 

Now we use the fact that for any function F of x, u, we have 

min F[x, µ,(x)] = min F(x, u), 
µ,EM uEU(x) 

where M is the set of all functions µ,(x) such that µ,(x) E U (x) for all x. 
By applying this fact in the equation for J*(x0 ), using the substitution 

xk+ 1 = fk(xk, uk, wk), and introducing the functions Jk of (l.7), we obtain 
the desired result: 

It is also clear that {J-ld, ... , µ,tJ _ 1} is an optimal control law ifµ,[ (xk) 
minimizes the right side of (I. 7) for each xk and k, since such a control law 
attains the optimal cost. Q.E.D. 

The argument of the preceding proof can also be used to establish an 
interpretation of Jk(xk). It is the optimal cost for an (N - k)-stage problem 
starting at state xk and time k and ending at time N. We consequently call 
Jk(xk) the cost-to-go at state xk and time k, and refer to Jk as the cost-lo-
go Junction at time k. Ideally, we would like to use the DP algorithm to 
determine closed-form expressions for Jk. Otherwise, one hopes to obtain 
useful characterizations of Jk or µ,[. In many cases one has to resort to 
numerical solution of the DP equations. This may be quite time consuming 
since the minimization in (I. 7) must be carried out for each value of xk. 
Typically, the state space is discretized and the minimization is carried out 
for a finite number of states xk. The computational requirements are pro-
portional to the number of discretization points. Thus for complex mul-
tidimensional problems the computational burden may be prohibitive. 
Nonetheless, DP is the only general approach for sequential optimization 
under uncertainty. 

We now provide examples illustrating the analytical and computational 
aspects of the DP algorithm. 
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Example 1 
A certain material is passed through a sequence of two ovens (see Figure I .4). 
Denote 

x0 : initial temperature of the material, 
xk, k = 1, 2: temperature of the material at the exit of oven k, 

uk- i, k = 1, 2: prevailing temperature in oven k. 
We assume a model of the form 

xk+I = (I - a)xk + auk, k = 0, 1, 
where a is some scalar from the interval (0, 1). The objective is to get the final 
temperature x2 close to a given target T, while expending relatively little energy. 
This is expressed by a cost function of the form 

r(x2 - T)2 + ul + uL 
where r > 0 is a given scalar. We assume no constraints on uk. (In reality, there 
are constraints, but if we can solve the unconstrained problem and verify that the 
solution satisfies the constraints , everything will be fine.) 

We see that this is a deterministic problem that fi ts the basic framework. We 
have N = 2 and a terminal cost g2(x2 ) = r(x2 - T)2, so the initial condition for 
the DP algorithm is [cf. (1.6)] 

l 2(x2) = r(x2 - T)2. 
For the next-to-last stage, we have [cf. (1.7)] 

li(x1) = min[ui + l2(X2)] 
UI 

= min[ui + 12[0 - a)x1 + aui]]. 

Substituting the previous form of 12 , we obtain 
l,(x,) = min[ui + r[(l - a)x1 + au1 - Tf]. u, (1.8) 

This minimization will be done by setting to zero the derivative with respect to u 1• 

We thus have 
0 = 2u1 + 2ra[(l - a)x1 + au 1 - T], 

and by collecting terms we obtain the optimal temperature for the last oven: 
_ *( ) _ ra[T - (1 - a)xi] 

U1 - JJ,1 X1 - 1 + ra2 

Init ial 
Temperature 

Xo X1 
Oven Temperature 1----------i 

Uo 
Oven Temperature 

UI 

Final 
Temperature 

X2 

Figure 1.4 Problem of Example I. The temperature of the material evolves 
according to xk+ 1 = (I - a)xk + auk , where a is some scalar with O < a < l. 
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Note that this is not a single control but rather a control function a rule that tells 
us the optimal oven temperature u1 for each possible state x1• ' 

By substituting the optimal u, in the expression ( 1.8) for J 1, we obtain 

1 ( ) = r
2
a

2
[(1 - a)x1 - T]2 

[ ra2[T - (1 - a)xi] ] 2 

1 X1 (l + 2) 2 + r (1 - a)x, + ry - T ra l + ra· 

r2a 2[(1 - a)x1 - T]2 ( ra2 ) 2 

= (1 + ra2)2 + r 1 + ,a2 - 1 [(1 - a)x1 - T]2, 
and finally 

J ( ) _ r[(l - a)x1 - T]2 
I X1 - 1 + ra2 

We now go one stage back to stage 0. We have [cf. (1.7)] 

lo(xo) = min[u~ + 1 1(x1)] 
110 

= min[u~ + 1 1[(1 - a)x0 + auo]], 
110 

and by substituting the expression already obtained for J,, we have 

1 ( ) . [ 1 r[(l - a>2xo + (1 - a)au0 - T]2] 
o Xo = mm Uo + 1 • 

uo 1 + ra· 

We minimize with respect to u0 by setting the corresponding derivative to zero. 
We obtain 

0 
_ 

2 
2r(l - a)a[(l - a)2x0 + (1 - a)au0 - T] 

- Uo + l 2 + ra 
This yields, after some calculation, the optimal temperature of the first oven: 

_ *( ) _ r(l - a)a[T - (1 - ahoJ 
uo - f.J,o Xo - 1 + ra2[ 1 + (1 - a )2] 

The optimal cost is obtained by substituting this expression in the formula for J0 • 

This leads to a straightforward but lengthy calculation, which in the end yields the 
rather simple formula 

r[(l - a)2x0 - T]2 
Jo(Xo) = l + ra2[1 + (1 - a)2f 

This completes the solution of the problem. 

Several noteworthy features in this example, as we will see later, 
admit broad generalizations. The first is the facility with which we obtained 
an analytical solution. A little thought while tracing the steps of the algorithm 
will convince the reader that what makes the easy solution possible is the 
quadratic nature of the cost and the linearity of the system equation. Indeed, 
in Section 2.1 we will see that, generally, when the system is linear and 
the cost is quadratic then, regardless of the number of stages N, the optimal 
policy admits an analytical expression. 

Another noteworthy feature of this example is that the optimal policy 
remains unaffected when a zero-mean stochastic disturbance is added in 
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the system equation. To see this, assume that the material's temperature 
evolves according to 

xk+i=O-a)xk+auk+wk, k=0,l, 
where w0 , w 1 are independent random variables with given distribution, 
zero mean 

E{w0 } = E{w1} = 0, 
and finite variance. Then the equation for 1 1 [cf. (1.7)] becomes 

11(x1) = min Ew1 {uT + r[(l - a)x1 + au1 + W1 - T]2} 
Ul 

= min[ui + r[(l - a)x1 + au 1 - T]2 
Ul 

+ 2rE{w1}[(1 - a)x1 + au 1 - T] + rE{wi}]. 
Therefore, using the fact that E{ w 1} = 0, we obtain 

J 1(x1) = min[uf + r[(l - a)x1 + au1 - T]2] + rE{wi}. 
U] 

Comparing this equation with (1.8), we see that the presence of w 1 has 
resulted in an additional inconsequential term, ,E{ wD. Therefore, the optimal 
policy for the last stage remains unaffected by the presence of w 1, while 
1 1(x 1) is increased by the constant term rE{wi} . It is easily seen that a 
similar situation also holds for the first stage. In particular, the optimal 
cost is given by the same expression as before except for the additional 
term r(E{w~} + E{wi}). 

The property whereby the optimal policy is unaffected by the presence 
of zero-mean disturbances is a manifestation of the certainty equivalence 
principle , which holds for several types of problems involving a linear 
system and a quadratic cost (see Sections 2.1, 3.2, 3.3, and 6.1). 
Example 2 
Consider an inventory control problem similar to the one of Section 2.1 but different 
in that inventory and demand are nonnegative integer variables. Furthermore, 
assume that there is an upper bound on the stock (x, + u,) that can be stored and 
also assume that the excess demand (w, - x, - 11.) is lost. As a result, the stock 
equation takes the form 

xk+l = max(0, xk + uk - wd. 
Assume that the maximum capacity (x, + ud for stock is 2 units , that the 

planning horizon N is 3 periods, and that the ordering cost c is l unit. The 
holding/shortage cost per stage is given by 

H(xk + uk - wk) = max(0, xk + uk - wk) + 3 max(0, wk - xk - uk). 
The terminal state cost is zero. The initial stock x 0 is given, and the demand w, 
has the same probability distribution for all periods, given by 

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2. 
The system can also be represented in terms of the probabilities of transition between 
the three possible states 0, I, 2 for the different values of control (see Figure 1.5a). 
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Stock 2 Stock 2 Stock 2 0 Stock 2 

0. 1 

Stock 1 Stock 1 Stock 1 Stock 1 

Stock 0 Stock 0 Stock 0 Stock 0 
Stock Purchased= 0 Stock Purchased = 1 

Stock 2 0 Stock 2 

Stock 1 0 Stock I 

Stock 0 
0.2 

Stock 0 
Stock Purchased= 2 

(a) 

Stage 0 St;ige I Stage 2 

Opt. Stock Opt. Stock Opt. Stock 
Stock Cost-to-go to Purchase Cost-io-go to Purchase Cost-to-go to Purchase 

0 4.9 I 3.3 1 1.7 

I 3.9 0 2.3 0 0. 7 

2 3.35 0 1.82 0 0.9 

(b) 

Figure 1.5 System and DP results for Example 2: (a) Transition probability 
diagrams for the different values of stock purchased (control). The numbers 
next to the arcs are the transition probabilities. The control u = 1 is not available 
at state 2 because of the limitation xk + uk ,;;;; 2. Similarly, the control u = 2 
is available only at state 0. (b) Results of the DP algorithm for Example 2. 

I 

0 

0 
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The starting equation for the DP algorithm is 
lJ(x3) = 0, 

since the terminal state cost is zero [cf. (1.6)]. The algorithm takes the form [cf. 
(1.7)] 

lk(xk) = min E {uk + max(0, xk + uk - wk) + 3 max(0, wk - xk - uk) 
Q~u.4. ~2 - Xk Wk 

llk=0,1,2 

k = 0, 1, 2, 
where Xk, uk, wk can take the values 0, 1, and 2. 

Stage 2 We compute l 2(xz) for each of the three possible states: 
12 (0) = min E {u2 + max(0, u2 - w2 ) + 3 max(0, W2 - u 2)} 

u2=0,l,2 W2 

= min {u2 + 0. l[max(0, u2 ) + 3 max(0, - u2)] 
u2=0,l,2 

+ 0.7[max(0, u 2 - 1) + 3 max(0, 1 - u 2)] + 0.2[max(0, u 2 - 2) 

+ 3 max(0, 2 - u2 )]}. 

We calculate the expectation of the right side for each of the three possible values 
of U2: 

u2 = 0: E {·} = 0.7 X 3 X 1 + 0.2 X 3 X 2 = 3.3, 

u2 = l: E{·} = 1 + 0.1 X l + 0.2 X 3 X l = 1.7, 

U2 = 2: E {·} = 2 + 0.1 x 2 + 0.7 x 1 = 2.9. 
Hence we have, by selecting the minimizing u2 , 

[> 12(0) = 1.7, µ,t(0) = 1. 
For x2 = 1, we have 
120) = min E {u2 + max(0, 1 + u2 - w2) + 3 max(0, w2 - 1 - u2)} 

u2=0,I w2 

= min {u2 + 0. l[max(0, 1 + u2 ) + 3 max(0, - 1 - u2)] 
u2=0.I 

+ 0.7[max(0, u2 ) + 3 max(0, - u2)] 

+ 0.2[max(0, u2 - 1) + 3 max(0, 1 - u2 )]}, 

u2 = 0: E {·} = 0.1 X 1 + 0.2 X 3 X 1 = 0.7, 

u2 = 1: E {·} = 1 + 0.1 x 2 + 0.7 X 1 = 1.9. 

Hence 
[> 120) = 0.7, µ,f (1) = 0. 

[> 

For Xz = 2, the only admissible control is u 2 = 0, so we have 
12(2) = E {max(0, 2 - w2) + 3 max(0, w2 - 2)} 

"'2 

= 0.1 X 2 + 0.7 X 1 = 0.9, 
12(2) = 0.9, µ,f(2) = 0. 

<I 

<I 

<I 
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Stage I Again we compute l 1(x1) for each of the three possible states x2 = 
0, 1, 2 using the values 12(0), 12(1) , 12(2) obtained in the previous stage: 

I> 

[> 

[> 

1,(0) = min E {u 1 + max(O, u1 - w1) + 3 max(O, w1 - u1) 
UI ~0,1,2 WI 

+ l 2[max(O, u1 - w1)]}, 

u, = 0: E {·} = 0.1 X 12(0) + 0.7[3 X 1 + 12(0)] 

+ 0.2[3 X 2 + 12(0)] = 5.0, 

U1 = 1: E {·} = 1 + 0.1[1 + 120)] + 0.7 X 12(0) 
+ 0.2[3 X 1 + 12(0)] = 3.3, 

u1 = 2: E {·} = 2 + 0.1[2 + 12(2)] + 0.7[1 + 12 (1)] 
+ 0.2 X J2(0) = 3.82, 

lr(O) = 3.3, µf(O) = 1, 

1,(1) = min E {u1 + max(O, 1 + u1 - w1) + 3 max(O, w1 - 1 - u1) 
u1=0,I w1 

+ 12[max(O, 1 + u1 - w1)J} 

U1 = 0: E {-} = 0.1[1 + 12(1)] + 0.7 X 12(0) 
+ 0.2[3 X 1 + 12(0)] = 2.3, 

u, = I : E {·} = I + 0.1[2 + 12(2)) + 0.7[1 + 120)] 
+ 0.2 X 12 (0) = 2.82, 

µf(l) = 0, 

11(2) = E {max(O, 2 - w1) + 3 max(O, w1 - 2) + J 2[max(O, 2 - w1)] 

= 0.1[2 + lz(2)J + 0.7[1 + lz(l)J + 0.2 X 12(0) = 1.82, 
1, (2) = 1.82, µf(2) = 0. 

<1 

<1 

<] 

Stage O Here we need only compute 10 (0) since the initial staie is known 
to be zero. We have 

[> 

10 (0) = min E {u0 + max(O, u0 - wo) + 3 max(O, Wo - u0 ) 
uo =0,1,2 wo 

+ J,[max(O, u0 - wo)]}, 

u0 = 0: E {·} = 0.1 X 1 1(0) + 0.7[3 X 1 + 1 1(0)] 
+ 0.2[3 X 2 + 11 (0)] = 6.6, 

u0 = 1: E {·} = 1 + 0.1[1 + 11(1)] + 0.7 X 11(0) 
+ 0.2[3 X 1 + 11(0)) = 4.9, 

u0 = 2: E {-} = 2 + 0.1[2 + 1 1(2)] + 0.7[1 + 110)) 
+ 0.2 X 1 1(0) = 5.352, 

10 (0) = 4.9, µt (0) = 1. <1 
If the initial state were not known a priori, we would have to compute in a similar 
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manner 10 (1) and 10 ('2) as well as the minimizing 110 • These calculations yield 
[> 

[> 

l oO) = 3.9, µJ'(l) = 0, 
10 (2) = 3.352, µJ (2) = 0. 

<] 

<] 

Thus the optimal ordering policy for each period is to order one unit if the current 
stock is zero. and order nothing otherwise. The results of the DP algorithm are 
given in tabular form in Figure 1.5b. 
Example 3 
Finite State Systems. We mentioned earlier (cf. the queueing example in the previous 
section) that systems with a finite number of states can be represented either by a 
discrete-time system equation or in terms of the probabilities of transition between 
the states (cf. Figures 1.2 and 1.5). Let us work out the corresponding DP algnrithm. 
We will assume for the sake of the following discussion that the problem is stationary 
(i .e. the transition probabilities. the cost per stage. and the control constraint set 
do not change from one stage to the next) . Then, if 

p ij( u) = P {xk+t = j I xk = i , uk = u} 
are the transition probabilities. we can alternatively represent the system by the 
system equation (cf. the discussion of the previous section) 

where the probability distribution of the disturbance wk is 
P {wk = j I xk = i, uk = u} = Pij(u). 

Using this system equation and denoting by g{i. u) the expected cost per stage at 
state i when control II is applied. the DP algorithm can be rewritten as 

Jk(i) = min [g(i, u) + E {lk+1(wd}] 
uEU(i) 

or equivalently (in view of the distribution of w~ given previously) 
Jk(i) = min[g(i, u) + LPi/u)lk+iU)], k = 0, 1, ... , N - 1. 

uEV(i) 

As an illustration. in the queueing problem of the previous section this algLH·ithm 
takes the form 

JN(i) = C(i), i = 0, 1, ... , n, 

Jk(i) = min[c(i) + Ct+ L pij(u1)lk+1U>, c(i) + Cs + L pij(uJl k+iU)]. 
j=O j=O 

k = 0, 1. ...• N - 1. 

The two expressions in the minimization correspond to the two available decisions 
(fast and slow service). 

1.3 DETERMINISTIC SYSTEMS AND THE SHORTEST PATH 
PROBU: 

The main objective of this text is the analysis of stochastic optimization 
problems and the ramifications of the presence of uncertainty . However, 



Sec. 1.3 Deterministic Systems and the Shortest Path Problem 23 

deterministic problems arise in many important contexts, and the present 
and the next sections are devoted to explaining some of their distinguishing 
features . 

We first note that deterministic problems can certainly be embedded 
within the framework of the basic problem simply by considering disturbance 
spaces Dk having a single element. However, in contrast with stochastic 
problems, using feedback in deterministic problems results in no advantage 
in terms of cost reduction. In other words, minimizing the cost functional 
over the class of admissible control laws {µ, 0 , ..• , /LN 1} results in the 
same optimal cost as minimizing over the class of sequences of control 
vectors {uo, ... , uN- 1} with uk E Vk(xd for all k. This is true simply 
because the cost achieved by an optimal control law { µ,J , ... , µ,t; _ 1} for 
a deterministic problem is also achieved by the control sequence 

ut = µ,t (xt), k = 0, . .. , N - 1, 
where the states x3', ... , x,t,_ 1 are defined by 

x3' = x0 , k = 0, 1, ... , N - 1. 
For this reason we may minimize the cost functional over sequences of 
controls, a task that may be achieved by variational deterministic optimal 
control algorithms such as steepest descent, conjugate gradient, and Newton's 
method. These algorithms, when applicable, arc usually more efficient than 
DP. On the other hand, DP has a wider scope of applicability since it can 
handle difficult constraint sets such as integer or discrete sets. Furthermore, 
DP leads to a globally optimal solution as opposed to variational techniques, 
for which this cannot be guaranteed in general. 

Consider now a deterministic problem where the state space Sk is a 
finite set for each k. Then at any state X1-: a control u1-: can be associated 
with a transition from the state x1-: to the state f~ (x1-:, ud. Thus a finite state 
deterministic problem can be equivalently represented by a graph such as 
the one of Figure 1.6, where the arcs correspond to transitions between 
states at successive stages and each arc has a cost associated with it. We 
have also added an artificial terminal node t. Each arc connecting a state 
xN at stage N to the termim1! node has cost gN(xN ). Control sequences 
correspond to paths originating at the initial state (node s at stage 0) and 
terminating at one of the nodes corresponding to the final stage N. If we 
view the cost of an arc as its length, we see that a deterministic problem 
is equivalent to .findinr;? a shortest path from the initial node s qf the vaph 
to the terminal node t. [A path is a sequence of arcs of the form U,, jJ, 
(j2 ,j3 ), •• • , U1-: ,,}1-:); its length is the sum of the length of its arcs .] 

If we denote 
ct = cost of transition from state i E SA 

to statej E Sk+i, k = 0, 1, ... , N - I, 

c';'/ = terminal cost of sta te i E SN, 
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Figure 1.6 Transition graph for a deterministic finite state system. Nodes cor-
respond to states. An arc with start and end nodes x* and xH 1, respectively, 
corresponds to a transition of the form xk+i = ft(xb u*). The length of this arc 
is equal to the cost of the corresponding transition glx*, u*). The problem is 
equivalent to finding a shortest path from the initial node s to the terminal node 
t . 

the DP algorithm takes the form 
JN(i) = cf:, i E SN, 

Jk(i) = min kt+ lk+1U)}. 
jESk+ I 

i E Sb k = 0, 1, ... , N - 1. 
(1.9) 

(1.10) 

The optimal cost is J0 (s) and equals the length of the shortest path from 
s to t. 

The preceding algorithm proceeds backward in time. It is possible 
to derive an equivalent algorithm that proceeds forward in time by means 
of the following simple observation. An optimal path from s to t is also 
an optimal path from t to s in a "reverse" shortest path problem whereby 
the direction of each arc is reversed and its length is left unchanged. The 
DP algorithm corresponding to this "reverse" problem is 

(1.11) 

]k(j) = min {c~ - k + lk+ 1U)}, j E SN-k+I• 
iESN - k 

k = 1, 2, ... , N - 1, (1.12) 
and the optimal cost is 

(1.13) 
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The backward and forward DP algorithms (1.9), (1.10) and (I.I I) to (1.13), 
respectively, are equivalent in the sense that J0 (s) = ]0 (t), and an optimal 
control sequence (or shortest path) obtained from any one of the two is 
optimal for the original problem. We may view ]kU) in (1.12) as an optimal 
cost-to-arrive to state j from the initial state s. This should be contrasted 
with Jk(i) in (1. 10), which represents the optimal cost-to-go from state i to 
the terminal state t . 

In conclusion, a deterministic finite state problem is equivalent to a 
special type of shortest path problem and can be solved by either the 
ordinary (backward) DP algorithm or by an alternative forward DP algorithm. 
It is also interesting to note that any shortest path problem can be posed 
as a deterministic finite state DP problem, as we now show. 

Let {I, 2, ... , N, t} be the set of nodes of a graph, and let ciJ be the 
cost of moving from node i to node j (or length of the arc joining i and}). 
Node t is a special node, which we call the destination. We allow the 
possibility c,1 = = to account for the case where there is no arc joining 
nodes i and j. We want to find a shortest path from each node i to node 
t, that is, a sequence of moves that minimizes total cost to get to t from 
each of the nodes I, 2, ... , N. For the problem to have a solution , it is 
necessary to exclude the possibility that a sequence of moves that starts 
and ends at the same node (a cycle) has negative total length. Otherwise, 
it would be possible to decrease the length of some paths to arbitrarily 
small values simply by adding more and more negative-length cycles. 

Since negative-length cycles have been excluded by assumption, it is 
clear that an optimal path need not take more than N moves, so we may 
limit the number of moves to N. We formulate the problem as one where 
we require exactly N moves but allow degenerate moves from a node i to 
itself with cost C;; = 0. We denote for i = 1, ... , N, k = 0, 1, ... , 
N - I, 

J N- t (i) = optimal cost for getting from i tot in one move, 

Jk(i) = optimal cost for getting from i tot in (N - k) moves. 
Then the cost of the optimal path from i to t is 10 (i). It is possible to 
formulate this problem within the framework of the basic problem and 
subsequently apply the DP algorithm. For simplicity, however, we write 
directly the DP equation, which takes the intuitively clear form 

or 

with 

optimal cost from i tot in (N - k) moves 
= min {cu + optimal cost fromj tot in (N - k - 1) moves}, 

j= l. ... ,N 

Jk(i) = min {cu+ lk+1W}, 
j=l, .... N 

k = 0, 1, ... , N - 2, 

i = 1,2, ... ,N. 
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The optimal policy when at node i after k moves is to move to node j*. 
where j* minimizes over all j = I, ... , N the expression in braces. Note 
that a degenerate move from i to i is not excluded. If the optimal path 
obtained from the algorithm contains such degenerate moves, this simply 
means that its duration is less than N moves. 

To demonstrate the algorithm, consider the problem shown in Figure 
1.7a, where the costs cu, i -/=- j (we assume cu = cji) , are shown along the 
connecting line segments. Figure 1.7b shows the cost-to-go l1Ji) at each 
node i and index k together with the optimal path. The optimal paths are 

1 5, 2 3 4 5, 3 4 5, 4 5. 

State i 
Destination t = 5 

5 

4 

3 

2 

2 0.5 3 

(a) 

3 

4 

4.5 

0 2 

(b) 

3 4 Stage k 

Figure 1. 7 (a) Shortest path problem data. The destination is 5. Arc lengths 
are equal in both directions and are shown along the line segments connecting 
nodes . (b) Costs-to-go generated by the DP algorithm. The number along stage 
k and state i is l h ). Arrows indicate the optimal moves at each stage and node . 

1.4 SHORTEST PATH APPLICATIONS IN CRITICAL PATH 
ANALYSIS, CODING THEORY, AND FORWARD 
SEAllC 

The shortest path problem appears in many diverse contexts. We provide 
some examples. 

Critical Path Analysis 

Consider the planning of a project involving several activities, some 
of which must be completed before others can begin. The duration of each 
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activity is known in advance . We want to find the time required to complete 
the project , as well as the critical activities, those that even if slightly 
delayed will result in a corresponding delay of completion of the overall 
project. 

The problem can be represented by a directed graph with nodes 1, 
... , N such as the one shown in Figure 1.8 (also called an activity network). 
Here nodes represent completion of some phase of the project. An arc 
(i, }) represents an activity that starts once phase i is completed and has 
known duration tiJ. A phase (node) j is completed when all activities or 
arcs (i, j) that are incoming to j are completed. The special nodes 1 and 
N represent the start and end of the project. Naturally, node I (N) has 
no incoming (outgoing) arcs. 

An important characteristic of an activity network is that it is acyclic; 
that is , it has no directed cycles [sequences of directed arcs of the form 
(i, i1), U1, } 2), .. . , Uk , i)J. This is inherent in the problem formulation 
and the interpretation of nodes as phase completions. 

Consider now the time T required to complete all phases of the project 
and hence the project itself. For any directed path p = {(I, i1), U1, i 2), 
... , Uk 1 , jk)} from node I to node ik , let DP be the duration of the path 
defined as the sum of durations of its activities; that is, 

So DP is the total duration of the sequence of activities (1 , } 1) , ••• , Uk- 1 , 

jk) if each could be started immediately after the previous ended. Clearly , 
DP cannot exceed the total project duration time ; that is, 

all paths p. 

Figure 1.8 Graph of an activity network. Nodes represent completion of some 
phase of the project. Arcs represent activities and are labeled by the duration. 
A phase is completed if all activities associated with incoming arcs at the cor-
responding node are completed. The project is completed when all phases are 
completed. The project duration time is the length of the longest path from node 
1 to node 7. 
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We claim that 
T = maxDp, 

p 

and therefore finding T may be viewed as a problem of finding the longest 
path from node I to node N when the length of each arc (i, j) is tu. Because 
the graph is acyclic, this problem may also be viewed as a shortest path 
problem with the length of each arc (i, j) being - tu. 

The easiest way to show this is by deriving the corresponding DP 
algorithm. Let Nk, k = 1, 2, ... , be the set of phases 

N" = {i I the maximum number of arcs contained in paths 
from 1 to i is exactly k} 

with N 0 = {l}. For each phase i, let 
T;: required time to complete i. 

Then we have 
T; = max{ti; + I'; Ii E No U ··· U N k-1}, 

U,0 

and a little thought reveals that T; equals the maximum DP over all paths 
p from 1 to i . For i = N, we obtain T = maxP DP . 

For the activity network of Figure 1.8, we have 
N0 = {l}, N 1 = {2, 4}, N2 = {3, 5}, N3 = {6}, N 4 = {7}. 

A calculation using the preceding formula yields 
T1 = 0, T2 = 3, T4 = 1, T3 = 4, T5 = 4, T6 = 9, T7 = 11, 

and the critical (i.e ., longest) path is 1 2 3 6 7. Any delay in 
the completion of the critical activities (I, 2), (2, 3), (3, 6), (6, 7) will 
proportionately delay the completion of the overall project. 

Convolutional Coding and the Viterbi Decoder 

When binary data are transmitted over a noisy communication channel, 
it is often essential to use coding as a means of enhancing reliability of 
communication. A very common type of coding method, called convolutional 
coding, converts a source-generated binary data sequence 

{w i, w2, •.. }, wk E {O, 1}, k = 1, 2, ... , 
into a coded sequence 

where each Yk, k = I, 2, 
coordinates (called codeword) 

[
Yk] Yk = ... , 
Y /1 

k 

{Y1, Y2, ... }, 
is an n-dimensional vector with binary 

y~ E {O, l} , i = 1, ... , n. 
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The vectors Yk are related to wk via equations of the form 
Yk = Cxk-1 + dwk, k = l. 2, .... 

k = I, 2, ...• 
(1.14) 

(1.15) 

x0 : given, 
where xk is an m-dimensional vector with binary coordinates I called state) 
and C, d, A, and bare n x m, n x I, m x m. and m ,, I matrices. 
respectively, with binary coordinates. The products and the sums im·olved 
in the expressions Cxk- i + dwk and Ax~_ 1 - hd. are calculated using 
modulo 2 arithmetic. 

As an example, let m = 2, n 

c~[m 
3, and 

A - [ ~: l 
h~ m 

Then the evolution of the system ( 1.14) to ( 1.15 J can be repre-,.ented by the 
transition diagram (called a trellis) shown in Figure 1.9. From thi;;, diagram 
and the initial x0 , it is possible to generate the cude,1. orJ. ,eq uence · y ! . Y: . 
... } corresponding to a data sequence {w 1, H':- ... }. for c\ctmpk. when the 

Old State xk-l 

00 

01 

JO 

11 

0/000 New State xi 

0: 

I( 

Figure 1.9 State transition diagram from x- _ 1 to x.. The bi ary number pair 
on each arc is the data/codeword pair w I· for the corre<;pond. r.g tran,•t • 
So, for example, when x1 1 = 01 , a zero data bit (w1 = Ol effec s a tran,1t1on 
to x 1 = 11 and generates the codeword 011. 
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initial state is x0 = 00, the data sequence 
{w 1, w2 , w3 , w4 } = {l, 0, 0, l} 

generates the state sequence 
{xo, X1, Xz, X3, X4} = {00, 01, 11 , 10, 00}, 

and the codeword sequence 
{Y1, Y2, y3, y4} = {Ill , 011, 111,011}. 

Assume now that the characteristics of the noisy transmission channel 
are such that a codeword y is actually received as z with known probability 
p(z I y), where z is any n-bit binary number. We denote 

ZN= {z 1, z2, ... , ZN} 
the sequence received when the transmitted sequence is 

YN = {Y1, Y2, ... , YN}. 
We assume independent errors so that 

N 

p(ZN I YN) = IT p(zk I Yd-
k=I 

(1 .16) 

A maximum likelihood decoder converts a received sequence ZN into a 
sequence 

such that 

p(ZN I YN) = max p(ZN I YN) . 
YN 

The constraint on Y N is that it must be a feasible codeword sequence (i.e., 
it must correspond to some initial state and data sequence). Given YN, 
one can then construct a corresponding data sequence { «11, ••• , «1N} that 
is accepted as the decoded data. 

Viterbi developed a shortest path scheme that implements the maximum 
likelihood decoder. Using ( 1. 16) , we see that the problem of maximizing 
p(ZN I YN) is equivalent to the problem 

N 

minimize 2, - ln[p(zk I Yk)] 
k=I (1.17) 

over all binary sequences {Y1, Y2, ... , YN} 

for a known received sequence {z 1 , z2 , ... , ZN}. To see that this is a shortest 
path problem, note that, given Zk, we can assign to each arc on the state 
transition diagram the length - ln[p( zk I yd), where Yk is the codeword 
associated with the arc. Next we construct a graph by concatenating N 
state transition diagrams and appending dummy nodes s and t on the left 
and right side of the graph connected with zero-length arcs to the states 
x0 and xN- 1, respectively (see Figure I. IO) . The solution to problem (1.17) 
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Figure 1. 10 Maximum likelihood decoding viewed as a problem of finding a 
shortest path from s to t . Length of arcs from s to states x0 and from states 
xN-1 tot is zero. Length of an arc from a state xk-i to xk is - In p(zk I yk), where 
Zk is the received codeword and Yk is the codeword associated with the arc. 
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is obtained by constructing a shortest path from s to t and finding the 
associated sequence {y 1, ... , y N}. From the shortest path and the trellis 
diagram, we can then obtain the decoded data sequence {«11, w2, ... , wN}. 

In practice, the shortest path is most conveniently constructed by 
calculating the shortest distance from s to each node on-line as soon as the 
corresponding codeword is received. There are a number of practical schemes 
for decoding a portion of the data sequence prior to receiving the entire 
codeword sequence ZN. (This is useful if ZN is a long sequence.) For 
example, one can check rather easily whether for some k all shortest paths 
from s to states xk pass through a single node in the subgraph of states 
x0, ... , xk 1• If so, it can be seen that the shortest path from s to that 
node will not be affected by rc1..:eption of additional codewords (the principle 
of optimality), and therefore the corresponding data subsequence can be 
safely decoded and delivered to its destination. 

Forward Search 

In some shortest path problems the number of nodes is extremely 
large. As a result, storing these nodes in a computer's memory can be 
very difficult. Indeed, the nature of some shortest path problems is such 
that the solution becomes very simple once the nodes of the underlying 
graph are enumerated, and the real issue is how to solve the problem while 
avoiding a complete enumeration of all nodes. ln such cases it is frequently 
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possible to save both in memory and in computation by means of a forward 
search for a shortest path from an origin node toward a destination node. 
The techniques for doing this have partly originated in artificial intelligence 
and are typically used in computer progams that solve puzzles or play 
games such as chess (see Section 4.3). Let us provide some examples. 
Example 1 
The Four Queens Problem. Four queens must be placed on a 4 x 4 portion of a 
chessboard so that no queen can attack another. In other words, the placement 
must be such that every row, column, or diagonal of the 4 x 4 board contains at 
most one queen. Equivalently, we can view the problem as a sequence of problems: 
first, placing a queen in one of the first two squares in the top row , then placing 
another queen in the second row so that it is not attacked by the first, and similarly 
placing the third and fourth queens. (It is sufficient to consider only the first two 
squares of the top row since the other two squares lead to symmetric positions.) 
We can associate positions with nodes of an acyclic graph where the root node s 
corresponds to the position with no queens and the terminal nodes correspond to 
the dead-end positions where no additional queens can be placed without some 
queen attacking another. Let us connect each terminal position with an artificial 
node t by means of an arc. Let us also assign to all arcs length zero except for 
the artificial arcs connecting terminal positions with less than four queens with the 
artificial node t. These latter arcs are assigned the length + = (see Figure 1. 11) to 
express the fact that they correspond to dead-end positions that cannot lead to a 
solution. Then the four queens problem reduces to finding a shortest path from 
nodes to node t. Note that once the nodes of the graph are enumerated the problem 
is essentially solved. Here the number of nodes is small. However, we can think 
of similar problems with much larger memory requirements. For example, there 
is an eight queens problem where the board is 8 x 8 instead of 4 x 4. 
Example 2 
The Traveling Salesman Problem. An important model for scheduling a sequence 
of operations is the classical traveling salesman problem. Here we are given N 
cities and the mileage between each pair of cities, and we wish to find a minimum-
mileage trip that visits each of the cities exactly once. To convert this problem to 
a shortest path problem, we associate a node with every sequence of II distinct 
cities, where n = l , 2, ... , N. The construction and arc lengths of the corresponding 
graph are explained by means of an example in Figure 1. 12. The origin node s 
consists of city A, taken as the start. A sequence of II cities (n < N) yields a 
sequence of (n + 1) cities by adding a new city. Two such sequences are connected 
by an arc with length equal to the mileage between the last two of the n + l cities. 
Each sequence of N cities is connected to an artificial terminal node t with an arc 
having length equal to the distance from the last city of the sequence to the starting 
city A. Note that the number of nodes grows exponentially with the number of 
cities, so we would like to have algorithms that do not require the enumeration 
and /or storage of these nodes. 

In the shortest path problem that we will consider there is a single 
node s with no incoming arcs, called the origin, and a single node t with 
no outgoing arcs, called the destination. We assume that every arc (i, j) 
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Starting Position 
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Artificial 
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Length== 0 

Figure 1.11 Shortest path formulation of the four queens problem. Symmetric 
positions resulting from placing a queen in one of the rightmost squares in the 
top row have been ignored. Squares containing a queen have been darkened. 
All arcs have length zero except for those connecting dead-end positions to the 
artificial terminal node. 

33 



34 The Dynamic Programming Algorithm Chap. 1 

ABC 
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B 
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4 4 

Artificial Terminal Node t 

A B C D 

Table of Mileage between Cities 

3 

ADB 

20 

Figure 1.12 Example of shortest path formulation of the traveling salesman 
problem. The distance between the four cities A, B, C, and Dare shown in the 
table . The arc lengths are shown next to the arcs. 

20 

has a length au which is nonnegative or + x, and we wish to find a shortest 
path from origin to destination. We assume that there exists a shortest path with 
finite length. The following algorithm is a general method for solving the prob-
lem. In it we make use of two lists of nodes called OPEN and CLOSED. The 
list OPEN contains nodes that are currently active in the sense that they are can-
didates for further examination by the algorithm. The list CLOSED contains 
nodes that have been examined by the algorithm and are not currently candi-
dates for further consideration. Using CLOSED is not essential for the algo-
rithm, but results in some conceptual simplification. Initially, OPEN contains 
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j ust the origin node s and CLOSED is empty. The algorithm maintains an 
upper bound of the shortest distance from origin to destination called UPPER 
and initially equal to + =. The algorithm also maintains for each node i 
an upper bound d; of its shortest distance from the origin. Initially, ds = O 
and d; = + = for all other nodes i. A node j is called a son of node i if 
there is an arc (i, j) connecting i with j. The steps of the algorithm are as 
follows: 

Step 1 Remove a node i from the top of OPEN and place it in 
CLOSED. For each son j of i, go to step la if j I- t, and go to step lb if 
j = t. 

_ Step la U I- t) If d; + aiJ < min{dj, UPPER}, set dj = d; + aiJ, 
give j the label i, place j at the top of OPEN, and remove j from CLOSED 
if it belongs there. (Note: The label is needed in order to trace the shortest 
path to the origin after the algorithm terminates .) 

Step 1 b U = t): If d; + a;1 < UPPER, set UPPER = d; + a;r, and 
mark node i as lying on the best path found so far from s to t. 

Step 2 If OPEN is empty , terminate; else go to step 1. 

It can be seen that, throughout the algorithm, d1 is either +=(if node 
j has not yet entered the OPEN list), or else it is the length of a path from 
s to j consisting of nodes that have entered the OPEN list at least once. 
Furthermore, UPPER is either + =, or else it is the length of a path from 
s to t, and consequently it is an overestimate of the shortest distance from 
s to t. The idea in the algorithm is that when a shorter path from s to j is 
discovered than those considered earlier (d; + a;1 < d1 in step I a), the value 
of d1 is accordingly reduced, and node j enters the OPEN list so that paths 
passing through j and reaching the sons of j can be taken into account. It 
makes sense to do so, however, only when the path considered has a chance 
of leading to a path from s to t with length smaller than the overestimate 
UPPER of the shortest distance fr0m s to t. In view of the nonnegativity 
of the arc lengths, this is not possible if the path length d; + a;1 is not 
smaller than UPPER. This provides the rationale for entering j into OPEN 
in step la only if d; + aiJ is less than UPPER. 

Tracing the algorithm, we see that it will first examine node s (the 
only node initially in OPEN), places (permanently) in CLOSED, and assuming 
t is not a son of s, it will place all the sons j of s in OPEN after setting 
d1 = asJ· If tis a son of s, then UPPER will be set to a., 1 in step lb, and 
the sons of s examined after t will be placed in OPEN only if asJ < a, 1 ; 

indeed, this should be so since if as1 a.u node j cannot lie on a shorter 
path from s to t than the direct path consisting of arc (s. t). The algorithm 
will subsequently take the last son j I- t of s from the top of OPEN, place 
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it in CLOSED, and place those of its sons j =f t that satisfy the criterion 
of step la in OPEN, etc. When the algorithm terminates, we claim that a 
shortest path can be obtained by using the node last marked in step I b as 
lying on the best path. By tracing labels starting from that node we can 
proceed backward and construct a shortest path to the origin node. Fig. 
1.13 illustrates the use of the algorithm to solve the traveling salesman 
problem of Fig. 1.12. 

To verify that a path obtained as just described is shortest. we reason 
as follows. We first argue by contradiction that the algorithm will terminate. 
Indeed, if this is not so, some node j will enter the OPEN list infinitely 
often, which means that dJ will be decreased infinitely often. each time 
obtaining a corresponding shorter path from s to}. This is not possible 
since, in view of the nonnegative arc assumption, the number of distinct 
lengths of paths from s to} is finite. Therefore, the algorithm will terminate. 
We next show that the value of UPPER upon termination must equal the 
shortest distance d* from s to t. Indeed, let (s, j 1 , J~, . . . , j 1.. t) be a 
shortest path from s tot. Then each path (s. }1 , •••• },,,). m = I. .... k. 
is a shortest path from s to Jm, respectively. If the value of UPPER is 
larger than d* at termination, the same must be true throughout the algorithm. 
and therefore UPPER will also be larger than the length of all the paths 
(s, }1 , ••• , },,,), m = I , ... , k, throughout the algorithm. It follows that 
node }1. will never enter the OPEN list with dh equal to the shortest distance 
from s to }1., since in this case UPPER would be set to d* in step I b 
immediately following the next time node Ji. is examined by the algorithm 
in step 1. Similarly, this means that node Ji._ 1 will never enter the OPEN 
list with dJ,, 

11 
equal to the shortest distance from s to Ji. 1 • Proceeding 

backward, we conclude that }1 never enters the OPEN list with d1 equal 
to the shortest distance from s to } 1 (which is equal to the length 

I 

of the 
arc (s, Ji)). This happens, however. at the first iteration of the algorithm 
as discussed earlier, so we have reached a contradiction. lt follows that 
UPPER will equal at termination the shortest distance from s to t. It is 
seen that the path constructed by tracing labels backward from t to s has 
length equal to UPPER, so it is a shortest path from s to t. 

There are two attractive aspects to this algorithm. The first is a 
potential saving in computation in that nodes} for which d; + a;J UPPER 
in step la need not enter OPEN and be examined later. Furthermore , if 
we know a lower bound to the shortest distance. we can terminate the 
computation once UPPER reaches that bound either exactly or within an 
acceptable tolerance £ > 0. (This feature is useful. for example. in the 
four queens problem, where the shortest distance is known to be zero or 
infinity. Then the algorithm will terminate once a solution is found.) 

The second attractive aspect of the algorithm is a potential saving in 
memory storage requirements. This is most evident in graphs such as those 
in Figures 1.11 and 1.12 for which there is a unique directed path from the 
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3 ABC 

3 3 4 4 20 

Artificial Terminal Node t 

(a) 

Node Entering 
Iteration No. List OPEN CLOSED UPPER 

0 +oo 
1 2, 7, JO +oo 
2 3, 5, 7, 10 2 +oo 
3 4, 5, 7, 10 3 +oo 
4 5, 7, JO 4 43 
5 6, 7, JO 5 43 
6 7, iO 6 13 
7 8, 10 7 13 
8 9, JO 8 13 

9 JO 9 13 
JO Empty JO 13 

(b) 

Figure 1.13 The algorithm applied to the traveling salesman problem of Figure 
1.12. The optimal solution ABDC is found after examining node" 1 through JO 
in that order. The table shows the successive contents of the OPEN list. 
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origin node to every other node. Then, in view of our convention of placing 
nodes at and removing nodes from the top of OPEN, the search proceeds 
in depth-first fashion, as shown in Figure 1.14. As a result, large portions 
of CLOSED can be purged from memory, as shown in Figure 1.15. The 
basis for this is that once all sons of a node enter the CLOSED list then 
all paths passing through that node have been generated and evaluated . 
Therefore , it is sufficient to store only the best path found so far and purge 
all other information relating to such a node. 

There are a number of variations of the algorithm just given. The 
preceding proof of validity of the algorithm does not depend on removing 
a node from the top of OPEN in step 1 or placing a node at the top of 
OPEN in step la. This allows a great deal of freedom on how the algorithm 
is operated. An important case is when the node i selected in step 1 is not 
the node that happens to be at the top of OPEN, but rather the one in 
OPEN for which d; is minimum. This is accordingly known as best-first 
search and is equivalent for the problem considered here to Dijkstra's 

Origin Node s 

Destination Node t 

Figure 1.14 Searching a tree in depth-first fashion . The checkmarks show the 
order in which nodes enter the CLOSED list. 
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Figure l. 15 Memory requirements of 
depth-first search for the graph of Figure 
1.14. At the time the node marked by 
the checkmark enters the CLOSED list, 
only the solid-line portion of the tree is 
needed in memory. The dotted-line por-
tion has been generated and purged from 
memory based on the rule that it is un-
necessary to store a node with all suc-
cessors in CLOSED. The broken-line 
portion of the tree has not yet been 
generated. 
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algorithm (see [P2] and Problem 27). Another possibility is to place in step 
la the node j at the top of OPEN if j currently belongs to CLOSED, to 
the bottom of OPEN if J does not belong to CLOSED or OPEN, and to 
leave j in its current position in OPEN if it belongs to OPEN. This algorithm 
was suggested by Pape [P4] and turns out to be very effective for important 
classes of problems [D6]. 

We mentioned earlier that the key idea of the algorithm is to save 
computation by foregoing the examination of nodes j that cannot lie on a 
shortest path. This is based on the test d; + a;j < UPPER that node J 
must pass before it can be placed in the OPEN list in step la. We can 
strengthen this test if we can find a positive underestimate hj of the shortest 
distance of node j to the destination. Such an estimate can be obtained 
from special knowledge about the problem at hand. We may speed up the 
computation substantially by placing a node j in OPEN in step la when 
d; + a;j + hj < UPPER (instead of d; + a;J < UPPER). In this way, fewer 
nodes will potentially be placed in OPEN before termination. Using the 
fact that hj is an underestimate of the true shortest distance from j to the 
destination, the argument given earlier shows that the algorithm will terminate 
with a correct shortest path. 

The idea just described is one way to sharpen the test d; + aiJ < 
UPPER for admission of node j into the OPEN list. An alternative idea 
is to try to reduce the value of UPPER by obtaining for the node j in step 
la an overestimate hj of the shortest distance from j to the destination. 
Then if d1 + hj < UPPER after step I a, we can reduce UPPER to d1 + 
hi, thereby making the test for future admissibility into OPEN more stringent. 
This idea is used in some versions of the branch-and-bound algorithm, one 
of which we now briefly desc1ibe (see also [P2] and I P9J for further discussion). 
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Example 3 
Branch-and-Bound Algorithm. Consider a problem of minimizing a cost function 
f(x) over a finite set of feasible solutions X. The branch-and-bound algorithm uses 
an acyclic graph with nodes that correspond on a one-to-one basis with a collection 
.}( of subsets of X . We require the following: 

l. XE .}( (i.e., the set of all solutions is a node) . 
2. If x is a solution, then {x} E .}((i.e., all solutions viewed as singleton sets 

are nodes). 
3. If Y E .}( contains more than one solution x E X, then there exist Y1, ••• , 

Yn E .}( such that Y; -=/= Y for all i and 
n 

LJ Y; = Y. 
i=I 

Y is called the parent of f 1, ••• , Yn , and Y1 , ••• , Yn are called the sons 
of Y. 

4. Each node other than X has at least one parent. 

It is clear that .}( defines an acyclic graph with root node X and terminal nodes 
{x}, x E X (see Figure 1.16). If Y; is a son of Y, we assume that there is an arc 
connecting Y and Y;. Suppose that for every node Y there is an algorithm that calculates 
upper and lower bounds fy and J y for the minimum cost over Y, that is: 

fr ~ minf(x) ~Jy. 
- xEY 

Assume further that the upper and lower bounds are exact for a singleton solution 
node, 

[Ix} = f(x) = fix}, for all x EX. 

X ::: { 1, 2, 3, 4, 5} 

{ 5 } 

Figure 1.16 A tree corresponding to a branch-and-bound algorithm. Each node 
(subset) except those consisting of a single solution is partitioned into several 
other nodes (subsets). 
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Define now the length of an arc involving a parent Y and a son Y; to be the lower 
bound difference 

[r; - fr· 
Then evidently for every node Y the lower boundf,. is}: plus the length of any path from 
the origin node X to Y. Because of our assumption-(!;,>-= (f(x) for all feasible solutions x 
E X, it is clear that finding a shortest path from the origin node to one of the singleton 
nodes is equivalent to minimizing ( j(x) over x E X. 

Consider now a variation of the shortest path algorithm discussed earlier where in 
addition we use our knowledge of the upper bounds};. to reduce the value of UPPER. 
Initially , OPEN contains just X, and UPPER equals L 

Step I Remove a node Y from OPEN. For each son Yi of Y, execute Step 2 . 

Step 2 If [rj <:_ UPPER, then place in OPEN. If in addition .frj < UPPER, 
then set UPPER = frj, and if Y;- consists of a single solution, mark that solution 
as being the best solution found so far. 

Step 3 If OPEN is nonempty, go to step 1. Otherwise, terminate; the best 
solution found so far is optimal. 

An alternative termination step 3 for the preceding algorithm is to set a 
tolerance E > 0 and check whether UPPER and the minimum lower bound fr over 
all sets Yin the OPEN list differ by less than E. If so, the algorithm is terminated, 
and some set in OPEN must contain a solution within E of being optimal. There 
are a number of other variations of the algorithm. For example, if the upper bound 
.fr at a node is actually the cost f(x) of some element x E Y, then this element can 
be taken as the best solution found so far whenever .fr < UPPER in step 2. Other 
variations relate to the method of selecting a node from OPEN in step l. For 
example, two strategies of the best-first type are to select the node with minimal 
lower or upper bound. In closing, we note that applying branch and bound effectively 
requires the creative use of knowledge of the particular problem at hand. In particular, 
it is important to have algorithms for generating as sharp as practically possible 
upper and lower bounds at each node, since then fewer nodes will be admitted into 
OPEN, with attendant computational savings. 

1.5 TIME LAGS, CORRELATED DISTURBANCES, 
AND FORECASTS 

This section deals with situations where some of the assumptions in the 
basic problem formulation are not satisfied. We shall consider the case 
where there are time lags in the system equation, the case where the 
disturbances wk are correlated, and the case where at time k a forecast on 
the future uncertainties wk> wk+ 1, ••• becomes available , thus updating the 
corresponding probability distributions. The situation where the system 
evolution may terminate prior to the final time either due to a random event 
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or due to an action of the decision maker is covered in the problems. 
Generally , in all these cases it is possible to reformulate the problem into 
the framework of the basic problem by using the device of state augmentation. 
The (unavoidable) price paid, however, is an increase in complexity of the 
reformulated problem. 

Time Lags 

For simplicity, assume that there is at most a single period time lag 
in the state and control, that is, assume a system equation of the form 

xk+t =fk(xk,xk_,,uk,uk_,,wk), k= 1,2, ... ,N-1, (l.lS) 

x, = fo(Xo, Uo, Wo). 
Time lags of more than one period can be handled by a straightforward 
extension. 

Now if we introduce additional state variables Y1.. and s1c and make the 
identifications Y1c = x1c_ 1, s1c = u1c- 1 , the system equation (1.18) yields. for 
k = l, 2, ... , N - l, 

[
Xk+• ] - [fdxk, Yb Uk, Sk, wk)] 
Yk+t - xk . 
Sk+l Uk 

(1.19) 

By defining xk (xk, Yb sk) as the new state, we have 

Xk+l = lk(xk, Uk, wk), (1.20) 
where the system function f1c is defined in an obvious manner from ( 1.19). 
By using ( 1.20) as the system equation and by making a suitable reformulation 
of the cost functional. the problem is reduced to the basic problem without 
time lags. Naturally, the control law {µ0 , •• • , µN_ 1} that is sought will 
consist of functions µk of the new state x\, or equivalently µk will be a 
function of the present state X1c as well as past state X1c- 1 and control ih- 1 • 

The DP algorithm (in terms of the variables of the original problem) is 
JN(xN) = gN(xN), 

+ JN[fN-1(XN-l, XN-2, UN-1, UN-2, WN-1)]}, 

l ixk, xk- t , uk_ 1) = min E {gixk, uk, wk) 
ukEUk(xk) wk 

+ lk+ilfixk, xk-1, uk, uk-1, wk), Xk, ud}, 
k = 1, ... , N - 2. 

Jo(x0) min E {go(x0 , u0 , w0 ) 
UoEUo(Xo) Wo 
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We note that similar reformulations are possible when time lags appear 
in the cost functional, for example, in the case where the expression to be 
minimized is of the form 

E{ KN(xN, xN- ,) + :t~ g,(x,, x,_ 1, u,, w,) }-

The extreme case of time lags in the cost functional is when it has the 
nonadditive form 

E{gN(xN, XN -1, ... , Xo, uN-1, ... , Uo, WN -1, ... , Wo)}. 

Then, to reduce the problem to the form of the basic problem, the augmented 
state xk at time k must include 

and the reformulated cost functional takes the form 
E{gN(xN)}, where XN = (xo, ... , XN, Uo, ... , UN-J, Wo, ... , WN- 1) , 

The control law sought consists of functions f.Lk of the present and past 
states xk, ... , x 0, the past controls uk- 1, ••• , u0, and the past disturbances 
wk- 1, ••• , w 0 • Naturally, we must assume that past disturbances are known 
to the controller for otherwise we are faced with a problem with imperfect 
state information. The DP algorithm takes the form 

J N-1(Xo, . .. , XN - 1, Uo, ... , UN -2, Wo, ... , WN -2) 

min E {gN(xo, ... , xN-1, fN -1(xN-1 , uN-1, wN-1), 
UN-1EUN -J(XN-I) WN-1 

Uo, ••• , UN-I, Wo, •.• , WN-1)}. 
Jk(Xo, ... , xk, Uo, ... , Uk 1, Wo, ... , wk _,) 

min E{lk+i(x0 , ••• , xk,fk(xk, uk , wd, 
ukEUk(xk) wk 

k = 0, ... , N - 2. 
Similar algorithms may be written for the case where the control constraint 
set depends on past states or controls, and so on. 

Correlated Disturbances 

We turn now to the case where the disturbances wk are correlated. 
Here we shall assume that the wk are elements of a Euclidean space and 
that the probability distribution of w" does not depend explicitly on the 
current state xk and control uk, but rather it depends explicitly on the prior 
values of the disturbances w0 , ••• , wk . , . By using statistical methods (see, 
e.g., [AIJ) it is often possible to represent the process wo, w, . ... , w.v , 
by means of a linear system 

Yk+I = AkYk + gk, 

wk= CkYk+i, 

k = 0, 1, ... , N - I, Yo = 0, 
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where Ak, Ck are matrices of appropriate dimension and (k are independent 
random vectors with given distribution. In other words, the correlated 
process w0, ... , wN- 1 is represented as the output of a linear system 
perturbed by a white process, that is, a process consisting of independent 
random vectors as shown in Figure 1.17. By considering now y k as additional 
state variables, we have a new system equation: 

[Xk+l] = [fk[Xk, Uk , Ck(AkYk + {k)]]. (1.21) 
Yk+ I Akyk + gk 

By taking as the new state the pair xk = (xk, Yk) and as new disturbance 
the vector (k, we can write (1.21) as 

xk+1 = fic(xk, uk, tk>· 
By suitable reformulation of the cost functional, the problem is reduced to 
the form of the basic problem. Note that it is necessary that Yk, k = I, 
... , N - I , can be observed by the controller in order for the problem 
to be one of perfect state information. This is true when the matrix Ck-1 
is the identity matrix and wk- i is observable. The DP algorithm takes the 
form 

JN(xN, YN) = gN(xN), 

Jk(xk, Yk) = min E{gdxk, uk, Ck(AkYk + [d] 
ukEVk(xk) {k 

+ lk +il/dxk, uk, Ck(AkYk + (k)], AkYk + (d}. 
When Ck is the identity matrix, the optimal controller is of the form 

{µ,3'(xo), µ,t(x1 , Wo), ... , µ,t-i(XN-1, WN-2)}. 

Forecasts 

Finally, consider the case where at time k the decision maker has 
access to a forecast Yk that results in a reassessment of the probability 
distribution of wk and possibly of future disturbances. For example, Yk may 
be an exact prediction of wk or an exact prediction that the probability 
distribution of wk is a specific one out of a finite collection of distributions. 
Forecasts that can be of interest in practice are, for example, probabilistic pre-
dictions on the state of the weather, the interest rate for money, and demand for 
inventory . 

Generally, forecasts can be handled by state augmentation although 

I 
J'k__+ l 

y k + I = A k Yk + ~k ' 

~---------' 

Figure 1.17 Representation of a correlated process { w,} as the output of a linear 
system driven by a white noise sequence {td. 
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the reformulation into the form of the basic problem may be quite complex. 
We will treat here only a simple situation. 

Consider the case where the probability distribution of wk does not 
depend on xk' Uk' wk - I' ... ' Wo. Assume that at the beginning of each 
period k the decision maker receives an accurate prediction that the next 
disturbance wk will be selected in accordance with a particular probability 
distribution out of a finite collection of given distributions {Pkp, ... , Pkln}; 
that is, if the forecast is i, then wk is selected according to Pkli· The a 
priori probability that the forecast at time k will be i is pf and is given. 
Thus the forecasting process can be represented by means of the equation 

Yk+I = gk, (1.22) 
where Yk+i can take the values I, 2, ... , n and gk is a random variable 
taking the values I, 2, ... , n with probabilities p7+ 1

, •• • , p~,-1- The 
inte"rpretation here is that when gk takes the value i , then wk+ 1 will occur 
in accordance with the probability distribution Pk+ ,

1
;. 

By combining the system equation and (1.22), we obtain an augmented 
system given by 

[Xk+I] - [fk(xk, Uk, wk)] - f- c- - ) - /: - k xk' Uk' wk . 
Yk+I ~k 

The new state is xk = (xk, Yk) and the new disturbance is wk = (wk, td. 
The probability distribution of wk is given in terms of the distributions Pkli 
and the probabilities pf, and depends explicitly on xk (via yd but not on 
the prior disturbances wk _ 1 , ••• , w0. Thus by suitable reformulation of the 
cost functional, the problem can be cast into the framework of the basic 
problem. It is to be noted that the control applied at each time is a function 
of both the current state and the current forecast. The DP algorithm takes 
the form 
JN(xN,YN) = gN(xN), 

Jk(xk, yk) = mm E{gixk, uk, wd + t pf+ 'Jh 11/1,;(x1,:, uk, w1,: ), iJIY"}, 
ukEUk(xk) wk 1= I 

k = 0, I , ... , N - I, 

where the expectation over wk is taken with respect to the probability 
distribution P1,:,y,, where y" may take the values 1, 2, ... , n. Extension to 
forecasts covering several periods can be handled similarly, albeit at the 
expense of increased complexity. Problems where forecasts can be affected 
by the control action also admit a similar treatment. 

It should be clear from the preceding discussion that state augmentation 
is a very general and potent device for reformulating problems of decision 
under uncertainty into the basic problem form. One should also realize 
that there are many ways to reformulate a problem by augmenting the state 
in different way~. The basic guideline is to .\·£'feet <ts the augmented s tate 
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at time k only those variables the knowledge of which can be of benefit to 
the decision maker when making the kth decision. For example, in the 
case of single period time lags it is intuitively obvious that the controller 
can benefit from knowing at time k the values of xk, xk- 1, uk _,, since these 
variables affect the value of the next state xk+ 1 through the system equation. 
The controller, however, has nothing to gain from knowing at time k the 
values of xk_ 2 , xk 3 , ••• , uk_ 2 , ... , and for this reason these past states 
and controls need not be included in the augmented state, although their 
inclusion is technically possible. The theme of considering as state variables 
in the reformulated problem only those variables the knowledge of which 
would be beneficial to the decision making process will be predominant in 
the discussion of problems with imperfect state information (Chapter 3). 

Finally, we note that whereas state augmentation is a convenient 
device, it tends to introduce both analytical and computational complexities, 
which in many cases are insurmountable . 

1.6 NOTES 

Dynamic programming is a simple mathematical technique that has been 
used for many years by engineers, mathematicians, and social scientists in 
a variety of contexts. It was Bellman, however, who realized in the early 
1950s that DP could be developed (in conjunction with the then appearing 
digital computer) into a systematic tool for optimization. Bellman dem-
onstrated the broad scope of DP and helped streamline its theory. His 
early books [BS, B6] are still popular reading. Other books related to DP 
are !H8], [Hl6], [K5], IK14], [N2], [R7], [W7], and [WI I]. For a rigorous 
treatment of DP in general spaces that resolves the associated measurability 
issues and supplements the present text, see [B23]. For continuous-time 
formulations, see [B7] and [F3] . 

The connection of the Viterbi algorithm with the shortest path problem 
has been clarified in [02] and [F4]. For further material on search methods 
and their use in game programs, see [P9]. For background on shortest 
paths, branch-and-bound, and combinatorial optimization see [P2l . 

As discussed in Section I. I, the basic problem was formulated rigorously 
only for the case where the disturbance spaces are countable sets. None-
theless, the DP algorithm can often be utilized in a simple way when the 
countability assumption is not satisfied and there are further restrictions 
(such as measurability) on the class of admissible control laws. The advanced 
reader will understand how this can be done by solving Problem 12, which 
shows that if one can find within a subset of control laws (such as those 
satisfying certain measurability restrictions) a control law that attains the 
minimum in the DP algorithm, then this control law is optimal. This fact 
may be used to establish rigorously many of our subsequent results concerning 
specific applications in Chapters 2 and 3. For example, in linear-quadratic 
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problems (Section 2.1) one determines from the DP equations a control law 
that is a linear function of the current state. When wk can take uncountably 
many values, it is necessary that admissible control laws consist only of 
functions µ,k which are Borel measurable. Since the linear control law 
belongs to this class, the result of Problem 12 guarantees that this control 
law is optimal. 

PROBLEMS 

1. Use the DP algorithm to solve the following two problems: 
(a) minimize Li=o xt + u; 

subject to x0 = 0, x4 = 8, U; = nonnegative integer, 
X;+J = X; + U;, i = 0, 1, 2, 3; 

(b) minimize Li=o xt + 2u; 
subject to x0 = 5, u; E {O, 1, 2}, 

X;+ t = X; - U;, i = 0, 1, 2, 3. 
2. Air transportation is available between n cities, in some cases directly and in 

others through intermediate stops and change of carrier. The air fare between 
cities i and j is denoted C;/ Cu = Ci;), and for notational convenience we write 
CiJ = = if there is no direct flight between i and j. The problem is to find the 
cheapest possible air fare for going from any city i to any other city j perhaps 
through intermediate stops . Formulate a DP algorithm for solving this problem. 
Solve the problem for n = 6 and C12 = 30, C 13 = 60, C 14 = 25, C1s = C16 = 
00 , C23 = C24 = C25 = 00 , C26 = 50, C34 = 35, C3s = C36 = 00 , C45 = 15 , 
C46 = oo, Cs6 = 15. 

3. Suppose we have a machine that is either running or broken down. If it runs 
throughout one week, it makes a gross profit of $100. If it fails during the 
week, gross profit is zero. If it is running at the start of the week and we 
perform preventive maintenance, the probability that it will fail dming the week 
is 0.4. If we do not perform such maintenance, the probability of failure is 0.7. 
However, maintenance will cost $20. When the machine is broken down at 
the start of the week, it may either be repaired at a cost of $40, in which case 
it will fail during the week with a probability of 0.4, or it may be replaced at 
a cost of $150 by a new machine: that is guaranteed to run through its first week 
of operation. Find the optimal repair, replacement, and maintenance policy 
that maximizes total profit over four weeks, assuming a new machine at the 
start of the first week . 

4. A game of the blackjack variety is played by two players as follows: Both 
players throw a die. The first player, knowing his opponent's result, may stop 
or may throw the die again and add the result to the result of his previous 
throw. He then may stop or throw again and add the result of the new throw 
to the sum of his previous throws. He may repeat this process as many times 
as he wishes. If his sum exceeds seven (i.e., he busts), he loses the game. If 
he stops before exceeding seven, the second player takes over and throws the 
die successively until the sum of his throws is four or higher. If tht> sum of 
the second player is over seven, he loses the game . Othe rwise the player with 
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the larger sum wins, and in case of a tie the second player wins. The problem 
is to determine a stopping strategy for the first player that maximizes his probability 
of winning for each possible initial throw of the second player. Formulate the 
problem in terms of DP and find an optimal stopping strategy for the case where 
the second player's initial throw is three. Hint: Take N = 6 and a state space 
consisting of the following 15 states: 

x 1: busted, 
x•+;: already stopped at sum i (1 .;;; i.;;; 7), 
x8+;: current sum is i but the player has not yet stopped (1 .;;; i.;;; 7). 

The optimal strategy is to throw until the sum is four or higher. 
5. Min-Max Problems . In the framework of the basic problem, consider the case 

where the disturbances Wo, w,, ... , wN , do not have a probabilistic description 
but rather are known to belong to corresponding given sets W, (.t"k, u,) C D1., 
k = 0, 1, ... , N - 1, which may depend on the current state xk and control 
uk. Consider the problem of finding a control law 7T = {µ,0 , •••• µ,N _ , } with 
µ,k(xk) E Uixk) for all xk, k, which minimizes the cost functional 

The DP algorithm for this problem takes the form 
JN(xN) = gN(xN), 

Jk(xk) = min max {gk(Xk, Uk, wk) + lk+tlfk(Xk, Uk, wk)]}. 
ukEU(xk) wkEWk(xk.uk) 

Assuming that Jk(xd > - 00 for all xk and k, show that the optimal cost equals 
l o(x0). Hint: Imitate the proof for the stochastic case; prove and use the following 
fact: If U, W, X are three sets, f : W - Xis a function, and M is the set of 
all functionsµ, : X - U, then for any functions G0 : W - ( - oo, = J. G, : X x U -
( -oo, oo] such that 

min G1[f(w) , u] > -oo, for all wEW 
uEU 

we have 
min max{G0 (w) + G,[f(w) , µ,(f(w))J} = max{G0 (w) + min Gilf(w), uJ}. 
µ.EM wEW wEW uEU 

6. Discounted Cost per Stage. In the framework of the basic problem, consider 
the case where the cost functional is of the form 

E{ a.NgN(xN) + ~: a kgk(Xk, Uk, wk)}, 

where a is a discount factor with O < a < I. Show that an alternate form of 
the DP algorithm is given by 

VN(xN) = gN (xN), 

Vi,(xk) = min E{gk(xk, Uk, wk) + aVk+ilfk(xk, Uk, wd]}. 
ukEUk(xk) 

1. Exponential Cost Functional. In the framework of the basic problem, consider 
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the case where the cost functional is of the form 

{ exp[ gN(xN) + ~>k(Xk, Uk, wk)]}· 
k=O,l, ... ,N-1 

(a) Show that the optimal cost and an optimal policy can be obtained from the 
last step of the DP algorithm 

JN(xN) = exp[gN(xN)], 

Jk(xk) = min E{lk+1fh(xk, uk, wk)] exp[gk(xk, Uk, wk)]}. 
UkEUk(xk) wk 

Show that the algorithm yields an optimal control law if one exists. 
(b) Define the functions Vk(xd = In Jk(xd. Assume also that gk is a function 

of xk and uk only (and not of wd. Show that the above DP algorithm can 
be rewritten 

VN(xN) = gN(xN), 

Vi(xk) = min [gk(Xk, uk) + lnE{exp Vk+tl/k(xk, Uk, wkm]. 
ukE Uk(xk) wk 

8. Terminating Process. Consider the case in the basic problem where the system 
evolution terminates at time i when a given value w; of the disturbance at time 
i occurs, or when a termination decision u; is made by the controller. If termination 
occurs at time i, the resulting cost is 

T + L gk(xk, uk, wk), 
k-0 

where T is a termination cost. If the process has not terminated up to the final 
time N, the resulting cost is gN(xN) + 'i.~-0

1 Rk(xJ.., 111., w.). Reformulate the 
problem into the framework of the basic problem. Hint: Augment the state 
space with a special termination state. 

9. Multiplicative Cost. In the framework of the basic problem, consider the case 
where the cost functional has the multiplicative form 

E {gN(xN) · gN-1(xN-1, uN-1, wN-1) ··· go(Xo, uo, wo)}, 
Wt_ 

k O, .... N-1 

Devise an algorithm of the DP type for this problem under the assumption 
gk(xk, Uk, wd ;,, 0 for all Xk, Uk, wk, and k. 

IO. Assume that we have a vessel whose maximum weight capacity i.;; ;:. and whose 
cargo is to consist of different quantities of N different items. Let v, denote 
the value of the ith type of item, w; the weight of ith type of item, and x; the 
number of items of type i that are loaded in the vessel. The problem of determining 
the most valuable cargo is that of maximizing L~ 1 X;V; subject to the constraints 
2.f 1 x;w;:,;;; z and x; = 0, 1, 2, .. .. Formulate this problem in terms of DP. 

11. Consider a device consisting of N stages connected in series, where each stage 
consists of a particular component. The components arc subject to failure, and 
to increase the reliability of the device duplicate components an: provided. For 
j = I, 2, ... , N, let (I + m1 ) be the number of components for the jth stage, 
let p

1 
( m

1
) be the probability of successful operation of the jth stage when 
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(1 + m) components are used, and let cj denote the cost of a single component 
at the jth stage. Consider the problem of finding the number of components 
at each stage that maximize the reliability of the device expressed by 

P1(m1) · P2(m2) ··· PN(mN) 
subject to the cost constraint Lf: 1 cjmj A, where A > 0 is given. Formulate 
the problem in terms of DP. 

12. Minimization over a Subset of Policies. This problem is primarily of theoretical 
interest (see the end of the Notes to this chapter). Consider a variation of the 
basic problem whereby we seek 

min J " (xo), 
1rEfi 

where fi is some given subset of the set of sequences {µ0, J,1,1, ... , µN _ 1} of 
functions µk:Sk - Ck with µk(xd E Vk(xd for all xk Es •. Assume that 

1r* = {µt, µf, ... , µ,t_ 1} 
belongs to fi and attains the minimum in the DP algorithm; that is , for all k 
0, 1, . . . , N - 1 and Xk E s k 

Jk(xk) = E{gdxk> µ t(xk ) , wk ] + l k+1 rJk(xk, µ t(xk ) , wd]} 
Wk 

min E{gk(xk, uk, wk ) + l k+ 1rJk(xk, Uk, wd]}, 
UkE U k(Xk ) Wk 

with JN(xN) = gN(xN). Assume further that the functions Jk are real valued 
and the preceding expectations are well defined and finite. Show that 1r* is 
optimal within fi and 

10 (x0 ) = min J"(x0 ) = J". (x0 ) . 
1rEfi 

13. Semilinear System s. Consider a problem involving the system 
xk+1 = A kxk + fi, (ud + wk, 

where xk E Rn, fk are given functions , and A . and w, are random n x n matrices 
and n-vectors, respectively , with given probability distributions that do not 
depend on xk, uk or prior values of Ak and wk. Assume that the cost functional 
is of the form 

A~ k { cNxN + 1:[ckxk + gk [µk(xk )]]}. 
k=O,l, .. ,N-1 

where c, are given vectors and gk given functions. Show that if the optimal 
cost for this problem is finite and the control constraint sets V, (x, ) are independent 
of xk, then the cost-to-go functions of the DP algorithm are affine (linear plus 
constant). Assuming that there is at least one optimal policy. show that there 
exists an optimal policy that consists of constant functions µf ; that is , µ[ (x, ) = 
constant for all xk E R n. 

14. A farmer annually producing xk units of a certain crop stores (l - udxk units 
of his production, where 0 u k 1, and invests the remaining u 1,x k units, thus 
increasing the next year's production to a level xk+ 1 given by 

Xk+I = Xk + WkU~k, k = 0, 1, ... , N - 1. 
The scalars wk are independent random variables with identical probability 
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distributions that do not depend either on xk or uk. Furthermore, E{ wk} = w 
> 0. The problem is to find the optimal investment policy that maximizes the 
total expected product stored over N years 

{ 

N-1 1 
XN + eo (1 - udxk J . 

k=0,1, ... ,N-1 

Show that one optimal control law is given by: 
(a) If w > 1, µci'(x0) = ··· = µt_,(xN_,) = 1. 
(b) If 0 < w < 1/ N, µci'(xo) = ··· = J.lN-1(xN-i) = 0. 
(c)Ifl/N~w~l , 

µci'(xo) = ... = J.lN-I-hN-I-1) = 1, 
J.lN-Tc(XN-I) = ... = J.lN -1 (XN-1) = 0, 

where k is such that 1/(k + 1) < w 1/k. (Note that this control law 
consists of constant functions.) 

15. Let xk denote the number of educators in a certain country at time k and let 
Yk denote the number of research scientists at time k. New scientists (potential 
educators or research scientists) are produced during the kth period by educators 
at a rate 'Yk per educator, while educators and research scientists leave the field 
due to death, retirement, and transfer at a rate ok. The scalars 'Y,, k = 0, 1, 
. . . , N - 1, are independent identically distributed random variables taking 
values within a closed and bounded interval of positive numbers. Similarly oh 
k = 0, 1, ... , N - 1, are independent identically distributed and take values 
in an interval [o, 01

] with O < o 01 < 1. By means of incentives a science 
policy maker can determine the proportion uk of new scientists produced at 
time k who become educators. Thus the number of research scientists and 
educators evolves according to the equations 

Xk+I = (1 - ok)Xk + Uk"fkXk, 
Yk+I = (1 - odyk + (1 - uk)ykxk. 

The initial numbers x 0 , y 0 are known, and it is required to find a policy {J.ld (x0 , 

Yo), ••. , JLN-1(XN-1, YN-1)} with 
for all xk, Yk, and k, 

which maximizes Ey,.a, {yN} (i.e., the expected final number of research scientists 
after N periods) . The scalars a and /3 are given. 
(a) Show that the cost-to-go functions Jk(xk,yk) are linear; that is, for some 

scalars Ak, J.lk 
Jk(xk,Yk) = Akxk + J.lkYk· 

(b) Derive an optimal policy {µt, ... , µ'!-, 1} under the assumption E{"!d > 
E{ok}, and show that this optimal policy can consist of constant functions. 

(c) Assume that the proportion of new scientists who become educators at time 
k is uk + ck (rather than ud, where ck are identically distributed independent 
random variables that are also independent of 'Yk, o, and take values in the 
interval [ -a, l - /3]. Derive the form of the cost-to-go functions and the 
optimal policy. 

16. DP on Two Parallel Processors [Ll]. Formulate a DP algorithm to solve the 
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deterministic problem of Section 1.3 on a parallel computer with two processors. 
One processor should execute a forward algorithm and the other a backward 
algorithm. 

17. The paragraphing problem deals with breaking up a sequence of N words 
w 1 , ••• , wN with lengths L,, ... , LN into lines of length A. In a simple version 
of the problem, words are separated by blanks whose ideal width is b, but 
blanks can stretch or shrink if necessary, so that a line w;, w;+t• ... , W;+1.. has 
length exactly A. The cost associated with the line is (k + I) lb' - bl, where 
b' = (A - L; - .. · - L;+d/(k + l) is the actual average width of the blanks, 
except if we have the last line (N = i + k), in which case the cost is zero 
when b' b. Formulate a DP algorithm for solving for the minimum cost 
separation. Hint: Consider the subproblems of optimally separating w;, ... , 
wN for i = 1, ... , N. 

18. Computer Assignment. In the classical game of blackjack the player draws 
cards knowing only one card of the dealer. The player loses upon reaching a 
sum of cards exceeding 21. If the player stops before exceeding 21, the dealer 
draws cards until reaching 17 or higher. The dealer loses upon reaching a sum 
exceeding 21 or a lower sum than the player's. If player and dealer end up 
with an equal sum no one wins, and in all other cases the dealer wins. An ace 
for the player may be counted as a 1 or an 11 as the player chooses. An ace 
for the dealer is counted as an 11 if this results in a sum from 17 to 21 and as 
a 1 otherwise. Jacks, queens, and kings count as 10 for both dealer and player. 
We assume an infinite card deck so the probability of a particular card showing 
up is independent of earlier cards. 
(a) For every possible initial dealer card, calculate the probability that the dealer 

will reach a sum of 17, 18, 19, 20, 21 , or over 21. 
(b) Calculate the optimal choice of the player (draw or stop) for each of the 

possible combinations of dealer's card and player's sum of 12 to 20. Assume 
that the player's cards do not include an ace. 

(c) Repeat part (b) for the case where the player's cards include an ace. 
19. Consider a smaller version of a popular puzzle game. Three square tiles numbered 

l, 2, and 3 are placed in a 2 x 2 grid with one space left empty. The two tiles 
adjacent to the empty space can be moved into that space, thereby creating 
new configurations. Use a DP argument to answer the question whether it is 
possible to generate a given configuration starting from any other configuration. 

20. From a pile of eleven matchsticks, two players take turns removing one or four 
sticks. The player who removes the last stick wins. Use a DP argument to 
show that there is a winning strategy for the player who plays first. 

21. The Counte,feit Coin Problern. We are given six coins, one of which is counterfeit 
and is known to be heavier or lighter than the rest. Construct a strategy to 
find the counterfeit coin using a two-pan scale in a minimum average number 
of tries. Hint: There are two initial decisions that make sense: ( l) test two of 
the coins against two others, and (2) test one of the coins against one other. 

22. Given a sequence of matrix multiplications 
M1M2 ... M1..M1..+1 ... MN, 

where Mk, k 1, ... , N, is of dimension n k x n k+ 1, the order in which 



Chap. 1 Problems 53 

multiplications arc carried out can make a difference . For example, if n 1 --= 1, 
n 2 = IO, n-1 - I, and n4 = 10, the calculation ((M 1M 2 )M1 ) requires 20 multiplica-
tions, but the calculation (M 1(M2M ,)) requires 200 multiplications. Derive a DP 
algorithm for finding the optimal multiplication order. Solve the problem for 
n = 3, n, = 2, n2 = IO , n1 = 5, and n4 = I. 

23. Doubling Algorithms. Consider a deterministic finite state problem that is time 
invariant in the sense that the state and control spaces, the cost per stage, and 
the system equation are the same for each time period. Let Jk(x, y) be the 
optimal cost to reach state y at time k from stale x at time 0. Show that for 
all k 

l ik(x, y) = min{Jk(x, z) + Jk(z , y)}. 
? 

Discuss how this equation may be used with advantage to solve problems with 
a large number of stages. 

24. Complexity of DP for Shortest Paths. Consider the shortest path algorithm 

Jk(i ) = min {c;j + lk+iU)} 
j~l, ... ,N 

of Section 1.3. Suppose m is the largest number of arcs in a shortest path from 
any node 1, ... , N to the destination node t. Show that the algorithm can be 
terminated after m steps and that the number of arithmetic operations required 
is bounded by ymL, where L is the number of arcs and y is a number that is 
independent of m, L , and N. 

25. Monotonicity Property of DP. An evident, yet very important property of the 
DP algorithm is that if the terminal cost f?N is changed to a uniformly larger 
cost RN [i.e., f?N(xN) -,s; RN(xN) for all AN], then the corresponding costs Jdxd 
will be uniformly increased. More generally, given two functions Jh I and ]k + 1 

with lk+i (xk+i ) ]k+ 1(xk+i) for all xk+i, we have, for all xk and uk E Uk(xd, 

E{gk(xk, uk, wk) + l k+11/k(xk, uk, wk)]} 
Wk 

E{gk(xb uk, wk) + lk+11/k(xk, Uk, wk)]}. 
Wk 

Suppose now that in the basic problem the system and cost are time invariant; 
that is, sk = s, ck = C, Dk = D, h = f, Uk(xk) = U(xk), and gk = g. Show 
that if in the DP algorithm we have JN _ ,(x) JN(x) for all x E S then 

Jk(x) lk+i(x), for all x ES and k. 
Similarly, if we have JN_,(x);;;;,, JN(x) for all x ES, then 

Jk(x);;;;,, lk+ 1(x), for all x ES and k. 

26. Modify the forward search algorithm of Section I .4 so that it simultaneously finds 
the shortest paths from the origin s to several destination nodes and also detects 
when shortest paths do not exist. !lint: Connect the destination nodes with a new 
artificial node using arcs with very large length. 

27. Dijkstra's Algorithm for Shortest Paths. Consider the best-first version of the 
forward search algorithm of Section 1.4. Here at each iteration we select a node 
j from OPEN that has minimum estimate d1 over all nodes in OPEN. 
(a) Show that each node j will enter OPEN at mos;t once and sh(w.; that at 
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the time it enters CLOSED its estimate d1 is equal to the shortest distance 
from s to j . 

(b) Show that the number of arithmetic operations required for termination is 
bounded by cN2 where N is the number of nodes and c is some constant. 

28. Distributed Asynchronous Shortest Path Computation [B 19 ). Consider the problem 
of finding a shortest path from nodes 1, 2, ... , N to node t, and assume that 
all arc lengths c;1 are positive. Consider the iteration 

d~+i = min{ciJ + dj} , i = 1, 2, ... , N , 
J (1.23) 

d1+ 1 = 0. 
(a) It was shown in Section 1.3 that, if the initial condition is d? = for i = 

1, ... , N and d~ = 0, then (1.23) yields the shortest distances d t in N 
steps. Show that if the initial condition is d? = 0, for all i = 1, ... , N , 
t, then (1.23) yields the shortest distances in a finite number of steps . Provide 
an upper bound for this number in terms of the problem data. 

(b) Assume that the iteration 
d; := min{cu + dJl (1.24) 

j 

is executed at node i in parallel with the corresponding iteration for d1 at 
every other node j. However, the times of execution of this iteration at 
the various nodes are not synchronized. Furthermore, each node i com-
municates the results of its latest computation of d, at arbitrary times with 
potentially large communication delays. Therefore, there is the possibility 
of a node executing iteration (1.24) several times before receiving a com-
munication from every other neighboring node. Assume that each node 
never stops executing iteration (1.24) and transmitting the result to the other 
nodes. Show that the estimates dT available at time Tat the corresponding 
nodes i equal the shortest distances dt for all T after a finite time T. Hint: 
Let d7 and 47 be the estimates generated by (1.23) when starting from the 
first and the second initial conditions in part (a), respectively. Show that 
for every k there exists a time Tk such that for all T Tk we have d 7 ,;; 
df,;; d7. For a detai led analysis of asynchronous iterative algorithms. includ-
ing algorithms for shortest paths and dynamic programming . sec D. P. 
Bertsekas and J. N. Tsitsiklis. "Parallel and Distributed Computation: Numer-
ical Methods", Prentice-Hall , 1989. 
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