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On-Line Approximation in Value Space (Model-Based)
System equation: f (x ,u,w), Cost per stage: g(x ,u,w), α-Discounted

One-step lookahead policy µ̃ Cost function Jµ̃

Cost approximation J̃ Error |J̃ − J∗|
First Step “Future”

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states) Cost

The figure is a one-dimensional “slice” of the graph of J
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“Stability Region” “Instability Region”
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(
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1

Replace optimal cost J∗ with an approximation J̃ in Bellman’s equation

Defines a lookahead policy µ̃ with µ̃(x) being the minimizing u above

KEY QUESTIONS

What is the relation between Jµ̃ and J̃?

How does multistep lookahead affect this relation?
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The Linear Error Bound Model: An Example of Bad Theory
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1

These bounds are well-known to be conservative

... but they are broadly thought to be “qualitatively" correct

THE REALITY IS FAR DIFFERENT

The bounds are not only unrealistic, they are misleading

They misdirect theoretical research and confuse the practitioners
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The Real Relation is Superlinear
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A key fact: The critical mapping is a Newton Step for solving the Bellman
equation (Newton/SOR for multistep lookahead)

Far-reaching implications for both theory and practice

Convergence threshold defined by the region of convergence of Newton’s method

Inside the two regions, better training/more data, improving confidence intervals
has marginal effect

There is a critical stability threshold (for undiscounted problems)
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An α-Discounted Linear Quadratic Example212 Newton’s Method and Error Bounds Appendix A
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Figure A.3 Illustration of the global error bound (A.8) for the one-step looka-
head error Kµ̃ − K∗ as a function of K̃, compared with the true error obtained
by one step of Newton’s method starting from K̃.

The problem data are a = 2, b = 2, q = 1, and r = 5. With these numerical
values, we have K∗ = 5 and the region of stability is (S, ∞) with S = 1.25.
The modulus of contraction α used in the figure is computed at S = S + 0.5.

Depending on the chosen value of S, α can be arbitrarily close to 1, but decreases
as S increases. Note that the error Kµ̃ − K∗ is much smaller when K̃ is larger
than K∗ than when it is lower, because the slope of F diminishes as K increases.
This is not reflected by the global error bound (A.8).

F = F (K) starting from K̃]. A plot of (Kµ̃−K∗) as a function of K̃, compared
with the bound on the right side of this equation is shown in Fig. A.3. It can
be seen that (Kµ̃ −K∗) exhibits the qualitative behavior of Newton’s method,
which is very different than the bound (A.8). An interesting fact is that the
bound (A.8) depends on α, which in turn depends on how close K̃ is to the
boundary S of the region of stability, while the local behavior of Newton’s
method is independent of S.

A.4 LOCAL AND GLOBAL ERROR BOUNDS FOR
APPROXIMATE POLICY ITERATION

In an approximate PI method that generates a sequence of policies {µk},
it is important to estimate the asymptotic error

lim sup
k→∞

‖Jµk − J*‖.
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One-step lookahead

One-dimensional problem - unstable system - undiscounted

J∗(x) = K ∗x2, J̃(x) = K̃ x2, Jµ̃(x) = Kµ̃x2

Details in my Lessons from AlphaZero book (2022)
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A Computational Study (Laidlaw, Russell, Dragan, 2023)

Extensive tests using a dataset of 155 MDPs and “current" methods. Quotes:
“There is a large gap between the current theory and practice of RL"

“Deep RL works impressively in some environments and fails catastrophically in
others"

“Current theory does not quite have the ability to predict this"

“We find that prior bounds do not correlate well with when deep RL succeeds vs.
fails"

Among their empirical findings:
An important mechanism to make methods “work" is to increase the lookahead,
NOT do more sampling, explore better, etc, to improve J̃

With long enough lookahead, an exactly optimal policy is obtained (a theoretical
fact known since the 60s)
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