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Abstract— In this paper, we focus on the autonomous multia-
gent taxi routing problem for a large urban environment where
the location and number of future ride requests are unknown
a-priori, but can be estimated by an empirical distribution.
Recent theory has shown that a rollout algorithm with a
stable base policy produces a near-optimal stable policy. In
the routing setting, a policy is stable if its execution keeps the
number of outstanding requests uniformly bounded over time.
Although, rollout-based approaches are well-suited for learning
cooperative multiagent policies with considerations for future
demand, applying such methods to a large urban environment
can be computationally expensive due to the large number of
taxis required for stability. In this paper, we aim to address the
computational bottleneck of multiagent rollout by proposing an
approximate multiagent rollout-based two phase algorithm that
reduces computational costs, while still achieving a stable near-
optimal policy. Our approach partitions the graph into sectors
based on the predicted demand and the maximum number of
taxis that can run sequentially given the user’s computational
resources. The algorithm then applies instantaneous assignment
(IA) for re-balancing taxis across sectors and a sector-wide
multiagent rollout algorithm that is executed in parallel for each
sector. We provide two main theoretical results: 1) characterize
the number of taxis m that is sufficient for IA to be stable; 2)
derive a necessary condition on m to maintain stability for IA
as time goes to infinity. Our numerical results show that our
approach achieves stability for an m that satisfies the theoretical
conditions. We also empirically demonstrate that our proposed
two phase algorithm has equivalent performance to the one-at-
a-time rollout over the entire map, but with significantly lower
runtimes.

I. INTRODUCTION

Self-driving taxis are currently operating in multiple cities,
including Austin, Phoenix, and San Francisco [1], with pos-
sibilities of being deployed to more cities in the near future
[2]. This widespread deployment of autonomous taxis creates
new opportunities for improved on-demand mobility through
coordinated routing and planning, and poses interesting new
practical and theoretical problems for the field of robotics.
For instance, the ability of autonomous taxis to communicate
with each other and with a centralized server allows for the
orchestration of fleet-wide coordinated plans that result in
more requests being serviced [3].

Coordination plans have been studied in the literature in
the form of the Dynamic Vehicle Routing (DVR) problem
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[4] with stochastic demand, where the location and number
of future requests is unknown a-priori. However, due to the
size of the problem and the complexity associated with the
stochasticity of the demand, there are still many research
opportunities related to the design of better and faster al-
gorithms to learn cooperative plans that take into account
future requests and maximally use taxi fleets. Approaches
in the literature have mainly focused on immediate demand
[5], [6] and sector level routing [7], [8], [9], [10], [11],
abstracting away either the stochasticity of the demand, or the
complexity associated with ”fine-grained” street/intersection
level decisions. Other works, including our previous work
[12], have considered using reinforcement learning methods,
particularly rollout-based approaches [13], [14], [15], to
tackle fine-grained routing decisions. These rollout-based
methods as defined in [14] are comprised of three major
components: 1) a one-step lookahead cost minimization
where the immediate future is simulated using Monte-Carlo
(MC) approximation for all potential controls, 2) a future cost
approximation for each potential control based on a truncated
application of a simple to compute policy known as the
base policy for a finite time horizon, and 3) a terminal cost
approximation that compensates for the truncated application
of the base policy. Recent theory [14], [15] shows that
rollout’s one-step lookahead cost minimization acts as a
Newton step, and hence provides super linear convergence
to the optimal policy. In particular, as long as the base policy
is close to the optimal policy with a reasonable competitive
factor [16] and it is stable, then rollout-based approaches
learn a stable near-optimal policy. This theoretical result
makes rollout-based algorithms very well-suited for tackling
the fine-grained routing problem. In the routing setting, a
policy is said to be stable if its execution results in the
number of outstanding requests being uniformly bounded
over time. Applying these rollout methods to a large urban
environment, however, poses a unique set of challenges that
we aim to address in this paper.

A major challenge of dealing with a city-scale environ-
ment is the large volume of requests that enters the system,
which then requires a large number of taxis to guarantee
stability. This large number of taxis makes the application of
a multiagent (one-at-a-time) rollout scheme, as proposed in
our previous work [12], computationally prohibitive. In this
paper, we address this computational bottleneck by proposing
an approximation to the one-at-a-time rollout algorithm that
keeps computational costs below user-defined constraints,
while still maintaining stability and the Newton-step property
of rollout. Our proposed method reduces the computational



cost of executing one-at-a-time rollout with a large number
of taxis by partitioning the map into disjoint sectors based on
expected demand and the maximum number of taxis that can
be run sequentially given the user’s indicated computational
resources. Our method then executes a two-phase algorithm
composed of a high level planner and multiple low level
planners that are run in parallel. The high level planner
routes taxis across sectors based on the current and estimated
future demand, while the low level planners route taxis
within each sector by employing one-at-a-time rollout with
instantaneous assignment with reassignment (IA-RA) as the
base policy. We choose IA-RA as the base policy since
it is 2-competitive1 [16], which facilitates the super-linear
convergence of one-at-a-time rollout to the optimal policy
[15]. We also theoretical results for a sufficient condition
on the total number of taxis m that will guarantee IA-
RA to be stable. Compared to previous work [17], [18],
[19], [20], our analysis uses the full stochasticity of the
system and assumes that the pickups and dropoffs are jointly
distributed. In addition, for the case where pickups and
dropoffs can be assumed independent, we also provide a
necessary condition on m for asymptotic stability of IA-RA
as time goes to infinity, building on the results proposed in
[19]. We empirically demonstrate that our approach results
in a significantly lower computational cost and comparable
performance as one-at-a-time rollout over the entire map, and
we verify that stability is achieved for fleet sizes lying within
the range given by our theoretical results.

II. PROBLEM FORMULATION

In this section, we present the formulation of a large
scale multiagent taxicab routing and pickup problem as a
discrete time, finite horizon, stochastic Dynamic Program-
ming problem that plans over a city-scaled street network.
In the following subsections, we provide definitions for our
environment, requests, state and control spaces, the concept
of stability, and the challenges associated with the large scale.
A. Environment

We assume that autonomous taxis are deployed in an
urban environment with a known fixed street topology.
The environment is hence represented as a directed graph
G = (V,E), where V = {1, . . . , n} corresponds to the
set of street intersections in the map numbered 1 through
n, while E ⊆ {(i, j)|i, j ∈ V } corresponds to the set of
directed streets that connect intersections i and j. The set
of neighboring intersections to intersection i is denoted as
Ni = {j|j ∈ V, (i, j) ∈ E}. We also assume that the
environment can be divided into K sectors, where each
sector sk ⊆ V and sk ̸= ∅, ∀k ∈ {1, . . . ,K}, such that
V =

⋃K
k=1 sk and sk ∩ sh = ∅,∀h ̸= k.

B. Requests
We define a ride request r as a tuple r = ⟨ρr, δr, tr, ϕr⟩,

where ρr ∈ V and δr ∈ V correspond to the nearest
intersection to the request’s desired pickup and drop-off
locations, respectively; tr corresponds to the time at which

1An α−competitive policy never produces a cost greater than α times
the optimal cost for any input [16]

the request was placed into the system; and ϕr ∈ {0, 1} is
an indicator, such that ϕr = 1 if the request has been picked
up by a vehicle, ϕr = 0 otherwise. We model the number of
requests that enter the system at time t as a random variable
ηt, which has the same distribution as random variable η
with an unknown underlying distribution pη . We assume
pη is fixed for the entire length of the time horizon T ,
and its estimated probability distribution, denoted p̃η , can
be estimated from historical trip data. We denote the set of
ride requests that enter the system at time t as rt. Here the
cardinality of the set of new requests at time t is |rt| = ηt.
We model the pickup intersection for an arbitrary request r
as the random variable ρr. Similarly, we model the drop-
off intersection for request r as the random variable δr.
We assume that requests are independent and identically
distributed (i.i.d), and hence we drop the subscripts when
talking about their distributions. Random variables ρ and δ
are jointly distributed and have unknown underlying prob-
ability distributions pρ and pδ|ρ, respectively. We assume
these distributions do not change over the entire length of
the time horizon T . We denote the marginal distribution of δ
as pδ . We also denote the estimated categorical distributions
for pickup locations, conditional dropoff locations, and the
marginal dropoff locations as p̃ρ, p̃δ|ρ, and p̃δ , respectively.
These categorical distributions are estimated using historical
trip data. We define rt = {r|r ∈ rt′ , ϕr = 0, 1 ≤ t′ ≤ t} as
the set of outstanding ride requests that have not yet been
picked up by any taxi at time t.

C. State and control space

We assume there is a total of m taxis and all taxis can
perfectly observe all requests, and other taxis’ locations and
occupancy status. We assume that all of the taxis remain
inside the predefined street network G, and they are able to
traverse any edge in G in a single time step. We represent
the state of the system at time t as a tuple xt = ⟨ν⃗t, τ⃗t, rt⟩.
We define ν⃗t = [ν1t , . . . , ν

m
t ] as the list of locations for all m

taxis at time t, where νℓt ∈ V corresponds to the index of the
closest intersection to the geographical position of taxi ℓ. We
define τ⃗t = [τ1t , . . . , τ

m
t ] as the list of time remaining in the

current trip for all m taxis. If taxi ℓ is available, then it has
not picked up a request and hence τ ℓt = 0, otherwise τ ℓt ∈
N+. The initial location of an arbitrary taxi ℓ at time t = 0 is
given by random variable ξℓ. All ξℓ for ℓ ∈ {1, . . . ,m} are
assumed to be independent and identically distributed with
known underlying distribution pξ.

We denote the control space for taxi ℓ at time t as
Uℓ

t(xt). If the taxi is available (i.e. τ ℓt = 0), then Uℓ
t(xt) =

{Nνℓ
t
, νℓt , ψr}, where ψr corresponds to a special pickup

control that becomes available if there is a request r ∈ rt
with pickup at the location of taxi ℓ (i.e. ρr = νℓt ). If the
taxi is currently servicing a request r (i.e. τ ℓt > 0), then
Uℓ

t(xt) = {ζ}, where ζ corresponds to the next hop in
shortest path between taxi ℓ’s current location νℓt and the
destination of the request δr. The controls available to all
m taxis at time t, Ut(xt), is expressed as the Cartesian
product of local control sets for each taxi, such that Ut(xt) =



U1
t (xt)× · · · ×Um

t (xt).

D. Stability of a policy

We define a policy π = {µ1, . . . µT } as a set of functions
that maps state xt into control ut = µt(xt) ∈ Ut(xt). Using
a similar formulation as in [20], we define the total distance
to be traveled in service of a request rq with index q given a
policy π as Wrq,π = d(lrq,π, ρrq ) + d(ρrq , δrq ), where lrq,π
is the location of a taxi assigned to request rq based on
policy π, and d : V × V → N+ is a function that gives the
length of the shortest path between two locations. We define
the total distance to be traveled in service of all the requests
that enter the system for the entire time horizon T as Zπ,T =∑T

t=1

∑Rt

q=Rt−1+1Wrq,π , where the random variable Rt =∑t
t′=1 ηt′ represents the total number of requests that have

entered the system until time t. It is important to note that
R0 = 0. We define the total distance that can be covered
by a fleet of m taxis as m · T since each taxi can travel
unit distance at each time step. Assuming that we have at
least as many available taxis at each time step as incoming
requests, a given policy π is said to be stable if, for a fixed
fleet size of m taxis, the expected number of outstanding
requests is uniformly bounded. Hence, a policy π is stable
as long as the distance to be traveled in service of all the
requests that enter the system according to policy π is less
than or equal to the total distance that can be covered by a
fleet of m taxis. In other words, for a policy π to be stable
(following a similar argument as in [20]), the expected total
distance for servicing all requests should be upper bounded
by the distance covered by taxis, i.e., E[Zπ,T ] ≤ m · T.

E. Challenges of a large scale multi-agent problem

We are interested in learning a cooperative pickup and
routing policy on a city-scale map that minimizes the total
wait time for all requests over a finite horizon of length
T . We denote the state transition function as f , such that
xt+1 = f (xt, ut, η, ρ, δ), where xt+1 is the resulting state
after control ut ∈ Ut(xt) has been applied from state
xt. We define the stage cost gt (xt, ut, η, ρ, δ) = |rt| as
the number of outstanding requests at time t. We de-
note the cost of executing policy π from initial state x1
as Jπ(x1) = E

[
gT (xT ) +

∑T−1
t=1 gt (xt, µt(xt), η, ρ, δ)

]
,

where gT (xT ) = |rT| is the terminal cost. Since the control
space for the problem grows exponentially with the number
of taxis, obtaining an optimal policy through the Bellman
equations is intractable. For this reason, we consider policy
improvement schemes, such as one-at-a-time rollout [13],
[14], which solve several smaller lookahead optimizations
to obtain a lower cost policy that improves upon a base
policy and has a control space that scales linearly with the
number of taxis instead of exponentially. We define base
policy π = {µ1, . . . µT } as an easy to compute heuristic that
is given. One-at-a-time rollout finds an approximate policy
π̃ = {µ̃1, . . . µ̃T }, where µ̃t(xt) = (µ̃1

t (xt), . . . , µ̃
m
t (xt)),

t = [1, . . . , T ]. For state xt, µ̃t is found by solving m

minimizations for ℓ ∈ [1, . . . ,m] as follows:

µ̃ℓ
t(xt) ∈ argmin

uℓ
t∈Uℓ

t(xt)

E[gt(xt, ut, η, ρ, δ) + J̃π,t+1(xt+1)],

(1)
where ut = (µ̃1

t (xt) : µ̃ℓ−1
t (xt), u

ℓ
t, µ

ℓ+1
t (xt) :

µm
t (xt)), and J̃π,t+1(xt+1) = |rt+1+th | +∑t+th
t′=t+1 gt′(xt′ , µt′(xt′), η, ρ, δ) is a cost approximation

derived from th applications of the base policy π from state
xt+1, with a terminal cost approximation |rt+1+th |.

To apply one-at-a-time rollout to a large city-scale prob-
lem, we design an algorithm that approximates this rollout
scheme, but incurs a lower computational cost that satisfies
user defined computational constraints. Our algorithm is
given in Sec. III. We find a sufficiently large fleet size m
for which a reasonable base policy π is stable, such that
E[Zπ,T ] ≤ m·T , as defined in Sec. II-D. In particular, we are
interested in the stability of the policy πbase associated with
IA-RA, as this policy is 2-competitive [16] and hence our
approximate rollout approach obtains a near-optimal policy.

III. APPROXIMATION ALGORITHM FOR MULTIAGENT
ROLLOUT

In this section we propose an approximate algorithm for
multiagent rollout (see Eq. 1). Our proposed method is
composed of a two-phase planning scheme that reduces the
computational cost of one-at-a-time rollout through partition-
ing of the map using the demand distribution. We take into
account user defined computational constraints in the form
of the maximum number of taxis that can be run by one-
at-a-time rollout in each sector mlim, and the length of the
planning horizon th (longer planning horizon result in longer
runtimes). The algorithm is detailed in Algorithm 1. The
proposed two-phase algorithm also takes as input m the total
number of taxis in the fleet. We provide theoretical bounds
on m in Sec. IV and calculated values in practice in Sec. V-
C.

The first routine in Algorithm 1 is denoted as
get partitions and it places the center of each partition on
the map. get partitions solves a capacitated facility location
problem [21], where the capacity for each partition center is
set to be mlim, and then the expected number of requests
for the ride service during the entire time horizon is used as
the demand. The get partitions routine then assigns each
node to the closest partition center using weighted k-means,
where the weights of the nodes are given by the probability
distribution of pickups. This routine guarantees that the size
of each partition is inversely proportional to the density of
requests.

At each time-step, the High level planner re-balances
the taxis between partitions using an instantaneous assign-
ment of taxis to current and expected future requests for
the next th time-steps as given by a certainty equivalence
approximation. It returns the controls for taxis that are
expected to go across regions ugh, as well as the list of
high level taxis m̂, and d̂ the set of locations for the high
level taxis to move towards. The Low level planner, on
the other hand, plans for routing and pickup controls for



Fig. 1. Our two phased approach executed on a map with 3 sectors.

taxis that remain in their original sectors according to the
high level planner. The Low level planner executes one-
at-a-time rollout with base policy IA-RA as defined in Eq. 1
to obtain ũkt the control of taxis in sector k at time t.

After partitioning the graph, the state xt consists of K
sub-states {xkt }Kk=1, one corresponding to a partition k ∈
{1, . . . ,K} of the graph. The state transition of partition k
is given by, xkt+1 = fk(xkt , u

k
t , u

g
h(t, k), η, ρ, δ). The control

ut can be separated as {ukt , u
g
h(t, k)}Kk=1, where the control

component ukt corresponds to the taxis that are local to
partition k. The control component ugh(t, k) corresponds to
the controls of taxis coming into partition k at time t as given
by the higher level planner. Since we consider the length
of outstanding requests as the stage cost, we have |rt| =
gt(xt, ut, η, ρ, δ) =

∑K
k=1 g

k
t (x

k
t , u

k
t , u

g
h(t, k), η, ρ, δ) =∑K

k=1 |r
k
t |, where rkt ⊆ rt, and ∀r ∈ rkt , ρr ∈ sk. The

cost of our two-phase policy π2P is given by

Jπ2P
(x1) = E[

T∑
t=1

K∑
k=1

gkt (x
k
t , ũ

k
t , u

g
h(t, k), η, ρ, δ)]

Algorithm 1: Two-phase Planner
Input: Initial state x1, maximum number of taxis per

sector mlim, fleet size m, planning horizon th
Output: policy π2P that gives routing/pickup

strategy for all taxis in the system
1 K ← m

mlim

2 {sk}Kk=1 ← get partitions(mlim,K,G, η, ρ, δ)

3 d̂← {}, m̂← []
4 for each time planning step t ∈ [1, . . . , T ] do
5 ugh, m̂, d̂← High level planner(xt, η, ρ, δ,

πbase, th, m̂, d̂, {sk}Kk=1)
6 for each sector sk, k ∈ {1, . . . ,K} in parallel do
7 ũkt ← Low level planner(xkt , u

g
h(t, k), η, ρ,

δ, πbase, th, m̂, d̂)

8 set µ2P,t(xt) = {ũkt , u
g
h(t, k)}Kk=1

9 xt+1 ∼ f(xt, µ2P,t(xt), η, ρ, δ)

10 set π2P = {µ2P,t}Tt=1

11 return π2P

Figure 1 shows the two phased approach with an example
with 3 taxis and 4 outstanding requests.

IV. THEORETICAL RESULTS

In this section, we provide a sufficient condition for
choosing a fleet size m that will make the policy πbase,
instantaneous assignment with reassignment (IA-RA) at each
time step, a stable policy. We also provide an asymptotic
necessary condition on m for the stability of πbase as T →∞.
Due to space constraints we provide proof ideas for all
the results. Complete proofs can be found in our extended
technical report [22].
A. Sufficient condition for stability of πbase

We are interested in finding the sufficient conditions on
the fleet size m that guarantee the stability of policy πbase
such that the relation E[Zπbase,T ] ≤ m · T always holds. To
do so, we first analyze the policy π̂ referred to as random
instantaneous assignment, where taxis are randomly assigned
to requests. Under this policy, a taxi does not move until
it has been assigned to a request. Once a taxi is assigned
to a request, the taxi cannot be assigned to other requests
until it has serviced the originally assigned request. By
having a random assignment of requests to taxis, lrq,π̂ for
an arbitrary request rq becomes a random variable instead
of a deterministic function of the requests in the system
and the locations of all the taxis. The randomness in π̂ also
makes the request’s pickup location ρrq and the location of
the taxi assigned to the request lrq,π̂ independent, making
the analysis easier. Using this policy, we can find an upper
bound on E[Zπ̂,T ], and choose m such that m · T is greater
than or equal to the upper bound, making π̂ a stable policy by
definition. We then show that the IA-RA policy πbase where
the assignment is given by a matching algorithm, like the
auction algorithm [23] or the modified JVC algorithm [24],
results in a smaller service distance than π̂, i.e., Zπbase,T ≤
Zπ̂,T . This implies E[Zπbase,T ] ≤ E[Zπ̂,T ] ≤ m·T , and hence
πbase constitutes a stable policy for the sufficiently large fleet
size m found in the analysis of the stability of π̂. We present
the formal claim for the sufficient conditions on m for the
stability of π̂ below in the following lemma.

Lemma 1: Let the random variable lrand with support V
represent the location of the random taxi that gets assigned
to a request after that taxi has previously served a different
request. Define Dmax ≜ max{E[d(ξ, ρ)], E[d(lrand, ρ)]} +
E[d(ρ, δ)]. If the fleet size m satisfies m ≥ E[η] · Dmax,
then the policy associated with a random instantaneous
assignment of taxis to requests, π̂, constitutes a stable policy
such that E[Zπ̂,T ] ≤ m · T .

The proof idea goes as follows. First, we split the to-
tal distance required to service requests in two cases: 1)
the distance associated with taxis that are servicing their
first request, and 2) the distance associated with taxis that
have already serviced at least one request. Since π̂ is a
random assignment of taxis to requests, the location of the
assigned taxis and the pickup of the corresponding request
are independent. Moreover, within these two cases, they
are identically distributed. Using this, we upper bound the
expected distance for these two cases by Dmax. We then
combine the two cases to obtain the claim of the lemma.



Notice that all the terms given in Dmax can be calculated in
practice using historical data. We use the result from lemma 1
to show that the same m chosen to guarantee stability of π̂
serves as a sufficiently large m to guarantee stability of πbase
which is formalized in Theorem 1.

Theorem 1: Assume that the fleet size m satisfies the
condition given in lemma 1. Then the policy πbase, which
corresponds to instantaneous assignment with reassignment
(IA-RA) at each time step, is a stable policy such that
E[Zπbase,T ] ≤ m · T , for a finite horizon T > 0.

The proof sketch is as follows: first we define π̄ as the
policy associated with instantaneous assignment (IA) with
commitment to the initial assignment and then we show
that with π̂, the distance traveled per assigned request is
at least as long as that with π̄. This follows directly from
the definition of π̄, since IA produces a match of taxis to
requests that minimizes the distance between the assigned
taxis and their respective requests. We then show that π̄
results in longer or equal distance traveled per assigned
request than πbase. This follows directly from the structure
of the reassignment, which only happens if the distance
associated with the new assignment is the minimum distance
of all possible assignments at that time step. Finally, since we
know that π̂ is stable for a fleet size m as given in lemma 1,
then we can conclude that πbase is also stable as πbase results
in a smaller or equal distance traveled.
B. Necessary condition for stability of πbase

We are interested in finding the necessary condition for
stability of policy πbase asymptotically as T → ∞. For this
reason, we want to find a lower bound on E[Zπbase,T /T ].
Choosing a fleet size m smaller than this bound would make
the policy πbase asymptotically unstable, i.e., E[Zπbase,T ] >
m · T as T →∞. To do so, we first find a lower bound for
E[Zπbase,T /T ], the expected travel distance associated with
servicing the requests that enter the system per time step, and
then we apply a limit as T →∞ to obtain an expression for
the asymptotic lower bound. The following theorem states
this result formally.

Theorem 2: Let WD(pδ, pρ) denote the first Wasserstein
distance [25] between probability distributions pδ and pρ
with support Ω, such that:

WD(pδ, pρ) = inf
γ∈Γ(pδ,pρ)

∫
x,y∈Ω

||y − x||dγ(x, y)

Where || · || is the euclidean metric, and Γ(pδ, pρ) is the
set of measures over the product space Ω × Ω having
marginal densities pδ and pρ, respectively. Define Dmin ≜
WD(pδ, pρ)+E[d(ρ, δ)]. Assume that the random variables
for pickups ρ and drop-offs δ are independent and we have
a fleet of size m < E[η] ·Dmin. Then, the policy πbase, which
corresponds to instantaneous assignment with reassignment
(IA-RA) at each time step, is asymptotically unstable, i.e.,
E[Zπbase,T ] > m · T as T →∞.

The proof sketch is as follows: First, we lower bound the
expected distance required to service a request using πbase by
the sum of the expected distance between the pickup and the
dropoff of the request and the average distance associated

with the solution for the bipartite matching problem. We
then lower bound the average distance associated with the
solution for the bipartite matching problem with the average
distance for the solution of the Euclidean bipartite matching
problem. Finally, after applying the limit as T → ∞ and
using the results presented in [19], we lower bound the
average distance of the solution to the euclidean bipartite
matching problem by WD(pδ, pρ) and obtain the claim in
the theorem.

V. NUMERICAL STUDIES

In this section we evaluate the performance of our algo-
rithm using a real taxi data set for the city of San Francisco
[26]. We compare the performance of our algorithm against
three benchmarks: a greedy policy, instantaneous assignment
with reassignment (IA-RA), and a rollout-based algorithm
over the entire map as proposed in [12]. We provide a
comparison of run-time of our two-phase approach and the
rollout-based approach [12] to empirically verify the reduc-
tion in run-time associated with our two-phase approach. We
verify our theoretical results in the number of taxis in the
fleet required for stability by executing our algorithm for
larger time horizons and plotting the number of outstanding
requests at each time step. We empirically verify that for m
chosen in the range given by Theorem 1, and Theorem 2,
our proposed approach is stable in the sense that the number
of outstanding requests is uniformly bounded over time.
A. Experimental Setup

Our numerical results consider a section of 1500m ×
1500m in San Francisco with 859 nodes and 1959 edges.
For the comparison studies we consider a horizon length of
T = 60, while for the stability results we consider T = 180.
All experiments were executed in an AMD Threadripper
PRO WRX80. All individual results correspond to an average
over 20 different trials with different instantiations of the
random variables.
B. Estimating probability distributions

For our experiments, we estimate p̃η , p̃ρ|η , and p̃δ using
historical trip data from several taxis in San Francisco [26].
We divide the historical data in 1-hour intervals, where each
time step t spans 1 minute. We empirically estimate p̃η by
using the number of requests that arrive at each time step
within each 1-hour time span. The distributions p̃ρ and p̃δ|ρ
are derived from the relative frequency of historical requests
that originated and ended inside the map.
C. Calculated values for theoretical results

For our experiments, we consider p̃η for an hour in
which E[η] = 1 (we get around 60 requests per hour).
For simplicity, we assume that ξ is distributed according
to the marginal probability distribution pδ , and hence we
find that E[d(ξ, ρ)] ≈ 15. We use plrand and pρ to calcu-
late E[d(lrand, ρ)] ≈ 13. We use pρ and pδ|ρ to calculate
E[d(ρ, δ)] ≈ 15. From this we get that the sufficient
number of taxis for stability of our two-phase approach
is m ≥ max(15, 13) + 15 = 30 from Theorem 1. We
approximate the Wasserstein distance WD(δ, ρ) using the
procedure suggested in [20]. We obtain WD(δ, ρ) ≈ 1.87.



From this, we get that asymptotically, the minimum number
of taxis needed for stability as T → ∞ is m > 1.87 + 15,
rounding to next integer m ≥ 17 (Theorem 2).
D. Implementation details for two-phase approach

We execute 2000 MC simulations with certainty equiva-
lence to approximate the expected cost associated with each
potential control in the one-step lookahead step of the rollout
for the local planner. We also consider a planning horizon
th = 10 for the rollout, and a capacity of mlim = 10 taxis
per sector, based on the computational resources available.
E. Benchmarks

In this section, we discuss the details of the benchmarks
to be used as comparisons for our performance results.

Greedy policy: Each taxi moves towards its closest re-
quest without coordinating with other taxis. This method
does not consider future demand.

Instantaneous assignment (IA-RA): It solves a matching
problem between available taxis and outstanding requests at
every time step using an auction algorithm [27], [28]. This
method does not consider future demand.

One-at-a-time rollout-based global routing: performs
rollout over the entire map using the procedure described in
the scalability section of [12]. We set the planning horizon
to th = 10 as suggested in the paper. We run the same
number of MC simulations as with our approach. This
method considers expected future demand.
F. Performance results

This section includes the results for the performance and
the execution time of our two-phase approach.

As shown in Fig. 2, our method results in a comparable
performance to the rollout-based global routing [12]. For
lower number of taxis, when m < 17, our method is unstable.
After we surpass 17 taxis, standard IA-RA starts being stable
and performs similarly to the rollout-based global routing
[12]. As shown in the graphs, for m ≥ 30, our proposed
method results in a lower cost than IA-RA, resulting in a
5% to 18% improvement, sometimes even outperforming the
rollout-based global routing thanks to the smaller sampling
space associated with each sector. Since both rollout-based
methods are running the same number of MC simulations,
a smaller sample space leads to better approximation of the
expectation in Eq.(1).

To better understand the advantages of our proposed
method, we compare the execution time of our proposed
two-phase approach to the rollout-based global routing.

Fig. 3 shows our method results in significantly lower run-
times than the rollout-based global routing. Execution time
for our method still grows linearly with the number of taxis,
but with a smaller slope. This shows that partitioning the
map and solving sub-problems in parallel results in a faster
execution with similar wait time compared to one-at-a-time
rollout over the entire map.
G. Stability of two-phase approach

Fig. 4 shows the stability results of our two-phase ap-
proach with various number of taxis over a horizon of 3
hours. Without enough taxis, m < 17, for which IA-RA

Fig. 2. Total wait time over all requests of our two-phase approach and
the benchmarks.

Fig. 3. Execution time comparison between our two-phase approach and
the benchmarks.

is shown to be unstable, our approach shows an increasing
number of outstanding requests over time. However, with
sufficient numbers of taxis (m = 25, 35), we see that both
the IA-RA policy and our two-phase approach has a bounded
number of outstanding requests over a large horizon of 180
minutes.

VI. CONCLUSION

In this paper, we propose an approximation algorithm that
allows us to apply one-at-a-time rollout to a large scale
urban environment. We provide a necessary and a sufficient
conditions for the total fleet size m to make the instantaneous
assignment base policy stable, which is key to guarantee
rollout’s convergence to a near-optimal policy. We also verify
this results in simulation with a real dataset [26]. As future
work, we plan on relaxing the assumption of unit travel time
for the taxis in the fleet. Even though the algorithm would
still work for this more realistic setting, we need to derive
new theoretical results to take into account this change.

Fig. 4. Stability of IA-RA and two-phase policy in terms of
the means (lines) and standard deviations (shaded regions) of the
number of outstanding requests.
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