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Abstract: In this paper we describe a new conceptual framework that connects approximate
Dynamic Programming (DP), Model Predictive Control (MPC), and Reinforcement Learning
(RL). This framework centers around two algorithms, which are designed largely independently
of each other and operate in synergy through the powerful mechanism of Newton’s method. We
call them the off-line training and the on-line play algorithms. The names are borrowed from
some of the major successes of RL involving games; primary examples are the recent (2017)
AlphaZero program (which plays chess, [SHS17], [SSS17]), and the similarly structured and
earlier (1990s) TD-Gammon program (which plays backgammon, [Tes94], [Tes95], [TeG96]). In
these game contexts, the off-line training algorithm is the method used to teach the program
how to evaluate positions and to generate good moves at any given position, while the on-line
play algorithm is the method used to play in real time against human or computer opponents.
Significantly, the synergy between off-line training and on-line play also underlies MPC (as well
as other major classes of sequential decision problems), and indeed the MPC design architecture
is very similar to the one of AlphaZero and TD-Gammon. This conceptual insight provides a
vehicle for bridging the cultural gap between RL and MPC, and sheds new light on some
fundamental issues in MPC. These include the enhancement of stability properties through
rollout, the treatment of uncertainty through the use of certainty equivalence, the resilience of
MPC in adaptive control settings that involve changing system parameters, and the insights
provided by the superlinear performance bounds implied by Newton’s method.
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1. INTRODUCTION

We will describe a conceptual framework for approxi-
mate DP, RL, and their connections to MPC, which was
first presented in the author’s recent books [Ber20] and
[Ber22a]. The present paper borrows heavily from these
books, the course textbook [Ber23], the overview papers
[Ber21a], [Ber22c], as well as recent research by the author
and his collaborators. 1

Our framework is very broadly applicable thanks to the
generality of the DP methodology on which it rests. This
generality allows arbitrary state and control spaces, thus
facilitating a free movement between continuous-space
infinite-horizon formulations (such as those arising in con-
trol system design and MPC), discrete-space finite-horizon
problem formulations (such as those arising in games and
integer programming), and mixtures thereof that involve
both continuous and discrete decision variables.

To present our framework, we will first focus on a class
of deterministic discrete-time optimal control problems,
which underlie typical MPC formulations. In subsequent
1 Special thanks are due to Yuchao Li for extensive helpful interac-
tions relating to many of the topics discussed in this paper. Early
discussions on MPC with Moritz Diehl were also greatly appreciated.

sections, we will indicate how the principal conceptual
components of our framework apply to problems that
involve stochastic as well as set membership uncertainty,
and how they impact the effectiveness of MPC for indirect
adaptive control.

1.1 An MPC Problem Formulation

The literature on the theory and applications of MPC is
voluminous, starting with the early papers by Clarke, Mo-
htadi, and Tuffs [CMT87a], [CMT87b], and Keerthi and
Gilbert [KeG88]. 2 Surveys, which give many of the early
references, were given by Morari and Lee [MoL99], Mayne
et al. [MRR00], Findeisen et al. [FIA03], and Mayne
[May14]. Textbooks such as Maciejowski [Mac02], Good-
win, Seron, and De Dona [GSD06], Camacho and Bordons
[CaB07], Kouvaritakis and Cannon [KoC16], Borrelli, Be-
mporad, and Morari [BBM17], and Rawlings, Mayne, and
Diehl [RMD17], collectively provide a comprehensive view
of the MPC methodology.

2 The idea of on-line optimization with a truncated horizon and
terminal cost function approximations has been part of the folklore
of the optimal control theory, dating to the 1970s.
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Cost Function Approximation

‖Jµ̃ − J∗‖
‖J̃ − J∗‖

≤ 2α!

1 − α

1

Fig. 1. Illustration of approximation in value space with
one-step lookahead.

More recent works have aimed to integrate “learning”
into MPC, similar to the practices of the RL and AI
communities. This line of research is very active at present;
for some representative papers, see [CLD18], [GrZ19],
[HWM20], [SKG22], [MGQ20], [KRW21], and [MDT22].

To provide an overview of the main ideas of our framework,
let us consider a deterministic stationary discrete-time
system of the form

xk+1 = f(xk, uk), k = 0, 1, . . . ,

where xk and uk are the state and control at time k, taking
values in some spaces X and U . We consider stationary
feedback policies µ, whereby at a state x we apply control
u = µ(x), subject to the constraint that µ(x) must belong
to a given set U(x) for each x.

The cost function of µ, starting from an initial state x0 is

Jµ(x0) = lim
N→∞

N−1∑

k=0

αkg
(
xk, µ(xk)

)
,

where α ∈ (0, 1] is a discount factor, and

g(x, u) ≥ 0, for all x ∈ X,u ∈ U(x).

We also assume that there is a cost-free and absorbing
termination state t [i.e., g(t, u) = 0 and f(t, u) = t for
all u ∈ U(t)]; e.g., the origin in typical optimal regulation
settings in control. The optimal cost function is defined by

J∗(x) = min
µ∈M

Jµ(x), ∀ x ∈ X,

where M is the set of all admissible policies, and our
objective is to find an optimal policy µ∗, i.e., one that
satisfies Jµ∗(x) = J∗(x) for all x ∈ X.

This is a typical MPC problem formulation, and it includes
the classical linear-quadratic problems where X = <n,
U = <m, f is linear, g is positive definite quadratic, and
the termination state t is the origin of <n. Note that our
formulation makes no assumptions on the nature of the
state and control spaces X and U ; they can be arbitrary.
However, the problem and its computational solution have
been analyzed at the level of generality used here in the
author’s paper [Ber17b], which can serve as a foundation
for mathematical results and analysis that we will use
somewhat casually in this paper.

Stability of policies is of paramount importance in MPC.
However, because X and U can be arbitrary, it is necessary
to use a nontraditional definition of stability. In particular,
we say that a policy µ is stable if

Jµ(x) <∞, ∀ x ∈ X.
Note that J∗(x) is finite for all x if there exists at least
one stable policy, which we will generally assume in this
paper.

1.2 Approximation in Value Space - MPC and RL

It is known that J∗ satisfies the Bellman equation

Approximation Error ‖J̃ − J∗‖ Performance Error ‖Jµ̃ − J∗‖ xk

1st Step Future 1st ! Steps

J∗(x) = min
u∈U(x)

{
g(x, u) + αJ∗(f(x, u)

)}
, x ∈ X,

µ̃(x) ∈ arg min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, x ∈ X ;

min
uk,...,uk+!−1

{
!−1∑

m=0

αmg(xk+m, uk+m) + α!J̃
(
f(xk+!−1, uk+!−1)

)
}

min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}

uk At x

Input (Control) Output (Function of the State) Changing Fixed . . .

Time 0 Time k Transformer Heuristic

Region of convergence d θ x l Stage N u = (u0, . . . , uN−1)
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Cost Function Approximation

‖Jµ̃ − J∗‖
‖J̃ − J∗‖

≤ 2α!

1 − α

1

Approximation Error ‖J̃ − J∗‖ Performance Error ‖Jµ̃ − J∗‖ xk

1st Step Future

J∗(x) = min
u∈U(x)

{
g(x, u) + αJ∗

(
f(x, u)

)}
, x ∈ X,

µ̃(x) ∈ arg min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, x ∈ X ;

min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}

uk At x

Input (Control) Output (Function of the State) Changing Fixed . . .

Time 0 Time k Transformer Heuristic

Region of convergence d θ x l Stage N u = (u0, . . . , uN−1)
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Fig. 2. Illustration of approximation in value space with `-
step lookahead. The `-step minimization at xk yields
a sequence ũk, ũk+1, . . . , ũk+`−1. The control ũk is
applied at xk, and defines the `-step lookahead policy
µ̃ via µ̃(xk) = ũk. The controls ũk+1, . . . , ũk+`−1
are discarded. This is similar to mainstream MPC
schemes.

J∗(x) = min
u∈U(x)

{
g(x, u) + αJ∗

(
f(x, u)

)}
, ∀ x ∈ X,

and that if µ∗(x) attains the minimum above for all x,
then µ∗ is an optimal policy. Moreover for a policy µ, we
have

Jµ(x) = g
(
x, µ(x)

)
+ αJµ

(
f
(
x, µ(x)

))
, ∀ x ∈ X.

These are results that are generally accepted in the optimal
control literature. Their rigorous mathematical proofs at
the level of generality considered here are given in the
paper [Ber17b], which relies on the general theory of
abstract DP problems with nonnegative cost, developed in
the paper [Ber77] and extensively discussed in the books
[BeS78], [Ber22b]; see also Ch. 3 of the thesis [Li23] for a
related discussion.

A major RL approach, which we call approximation in
value space, is to replace J∗ with an approximating real-
valued function J̃ , and obtain a suboptimal policy µ̃ with
the minimization

µ̃(x) ∈ arg min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, ∀ x ∈ X;

see Fig. 1. We assume that the minimum above is attained
for all x ∈ X, and refer to µ̃ as the one-step lookahead
policy .

There is also an `-step lookahead version of the preceding
approach, which involves the solution of an `-step DP
problem, where ` is a positive integer, with a terminal
cost function approximation J̃ . Here at a state xk we
minimize the cost of the first ` stages with the future costs
approximated by J̃ (see Fig. 2). If this minimization yields
a control sequence ũk, ũk+1, . . . , ũk+`−1, we apply the con-
trol ũk at xk, and discard the controls ũk+1, . . . , ũk+`−1.
This defines a policy µ̃ via µ̃(xk) = ũk.

Actually, we may view `-step lookahead minimization as
the special case of its one-step counterpart where the
lookahead function is the optimal cost function of an (`−
1)-stage DP problem that starts at xk+1 and has a terminal

cost α`J̃(xk+`) after `− 1 stages.

Note that the multistep scheme depicted in Fig. 2 can be
recognized as the most common MPC architecture design
(usually α = 1 is chosen in MPC). When the `-step looka-



head minimization problem involves continuous control
variables, this minimization can often be done by nonlin-
ear programming methods, such as sequential quadratic
programming. However, when discrete/integer variables
are involved, time consuming mixed integer programming
computations or space and control discretization methods
may be required.

In MPC problems that involve state constraints, it may
also be necessary to modify the state space X to ensure
that the `-step lookahead minimization has a feasible so-
lution (i.e., that the control can keep the state within X).
This leads to the problem of reachability of a target tube,
which was first formulated and analyzed in the author’s
thesis [Ber71] and paper [Ber72], and subsequently dis-
cussed more broadly in the MPC literature, e.g., Blanchini
[Bla99], Kerrigan [Ker00], Rakovic et al. [RKM06], and
Mayne [May14]. In the context of the off-line training/on-
line play conceptual framework of the present paper, reach-
ability issues must be dealt with off-line, as they involve
substantial preliminary target tube calculations.

Several RL methods are available for computing suitable
terminal cost approximations J̃ by using some form of
learning from data, thus circumventing the solution of
Bellman’s equation. The approximation in value space
approach has also received a lot of attention in the MPC
literature, but in the early days of MPC there was little
consideration of learning that involves training of neural
networks and other approximation architectures, as prac-
ticed by the RL community.

1.3 Rollout with a Stable Policy

An important cost function approximation approach is
rollout, where J̃ is the cost function Jµ of a stable policy µ,
i.e., one for which Jµ(x) <∞ for all x ∈ X. We discuss this
approach in this section, together with associated stability
issues.

In the MPC context it is often critical that the policy µ̃
obtained by one-step and `-step lookahead is stable. It can
be shown that µ̃ is stable if J̃ satisfies the following version
of a Lyapunov condition:

J̃(x) ≥ min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, ∀ x ∈ X;

see [Ber17b], [Ber20]. In particular, if J̃ is equal to Jµ for
some stable policy µ, then Jµ is real-valued and satisfies
the preceding Lyapunov condition. 3 To see this, note that
from Bellman’s equation we have,

Jµ(x) = g
(
x, µ(x)

)
+ αJµ

(
f
(
x, µ(x)

))
,

so that

Jµ(x) ≥ min
u∈U(x)

{
g(x, u) + αJµ

(
f(x, u)

)}
,

for all x ∈ X. Thus Jµ satisfies the Lyapunov condition,

implying that µ̃ is stable when J̃ = Jµ. In this case we call
µ the base policy , and we call µ̃ the rollout policy that is
based on µ.

Rollout is a major RL approach, which is simple and very
reliable, based on extensive computational experience. It
3 Note that if µ is unstable, then Jµ is not real-valued and does not
qualify for use as J̃ in the one-step lookahead scheme.

is closely connected to the MPC design philosophy, as has
been discussed in the author’s overview paper [Ber05a].
An important conceptual point is that rollout consists of
a single iteration of the fundamental DP method of policy
iteration, whose connection with Newton’s method in
the context of linear-quadratic problems [BeK65], [Kle68],
and other Markov decision problems [PoA67], [PuB78],
[PuB79] is well known.

The main difficulty with rollout is that computing the
required values of Jµ

(
f(x, µ(x))

)
on-line may require time

consuming simulation. This is an even greater difficulty for
the `-step lookahead version of rollout, where the required
number of base policy values increases exponentially with
`. In this case approximate versions of rollout may be used,
such as simplified rollout , truncated rollout , and multiagent
rollout ; see the books [Ber19], [Ber20], [Ber22a], [Ber23],
and the subsequent discussion.

1.4 Off-Line Training and On-line Play

Implicit in approximation in value space is a conceptual
separation between two algorithms:

(a) The off-line training algorithm, which designs the

cost function approximation J̃ , and possibly other
problem components (such as for example a base
policy for rollout, or a target/safety tube of states
where the system must stay at all times).

(b) The on-line play algorithm, which implements the
policy µ̃ in real-time via one-step or `-step lookahead
minimization, cf. Fig. 2.

An important point is that the off-line training and on-
line play algorithms can often be designed independently
of each other. In particular, approximations used in the
on-line lookahead minimization need not relate to the
methods used for construction of the terminal cost ap-
proximation J̃ . Moreover, J̃ can be simple and primitive,
particularly in the case of multistep lookahead, or it may
be based on sophisticated off-line training methods involv-
ing neural networks.

Alternatively, J̃ may be computed off-line with a problem
approximation approach, as the optimal or nearly optimal
cost function of a simplified optimization problem, which is
more convenient for computation (e.g., a linear-quadratic
problem approximation, following linearization of nonlin-
ear dynamics of the original problem). Problem simpli-
fications may include exploiting decomposable structure,
reducing the size of the state space, neglecting some of the
constraints, and ignoring various types of uncertainties.

We note that the off-line training/on-line play separation
does not explicitly appear in early MPC frameworks, but it
is often used in more recent MPC proposals, noted earlier,
where J̃ may involve the training of neural networks with
data. On the other hand, the off-line training/on-line
play division is common in RL schemes, as well as game
programs such as computer chess and backgammon, which
we discuss in the next section.

1.5 AlphaZero and TD-Gammon

The development of the AlphaZero program by DeepMind
Inc, as described in the papers [SHS17], [SSS17], is perhaps
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Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π
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Fig. 3. Illustration of the architecture of AlphaZero chess.
It uses a very long lookahead minimization involving
moves and countermoves of the two players followed
by a terminal position evaluator, which is designed
through extensive off-line training using a deep neural
network. There are many implementation details that
we will not discuss here; for example the lookahead is
selective, because some lookahead paths are pruned,
by using a form of Monte Carlo tree search. Also a
primitive form of rollout is used at the end of the
lookahead minimization to resolve dynamic terminal
positions. Note that the off-line-trained neural net-
work of AlphaZero produces both a position evaluator
and a playing policy. However, the neural network-
trained policy is not used directly for on-line play.

the most impressive success story in reinforcement learning
(RL) to date. AlphaZero plays Chess, Go, and other
games, and is an improvement in terms of performance
and generality over the earlier AlphaGo program [SHM16],
which plays the game of Go only. AlphaZero plays chess
and Go as well or better than all competitor computer
programs, and much better than all humans.

The AlphaZero program is remarkable in several other
ways. In particular, it has learned how to play with-
out human instruction, just data generated by playing
against itself. In RL this is called self-learning , and can
be viewed as a form of the classical DP method of policy
iteration, adapted to off-line training with self-generated
data. Moreover, AlphaZero learned how to play chess very
quickly; within hours, it played better than all humans
and computer programs (with the help of awesome parallel
computation power, it must be said).

The architecture of AlphaZero is described in Fig. 3. A
comparison with Fig. 2 shows that the architectures of
AlphaZero and MPC are very similar.

The success of the AlphaZero design framework was repli-
cated by open source programs such as LeelaChess and
Stockfish. It is presently believed that the principal con-
tributor to their success is long lookahead (which uses an
efficient on-line play algorithm). The deep neural network-
based position evaluator, which is trained off-line with
an immense amount of chess data to produce a position
evaluator and a player that can select moves “instantly”
at any given position, has also contributed to success,
although likely to a lesser extent.
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Fig. 4. Illustration of the architecture of TD-Gammon with
truncated rollout [TeG96]. It uses a relatively short
lookahead minimization followed by rollout and ter-
minal position evaluation (i.e., game simulation with
the one-step lookahead player; the game is truncated
after a number of moves, with a position evaluation at
the end). Note that backgammon involves stochastic
uncertainty, and its state is the pair of current board
position and dice roll.

The principles of the AlphaZero design have much in com-
mon with the earlier TD-Gammon programs of Tesauro
[Tes94], [Tes95], [TeG96] that play backgammon (a game
of substantial computational and strategical complexity,
which involves a large state space, as well as stochastic
uncertainty due to the rolling of dice); see Fig. 4. TD-
Gammon also uses an off-line neural network-trained ter-
minal position evaluator, and importantly it also extends
its on-line lookahead by rollout (simulation with the one-
step lookahead player that is based on the position evalua-
tor). Tesauro’s programs stimulated much interest in RL in
the middle 1990s, and the last of these programs [TeG96]
exhibits different and better play than humans. The rollout
algorithm, based on Monte-Carlo simulation, has been a
principal contributor to this achievement. 4

A striking empirical observation is that while the neural
networks used in AlphaZero were trained extensively, the
player defined by them is not used directly during on-line
play (it is too inaccurate due to approximation errors that
are inherent in off-line neural network training). Instead
a separate on-line player is used to select moves, based
on multistep lookahead minimization, a limited form of
rollout, and a terminal position evaluator that was trained
using experience with the off-line player. The on-line player
performs a form of policy improvement, which is not
degraded by neural network approximations. As a result,
it greatly improves the performance of the off-line player.

Similarly, TD-Gammon performs on-line a policy improve-
ment step using one-step or two-step lookahead minimiza-
tion, which is not degraded by neural network approxima-
tions. Note that the lookahead minimization in computer
backgammon is short, because its lookahead tree of moves
and countermoves expands very quickly to take into ac-

4 Note that AlphaZero and TD-Gammon are trained to select moves
assuming that they play against an adversarial opponent. Their
design philosophy would be more closely aligned to MPC, if they
were to play against a known and fixed opponent, whose moves can
be perfectly predicted.



count the stochastic dice rolls. However, rollout with a base
policy, aided by a trained neural network that provides
position evaluations, effectively expands the length of the
lookahead.

Thus in summary:

(a) The on-line player of AlphaZero plays much better
than its extensively trained off-line player. This is
due to the beneficial effect of exact policy improve-
ment with long lookahead minimization, which cor-
rects for the inevitable imperfections of the neural
network-trained off-line player, and position evalua-
tor/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays
much better than TD-Gammon without rollout. This
is due to the beneficial effect of the rollout, which
serves as a substitute for long lookahead minimiza-
tion.

An important lesson from AlphaZero and TD-Gammon
is that the performance of an off-line trained policy can
be greatly improved by on-line approximation in value
space, with long lookahead (involving minimization or
rollout with the off-line policy, or both), and terminal cost
approximation that is obtained off-line. This performance
enhancement is often dramatic and is due to a simple fact,
which is couched on algorithmic mathematics and is a focal
point of the present paper:

(a) Approximation in value space with one-step lookahead
minimization amounts to a step of Newton’s method
for solving Bellman’s equation.

(b) The starting point for the Newton step is based on
the results of off-line training, and may be enhanced
by longer lookahead minimization and on-line rollout .

Indeed the major determinant of the quality of the on-line
policy is the Newton step that is performed on-line, while
off-line training plays a secondary role by comparison.

1.6 An Overview of our Framework

In the next section, we will aim to illustrate the principal
ideas of our framework. These are the following:

(a) One-step lookahead is equivalent to a step of New-
ton’s method for solving the Bellman equation.

(b) `-step lookahead is equivalent to a step of a New-
ton/SOR method, whereby the Newton step is pre-
ceded by ` − 1 SOR steps (a form of DP/value iter-
ations; SOR stands for successive over-relaxation in
numerical analysis terminology).

(c) There is a superlinear relation between the approx-

imation error ‖J̃ − J∗‖ and the performance error
‖Jµ̃ − J∗‖, owing to the preceding Newton step in-
terpretation. As a result, within the region of con-
vergence of Newton’s method, the performance error
‖Jµ̃ − J∗‖ is small and often negligible. In other
words, the MPC policy µ̃ is very close to optimal if
J̃ lies within the region of superlinear convergence of
Newton’s method.

(d) The region of convergence of Newton’s method ex-
pands as the length ` of the lookahead minimization
increases. Thus the performance of the MPC policy

µ̃ improves as ` increases, and is essentially optimal
if ` is sufficiently large regardless of the quality of the
terminal cost approximation J̃ . Indeed, for finite state
and control spaces, and a long enough lookahead, it
can be shown that µ̃ is an optimal policy, regardless
of the size of the approximation error ‖J̃ − J∗‖; see
Appendix A.4 of the book [Ber22a] and Prop. 2.3.1
of the book [Ber22b].

(e) The region of stability, i.e., the set of J̃ for which µ̃
is stable in the sense that Jµ̃(x) < ∞ for all x ∈ X,
is closely connected to the region of convergence of
Newton’s method.

(f) Rollout with a stable policy guarantees that µ̃ is also
stable.

(g) The region of stability is also enlarged by increasing
the length of the rollout horizon, as long as the base
policy that is used for rollout is stable.

In the next section, we will illustrate the preceding
points through the use of a simple one-dimensional linear-
quadratic problem, for which the Bellman equation can
be defined through a one-dimensional Riccati equation.
We note, however, that all the insights obtained through
the Riccati equation survive intact to far more general
problems, involving abstract Bellman equations where cost
functions are defined over an arbitrary state space. 5

In Section 3, we will briefly discuss stochastic exten-
sions, where the system equation involves stochastic dis-
turbances wk:

xk+1 = f(xk, uk, wk), k = 0, 1, . . . .

The primary difficulty with stochastic problems is the
increase of the computation required for both off-line train-
ing and on-line play, which may now involve Monte-Carlo
simulation of wk. This computation can be effectively
mitigated with the use of certainty equivalence, i.e., by
replacing the stochastic disturbances wk with typical val-
ues wk (such as for example the expected values E{wk}).
However, it is essential that when performing the `-step
lookahead minimization, we use certainty equivalence only
for the time steps k + 1, . . . , k + `− 1, after the first step.
This is necessary in order to maintain the Newton step
character of the on-line play process.

In Section 4, we will comment on connections of the
MPC/AlphaZero framework with adaptive control. An
additional benefit of on-line policy generation by approx-
imation in value space, not observed in the context of
games (which have stable rules and environment), is that
it works well with changing problem parameters and on-
line replanning. Mathematically, what happens is that
the Bellman equation is perturbed due to the parameter
5 In this more general setting, the Bellman equation does not have
the differentiability properties required to define the classical form
of Newton’s method. However, Newton’s method has been extended
to nondifferentiable operator equations through the work of many
researchers starting in the late 70s, and in a form that is perfectly
adequate to support theoretically the DP/RL/MPC setting; see
Josephy [Jos79], Robinson [Rob80], [Rob88], [Rob11], Kojima and
Shindo [KoS86], Kummer [Kum88], [Kum00], Pang [Pan90], Qi and
Sun [Qi93], [QiS93], Facchinei and Pang [FaP03], Ito and Kunisch
[ItK03], Bolte, Daniilidis, and Lewis [BDL09]. A convergence analysis
of the nondifferentiable form of Newton’s method, together with a
discussion of performance bounds that relate to MPC, is given in
Appendix A of the book [Ber22a].



changes, but approximation in value space still operates
as a Newton step. An essential requirement within this
context is that a system model is estimated on-line through
some identification method, and is used during the one-
step or multistep lookahead minimization process, similar
to what is done in indirect adaptive control.

2. OFF-LINE TRAINING AND ON-LINE PLAY
SYNERGY THROUGH NEWTON’S METHOD

We will now aim to understand the character of approxi-
mation in value space as it relates to the Bellman equation,
and to the principal algorithms for its solution. To this end
we will focus on the one-dimensional version of the classical
linear-quadratic problem, where the system has the form

xk+1 = axk + buk.

Here the state xk and the control uk are scalars, and the
coefficients a and b are also scalars, with b 6= 0. The cost
function has the form

∞∑

k=0

(qx2k + ru2k),

where q and r are positive scalars, and we assume no
discounting (α = 1).

This one-dimensional case admits a convenient and vi-
sually insightful analysis of the algorithmic issues that
are central for our purposes. However, the analysis fully
generalizes to multidimensional linear-quadratic problems.
It also extends to general DP problems, including those
involving arbitrary state and control spaces, stochastic or
set membership uncertainty, as well as multiplicative/risk-
sensitive cost functions. At this level of generality, the anal-
ysis requires a more demanding mathematical treatment
that is based on the machinery of abstract DP; see the
books [Ber20], [Ber22b].

2.1 The Riccati Equation

Let us summarize the main analytical and computational
results that we will need (all of these are well known
and can be found in many sources, including nearly all
textbooks on MPC and optimal control). The optimal cost
function is quadratic of the form

J∗(x) = K∗x2,

where the scalar K∗ is the unique positive solution of
Riccati equation

K = F (K) =
a2rK

r + b2K
+ q.

Moreover, the optimal policy is linear of the form

µ∗(x) = L∗x,

where L∗ is the scalar given by

L∗ = − abK∗

r + b2K∗
.

The Riccati equation is simply the Bellman equation
restricted to quadratic functions J(x) = Kx2 with K ≥
0. Both the Riccati and the Bellman equations can be
viewed as fixed point equations, and can be graphically
interpreted and solved graphically as indicated in Fig. 5.

We can also characterize graphically the cost function of a
policy µ that is linear of the form µ(x) = Lx, and is also
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(
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min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

r
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = a2rK

r+b2K + q K̃ = 0 K̄ KL̃

L̃ = −r + ab2K̃

abK̃
K1 L̃ = −r + ab2K1

abK1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation
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Fig. 5. Graphical solution of the Riccati equation. The
optimal cost function is J∗(x) = K∗x2. The scalar
K∗ solves the fixed point equation K = F (K). It
can be found graphically as the positive value of K
that corresponds to the point where the graphs of the
functions K and F (K) meet. A similar interpretation
can be given for the solution of the general Bellman
equation, which however cannot be visually depicted
for problems involving more than one or two states;
see the books [Ber20], [Ber22a], and [Ber22b].

stable, in the sense that the scalar L satisfies |a+ bL| < 1,
so that the corresponding closed-loop system

xk+1 = (a+ bL)xk
is stable. Its cost function has the form

Jµ(x) = KLx
2,

where KL solves the equation 6

K = FL(K) = (a+ bL)2K + q + rL2.

The graphical solution of this equation is illustrated in Fig.
6. The function FL(K) is linear, with slope (a+ bL)2 that
is strictly less than 1. In particular, KL corresponds to
the point where the graphs of the functions K and FL(K)
meet.

If µ(x) = Lx is unstable, in the sense that the scalar L
satisfies |a + bL| > 1, then its cost function is given by
Jµ(x) = ∞ for all x 6= 0 and Jµ(0) = 0. In this case the
graphs of the functions K and FL(K) meet at a negative
value of K, which has no meaning in the context of the
linear-quadratic problem.

2.2 Iterative Solution by Value and Policy Iteration

The classical DP algorithm of Value Iteration (VI for
short) produces a sequence of cost functions {Jk} by ap-
plying the Bellman equation operator repeatedly, starting
from an initial nonnegative function J0. For our linear-
quadratic problem it takes the form

Jk+1(x) = min
u∈<

{
qx2 + ru2 + Jk(ax+ bu)

}
.

When J0 is quadratic of the form J0(x) = K0x
2 with

K0 ≥ 0, it can be seen that the VI iterates Jk are also
quadratic of the form Jk(x) = Kkx

2, where

Kk = F (Kk−1).

6 Sometimes this equation is called the “Lyapunov equation” in the
control theory literature. In this paper, we will refer to it as the
“Riccati equation for linear policies.”
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(
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3 ũ1 x̃2 ũ2 x̃3
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Fig. 6. Graphical solution of the Riccati equation for a
linear policy µ(x) = Lx. When µ is stable, its cost
function is Jµ(x) = KLx

2, where KL corresponds to
the point where the graphs of the functions K and
FL(K) meet.
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3 ũ0 x̃1 ũ1 x̃1
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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Fig. 7. Graphical illustration of VI for the linear-quadratic
problem. It has the form Kk+1 = F (Kk), where F is
the Riccati operator,

F (K) =
a2rK

r + b2K
+ q.

The algorithm converges to K∗ starting from any
K0 ≥ 0.

Then the VI algorithm becomes a fixed point iteration that
uses the Riccati operator F . The algorithm is illustrated in
Fig. 7. As can be seen from the figure, when starting from
any K0 ≥ 0, the algorithm generates a sequence {Kk} of
nonnegative scalars that converges to K∗.

Another major algorithm is Policy Iteration (PI for short).
It produces a sequence of stable policies {µk}, starting
with some stable policy µ0. Each policy has improved cost
function over the preceding one, i.e., Jµk+1(x) ≤ Jµk(x) for

all k and x, and the sequence of policies {µk} converges
to the optimal. Policy iteration is of major importance in
RL, since most of the successful algorithmic RL schemes
use explicitly or implicitly some form of approximate PI.
We will discuss PI and its relation with rollout later,
and we will provide visual interpretations based on their
connection with Newton’s method.
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Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m− 1) c(m) c(m+1) c(M) c(M − 1) Linear Stable Policy Quadratic Cost approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

F (K)x2 = min
u∈"

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈"

{
q + rL2 + K(a + bL)2

}
x2

or

F (K) = min
L∈"

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Off-Line Training On-Line Play

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

for Riccati Equation

Approximation Error ‖J̃ − J∗‖ Performance Error ‖Jµ̃ − J∗‖ xk

1st Step Future 1st ! Steps

J∗(x) = min
u∈U(x)

{
g(x, u) + αJ∗

(
f(x, u)

)}
, x ∈ X,

µ̃(x) ∈ arg min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, x ∈ X ;

min
uk,uk+1,...,uk+!−1

{
!−1∑

m=0

αmg(xk+m, uk+m) + α!J̃
(
f(xk+!−1, uk+!−1)

)
}

min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}

uk At x At xk

Input (Control) Output (Function of the State) Changing Fixed . . .

Time 0 Time k Transformer Heuristic

Region of convergence d θ x l Stage N u = (u0, . . . , uN−1)
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Fig. 8. Illustration of the interpretation of approximation
in value space with one-step lookahead as a Newton
step that maps J̃ to the cost function Jµ̃ of the one-
step lookahead policy.
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Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π
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for Riccati Equation

Approximation Error ‖J̃ − J∗‖ Performance Error ‖Jµ̃ − J∗‖ xk

1st Step Future 1st ! Steps

J∗(x) = min
u∈U(x)

{
g(x, u) + αJ∗

(
f(x, u)

)}
, x ∈ X,

µ̃(x) ∈ arg min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, x ∈ X ;

min
uk,uk+1,...,uk+!−1

{
!−1∑

m=0

αmg(xk+m, uk+m) + α!J̃
(
f(xk+!−1, uk+!−1)

)
}

min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}

uk At x At xk

Input (Control) Output (Function of the State) Changing Fixed . . .

Time 0 Time k Transformer Heuristic

Region of convergence d θ x l Stage N u = (u0, . . . , uN−1)

(ũ0, . . . , ũk−1, uk, uk+1, . . . , uN−1)

Time k + 1 Time k + m i j

b0 b1 bm−2 bm−1 0 1 d1 d2 dm−1 dm d1 m m − 1 . . .

1 − b0 1 − b1 − d1 1 − bm−2 1 − bm−1 − dm−1 1 − d1 1 − d2 1 − dm−1

1 − dm

(u0, . . . , uk, uk, ũk+1, . . . , ũN−1) for all ũk+1

Cost Function Approximation

1

Fig. 9. Illustration of the interpretation of approximation
in value space with multistep lookahead and truncated
rollout as a Newton step, which maps the result of
multiple VI iterations starting with the terminal cost
function approximation J̃ to the cost function Jµ̃ of
the multistep lookahead policy.

2.3 Visualizing Approximation in Value Space

The use of Riccati equations allows insightful visualiza-
tion of approximation in value space. This visualization,
although specialized to linear-quadratic problems, is con-
sistent with related visualizations for more general infinite
horizon problems. In particular, in the books [Ber20] and
[Ber22a], Bellman operators, which define the Bellman
equations, are used in place of Riccati operators, which
define the Riccati equations.

We will first show that approximation in value space with
one-step lookahead can be viewed as a Newton step for
solving the Riccati equation; see Fig. 8. In particular, let
us consider a quadratic cost function approximation of the
form J̃(x) = Kx2, where K ≥ 0. We will show that:

(a) An iteration of Newton’s method for solving the
Riccati equation K = F (K), starting from a value

K̃ yields the quadratic cost coefficient KL̃ of the cost
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αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

min
u∈U(x)
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pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
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αKr

r+αKb2 + 1
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Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
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1 u∗
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High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

Fig. 10. Illustration of how the graph of the Riccati
operator F can be obtained as the lower envelope of
the linear operators

FL(K) = (a+ bL)2K + q + bL,

as L ranges over the real numbers. We have

F (K) = min
L∈<

FL(K).

Moreover, for any fixed K̃, the scalar L̃ that attains
the minimum is given by

L̃ = − abK̃

r + b2K̃
,

and is such that the line corresponding to the graph
of FL̃ is tangent to the graph of F at K̃, as shown in
the figure.

function Jµ̃ of the one-step lookahead policy µ̃, which

is linear of the form µ̃(x) = L̃x and has cost function
Jµ̃(x) = KL̃x

2.
(b) As a result of (a), the corresponding quadratic cost

coefficients K̃ and KL̃ satisfy the quadratic conver-
gence relation

|KL̃ −K∗|
|K̃ −K∗|2

<∞.

(c) As a result of (b), for K̃ within the region of conver-
gence of Newton’s method, the one-step lookahead
policy cost function Jµ̃ tends to be closer to J∗ than

J̃ , and for J̃ close to J∗, the policy µ̃ is very close to
optimal.

These facts admit a simple proof for the linear-quadratic
case, but qualitatively hold in great generality, i.e., for
arbitrary state and control spaces, for finite and infinite
horizon problems, and in the presence of stochastic and
set-membership uncertainty. The reason for this generality
is the universal character of the corresponding mathemat-
ical proof arguments, which rely on the theory of abstract
DP.

For the case of multistep lookahead minimization, which
typically underlies the MPC architecture, we will also
show that the Newton step property holds. Indeed, this
property is enhanced, because the region of convergence of
Newton’s method is enlarged by longer lookahead , as we will
argue graphically later. The extension of the Newton step
interpretation is not surprising because, as noted earlier,
we may view `-step lookahead as a one-step lookahead
where the cost function approximation is the optimal cost
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Fig. 11. Illustration of approximation in value space with
one-step lookahead for the linear-quadratic problem.
Given a terminal cost approximation J̃ = K̃x2, we
compute the corresponding linear policy µ̃(x) = L̃x,
where

L̃ = − abK̃

r + b2K̃
,

and the corresponding cost function KL̃x
2, using the

Newton step shown.

function of an (` − 1)-stage DP problem with a terminal

cost J̃(xk+`) on the state xk+` obtained after `− 1 stages;
see Fig. 9.

Indeed, let us first consider one-step lookahead minimiza-
tion with any terminal cost function approximation of the
form J̃(x) = Kx2, where K ≥ 0. The one-step lookahead
control at state x, which we denote by µ̃(x), is obtained
by minimizing the right side of Bellman’s equation when
J(x) = Kx2:

µ̃(x) ∈ arg min
u∈<

{
qx2 + ru2 +K(ax+ bu)2

}
.

We can break this minimization into a sequence of two
minimizations as follows:

F (K)x2 = min
L∈<

min
u=Lx

{
qx2 + ru2 +K(ax+ bu)2

}
(1)

= min
L∈<

{
q + bL+K(a+ bL)2

}
x2 (2)

= min
L∈<

FL(K)x2, (3)

where the function FL(K) is the Riccati equation operator
for the generic linear policy µ(x) = Lx. Figure 10 illus-
trates the two-step minimization above, and shows how
the graph of the Riccati operator F can be obtained as the
lower envelope of the linear operators FL, as L ranges over
the real numbers.

Let us now fix the terminal cost function approximation to
some K̃x2, where K̃ ≥ 0, and consider the corresponding
one-step lookahead policy µ̃. Figure 11 illustrates the
corresponding linear cost function FL̃ of µ̃, and shows that
its graph is a tangent line to the graph of F at the point
K̃ (cf. Fig. 10).

Thus the function FL̃ can be viewed as a linearization of

F at the point K̃, and defines a linearized problem: to find
a solution of the equation

K = FL̃(K) = q + bL̃2 +K(a+ bL̃)2.



The important point now is that the solution of this
equation, denoted KL̃, is the same as the one obtained
from a single iteration of Newton’s method for solving
the Riccati equation, starting from the point K̃. This is
illustrated in Fig. 11.

To elaborate, let us note that the classical form of New-
ton’s method for solving a fixed point problem of the form
y = T (y), where y is an n-dimensional vector, operates as
follows: At the current iterate yk, we linearize T and find
the solution yk+1 of the corresponding linear fixed point
problem. Assuming T is differentiable, the linearization is
obtained by using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n× n Jacobian matrix of T eval-
uated at the vector yk. For the linear quadratic problem,
T is equal to the Riccati operator F , and is differentiable.
However, there are extensions of Newton’s method that
are based on solving a linearized system at the current
iterate, but relax the differentiability requirement to piece-
wise differentiability, and/or component concavity (here
the role of the Jacobian matrix is played by subgradient
operators). The quadratic or similarly fast superlinear con-
vergence property is maintained in these extended forms of
Newton’s method; see the monograph [Ber22a] (Appendix
A) and the paper [Ber22c], which provide a convergence
analysis and discussion related to the DP/MPC context.

The preceding argument can be extended to `-step looka-
head minimization to show that a similar Newton step
interpretation is possible. Indeed in this case, instead of
linearizing F at K̃, we linearize at

K`−1 = F `−1(K̃),

i.e., at the result of ` − 1 successive applications of F
starting with K̃. Each application of F corresponds to a
value iteration. Thus the effective starting point for the
Newton step is F `−1(K̃). Figure 12 depicts the case ` = 2.

2.4 Region of Stability of Approximation in Value Space

It is useful to define the region of stability of approximation
in value space as the set of K ≥ 0 such that

|a+ bLK | < 1,

where LK is the linear coefficient of the one-step lookahead
policy corresponding to K. It can be seen that the region of
stability is also closely related to the region of convergence
of Newton’s method : the set of points K starting from
which Newton’s method, applied to the Riccati equation
K = F (K), converges to K∗ asymptotically.

Note that for our one-dimensional linear-quadratic prob-
lem, the region of stability is the interval (KS ,∞) that
is characterized by the single point KS where F has
derivative equal to 1; see Fig. 13. For multidimensional
problems, the region of stability may not be characterized
as easily. Still, however, it is generally true that the re-
gion of stability is enlarged as the length of the lookahead
increases. Moreover, substantial subsets of the region of
stability may be conveniently obtained. Results of this
type are known within the MPC framework under various
conditions (see the papers by Mayne at al. [MRR00],
Magni et al. [MDM01], and the MPC book [RMD17]).
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u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
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Fig. 12. Illustration of approximation in value space with
two-step lookahead for the linear-quadratic problem.
Starting with a terminal cost approximation J̃ =
K̃x2, we obtain K1 using a single value iteration.
We then compute the corresponding linear policy
µ̃(x) = L̃x, where

L̃ = − abK1

r + b2K1

and the corresponding cost function KL̃x
2, using the

Newton step shown. The figure shows that for any
K ≥ 0, the corresponding `-step lookahead policy will
be stable for all ` larger than some threshold.
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Fig. 13. Illustration of the region of stability, i.e., the set of
K ≥ 0 such that the one-step lookahead policy is sta-
ble. This is also the set of initial conditions for which
Newton’s method converges to K∗ asymptotically.

In this connection, it is interesting to note that with
increased lookahead, the effective starting point F `−1(K̃)
is pushed more and more within the region of stability,
and approaches K∗ as ` increases. In particular, it can
be seen that for any given K̃ ≥ 0, the corresponding `-
step lookahead policy will be stable for all ` larger than
some threshold ; see Fig. 12. The book [Ber22a], Section
3.3, contains a broader discussion of the region of stability
and the role of multistep lookahead in enlarging it.
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(
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3 ũ1 x̃2 ũ2 x̃3
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Fig. 14. Illustration of the rollout algorithm for the linear
quadratic problem. Starting from a linear stable base
policy µ, it generates a stable rollout policy µ̃. The
quadratic cost coefficient of µ̃ is obtained from the
quadratic cost coefficient of µ with a Newton step for
solving the Riccati equation.

2.5 Rollout and Policy Iteration

Let us return to the linear quadratic problem and the
rollout algorithm starting from a stable linear base policy
µ. It obtains the rollout policy µ̃ by using a policy
improvement operation, which by definition, yields the
one-step lookahead policy that corresponds to terminal
cost approximation Jµ. Figure 14 illustrates the rollout
algorithm. It can be seen from the figure that the rollout
policy is in fact an improved policy, in the sense that
Jµ̃(x) ≤ Jµ(x) for all x, something that is true in general
(not just for linear-quadratic problems). Among others,
this implies that the rollout policy is stable.

Since the rollout policy is a one-step lookahead policy, it
can also be described using the formulas that we developed
earlier in this section. In particular, let the base policy have
the form

µ0(x) = L0x,
where L0 is a scalar. We require that µ0 is stable, i.e.,
|a+ bL0| < 1. From our earlier calculations, we have that
the cost function of µ0 is

Jµ0(x) = K0x
2,

where

K0 =
q + rL2

0

1− (a+ bL0)2
.

Moreover, the rollout policy µ1 has the form µ1(x) = L1x,
where

L1 = − abK0

r + b2K0
.

We can similarly describe the policy iteration (PI) algo-
rithm. It is simply the repeated application of rollout,
and generates a sequence of stable linear policies {µk}.
By replicating our earlier calculations, we see that these
policies have the form

µk(x) = Lkx, k = 0, 1, . . . ,

where Lk is generated by the iteration

Lk+1 = − abKk

r + b2Kk
,

with Kk given by

Kk =
q + rL2

k

1− (a+ bLk)2
.

The corresponding cost functions have the form

Jµk(x) = Kkx
2.

A favorable characteristic that enhances the performance
of rollout and PI is that the graph of F (K) is “flat” for
K > K∗. This is due to the concavity of the Riccati
operator. As a result, the cost improvement due to the
Newton step is even more pronounced, and is insensitive
to the choice of base policy. This feature generalizes to
multidimensional problems with or without constraints;
see the computational study [LKL23]. Part of the classi-
cal linear-quadratic theory is that Jµk converges to the
optimal cost function J∗, while the generated sequence
of linear policies {µk}, where µk(x) = Lkx, converges
to the optimal policy, assuming that the initial policy is
linear and stable. The convergence rate of the sequence
{Kk} is quadratic, as is typical of Newton’s method. This
result was proved by Kleinman [Kle68] for the continuous-
time multidimensional version of the linear quadratic prob-
lem, and it was extended later to more general problems.
In particular, the corresponding discrete-time result was
given by Hewer [Hew71], and followup analysis, which
relates to policy iteration with approximations, was given
by Feitzinger, Hylla, and Sachs [FHS09], and Hylla [Hyl11].
Kleinman gives credit to Bellman and Kalaba [BeK65] for
the one-dimensional version of his results. Applications of
approximate PI in the context of MPC have been discussed
in [RoB18] and [LJM21], among others.

Finally, we note that rollout, like policy iteration, can be
applied universally, well beyond the linear-quadratic/MPC
context that we have discussed here. In fact, the main
idea of rollout algorithms, obtaining an improved policy
starting from some other suboptimal policy, has appeared
in several DP contexts, including games; see e.g., Abram-
son [Abr90], and Tesauro and Galperin [TeG96]. 7 The
adaptation of rollout to discrete deterministic optimization
problems and the principal results relating to cost im-
provement were given in the paper by Bertsekas, Tsitsiklis,
and Wu [BTW97], and were also discussed in the neuro-
dynamic programming book [BeT96]. Rollout algorithms
for stochastic problems were further formalized in the
papers by Bertsekas [Ber97], and Bertsekas and Castañon
[BeC99]. Extensions to constrained rollout were given in
the author’s papers [Ber05a], [Ber05b].

A noteworthy extension, highly relevant to MPC as well
as a variety of other contexts, is multiagent rollout, which
deals successfully with the acute computational difficul-
ties arising from the large (Cartesian product) control
spaces that are typical of multiagent problems. The paper
[Ber21a] provides an extensive overview of this research,
and gives references to supportive computational studies
in multi-robot and vehicle routing problems with imperfect
state information, among others; see [BKB20], [GPG22],
and [WGP23].

7 The name “rollout” was coined by Tesauro in the context of
backgammon. The use of the name “rollout” has gradually ex-
panded beyond its original context; for example the samples collected
through trajectory simulation are referred to as “rollouts” by some
authors.
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Fig. 15. Illustration of the m-step truncated rollout algo-
rithm with one-step lookahead for the linear quadratic
problem. Starting with a linear stable base policy
µ(x) = Lx, it generates a rollout policy µ̃. The
quadratic cost coefficient of µ̃ is obtained with a
Newton step, after approximating of the quadratic
cost coefficient KL of µ with m = 4 value iterations
that start from K̃. Compare with the nontruncated
rollout Fig. 14.

The author’s book [Ber20] focuses on rollout, policy it-
eration, and its applications in RL, MPC, and discrete
optimization, and refers extensively to the journal litera-
ture, which includes a large number of computational stud-
ies. These studies discuss variants and problem-specific
adaptations of rollout algorithms and consistently report
favorable computational experience. The size of the cost
improvement over the base policy is often impressive,
evidently owing to the fast convergence rate of Newton’s
method that underlies rollout.

2.6 Truncated Rollout

An m-step truncated rollout scheme with a stable linear
base policy µ(x) = Lx, one-step lookahead minimization,

and terminal cost approximation J̃(x) = K̃x2 is obtained

by starting at K̃, executing m VI steps using µ, followed
by a one-step lookahead minimization/Newton step. It is
visually interpreted as in Fig. 15, where m = 4.

Thus the difference with (nontruncated) rollout is that we

use m VI steps starting from K̃ to approximate the cost
function KLx

2 of the base policy. Truncated rollout, makes
little sense in linear-quadratic problems where KL can be
easily computed by solving the Riccati equation. However,
it is useful in more general problem settings, as it may save
significantly in computation, relative to obtaining exactly
Jµ (which requires an infinite number of VI steps).

Some interesting points regarding truncated rollout schemes
are the following:

(a) Lookahead by truncated rollout may be an economic
substitute for lookahead by minimization, in the sense
that it may achieve a similar performance at signifi-
cantly reduced computational cost; see e.g., [LiB24].

(b) Lookahead by m-step truncated rollout with a stable
policy has an increasingly beneficial effect on the
stability properties of the lookahead policy, as m
increases.

These statements are difficult to establish analytically
in some generality. However, they can be intuitively un-
derstood in the context with our one-dimensional linear
quadratic problem, using geometrical constructions like
the one of Fig. 15. They are also consistent with the
results of computational experimentation. We refer to the
monograph [Ber22a] for further discussion.

2.7 Double Rollout

We noted that rollout with a base policy µ amounts
to a single policy iteration starting with µ, to produce
the (improved) rollout policy µ̃. The process can now be
continued to apply a second policy iteration. This results
in a double rollout policy, i.e., a second rollout policy
that uses the first rollout policy µ̃ as a base policy. For
deterministic problems, the needed rollout policy costs can
be computed recursively on-line, with computation that
may be tractable, thanks to rollout truncation or special
simplifications that take advantage of the deterministic
character of the problem. Parallel computation, for which
rollout is very well suited, can also be very helpful in this
respect.

Triple and higher order rollout, which amount to multiple
successive policy iterations, are possible. However, the on-
line computational costs quickly become overwhelming,
despite the potential use of truncation and other simplifi-
cations, or parallel computation.

For further discussion of double rollout, see Section 2.3.5
of the book [Ber20] and Section 6.5 of the book [Ber22],
and for computational experimentation results, see the
recent paper by Li and Bertsekas [LiB24], which deals with
special inference contexts in hidden Markov models. A case
where policy iteration was applied successfully to a discrete
deterministic optimization problem involving the game of
solitaire is discussed by Yan et al. [YDR04].

2.8 The Importance of the First Lookahead Step

The Newton step interpretation of approximation in value
space leads to an important insight into the special char-
acter of the initial step in `-step lookahead implemen-
tations. In particular, it is only the first step that acts
as the Newton step, and needs to be implemented with
precision; cf. Fig. 9. The subsequent `− 1 steps consist of
a sequence of value iterations with starting point α`J̃ , and
only serve to enhance the quality of the starting point of
the Newton step. As a result, their precise implementation
is not critical ; this is a major point in the narrative of the
author’s book [Ber22a].

This idea suggests that we can simplify (within reason) the
lookahead steps after the first with small (if any) perfor-
mance loss for the multistep lookahead policy. An impor-
tant example of such a simplification is the use of certainty
equivalence, which will be discussed in the next section.
Other possibilities include various ways of“pruning” the
lookahead tree; see [Ber23], Section 2.4.



In practical terms, simplifications after the first step of the
multistep lookahead can save a lot of on-line computation,
which can be fruitfully invested in extending the length
of the lookahead. This insight is supported by substantial
computational experimentation, starting with the paper
by Bertsekas and Castañon [BeC98], which verified the
beneficial effect of certainty equivalence (after the first
step) as a rollout simplification device for stochastic prob-
lems.

2.9 Newton Step Interpretation of Approximation in Value
Space in General Infinite Horizon Problems

The interpretation of approximation in value space as a
Newton step, and related notions of stability that we have
discussed in this section admit a broad generalization. The
key fact in this respect is that our DP problem formulation
allows arbitrary state and control spaces, both discrete and
continuous, and can be extended even further to general
abstract models with a DP structure; see the abstract DP
book [Ber22b].

Within this more general context, the Riccati operator is
replaced by an abstract Bellman operator, and valuable
insight can be obtained from graphical interpretations of
the Bellman equation, the VI and PI algorithms, one-
step and multistep approximation in value space, the
region of stability, and exceptional behavior; see the book
[Ber22a], and Section 1.6.7 of [Ber23] for a discussion of the
MPC context. Naturally, the graphical interpretations and
visualizations are limited to one dimension. However, the
visualizations provide insight, and motivate conjectures
and mathematical proof analysis, much of which is given
in the book [Ber20].

3. THE TREATMENT OF STOCHASTIC
UNCERTAINTY THROUGH CERTAINTY

EQUIVALENCE

The main ideas of our framework extend to the case of a
stochastic system of the form 8

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

where wk is random with given probability distribution
that depends only on the current state xk and control uk,
and not in earlier states and controls. The cost per stage
also depends on wk and is g(xk, uk, wk).

The cost function of µ, starting from an initial state x0 is

Jµ(x0) = lim
N→∞

E

{
N−1∑

k=0

αkg
(
xk, µ(xk), wk

)
}
,

where E{·} denotes expected value. The optimal cost
function

J∗(x) = min
µ∈M

Jµ(x),

8 In this section we restrict ourselves to stochastic uncertainty. For
a parallel development relating to set-membership uncertainty and
a minimax viewpoint, we refer to the books [Ber22a], Section 6.8,
[Ber22b], Chapter 5, and [Ber23], Section 2.12. The paper [Ber21b]
addresses the challenging issue of convergence of Newton’s method,
applied to the Bellman equation of zero-sum Markov games and
minimax control problems. It proposes new PI algorithms that are
convergent, admit distributed asynchronous implementations, and
lend themselves to the use of rollout and other RL methods.

again satisfies the Bellman equation, which now takes the
form

J∗(x) = min
u∈U(x)

E
{
g(x, u, w) + αJ∗

(
f(x, u, w)

)}
, x ∈ X.

Furthermore, if µ∗(x) attains the minimum above for all
x, then µ∗ is an optimal policy.

Similar to the deterministic case, approximation in value
space with one-step lookahead replaces J∗ with an ap-
proximating function J̃ , and obtains a suboptimal policy
µ̃ with the minimization

µ̃(x) ∈ arg min
u∈U(x)

E
{
g(x, u, w)+αJ̃

(
f(x, u, w)

)}
, x ∈ X.

It is also possible to use `-step lookahead, with the aim to
improve the performance of the policy obtained through
approximation in value space. This, however, can be com-
putationally expensive, because the lookahead graph ex-
pands fast as ` increases, due to the stochastic character
of the problem. Using certainty equivalence (CE for short)
is an important approximation approach for dealing with
this difficulty, as it reduces the search space of the `-
step lookahead minimization. Moreover, CE mitigates the
excessive simulation because it reduces the stochastic vari-
ance of the lookahead calculations at each stage.

In the pure but somewhat flawed version of the CE ap-
proach, when solving the `-step lookahead minimization
problem, we simply replace all of the uncertain quan-
tities wk, wk+1, . . . , wk+`−1, . . . , wN−1 by some nominal
value w, thus making that problem fully deterministic.
Unfortunately, this affects significantly the character of
the approximation: when wk is replaced by a deterministic
quantity, the Newton step interpretation of the underlying
approximation in value space scheme is lost to a great
extent.

Still, we may largely correct this difficulty, while retaining
substantial simplification, by using CE after the first
stage of the `-step lookahead. We can do this with a CE
scheme whereby at state xk, we replace only the uncertain
quantities wk+1, . . . , wN−1 by deterministic values, while
we treat the first, i.e., wk, as a stochastic quantity. 9

The CE approach, first proposed and tested in the paper
by Bertsekas and Castañon [BeC99], has an important
property: it maintains the Newton step character of the
approximation in value space scheme. In particular, the
cost function Jµ̃ of the `-step lookahead policy µ̃ is gener-
ated by a Newton step, applied to the function obtained
by the last `− 1 minimization steps (modified by CE, and
applied to the terminal cost function approximation); see
the monograph [Ber20] and Sections 1.6.7, 2.7.2, 2.8.3, of
the textbook [Ber23] for a discussion. Thus the benefit
of the fast convergence of Newton’s method is restored.
In fact based on insights derived from this Newton step
interpretation, it appears that the performance penalty for
the CE approximation is often small. At the same time the
`-step lookahead minimization involves only one stochastic
step, the first one, and hence potentially a much “thinner”
lookahead graph, than an `-step minimization that does
not involve any CE-type approximations.

9 Variants of the CE approach, based on less drastic simplifications
of the probability distributions of the uncertain quantities, are given
in the books [Ber17a], Section 6.2.2 and [Ber19a], Section 2.3.2.



4. MPC AND ADAPTIVE CONTROL

Our discussion so far dealt with problems with a known
mathematical model, i.e., one where the system equation,
cost function, control constraints, and probability distri-
butions of disturbances are perfectly known. The mathe-
matical model may be available through explicit formulas
and assumptions, or through a computer program that
can emulate all of the mathematical operations involved
in the model, including Monte Carlo simulation for the
calculation of expected values.

In practice, however, it is common that the system param-
eters are either not known exactly or can change over time,
and this introduces potentially enormous complications. 10

In this section, we will briefly review some of the most
commonly used approaches for dealing with unknown
parameters in optimal control theory and practice. We
should note also that unknown problem environments are
an integral part of the artificial intelligence view of RL.
In particular, to quote from the popular book by Sutton
and Barto [SuB18], “learning from interaction with the
environment is a foundational idea underlying nearly all
theories of learning and intelligence” while RL is described
as “a computational approach to learning from interaction
with the environment.”

The idea of learning from interaction with the environment
is often connected with the idea of exploring the environ-
ment to identify its characteristics. In control theory this is
often viewed as part of the system identification methodol-
ogy, which aims to construct mathematical models of dy-
namic systems. The system identification process is often
combined with the control process to deal with unknown
or changing problem parameters, in a framework that is
sometimes called dual control . 11 This is one of the most
challenging areas of stochastic optimal and suboptimal
control, and has been studied intensively since the early
1960s, with several textbooks and research monographs
written: Aström and Wittenmark [AsW94], Aström and
Hagglund [AsH06], Bodson [Bod20], Goodwin and Sin
[GoS84], Ioannou and Sun [IoS96], Jiang and Jiang [JiJ17],
Krstic, Kanellakopoulos, and Kokotovic [KKK95], Kumar
and Varaiya [KuV86], Liu, et al. [LWW17], Lavretsky and
Wise [LaW13], Narendra and Annaswamy [NaA12], Sastry
and Bodson [SaB11], Slotine and Li [SlL91], and Vrabie,
Vamvoudakis, and Lewis [VVL13]. These books describe
a vast array of methods spanning 60 years, and ranging

10The difficulties introduced by a changing environment complicate
the balance between off-line training and on-line play. It is worth
keeping in mind that as much as learning to play high quality chess
is a great challenge, the rules of play are stable; they do not change
unpredictably in the middle of a game! Problems with changing
system parameters can be far more challenging!
11The dual control framework was introduced in a series of papers by
Feldbaum, starting in 1960 with [Fel60]. These papers emphasized
the division of effort between system estimation and control, now
more commonly referred to as the exploration-exploitation tradeoff .
In the last paper of the series [Fel63], Feldbaum prophetically
concluded as follows: “At the present time, the most important
problem for the immediate future is the development of approximate
solution methods for dual control theory problems, the formulation
of sub-optimal strategies, the determination of the numerical value
of risk in quasi-optimal systems and its comparison with the value
of risk in existing systems.”

from adaptive and PID model-free approaches, to self-
tuning regulators, to simultaneous or sequential control
and identification, to time series models, to extremum-
seeking methods, to simulation-based RL techniques, etc.

4.1 Robust Control

Given a controller design that has been obtained assuming
a nominal DP problem model, one possibility is to simply
ignore changes in problem parameters. We may then try
to investigate the performance of the current design for
a suitable range of problem parameter values, and ensure
that it is adequate for the entire range. This is sometimes
called a robust controller design.

A simple time-honored robust/adaptive control approach
for continuous-state problems is PID (Proportional-Integral-
Derivative) control . The control theory and practice lit-
erature contains extensive accounts. In particular, PID
control aims to maintain the output of a single-input
single-output dynamic system around a set point or to
follow a given trajectory, as the system parameters change
within a relatively broad range. In its simplest form, the
PID controller is parametrized by three scalar parameters,
which may be determined by a variety of methods, some
of them manual/heuristic. PID control is used widely and
with success, although its range of application is mainly
restricted to single-input, single-output continuous-state
control systems.

4.2 Dealing with Unknown Parameters Through System
Identification and On-Line Replanning

In PID control, no attempt is made to maintain a mathe-
matical model and to track unknown model parameters as
they change. A more ambitious form of suboptimal control
is to separate the control process into two phases, a system
identification phase and a control phase. In the first phase
the unknown parameters are estimated, while the control
takes no account of the interim results of estimation. The
final parameter estimates from the first phase are then
used to implement an optimal or suboptimal policy in the
second phase. This alternation of estimation and control
phases may be repeated several times during any system
run in order to take into account subsequent changes of the
parameters. Moreover, it is not necessary to introduce a
hard separation between the identification and the control
phases. They may be going on simultaneously, with new
parameter estimates being introduced into the control
process, whenever this is thought to be desirable; see Fig.
16. This approach is often called on-line replanning and is
generally known as indirect adaptive control in the adap-
tive control literature, see e.g., Aström and Wittenmark
[AsW94].

Unfortunately, there is still another difficulty with this
type of on-line replanning: it may be hard to recompute an
optimal or near-optimal policy on-line, using a newly iden-
tified system model. In particular, it may be impossible to
use time-consuming methods that involve for example the
training of a neural network or discrete/integer control
constraints. A simpler possibility is to use approximation
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Fig. 16. Schematic illustration of on-line replanning: the
concurrent parameter estimation and system control.
The system parameters are estimated on-line and the
estimates are periodically passed on to the controller.

in value space that uses rollout with some kind of robust
base policy,. We discuss this approach next. 12

4.3 Adaptive Control by Rollout and On-Line Replanning

We will now consider dealing with unknown or changing
parameters by means of on-line replanning. Let us assume
that some problem parameters change and the current
controller becomes aware of the change “instantly” (i.e.,
very quickly before the next control needs to be applied).
The method by which the problem parameters are recal-
culated or become known is immaterial for the purposes of
the following discussion. It may involve a limited form of
parameter estimation, whereby the unknown parameters
are “tracked” by data collection over a few time stages;
or it may involve new features of the control environment,
such as a changing number of servers and/or tasks in a
service system.

We thus assume away/ignore issues of parameter esti-
mation, and focus on revising the controller by on-line
replanning based on the newly obtained parameters. This
revision may be based on any suboptimal method, but
rollout with the current policy used as the base policy is
particularly attractive. Here the advantage of rollout is
that it is simple and reliable. In particular, it does not
require a complicated training procedure to revise the
current policy, based for example on the use of neural
networks or other approximation architectures, so no new
policy is explicitly computed in response to the parameter
changes. Instead the current policy is used as the base
policy for rollout, and the available controls at the current
state are compared by a one-step or mutistep minimiza-
tion, with cost function approximation provided by the
base policy (cf. Fig. 17).

Note that over time the base policy may also be revised
(on the basis of an unspecified rationale). In this case the

12Still another possibility is to deal with this difficulty by precompu-
tation. In particular, assume that the set of problem parameters may
take a known finite set of values (for example each set of parameter
values may correspond to a distinct maneuver of a vehicle, motion
of a robotic arm, flying regime of an aircraft, etc). Then we may
precompute a separate controller for each of these values. Once the
control scheme detects a change in problem parameters, it switches to
the corresponding predesigned current controller. This is sometimes
called a multiple model control design or gain scheduling, and has
been applied with success in various settings over the years.
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
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1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout

Simplified minimization Changing System, Cost, and Con-
straint Parameters

Changing System, Cost, and Constraint Parameters

Linearized Bellman Eq. at Jµ Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ Lookahead Minimization

Value iterations

Rollout with Base Policy

Policy Improvement with Base Policy µ
Policy evaluations for µ and µ̃

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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Fig. 17. Schematic illustration of adaptive control by
rollout. One-step lookahead is followed by simulation
with the base policy, which stays fixed. The system,
cost, and constraint parameters are changing over
time, and the most recent values are incorporated into
the lookahead minimization and rollout operations.
For the discussion in this section, we may assume that
all the changing parameter information is provided by
some computation and sensor “cloud” that is beyond
our control. The base policy may also be revised
based on various criteria. Moreover the lookahead
minimization may involve multiple steps, while the
rollout may be truncated.

rollout policy will be adjusted both in response to the
changed current policy and in response to the changing
parameters. This is necessary in particular when the
constraints of the problem change.

The principal requirement for using rollout in an adap-
tive control context is that the rollout control compu-
tation should be fast enough to be performed between
successive control applications. Note, however, that ac-
celerated/truncated versions of rollout, as well as parallel
computation, can be used to meet this time constraint.

We will now present a one-dimensional linear-quadratic
example of on-line replanning involving the use of rollout.
The purpose of the example is to illustrate how rollout
with a policy that is optimal for a nominal set of problem
parameters works well when the parameters change from
their nominal values. This property is not practically
useful in linear-quadratic problems because when the
parameters change, it is possible to calculate the new
optimal policy in closed form, but it is indicative of the
performance robustness of rollout in other contexts.

Consider the deterministic one-dimensional undiscounted
infinite horizon linear-quadratic problem involving the
linear system

xk+1 = xk + buk,

and the quadratic cost function

lim
N→∞

N−1∑

k=0

(x2k + ru2k).

The optimal cost function is given by



J∗(x) = K∗x2,
where K∗ is solves the Riccati equation

K =
rK

r + b2K
+ 1.

The optimal policy has the form

µ∗(x) = L∗x,
where

L∗ = − bK∗

r + b2K∗
.

We will consider the nominal problem parameters b = 2
and r = 0.5. We can then verify that for these param-
eters, the corresponding optimal cost and optimal policy
coefficients are

K =
2 +
√

6

4
, L = − 2 +

√
6

5 + 2
√

6
.

We will now consider changes of the values of b and r while
keeping L constant, and we will compare the quadratic cost
coefficient of the following cost functions as b and r vary:

(a) The optimal cost function K∗x2.
(b) The cost function KLx

2 that corresponds to the base
policy µL(x) = Lx. From our earlier discussion, we
have

KL =
1 + rL2

1− (1 + bL)2
.

(c) The cost function K̃Lx
2 that corresponds to the

rollout policy µ̃L(x) = L̃x, obtained by using the
policy µL as base policy. Using the formulas given
earlier, we have

L̃ = − bKL

r + b2KL
,

and

K̃L =
1 + rL̃2

1− (1 + bL̃)2
.

Figure 18 shows the coefficients K∗, KL, and K̃L for
a range of values of r and b. As predicted by the cost
improvement property of rollout, we have

K∗ ≤ K̃L ≤ KL.

The difference KL − K∗ is indicative of the robustness
of the policy µL, i.e., the performance loss incurred by
ignoring the values of b and r, and continuing to use the
policy µL, which is optimal for the nominal values b = 2
and r = 0.5, but suboptimal for other values of b and r.
The difference K̃L − K∗ is indicative of the performance
loss due to using on-line replanning by rollout rather than
using optimal replanning. Finally, the difference KL− K̃L

is indicative of the performance improvement due to on-
line replanning using rollout rather than keeping the policy
µL unchanged.

It can be seen that the rollout policy performance is
very close to the one of the exactly reoptimized policy,
while the base policy yields much worse performance. This
is a consequence of the superlinear convergence rate of
Newton’s method that underlies rollout:

lim
J→J∗

J̃(x)− J∗(x)

J(x)− J∗(x)
= 0,

where for a given initial state x, J̃(x) is the rollout cost,
J∗(x) is the optimal cost, and J(x) is the base policy cost.
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(
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(
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(
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3 ũ1 x̃2 ũ2 x̃3
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Fig. 18. Illustration of adaptive control by rollout under
changing problem parameters. The quadratic cost
coefficients K∗ (optimal, denoted by solid line), KL

(base policy, denoted by circles), and K̃L (rollout
policy, denoted by asterisks) for the two separate cases
where r = 0.5 and b varies, and b = 2 and r varies.
The value of L is fixed at the value that is optimal for
b = 2 and r = 0.5

5. CONCLUDING REMARKS

We have argued that the connections between the MPC
and RL fields are strong, and that the most successful
design architectures of the two fields share important
characteristics, which relate fundamentally to Newton’s
method. Indeed, in the author’s view, a principal theo-
retical reason for the successes of the two fields is the off-
line training/on-line play synergism that rests upon the
mathematical foundations of Newton’s method.

Still the cultures of MPC and RL have different start-
ing points and have grown in different directions. One
of the primary reasons is the preference for continu-
ous state and control spaces in MPC, which stems from
the classical control theory tradition. Thus stability and
safety/reachability issues have been of paramount impor-
tance in MPC, but they are hardly ever considered in RL.
The main reason is that stability does not arise math-
ematically or practically in the discrete state and control
contexts of games, Markovian decision problems, and more
recently large language models that are favored in RL. At
the same time, the ideas of learning from data are not part
of the control theory tradition, and they have only been
addressed relatively recently in a systematic way.

The framework that we have presented in this paper aims
to support a trend of increased use of machine learning
methods in MPC. The fact that at their foundation, MPC
and RL share important principles suggests that this trend
will continue and accelerate in the future.
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