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Abstract: Knowledge graphs are graph-based data models which can represent real-time data that
is constantly growing with the addition of new information. The question-answering systems over
knowledge graphs (KGQA) retrieve answers to a natural language question from the knowledge
graph. Most existing KGQA systems use static knowledge bases for offline training. After deployment,
they fail to learn from unseen new entities added to the graph. There is a need for dynamic algorithms
which can adapt to the evolving graphs and give interpretable results. In this research work, we
propose using new auction algorithms for question answering over knowledge graphs. These
algorithms can adapt to changing environments in real-time, making them suitable for offline and
online training. An auction algorithm computes paths connecting an origin node to one or more
destination nodes in a directed graph and uses node prices to guide the search for the path. The prices
are initially assigned arbitrarily and updated dynamically based on defined rules. The algorithm
navigates the graph from the high-price to the low-price nodes. When new nodes and edges are
dynamically added or removed in an evolving knowledge graph, the algorithm can adapt by reusing
the prices of existing nodes and assigning arbitrary prices to the new nodes. For subsequent related
searches, the “learned” prices provide the means to “transfer knowledge” and act as a “guide: to
steer it toward the lower-priced nodes. Our approach reduces the search computational effort by 60%
in our experiments, thus making the algorithm computationally efficient. The resulting path given
by the algorithm can be mapped to the attributes of entities and relations in knowledge graphs to
provide an explainable answer to the query. We discuss some applications for which our method can
be used.

Keywords: knowledge graphs; auction algorithms; knowledge graph question answering (KGQA)

1. Introduction

Over the past few decades, attempts have been made to provide human-like com-
monsense reasoning to systems by acquiring vast knowledge about any domain. Humans
are intuitively good at dealing with uncertainties and making meaningful inferences from
incomplete, missing, and unstructured information. On the other hand, machines need
precise information typically stored in a structured database and queried using a parsing
strategy or well-defined rules. It is hard to rely on traditional relational data stores, as the
massive influx of unstructured data and real-world information continuously evolve.

In recent years, knowledge graphs (KGs) have emerged as a flexible representation
using the graph-based data model. They capture and integrate factual knowledge from
diverse sources of data at a large scale in a way that machines conduct reasoning and
inference over the graphs for downstream tasks such as question answering, making useful
recommendations, etc., [1].

The knowledge graph allows for postponing the schema definition, thus letting the
data evolve more flexibly [2]. A typical data unit in knowledge graphs is stored as entity–
relationship–entity triplets, representing entities as nodes and relationships as the edges in
a graph. The nodes are modeled to contain the knowledge or facts about the entities in the
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form of entity attributes. However, most existing systems used in answering a question
over the knowledge graphs rely on static knowledge bases (KBs to train the knowledge
graph question-answering (KGQA) model. These systems are trained offline with specific
datasets and then deployed online to handle user queries. After deployment, they fail
to learn from unseen new entities added to the graph. Thus, the problem faced by the
knowledge graphs is the need for dynamic algorithms which can continuously learn and
adapt to evolving data [3].

Another challenge is the explainability and interpretation of the results when a query is
posed to these evolving graphs. Question answering in knowledge graphs requires reason-
ing over multiple edges to arrive at the right answer and should have a tractable path to ex-
plain the new behavior [4,5]. A full explanation of the answer helps the users in their interac-
tion with the system. For example, a query such as, “Which paper author Amanda published in
SIGIR conference? ” needs multihop reasoning of the form, (Amanda, author_write_paper, ?)
and (?, paper_in_venue, SIGIR) to deduce the answer. Given the nature of this domain,
if more papers, conferences, or authors are added in the future, the inference mechanisms
need to be adaptable to the changes and interpretable to trace the new paths.

The state-of-the-art embedding-based neural network models for answering semantic
queries consider only the candidate answer entities. They learn embeddings conditioned
on neighboring entities and relations while being oblivious to the query relations and
path. These methods help deduce the new facts but need more interpretation and logical
reasoning of the answer [6]. The alternative approach uses path-based methods including
path ranking algorithms (PRAs) based on random walk [7], DeepPath [8] etc. These
methods are highly interpretable but suffer from large search space issues [9]. Moreover,
they consider only a static snapshot and fail to learn from dynamically changing knowledge
graphs [10].

In this paper, we propose using the auction algorithms recently introduced in the
paper [11], to perform question answering in knowledge graphs. These algorithms are
dynamic and can adapt to the changing environments in real time, making them suitable
for offline and online training. They can help knowledge graphs to address the challenges
of adaptability and interpretability.

The main auction path construction (APC) algorithm, to be discussed in Section 3,
computes paths (not necessarily the shortest) connecting an origin node to one or more
destination nodes in a directed graph and uses node prices to guide the search for the
path. The prices are initially chosen arbitrarily and are dynamically updated using a set
of rules to be described later. When new entities are added or removed from the graph,
the algorithm can dynamically adapt to the changing structure by reusing the prices for
existing nodes and allocating arbitrary prices to the new nodes. The prices provide the
means to ’transfer knowledge”. The prices from previous searches can be used as initial
prices for subsequent related searches, resulting in faster computation.

The auction algorithms provide full traceable paths and not just the single entity
answer score. The full path can give the user a logical inference for the queries requiring
multihop reasoning. Thus, the final answer constructed using our method is interpretable
and provides an explainable answer. In particular, we can leverage the knowledge graph
path relations, entity metadata, and attributes to add semantic information to the paths
constructed by the auction algorithms.

The main contributions of the paper are as follows:

• We propose a new method using auction algorithms for question answering in knowl-
edge graphs.

• We show that knowledge graphs can take advantage of the dynamic nature of auction
algorithms.

• Our results show that the computational efficiency of the search can be improved by
reusing the prices that have been learned from previous queries.

• Lastly, we leverage the entity metadata and path relations to construct an interpretable
answer from the resulting path given by auction algorithms.
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The paper is organized as follows. The next section describes related work. Section 3
describes and explains the auction algorithms. The adaptation of auction algorithms in
knowledge graphs for question answering is given in Section 4. Section 5 provides our
experimental results and analysis.

2. Related Work

In this section we review the path-finding approaches currently used in knowledge
graphs, and we contrast them with our proposed approach that is based on auction algorithms.

2.1. Embedding-Based Methods

The popular methods used in knowledge graphs for tasks like question answering,
knowledge base completion, link prediction, relation extraction, etc., are embedding-based
models [12]. Low-dimensional vectors called graph embeddings represent the entities and
relations for these tasks. The embedding models learn a scoring function in latent em-
bedding space based on the co-occurrence of words in the text to manifest the semantics
of the original graph. The higher score is used to determine the plausibility of facts [6].
The top-ranked entities are chosen as the predicted answers. These models learn subtle
patterns in data, but they lack generic forms of reasoning. The predicted answers given
by the model are a single entity and do not provide any explanation to the user. For in-
stance, the embedding-based model is trained on individual facts such as (Irving Cummings,
wasBornIn, New York City) and (New York City, isLocatedin, United States). The model can
leverage the logical patterns and compute a score to possibly deduce that (Irving Cummings,
isCitizenOf, United States). However, it fails to explain or offer any inference path evidence
supporting the answer. This black-box style makes the reasoning process less interpretable
and hampers the users from interacting with the system [9].

Palmonari et al. [13] suggested performing complex logical queries over embedding
models to deal with explainability. Bhowmik et al. [10] used an inductive learning frame-
work to learn representations and find reasoning paths between entities.

Secondly, the embedding-based methods are used to answer factoid-based questions,
and they need to improve at answering multihop queries. Most works extract a subgraph
to answer the question in parts and later augment the answers [14]. Ren et al. [15] added
a query synthesizer tree to parse the multihop query in parts. A multihop KBQA was
proposed by Saxena et al. [4] to fill the gaps. They embedded all the entities instead of only
using neighborhood entities, and the answers were chosen by finding the similarity score
between the question and relations.

2.2. Path-Based Methods

Another approach used for question-answering tasks in knowledge graphs is path
based. This approach relies on the conventional graph traversal methods such as A*, Dijk-
stra, and minimum spanning tree, which use statistical characteristics such as adjacency
matrix, degree, closeness, Eigenvector, PageRank, and connectivity [7–9,16,17]. The infer-
ence process is highly interpretable, but these methods suffer from scalability issues and
high computation costs, as they rely on enumerating all possible paths [9].

All these methods consider the static snapshot of the knowledge graph and only learn
the representation of the known entities they have seen before during the offline training.
The models are unaware of the emerging entities and fail to keep up with the changes in
the graph to answer new questions [5,9]. They thus may not be well-suited for an evolving
knowledge graph [10].

2.3. Auction Algorithms

Auction algorithms are fundamentally based on mathematical ideas of duality and
convex optimization and are inspired by economic equilibrium processes. They have a
long history, starting with the original proposal [18], which aimed to solve the classical
problem of assignment of objects to persons through a competitive bidding mechanism that
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resembles a real-life auction. Over time, the original auction algorithm [18] was extended
to solve a wide variety of network optimization problems with linear and convex costs
(see the tutorial survey [19] and the book [20]). Among others, auction algorithms have
been used widely in optimal transport applications [21–23] and have been applied to the
training of machine learning models [24–26].

One paper [27] considered the classical shortest path problem and proposed an adap-
tation of the original auction algorithm, which bears similarity with the path construction
algorithms recently proposed in [11] and used in the present paper. The more recent algo-
rithms are different in one respect, which is critical for application in knowledge graphs.
They allow arbitrary initial prices, making them faster and more suitable for dynamic envi-
ronments involving a changing knowledge graph topology and queries. In particular, this
property allows for the reuse of prices from one query to another similar query through an
ongoing “price learning” process which can significantly improve computational efficiency,
and our computational experiments have also confirmed this. Thus, the “learned prices”
can improve computational efficiency, and contrary to the Dijkstra-like path-based algo-
rithms, they can adapt well to an evolving knowledge graph environment and continuously
learn as new entities emerge.

3. Auction Algorithms Description

In this section, we will discuss the use of auction algorithms for constructing paths
from a given origin to one or more destinations in knowledge graphs. In this work, we used
two variations of auction algorithms. The first variation is a path construction algorithm
recently proposed in [11] called auction path construction (APC), and the second is its
extension called the auction weighted path construction algorithm (AWPC).

Auction algorithms use a price mechanism to guide the search for a solution. The al-
gorithms efficiently emulate the search process, guided by some rules for price updates
that we will describe shortly. Intuitively, the algorithms can be visualized in terms of a
mouse moving in a graph-like maze to reach the destination. The mouse advances from
high-price to low-price nodes, going from a node to a downstream neighbor node only
if that neighbor has a lower price (or equal price under some conditions). It backtracks
when it reaches a node whose downstream neighbors have higher prices. In such a case, it
suitably increases the price of that node, thus marking the node as less desirable for future
exploration and finding alternative paths to the destination.

3.1. Auction Path Construction (APC) Algorithm

We first provide some terminology before describing the algorithms mathematically.

3.1.1. Background and Terminology

A knowledge graph KG = {E, R, I} consists of a set of entities E, a set of relations
R, and attributes I. The entities are represented as the nodes, and the relations as the
edges connecting the nodes. The attributes are the metadata associated with each edge
and contain the facts about the corresponding entities. For any edge, (ei, ej), the node
ej is called the downstream neighbor of ei. A node ei is called a deadend if it has no
downstream neighbors.

At the typical iteration, the algorithm maintains a path P = (es, e1, e2, . . . , ek) that starts
at the origin node es, ends at some node ek, and is such that (es, e1) is an edge, and (em, em+1)
is an edge for all m = 1, . . . , k− 1.

Once the destination becomes the terminal node of the path, the algorithm terminates.
The path is either extended by adding a new node or contracted by deleting its terminal node.
The decision to extend or contract is based on a set of variable ones per node, called prices.
Each node e is assigned a scalar price pe. The prices are initially chosen arbitrarily, and the
algorithm maintains and updates the prices according to some rules. To describe these
rules, we introduce some terminology. Under the current set of prices, each edge (ei, ej) is
classified as follows:
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(a) Downhill : i f pei > pej

(b) Level : i f pei = pej

(c) Uphill : i f pei < pej

The prices can be seen as a measure of the desirability of revisiting and advancing
from that node in the future. Low-price nodes are viewed as more desirable.

When the algorithm starts with a path of the nondegenerate form P = (es, e1, . . . , ek),
a contraction removes the terminal node ek from P to obtain the new path P̄ = (es, e1, . . . , ek−1),
while an extension adds a node ek+1 to obtain a new path P̄ = (es, e1, . . . , ek, ek+1). The pre-
decessor of the node ek in path P is denoted by pred(ek) = ek−1. If P = (es, e1), then
pred(e1) = es. If the terminal node ek of P is not a deadend, then the downstream neighbor
of ek with minimal price is denoted by succ(ek) and is called the successor of ek:

succ(ek) ∈ arg(ej |(ek ,ej)∈A) min pej (1)

If multiple downstream neighbors of ek have a minimal price, the algorithm arbitrarily
designates one of these neighbors as succ(ek). The algorithm also uses a positive scalar ε
to regulate the size of price changes. For auction path construction (APC), we use ε = 1,
but the value of ε can play an essential role in the weighted version of the algorithm
(AWPC).

3.1.2. Formal Definition

Given the current path P = (es, e1, e2, . . . , ek), the algorithm chooses a min-price suc-
cessor node succ(ek) and updates the price pek by keeping track of the node prices of the
predecessor, ppred(ek)

and successor, psucc(ek)
, such that the following downhill path property

is always maintained.
Downhill Path Property : All the edges of the path P = (es, e1, e2, . . . , ek) maintained by

the APC algorithm are level or downhill. Moreover, the last edge (ek−1, ek) of P is downhill
following an extension to ek.

In particular, given the current path P and a set of node prices, the algorithm changes
P and the price of its terminal nodes according to following cases (see Figure 1):

(a) P = (es) : Set the price pes to max{pes , psucc(es) + ε}, and extend P to succ(es).
(b) P = (es, e1, . . . , ek) and node ek is deadend: Set the price pek to ∞ (or a very high

number for practical purposes), and contract P to ek−1.
(c) P = (es, e1, . . . , ek) and node ek is not deadend. Then, the following two cases are con-

sidered.

(i) If ppred(ek)
> psucc(ek)

, then extend P to succ(ek) and set pek to any price level
that makes the arc (pred(ek), ek) level or downhill and the arc (ek, succ(ek))
downhill. For example, set

pek = ppred(ek)
(2)

This raises the price pek to the maximum possible level, making the arc
(pred(ek), ek) level.

(ii) If ppred(ek)
≤ psucc(ek)

, then contract P to pred(ek) and raise the price of ek to
the price of succ(ek) plus ε. This makes the arc (pred(ek), ek) uphill and the
arc (ek, succ(ek)) downhill.
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Figure 1. Figure showing the price update and raising the price to the maximum possible level.
In case of extension, the algorithm maintains the maximum possible level pek = ppred(ek) making
the predecessor arc (pred(ek), ek) level. In the case of a contraction, it raises the price of ek to the
maximum possible level, making the arc (pred(ek), ek) uphill.

The algorithm terminates once the destination becomes the terminal node of P. The sig-
nificance of the downhill path property is that when an extension occurs, a cycle cannot be
created in the sense that the terminal node ek is different from all the predecessor nodes,
es, e1, e2, . . . , ek−1 on the path P. The reason for this is that the downhill path property
implies that following an extension, we have

pek < pek−1 ≤ pek−2 ≤ ... ≤ pe1 ≤ pes (3)

showing that the terminal node ek following an extension cannot be equal to any of the
preceding nodes of P.

3.1.3. Multiple Destinations or Multiple Origins

The algorithm can be generalized to handle a single origin but not multiple destina-
tions. A list containing the destinations that have yet to be reached is maintained. Once a
destination is reached by the path P, it is removed from the destination list. The algorithm
continues to run until it has reached all the destinations. Similarly, for the multiple-origin
problem, the algorithm is used to construct a tree of paths from all the origins by concate-
nating the respective paths.

To illustrate APC with an example, consider the five-node graph shown in Figure 2a,
with initial prices (0, 3, 0, 0, 0). For this example, the origin is node 1, with three destinations:
nodes 2, 4, and 5. The algorithm terminates after it has reached all the destinations. Figure 2
shows the successive iterations of the algorithm. The algorithm maintains a path and
updates prices as per the defined rules. The path for each destination can be stored,
and finally, the algorithm terminates after it has reached all the destinations. This example
shows the single application of the algorithm. If the algorithm is applied to multiple
searches, then at the end of each search, the infinite price should be set to a finite value,
such as the minimum price of the upstream neighbors of the respective node.
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Figure 2. The figure shows the APC traversal on a five-node graph. The initial prices are arbitrarily
chosen as (0, 3, 0, 0, 0). The origin node is given as (1), with three destination nodes (2, 4, 5). The algo-
rithm chooses to extend or contract and update the price as per the given rules. The prices after the
update in each iteration are shown against each node in the figure.

3.2. Auction Weighted Path Construction (AWPC) Algorithm

The generalization of the APC algorithm is the auction weighted path construction
(AWPC) algorithm. It uses a weight aij for every edge (ei, ej), which measures the desirabil-
ity of including an edge, (ei, ej), into the path. In particular, the length of a path is defined
as the sum of the weights of its edges. The edge weights can act as a bias toward producing
paths with a smaller length. The paths generated by the AWPC algorithm have relatively
short lengths but do not guarantee they are the shortest.

Extending the terminology of APC, under the current set of prices and weights,
the edge (ei, ej) is called:

(a) Downhill : i f pei > aij + pej ;
(b) Level : i f pei = aij + pej ;
(c) Uphill : i f pei < aij + pej .

The AWPC algorithm maintains a directed path P = (es, e1, . . . , ek) that starts at the
origin and consists of distinct nodes. The path is either the degenerate path P = (es),
or it ends at some node ek 6= es, which is called the terminal node of P. Similarly to APC,
each node ei is assigned an initial arbitrarily chosen scalar price pei . In addition to prices,
AWPC also maintains edge weights aij for every edge (ei, ej). The edge weights are used to
introduce a bias. The algorithm tends to converge faster in case of smaller values of edge
weights. In this work, we simulated experiments with different edge weights such as (0, 1,
2, 3, 6). As shown later in Results Section 5, our experimental findings supported this. APC
is the special case of AWPC where aij = 0 for all edges (ei, ej).

The AWPC algorithm starts with the degenerate path P = (es) and some initial prices.
Each iteration starts with a path P and a scalar price pei for each node ei. At the end
of the iteration, a new path P̄ is obtained from P through a contraction or an extension,
as explained earlier in APC. Here, the amount of the price rise is also determined by a
scalar parameter ε > 0. The path and prices are updated at every iteration according to the
following cases:

(a) P = (es) : Set the price pes to max{pes , aessucc(es) + psucc(es) + ε}, and extend P to
succ(es).

(b) P = (es, e1, . . . , ek) and node ek is deadend : Set the price pek to ∞ (or a very high
number for practical purposes), and contract P to ek−1.
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(c) P = (es, e1, . . . , ek) and node ek is not deadend. Then, the following two cases are con-
sidered.

(i) If ppred(ek)
> apred(ek)ek

+ aeksucc(ek)
+ psucc(ek)

, then extend P to succ(ek) and
set pek to any price level that makes the arc (pred(ek), ek) level and the arc
(ek, succ(ek)) downhill. For example, set

pek = ppred(ek)
− apred(ek)ek

(4)

This raises the price pek to the maximum possible level, making the arc
(pred(ek), ek) level.

(ii) If ppred(ek)
≤ apred(ek)ek

+ aeksucc(ek)
+ psucc(ek)

, then contract P to pred(ek)
and raise the price of ek to aeksucc(ek)

+ psucc(ek)
+ ε. This makes the arc

(pred(ek), ek) uphill and the arc (ek, succ(ek)) downhill.

The algorithm terminates when the destination becomes the terminal node of P. A more
detailed discussion of the AWPC rules, properties, and performance guarantees is given in
the paper [11].

Role of the Parameter ε

A positive ε is used to regulate the size of the price rise. The choice of ε does not affect
the path produced by the APC algorithm (for ease of calculation, its value was chosen as
ε = 1). In AWPC, ε provides a trade-off between the ability of the algorithm to produce
a minimal length path and its convergence rate (see the paper [11]). As the value of ε
becomes small, the path quality improves, but at the same time, the small value of ε tends
to slow down the algorithm.

For an illustration, consider the four-node graph shown in Figure 3a. In this example,
the origin node is s, and the destination node is t. We assume that AWPC starts with P = (s)
and with all initial prices equal to 0. Consider first the case where ε > 3. Then, using the
rules of the algorithm, the trajectory of the path will be an extension from s to 1, followed
by an extension from 1 to the destination t, thus producing the nonshortest path (s, 1, t).
On the other hand, if ε < 3, the algorithm will extend the path from s to 1 and then contract
back to s. It will then extend the path to 2 and perform a final extension to t, resulting in the
shortest path (s, 2, t); see Figure 3b. Thus, if ε > 3, the algorithm produces the nonshortest
path (s, 1, t) faster, and if ε < 3, it produces the shortest path (s, 2, t) more slowly. This
behavior is characteristic of the role of ε in providing a trade-off between the ability of
the algorithm to construct paths with near-minimum lengths and its rate of convergence.
For further explanation and a theoretical analysis, see [11]. In this paper, we have kept the
value of ε at 1 for all of our experiments.

Figure 3. The figure shows the AWPC traversal on a four-node graph. The initial prices are arbitrarily
chosen as (0, 0, 0, 0) and edge weights as (1, 2, 4, 2.5) (a). The origin node is given as (s), with the
destination node as (t). The algorithm chooses to extend or contract and update the price per the
given rules. The path chosen by AWPC for ε < 3 is shown in (b).
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4. Question Answering in Knowledge Graphs

In this section, we will present our approach for answering the queries over a knowl-
edge graph using auction algorithms. We demonstrate the use of auction path construction
(APC) and the variant with weighted version auction weighted path construction (AWPC).

4.1. Problem Statement

A knowledge graph, KG = {E, R, I}, as described in Section 3.1.1, is a set of entities,
relations, and attributes. Knowledge graph applications include data mining tasks, such
as discovering new facts or answering questions. All such tasks requires the prediction
of the link, (es, ?, et), between the head (or origin) entity, es, and the tail (or destination)
entity, et. The link is either the edge, (ei, ej), which can be denoted as relation r at a single
hop, (es, r, et), or it can be a multihop path, such as (es, r, et)→ (es, r1, e1)∧ (e1, r2, e2)∧ ...∧
(en−1, rn, et).

In either case, we can model this problem as constructing the path between the origin
and the destination entities using the auction path construction algorithm, as described in
the previous section.

4.2. Method

We follow a step-wise method to answer the queries by traversing directly through the
knowledge graph. We first parse the query to extract the entities. We then map the entities
to find the closest matching entity in the knowledge graph and obtain the attributes of each
entity from the entity metadata in the knowledge graph. In the subsequent step, we use the
auction path construction algorithm to acquire the path from the source to the destination
entity. In the final step, we construct an answer by mapping the attributes of all the entities
in the path. Figure 4 illustrates the process for single and multiple destination queries. Our
method does not require structured query processing languages or training a model on
a static knowledge base to answer the questions. The step-wise process is explained in
detail below.

1. Parsing the Query: In the first step, the user query is semantically parsed to extract
the entities. The entities can be extracted using any state-of-the-art parsing or entity
extraction techniques [28] such as natural language processing (NLP)-based named-
entity recognition (NER) methods [29]. Different techniques such as rule-based [30],
ontology-based methods [31], and learning-based methods [32] can be used for ex-
tracting the entities from a query. The choice of the named-entity extraction method
for knowledge graphs largely depends on the domain and if the given dataset has a
well-defined schema.
In this work, we used a dictionary-based look-up method to match the entities [33]. First,
the entities are extracted using the spaCy-based named-entity recognition (NER) [34].
Then, using the named-entity linking, we look for the closest matching entity in
the knowledge base (KB). Alternatively, a custom lexical matcher can be used [35].
After extraction of the entities, the information from the metadata of the knowledge
graph is used to map the entities to the corresponding nodes.
For example, as shown in Figure 4a, in a knowledge graph based on a triple dataset,
KG20C [36] for the query, “Which paper was published by Amanda at SIGIR conference?
”, the entities extracted using spaCy are, (“paper”, “Amanda”, “SIGIR”, “conference”).
The closest matching entities in KB are (“Amanda” and “SIGIR”). The metadata in KB
has each entity’s attributes, entity ID, name, and type. We fetch the attributes for the
candidate entities, “Amanda” and “SIGIR”. Here, the entity ID is the corresponding
node number in the graph, (“Amanda”:3877) and (“SIGIR”:4097).
We must also determine the origin and destination entities to construct the path.
Most knowledge graph question-answering (KGQA) systems use semantic parsing
to detect the occurrence and order of entities in the question [37]. In some KGQA
systems, the entity extraction models are trained on a question-answer dataset to
understand the query pattern [9]. More sophisticated methods use a predefined query
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template [38]. In this work, for simplicity, we have used the order of occurrence
of entities to determine the origin and destination entities. In the case of multiple
entities, we consider the first as the origin and the rest as multiple destinations,
as shown in the query in Figure 4b. In this paper, we do not elaborate further on each
method used in this step, as our work focuses on demonstrating the use of the APC in
knowledge graphs.

2. Path construction using APC (or AWPC): In the second step, the triple dataset of a
knowledge graph is modeled into a directed graph with nodes and edges. The nodes
from step 1 can be denoted as the origin and destination nodes in the graph, and for
instance, if the auction path construction algorithm (APC) is used to construct the
path between them. The initial prices for all the nodes in E can be chosen arbitrarily
or reused from previous searches. If the weighted version of the algorithm (AWPC) is
used, then the edges in R should also be given initial edge weights to introduce a bias.
The algorithm starts at the origin node. It follows the rules defined in Section 3.1.2 to
navigate through the graph structure and update the path and node prices at each
iteration. The algorithm terminates and returns to the final path once it reaches the
single (or all) destination(s). The resulting path is essentially the set of final nodes
with lower prices chosen by the algorithm while auctioning from the origin to the
destination node.
For the above query example, as shown in Figure 4a, the path given by APC is
[3877, 6572, 4097]. This set of nodes in the final path can now be used to provide an
explainable answer to the query.

3. Mapping attributes to build an interpretable answer: In the final step, we use the
attributes I for each entity in E, given as the metadata in knowledge graphs. These
attributes can add semantic meaning to the path generated by APC. The edges are
mapped to the corresponding relations, and the type and entity names are added
from the attributes to construct the final answer.
Referring to our example in Figure 4a, for the path, [3877, 6572, 4097], the attributes
for each node and relations for each edge in the path are mapped to construct the final
answer as shown in below Figure 5. The prices learned by the algorithm in this search
can be used as the starting prices for the following query.

Figure 4. The figure illustrates the step-wise method to answer queries. (a) The single destination
query and (b) the query with two parts, i.e., multiple destinations.
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Figure 5. The figure illustrates the mapping of path nodes to entity attributes and edge relations to
build an explainable answer.

4.2.1. Prices as a “Learning Experience”

The node prices play a significant role in the search process. The node prices act
as a “guide” for the algorithm and “steer” it toward nodes with lower prices, which
are more likely to be part of the solution. APC provides the flexibility to use arbitrary
prices. Initially, zeros or random values can be used as the starting prices for the nodes
in the graph. In successive runs, prices from the previous run can be reused. Reusing the
prices is similar to learning from previous experiences. For subsequent similar queries,
the “experience” in terms of “learned prices” helps produce the path faster, making the
algorithm computationally efficient. Eventually, the algorithm can learn favorable starting
prices to generate paths faster.

4.2.2. Ability of APC to Adapt to an “Evolving KG”

Given the dynamic and incomplete nature of the knowledge graphs, newly emerging
relations and entities are added, and redundant ones are removed, resulting in constant
changes in the graph structure. The auction algorithms are well-suited to this kind of
dynamic environment. They are flexible as the node prices are initially assigned arbitrary
values and updated dynamically as per the rules defined in Section 3. The algorithms
navigate the graph from higher-price to low-price nodes. When new nodes or edges are
added or removed from the graph, the existing nodes can reuse the prices from previous
searches, and the newly added nodes are given arbitrary prices. We simulated the ex-
periments by dynamically adding new nodes in the knowledge graph. Our results show
that the algorithms adapt well to the environment changes. While assigning arbitrary
prices to newly added nodes, a good strategy is to allocate prices in the range of prices of
existing nodes.

4.2.3. Edge Weights as per “Query Semantics”

Another significant parameter in the search process is the arc length (or edge weight)
used in the auction weighted path construction (AWPC), the weighted version of APC
as described in Section 3.2. The edge weights act as a bias and aim to provide a path
with near-minimal total length. The arcs with smaller lengths tend to give shorter paths,
and thus the algorithm should converge faster. Once the relations from a query are
semantically extracted, the edge weights can be assigned as per the semantic meaning.
The relation (or edges) with a strong match with the query are given “0” weights, and all
the other edges are given higher values of weights. By adding this bias, the algorithm
looks for lower-length paths similar to the relation in the query. Thus, we are highly likely
to obtain more accurate and faster results with shorter paths, making it computationally
more efficient.

5. Evaluation
5.1. Dataset

We used two benchmark datasets, KG20C [36] and YAGO3-10 [39], to showcase
the application of APC in knowledge graphs for question answering. The first dataset,
KG20C, was constructed from the Microsoft Academic Graph dataset [40] by extracting the



Information 2023, 14, 336 12 of 20

information from high-quality computer science papers published in the top 20 conferences.
KG20C is a standard benchmark dataset used for several tasks in knowledge graphs such
as graph embedding, link prediction, recommendation systems, and question answering
about high-quality papers [41,42]. It is a triple dataset with five intrinsic entity types, Paper,
Author, Affiliation, Venue, and Domain. The five intrinsic relation types defined between these
entities are author_in_a f f iliation, author_write_paper, paper_in_domain, paper_cite_paper,
paper_in_venue. The entity attributes contain the metadata as entity ID, name, and type.
The statistical details of KG20C are in Table 1.

Another dataset, YAGO3-10 ,is a benchmark dataset for knowledge base completion.
It is a subset of YAGO3 (which is an extension of YAGO (Yet Another Great Ontol-
ogy) [43]). Yago3 contains entities related to people, universities, cities, organizations,
and artworks and their canonical relations. Yago3-10 has 123,182 entities, 37 relations,
and 1,179,040 triples. Most triples describe attributes of places and persons such as
citizenship, gender, and profession, for instance, the city a person was born in, which city
is located in which country, which player played for a team, which singer sang which
song, etc.

Table 1. KG20C Triple dataset stats.

Author Paper Conference Domain Affiliation Entities Relations Edges

8680 5047 20 1923 692 16,362 5 55,607

5.2. Experiments and Results

In this section, we present our experiments and results. First, we discuss the protocol
for evaluating and measuring the effectiveness of the proposed method. Then, we provide
the experiment setup and the result analysis and discussion.

5.2.1. Evaluation Protocol

The research question is whether APC (and AWPC) algorithms are suitable for ap-
plication in knowledge graphs. To answer this question, we ran multiple simulations to
test the algorithm’s behavior in different settings. The primary objectives for this work
are to evaluate the accuracy of the method, adaptability of the knowledge graph to the
dynamic environment , and interpretability of the answer. The other important factors are
computational efficiency and support for multihop and multidestination queries. Each
objective is described below:

• Prediction Accuracy —Did the algorithm predict the answers the same or close to the
ground truth?

• Adaptability to Evolving Knowledge Graph—Can the algorithm adapt dynamically
when new entities and relations are added to the graph?

• Explainable Reasoning Paths—Does the algorithm give traceable and explainable
reasoning paths? Can users make proper inferences from the answers provided by the
system?

• Computational Efficiency—How many iterations (or steps) does the algorithm take
to provide the final answer? The number of iterations is analogous to the algorithm’s
run time complexity and can be used to show computational efficiency.

• Support for Multihop Queries—Can the algorithm answer the queries with multiple
hops or longer paths?

• Queries with Multiple Destinations—Can the algorithm answer the questions with
two or more parts combined? For example, a query such as, “Which paper author
published in this conference and where does he work?” has two destinations.
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5.2.2. Experimental Setup

We conducted simulations with eight different parameter settings. For each simulation,
we used around 50 queries, a mix of single and multihop type questions with single
or multiple destinations. Table 2 shows the experimental settings for different prices
and edge weights as well as the corresponding observations for each experiment for the
KG20C dataset.

The first four simulations were run using APC with different initial price settings.
The algorithm was relatively stable, and the resulting paths matched the ground truth
with the initial price set as “0”. We then reused the “learned” prices and observed that the
number of iterations reduced by 60% while the resulting paths remained the same. We also
stress-tested the algorithm by assigning random prices between 100 and 1000. The iteration
count went very high, and most of the paths remained the same, but it chose longer paths
for some queries. Reusing these prices gave relatively stable results, and the iterations
reduced significantly. For APC, the second experiment achieved the best results regarding
computational efficiency.

Further experiments were conducted using the weighted version (AWPC). We kept
the variations in price settings the same as those in the first four runs and repeated the
first four experiments for different edge weights. We conducted experiments with different
combinations of edge weights such as (0, 1, 2, 3, 6) and random weights between and −10
and 10. The edge weights were used to add the bias; the algorithm converges faster with
lower edge weights. Our experimental results also supported it. In Table 2, we reported
the significant observations for each experiment.

Table 2. Experimental Setup.

Algo S.No. Settings Observations

APC

1 Initial Price as “0” Algorithm was relatively stable, and the resulting paths
matched the ground truth.

2 Reusing Prices from (1) Number of iterations reduced by 60%. Resulting paths
were the same as those in (1).

3 Random Prices and Stress
Testing

Random prices given between 100 and 1000. Higher itera-
tions. Most Paths were the same and gave longer paths
for some queries.

4 Reusing Prices from (3) Relatively stable. Iterations in (4) much fewer than those
in (3) but higher or the same as those in (2).

AWPC

5 Edge Weights as “0” “0” edge weights results should match the first four set-
tings using APC; validation step.

6 Edge Weights as “1” Same paths; greater or equal number of iterations as in (2).
7 Random Weights Unstable with random weights between −10 and 10. It-

erations increased by almost two times, with not much
change in the paths.

8(a) Weights as per “Query
Semantics” (S:0,W:1)

Edges with strong match in query given “0” weights
and the remaining edges (weak) given “1”; no significant
change in iterations.

8(b) (S:0,M:3,W:6) Prices Reused
from an Initial Price of “0”

Paths were same or shorter, and iterations were fewer or
the same as in (2).

For AWPC, the edge weights were set to “0” to validate whether the results matched
the first four price settings using APC. In the next run, we set the edge weights to “1”.
The paths remained the same, and iterations were higher or the same as in those in (2).
Then the algorithm became unstable with random weights between −10 and 10. Iterations
increased almost twice, but there was not much change in the paths.

When the query is parsed, suppose the relation can be extracted and matched with
a predefined pattern. If it is possible to state which relation in the query matches which
of the relations in knowledge graph metadata, then we can preassign the edge weights as
per the match. We experimented by assigning edge weights as per the query semantics.
In the first set, the edges with strong match were given “0” weights, and the remaining
edges (weak) were set to “1”, denoted as (S:0, W:1). In the second setting, the relations
were classified as a strong, medium, and weak match. For example, in the query, “Which
author may cite this paper?”, the relation, paper_cite_paper is a strong match, whereas
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author_write_paper is medium, and all other relations are weak. The strong match edges
were given “0” weights, medium “3”, and weak “6”, denoted as (S:0, M:3, W:6). When
the prices were reused from the initial price of “0”, the resulting paths were the same or
shorter, and the iterations were the less or same as (2). In this case, the algorithm yielded
the best results compared to all the other settings. Intuitively, we can therefore say that the
algorithm can do a semantic-based search and tends to progress in a meaningful direction
if the parameters are chosen wisely.

5.2.3. Result Analysis

We now discuss the results from the above experiments and analyze if the objectives
of the evaluation protocol were satisfied by the method.

Prediction Accuracy: The resulting paths from each query matched the ground truth.
The different node-prices and edge-weights settings given in Table 2 only affected the num-
ber of iterations taken by the algorithm to provide the final answer, to be discussed shortly.

Adaptability to Evolving Knowledge Graph: To test the algorithm’s adaptability to
changing knowledge graphs, we conducted the following experiments.

1. We started with a small subgraph of 12 entities from the KG20C dataset and ran
around ten queries. The node prices were initially set to “0”. The prices were then
reused for the subsequent queries. Similar experiments were conducted by initializing
random prices and edge weights settings as described in Table 2.

2. In the second simulation, 40 new entities were added to the knowledge graph.
The prices of existing nodes were reused, and the newly added nodes were given
arbitrary prices. In this step, 20 queries were run on a total of 52 nodes.

3. In the third simulation, the remaining entities and relations were added, and 50 queries
for each setting (as given in Table 2) were run on the large graph with 16K entities.
The prices from previous searches were reused for existing nodes. The number of
iterations increased slightly for a few queries but eventually decreased after the prices
were reused in successive runs.

The results from each simulation show that the algorithm dynamically adapted to the
newly added nodes. The final answers from all the resulting paths matched the ground
truth. A critical observation in a larger graph was that if the origin in the following query is
too far from the previous question, the number of iterations may increase and stabilize after
it starts reaching the reasonable learned prices. Thus, the algorithm continuously learns
and adapts to evolving knowledge graphs.

Explainable Reasoning Paths: Explainability refers to the ability of a system to explain
the results and the reasoning process to the users, such that they can know the whys and
hows of the decision-making process [44].

APC returns a complete path between the entities in question. The paths are traceable
and can be inferred by mapping the entity attributes as shown in Figure 6. The need for
explainable reasoning paths can be demonstrated using the second query example from
the KG20C dataset, “Has Mehryar worked in the Matrix Decomposition domain?” From
the explanation given in the answer, we can see no direct yes-or-no answer to this question.
The author has not worked directly in the domain, but technically, he has referred to some
work that cited another work in the said domain. In such cases, the user would want
to know the complete answer and infer the degree of association of the author with that
domain. In cases where no path exists, the algorithm will explore all the nodes and raise an
exception saying that paths do not exist.
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Figure 6. Explainable paths given by our method in question answering for KG20C dataset.

Computational Efficiency: Table 3 shows the number of iterations for a few sample
queries from the KG20C dataset with different prices and edge weight (EW) settings,
as discussed in experiments 6, 7, 8(a), and 8(b) in Table 2. We can see from the results that
the number of iterations reduces significantly by reusing the prices for similar queries. It
also shows the effect of bias introduced due to different values of edge weights in the cases
where the edge weights were assigned as per the relations extracted from query semantics.
The edges with strong matching relations were given “0” initial weights, the medium
relations “3”, and the weak relations “6”. The first query with edge weight settings per
query semantics had only 76 iterations, which is much fewer than the random weights.
The number of iterations dropped to 2 and 3 in the second and the third queries on reusing
the prices, respectively, which is a significant computational improvement.

Table 3. Number of Iterations for sample queries.

Query Price EW = 1 EW = [−10, 10] EW(S:0,W:1) EW(S:0,M:3,W:6)

In which paper did Hang-Li cite paper on
“Equations for PoS”?

Initial price = 0 353 630 347 76

In which paper author Fredric cited the paper
on “Equations for PoS”?

Reusing prices 2 32 2 2

Which paper in “Clustering query” cites work
on “Equations for PoS”?

Reusing prices 3 13 3 3

Support for Multihop Queries: Most of the queries used in our experiments re-
quire multihop reasoning. For example, the query, “In which paper author Fredric
cited the paper on Equations for PoS?” needs a multihop inference of the form, (Fredric,
author_write_paper, ?), (?, paper_cite_paper, Equations for PoS). The APC is able to provide
a full traceable path and support the queries with multihop reasoning.

Queries with Multiple Destinations: Figure 3b shows the example of a query with
multiple destinations. Both the APC and AWPC algorithms support the queries with
multiple destinations. They work the same as does a single destination, but a list of all the
destinations is maintained and the algorithm continues to run until it has reached all the
destinations. This is described in Section 3.1.3.

To validate our approach, we ran the queries on another dataset, Yago3-10, using the
same settings. Figures 7 and 8 show the explainable paths generated for sample queries on
the Yago3-10 dataset using our method.
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Figure 7. Explainable paths for the query made to the YAGO3-10 dataset.

The complete implementation code for both the APC and AWPC algorithms for single
and multiple destination queries and a summary of all the experiment results are available
on GitHub [45].

Figure 8. Explainable path from another query from the YAGO3-10 dataset.

We further show the comparison of our approach with state-of-the-art methods. Table 4
shows the comparison of our method (using APC) with the multirelational embedding
(MEI) embedding methods used on the KG20C dataset to answer semantic queries [36].
The semantic queries answered by this work are single-hop factoid questions such as, “Who
may write this paper?”, “What paper does this author have?”, and not multihop questions such
as, “Which paper does this author have in that conference?”. Moreover, these methods only give a
single candidate score as the answer but not the explainable paths. Our method can support
single and multihop questions and queries with multiple destinations. The predictions are
the same as the ground truth, and the search using APC returns an explainable reasoning
path for all the queries.

Table 4. Comparison of APC with the Embedding Method.

Model Prediction Multihop Queries Explainability Training

Embedding(MEI) Hits@10 < 70% Not supported Candidate entity score Offline
APC Matches ground truth Supported Gives full path Both offline and online

We also compared our method with the Dijkstra algorithm. Both auction and Dijkstra
can be used for finding paths from source to destination, and both have polynomial time
complexity. However, auction has two advantages. First, it tends to be faster, mainly
because it aims to find any path (which is not guaranteed to be the shortest) rather than the
shortest path, as is the case with Dijkstra. Secondly, the auction algorithm generates the
prices for future queries, whereas the Dijkstra provides no such information. Table 5 below
shows the results of some sample queries from KG20C for Dijkstra and auction. The path
was the same for most of the queries, but in some queries shown in Table 5, the path
returned by Dijkstra differed from that by auction and gave a shorter path. Dijkstra starts
fresh for each query enumerating all possible paths. It does not have a learning mechanism
from pasts searches, making it computationally expensive as the knowledge graph grows.
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Table 5. Comparison of the APC with the Dijkstra Algorithm.

Criteria APC Dijkstra

Q1: “If Amanda has worked in
cluster analysis domain?”

Path = [3877, 6572, 7780,
1119]

Path = [3877, 6572, 7780, 1119]

Q2: “If Mehryar Mohri has pa-
per in COLT conference?”

Path = [12,953, 4459, 7868,
4117] suboptimal path

Path = [12,953, 4459, 4117], gives
the shortest path

Explainability Yes Yes
Learn from Past Query Yes No
Computational Efficiency More efficient for large scale

graph
Computationally expensive for
large scale

Adaptability to change Dynamically evolves Takes static snapshot of graph
Model Training Both online and offline Offline only

The above experiments and results show that APC (and AWPC) meets the evalua-
tion criteria. Thus, the potential of auction algorithms can be explored for various tasks
in knowledge graphs. A summary of the experimental results against each evaluation
objective is shown in Table 6.

Table 6. Summary of Experiments and Results.

Evaluation Criteria APC (and AWPC)

Prediction Accuracy Resulting paths match the ground truth
Evolving Knowledge Graph with Emerging Entities Dynamically adapts to newly added entities
Explainable Reasoning and Interpretability Returns traceable paths
Computational Efficiency Reduced iterations on reusing node price
Multihop Queries Supported
Queries with Multiple Destinations Supported

6. Discussion

We discussed the need for dynamic algorithms in evolving knowledge graphs that
can continuously learn from adding new information and provide explainable answers. To
this end we proposed using a recently proposed class of auction algorithms that maintain
and update node prices, while constructing low-price paths. The prices from the previous
searches can be used as a learning experience for related searches, making it computa-
tionally efficient. We used two benchmark datasets in knowledge graphs, KG20C and
YAGO3-10, to show that the resulting paths given by auction are highly interpretable and
explainable. The algorithm can answer single and multihop questions with one or more
destinations. We also compared our method with the Dijkstra shortest path algorithm,
showing that both could give explainable paths. However, auction can learn from previ-
ous searches. The most significant advantage of the auction algorithm is its capability to
arbitrarily assign the initial prices and dynamically update the prices independent of new
nodes added to the graph. This property makes auction suitable for continuous learning in
a dynamic knowledge graph environment.

The auction algorithms can also be used in application contexts to provide recom-
mendations and design flow graphs. One of the applications can be in customer contact
centers where the customers call the agents to get help on their bills, payment methods,
products, WIFI service, call plans, etc. These agents can be human or virtual assistants.
Once the call intent or the named entities are extracted from the customer query and given
the endpoints, the algorithm can provide the full path to the troubleshooting steps for the
agents to resolve customer tickets quickly.

There are certain limitations that we plan to improve upon in future work. For example,
in open-ended questions such as “Who may write this paper?”, the algorithm will search for
all the “author” nodes in the graph. It may make the search inefficient at the run time for
a huge graph. Furthermore, it will provide multiple answers to the user, which may not
be a desirable situation. To address these types of scenarios, link prediction embedding
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methods can be used first to predict the destination candidate. Then, the auction algorithms
can be used to provide explainable paths.

7. Conclusions

This work proposes the use of auction algorithms for question answering over knowl-
edge graphs. We show that these algorithms can adapt to changing conditions by dy-
namically updating node prices and have the ability to learn the proper values of prices
using past experience. In particular, the learned prices can be reused efficiently for similar
future searches. Our method leverages the entity attributes and path relations to construct
interpretable answers from the resulting paths generated by the auction algorithms for
multihop queries.

In this work, we have used two variations of auction algorithms, auction path con-
struction (APC) and auction weighted path construction (AWPC), which have the key
properties of allowing arbitrary starting prices. Other variants of auction algorithms, such
as reverse path, distributed, and multiple node price rise, can be further explored (such
variations are given in the paper [11] and the book [20]). Moreover, a neural network model
can be trained to learn near-optimal starting prices and to reoptimize these prices when
significant changes occur in the network’s structure.
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