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Preface

This book evolved from teaching a course on Dynamic Programming and
Stochastic Control over a fourteen-year period at Stanford University, the
University of Illinois, and the Massachusetts Institute of Technology. The
purpose of the book is to provide a unified treatment of the subject suitable
for a broad audience from engineering, operations research, and, to some
extent, economics and applied mathematics. Thus, for example, we treat
simultaneously stochastic control problems popular in modern control theory,
Markovian decision problems popular in operations research, and a number
of combinatorial problems usually addressed in computer science courses.
The theory is illustrated through a large variety of examples, many of them
involving applications that are important in their own right. These examples
can be covered in class independently of one another, so an instructor can
tailor a course to his/her audicnce by emphasizing the appropriate set of
applications.

The mathematical prerequisite for the text is a good knowledge of
introductory probability and undergraduate mathematics. This includes the
equivalent of a one-semester first course in probability theory together with
the usual calculus, real analysis, vector-matrix algebra, and elementary
optimization theory almost all undergraduates are exposed to by their fourth
year of studies. A summary of this material is provided in the appendixes.
While prior courses or background on dynamic system theory, optimization,
or control will undoubtedly be helpful to the reader, it is felt that the material
in the text is reasonably self-contained.

Dynamic programming is a conceptually simple technique that can be
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2 The Dynamic Programming Algorithm Chap. 1

where

k indexes discrete time,
x, is the state of the system and summarizes past information that is relevant
for future optimization,
u, is the control or decision variable to be selected at time k with knowledge of
the state x,
w, is a random parameter (also called disturbance or noise),
N is the horizon or number of times control is applied.

The cost functional is additive in the sense that a cost gi(x., u;, wy)
is incurred at each time k, and the total cost along any system sample

ject 1S
trajectory e

gn(xn) + 20 glxis s Wi,
k=0
where gn(xy) is a terminal cost incurred at the end of the process. However,
because of the presence of w,, cost is generally a random variable and
cannot be meaningfully optimized. We therefore formulate the problem as
one whereby we wish to select controls ug, u,, . . ., uy_, SO as to minimize

the expected cost N1

E{gn(xy) + E 8l Xk Uy, wl,
k=0

where the expectation is taken with respect to the joint distribution of the
random variables involved.

A more precise definition of the terminology just used will be given
shortly. We first provide some orientation by means of examples.

Inventory Control Example

Consider a problem of ordering a quantity of a certain item at the
beginning of each of N time periods so as to meet a stochastic demand.
Let us denote

X, stock available at the beginning of the kth period,
u; stock ordered (and immediately delivered) at the beginning of the kth period,
w, demand during the kth period with given probability distribution.

We assume that wy, . . ., wy , are independent random variables and that
excess demand is backlogged and filled as soon as additional inventory
becomes available. Thus stock evolves according to the discrete-time (or
difference) equation

Xew1 = Xp + Uy — Wy,

where negative stock corresponds to backlogged demand (see Figure 1.1).
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each possible value of x,,

wi(x,) = amount that should be ordered at time & if
stock is x,.

The sequence 7 = {mo, My, - - -» tny—;; Will also be referred to as a
control law or a policy. For each such 7, the corresponding cost for a
fixed initial stock x, is

N-1
Jo(x0) = E{ > cmlx) + Hix + mlx) — Wk]}-
k=0
and our objective will be to minimize J,(x,) for fixed x, over all admissible
ar. This is a typical dynamic programming problem. We wi show in Section
2.2 that, for a reasonable choice of the cost function H, the optimal ordering
rule is of the form
_ Sk — Xk. ika<Sk.
I'Lk(xk) - {0’ ika > Sk’
where S, is a suitable threshold level determined by the data of the problem.
In other words, when stock falls below the threshold §;. order just enough
to bring stock up to S,.
The preceding example illustrates the main ingredients of the basic
problem formulation:

1. A discrete-time system of the form

Xeer = Sillxes 1y, wy),
where f; is some function; in this example fi(x;, g, wi) = X + w; — wy.

2. Independent random parameters w,. This will be generalized by allowing the
probability distribution of w; to depend on x; and «,; in the context of the
example we can think of a situation where the level of demand w, is influenced
by the current stock level.

3. A control constraint; in the example u, = 0. In general, the constraint set
will depend on x, and the time index &, that is, u;, € U,(x,). To see how
constraints dependent on x; can arise in the inventory context, think of a
situation where there is an upper bound B on the level of stock that can be
accommodated, so u; < B — Xx;.

4. An additive cost of the form

N-1
E{gN(xN) + 2 gk(xk, iy, Wk)},
k0

where g,, k = 0, ..., N, are some functions; in the preceding example
enxy) = 0, and g.(x;, ux, wy) = cuy + H(xy + up — wy).

5. Optimization over control laws, that is, rules for choosing u, for each & and
possible value of x,.

In the preceding example, the state x, was a real number. In other
cases the state is an n-dimensional vector. It is also possible, however,
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where the state x, is an element of a space S;. the control «, is an element
of a space C;, and the random *‘disturbance™ wy is an element of a space
D,. The control u; is constrained to take values from a given nonempty
subset U,(x,) of C,. which depends on the current state x; [, € U(x;)
for all x, € S, and k). The random disturbance w; is characterized by a
probability measure P.(:|x;, ;) that may depend explicitly on x; and «; but
not on values of prior disturbances w;_,, . . .. w,. We consider the class
of control laws (also called policies) that consist of a sequence of functions
= {fg, f1s . . -» n -1}. Where w, maps states x; into controls 1, = w(x;),
and is such that u(x,) € U(x,) for all x, € S;,. Such control laws will be
termed admissible.

Given an initial state x,, the problem is to find an admissible control

law 7 = {w, > . . .» wn—;t that minimizes the cost functional
N-1
JAx)) = E {gN(-\'N) + z el palxe). m]} (1.2)
wi k=0
k=Q..... N 1

subject to the system equation constraint
X1 = fil X pa(x), wil. A=0.1.....N — 1. (13)

The cost functions g, & = 0, 1, . . ., N, are given.
For a given initial state x,, an optimal control law 7* is one that
minimizes the corresponding cost

Jo(xg) = min J,(xo).
well

where I1 is the set of all admissible control laws. The optimal cost cor-
responding to x, will be denoted J*(x,); that is,
J*(xo) = min J,(x,).
wrell
We view J* as a function that assigns to each initial state x, the optimal
cost J*(xy) and call it the optimal cost function or optimal value function.
[For the benefit of the mathematically oriented reader we note that
in the preceding equation min denotes the greatest lower bound (or infimum)
of the set of numbers {J,.(x,) | # € I1}. A notation more in line with normal
mathematical usage would be to write J*(x,) = inf,cp J.(x,). However
(as discussed in Appendix B), we find it convenient to use min in place of
inf even when the infimum is not attained. It is less distracting and will
not lead to any confusion.]

Role of Information in the Basic Problem

We mentioned earlier that a policy {ug, #y. . . .. uy ;} may be viewed
as a plan that specifies the control to be applied at each time for every
state that may occur at that time. It is important to realize that this mode
of operation implies information gathering. The information received by
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inclined need not be concerned about it and can skip the rest of this section
without loss of continuity.

First, once an admissible control law {u,, &, . . ., un_,} is adopted,
the following sequence of events is envisioned for each stage £ = 0, 1,
LN - 1t

1. The controller observes x; and applies #;, = w(x;).

2. The disturbance w; is generated according to the given probability measure
Pk('lxk, (X))

3. The cost gilxi, mlxi), wil is incurred and added to previous costs.

4. The next state x,., is generated according to the system equation

Xeer = filxis ma(xe), wil.
If this is the last stage (k = N — 1), the terminal cost gy(xy) is added to
previous costs and the process terminates. Otherwise, & is incremented, and
the same sequence of events is repeated for the next stage.

This process is well defined and couched in precise probabilistic terms.

Things are complicated, however, by the need to view the cost

N—1

gnv(xn) + 2 gilxis me(xi), il

k=0
as a well-defined random variable with well-defined expected value. The
framework of probability theory requires that for each {uq, @y, . . ., v}
we define an underlying probability space, that is, a set (), a collection of
events in {2, and a probability measure on these events. Furthermore, the
cost must be a well-defined random variable on this space in the sense of
Appendix C (a measurable function from the probability space into the real
line in the terminology of measure-theoretic probability theory). For this
to be true, additional (measurability) assumptions on the functions f, g;,
and u, may be required, and it may be necessary to introduce additional
structure on the spaces S;, Cy, and D,. Furthermore, these assumptions
may restrict the class of admissible control laws since the functions u, may
be constrained to satisfy additional (measurability) requirements.

Thus, unless these additional assumptions and structure are specified,
the problem is formulated inadequately. On the other hand, a rigorous
formulation of the basic problem for general state, control, and disturbance
spaces is well beyond the mathematical framework of this introductory text
and will not be undertaken here (see [B23]). Nonetheless, these difficulties
are mainly technical and do not substantially affect the basic results to be
obtained. For this reason we find it convenient to proceed with informai
derivations and arguments in much the same way as in all introductory
texts and most journal literature on the subject.

We would like to stress, however, that under the assumption that the
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1.2 THE DYNAMIC PROGRAMMING ALGORITHM

The dynamic programming (DP) technique rests on a very simple idea, the
principle of optimality. The name is due to Bellman, who contributed a
great deal to the popularization of DP and to its transformation into a
systematic tool. Roughly, the principle of optimality states the following
rather obvious fact.

Let 7% = {u¥, uf, ..., u}_,} be an optimal control law for the basic
problem. Consider the subproblem whereby we are at state x; at time i
and wish to minimize the ‘‘cost-to-go’’ from time / to time N;

N-1

E{gN(xN) + Z gielxe, me(x), wilt,
k=i

and assume that when using 7* the state x; occurs with positive probability.

Then the truncated control law {u}, w¥ . ..., u¥_,} is optimal for this
subproblem.

The intuitive justification of the principle of optimality is very simple.
If the truncated control law {u*, u* ,, ..., u§_,} were not optimal as

stated, we would be able to reduce the cost further by switching to an
optimal policy for the subproblem once we reach x;,. For an auto travel
analogy, suppose we have found the fastest route from Los Angeles to
Boston and this route passes through Chicago. The principle of optimality
translates to the obvious fact that the Chicago to Boston portion of the
route is also a fastest route for a trip that starts from Chicago and ends in
Boston.

It is perhaps best to introduce the DP algorithm by means of an
example.

Inventory Control Example (continued)

Consider the inventory control example of the previous section and
the following procedure for determining the optimal inventory ordering
policy starting with the last time period and proceeding backward in time.

N — 1 Period Assume that at the beginning of period N — 1 the
stock available is x5 _,. Clearly, no matter what happened in the past, the
inventory manager should order inventory «%_, = u}_,(xx ), which min-
imizes over un_, the sum of the ordering, holding, and shortage costs for
the last time period, which is equal to

E {cuy 1+ + H(xy_y + uy_y — wy_))}

Let us denote the optimal cost for the last period by Jy (xn ,):
JN—I(XN—]) = min E {CllN 1 + H(XN_] + Uny_y — H’N—l)}'

un =0 wy
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is simultaneously computed from minimization of the right side of (1.5) for
every x; and &.

The example illustrates the main advantage offered by DP. Our original
inventory problem requires an optimization over the set of policies, that
is, the set of sequences of functions of the current stock (more generally
the current state). The DP algorithm of (1.5) decomposes this problem into
a sequence of minimization problems that is carried out over the set of
orders (more generally the space of controls). Each of these problems is
far simpler than the original.

We now state the DP algorithm for the basic problem and show its
optimality.

Proposition. Let J*(x,) be the optimal cost. Then
J*(xo) = Jo(x0),

where the function Jj is given by the last step of the following algorithm,
which proceeds backward in time from period N — 1 to period 0:

In(xn) = gnlxn) (1.6)
Ji(x) = min E{g,(x;, up, wy) + Jeor[filxw, e, wlt,  (L7)F

wk € Ur(xk) wi

k=0,1,..., N - 1.

Furthermore, if #f = wf(x,) minimizes the right side of (1.7) for each x,
and £, the control law #* = {ug, ..., u¥_,} is optimal.

Proof. The fact that the probability measure characterizing w, depends
only on x, and u, and not on prior values of disturbances wy, . . ., w,_,
allows us to write J*(x,) in the form

J*(xo) = min I:E{go[xm Mo(x0). wol + E{gl[xl’ i), wil + -

wo wi

+ E {en-ilxn- n—1(env=1), W] + ga(en)) o }}]’

WN-1

where the expectation over w,, k = 0, 1, ..., N — 1, is conditional on
X and w,(x,). This expression may also be written

T Both the DP algorithm and its proof are, of course, rigorous only if the basic problem
is rigorously formulated. As explained in the previous section, this is the case when the
disturbance spaces D,, k = 0, 1, ..., N — 1, are countable sets and the expected values of
all terms in the expression of the cost functional (1.2) arc well defined and finite for every
admissible policy . In addition, it is assumed that the expected value in (1.7) exists and is
finite for all u, € U,(x,) and all x, € §,. We further note that, although not explicitly denoted,
the expectation in (1.7) is taken with respect to the probability measure characterizing w, ,
which depends on both x, and u,.
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Example 1
A certain material is passed through a sequence of two ovens (see Figure 1.4).
Denote

Xo: initial temperature of the material,
xi, k = 1, 2: temperature of the material at the exit of oven k,
Uy, k = 1, 2: prevailing temperature in oven k.
We assume a model of the form
X = (1 = a)x, + awy, k=0,1,

where a is some scalar from the interval (0, 1). The objective is to get the final
temperature x, close to a given target 7, while expending relatively little energy.
This is expressed by a cost function of the form

r(x; — TV + wd + i,
where r > 0 is a given scalar. We assume no constraints on «,. (In reality, there
are constraints, but if we can solve the unconstrained problem and verify that the

solution satisfies the constraints, everything will be fine.)

We see that this is a deterministic problem that fits the basic framework. We
have N = 2 and a terminal cost g,(x;) = r(x, — T)*, so the initial condition for
the DP algorithm is [cf. (1.6)]

Jr(x3) = r(x; — T)Z-
For the next-to-last stage, we have [cf. (1.7)]
Ji(xy) = min[uf + Jo(x,)]
= min[#} + L,[(1 — a)x; + au,]].

u\

Substituting the previous form of J,, we obtain

Ji(x)) = min[:2 + r[(1 — a)x, + au, — T1'). (1.8)
This minimization will be done by setting to zero the derivative with respect to u,.
We thus have

0 = 2u, + 2ral(1 — a)x, + au, — T),

and by collecting terms we obtain the optimal temperature for the last oven:
ralT — (1 — a)x,]

= uf(x) =
HitH 1 + ra’

Initial ‘ Oven 1 . l Oven 2 | Final
Temperature Temperature
) x1 X2
—— { Oven Temperature » Oven Temperature ———————3
Ug Uy

Figure 1.4 Problem of Example . The temperature of the material evolves
according to x ,; = (1 — a)x, + au,. where a is some scalar with 0 < a < 1
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the system equation. To see this, assume that the material’s temperature
evolves according to

Xee1 = (1 — a)x, + aug + wy, k=0,1,

where w,, w, are independent random variables with given distribution,
Zero mean

E{Wo} = E{Wl} =0,
and finite variance. Then the equation for J, [cf. (1.7)] becomes
Ji(x;) = min E,, {2 + r[( — a)x, + au, + w, — T}

Il

min[#? + r[(1 — a)x, + au, — TP
+ 2kE{w }[(1 — a)x, + au, — T] + rE{wi}].
Therefore, using the fact that E{w,} = 0, we obtain

Ji(x)) = min[} + r[(1 — a)x, + au, — TV] + rE{w3}.

Comparing this equation with (1.8), we see that the presence of w, has
resulted in an additional inconsequential term, r E{w?}. Therefore, the optimal
policy for the last stage remains unaffected by the presence of w,, while
Ji(x,) is increased by the constant term rE{wi}. It is easily seen that a
similar situation also holds for the first stage. In particular, the optimal
cost is given by the same expression as before except for the additional
term r(E{wi} + E{w?}).

The property whereby the optimal policy is unaffected by the presence
of zero-mean disturbances is a manifestation of the certainty equivalence
principle, which holds for several types of problems involving a linear
system and a quadratic cost (see Sections 2.1, 3.2, 3.3, and 6.1).

Example 2
Consider an inventory control problem similar to the one of Section 2.1 but different
in that inventory and demand are nonnegative integer variables. Furthermore,
assume that there is an upper bound on the stock (x, + u,) that can be stored and
also assume that the excess demand (w, — x; — u;) is lost. As a result, the stock
equation takes the form

X4+ = max(0, x, + u, — wy).

Assume that the maximum capacity (x, + w,) for stock is 2 units, that the
planning horizon N is 3 periods, and that the ordering cost ¢ is 1 unit. The
holding/shortage cost per stage is given by

H(x; + we — wy) = max(0, x, + 1, — wy) + 3 max(0, w, — x, — u)).

The terminal state cost 1s zero. The initial stock x, is given, and the demand w;,
has the same probability distribution for all periods. given by

pwi=0)=0.1, p,=1=07. pw, =2 =02

The system can also be represented in terms of the probabilities of transition between
the three possible states 0, 1, 2 for the different values of control (see Figure 1.5a).
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The starting equation for the DP algorithm is
J3(x;) = 0,
since the terminal state cost is zero [cf. (1.6)]. The algorithm takes the form [cf.
(1.7)]
J.(x) = min E{u + max(0, x, + ux — wy) + 3 max(0, w, — x, — ;)

gl
+ Jeai[max(0, x, + w, — wp)l}, k=0,1,2,

where x;, u,, w, can take the values 0, 1, and 2.

Stage 2 We compute J,(x,) for each of the three possible states:
J,(0) = min E {4 + max(0, u, — w;) + 3 max(0, w, — u,)}

u2=0,1,2 wy

= min {&, + 0.1[max(0, &,) + 3 max(0, — «,)]
=012

+ 0.7[max(0, u, — 1) + 3 max(0, 1 — u,)] + 0.2[max(0, u, — 2)
+ 3 max(0, 2 — wu,)]}.

We calculate the expectation of the right side for each of the three possible values
of u,:

U

3.3,

00 E{}=07x3x1+4+02x3x2
x 1=1.7,

w=1 E{}=1+01x1+02x3
22 E{}=2+01x2+07x1
Hence we have, by selecting the minimizing u-,
> J0) =17, pi@) =1 <
For x, = 1, we have
L) = min E {4, + max(0, 1 + u>» — w») + 3 max(0, w» — 1 — w,)}

ww 01 wy

= mig)l{uq + 0.1[max(0, 1 + ;) + 3 max(0, — 1 — u.)]

I
™
o

U

+ 0.7[max(0, u,) + 3 max(0, — u.)]
+ 0.2[max(0, u, — 1) + 3 max(0, 1 — 1,)]},
=0 E{}=01x1+02x3x1 0.7,

w=1 E{}-1+01x2+07x1 19
Hence
> J(1) = 0.7 pi(l) =0 <

For x» = 2, the only admissible control is u, = 0, so we have
5, (2) = E {max(0,2 — w,) + 3 max(0, w, — 2)}
w

=0.1x2+07x%x1=0.9,
> J;(2) - 09, wuf@ =0 <
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manner J,(1) and Jo(2) as well as the minimizing #,. These calculations vield
> Jo(1) = 3.9, ug (D) = 0. <
> Jo(2) = 3.352 uE2y =0 <

Thus the optimal ordering policy for each period is to order one unit if the current
stock is zero, and order nothing otherwise. The results of the DP algorithm are
given in tabular form in Figure 1.5b.
Example 3
Finite State Systems. We mentioned earlier (cf. the queucing example in the previous
section) that systems with a finite number of states can be represented either by a
discrete-time system equation or in terms of the probabilities of transition between
the states (cf. Figures 1.2 and 1.5). Let us work out the corresponding DP algorithm.
We will assume for the sake of the following discussion that the problem is stationary
(i.e. the transition probabilities. the cost per stage. and the control constraint set
do not change from one stage to the next). Then, if

p,) =Pl =y vw=1iu = u}
are the transition probabilities, we can alternatively represent the system by the
system equation (cf the discussion of the previous section)

Xp+e1 = My,

where the probability distribution of the disturbance w, 1s

Phwe=jlv=iu =u}=p
Using this system equation and denoting by g(i. 1) the expected cost per stage at
state i when control « is applied. the DP algorithm can be rewritten as

Jo() = minfg(, ) + E{J . ,(w W]

€U
or equivalently (in view of the distribution of w; given previousiy)
Ju(@y = minfgl, ) + 2 p (D] A=0,1....N -1
u L)

As an illustration, in the queueing problem of the previous section this algorithm
takes the form

Jy()=C@. i=0.1,..,n,

Ji() = minfc() + ¢, + 2, p G, () @) + e+ D p ()T (D
g N o
A=0,1 N-1

The two expressions in the minimization correspond to the two available decisions
(fast and slow service).

1.3 DETERMINISTIC SYSTEMS AND THE SHORTEST PATH
PROBLEM

The main objective of this text is the analysis of stochastic optimization
problems and the ramifications of the presence of uncertainty. However.
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Terminal Arcs
with Cost Equal
to Terminal Cost

oo t
Artificial
Terminal
Initial State Node
s .o
Stage Stage Stage Stage _ _  Stage Stage
0 1 2 3 N-1 N

Figure 1.6 Transition graph for a deterministic finite state system. Nodes cor-
respond to states. An arc with start and end nodes x, and x,,;, respectively,
corresponds to a transition of the form x,., = fi{xx, #:). The length of this arc
is equal to the cost of the corresponding transition g (x;, #;). The problem is

equivalent to finding a shortest path from the initial node s to the terminal node
1.

the DP algorithm takes the form

In(i) = ¥, i€ Sy, (1.9)
Ji(1) = min{c}, + J,.,(j)}, i€S,, k=0,1,....,N—1. (1.10)
JESk+1

The optimal cost is Jy(s) and equals the length of the shortest path from
s to 1.

The preceding algorithm proceeds backward in time. It is possible
to derive an equivalent algorithm that proceeds forward in time by means
of the following simple observation. An optimal path from s to ¢ is also
an optimal path from ¢ to s in a “‘reverse’’ shortest path problem whereby
the direction of each arc is reversed and its length is left unchanged. The
DP algorithm corresponding to this ‘‘reverse’’ problem is

IvG) =¢%,  JES, (1.11)

Ji(j) = min {CSI “+ T}, JE Sn_ks1s

IESN &
k=1,2,..., N — 1, (1.12)
and the optimal cost is

Jo(t) = min {cN + T,(i)}. (113)

iESN
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We claim that

T = max D,
P

and therefore finding T may be viewed as a problem of finding the longest
path from node 1 to node N when the length of each arc (i, j) is ;. Because
the graph is acyclic, this problem may also be viewed as a shortest path
problem with the length of each arc (i, j) being —¢;.

The easiest way to show this is by deriving the corresponding DP
algorithm. Let N,, k = 1, 2, . . ., be the set of phases

N, = {i| the maximum number of arcs contained in paths
from 1 to i is exactly k}
with N, = {1}. For each phase i, let
T;: required time to complete i.

Then we have

T, = max{t; + T;|jENoU " UN;_;}, {iE€EN,,
.0

and a little thought reveals that T; equals the maximum D, over all paths
p from 1toi Fori = N, we obtain T = max, D,.

For the activity network of Figure 1.8, we have

No={l}, Ny=1{2,4, N,={3,5} N;={6}, N,={7}

A calculation using the preceding formula yields

T1=0, T2=3, T4=1, T3=4. T5=4, T6=9’ T7= 11,
and the critical (i.e., longest) pathis 1 -2 — 3 — 6 — 7. Any delay in
the completion of the critical activities (1, 2), (2, 3), (3, 6), (6, 7) will
proportionately delay the completion of the overall project.

Convolutional Coding and the Viterbi Decoder

When binary data are transmitted over a noisy communication channel,
it is often essential to use coding as a means of enhancing reliability of
communication. A very common type of coding method, called convolutional
coding, converts a source-generated binary data sequence

{wy, wy, ...}, w,€{0,1}, Lk=1,2,...,
into a coded sequence
{yls Y2, "'}s

where each y., k = 1, 2, ..., is an n-dimensional vector with binary
coordinates (called codeword)

}I( = X N y;(E{O, 1}, i = 1, ey N
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initial state is x, = 00, the data sequence
{wy, wa, w3, wa} = {1,0,0, 1}
generates the state sequence
{xo, X1, X2, X3, X4} = {00, 01, 11, 10, 00},
and the codeword sequence

{y1» y2, ¥3, ya} = {111,011, 111, O11}.

Assume now that the characteristics of the noisy transmission channel
are such that a codeword y is actually received as z with known probability
p(z | y), where z is any n-bit binary number. We denote

ZN = {Zl, 225 +ees ZN}
the sequence received when the transmitted sequence is

YN = {yh Y25 eees yN}'
We assume independent errors so that

N
p(Zy| Yx) = I1 p(a] ¥ (1.16)
k=1
A maximum likelihood decoder converts a received sequence Zy into a
sequence

YN = {ylv yZ’ EERE] .’).)N}
such that

P(ZN| ?N) = myax P(ZN| Yn).

The constraint on Yy is that it must be a feasible codeword sequence (i,.\e.,
it must correspond to some initial state and data sequence). Given Yy,
one can then construct a corresponding data sequence {#,, . . ., Wy} that
is accepted as the decoded data.

Viterbi developed a shortest path scheme that implements the maximum
likelihood decoder. Using (1.16), we see that the problem of maximizing
p(Zy | Yu) is equivalent to the problem

N
minimize Y, — In[p(zx | y)]
k1 1.17)
over all binary sequences {y;. ¥2, ..., Yn}
for a known received sequence {z;, 25, ..., Zy}- To see that this is a shortest

path problem, note that, given z,, we can assign to each arc on the state
transition diagram the length — In[p(z | y)l, where y, is the codeword
associated with the arc. Next we construct a graph by concatenating N
state transition diagrams and appending dummy nodes s and ¢t on the left
and right side of the graph connected with zero-length arcs to the states
Xo and xy_,, respectively (see Figure 1.10). The solution to problem (1.17)
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possible to save both in memory and in computation by means of a forward
search for a shortest path from an origin node toward a destination node.
The techniques for doing this have partly originated in artificial intelligence
and are typically used in computer progams that solve puzzles or play
games such as chess (see Section 4.3). Let us provide some examples.

Example 1

The Four Queens Problem. Four queens must be placed on a 4 x 4 portion of a
chessboard so that no queen can attack another. In other words, the placement
must be such that every row, column, or diagonal of the 4 x 4 board contains at
most one queen. Equivalently, we can view the problem as a sequence of problems:
first, placing a queen in one of the first two squares in the top row, then placing
another queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first two
squares of the top row since the other two squares lead to symmetric positions.)
We can associate positions with nodes of an acyclic graph where the root node s
corresponds to the position with no queens and the terminal nodes correspond to
the dead-end positions where no additional queens can be placed without some
queen attacking another. Let us connect each terminal position with an artificial
node ¢ by means of an arc. Let us also assign to all arcs length zero except for
the artificial arcs connecting terminal positions with less than four queens with the
artificial node 1. These latter arcs are assigned the length +oc (see Figure 1.11) to
express the fact that they correspond to dead-end positions that cannot lead to a
solution. Then the four queens problem reduces to finding a shortest path from
node s to node ¢. Note that once the nodes of the graph are enumerated the problem
is essentially solved. Here the number of nodes is small. However, we can think
of similar problems with much larger memory requirements. For example, there
is an eight queens problem where the board is 8 X 8 instead of 4 x 4.

Example 2

The Traveling Salesman Problem. An important model for scheduling a sequence
of operations is the classical traveling salesman problem. Here we are given N
cities and the mileage between each pair of cities, and we wish to find a minimum-
mileage trip that visits each of the cities exactly once. To convert this problem to
a shortest path problem, we associate a node with every sequence of »n distinct
cities, where n = 1,2, . . ., N. The construction and arc lengths of the corresponding
graph are explained by means of an example in Figure 1.12. The origin node s
consists of city A, taken as the start. A sequence of n cities (n < N) yields a
sequence of (n + 1) cities by adding a new city. Two such sequences are connected
by an arc with length equal to the mileage between the last two of the n + 1 cities.
Each sequence of N cities is connected to an artificial terminal node ¢ with an arc
having length equal to the distance from the last city of the sequence to the starting
city A. Note that the number of nodes grows exponentially with the number of
cities, so we would like to have algorithms that do not require the enumeration
and /or storage of these nodes

In the shortest path problem that we will consider there is a single
node s with no incoming arcs, called the origin, and a single node r with
no outgoing arcs, called the destination. We assume that every arc (i, j)
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Origin Node s

Table of Mileage between Cities

Figure 1.12 Example of shortest path formulation of the traveling salesman
problem. The distance between the four cities A, B, C, and D are shown in the
table. The arc lengths are shown next to the arcs.

has a length a; which is nonnegative or + ¢, and we wish to find a shortest
path from origin to destination. We assume that there exists a shortest path with
finite length. The following algorithm is a general method for solving the prob-
lem. In it we make use of two lists of nodes called OPEN and CLOSED. The
list OPEN contains nodes that are currently active in the sense that they are can-
didates for further examination by the algorithm. The list CLOSED contains
nodes that have been examined by the algorithm and are not currently candi-
dates for further consideration. Using CLOSED is not essential for the algo-
rithm, but results in some conceptual simplification. Initially, OPEN contains
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it in CLOSED, and place those of its sons j # ¢ that satisfy the criterion
of step la in OPEN, etc. When the algorithm terminates, we claim that a
shortest path can be obtained by using the node last marked in step 1b as
lying on the best path. By tracing labels starting from that node we can
proceed backward and construct a shortest path to the origin node. Fig.
1.13 illustrates the use of the algorithm to solve the traveling salesman
problem of Fig. 1.12.

To verify that a path obtained as just described is shortest. we reason
as follows. We first argue by contradiction that the algorithm will terminate.
Indeed, if this is not so, some node j will enter the OPEN list infinitely
often, which means that d; will be decreased infinitely often. each time
obtaining a corresponding shorter path from s to j. This is not possible
since, in view of the nonnegative arc assumption, the number of distinct
lengths of paths from s toj is finite. Therefore, the algorithm will terminate.
We next show that the value of UPPER upon termination must equal the
shortest distance d* from s to ¢t. Indeed, let (s, j,. j.. . ... Ji. 1) be a
shortest path from s to r. Then each path (s.j,, .. ..j,).m = 1. ... &k,
i1s a shortest path from s to j,, respectively. If the value of UPPER is
larger than d* at termination, the same must be true throughout the algorithm,
and therefore UPPER will also be larger than the length of all the paths
(S Jis « - enJm)y, m = 1, ..., k, throughout the algorithm. It follows that
node j; will never enter the OPEN list with d;, equal to the shortest distance
from s to j;, since in this case UPPER would be set to d* in step Ib
immediately following the next time node j, is examined by the algorithm
in step 1. Similarly, this means that node j, ., will never enter the OPEN
list with d;, = equal to the shortest distance from s to j; ,. Proceeding
backward, we conclude that j; never enters the OPEN list with d; equal
to the shortest distance from s to j; (which is equal to the lenglh of the
arc (s, j;)). This happens, however, at the first iteration of the algorithm
as discussed earlier, so we have reached a contradiction. Tt follows that
UPPER will equal at termination the shortest distance from s to r. It is
seen that the path constructed by tracing labels backward from  to s has
length equal to UPPER, so it is a shortest path from s to /.

There are two attractive aspects to this algorithm. The first is a
potential saving in computation in that nodes j for which d, + a;; = UPPER
in step la need not enter OPEN and be examined later. Furthermore, if
we know a lower bound to the shortest distance. we can terminate the
computation once UPPER reaches that bound either exactly or within an
acceptable tolerance ¢ > 0. (This feature is useful, for example. in the
four queens problem, where the shortest distance is known to be zero or
infinity. Then the algorithm will terminate once a solution is found.)

The second attractive aspect of the algorithm is a potential saving in
memory storage requirements. This i1s most evident in graphs such as those
in Figures 1.11 and 1.12 for which there is a unique directed path from the
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origin node to every other node. Then, in view of our convention of placing
nodes at and removing nodes from the top of OPEN, the search proceeds
in depth-first fashion, as shown in Figure 1.14. As a result, large portions
of CLOSED can be purged from memory, as shown in Figure 1.15. The
basis for this is that once all sons of a node enter the CLOSED list then
all paths passing through that node have been generated and evaluated.
Therefore, it is sufficient to store only the best path found so far and purge
all other information relating to such a node.

There are a number of variations of the algorithm just given. The
preceding proof of validity of the algorithm does not depend on removing
a node from the top of OPEN in step 1 or placing a node at the top of
OPEN in step la. This allows a great deal of freedom on how the algorithm
is operated. An important case is when the node i selected in step 1 is not
the node that happens to be at the top of OPEN, but rather the one in
OPEN for which d; is minimum. This is accordingly known as best-first
search and is equivalent for the problem considered here to Dijkstra’s

Origin Node s

v Q

Destination Node ¢

Figure 1.14 Searching a tree in depth-first fashion. The checkmarks show the
order in which nodes enter the CLOSED list.
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or due to an action of the decision maker is covered in the problems.
Generally, in all these cases it is possible to reformulate the problem nto
the framework of the basic problem by using the device of state augmentation.
The (unavoidable) price paid, however, is an increase in complexity of the
reformulated problem.

Time Lags

For simplicity, assume that there is at most a single period time lag
in the state and control, that is, assume a system equation of the form

Xewr = SOy Xe— 1, Ui, Uy, Wi), k=1,2,...,N—1, (1.18)

x; = fo(xo, ug, wo).
Time lags of more than one period can be handled by a straightforward
extension.
Now if we introduce additional state variables y, and s, and make the
identifications y, = x,_,, Sy = us_,, the system equation (1.18) yields. for
k=1,2,....N -1,

Xia JeCers Yuo Uiy Sk W)
Yeer1| = X (1.19)
Sk+1 Uy

By defining X; = (x;. ¥«. sx) as the new state, we have

Xp41 = fk(fL, U\ Wy), (1.20)
where the system function f; is defined in an obvious manner from (1.19).
By using (1.20) as the system equation and by making a suitable reformulation
of the cost functional, the problem is reduced to the basic problem without
time lags. Naturally, the control law {ug, . . ., wn_,} that is sought will
consist of functions w, of the new state X, or equivalently w, will be a
Sfunction of the present state x, as well as past state x,_, and control u,_,.
The DP algorithm (in terms of the variables of the original problem) is
In(xy) = galxy),
Invaxy_g, X2, Uy _3) min E {gn_1(xvoy, tty_is W)
un 1€UN_(xn ) wa,
+ INfvCevons Aoz U iy~ wa o),
Jk(.tk. \k._].ll‘_]) = min E{gk(’\kvuk’“k)
WEU) w,
+ Jeaal filoees 2oy s o Wiy x4,
k=1 ...N -2,

Jo(xo) = min  E{gy(x,, uy, wo)
4ELg(t)) w,

+ 1l fo(xo. ttg, wo), Yo, U}
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the larger sum wins, and in case of a tie the second player wins. The problem
is to determine a stopping strategy for the first player that maximizes his probability
of winning for each possible initial throw of the second player. Formulate the
problem in terms of DP and find an optimal stopping strategy for the case where
the second player’s initial throw is three. Hint: Take N = 6 and a state space
consisting of the following 15 states:

x': busted,
x'*%  already stopped at sum i (1 <i<7),
x%*: current sum is i but the player has not yet stopped (1 <i=< 7).

The optimal strategy is to throw until the sum is four or higher.

5. Min—-Max Problems. In the framework of the basic problem. consider the case
where the disturbances wy, wy, . . ., wy ; do not have a probabilistic description
but rather are known to belong to corresponding given sets W, (x;, «;) C D;,
k=0,1,..., N — 1, which may depend on the current state x; and control
u,. Consider the problem of finding a control law 7 = {ug, . . .. un.,} With
wi(x,) € Ulxy) for all x;, k, which minimizes the cost functional

N-1
Jo(x) =  max {gN(xN) + 2 alx, mlx), wk]}.
W€ W Lxg, iy (x)] k0

k=0.1,..N 1
The DP algorithm for this problem takes the form
In(xn) = gnl(xn),

J(x) = min max  {gi(xi, e, wi) + T [filxe. 1, wil}
wEUx) WEW xe 1)

Assuming that J;(x;) > —oo for all x; and k, show that the optimal cost equals

Jo(xo). Hint: Imitate the proof for the stochastic case; prove and use the following

fact: If U, W, X are three sets, f : W — X is a function, and M is the set of

all functions u : X — U, then for any functions Gy : W — (—o0,¢], G, : X X U —

(—oo, oo} such that

min G,[f(w), u] > — oo, for all wew
uel

we have
min max{G,(w) + G,[f(w), u(f(w)]} = max{Gy(w) + min G,[f(w), u]}.
HEM wEW wEW uel

6. Discounted Cost per Stage. In the framework of the basic problem, consider
the case where the cost functional is of the form

N 1
E{aNgN(TN) + Z orgilxy, . WA)},
k0
where « is a discount factor with 0 < o < 1. Show that an alternate form of
the DP algorithm is given by
Va(xn) = gnlxn),
Vi(x) = min E{gk(xl\- e, wi) + oV lfibe, g, will

w€U(x,)

7. Exponential Cost Functional. In the framework of the basic problem, consider
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(1 + m;) components are used, and let ¢; denote the cost of a single component
at the jth stage. Consider the problem of finding the number of components
at each stage that maximize the reliability of the device expressed by

pi(my) - pa(my) -+ py(my)
subject to the cost constraint =Y, ¢;m; < A, where A > 0 is given. Formulate
the problem in terms of DP.

Minimization over a Subset of Policies. This problem is primarily of theoretical
interest (see the end of the Notes to this chapter). Consider a variation of the
basic problem whereby we seek

min Jw (XO),
w€ell

where IT is some given subser of the set of sequences {ug. 1, - . ., fy_1} Of
functions w,:S; — C; with u(x;) € Ui(x,) for all x, € S,. Assume that

7* = {ud, ufs s ml-a}
belongs to IT and attains the minimum in the DP algorithm; that is, for all k =
O, l,...,N— IandxkESk

Jx) = Elgilxi, uf(x), wil + Jeanlfilxe, mé (x0), wolb

min E{gk(xln g, wi) + JealfiCxs e, will,

uk€Ur(xk)  wy
with Jy(xy) = gn(xy). Assume further that the functions J, are real valued
and the preceding expectations are well defined and finite. Show that #* is
optimal within T and
Jo(x) = mig J2(xg) = T (xo).
me.

Semilinear Systems. Consider a problem involving the system

Xeer = Ax + filwg) + wy,
where x;, € R", f, are given functions, and A, and w, are random n X n matrices
and n-vectors, respectively, with given probability distributions that do not
depend on x;, u; or prior values of A, and w,. Assume that the cost functional
is of the form

N-1
E {CIIVVN + E[C/:«\'k + gL[#k(xk)]]}.

Ak Wk k=0
k=01, N-1

where ¢, are given vectors and g, given functions. Show that if the optimal
cost for this problem is finite and the control constraint sets U, (x,) are independent
of x;, then the cost-to-go functions of the DP algorithm are affine (linear plus
constant). Assuming that there is at least one optimal policy. show that there
exists an optimal policy that consists of constant functions w; that is, u#(x,) =
constant for all x, € R".

A farmer annually producing x; units of a certain crop stores (I — u,)x, units
of his production, where 0 < i, < |, and invests the remaining u, x, units, thus
increasing the next year’s production to a level x,,, given by

Xee1 = 2t wanxe,  A=0,1,....N - 1.
The scalars w, are independent random variables with identical probability
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deterministic problem of Section 1.3 on a parallel computer with two processors.

One processor should execute a forward algorithm and the other a backward

algorithm.

The paragraphing problem deals with breaking up a sequence of N words

wi, ..., wywith lengths L, . . ., Ly into lines of length A. In a simple version

of the problem, words are separated by blanks whose ideal width is b. but
blanks can stretch or shrink if necessary, so that a line w;, w,., . . ., w;, has
length exactly A. The cost associated with the line is (k + 1) |b" — b|, where
b= (A — L, — -+ — L.,;)/(k + 1)is the actual average width of the blanks,
except if we have the last line (N = i + k), in which case the cost is zero
when b’ = b. Formulate a DP algorithm for solving for the minimum cost
separation. Hint: Consider the subproblems of optimally separating w;, . . .,

wyfori=1,..., N.

Computer Assignment. In the classical game of blackjack the player draws

cards knowing only one card of the dealer. The player loses upon reaching a

sum of cards exceeding 21. If the player stops before exceeding 21, the dealer

draws cards until reaching 17 or higher. The dealer loses upon reaching a sum
exceeding 21 or a lower sum than the player’s. If player and dealer end up
with an equal sum no one wins, and in all other cases the dealer wins. An ace
for the player may be counted as a | or an 11 as the player chooses. An ace
for the dealer is counted as an 11 if this results in a sum from 17 to 21 and as

a 1 otherwise. Jacks, queens, and kings count as 10 for both dealer and player.

We assume an infinite card deck so the probability of a particular card showing

up is independent of earlier cards.

(a) For every possible initial dealer card, calculate the probability that the dealer
will reach a sum of 17, 18, 19, 20, 21, or over 21.

(b) Calculate the optimal choice of the player (draw or stop) for each of the
possible combinations of dealer's card and player's sum of 12 to 20. Assume
that the player’s cards do not include an ace.

(c) Repeat part (b) for the case where the player’s cards include an ace.

Consider a smaller version of a popular puzzle game. Three square tiles numbered

1, 2, and 3 are placed in a 2 X 2 grid with one space left empty. The two tiles

adjacent to the empty space can be moved into that space, thereby creating

new configurations. Use a DP argument to answer the question whether it is
possible to generate a given configuration starting from any other configuration.

From a pile of eleven matchsticks, two players take turns removing one or four

sticks. The player who removes the last stick wins. Use a DP argument to

show that there is a winning strategy for the player who plays first.

The Counterfeit Coin Problem. We are given six coins, one of which is counterfeit
and is known to be heavier or lighter than the rest. Construct a strategy to
find the counterfeit coin using a two-pan scale in a minimum average number
of tries. Hint: There are two initial decisions that make sense: (1) test two of
the coins against two others, and (2) test one of the coins against one other.

Given a sequence of matrix multiplications
MIMZ Ml\Mk*l MN‘
where M, k = 1, ..., N, is of dimension n, X n,.,, the order in which
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the time it enters CLOSED its estimate d; is equal to the shortest distance
from s to j.
(b) Show that the number of arithmetic operations required for termination is
bounded by ¢N’* where N is the number of nodes and c¢ is some constant.
. Distributed Asynchronous Shortest Path Computation [B19]. Consider the problem
of finding a shortest path from nodes 1, 2, . . ., N to node ¢, and assume that
all arc lengths c; are positive. Consider the iteration

df*! = minfc, + dj}, i=12...N,
i

I

(1.23)
arl = o.

(a) It was shown in Section 1.3 that, if the initial condition is d° = oo for i =
1, ..., Nand d° = 0, then (1.23) yields the shortest distances d¥ in N
steps. Show that if the initial condition is d? = 0, foralli = 1, ..., N,
t, then (1.23) yields the shortest distances in a finite number of steps. Provide
an upper bound for this number in terms of the problem data.

(b) Assume that the iteration

d,’ = miﬂ{Cij + dJ} (1.24)
J

is executed at node i in parallel with the corresponding iteration for 4, at
every other node j. However, the times of execution of this iteration at
the various nodes are not synchronized. Furthermore, each node i com-
municates the results of its latest computation of d, at arbitrary times with
potentially large communication delays. Therefore, there is the possibility
of a node executing iteration (1.24) several times before receiving a com-
munication from every other neighboring node. Assume that each node
never stops executing iteration (1.24) and transmitting the result to the other
nodes. Show that the estimates d” available at time T at the corresponding
nodes i equal the shortest distances d* for all T after a finite time T. Hint:
Let df and d ¥ be the estimates generated by (1.23) when starting from the
first and the second initial conditions in part (a), respectively. Show that
for every k there exists a time Ty such that for all 7 = T, we have df <
dl < d¥. For a detailed analysis of asynchronous iterative algorithms, includ-
ing algorithms for shortest paths and dynamic programming. see D. P.
Bertsekas and J. N. Tsitsiklis, **Parallel and Distributed Computation: Numer-
ical Methods’’ Prentice-Hall, 1989.
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