
Linear Network Optimization

1991

Dimitri P. Bertsekas

Massachusetts Institute of Technology





PREFACE

Linear network optimization problems such as shortest path, assignment, max-flow,
transportation, and transhipment, are undoubtedly the most common optimization prob-
lems in practice. Extremely large problems of this type, involving thousands and even
millions of variables, can now be solved routinely, thanks to recent algorithmic and
technological advances. On the theoretical side, despite their relative simplicity, linear
network problems embody a rich structure with both a continuous and a combinatorial
character. Significantly, network ideas have been the starting point for important devel-
opments in linear and nonlinear programming, as well as combinatorial optimization.

Up to the late seventies, there were basically two types of algorithms for linear net-
work optimization: the simplex method and its variations, and the primal-dual method
and its close relative, the out-of-kilter method. There was some controversy regarding
the relative merit of these methods, but thanks to the development of efficient imple-
mentation ideas, the simplex method emerged as the fastest of the two for most types of
network problems.

A number of algorithmic developments in the eighties have changed significantly
the situation. New methods were invented that challenged the old ones, both in terms
of practical efficiency, and theoretical worst-case performance. Two of these methods,
originally proposed by the author, called relaxation and auction, will receive a lot of
attention in this book. The relaxation method, is a dual ascent method resembling
the coordinate ascent method of unconstrained nonlinear optimization, that significantly
outperforms in practice both the simplex and the primal-dual methods for many types of
problems. Auction is a form of dual coordinate ascent method, based on the notion of ε-
complementary slackness and scaling ideas. This algorithm together with its extensions,
has excellent computational complexity, which is superior to that of the classical methods
for many types of problems. Some auction algorithms have also proved to be very effective
in practice, particularly for assignment and max-flow problems.

One of the purposes of the book is to provide a modern, and up-to-date synthesis
of old and new algorithms for linear network flow problems. The coverage is focused and
selective, concentrating on the algorithms that have proved most successful in practice or
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otherwise embody important methodological ideas. Two fundamental ideas of mathemat-
ical programming are emphasized: duality and iterative cost improvement . Algorithms
are grouped in three categories: (a) primal cost improvement methods, including simplex
methods, which iteratively improve the primal cost by moving flow around simple cycles,
(b) dual ascent methods, which iteratively improve the dual cost by changing the prices
of a subset of nodes by equal amounts, and (c) auction algorithms, which try to improve
the dual cost approximately along coordinate directions.

The first two classes of methods are dual to each other when viewed in the con-
text of Rockafellar’s monotropic programming theory [Roc84]; they are based on cost
improvement along elementary directions of the circulation space (in the primal case) or
the differential space (in the dual case). Auction algorithms are fundamentally different;
they have their origin in nondifferentiable optimization and the ε-subgradient method in
particular [BeM73].

A separate chapter is devoted to each of the above types of methods. The introduc-
tory chapter establishes some basic material and treats a few simple problems such as
max-flow and shortest path. A final chapter discusses some of the practical performance
aspects of the various methods.

A second purpose of the book is to supply state-of-the-art FORTRAN codes based
on some of the algorithms presented. These codes illustrate implementation techniques
commonly used in network optimization and should be helpful to practitioners. The
listings of the codes appear in appendixes at the end of the book, and are also available
on diskette from the author. I am thankful to Giorgio Gallo and Stefano Pallotino who
gave me permission to include two of their shortest path codes.

The book can be used for a course on network optimization or for part of a course
on introductory optimization; such courses have flourished in engineering, operations
research, and applied mathematics curricula. The book contains a large number of
examples and exercises, which should enhance its suitability for classroom instruction.

I was fortunate to have several outstanding collaborators in my linear network opti-
mization research and I would like to mention those with whom I have worked extensively.
Eli Gafni programmed for the first time the auction algorithm and the relaxation method
for assignment problems in 1979, and assisted with the computational exprerimentation.
The idea of ε-scaling arose during my interactions with Eli at that time. Paul Tseng
worked with me on network optimization starting in 1982. Together we developed the
RELAX codes, we developed several extensions to the basic relaxation method, and we
collaborated closely and extensively on a broad variety of other subjects. Paul also read a
substantial part of the book and offered several helpful suggestions. Jon Eckstein worked
with me on auction and other types of network optimization algorithms starting in 1986.
Jon made several contributions to the theory of the ε-relaxation method, and coded its
first implementation. Jon also proofread parts of the book and his comments resulted in
several substantive improvements. David Castañon has been working with me on auction
algorithms for assignment, transportation, and minimum cost flow problems since 1987.
Much of our joint work on these subjects appears in Chapter 4, particularly in Sections
4.2 and 4.4. David and I have also collaborated extensively on the implementation of
various network flow algorithms. Our interactions have resulted in several improvements
in the codes of the appendixes.
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Introduction

1.1 PROBLEM FORMULATION

This book deals with a single type of network optimization problem with
linear cost, known as the transshipment or minimum cost flow problem. In
this section, we formulate this problem together with several special cases.
One of the most important special cases is the assignment problem, which
we will discuss in detail because it is simple and yet captures most of the
important algorithmic aspects of the general problem.

Example 1.1. The Assignment Problem

Suppose that there are n persons and n objects that we have to match on a

one-to-one basis. There is a benefit or value aij for matching person i with

object j, and we want to assign persons to objects so as to maximize the total

benefit. There is also a restriction that person i can be assigned to object j

only if (i, j) belongs to a set of given pairs A. Mathematically, we want to

find a set of person-object pairs (1, j1), . . . , (n, jn) from A such that the objects

j1, . . . , jn are all distinct, and the total benefit
∑n

i=1 aiji is maximized.

The assignment problem is important in many practical contexts. The

most obvious ones are resource allocation problems, such as assigning em-

ployees to jobs, machines to tasks, etc. There are also situations where the

assignment problem appears as a subproblem in various methods for solving

more complex problems.
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2 Introduction Chap. 1

We may associate any assignment with the set of variables {xij | (i, j) ∈
A}, where xij = 1 if person i is assigned to object j and xij = 0 otherwise.

We may then formulate the assignment problem as the linear program

maximize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = 1, ∀ i = 1, . . . , n,

∑
{i|(i,j)∈A}

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A.

(1.1)

Actually we should further restrict xij to be either 0 or 1; however, as

we will show in the next chapter, the above linear program has a remarkable

property: if it has a feasible solution at all, then it has an optimal solution

where all xij are either 0 or 1. In fact, the set of its optimal solutions includes

all the optimal assignments.

Another important property of the assignment problem is that it can be

represented by a graph as shown in Fig. 1.1. Here, there are 2n nodes divided

into two groups: n corresponding to persons and n corresponding to objects.

Also, for every (i, j) ∈ A, there is an arc connecting person i with object j.

In the terminology of network problems, the variable xij is referred to as the

flow of arc (i, j). The constraint
∑

{j|(i,j)∈A} xij = 1 indicates that the total

outgoing flow from node i should be equal to 1, which may be viewed as the

(exogenous) supply of the node. Similarly, the constraint
∑

{i|(i,j)∈A} xij = 1

indicates that the total incoming flow to node j should be equal to 1, which

may be viewed as the (exogenous) demand of the node.

Before we can proceed with a formulation of more general network flow
problems we must introduce some notation and terminology.

1.1.1 Graphs and Flows

We define a directed graph, G = (N ,A), to be a set N of nodes and a set
A of pairs of distinct nodes from N called arcs. The numbers of nodes and
arcs of G are denoted by N and A, respectively, and we assume throughout
that 1 ≤ N < ∞ and 0 ≤ A < ∞. An arc (i, j) is viewed as an ordered pair,
and is to be distinguished from the pair (j, i). If (i, j) is an arc, we say that
(i, j) is outgoing from node i and incoming to node j; we also say that j is
an outward neighbor of i and that i is an inward neighbor of j. We say that
arc (i, j) is incident to i and to j, and that i is the start node and j is the
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Figure 1.1 The graph representation of an assignment problem.

end node of the arc. The degree of a node i is the number of arcs that are
incident to i.

A graph is said to be bipartite if its nodes can be partitioned into two
sets S and T such that every arc has its start in S and its end in T . The
assignment graph of Fig. 1.1 is an example of a bipartite graph, with S and
T being the sets of persons and objects, respectively.

We do not exclude the possibility that there is a separate arc connecting
a pair of nodes in each of the two directions. However, we do not allow more
than one arc between a pair of nodes in the same direction, so that we can refer
unambiguously to the arc with start i and end j as arc (i, j). This was done
for notational convenience. Our analysis can be simply extended to handle
multiple arcs with start i and end j; the extension is based on modifying
the graph by introducing for each such arc, an additional node, call it n,
together with the two arcs (i, n) and (n, j). The codes in the appendixes can
handle graphs that have multiple arcs between any pair of nodes in the same
direction, without the above modification.

Paths and Cycles

A path P in a directed graph is a sequence of nodes (n1, n2, . . . , nk) with
k ≥ 2 and a corresponding sequence of k − 1 arcs such that the ith arc in the
sequence is either (ni, ni+1) (in which case it is called a forward arc of the path)
or (ni+1, ni) (in which case it is called a backward arc of the path). A path
is said to be forward (or backward) if all of its arcs are forward (respectively,
backward) arcs. We denote by P+ and P− the sets of forward and backward
arcs of P , respectively. Nodes n1 and nk are called the start node (or origin)
and the end node (or destination) of P , respectively.



4 Introduction Chap. 1

A cycle is a path for which the start and end nodes are the same. A
path is said to be simple if it contains no repeated arcs and no repeated nodes,
except that the start and end nodes could be the same (in which case the path
is called a simple cycle). These definitions are illustrated in Fig. 1.2.

Note that the sequence of nodes (n1, n2, . . . , nk) is not sufficient to specify
a path; the sequence of arcs is also important, as Fig. 1.2(c) shows. The
difficulty arises when for two successive nodes ni and ni+1 of the path, both
(ni, ni+1) and (ni+1, ni) are arcs, so there is ambiguity as to which of the two
is the corresponding arc of the path. However, when the path is known to be
forward or is known to be backward, it is uniquely specified by the sequence of
its nodes. Throughout the book, we will make sure that the intended sequence
of arcs is explicitly defined in ambiguous situations.

A graph that contains no simple cycles is said to be acyclic. A graph is
said to be connected if for each pair of nodes i and j, there is a path starting
at i and ending at j; it is said to be strongly connected if for each pair of nodes
i and j, there is a forward path starting at i and ending at j. For example,
the assignment graph of Fig. 1.1 may be connected but cannot be strongly
connected.

We say that G′ = (N′,A′) is a subgraph of G = (N ,A) if G′ is a graph,
N′ ⊂ N , and A′ ⊂ A. A tree is a connected acyclic graph. A spanning tree
of a graph G is a subgraph of G that is a tree and that includes all the nodes
of G.

Flow and Divergence

A flow vector x in a graph (N ,A) is a set of scalars
{
xij | (i, j) ∈ A

}
. We

refer to xij as the flow of the arc (i, j), and we place no restriction (such as
nonnegativity) on its value. The divergence vector y associated with a flow
vector x is the N -dimensional vector with coordinates

yi =
∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji, ∀ i ∈ N . (1.2)

Thus, yi is the total flow departing from node i less the total flow arriving
at i; it is referred to as the divergence of i. For example, an assignment
corresponds to a flow vector x with xij = 1 if person i is assigned to object
j and xij = 0 otherwise (see Fig. 1.1); the assigned pairs involve each person
exactly once and each object exactly once, if the divergence of each person
node i is yi = 1, and the divergence of each object node j is yj = −1.

We say that node i is a source (respectively, sink) for the flow vector
x if yi > 0 (respectively, yi < 0). If yi = 0 for all i ∈ N , then x is called a
circulation. These definitions are illustrated in Fig. 1.3. Note that by adding
Eq. (1.2) over all i ∈ N , we obtain∑

i∈N
yi = 0



(a)  A simple forward path P = (n  , n  , n  , n  ).1 2 3 4

n 5n 2n1 n3 n
4

n 2n 1 n3 n
4Start Node End Node

Start Node End Node

n3

n1 n 2

Set of forward arcs C+
Set of backward arcs C-

Path P = (n  , n  , n  , n  , n  ) with corresponding sequence of arcs
{ (n  , n  ), (n  , n  ),  (n  , n  ), (n  , n  ) }.

4 51 2 3

51 2 23 4 43

(c)

The path P = (n  , n  , n  , n   , n  , n  , n  ) is also legitimate; 
1 2 4 33 2 3

it is not simple, and it is neither forward nor backward.

(b)  A simple cycle C = (n  , n  , n  , n  ) which is neither forward nor backward.1 2 3 1
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Figure 1.2 Illustration of various types of paths. Note that for the path

(c) it is necessary to specify the sequence of arcs of the path (rather than just the

sequence of nodes) because both (n3, n4) and (n4, n3) are arcs. For a somewhat

degenerate example that illustrates the fine points of the definitions, note that for

the graph of (c), the node sequence

C = (n3, n4, n3)

is associated with four cycles:

(1) The simple forward cycle with

C+ = {(n3, n4), (n4, n3)}, C− : empty.

(2) The simple backward cycle with

C− = {(n4, n3), (n3, n4)}, C+ : empty.

(3) The (nonsimple) cycle with

C+ = {(n3, n4)}, C− = {(n3, n4)}.

(4) The (nonsimple) cycle with

C+ = {(n4, n3)}, C− = {(n4, n3)}.

Note that the node sequence (n3, n4, n3) determines the cycle uniquely if it is

specified that the cycle is either forward or is backward.



(b)  A circulation
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Figure 1.3 Illustration of various types of flows. The flow in (b) is a

circulation because yi = 0 for all i.

for any divergence vector y.
In applications, a negative arc flow indicates that whatever flow repre-

sents (material, electric current, etc.), moves in a direction opposite to the
direction of the arc. We can always change the sign of the arc flow to positive
as long as we change the arc direction, so in many situations we can assume
without loss of generality that all arc flows are nonnegative. For the devel-
opment of a general methodology, however, this device is often cumbersome,
which is why we prefer to simply accept the possibility of negative arc flows.

Conformal Decomposition

It is often convenient to break down a flow vector into the sum of simpler
components. A particularly useful decomposition arises when the components
involve simple paths and cycles with orientation which is consistent to that of
the original flow vector. This leads to the notion of a conformal realization,
which we proceed to discuss.
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We say that a path P conforms to a flow vector x if xij > 0 for all forward
arcs (i, j) of P and xij < 0 for all backward arcs (i, j) of P , and furthermore
either P is a cycle or else the start and end nodes of P are a source and a sink
of x, respectively. Roughly, a path conforms to a flow vector if it “carries flow
in the forward direction” – that is, in the direction from the start node to the
end node. In particular, for a forward cycle to conform to a flow vector, all
its arcs must have positive flow; for a forward path which is not a cycle to
conform to a flow vector, its arcs must have positive flow, and in addition the
start and end nodes must be a source and a sink, respectively.

A simple path flow is a flow vector that corresponds to sending a positive
amount of flow along a simple path; more precisely, it is a flow vector x of the
form

xij =

⎧⎨
⎩

a if (i, j) ∈ P+

−a if (i, j) ∈ P−

0 otherwise,
(1.3)

where a is a positive scalar, and P+ and P− are the sets of forward and
backward arcs, respectively, of some simple path P .

We say that a simple path flow xs conforms to a flow vector x if the
path P corresponding to xs via Eq. (1.3) conforms to x. This is equivalent to
requiring that

0 < xij for all arcs (i, j) with 0 < xs
ij,

xij < 0 for all arcs (i, j) with xs
ij < 0,

and that either P is a cycle or else the divergence (with respect to x) of the
start node of P is positive and the divergence (with respect to x) of the end
node of P is negative.

We now show that any flow vector can be decomposed into a set of
conforming simple path flows. This result, illustrated in Fig. 1.4, turns out
to be fundamental for our purposes. The proof is based on an algorithm that
can be used to construct the constituent conforming components one by one.
Such constructive proofs are often used in network optimization.

Proposition 1.1: (Conformal Realization Theorem) A nonzero flow vector
x can be decomposed into the sum of t simple path flow vectors x1, x2, . . . , xt

that conform to x, with t being at most equal to the sum of the numbers of
arcs and nodes A+N . If x is integer, then x1, x2, . . . , xt can also be chosen to
be integer. If x is a circulation, then x1, x2, . . . , xt can be chosen to be simple
circulations, and t ≤ A.

Proof: We first assume that x is a circulation. Our proof consists of showing
how to obtain from x a simple circulation x′ conforming to x and such that

0 ≤ x′
ij ≤ xij for all arcs (i, j) with 0 ≤ xij, (1.4a)



x    = 1
12

13x    = 0
34x    = 2

32x    = 0x    = 123

x    = -2
24

y   = -2  (Sink)2

3y   = 1  (Source)  

4y   = 0  (Neither a source nor a sink)1y   = 1  (Source)  

4

3

2

4

3

2Flow = -1

Flow = 1

Flow = 1

Flow = 1

Flow = -1

1 4

3

2

1

Flow = 1 2
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Figure 1.4 Decomposition of a flow vector x into three simple path

flows conforming to x. The corresponding simple paths are (1, 2), (3, 4, 2), and

(2, 3, 4, 2). The first two are not cycles; they start at a source and end at a sink.

Consistent with the definition of conformance of a path flow, each arc (i, j) of these

paths carries positive (or negative) flow only if xij > 0 (or xij < 0, respectively).

Arcs (1, 3) and (3, 2) do not belong to any of these paths because they carry zero

flow. In this example, the decomposition is unique, but in general this need not

be the case.

xij ≤ x′
ij ≤ 0 for all arcs (i, j) with xij ≤ 0, (1.4b)

xij = x′
ij for at least one arc (i, j) with xij 	= 0. (1.4c)

Once this is done, we subtract x′ from x. We have xij − x′
ij > 0 only for

arcs (i, j) with xij > 0, xij − x′
ij < 0 only for arcs (i, j) with xij < 0, and

xij −x′
ij = 0 for at least one arc (i, j) with xij 	= 0. If x is integer, then x′ and

x − x′ will also be integer. We then repeat the process (for at most A times)
with the circulation x replaced by the circulation x − x′ and so on, until the
zero flow is obtained. This is guaranteed to happen eventually because x−x′

has at least one more arc with zero flow than x.
We now describe the procedure by which x′ with the properties (1.4) is

obtained; see Fig. 1.5. Choose an arc (i, j) with xij 	= 0. Assume that xij > 0.
(A similar procedure can be used when xij < 0.) Construct a sequence of
node subsets T0, T1, . . ., as follows: Take T0 = {j}. For k = 0, 1, . . ., given Tk,
let

Tk+1 =
{
n /∈ ∪k

p=0Tp | there is a node m ∈ Tk, and either an arc (m, n)

such that xmn > 0 or an arc (n, m) such that xnm < 0
}
,
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and mark each node n ∈ Tk+1 with the label “(m, n)” or “(n, m),” where m
is a node of Tk such that xmn > 0 or xnm < 0, respectively. The procedure
terminates when Tk+1 is empty. We may view Tk as the set of nodes n that
can be reached from j with a path of k arcs carrying “positive flow” in the
direction from j to n.

We claim that one of the sets Tk contains node i. To see this, consider
the set ∪kTk of all nodes that belong to one of the sets Tk. By construction,
there is no outgoing arc from ∪kTk with positive flow and no incoming arc
into ∪kTk with negative flow. If i did not belong to ∪kTk, there would exist
at least one incoming arc into ∪kTk with positive flow, namely the arc (i, j).
Thus, the total flow of arcs incoming to ∪kTk must be positive, while the total
flow of arcs outgoing from ∪kTk is negative or zero. On the other hand, these
two flows must be equal, since x is a circulation; this can be seen by adding
the equation ∑

{n|(m,n)∈A}
xmn =

∑
{n|(n,m)∈A}

xnm

over all nodes m ∈ ∪kTk. Therefore, we obtain a contradiction, and it follows
that one of the sets Tk contains node i.

We now trace labels backward from i until node j is reached. [This
will happen eventually because if “(m, n)” or “(n, m)” is the label of node n
and n ∈ Tk+1, then m ∈ Tk, so a “cycle” of labels cannot be formed before
reaching j.] In particular, let “(i1, i)” or “(i, i1)” be the label of i, let “(i2, i1)”
or “(i1, i2)” be the label of i1, etc., until a node ik with label “(ik, j)” or “(j, ik)”
is found. The cycle C = (j, ik, ik−1, . . . , i1, i, j) is simple, it contains (i, j) as a
forward arc, and is such that all its forward arcs have positive flow and all its
backward arcs have negative flow (see Fig. 1.2). Let a = min(m,n)∈C |xmn| > 0.
Then the circulation x′, where

x′
ij =

⎧⎨
⎩

a if (i, j) ∈ C+

−a, if (i, j) ∈ C−

0 otherwise,
has the required properties (1.4).

Consider now the case where x is not a circulation. We form an enlarged
graph by introducing a new node s and by introducing for each node i ∈ N an
arc (s, i) with flow xsi equal to the divergence yi of Eq. (1.2). Then (by using
also the fact

∑
i∈N yi = 0) the resulting flow vector is seen to be a circulation

in the enlarged graph. This circulation, by the result just shown, can be
decomposed into at most A + N simple circulations of the enlarged graph,
conforming to the flow vector. Out of these circulations, we consider those
containing node s, and we remove s and its two incident arcs while leaving the
other circulations unchanged. As a result we obtain a set of at most A + N
path flows of the original graph, which add up to x. These path flows also
conform to x, as is required in order to prove the proposition. Q.E.D.
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Figure 1.5 Construction of a cycle of nonzero flow arcs used in the proof

of the Conformal Realization Theorem.

1.1.2 The Minimum Cost Flow Problem

The minimum cost flow problem is to find a set of arc flows that minimize
a linear cost function subject to the constraints that they produce a given
divergence vector and lie within some bounds; that is,

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1.5)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, (1.6)

where aij , bij , cij , and si are given scalars.
We use the following terminology.

aij : the cost coefficient (or simply cost) of (i, j).

bij and cij : the flow bounds of (i, j).

[bij , cij ]: the feasible flow range of (i, j).

si: the supply of node i.
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We also refer to the constraints (1.5) and (1.6) as the conservation of flow
constraints, and the capacity constraints, respectively. A flow vector satisfying
both of these constraints is called feasible, and if it satisfies just the capacity
constraints, it is called capacity-feasible. If there exists at least one feasible
flow vector, problem (MCF) is called feasible; otherwise it is called infeasible.
Note that for feasibility we must have

∑
i∈N

si = 0, (1.7)

since by Eq. (1.2), for any flow vector, the sum of all the corresponding node
divergences must be zero.

For a typical application of the minimum cost flow problem, think of the
nodes as locations (cities, warehouses, or factories) where a certain product
is produced or consumed. Think of the arcs as transportation links between
the locations, each with transportation cost aij per unit transported. The
problem then is to move the product from the production points to the con-
sumption points at minimum cost while observing the capacity constraints of
the transportation links.

On occasion, we will consider the variation of the minimum cost flow
problem where the lower or the upper flow bound of some of the arcs is either
−∞ or ∞, respectively. In these cases, we will explicitly state so; thus, in the
absence of a contrary statement, we implicitly assume that every arc has real
lower and upper flow bounds.

The minimum cost flow problem is a special case of a linear programming
problem, but it has a much more favorable structure than a general linear
program. It has certain special properties that strongly affect the performance
of algorithms. For example, the minimum cost flow problem with integer
data can be solved using integer calculations exclusively. Furthermore, some
methods (relaxation, auction) are very efficient for some minimum cost flow
problems but are less efficient or inapplicable for general linear programs.
In practice, minimum cost flow problems can often be solved hundreds and
even thousands of times faster than general linear programs of comparable
dimension.

The assignment problem is a special case of the minimum cost flow
problem [see Eq. (1.1); by reversing the sign of the cost function, maximization
can be turned into minimization]. Two other important special cases are
described below.

Example 1.2. The Max-Flow Problem

In the max-flow problem there are two special nodes: the source (s) and the

sink (t). Roughly, the objective is to push as much flow as possible from s into

t while observing the capacity constraints. More precisely, we want to make
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the divergence of all nodes other than s and t equal to zero while maximizing

the divergence of s (or, equivalently, minimizing the divergence of t).

The max-flow problem arises in many practical contexts, such as calcu-

lating the throughput of a highway system or a communication network. It

also arises often as a subproblem in more complicated problems or algorithms.

We formulate this problem as a special case of the minimum cost flow

problem by assigning cost zero to all arcs and by introducing an arc (t, s) with

cost −1 and with an appropriately large upper flow bound and small lower

flow bound, as shown in Fig. 1.6. Mathematically, the problem is as follows:

maximize xts

subject to∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = 0, ∀ i ∈ N with i �= s and i �= t,

∑
{j|(s,j)∈A}

xsj =
∑

{i|(i,t)∈A}

xit = xts,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A with (i, j) �= (t, s),∑
{i|(i,t)∈A}

bit ≤ xts ≤
∑

{i|(i,t)∈A}

cit.

(1.8)

The upper and lower bounds on xts are introduced in order to place the prob-

lem in the minimum cost flow format; they are actually redundant since they

are implied by the upper and lower bounds on the flows of the arcs of A.

Also, viewing the problem as a maximization is consistent with its intuitive

interpretation. Alternatively, we could write the problem as a minimization

of −xts subject to the same constraints.

In an alternative formulation the flow bounds on xts could be discarded,

since they are implied by other bounds, namely bit ≤ xit ≤ cit for all (i, t) ∈ A.

We would then be dealing with a special case of the version of the minimum

cost flow problem in which some of the flow bounds are −∞ and/or ∞.

Example 1.3. The Transportation Problem

This problem is the same as the assignment problem except that the node

supplies need not be 1 or −1 and maximization is replaced by minimization.
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Figure 1.6 The minimum cost flow representation of a max-flow problem.

At the optimum, the flow xts equals the maximum flow that can be sent from s

to t through the subgraph obtained by deleting arc (t, s).

It has the form

minimize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = αi, ∀ i = 1, . . . , m,

∑
{i|(i,j)∈A}

xij = βj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ min{αi, βj}, ∀ (i, j) ∈ A.

(1.9)

Here αi and βj are positive scalars, which for feasibility must satisfy

m∑
i=1

αi =

n∑
j=1

βj ,

[see Eq. (1.7)]. In an alternative formulation, the upper bound constraint

xij ≤ min{αi, βj} could be discarded, since it is implied by the conservation

of flow and the nonnegativity constraints.
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1.1.3 Transformations and Equivalences

The minimum cost flow problem can be represented in several equivalent
forms, which we describe below.

Setting the Lower Flow Bounds to Zero

The lower flow bounds bij can be changed to zero by a translation of variables,
that is, by replacing xij by xij − bij and by adjusting the upper flow bounds
and the supplies according to

cij := cij − bij ,

si := si −
∑

{j|(i,j)∈A}
bij +

∑
{j|(j,i)∈A}

bji.

Optimal flows and the optimal value of the original problem are obtained by
adding bij to the optimal flow of each arc (i, j) and adding

∑
(i,j)∈A aijbij to

the optimal value of the transformed problem, respectively. Working with the
transformed problem saves computation time and storage, and for this reason
most network flow codes assume that all lower flow bounds are zero.

Eliminating the Upper Flow Bounds

Once the lower flow bounds have been changed to zero, it is possible to elim-
inate the upper flow bounds, obtaining a problem with just a nonnegativity
constraint on all the flows. This can be done by introducing an additional
nonnegative variable zij that must satisfy the constraint

xij + zij = cij .

(In linear programming terminology, zij is known as a slack variable.) The
resulting problem is a minimum cost flow problem involving for each arc (i, j),
an extra node with supply cij , and two outgoing arcs, corresponding to the
flows xij and zij ; see Fig. 1.7.

Reduction to a Circulation Format

The problem can be put into circulation format , in which all node supplies
are zero. One way of doing this is to introduce a new node t and an arc (t, i)
for each node i with nonzero supply si. We may then introduce the constraint
si ≤ xti ≤ si and an arbitrary cost for the flow xti. Alternatively, we may
introduce an arc (t, i) and a constraint 0 ≤ xti ≤ si for all i with si > 0, and
an arc (i, t) and a constraint 0 ≤ xit ≤ −si for all i with si < 0. The cost of
these arcs should be very small (i.e., large negative) to force the corresponding
flows to be at their upper bound at the optimum; see Fig. 1.8.
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Figure 1.7 Eliminating the upper capacity bound by replacing each arc with

a node and two outgoing arcs. Since for feasibility we must have zij = cij − xij ,

the upper bound constraint xij ≤ cij is equivalent to the lower bound constraint

0 ≤ zij . Furthermore, in view again of the equation xij = cij−zij , the conservation

of flow equation

−
∑

j

zij −
∑

j

xji = si −
∑

j

cij

for the modified problem is equivalent to the conservation of flow equation∑
j

xij −
∑

j

xji = si

for the original problem. Using these facts, it can be seen that the feasible flow

vectors (x, z) of the modified problem can be paired on a one-to-one basis with

the feasible flow vectors x of the original problem, and that the corresponding

costs are equal. Thus, the modified problem is equivalent to the original problem.

Reduction to a Transportation or an Assignment Problem

Finally, the minimum cost flow problem may be transformed into a trans-
portation problem of the form (1.9); see Fig. 1.9. The transportation problem
(1.9) can itself be converted into an assignment problem by creating αi unit
supply sources (βj unit demand sinks) for each transportation problem source
i (sink j, respectively). For this reason, any algorithm that solves the assign-
ment problem can be extended into an algorithm for the minimum cost flow
problem. This motivates a useful way to develop and analyze new algorith-
mic ideas; apply them to the simpler assignment problem and generalize them
using the construction just given to the minimum cost flow problem.
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Figure 1.8 A transformation of the minimum cost flow problem into a

circulation format. All artificial arcs have very large negative cost, to force the

corresponding flows to their upper bounds at the optimum.

E X E R C I S E S

Exercise 1.1

Use the algorithm of the proof of the Conformal Realization Theorem to de-

compose the flow vector of Fig. 1.10 into simple path flows.

Exercise 1.2

Convert the minimum cost flow problem of Fig. 1.11 into a linear network flow

problem involving only nonnegativity constraints on the variables.

Exercise 1.3

Consider the minimum cost flow problem and let pi be a scalar for each node

i. Change the cost of each arc (i, j) from aij to aij + pj − pi. Show that the

optimal flow vectors are unaffected. Note: This transformation is often useful;

for example to make all arc costs nonnegative – see Section 1.3.5.
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Figure 1.9 Transformation of a minimum cost flow problem into a

transportation problem of the form (1.9). The idea is to introduce a new node

for each arc and introduce a slack variable for every arc flow; see Fig. 1.7. This

not only eliminates the upper bound constraint on the arc flows, as in Fig. 1.7,

but also creates a bipartite graph structure. In particular, we take as sources of

the transportation problem the arcs of the original network, and as sinks of the

transportation problem the nodes of the original network. Each transportation

problem source has two outgoing arcs with cost coefficients as shown. The supply

of each transportation problem source is the feasible flow range length of the

corresponding original network arc. The demand of each transportation problem

sink is the sum of the feasible flow range lengths of the outgoing arcs from the

corresponding original network node minus the supply of that node, as shown.

An arc flow xij in (MCF) corresponds to flows equal to xij and cij − bij − xij on

the transportation problem arcs
(
(i, j), j

)
and

(
(i, j), i

)
, respectively.

Exercise 1.4 (Breadth-First Search)

Let i and j be two nodes of a directed graph (N ,A).

(a) Consider the following algorithm, known as breadth-first search, for find-

ing a path from i to j. Let T0 = {i}. For k = 0, 1, . . ., let

Tk+1 = {n /∈ ∪k
p=0Tp | for some node m ∈ Tk, (m, n) or (n, m) is an arc},

and mark each node n ∈ Tk+1 with the label “(m, n)” or “(n, m),” where

m is a node of Tk such that (m, n) or (n, m) is an arc, respectively. The

algorithm terminates if either (1) Tk+1 is empty or (2) j ∈ Tk+1. Show
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Figure 1.10 Flow vector for Exercise 1.1. The arc flows are the numbers

shown next to the arcs.

Figure 1.11 Minimum cost flow problem for Exercise 1.2. All arc costs

are equal to 1, and all node supplies are equal to zero. The feasible flow ranges

of the arcs are shown next to the arcs.

that case (1) occurs if and only if there is no path from i to j. If case

(2) occurs, how would you use the labels to construct a path from i to

j?

(b) Show that a path found by breadth-first search has a minimum number

of arcs over all paths from i to j.

(c) Modify the algorithm of part (a) so that it finds a forward path from i

to j.

Exercise 1.5 (Path Decomposition Theorem)

Use the Conformal Realization Theorem to show that a forward path P can

be decomposed into a (possibly empty) collection of simple forward cycles,

together with a simple forward path that has the same start node and end

node as P . (Here “decomposition” means that the union of the arcs of the

component paths is equal to the set of arcs of P with the multiplicity of

repeated arcs properly accounted for.)
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Exercise 1.6 (Inequality Constrained Minimum Cost Flows)

Consider the following variation of the minimum cost flow problem:

minimize
∑

(i,j)∈A

aijxij

subject to

si ≤
∑

{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji ≤ si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A,

where the bounds si and si on the divergence of node i are given. Convert this

problem into the standard form of the minimum cost flow problem by adding

an extra node and an arc from this node to every other node.

Exercise 1.7 (Node Throughput Constraints)

Consider the minimum cost flow problem with the additional constraints that

the total flow of the outgoing arcs from each node i must lie within a given

range [ti, ti], that is,

ti ≤
∑

{j|(i,j)∈A}

xij ≤ ti.

Convert this problem into the standard form of the minimum cost flow problem

by adding an extra node and an extra arc for each existing node.

Exercise 1.8 (Piecewise Linear Arc Costs)

Consider the minimum cost flow problem with the difference that, instead of

the linear form aijxij , each arc’s cost function has the piecewise linear form

fij(xij) =

{
a1

ijxij if bij ≤ xij ≤ mij

a1
ijmij + a2

ij(xij − mij) if mij ≤ xij ≤ cij ,

where mij , a1
ij , and a2

ij are given scalars satisfying bij ≤ mij ≤ cij and a1
ij ≤ a2

ij .

(a) Show that the problem can be converted to a linear minimum cost flow

problem where each arc (i, j) is replaced by two arcs with arc cost co-

efficients a1
ij and a2

ij , and arc flow ranges [bij , mij ] and [0, cij − mij ],

respectively.

(b) Generalize to the case of piecewise linear cost functions with more than

two pieces.
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1.2 THREE BASIC ALGORITHMIC IDEAS

In this section we will explain three main ideas underlying minimum cost flow
algorithms:

(a) Primal cost improvement. Here we try to iteratively improve the cost
to its optimal value by constructing a corresponding sequence of feasible
flows.

(b) Dual cost improvement. Here we define a problem related to the mini-
mum cost flow problem, called dual problem, whose variables are called
prices. We then try to iteratively improve the dual cost to its optimal
value by constructing a corresponding sequence of prices. Dual cost
improvement algorithms also iterate on flows, which are related to the
prices through a property called complementary slackness.

(c) Auction. This is a process that generates a sequence of prices in a way
that is reminiscent of real-life auctions. Strictly speaking, there is no pri-
mal or dual cost improvement here, although one may view the auction
process as trying to iteratively improve the dual cost in an approximate
sense. In addition to prices, auction algorithms also iterate on flows,
which are related to prices through a property called ε-complementary
slackness; this is an approximate form of the complementary slackness
property mentioned above.

For simplicity, in this chapter we will explain these ideas primarily
through the assignment problem and the max-flow problem, deferring a more
detailed development to subsequent chapters. Our illustrations, however, are
relevant to the general minimum cost flow problem, since this problem can be
reduced to the assignment problem (as was shown in the preceding section).
Except for the max-flow analysis and the duality theory, the explanations
in this section are somewhat informal. Precise statements of algorithms and
results will be given in subsequent chapters.

1.2.1 Primal Cost Improvement

An important algorithmic idea for the minimum cost flow problem is to start
from an initial feasible flow vector and then generate a sequence of feasible
flow vectors, each having a better cost than the preceding one. The difference
of any two successive flow vectors must be a circulation (since both are feasi-
ble), and for many interesting algorithms, including the simplex method, this
circulation involves only a simple cycle. This idea will be first illustrated in
terms of the assignment problem.
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Multi-Person Swaps in the Assignment Problem

Consider the n × n assignment problem and suppose that we have a feasible
assignment, that is, a set of n pairs (i, j) involving each person i exactly
once and each object j exactly once. Consider now what happens if we do
a two-person swap, that is, we replace two pairs (i1, j1) and (i2, j2) from the
assignment with the pairs (i1, j2) and (i2, j1). The resulting assignment will
still be feasible, and it will have a higher value if and only if

ai1j2 + ai2j1 > ai1j1 + ai2j2 .

Unfortunately, it may be impossible to improve the current assignment
by a two-person swap, even if the assignment is not optimal; see Fig. 2.1.
It turns out, however, that an improvement is possible by means of a k-
person swap, for some k ≥ 2, where a set of pairs (i1, j1), . . . , (ik, jk) from the
current assignment is replaced by the pairs (i1, j2), . . . , (ik−1, jk), (ik, j1). This
can be shown in the context of the minimum cost flow representation of the
assignment problem:

maximize
∑

(i,j)∈A
aijxij

subject to∑
{j|(i,j)∈A}

xij = 1, ∀ i = 1, . . . , n,

∑
{i|(i,j)∈A}

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A.

(2.1)

Feasible assignments correspond to feasible flow vectors {xij | (i, j) ∈ A}
such that xij is either 0 or 1, and a k-person swap corresponds to a simple
cycle with k forward arcs (corresponding to the new assignment pairs) and k
backward arcs (corresponding to the current assignment pairs that are being
replaced); see Fig. 2.2. Thus, performing a k-person swap is equivalent to
pushing one unit of flow along the corresponding simple cycle. The k-person
swap improves the assignment if and only if the value of the k-person swap,
defined by

aikj1 +
k−1∑
m=1

aimjm+1 −
k∑

m=1

aimjm, (2.2)

is positive.
By associating k-person swaps with simple cycle flows, we can show that

a value-improving k-person swap exists if the current assignment is not opti-
mal. For a detailed proof, see the subsequent Prop. 2.1. The main argument is



1 1

3 3

1 1

2
1

2
1

1 1

1
Value = 1

0
2

2

1
0

0
2

1

1

3

2

11

3

2

22 Introduction Chap. 1

Figure 2.1 An example of a nonoptimal feasible assignment that cannot

be improved by a two-person swap. The value of each pair is shown next to the

corresponding arc. Here, the value of the assignment {(1, 1), (2, 2), (3, 3)} is left

unchanged at 3 by any two-person swap. Through a three-person swap, however,

we obtain the optimal assignment, {(1, 2), (2, 3), (3, 1)}, which has value 6.

Figure 2.2 Correspondence of a k-person swap to a simple cycle. This

is the same example as in the preceding figure. The backward arcs of the cycle

are (1, 1), (2, 2), and (3, 3), and correspond to the current assignment pairs. The

forward arcs of the cycle are (1, 2), (2, 3), and (3, 1), and correspond to the new

assignment pairs. The k-person swap is value-improving because the sum of the

values of the forward arcs (2 + 2 + 2) is greater than the sum of the values of the

backward arcs (1 + 1 + 1).

based on the Conformal Realization Theorem (Prop. 1.1). Briefly, the differ-
ence between the flow vector corresponding to an optimal assignment and the
vector corresponding to the current assignment is a circulation with arc flows
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equal to 0, 1, or −1, which can be decomposed into several conforming simple
cycles (that is, k-person swaps). Thus, the value of the optimal assignment
is equal to the value of the current assignment plus the sum of the values of
the k-person swaps. It follows that if the current assignment is not optimal,
then the value of at least one of the k-person swaps must be positive.

Primal cost improvement algorithms for the assignment problem are
based on successive k-person swaps, each having positive or at least non-
negative value. There are several different algorithms of this type, including
various forms of the simplex method, which will be discussed in detail in the
next chapter.

Extension to the Minimum Cost Flow Problem

The algorithmic ideas just described for the assignment problem can be ex-
tended to the minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N ,

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A.

The role of k-person swaps is played by simple cycles with special properties.
In particular, let x be a nonoptimal feasible flow vector, and let x∗ be another
feasible flow vector with smaller cost than x (for example, x∗ could be an
optimal flow vector). The difference w = x∗ −x is a circulation satisfying, for
all arcs (i, j),

bij ≤ x∗
ij < xij for all arcs (i, j) with wij < 0, (2.3a)

xij < x∗
ij ≤ cij for all arcs (i, j) with 0 < wij. (2.3b)

According to the Conformal Realization Theorem (Prop. 1.1), w can be de-
composed into the sum of several simple cycle flows xs, s = 1, . . . , t, which
are conforming in the sense that, for all arcs (i, j),

wij < 0 for all arcs (i, j) with xs
ij < 0, (2.4a)

0 < wij for all arcs (i, j) with 0 < xs
ij. (2.4b)

Let us define a path P to be unblocked with respect to x if xij < cij for all
forward arcs (i, j) ∈ P+ and bij < xij for all backward arcs (i, j) ∈ P−. From
Eqs. (2.3) and (2.4), we see that each of the simple cycle flows xs involves
a cycle that is unblocked with respect to x. Let us define also the cost of a
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simple cycle C as the sum of the costs of the forward arcs minus the sum of
the costs of the backward arcs of C, that is,∑

(i,j)∈C+

aij −
∑

(i,j)∈C−
aij.

Since w = x∗ − x, the cost of w (that is,
∑

(i,j)∈A aijwij) is equal to the
cost of x∗ minus the cost of x, so the cost of w must be negative. On the other
hand, w is the sum of the simple cycle flows xs, so the cost of w is equal to
the sum of the costs of the corresponding simple cycles multiplied by positive
constants (the flow values of the corresponding simple cycle flows). Therefore,
the cost of at least one of these simple cycles must be negative. We have thus
proved the following proposition.

Proposition 2.1: Consider the minimum cost flow problem and let x be a
feasible flow vector which is not optimal. Then there exists a simple cycle flow
that when added to x, produces a feasible flow vector with smaller cost that
x; the corresponding cycle is unblocked with respect to x and has negative
cost.

The major primal cost improvement algorithm for the minimum cost flow
problem, the simplex method, uses simple cycle flows to produce improved
feasible flow vectors, as will be discussed in the next chapter.

1.2.2 Application to the Max-Flow Problem – The
Max-Flow/Min-Cut Theorem

We will now illustrate the preceding primal cost improvement approach in
terms of the max-flow problem. In the process we will derive one of the most
celebrated theorems of network optimization. To get a sense of the main ideas,
consider the minimum cost flow formulation of the max-flow problem, given in
Example 1.2, which involves the artificial feedback arc (t, s). Then, a negative
cost cycle must necessarily include the arc (t, s), since this is the only arc with
nonzero cost. By Prop. 2.1, if a feasible flow vector x is not optimal, there
must exist a simple cycle with negative cost that is unblocked with respect
to x; this cycle must consist of the arc (t, s) and a path from s to t, which
is unblocked with respect to x. Thus, by adding to x the corresponding path
flow, we obtain an improved flow vector. By similar reasoning, it follows that
if there is no path from s to t that is unblocked with respect to a given flow
vector x, then x must be optimal.

The max-flow/min-cut theorem and the Ford-Fulkerson algorithm, to
be described shortly, are based on the above ideas. However, in view of the
simplicity of the max-flow problem, the subsequent analysis will be couched
in first principles; it will also develop some concepts that will be useful later.
First some definitions are needed.
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Cuts in a Graph

A cut Q in a graph (N ,A) is a partition of the node set N into two nonempty
subsets, a set S and its complement N − S; we will use the notation Q =
[S,N − S]. Note that the partition is ordered in the sense that the cut
[S,N − S] is distinct from the cut [N − S,S]. For a cut Q = [S,N − S], we
will use the notation

Q+ = {(i, j) ∈ A | i ∈ S, j /∈ S},

Q− = {(i, j) ∈ A | i /∈ S, j ∈ S},

and we will say that Q+ and Q− are the sets of forward and backward arcs of
the cut , respectively. We will say that the cut Q is nonempty if Q+ ∪Q− 	= ∅;
otherwise we will say that Q is empty . We will say that the cut [S,N − S]
separates node s from node t if s ∈ S and t /∈ S. These definitions are
illustrated in Fig. 2.3.

Figure 2.3 Illustration of a cut Q = [S,N − S], where S = {1, 2, 3}. We

have

Q+ = {(2, 4), (1, 5)}, Q− = {(4, 1), (5, 3), (6, 3)}.

Given a flow vector x, the flux across a nonempty cut Q = [S,N −S] is
defined to be the total net flow coming out of S, that is, the scalar

F (Q) =
∑

(i,j)∈Q+

xij −
∑

(i,j)∈Q−
xij.
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Using the definition of the divergence of a node [see Eq. (1.2)] and the fol-
lowing calculation, it can be seen that F (Q) is also equal to the sum of the
divergences yi of the nodes in S:

F (Q) =
∑

{(i,j)∈A|i∈S,j /∈S}
xij −

∑
{(i,j)∈A|i/∈S,j∈S}

xij

=
∑
i∈S

⎛
⎝ ∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji

⎞
⎠ =

∑
i∈S

yi.

(2.5)

(The second equality holds because the flow of an arc with both end nodes in
S cancels out within the parentheses; it appears twice, once with a positive
and once with a negative sign.)

Given flow bounds bij and cij for each arc (i, j), the capacity of a
nonempty cut Q is

C(Q) =
∑

(i,j)∈Q+

cij −
∑

(i,j)∈Q−
bij . (2.6)

Clearly, for any capacity-feasible flow vector x, the flux F (Q) across Q is no
larger than the cut capacity C(Q). If F (Q) = C(Q), then Q is said to be
a saturated cut with respect to x; the flow of each forward (backward) arc of
such a cut must be at its upper (lower) bound. By convention, every empty
cut is also said to be saturated. The following is a simple but very useful
result.

Proposition 2.2: Let x be a capacity-feasible flow vector, and let s and t
be two nodes. Then exactly one of the following two alternatives holds:

(1) There exists a path from s to t that is unblocked with respect to x.

(2) There exists a saturated cut Q that separates s from t.

Proof: The proof is obtained by constructing an algorithm that terminates
with either a path as in (1) or a cut as in (2). Consider the following algorithm,
which is similar to the breadth-first search algorithm of Exercise 1.4; see Fig.
2.4. It generates a sequence of node sets {Tk}, starting with T0 = {s}; each set
Tk represents the set of nodes that can be reached from s with an unblocked
path of k arcs.

Unblocked Path Search Algorithm

For k = 0, 1, . . ., given Tk, terminate if either Tk is empty or t ∈ Tk; otherwise,

set

Tk+1 =
{
n /∈ ∪k

i=0Ti| there is a node m ∈ Tk, and either an arc (m, n)

such that xmn < cmn, or an arc (n, m) such that bnm < xnm

}
,
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and mark each node n ∈ Tk+1 with the label “(m, n)” or “(n, m),” where m

is a node of Tk and (m, n) or (n, m) is an arc with the property stated in the

above equation, respectively.

Since the algorithm terminates if Tk is empty, and Tk must consist of
nodes not previously included in ∪k−1

i=0 Ti, the algorithm must eventually ter-
minate. Let S be the union of the sets Ti upon termination. There are two
possibilities:

(a) The final set Tk contains t, in which case, by tracing labels backward
from t, an unblocked path P from s to t can be constructed. The forward
arcs of P are of the form (m, n) with xmn < cmn and the label of n being
“(m, n)”; the backward arcs of P are of the form (n, m) with bnm < xnm

and the label of n being “(n, m).” Any cut separating s from t must
contain a forward arc (m, n) of P with xmn < cmn or a backward arc
(n, m) of P with bnm < xnm, and therefore cannot be saturated. Thus,
the result is proved in this case.

(b) The final set Tk is empty, in which case from the equation defining Tk,
it can be seen that the cut Q = [S,N − S] is saturated and separates
s from t. To show that there is no unblocked path from s to t, note
that for any such path, we must have either an arc (m, n) ∈ Q+ with
xmn < cmn or an arc (n, m) ∈ Q− with bnm < xnm, which is impossible,
since Q is saturated.

Q.E.D.

A generalization of Prop. 2.2 that involves two disjoint subsets of nodes
N+ and N− in place of s and t is given in Exercise 2.14.

The Max-Flow/Min-Cut Theorem

Consider now the max-flow problem. We have a graph (N ,A) with flow
bounds bij and cij for the arcs, and two special nodes s and t. We want to
maximize the divergence out of s over all capacity-feasible flow vectors having
zero divergence for all nodes other than s and t. Given any such flow vector
and any cut Q separating s from t, the divergence out of s is equal to the
flux across Q [cf. Eq. (2.5)], which in turn is no larger than the capacity of Q.
Thus, if the max-flow problem is feasible, we have

Maximum Flow ≤ Capacity of Q. (2.7)

The following theorem asserts that equality is attained for some Q. Part (a) of
the theorem will assume the existence of an optimal solution to the max-flow
problem. This assumption need not be satisfied; indeed it is possible that the
max-flow problem has no feasible solution at all (consider a graph consisting
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Figure 2.4 Illustration of the unblocked path search algorithm for finding

an unblocked path from node 1 to node 6, or a saturated cut separating 1 from

6. The triplet (lower bound, flow, upper bound) is shown next to each arc. The

figure shows the successive sets Tk generated by the algorithm. In case (a) there

exists a unblocked path from 1 to 6, namely the path (1, 3, 5, 6). In case (b),

where the flow of arc (6, 5) is at the lower bound rather than the upper bound,

there is a saturated cut [S,N − S] separating 1 from 6, where S = {1, 2, 3, 4, 5}
is the union of the sets Tk.

of a path from s to t the arcs of which have disjoint feasible flow ranges).
In Chapter 2, however, we will show using the theory of the simplex method
(see Prop. 3.1 in Section 2.3), that the max-flow problem (and indeed every
minimum cost flow problem) has an optimal solution if it has at least one
feasible solution. [This can also be easily shown using a fundamental result of
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mathematical analysis, the Weierstrass Theorem (see e.g. [Lue69], [Rud76]),
which states that a continuous function attains a maximum over a nonempty
and compact set.] If the lower flow bound is zero for every arc, the max-flow
problem has at least one feasible solution, namely the zero flow vector. Thus
the theory of Chapter 2 (or the Weierstrass Theorem) guarantees that the
max-flow problem has an optimal solution in this case. This is stated as part
(b) of the following theorem, even though its complete proof must await the
developments of Chapter 2.

Proposition 2.3: (Max-Flow/Min-Cut Theorem)

(a) If x∗ is an optimal solution of the max-flow problem, then the divergence
out of s corresponding to x∗ is equal to the minimum cut capacity over
all cuts separating s from t.

(b) If all lower arc flow bounds are zero, the max-flow problem has an op-
timal solution, and the maximal divergence out of s is equal to the
minimum cut capacity over all cuts separating s from t.

Proof: (a) Let F ∗ be the value of the maximum flow, that is, the divergence
out of s corresponding to x∗. There cannot exist an unblocked path P from s
to t with respect to x∗, since by increasing the flow of the forward arcs of P
and by decreasing the flow of the backward arcs of P by a common positive
increment, we would obtain a flow vector with divergence out of s larger than
F ∗. Therefore, by Prop. 2.2, there must exist a cut Q, that is saturated with
respect to x∗ and separates s from t. The flux across Q is equal to F ∗ and is
also equal to the capacity of Q [since Q is saturated; see Eqs. (2.5) and (2.6)].
Since we know that F ∗ is less or equal to the minimum cut capacity [cf. Eq.
(2.7)], the result follows.

(b) See the discussion preceding the proposition. Q.E.D.

The Ford-Fulkerson Algorithm

We now turn to an algorithm for solving the max-flow problem. This algo-
rithm is of the primal cost improvement type, because it improves the primal
cost (the divergence out of s) at every iteration. The idea is that, given a
feasible flow vector x (i.e., one that is capacity-feasible and has zero diver-
gence out of every node other than s and t), and a path P from s to t, which
is unblocked with respect to x, we can increase the flow of all forward arcs
(i, j) ∈ P+ and decrease the flow of all backward arcs (i, j) ∈ P− by the
positive amount

δ = min
{
{cij − xij | (i, j) ∈ P+}, {xij − bij | (i, j) ∈ P−}

}
.
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The resulting flow vector x, given by

xij =

⎧⎨
⎩

xij + δ if (i, j) ∈ P+

xij − δ if (i, j) ∈ P−

xij otherwise,

is feasible, and it has a divergence out of s that is larger by δ than the
divergence out of s corresponding to x. We refer to P as an augmenting path,
and we refer to the operation of replacing x by x as a flow augmentation along
P . Such an operation may also be viewed as a modification of x along the
negative cost cycle consisting of P and an artificial arc (t, s) that has cost −1;
see the formulation of the max-flow problem as a minimum cost flow problem
in Example 1.2 and Fig. 1.6, and the discussion at the beginning of the present
subsection.

The algorithm starts with a feasible flow vector x. If the lower flow
bound is zero for all arcs, the zero flow vector can be used as a starting
vector; otherwise, a feasible starting flow vector can be obtained by solving
an auxiliary max-flow problem with zero lower flow bounds – see Exercise
2.5. At each iteration the algorithm has a feasible flow vector x and uses
the unblocked path search method, given in the proof of Prop. 2.2, to either
generate a new feasible flow vector with larger divergence out of s or terminate
with a maximum flow and a minimum capacity cut.

Typical Iteration of Ford-Fulkerson Algorithm

Use the unblocked path search method to either (1) find a saturated cut sep-

arating s from t or (2) find an unblocked path P with respect to x starting

from s and ending at t. In case (1), terminate the algorithm; the current flow

vector solves the max-flow problem. In case (2), perform an augmentation

along P and go to the next iteration.

Figure 2.5 illustrates the Ford-Fulkerson algorithm.
Based on the preceding discussion, we see that with each augmentation

the Ford-Fulkerson algorithm will improve the primal cost (the divergence
out of s) by the augmentation increment δ. Thus, if δ is bounded below
by some positive number, the algorithm can execute only a finite number of
iterations and must terminate with an optimal solution. In particular, if the
arc flow bounds are integer and the initial flow vector is also integer, δ will
be a positive integer at each iteration, and the algorithm will terminate. The
same is true even if the arc flow bounds and the initial flow vector are rational;
by multiplication with a suitably large integer, one can scale these numbers
up to integer while leaving the problem essentially unaffected.

On the other hand, if the problem data are irrational, proving termi-
nation of the Ford-Fulkerson algorithm is nontrivial. The proof (outlined
in Exercise 2.10) depends on the use of the specific unblocked path search
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Figure 2.5 Illustration of the Ford-Fulkerson algorithm for finding a max-

imum flow from node s = 1 to node t = 5. The arc flow bounds are shown next

to the arcs in the top left figure, and the starting flow is zero. The sequence of

successive flow vectors is shown on the left, and the corresponding sequence of aug-

mentations is shown on the right. The saturated cut obtained is [{1, 2, 3}, {4, 5}].
The capacity of this cut as well as the maximum flow is 5.

method of Prop. 2.2; this method yields augmenting paths with as few arcs as
possible (Exercise 2.10). If unblocked paths are constructed using a different
method, then, surprisingly, the Ford-Fulkerson algorithm need not terminate,
and the generated sequence of divergences out of s may converge to a value
strictly smaller than the maximum flow (for an example, see Exercise 2.9, and
for a different example, see [FoF62], or [PaS82], p. 126, or [Roc84], p. 92).



Augmenting Path for Odd 
Numbered Iterations

Augmenting Path for Even
Numbered Iterations

1 4

3

2

[0,1]

[0,C]

[0,C]

[0,C]

[0,C]

1

1

1

1 4

3

2

1

-1

1

1 4

3

2

32 Introduction Chap. 1

Even with integer problem data, if the augmenting paths are constructed us-
ing a different unblocked path search method the Ford-Fulkerson algorithm
may terminate in a very large number of iterations; see Fig. 2.6.

Figure 2.6 An example showing that if the augmenting paths used in the

Ford-Fulkerson algorithm do not have a number of arcs that is as small as possible,

the number of iterations may be very large. Here, C is a large integer. The

maximum flow is 2C, and can be produced after a sequence of 2C augmentations

using the three-arc augmenting paths shown in the figure. If on the other hand the

two-arc augmenting paths (1, 2, 4) and (1, 3, 4) are used, only two augmentations

are needed.

The number of augmentations of the Ford-Fulkerson algorithm, with
the unblocked path search method given, can be estimated as O(NA) for an
O(NA2) running time [since each augmentation requires O(A) operations];
see Exercise 2.10. Several max-flow algorithms with more favorable worst
case complexity estimates are available; see the references and Chapter 4.
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1.2.3 Duality and Dual Cost Improvement

Linear programming duality theory deals with the relation between the origi-
nal linear program and another linear program called dual . To develop an in-
tuitive understanding of duality, we will focus on the assignment problem and
consider a closely related economic equilibrium problem. Consider matching
the n objects with the n persons through a market mechanism, viewing each
person as an economic agent acting in his or her own best interest. Suppose
that object j has a price pj and that the person who receives the object must
pay the price pj . Then the net value of object j for person i is aij − pj , and
each person i will logically want to be assigned to an object ji with maximal
value, that is, with

aiji − pji = max
j∈A(i)

{aij − pj}, (2.8)

where
A(i) = {j | (i, j) ∈ A}

is the set of objects that can be assigned to person i. When this condition
holds for all persons i, we say that the assignment and the set of prices sat-
isfy complementary slackness (CS for short); the name comes from standard
linear programming terminology. The economic system is then at equilib-
rium, in the sense that no person would have an incentive to unilaterally seek
another object. Such equilibrium conditions are naturally of great interest
to economists, but there is also a fundamental relation with the assignment
problem. We have the following proposition.

Proposition 2.4: If a feasible assignment and a set of prices satisfy the
complementary slackness conditions (2.8) for all persons i, then the assign-
ment is optimal and the prices are an optimal solution of the following problem

min
pj

j=1,...,n

{
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj

}
, (2.9)

called the dual problem. Furthermore, the benefit of the optimal assignment
and the optimal cost of the dual problem are equal.

Proof: The total cost of any feasible assignment {(i, ki) | i = 1, . . . , n}
satisfies

n∑
i=1

aiki ≤
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj, (2.10)

for any set of prices {pj | j = 1, . . . , n}, since the first term of the right-hand
side is no less than

n∑
i=1

(aiki − pki) ,
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while the second term is equal to
∑n

i=1 pki . On the other hand, the given
assignment and set of prices, denoted by {(i, ji) | i = 1, . . . , n} and {pj | j =
1, . . . , n}, respectively, satisfy the CS conditions, so we have

aiji − pji
= max

j∈A(i)
{aij − pj}, i = 1, . . . , n.

By adding this relation over all i, we see that

n∑
i=1

aiji =
n∑

i=1

(
max
j∈A(i)

{
aij − pj

}
+ pji

)
.

Therefore, the assignment {(i, ji) | i = 1, . . . , n} attains the maximum of
the left-hand side of Eq. (2.10) and is optimal for the primal problem, while
{pj | j = 1, . . . , n} attains the minimum of the right-hand side of Eq. (2.10)
and is optimal for the dual problem. Furthermore, the two optimal values are
equal. Q.E.D.

Duality for the Minimum Cost Flow Problem

Consider now the minimum cost flow problem, which in a duality context will
also be referred to as the primal problem. To develop duality theory for this
problem, we introduce a price vector p = {pj | j ∈ N}, and we say that
a flow-price vector pair (x, p) satisfies complementary slackness (or CS for
short) if x is capacity-feasible and

pi − pj ≤ aij for all (i, j) ∈ A with xij < cij, (2.11a)

pi − pj ≥ aij for all (i, j) ∈ A with bij < xij. (2.11b)

The above conditions also imply that we must have

pi = aij + pj for all (i, j) ∈ A with bij < xij < cij.

An equivalent way to write the CS conditions is that, for all arcs (i, j), we
have bij ≤ xij ≤ cij and

xij =
{

cij if pi > aij + pj

bij if pi < aij + pj .

The above definition of CS and the subsequent proposition are also valid
for the variations of the minimum cost flow problem where bij = −∞ and/or
cij = ∞ for some arcs (i, j). In particular, in the case where in place of the
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capacity constraints bij ≤ xij ≤ cij there are only nonnegativity constraints
0 ≤ xij , the CS conditions take the form

pi − pj ≤ aij, ∀ (i, j) ∈ A, (2.11c)

pi − pj = aij for all (i, j) ∈ A with 0 < xij. (2.11d)

The dual problem is obtained by a procedure which is standard in duality
theory. We view pi as a Lagrange multiplier associated with the conservation
of flow constraint for node i and we form the corresponding Lagrangian func-
tion

L(x, p) =
∑

(i,j)∈A
aijxij +

∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}
xji

⎞
⎠ pi

=
∑

(i,j)∈A
(aij + pj − pi)xij +

∑
i∈N

sipi.

(2.12)

Then the dual function value q(p) at a vector p is obtained by minimizing
L(x, p) over all capacity-feasible flows x,

q(p) = min
x

{
L(x, p) | bij ≤ xij ≤ cij , (i, j) ∈ A

}
. (2.13)

Because the Lagrangian function L(x, p) is separable in the arc flows xij , its
minimization decomposes into A separate minimizations, one for each arc
(i, j). Each of these minimizations can be carried out in closed form, yielding

q(p) =
∑

(i,j)∈A
qij(pi − pj) +

∑
i∈N

sipi, (2.14a)

where

qij(pi − pj) = min
xij

{
(aij + pj − pi)xij | bij ≤ xij ≤ cij

}
=

{
(aij + pj − pi)bij if pi ≤ aij + pj

(aij + pj − pi)cij if pi > aij + pj.

(2.14b)

The dual problem is

maximize q(p)
subject to no constraint on p,

(2.15)

with the dual functional q given by Eq. (2.14).
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Figure 2.7 illustrates the form of the functions qij . Since each of these
functions is piecewise linear, the dual function q is also piecewise linear. The
dual function also has some additional interesting structure. In particular,
suppose that all node prices are changed by the same amount. Then the
values of the functions qij do not change, since these functions depend on
the price differences pi − pj . If in addition we have

∑
i∈N si = 0, as we

must if the problem is feasible, we see that the term
∑

i∈N sipi also does not
change. Thus, the dual function value does not change when all node prices
are changed by the same amount, implying that the equal cost surfaces of the
dual cost function are unbounded. Figure 2.8 illustrates the dual function for
a simple example.

Figure 2.7 Form of the dual cost function qij for arc (i, j).

The following proposition is basic.

Proposition 2.5: If a feasible flow vector x∗ and a price vector p∗ satisfy
the complementary slackness conditions (2.11a) and (2.11b), then x∗ is an
optimal primal solution and p∗ is an optimal dual solution. Furthermore, the
optimal primal cost and the optimal dual cost are equal.

Proof: We first show that for any feasible flow vector x and any price vector
p, the primal cost of x is no less than the dual cost of p.
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Figure 2.8 Form of the dual cost function q for the 3-node problem in (a).

The optimal flow is x12 = 1, x23 = 1, x13 = 0. The dual function is

q(p1, p2, p3) = min{0, 1 + p2 − p1} + min{0, 1 + p3 − p2}
+ min{0, 3 + p3 − p1} + p1 − p3.

Diagram (b) shows the graph of the dual function in the space of p1 and p2, with

p3 fixed at 0. For a different value of p3, say γ, the graph is “translated” by the

vector (γ, γ); that is, we have q(p1, p2, 0) = q(p1 + γ, p2 + γ, γ) for all (p1, p2).

The dual function is maximized at the vectors p that satisfy CS together with the

optimal x. These are the vectors of the form (p1 + γ, p2 + γ, γ), where

1 ≤ p1 − p2, p1 ≤ 3, 1 ≤ p2.
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Indeed, we have

q(p) ≤ L(x, p)

=
∑

(i,j)∈A
aijxij +

∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}
xji

⎞
⎠ pi

=
∑

(i,j)∈A
aijxij ,

(2.16)

where the last equality follows from the feasibility of x. On the other hand,
we have by the definition (2.13) of q

q(p∗) = min
x

{
L(x, p∗) | bij ≤ xij ≤ cij , (i, j) ∈ A

}
= L(x∗, p∗) =

∑
(i,j)∈A

aijx∗
ij ,

where the second equality is true because

(x∗, p∗) satisfies CS if and only if
x∗

ij minimizes (aij + p∗j − p∗i )xij over all xij ∈ [bij , cij ], ∀ (i, j) ∈ A,

and the last equality follows from the Lagrangian expression (2.12) and the
feasibility of x∗. Therefore, x∗ attains the minimum of the primal cost on the
right-hand side of Eq. (2.16), and p∗ attains the maximum of q(p) on the left-
hand side of Eq. (2.16), while the optimal primal and dual values are equal.
Q.E.D.

There are also several other important duality results. In particular:

(a) The converse of the preceding proposition can be shown. That is, if x∗

and p∗ are optimal flow and price vectors for the minimum cost flow
problem, and its dual problem, respectively, then x∗ must be feasible
and together with p∗ it must satisfy CS.

(b) If the minimum cost flow problem (with upper and lower bounds on the
arc flows) is feasible, then it can be shown that optimal primal and dual
solutions x∗ and p∗ with equal cost exist. If the problem data (aij , bij ,
cij , and si) are integer, then these optimal solutions can be taken to
be integer. [If some of the arc flows have no upper bound constraints
the situation is somewhat more complicated, because it is possible that
there exist feasible flow vectors of arbitrarily small (i.e., large negative)
cost; such a problem will be called unbounded in Chapter 2. Barring
this possibility, the existence of primal and dual optimal solutions with
equal cost will be shown in Section 2.2.]

We will prove these results constructively in Chapter 2 (see Prop. 2.3 in Sec-
tion 2.2 and Prop. 3.2 in Section 2.3) by deriving algorithms that obtain
primal and dual optimal solutions, which are integer if the problem data are
integer.
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Interpretation of Complementary Slackness and the Dual
Problem

As in the case of the assignment problem, the CS conditions have an economic
interpretation. In particular, think of each node i as choosing the flow xij of
each of its outgoing arcs (i, j) from the range [bij , cij ], on the basis of the
following economic considerations: For each unit of the flow xij that node i
sends to node j along arc (i, j), node i must pay a transportation cost aij plus
a storage cost pj at node j; for each unit of the residual flow cij − xij that
node i does not send to j, node i must pay a storage cost pi. Thus, the total
cost to node j is

(aij + pj)xij + (cij − xij)pi.

It can be seen that the CS conditions (2.11) are equivalent to requiring that
node i act in its own best interest by selecting the flow that minimizes the
corresponding costs for each of its outgoing arcs (i, j); that is,

(x, p) satisfies CS if and only if
xij minimizes (aij + pj − pi)zij over all zij ∈ [bij , cij ], ∀ (i, j) ∈ A.

To interpret the dual function q(p), we continue to view aij and pi as
transportation and storage costs, respectively. Then, for a given price vector
p and supply vector s, the dual function

q(p) = min
bij≤xij≤cij ,

(i,j)∈A

⎧⎨
⎩

∑
(i,j)∈A

aijxij +
∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}
xji

⎞
⎠ pi

⎫⎬
⎭

is the minimum total transportation and storage cost to be incurred by the
nodes, by choosing flows that satisfy the capacity constraints.

Suppose now that we introduce an organization that sets the node prices
and collects the transportation and storage costs from the nodes. We see that
if the organization wants to maximize its total revenue (given that the nodes
will act in their own best interest), it must choose prices that solve the dual
problem optimally.

Finally, we provide in Fig. 2.9, a geometric view of the relation between
the primal and the dual problem. This geometric interpretation is directed
toward the advanced reader and will not be needed in what follows. It demon-
strates why the cost of any feasible flow vector is no less than the dual cost
of any price vector, and why the optimal primal and dual costs are equal.
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Figure 2.9 Geometric interpretation of duality for the reader who is familiar

with the notion and the properties of hyperplanes in a vector space. Consider the

(polyhedral) set S consisting of all pairs (y, z), where y is the divergence vector

corresponding to x and z is the cost of x, as x ranges over all capacity-feasible

flow vectors. Then feasible flow vectors correspond to common points of S and

the vertical line

L = {(s, z) | z : real number}.

The optimal primal cost corresponds to the lowest common point.

On the other hand, for a given price vector p, the dual cost q(p) can be

expressed as [cf. Eq. (2.13)]

q(p) = min
x: capacity feasible

L(x, p) = min
(y,z)∈S

{
z −

∑
i∈N

yipi

}
+

∑
i∈N

sipi.

Based on this expression, it can be seen that q(p) corresponds to the intersection

point of the vertical line L with the hyperplane{
(y, z)

∣∣∣ z −
∑
i∈N

yipi = q(p) −
∑
i∈N

sipi

}
,

which supports from below the set S, and is normal to the vector (−p, 1). The

dual problem is to find a price vector p for which the intersection point is as high

as possible. The figure illustrates the equality of the lowest common point of

S and L (optimal primal cost), and the highest point of intersection of L by a

hyperplane that supports S from below (optimal dual cost).
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Dual Cost Improvement Algorithms

In analogy with primal cost improvement algorithms, one may start with a
price vector and try to successively obtain new price vectors with improved
dual cost. The major algorithms of this type involve price changes along a
particular type of directions, known as elementary . Such directions are of the
form d = (d1, . . . , dN ), where

di =
{

1 if i ∈ S
0 if i /∈ S,

where S is a connected subset of nodes. Different algorithms correspond to
different methods for determining the node set S. Given an elementary direc-
tion of cost improvement and a corresponding set S, the prices are iterated
according to

pi :=
{

pi + γ if i ∈ S
pi if i /∈ S,

where γ is some positive scalar that is small enough to ensure that the new
price vector has an improved dual cost.

The existence of at least one elementary direction of improvement at a
nonoptimal price vector will be shown in Chapter 3. This is an important
and remarkable result, which may be viewed as a dual version of the result
of Prop. 2.1 (at a nonoptimal flow vector, there exists at least one unblocked
simple cycle with negative cost). In fact both results are special cases of a
more general theorem concerning elementary vectors of subspaces, which is
central in the theory of monotropic programming ; see [Roc70], [Roc84].

Most dual cost improvement methods, simultaneously with changing p
along a direction of dual cost improvement, also iterate on a flow vector x
satisfying CS together with p. They terminate when x becomes feasible, at
which time, by Prop. 2.5, the pair (x, p) must consist of a primal and a dual
optimal solution.

In Chapter 3 we will discuss two main methods that select elementary
directions of dual cost improvement in different ways:

(a) In the primal-dual method , the elementary direction has a steepest ascent
property , that is, it provides the maximal rate of improvement of the dual
cost per unit change in the price vector.

(b) In the relaxation (or coordinate ascent) method , the elementary direc-
tion is computed so that it has a small number of nonzero elements (i.e.,
the set S has few nodes). Such a direction may not be optimal in terms
of rate of dual cost improvement, but can typically be computed much
faster than the steepest ascent direction. Often the elementary direction
has only one nonzero element, in which case only one node price coor-
dinate is changed; this motivates the name “coordinate ascent.” Note,
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however, that coordinate ascent directions cannot be used exclusively to
improve the dual cost, as is shown in Fig. 2.10.

Figure 2.10 (a) The difficulty with using coordinate ascent iterations

exclusively. The dual cost is piecewise linear, so at some corner points it may

be impossible to improve the dual cost by changing any single price coordinate.

(b) A dual cost improvement is possible by changing several price coordinates by

equal amounts, which corresponds to an elementary direction.

As will be shown in Chapter 3, both the primal-dual method and the
relaxation method terminate if the problem data are integer. Furthermore,
simultaneously with an optimal price vector, they provide an optimal flow
vector.

1.2.4 Auction

Our third type of algorithm represents a significant departure from the cost
improvement idea; at any one iteration, it may deteriorate both the primal
and the dual cost, although in the end it does find an optimal primal solution.
It is based on an approximate version of complementary slackness, called ε-
complementary slackness, and while it implicitly tries to solve a dual problem,
it actually attains a dual solution that is not quite optimal. This subsection
introduces the main ideas underlying auction algorithms. Chapter 4 provides
a more complete discussion.

Naive Auction

Let us return to the assignment problem and consider a natural process for
finding an equilibrium assignment and price vector. We will call this process
the naive auction algorithm, because it has a serious flaw, as will be seen
shortly. Nonetheless, this flaw will help motivate a more sophisticated and
correct algorithm.
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The naive auction algorithm proceeds in iterations and generates a se-
quence of price vectors and partial assignments. By a partial assignment we
mean an assignment where only a subset of the persons have been matched
with objects. A partial assignment should be contrasted with a feasible or
complete assignment where all the persons have been matched with objects
on a one-to-one basis. At the beginning of each iteration, the CS condition
[cf. Eq. (2.8)]

aiji − pji = max
j∈A(i)

{aij − pj}

is satisfied for all pairs (i, ji) of the partial assignment. If all persons are
assigned, the algorithm terminates. Otherwise some person who is unassigned,
say i, is selected. This person finds an object ji which offers maximal value,
that is,

ji = arg max
j∈A(i)

{aij − pj}, (2.17)

and then:

(a) Gets assigned to the best object ji; the person who was assigned to ji

at the beginning of the iteration (if any) becomes unassigned.

(b) Sets the price of ji to the level at which he or she is indifferent between
ji and the second best object, that is, he or she sets pji to

pji + γi, (2.18)

where
γi = vi − wi, (2.19)

vi is the best object value,

vi = max
j∈A(i)

{aij − pj}, (2.20)

and wi is the second best object value,

wi = max
j∈A(i), j 	=ji

{aij − pj}. (2.21)

(Note that as pji is increased, the value aiji − pji offered by object ji to
person i is decreased. γi is the largest increment by which pji can be
increased, while maintaining the property that ji offers maximal value
to i.)

This process is repeated in a sequence of iterations until each person has
an assigned object.

We may view this process as an auction where at each iteration the
bidder i raises the price of a preferred object by the bidding increment γi.
Note that γi cannot be negative, since vi ≥ wi [compare Eqs. (2.20) and
(2.21)], so the object prices tend to increase. The choice γi is illustrated in
Fig. 2.11. Just as in a real auction, bidding increments and price increases
spur competition by making the bidder’s own preferred object less attractive
to other potential bidders.
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Figure 2.11 In the naive auction algorithm, even after the price of the

best object ji is increased by the bidding increment γi, ji continues to be the best

object for the bidder i, so CS is satisfied at the end of the iteration. However,

γi = 0 if there is a tie between two or more objects that are most preferred by i.

ε-Complementary Slackness

Unfortunately, the naive auction algorithm does not always work (although
it is an excellent initialization procedure for other methods, such as primal-
dual or relaxation, and it is useful in other specialized contexts; see Section
4.3). The difficulty is that the bidding increment γi is zero when two or more
objects offer maximum value for the bidder i. As a result, a situation may be
created where several persons contest a smaller number of equally desirable
objects without raising their prices, thereby creating a never ending cycle; see
Fig. 2.12.

To break such cycles, we introduce a perturbation mechanism, moti-
vated by real auctions where each bid for an object must raise its price by
a minimum positive increment, and bidders must on occasion take risks to
win their preferred objects. In particular, let us fix a positive scalar ε, and
say that a partial assignment and a price vector p satisfy ε-complementary
slackness (ε-CS for short) if

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε (2.22)

for all assigned pairs (i, j). In words, to satisfy ε-CS, all assigned persons of
the partial assignment must be assigned to objects that are within ε of being
best.
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At Start of Object Assigned Bidder Preferred Bidding

Iteration # Prices Pairs Object Increment

1 0,0,0 (1,1), (2,2) 3 2 0

2 0,0,0 (1,1), (3,2) 2 2 0

3 0,0,0 (1,1), (2,2) 3 2 0

Figure 2.12 Illustration of how the naive auction algorithm may never

terminate for a problem involving three persons and three objects. Here objects

1 and 2 offer benefit C > 0 to all persons, and object 3 offers benefit 0 to all

persons. The algorithm cycles as persons 2 and 3 alternately bid for object 2

without changing its price because they prefer equally object 1 and object 2

(γi = 0; compare Fig. 2.11).

The Auction Algorithm

We now reformulate the previous auction process so that the bidding incre-
ment is always at least equal to ε. The resulting method, the auction algo-
rithm, is the same as the naive auction algorithm, except that the bidding
increment γi is

γi = vi − wi + ε (2.23)

rather than γi = vi−wi as in Eq. (2.19). With this choice, the ε-CS condition is
satisfied, as illustrated in Fig. 2.13. The particular increment γi = vi −wi + ε
used in the auction algorithm is the maximum amount with this property.
Smaller increments γi would also work as long as γi ≥ ε, but using the largest
possible increment accelerates the algorithm. This is consistent with experi-
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Figure 2.13 In the auction algorithm, even after the price of the preferred

object ji is increased by the bidding increment γi , ji will be within ε of being

most preferred, so the ε-CS condition holds at the end of the iteration.

ence from real auctions, which tend to terminate faster when the bidding is
aggressive.

It can be shown that this reformulated auction process terminates, nec-
essarily with a feasible assignment and a set of prices that satisfy ε-CS. To get
a sense of this, note that if an object receives a bid at m iterations, its price
must exceed its initial price by at least mε. Thus, for sufficiently large m, the
object will become “expensive” enough to be judged “inferior” to some object
that has not received a bid so far. It follows that only for a limited number
of iterations can an object receive a bid while some other object still has not
yet received any bid. On the other hand, once every object has received at
least one bid, the auction terminates. (This argument assumes that any per-
son can bid for any object, but it can be generalized to the case where the
set of feasible person-object pairs is limited, as long as at least one feasible
assignment exists; see Prop. 1.2 in Section 4.1.) Figure 2.14 shows how the
auction algorithm, based on the bidding increment γi = vi − wi + ε [see Eq.
(2.23)], overcomes the cycling problem of the example of Fig. 2.12.

When the auction algorithm terminates, we have an assignment satis-
fying ε-CS, but is this assignment optimal? The answer depends strongly on
the size of ε. In a real auction, a prudent bidder would not place an exces-
sively high bid for fear of winning the object at an unnecessarily high price.
Consistent with this intuition, we can show that if ε is small, then the final
assignment will be “almost optimal.” In particular, we will show that the
total benefit of the final assignment is within nε of being optimal . The idea is
that a feasible assignment and a set of prices satisfying ε-CS may be viewed
as satisfying CS for a slightly different problem, where all benefits aij are the
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At Start of Object Assigned Bidder Preferred Bidding

Iteration # Prices Pairs Object Increment

1 0,0,0 (1,1), (2,2) 3 2 ε

2 0,ε,0 (1,1), (3,2) 2 1 2ε

3 2ε,ε,0 (2,1), (3,2) 1 2 2ε

4 2ε,3ε,0 (1,2), (2,1) 3 1 2ε

5 4ε,3ε,0 (1,2), (3,1) 2 2 2ε

6 · · · · · · · · · · · · · · ·

Figure 2.14 Illustration of how the auction algorithm overcomes the

cycling problem for the example of Fig. 2.12 by making the bidding increment at

least ε. The table shows one possible sequence of bids and assignments generated

by the auction algorithm, starting with all prices equal to 0 and with the partial

assignment {(1, 1), (2, 2)}. At each iteration except the last, the person assigned

to object 3 bids for either object 1 or 2, increasing its price by ε in the first iteration

and by 2ε in each subsequent iteration. In the last iteration, after the prices of 1

and 2 reach or exceed C, object 3 receives a bid and the auction terminates.

same as before except the benefits of the n assigned pairs, which are modified
by no more than ε.

Proposition 2.6: A feasible assignment, which satisfies ε-complementary
slackness together with some price vector, is within nε of being optimal. Fur-
thermore, the price vector is within nε of being an optimal solution of the
dual problem.
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Proof: Let A∗ be the optimal total assignment benefit

A∗ = max
ki, i=1,...,n

ki 	=km if i	=m

n∑
i=1

aiki

and let D∗ be the optimal dual cost

D∗ = min
pj

j=1,...,n

{
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj

}
.

If {(i, ji) | i = 1, . . . , n} is the given assignment satisfying the ε-CS condition
together with a price vector p, we have

max
j∈A(i)

{aij − pj} − ε ≤ aiji − pji
.

By adding this relation over all i, we see that

D∗ ≤
n∑

i=1

(
max
j∈A(i)

{
aij − pj

}
+ pji

)
≤

n∑
i=1

aiji + nε ≤ A∗ + nε.

Since we showed in Prop. 2.4 that A∗ = D∗, it follows that the total assignment
benefit

∑n
i=1 aiji is within nε of the optimal value A∗, while the dual cost of p

is within nε of the optimal dual cost. Q.E.D.

Suppose now that the benefits aij are all integer, which is the typical
practical case. (If aij are rational numbers, they can be scaled up to integer
by multiplication with a suitable common number.) Then the total benefit
of any assignment is integer, so if nε < 1, any complete assignment that is
within nε of being optimal must be optimal. It follows that if

ε <
1
n

and the benefits aij are all integer, then the assignment obtained upon termi-
nation of the auction algorithm is optimal .

Figure 2.15 shows the sequence of generated object prices for the exam-
ple of Fig. 2.14 in relation to the contours of the dual cost function. It can
be seen from this figure that each bid has the effect of setting the price of the
object receiving the bid nearly equal (within ε) to the price that minimizes
the dual cost with respect to that price, with all other prices held fixed (this
will be shown rigorously in Secton 4.1). Successive minimization of a cost
function along single coordinates is a central feature of coordinate descent
and relaxation methods, which are popular for unconstrained minimization
of smooth functions and for solving systems of smooth equations. Thus, the
auction algorithm can be interpreted as an approximate coordinate descent
method; as such, it is related to the relaxation method discussed in the pre-
vious subsection.
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Figure 2.15 A sequence of prices p1 and p2 generated by the auction

algorithm for the example of Figs. 2.12 and 2.14. The figure shows the equal dual

cost surfaces in the space of p1 and p2 with p3 fixed at 0.

Scaling

Figure 2.15 also illustrates a generic feature of auction algorithms. The
amount of work needed to solve the problem can depend strongly on the
value of ε and on the maximum absolute object benefit

C = max
(i,j)∈A

|aij |.

Basically, for many types of problems, the number of iterations up to termi-
nation tends to be proportional to C/ε. This can be seen from the figure,
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where the total number of iterations is roughly C/ε, starting from zero initial
prices.

Note also that there is a dependence on the initial prices; if these prices
are “near optimal,” we expect that the number of iterations needed to solve
the problem will be relatively small. This can be seen from the figure; if the
initial prices satisfy p1 ≈ p3 +C and p2 ≈ p3 +C, the number of iterations up
to termination is quite small.

The preceding observations suggest the idea of ε-scaling, which consists
of applying the algorithm several times, starting with a large value of ε and
successively reducing ε until it is less than some critical value (for example,
1/n, when aij are integer). Each application of the algorithm provides good
initial prices for the next application. This is a common idea in nonlinear
programming; it is encountered, for example, in barrier and penalty function
methods; see e.g. [Ber82a], [Lue84]. An alternative form of scaling, called cost
scaling , is based on successively representing aij with an increasing number
of bits while keeping ε at a constant value.

In practice, scaling is typically beneficial, particularly for sparse assign-
ment problems, that is, problems where the set of feasible assignment pairs is
severely restricted.

Extension to the Minimum Cost Flow Problem

The ε-CS condition (2.22) can be generalized for the minimum cost flow prob-
lem. For a capacity-feasible flow vector x and a price vector p it takes the
form

pi − pj ≤ aij + ε for all (i, j) ∈ A with xij < cij, (2.24a)

pi − pj ≥ aij − ε for all (i, j) ∈ A with bij < xij, (2.24b)

[cf. Eq. (2.11)]. It will be shown in Section 4.1 (Prop. 4.1) that if the problem
data are integer, if ε < 1/N , where N is the number of nodes, and if x is
feasible and satisfies the ε-CS condition (2.24) together with some p, then x
is optimal.

The auction algorithm can also be generalized for the minimum cost
flow problem; see Chapter 4. A broad generalization, called generic auction
algorithm, is given in Section 4.4. It involves price increases and flow changes
that preserve ε-CS. An interesting special case of the generic algorithm, called
ε-relaxation, is discussed in Section 4.5. This algorithm may also be obtained
by using the transformation of Section 1.1.3 to convert the minimum cost flow
problem into an assignment problem and by applying the auction algorithm
to this problem. We may view ε-relaxation as an approximate coordinate
ascent method for maximizing the piecewise linear dual cost function (2.14)
introduced in the preceding subsection; see Section 4.5.
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1.2.5 Good, Bad, and Polynomial Algorithms

We have already discussed several types of methods, so the natural question
arises: is there a best method and what criterion should we use to rank
methods?

A practitioner who has a specific type of problem to solve, perhaps
repeatedly, with the data and size of the problem within some limited range,
will usually be interested in one or more of the following:

(a) Fast solution time.

(b) Flexibility to use good starting solutions (which the practitioner can
usually provide, on the basis of his or her knowledge of the problem).

(c) The ability to perform sensitivity analysis (resolve the problem with
slightly different problem data) quickly.

(d) The ability to take advantage of parallel computing hardware.

(e) Small memory requirements (this seems to be a diminishing concern
nowadays).

Given the diversity of these considerations, it is not surprising that there
is no algorithm that will dominate the others in all or even most practical sit-
uations. Otherwise expressed, every type of algorithm that we will discuss
is best given the right type of practical problem. Thus, to make intelligent
choices, the practitioner needs to understand the properties of different algo-
rithms relating to speed of convergence, flexibility, parallelization, and suit-
ability for specific problem structures. For challenging problems, the choice
of algorithm is usually settled by experimentation with several candidates.

A theoretical analyst may also have difficulty ranking different algo-
rithms for specific types of problems. The most common approach for this
purpose is worst-case computational complexity analysis. Here one tries to
bound the number of elementary numerical operations needed by a given algo-
rithm with some measure of the “problem size,” that is, with some expression
of the form

Kf(N, A, C, U, S), (2.25)

where

N is the number of nodes.

A is the number of arcs.

C is the arc cost range max(i,j)∈A |aij |.
U is the maximum arc flow range max(i,j)∈A(cij − bij).

S is the supply range maxi∈N |si|.
f is some known function.
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K is a (usually unknown) constant.

If a bound of this form can be found, we say that the running time or opera-
tion count of the algorithm is O

(
f(N, A, C, U, S)

)
. If f(N, A, C, U, S) can be

written as a polynomial function of the number of bits needed to express the
problem data, the algorithm is said to be polynomial . Examples of polyno-
mial complexity bounds are O

(
NαAβ

)
and O

(
NαAβ log C

)
, where α and β

are positive integers. The bound O
(
NαAβ

)
is sometimes said to be strongly

polynomial because it involves only the graph size parameters. A bound of the
form O

(
NαAβC

)
is not polynomial because C is not a polynomial expression

of log C, the number of bits needed to express a single number of value C.
Bounds like O

(
NαAβC

)
, which are polynomial in the problem data rather

than in the number of bits needed to express the data, are called pseudopoly-
nomial .

A common assumption in theoretical computer science is that polyno-
mial algorithms are “better” than pseudopolynomial, and pseudopolynomial
algorithms are “better” than exponential (for example, those with a bound
of the form K2g(N,A), where g is a polynomial in N and A). Furthermore, it
is thought that two polynomial algorithms can be compared in terms of the
degree of the polynomial bound; e.g., an O(N 2) algorithm is “better” than an
O(N 3) algorithm. Unfortunately, quite often this assumption is not supported
by computational practice in linear programming and network optimization.
Pseudopolynomial and even exponential algorithms are often faster in practice
than polynomial ones. In fact, the simplex method for general linear programs
is an exponential algorithm [KlM72], [Chv83], and yet it is still used widely,
because it performs very well in practice.

There are two main reasons why worst-case complexity estimates may
fail to predict the practical performance of network flow algorithms. First,
the upper bounds they provide may be very pessimistic as they may corre-
spond to possible but highly unlikely problem instances. (Average complexity
estimates would be more appropriate for such situations. However, obtain-
ing these is usually hard, and the statistical assumptions underlying them
may be inappropriate for many types of practical problems.) Second, worst-
case complexity estimates involve the (usually unknown) constant K, which
may dominate the estimate for all except for unrealistically large problem
sizes. Thus, a comparison between two algorithms that is based on the size-
dependent terms of running time estimates, and does not take into account
the corresponding constants may be far from the mark.

This book is guided more by insights obtained through computational
practice than by insights gained by estimating computational complexity.
However, this is not to suggest that worst-case complexity analysis is use-
less; for all its unreliability, it has repeatedly proved its value by illuminating
the computational bottlenecks of many algorithms and by stimulating the use
of efficient data structures. For this reason, throughout the book, we will
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comment on available complexity estimates, and we will try to relate these
estimates to computational practice. However, the treatment of complexity
bounds is brief, and most of the corresponding proofs are omitted.

E X E R C I S E S

Exercise 2.1

Solve the max-flow problem of Fig. 2.16 using the Ford-Fulkerson method,

where s = 1 and t = 5.

Figure 2.16 Max-flow problem for Exercise 2.1. The arc capacities are

shown next to the arcs.

Exercise 2.2

Use ε-CS to verify that the assignment of Fig. 2.17 is optimal and obtain

a bound on how far from optimal the given price vector is. State the dual

problem and verify the correctness of the bound by comparing the dual value

of the price vector with the optimal dual value.

Exercise 2.3

Consider the assignment problem.

(a) Show that every k-person swap can be accomplished with a sequence of

k − 1 successive two-person swaps.

(b) In light of the result of part (a), how do you explain that a nonoptimal

assignment may not be improvable by any two-person swap?
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Figure 2.17 Assignment problem for Exercise 2.2. Objects 1 and 2 have

value C for all persons. Object 3 has value 0 for all persons. Object prices are as

shown. The thick lines indicate the given assignment.

Exercise 2.4 (Feasible Distribution Theorem)

Show that the minimum cost flow problem has a feasible solution if and only

if
∑

i∈N si = 0 and for every cut Q = [S,N − S] we have

Capacity of Q ≥
∑
i∈S

si.

Show also that feasibility of the problem can be determined by solving a max-

flow problem with zero lower flow bounds. Hint: Assume first that all lower

flow bounds bij are zero. Introduce two nodes s and t. For each node i ∈ N
with si > 0 introduce an arc (s, i) with feasible flow range [0, si], and for

each node i ∈ N with si < 0 introduce an arc (i, t) with feasible flow range

[0,−si]. Apply the max-flow/min-cut theorem. In the general case, transform

the problem to one with zero lower flow bounds.

Exercise 2.5 (Finding a Feasible Flow Vector)

Show that one may find a feasible solution of a feasible minimum cost flow

problem by solving a max-flow problem with zero lower flow bounds. Further-

more, if the supplies si and the arc flow bounds bij and cij are integer, show

that the feasible solution found will be integer. Hint: Use the hint of Exercise

2.4.

Exercise 2.6 (Integer Approximations of Feasible Solutions)

Given a graph (N ,A) and a flow vector x, show that there exists an integer

flow vector x having the same divergence vector as x and satisfying

|xij − xij | < 1, ∀ (i, j) ∈ A.
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Hint: For each arc (i, j), define the integer flow bounds

bij = 	xij
, cij = �xij�.

Use the result of Exercise 2.5.

Exercise 2.7 (Maximal Matching/Minimal Cover Theorem)

Consider a bipartite graph consisting of two sets of nodes S and T such that

every arc has its start node in S and its end node in T . A matching is a

subset of arcs such that all the start nodes of the arcs are distinct and all the

end nodes of the arcs are distinct. A maximal matching is a matching with a

maximal number of arcs.

(a) Show that the problem of finding a maximal matching can be formulated

as a max-flow problem.

(b) Define a cover C to be a subset of S ∪ T such that for each arc (i, j),

either i ∈ C or j ∈ C (or both). A minimal cover is a cover with a

minimal number of nodes. Show that the number of arcs in a maximal

matching and the number of nodes in a minimal cover are equal. Hint:
Use the max-flow/min-cut theorem.

Exercise 2.8 (Feasibility of an Assignment Problem)

Show that an assignment problem is infeasible if and only if there exists a

subset of person nodes I and a subset of object nodes J such that I has more

nodes than J , and every arc with start node in I has an end node in J . Hint:
Use the maximal matching/minimal cover theorem of the preceding exercise.

Exercise 2.9 (Ford-Fulkerson Method – Counterexample [Chv83])

This exercise illustrates how the version of the Ford-Fulkerson method where

augmenting paths need not have as few arcs as possible may not terminate

for a problem with irrational arc flow bounds. Consider the max-flow problem

shown in Fig. 2.18.

(a) Verify that an infinite sequence of augmenting paths is characterized by

the table of Fig. 2.18; each augmentation increases the divergence out of

the source s but the sequence of divergences converges to a value which

can be arbitrarily smaller than the maximum flow.

(b) Solve the problem with the Ford-Fulkerson method as given in Section

1.2.
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After Iter. # Augm. Path x12 x36 x46 x65

6k + 1 (s, 1, 2, 3, 6, t) σ 1 − σ3k+2 σ − σ3k+1 0

6k + 2 (s, 2, 1, 3, 6, 5, t) σ − σ3k+2 1 σ − σ3k+1 σ3k+2

6k + 3 (s, 1, 2, 4, 6, t) σ 1 σ − σ3k+3 σ3k+2

6k + 4 (s, 2, 1, 4, 6, 3, t) σ − σ3k+3 1 − σ3k+3 σ σ3k+2

6k + 5 (s, 1, 2, 5, 6, t) σ 1 − σ3k+3 σ σ3k+4

6k + 6 (s, 2, 1, 5, 6, 4, t) σ − σ3k+4 1 − σ3k+3 σ − σ3k+4 0

6(k + 1) + 1 (s, 1, 2, 3, 6, t) σ 1 − σ3(k+1)+2 σ − σ3(k+1)+1 0

Figure 2.18 Max-flow problem illustrating that if the augmenting paths

in the Ford-Fulkerson method do not have a minimum number of arcs, then the

method may not terminate. All lower arc flow bounds are zero. The upper flow

bounds are larger than one, with the exception of the thick-line arcs; these are arc

(3, 6) which has upper flow bound equal to one, and arcs (1, 2) and (4, 6) which

have upper flow bound equal to σ =
(
− 1 +

√
5
)
/2. (Note a crucial property of

σ; it satisfies σk+2 = σk − σk+1 for all integer k ≥ 0.) The table gives a sequence

of augmentations.

Exercise 2.10 (Termination of the Ford-Fulkerson Algorithm)

Consider the Ford-Fulkerson algorithm as described in Section 1.2.2. This

exercice addresses the termination issue when the problem data are noninteger.

Let x0 be the initial feasible flow vector; let xk, k = 1, 2, . . ., be the flow vector

after the kth augmentation; and let Pk be the corresponding augmenting path.

An arc (i, j) is said to be a k+-bottleneck if (i, j) ∈ P +
k and xk

ij = cij , and it is

said to be a k−-bottleneck if (i, j) ∈ P−
k and xk

ij = bij .

(a) Show that if k < k and an arc (i, j) is a k+-bottleneck and a k
+
-
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bottleneck, then for some m with k < m < k we must have (i, j) ∈ P−
m .

Similarly, if an arc (i, j) is a k−-bottleneck and a k
−
-bottleneck, then

for some m with k < m < k we must have (i, j) ∈ P +
m .

(b) Show that Pk is a path with a minimal number of arcs over all aug-

menting paths with respect to xk−1. (This property depends on the

implementation of the unblocked path search as a breadth-first search.)

(c) For any path P that is unblocked with respect to xk, let nk(P ) be the

number of arcs of P , let a+
k (i) be the minimum of nk(P ) over all un-

blocked P from s to i, and let a−
k (i) be the minimum of nk(P ) over all

unblocked P from i to t. Show that for all i and k we have

a+
k (i) ≤ a+

k+1(i), a−
k (i) ≤ a−

k+1(i).

(d) Show that if k < k and arc (i, j) is both a k+-bottleneck and a k
+
-

bottleneck, or is both a k−-bottleneck and a k
−
-bottleneck, then a+

k (t) <

a+
k
(t).

(e) Show that the algorithm terminates after O(NA) augmentations, for an

O(NA2) running time.

Exercise 2.11 (Duality for Nonnegativity Constraints)

Consider the version of the minimum cost flow problem where there are non-

negativity constraints

minimize
∑

(i,j)∈A

aijxij

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = si, ∀ i ∈ N ,

0 ≤ xij , ∀ (i, j) ∈ A.

Show that if a feasible flow vector x∗ and a price vector p∗ satisfy the following

CS conditions

p∗
i − p∗

j ≤ aij , for all (i, j) ∈ A,

p∗
i − p∗

j = aij for all (i, j) ∈ A with 0 < x∗
ij ,

then x∗ is optimal. Furthermore, p∗ is an optimal solution of the following

dual problem:

maximize
∑
i∈N

sipi

subject to pi − pj ≤ aij , ∀ (i, j) ∈ A.
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Hint: Complete the details of the following argument. Define

q(p) =

{∑
i∈N sipi if pi − pj ≤ aij , ∀ (i, j) ∈ A

−∞ otherwise

and note that

q(p) =
∑

(i,j)∈A

min
0≤xij

(
aij + pj − pi

)
xij +

∑
i∈N

sipi

= min
0≤x

⎧⎨
⎩

∑
(i,j)∈A

aijxij +
∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}

xji

⎞
⎠ pi

⎫⎬
⎭ .

Thus, for any feasible x and any p, we have

q(p) ≤
∑

(i,j)∈A

aijxij +
∑
i∈N

⎛
⎝si −

∑
{j|(i,j)∈A}

xij +
∑

{j|(j,i)∈A}

xji

⎞
⎠ pi

=
∑

(i,j)∈A

aijxij .

(2.26)

On the other hand, we have

q(p∗) =
∑
i∈N

sip
∗
i =

∑
(i,j)∈A

(
aij + p∗

j − p∗
i

)
x∗

ij +
∑
i∈N

sip
∗
i =

∑
(i,j)∈A

aijx
∗
ij ,

where the second equality is true because the CS conditions imply that (aij +

p∗
j−p∗

i )x
∗
ij = 0 for all (i, j) ∈ A, and the last equality follows from the feasibility

of x∗. Therefore, x∗ attains the minimum of the primal cost on the right-hand

side of Eq. (2.26). Furthermore, p∗ attains the maximum of q(p) on the left

side of Eq. (2.26), which means that p∗ is an optimal solution of the dual

problem.

Exercise 2.12 (Node-Disjoint Paths)

Given two nodes i and j in a graph, consider the problem of finding the

maximum number of paths starting at i and ending at j that are node-disjoint

in the sense that any two of them share no nodes other than i and j. Formulate

this problem as a max-flow problem.
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Exercise 2.13 (Hall’s Theorem of Distinct Representatives)

Given finite sets S1, S2, . . . , Sk, we say that the collection {s1, s2, . . . , sk} is a

system of distinct representatives if si ∈ Si for all i and si �= sj for i �= j. (For

example, if S1 = {a, b, c}, S2 = {a, b}, S1 = {a}, then s1 = c, s2 = b, s3 = a

is a system of distinct representatives). Show that there exists no system of

distinct representatives if and only if there exists an index set I ⊂ {1, 2, . . . , k}
such that the number of elements in ∪i∈ISi is less than the number of elements

in I. Hint: Consider a bipartite graph with each of the right side nodes

representing an element of ∪i∈ISi, with each of the left side nodes representing

one of the sets S1, S2, . . . Sk, and with an arc from a left node S to a right node

s if s ∈ S. Use the maximal matching/minimal cover theorem of Exercise 2.7.

Exercise 2.14

Prove the following generalization of Prop. 2.2. Let x be a capacity-feasible

flow vector, and let N+ and N− be two disjoint subsets of nodes. Then exactly

one of the following two alternatives holds:

(1) There exists a path that starts at some node of N+, ends at some node

of N−, and is unblocked with respect to x.

(2) There exists a saturated cut Q = [S,N − S] such that N+ ⊂ S and

N− ⊂ N − S.

Exercise 2.15 (Duality and the Max-Flow/Min-Cut Theorem)

Consider a feasible max-flow problem and let Q = [S,N − S] be a minimum

capacity cut separating s and t. Consider also the minimum cost flow problem

formulation (1.8) for the max-flow problem (see Example 1.2). Show that the

price vector

pi =
{

1 if i ∈ S
0 if i /∈ S

is an optimal solution of the dual problem. Furthermore, show that the max-

flow/min-cut theorem expresses the equality of the primal and the dual op-

timal values. Hint: Relate the capacity of Q with the dual function value

corresponding to p.

Exercise 2.16

Consider a feasible max-flow problem. Show that if the upper flow bound

of each arc is increased by α > 0, then the value of the maximum flow is

increased by no more than αA, where A is the number of arcs.
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Exercise 2.17 (Dual Cost Improvement Directions)

Consider the assignment problem. Let pj be the price of object j, let T be a

subset of objects, and let

S =
{
i | the maximum of aij − pj over j ∈ A(i) is attained

by some element of T
}
.

Suppose that

(1) For each i ∈ S, the maximum of aij − pj over j ∈ A(i) is attained only

by elements of T .

(2) S has more elements than T .

Show that the direction d = (d1, . . . , dn), where dj = 1 if j ∈ T and dj = 0

if j /∈ T , is a direction of dual cost improvement. Note: Directions of this

type are used by the most common dual cost improvement algorithms for the

assignment problem.

1.3 THE SHORTEST PATH PROBLEM

The shortest path problem is a classical and important combinatorial problem
that arises in many contexts. We are given a directed graph (N ,A) with nodes
numbered 1, . . . , N . Each arc (i, j) ∈ A has a cost or “length” aij associated
with it. The length of a path (i1, i2, . . . , ik), which consists exclusively of
forward arcs, is equal to the length of its arcs

k−1∑
n=1

ainin+1 .

This path is said to be shortest if it has minimum length over all paths with
the same origin and destination nodes. The length of a shortest path is also
called the shortest distance. The shortest distance from a node to itself is
taken to be zero by convention. The shortest path problem deals with finding
shortest distances between selected pairs of nodes. [Note that here we are
optimizing over forward paths, that is, paths consisting of forward arcs; when
we refer to a path (or a cycle) in connection with the shortest path problem,
we implicitly assume that the path (or the cycle) is forward.]

All the major shortest path algorithms are based on the following simple
proposition.

Proposition 3.1: Let d = (d1, d2, . . . , dN ) be a vector satisfying

dj ≤ di + aij, ∀ (i, j) ∈ A (3.1)
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and let P be a path starting at a node i1 and ending at a node ik. If

dj = di + aij, for all arcs (i, j) of P (3.2)

then P is a shortest path from i1 to ik.

Proof: By adding Eq. (3.2) over the arcs of P , we see that the length of P
is dik − di1 . By adding Eq. (3.1) over the arcs of any other path P ′ starting
at i1 and ending at ik, we see that the length of P ′ must be at least equal to
dik − di1 . Therefore, P is a shortest path. Q.E.D.

The conditions (3.1) and (3.2) will be called the complementary slackness
(CS) conditions for the shortest path problem. This terminology is motivated
by the connection of the problem of finding a shortest path from i1 to ik with
the following minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (3.3)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N ,

0 ≤ xij, ∀ (i, j) ∈ A,

where

si1 = 1, sik = −1, si = 0, ∀ i 	= i1, ik.

It can be seen that a path P from i1 to ik is shortest if and only if the
path flow x defined by

xij =
{

1 if (i, j) belongs to P

0 otherwise
(3.4)

is an optimal solution of the minimum cost flow problem (3.3).
The CS conditions (3.1) and (3.2) of Prop. 3.1 are in effect the CS

conditions for the equivalent minimum cost flow problem (3.3), which take
the form

pi ≤ aij + pj, ∀ (i, j) ∈ A, (3.5)

pi = aij + pj, for all arcs (i, j) with 0 < xij (3.6)

[cf. Eqs. (2.11c) and (2.11d)]. Indeed, if we associate the given path P in
Prop. 3.1 with the flow vector of Eq. (3.4), and we identify pi with −di,
we see that the conditions (3.1) and (3.2) are identical to the CS conditions
(3.5) and (3.6). Thus, the optimality of the path P under the conditions
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of Prop. 3.1 can also be inferred from the general result of Prop. 2.5, which
asserts optimality of feasible pairs (x, p) satisfying CS. It also follows from
the same general result that if a vector d satisfies the conditions of Prop. 3.1,
then p = −d is an optimal solution of the dual problem corresponding to the
minimum cost flow problem (3.3).

Most shortest path algorithms can be viewed as primal cost or dual cost
improvement algorithms for an appropriate variation of the minimum cost
flow problem (3.3), as we will see later. However, the shortest path problem
is simple, so we will discuss it first without much reference to cost improve-
ment. This choice serves a dual purpose. First, it provides an opportunity
to illustrate some basic concepts in the context of a simple problem, which is
rich in intuition. Second, it allows the early development of some ideas and
results that will be used later in a variety of other algorithmic contexts.

1.3.1 A General Single Origin/Many Destinations Shortest
Path Method

The shortest path problem can be posed in a number of ways; for example,
finding a shortest path from a single origin to a single destination, or finding
a shortest path from each of several origins to each of several destinations.
We will focus initially on the single origin/many destinations problem. For
concreteness, we take the origin node to be node 1.

Let us now describe a prototype shortest path method that contains
several interesting algorithms as special cases. In this method, we start with
some vector (d1, d2, . . . , dN ), we successively select arcs (i, j) that violate the
CS condition (3.1), that is, dj > di + aij , and we set

dj := di + aij.

This is continued until the CS condition dj ≤ di + aij is satisfied for all arcs
(i, j).

A key idea is that, in the course of the algorithm, di can be interpreted
for all i as the length of some path Pi from 1 to i. Therefore, if dj > di+aij for
some arc (i, j), the path obtained by extending path Pi by arc (i, j), which has
length di +aij , is a better path than the current path Pj , which has length dj .
Thus, the algorithm finds successively better paths from the origin to various
destinations.

It should be noted that replacing the current path Pj with the shorter
path consisting of Pi followed by the arc (i, j), as discussed above, is essentially
a primal cost improvement operation; in the context of a minimum cost flow
formulation of the many destinations shortest path problem [cf. Eq. (3.3)], it
can be interpreted as pushing one unit of flow along the cycle that starts at
1, traverses Pi and (i, j) in the forward direction, and then traverses Pj in the
backward direction. The cost of this cycle, as defined earlier in Section 1.2.1,
is equal to the length of Pi, plus the length of (i, j), minus the length of Pj , and
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is therefore negative. Thus the general algorithm of this section can be viewed
as a primal cost improvement algorithm. It will be seen in Chapter 3 (Exercise
2.3) that an important special case, Dijkstra’s method to be discussed shortly,
can also be viewed as a dual cost improvement algorithm. Another algorithm,
the auction/shortest path algorithm to be presented in Section 4.3, does not
fit the framework of the present section (even though it crucially depends on
the CS conditions of Prop. 3.1); it will be shown to be a dual cost improvement
algorithm.

It is usually most convenient to implement the prototype shortest path
method by examining the outgoing arcs of a given node i consecutively. The
corresponding algorithm, referred to as generic, maintains a list of nodes V ,
called the candidate list , and a vector d = (d1, d2, . . . , dN ), where each dj ,
called the label of node j, is either a real number or ∞. Initially,

V = {1}, (3.7)

d1 = 0, di = ∞, ∀ i 	= 1. (3.8)

The algorithm proceeds in iterations and terminates when V is empty. The
typical iteration (assuming V is nonempty) is as follows:

Typical Iteration of the Generic Shortest Path Algorithm

Remove a node i from the candidate list V . For each outgoing arc (i, j) ∈ A,

with j �= 1, if dj > di + aij , set

dj := di + aij (3.9)

and add j to V if it does not already belong to V .

It can be seen that, in the course of the algorithm, the labels are mono-
tonically nonincreasing. Furthermore, we have

di < ∞ ⇐⇒ i has entered the candidate list V at least once.

Figure 3.1 illustrates the algorithm. The following proposition gives its main
properties.

Proposition 3.2: Consider the generic shortest path algorithm.

(a) At the end of each iteration, the following conditions hold:

(i) d1 = 0.

(ii) If dj < ∞ and j 	= 1, then dj is the length of some path that starts
at 1, never returns to 1, and ends at j.

(iii) If i /∈ V , then either di = ∞ or else

dj ≤ di + aij, ∀ j such that (i, j) ∈ A.
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Iteration # Candidate List V Node Labels Node out of V

1 {1} (0,∞,∞,∞) 1

2 {2, 3} (0, 3, 1,∞) 2

3 {3, 4} (0, 3, 1, 5) 3

4 {4, 2} (0, 2, 1, 4) 4

5 {2} (0, 2, 1, 4) 2

∅ (0, 2, 1, 4)

Figure 3.1 Illustration of the generic shortest path algorithm. The numbers

next to the arcs are the arc lengths. Note that node 2 enters the candidate list

twice. If in iteration 2 node 3 was removed from V instead of node 2, each node

would enter V only once. Thus, the order in which nodes are removed from V is

significant.

(b) If the algorithm terminates, then upon termination, for all j 	= 1 such
that dj < ∞, dj is the shortest distance from 1 to j and

dj = min
(i,j)∈A

{di + aij}; (3.10)

furthermore, dj = ∞ if and only if there is no path from 1 to j.

(c) If the algorithm does not terminate, then there exist paths of arbitrarily
small (i.e., large negative) length that start at 1 and never return to 1.

Proof: (a) Condition (i) holds because initially d1 = 0, and by the rules of
the algorithm, d1 cannot change.

We prove (ii) by induction on the iteration count. Indeed, initially (ii)
holds, since node 1 is the only node j with dj < ∞. Suppose that (ii) holds
at the start of some iteration at which a node i is removed from V . If i = 1,
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which happens only at the first iteration, then at the end of the iteration we
have dj = a1j for all outward neighbors j of 1, and dj = ∞ for all other j 	= 1,
so dj has the required property. If i 	= 1, then di < ∞ (which is true for all
nodes of V by the rules of the algorithm), and (by the induction hypothesis)
di is the length of some path Pi starting at 1, never returning to 1, and ending
at i. When a label dj changes as a result of the iteration, dj is set to di + aij ,
which is the length of the path Pj consisting of Pi followed by arc (i, j). Since
j 	= 1, Pj never returns to 1. This completes the induction proof of (ii).

To prove (iii), note that for any i, each time i is removed from V ,
the condition dj ≤ di + aij is satisfied for all (i, j) ∈ A by the rules of the
algorithm. Up to the next entrance of i into V , di stays constant, while the
labels dj for all j with (i, j) ∈ A cannot increase, thereby preserving the
condition dj ≤ di + aij .

(b) We first introduce the sets

I = {i | di < ∞ upon termination},
I = {i | di = ∞ upon termination},

and we show that we have di ∈ I if and only if there is no path from 1 to j.
Indeed, if i ∈ I, then, since i /∈ V upon termination, it follows from condition
(iii) of part (a) that j ∈ I for all (i, j) ∈ A. Therefore, if j ∈ I, there is no
path from any node of I (and in particular, node 1) to node j. Conversely, if
there is no path from 1 to j, it follows from condition (ii) of part (a) that we
cannot have dj < ∞ upon termination, so j ∈ I.

We show now that for all i ∈ I, we have dj = min(i,j)∈A{di + aij} upon
termination. Indeed, conditions (ii) and (iii) of part (a) imply that upon
termination we have, for all i ∈ I,

dj ≤ di + aij, ∀ j such that (i, j) ∈ A
while di is the length of some path Pi from 1 to i. Fix a node m ∈ I. By
adding this condition over the arcs (i, j) of any path P from 1 to m, we see
that the length of P is no less than dm. Hence Pm is a shortest path from 1
to m. Furthermore, the equality dj = di + aij must hold for all arcs (i, j) on
the shortest paths Pm, m ∈ I, implying that dj = min(i,j)∈A{di + aij}.
(c) If the algorithm never terminates, some label dj must decrease strictly an
infinite number of times, generating a corresponding sequence of distinct paths
Pj as per condition (ii) of part (b). Each of these paths can be decomposed
into a simple path from 1 to j plus a collection of simple cycles, as in Exercise
1.5. Since the number of simple paths from 1 to j is finite, and the length
of the path Pj is monotonically decreasing, it follows that Pj eventually must
involve a cycle with negative length. By replicating this cycle a sufficiently
large number of times, one can obtain paths from 1 to j with arbitrarily small
length. Q.E.D.
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Termination and the Existence of Negative Length Cycles

So far we have imposed no assumptions on the structure of the graph of the
problem or the lengths of the arcs. Thus, Prop. 3.2 does not guarantee that
the algorihm will terminate. On the other hand, Prop. 3.2 shows that the
generic algorithm will terminate if and only if there is a lower bound on the
length of all paths that start at node 1 and never return to node 1. Thus,
the algorithm will terminate if and only if there is no path starting at node
1, never returning to 1, and containing a cycle with negative length. One
can detect the presence of such a cycle (and stop the algorithm) once some
label dj becomes less than (N −1) min(i,j)∈A aij , which is a lower bound to the
length of all simple paths.

Bellman’s Equation and Shortest Path Construction

When all cycles have nonnegative length and there exists a path from 1 to
every node j, then Prop. 3.2 shows that the generic algorithm terminates and
that, upon termination, all labels are finite and satisfy

dj = min
(i,j)∈A

{di + aij}, ∀ j 	= 1, (3.11a)

d1 = 0. (3.11b)

This equation, which is in effect the CS conditions of Prop. 3.1, is called
Bellman’s equation. It expresses that the shortest distance from 1 to j is the
sum of the shortest distance from 1 to the node preceding j on the shortest
path, plus the length of the arc connecting that node to j.

From Bellman’s equation, we can obtain the shortest paths (as opposed
to the shortest path lengths) if all cycles not including node 1 have strictly
positive length. To do this, select for each j 	= 1 one arc (i, j) that attains the
minimum in dj = min(i,j)∈A{di + aij} and consider the subgraph consisting of
these N − 1 arcs; see Fig. 3.2. To find the shortest path to any node j, start
from j and follow the corresponding arcs of the subgraph backward until node
1 is reached. Note that the same node cannot be reached twice before node 1 is
reached, since a cycle would be formed that [on the basis of Eq. (3.11)] would
have zero length. [Let (i1, i2, . . . , ik, i1) be the cycle and add the equations

di1 = di2 + ai2i1

. . .

dik−1 = dik + aikik−1

dik = di1 + ai1ik ,
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obtaining ai2i1 + · · ·+aikik−1 +ai1ik = 0.] Since the subgraph is connected and
has N − 1 arcs, it must be a spanning tree. We call this subgraph a shortest
path spanning tree, and we note that it has the special structure of having a
root (node 1), with every arc of the tree directed away from the root. The
preceding argument can also be used to show that Bellman’s equation has no
solution other than the shortest distances; see Exercise 3.12.

A shortest path spanning tree can also be constructed in the process of
executing the generic shortest path algorithm by recording the arc (i, j) every
time dj is decreased to di + aij ; see Exercise 3.3.

Figure 3.2 Example of construction of shortest path spanning tree. The

arc lengths are shown next to the arcs, and the shortest distances are shown next

to the nodes. For each j �= 1, we select an arc (i, j) such that

dj = di + aij

and we form the shortest path spanning tree. The arcs selected in this example

are (1, 3), (3, 2), and (2, 4).

Implementations of the Generic Algorithm

There are many implementations of the generic algorithm; they differ in how
they select the node to be removed from the candidate list V . They are
broadly divided into two categories:

(a) Label setting methods. In these methods, the node i removed from V is
a node with minimum label. Under the assumption that all arc lengths
are nonnegative, these methods have a remarkable property: each node
will enter V at most once; its label has its permanent or final value the
first time it is removed from V . The most time consuming part of these
methods is calculating the minimum label node from V at each iteration;
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there are several implementations, that use a variety of creative methods
to calculate this minimum.

(b) Label correcting methods. In these methods the choice of the node i
removed from V is less sophisticated than in label setting methods, and
requires less calculation. However, a node may enter V multiple times.

Generally in practice, when the arc lengths are nonnegative, the best
label setting methods and the best label correcting methods are competitive.
There are also several worst case complexity bounds for label setting and label
correcting methods. The best bounds correspond to label setting methods.
The best practical methods, however, are not necessarily the ones with the
best complexity bounds, as will be discussed shortly.

1.3.2 Label Setting (Dijkstra) Methods

The basic label setting method, first published by Dijkstra [Dij59] but also
discovered independently by several other researchers, is the special case of
the generic algorithm where the node j removed from the candidate list V at
each iteration has minimum label, that is,

dj = min
i∈V

di.

For convenient reference, let us state this method explicitly.
Initially, we have

V = {1}, (3.12)

d1 = 0, di = ∞, ∀ i 	= 1. (3.13)

The method proceeds in iterations and terminates when V is empty. The
typical iteration (assuming V is nonempty) is as follows:

Typical Iteration of the Label Setting Method

Remove from the candidate list V a node i such that

di = min
j∈V

dj .

For each outgoing arc (i, j) ∈ A, with j �= 1, if dj > di + aij , set

dj := di + aij (3.14)

and add j to V if it does not already belong to V .
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Iteration # Candidate List V Node Labels Node out of V

1 {1} (0,∞,∞,∞,∞) 1

2 {2, 3} (0, 2, 1,∞,∞) 3

3 {2, 4} (0, 2, 1, 4,∞) 2

4 {4, 5} (0, 2, 1, 3, 2) 5

5 {4} (0, 2, 1, 3, 2) 4

∅ (0, 2, 1, 3, 2)

Figure 3.3 Example illustrating the label setting method. At each iteration,

the node with the minimum label is removed from V . Each node enters V only

once.

Figure 3.3 illustrates the label setting method.
Some insight into the label setting method can be gained by considering

the set W of nodes that have already been in V but are not currently in V ,

W = {i | di < ∞, i /∈ V }. (3.15)

We will see that as a consequence of the policy of removing from V a minimum
label node, W contains nodes with “small” labels throughout the algorithm,
in the sense that

dj ≤ di, if j ∈ W and i /∈ W. (3.16)

On the basis of this property and the assumption aij ≥ 0, it can be seen that
when a node i is removed from V , we have, for all j ∈ W for which (i, j) is
an arc,

dj ≤ di + aij.
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Hence, once a node enters W , it stays in W and its label does not change
further. Thus, W can be viewed as the set of permanently labeled nodes, that
is, the nodes that have acquired a final label, which by Prop. 3.2, must be
equal to their shortest distance from the origin.

To understand why the property (3.16) is preserved, consider an iteration
in which node i is removed from V , and assume that Eq. (3.16) holds at the
start of the iteration. Then, any label dj that changes during the iteration
must correspond to a node j /∈ W (as was argued below), and at the end of
the iteration it must satisfy dj = di + aij ≥ di ≥ dk for all k ∈ W , thereby
maintaining Eq. (3.16).

The following proposition makes the preceding arguments more precise
and proves some additional facts.

Proposition 3.3: Assume that all arc lengths are nonnegative and that
there exists at least one path from node 1 to each other node.

(a) For any iteration of the label setting method, the following hold for the
set

W = {i | di < ∞, i /∈ V }.

(i) No node belonging to W at the start of the iteration will enter the
candidate list V during the iteration.

(ii) At the end of the iteration, we have di ≤ dj for all i ∈ W and
j /∈ W .

(iii) For each node i, consider paths that start at 1, end at i, and have
all their other nodes in W at the end of the iteration. Then the
label di at the end of the iteration is equal to the length of the
shortest of these paths (di = ∞ if no such path exists).

(b) In the label setting method, all nodes will be removed from the candidate
list V exactly once in order of increasing shortest distance from node 1;
that is, i will be removed before j if the final labels satisfy di < dj .

Proof: (a) Properties (i) and (ii) will be proved simultaneously by induction
on the iteration count. Clearly (i) and (ii) hold for the initial iteration at which
node 1 exits V and enters W .

Suppose that (i) and (ii) hold for iteration k−1, and suppose that during
iteration k, node i satisfies di = minj∈V dj and exits V . Let W and W be the
set of Eq. (3.15) at the start and at the end of iteration k, respectively. Let dj

and dj be the label of each node j at the start and at the end of iteration k,
respectively. Since by the induction hypothesis we have dj ≤ di for all j ∈ W ,
and aij ≥ 0 for all arcs (i, j), it follows that dj ≤ di +aij for all arcs (i, j) with
j ∈ W . Hence, a node j ∈ W cannot enter V at iteration k. This completes
the induction proof of property (i), and shows that

W = W ∪ {i}.
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Thus, at iteration k, the only labels that may change are the labels dj of nodes
j /∈ W such that (i, j) is an arc; the label dj at the end of the iteration will
be min{dj, di + aij}. Since aij ≥ 0, di ≤ dj for all j /∈ W , and di = di, we
must have di ≤ dj for all j /∈ W . Since by the induction hypothesis we have
dm ≤ di and dm = dm for all m ∈ W , it follows that dm ≤ dj for all m ∈ W
and j /∈ W . This completes the induction proof of property (ii).

To prove property (iii), choose any node i and consider the subgraph
consisting of the nodes W ∪ {i} together with the arcs that have both end
nodes in W ∪ {i}. Consider also a modified shortest path problem involving
this subgraph and the same origin and arc lengths as in the original shortest
path problem. In view of properties (i) and (ii), the label setting method
applied to the modified shortest path problem yields the same sequence of
nodes exiting V and the same sequence of labels as when applied to the
original problem up to the current iteration. By Prop. 3.2, the label setting
method for the modified problem terminates with the labels equal to the
shortest distances of the modified problem at the current iteration. This
means that the labels at the end of the iteration have the property stated in
the proposition.

(b) By Prop. 3.2, we see that, under our assumptions, the label setting method
will terminate with all labels finite. Therefore, each node will enter V at least
once. At each iteration the node removed from V is added to W , and accord-
ing to property (i) (proved above), no node from W is ever returned to V .
Therefore, each node will be removed from V and simultaneously entered in
W exactly once, and, by the rules of the algorithm, its label cannot change
after its entrance in W . Property (ii) then shows that each new node added to
W has a label at least as large as the labels of the nodes already in W . There-
fore, the nodes are removed from V in the order stated in the proposition.
Q.E.D.

Performance and Implementations of the Label Setting
Method

In label setting methods, the candidate list V is typically maintained with the
help of some data structure that facilitates the removal and the addition of
nodes, and also facilitates finding the minimum label node from the list. The
choice of data structure is crucial for good practical performance as well as
for good theoretical worst case performance.

To gain some insight into this, we first consider a naive implementation
that will serve as a yardstick for comparison. By Prop. 3.3, there will be
exactly N iterations, and in each of these the candidate list V will be searched
for a minimum label node. Suppose this is done by examining all nodes in
sequence, checking whether they belong to V , and finding one with minimum
label among those who do. Searching V in this way requires O(N) operations
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per iteration, for a total of O(N 2) operations. Also during the algorithm,
we must examine each arc (i, j) exactly once to check whether j 	= 1 or
whether the condition dj > di + aij holds, and to set dj := di + aij if it does.
This requires O(A) operations, which is dominated by the preceding O(N 2)
estimate.

The O(A) operation count for arc examination is unavoidable and cannot
be reduced. However, the O(N 2) operation count for minimum label searching
can be reduced considerably by using appropriate data structures. The best
estimates of the worst case running time that have been thus obtained are
O(A + N log N) and O(A + N

√
log C), where C is the arc length range C =

max(i,j)∈A aij ; see [FrT84], [AMO88]. On the basis of present experience,
however, the methods that perform best in practice have far worse running
time estimates. We will discuss two of these methods.

Binary Heap Method

Here the nodes are organized as a binary heap on the basis of label values and
membership in V ; see Fig. 3.4. The node at the top of the heap is the node of
V that has minimum label, and the label of every node in V is no larger than
the labels of all the nodes that are in V and are its descendants in the heap.
Nodes that are not in V may be in the heap but may have no descendants
that are in V .

At each iteration, the top node of the heap is removed from V . Further-
more, the labels of some nodes already in V may decrease, so these may have
to be repositioned in the heap; also, some other nodes may enter V for the
first time and have to be inserted in the heap at the right place. It can be
seen that each of these removals, repositionings, and insertions can be done
in O(log N) time. Since there is one removal per iteration, and at most one
repositioning or node insertion per arc (each arc is examined at most once),
the total operation count for maintaining the heap is O(A log N). This domi-
nates the O(A) operation count to examine all arcs, so the worst case running
time of the method is O(A log N). For sparse graphs, where A << N 2, the
binary heap method performs very well in practice.

Dial’s Algorithm [Dia69]

This algorithm requires that all arc lengths be nonnegative integers. It uses
a naive yet often surprisingly effective method for finding the minimum label
node in V . We first note that, since every finite label is equal to the length
of some path with no cycles [Prop. 3.3(a), part (iii)], the possible label values
range from 0 to (N − 1)C, where

C = max
(i,j)∈A

aij.
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Figure 3.4 A binary heap organized on the basis of node labels is a binary

balanced tree such that the label of each node of V is no larger than the labels of all

its descendants that are in V . Nodes that are not in V may have no descendants

that are in V . The topmost node, called the root , has the minimum label. The

tree is balanced in that the numbers of arcs in the paths from the root to any

nodes with no descendants differ by at most 1. If the label of some node decreases,

the node must be moved upward toward the root, requiring O(log N) operations.

[It takes O(1) operations to compare the label of a node i with the label of one

of its descendants j, and to interchange the positions of i and j if the label of j

is smaller. Since there are log N levels in the tree, it takes at most log N such

comparisons and interchanges to move a node upward to the appropriate position

once its label is decreased.] Similarly, when the topmost node is removed from V ,

moving the node downward to the appropriate level in the heap requires at most

log N steps and O(log N) operations. (Each step requires the interchange of the

position of the node and the position of one of its descendants. The descendant

must be in V for the step to be executed; if both descendants are in V , the one

with smaller label is selected.)

Suppose that for each possible label value, we keep a list of the nodes that
have this label value. Then we may scan the (N−1)C+1 possible label values
(in ascending order) looking for a label value with nonempty list, instead of
scanning the candidate list V . As will be seen shortly, this leads to a worst
case operation count of O(NC) for minimum label node searching, and to an
O(A+NC) operation count overall. The algorithm is pseudopolynomial, but
for small values of C (much smaller than N) it performs very well in practice.

To visualize the algorithm, it is useful to think of each integer in the
range [0, (N − 1)C] as some kind of container, referred to as a bucket . Each
bucket b holds the nodes with label equal to b. A data structure such as



74 Introduction Chap. 1

Bucket b 0 1 2 3 4 5 6 7 8

Contents 3 – 1,4,5 2,7 – 6 – – –

FIRST (b) 3 0 1 2 0 6 0 0 0

Node i 1 2 3 4 5 6 7

Label di 2 3 0 2 2 5 3

NEXT (i) 4 7 0 5 0 0 0

PREVIOUS (i) 0 0 0 1 4 0 2

Figure 3.5 Organization of the candidate list V in buckets using a doubly

linked list. For each bucket b we maintain the first node of the bucket in an array

element FIRST (b), where FIRST (b) = 0 if bucket b is empty. For every node i we

maintain two array elements, NEXT (i) and PREVIOUS(i), giving the next node

and the preceding node, respectively, of node i in the bucket where i is curently

residing [NEXT (i) = 0 or PREVIOUS(i) = 0 if i is the last node or the first node

in its bucket, respectively]. In this example, there are 7 nodes and 8 buckets.

a doubly linked list (see Fig. 3.5) can be used to maintain the set of nodes
belonging to a given bucket, so that checking the emptiness of a bucket and
inserting or removing a node from a bucket are easy, requiring O(1) operations.

Figure 3.6 illustrates the method with an example. Tracing steps, we see
that the method starts with the origin node 1 in bucket 0 and all other buckets
empty. At the first iteration, each node j with (1, j) ∈ A enters the candidate
list V and is inserted in bucket dj = a1j . If for some j we have dj = 0, then
node j is inserted in bucket 0, and is removed next from V . After we are done
with bucket 0, we proceed to check bucket 1. If it is nonempty, we repeat the
process, removing from V all nodes with label 1 and moving other nodes to
smaller numbered buckets as required; if not, we check bucket 2, and so on.

We note that it is sufficient to maintain only C +1 buckets, rather than
(N − 1)C + 1, thereby significantly saving in memory. The reason is that if
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Iter. Cand. Node Buck. Buck. Buck. Buck. Buck. Out

# List V Labels 0 1 2 3 4 of V

1 {1} (0,∞,∞,∞,∞) 1 – – – – 1

2 {2, 3} (0, 2, 1,∞,∞) 1 3 2 – – 3

3 {2, 4} (0, 2, 1, 4,∞) 1 3 2 – 4 2

4 {4, 5} (0, 2, 1, 3, 2) 1 3 2,5 4 – 5

5 {4} (0, 2, 1, 2, 2) 1 3 2,4,5 – – 4

∅ (0, 2, 1, 2, 2) 1 3 2,4,5 – –

Figure 3.6 An example illustrating Dial’s method.

we are currently searching bucket b, then all buckets beyond b + C are known
to be empty. To see this, note that the label dj of any node j must be of
the form di + aij , where i is a node that has already been removed from the
candidate list. Since di ≤ b and aij ≤ C, it follows that dj ≤ b + C.

The idea of using buckets to maintain the nodes of the candidate list
can be generalized considerably. In particular, buckets of width larger than 1
may be used. This results in fewer buckets to search over, thereby alleviating
the O(NC) bottleneck of the operation count of the algorithm. There is a
price for this, namely the need to search for a minimum label node within
the current bucket. This search can be speeded up by using buckets with
nonuniform widths, and by breaking down buckets of large width into buckets
of smaller width at the right moment. With intelligent strategies of this type,
one may obtain label setting methods with very good polynomial complexity
bounds; see [Joh77], [DeF79], [AMO88].

1.3.3 Label Correcting Methods

In these methods, the selection of the node to be removed from the candidate
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list V is faster than in label setting methods, at the expense of multiple
entrances of nodes in V .

All of these methods use some type of queue to maintain the candidate
list V . They differ in the way the queue is structured, and in the choice of
the queue position into which nodes are entered.

The simplest of these methods, operates in cycles of iterations. In each
cycle the nodes are scanned in some order; when a node i is found to belong to
V , an iteration removing i from V is performed. This is a variant of one of the
first methods proposed for the shortest path problem, known as the Bellman-
Ford method . It is possible to show that if all cycles have nonnegative length
this method requires at most N cycles; see Exercise 3.4. Each cycle consists
of at most N iterations, requiring a total of O(A) operations (each arc is
examined at most once in each cycle). Thus, the total operation count for the
method is O(NA).

The best practical implementations of label correcting methods are more
sophisticated than the one just described. Their worst case complexity bound
is no better than the O(NA) bound for the simple implementation derived
above, and in some cases it is far worse. Yet their practical performance is
far better.

The D’Esopo-Pape Algorithm

In this method, a node is always removed from the top of the queue used to
store the candidate list V . A node, upon entrance in the queue, is placed at
the bottom of the queue if it has never been in the queue before; otherwise
it is placed at the top. The idea here is that when a node i is removed from
the queue, its label affects the labels of a subset Bi of the neighbor nodes j
with (i, j) ∈ A. When the label of i changes again, it is likely that the labels
of the nodes in Bi will require updating also. It is thus intuitively sensible to
place the node at the top of the queue so that the labels of the nodes in Bi

get a chance to be updated as quickly as possible.
The D’Esopo-Pape algorithm is very simple to implement and performs

very well in practice for a broad variety of problems. Despite this fact, exam-
ples have been constructed [Ker81], [ShW81], where it performs very poorly.
In particular, in these examples, the number of times some nodes enter the
candidate list V is not polynomial. References [Pal84] and [GaP88] give a
polynomial variation of the algorithm, which is the basis for the code of Ap-
pendix A.2.

The Threshold Algorithm

The premise of this algorithm is that it is generally a good policy to remove
from the candidate list a node with relatively small label . When the arc lengths
are nonnegative, this policy tends to reduce the number of times a node



Sec. 1.3 The Shortest Path Problem 77

reenters the candidate list. In particular, when the node with smallest label
is removed from the candidate list, as in Dijkstra’s algorithm, this node never
reenters the list; see also the discussion preceding Prop. 3.3 and Exercise 3.7.

The threshold algorithm attempts to emulate approximately the mini-
mum label selection policy of Dijkstra’s algorithm with a much smaller com-
putational effort. The candidate list V is organized into two distinct queues
Q′ and Q′′ using a threshold parameter s. The queue Q′ contains nodes with
“small” labels; that is, it contains only nodes whose labels are no larger than
s. At each iteration, a node is removed from Q′, and any node j to be added
to the candidate list is inserted in Q′′. When the queue Q′ is exhausted, the
entire candidate list is repartitioned. The threshold is adjusted and the queues
Q′ and Q′′ are recalculated, so that Q′ consists of the nodes with labels that
are no larger than the new threshold.

The performance of this method is quite sensitive to the method used
to adjust the thresholds. For example, if s is taken to be equal to the current
minimum label, the method is identical to Dijkstra’s algorithm; if s is larger
than all node labels, Q′′ is empty and the algorithm reduces to the generic
label correcting method. With an effective choice of threshold, the practical
performance of the algorithm is very good. A number of heuristic approaches
have been developed for selecting the threshold (see [GKP85a], [GKP85b],
and [GaP88]). If all arc lengths are nonnegative, a bound O(NA) on the
operation count of the algorithm can be shown; see Exercise 3.7.

1.3.4 Single Origin/Single Destination Methods

Suppose that there is only one destination, call it t, and we want to find the
shortest distance from the origin node 1 to t. We could use our earlier single
origin/all destinations algorithms, but some improvements are possible.

Label Setting

Suppose first that we use the label setting method. Then we can stop the
method when the destination t becomes permanently labeled; further com-
putation will not improve the label dt. If t is closer to the origin than many
other nodes, the saving in computation time will be significant. Note that this
approach can also be used when there are several destinations. The method
is stopped when all destinations have been permanently labeled.

Another interesting possibility is to use a two-sided label setting method ;
that is, a method that simultaneously proceeds from the origin to the desti-
nation and from the destination to the origin. In this method, we successively
label permanently the closest nodes to the origin (with their shortest dis-
tance from the origin) and the closest nodes to the destination (with their
shortest distance to the destination). When some node gets permanently la-
beled from both sides, the labeling can stop; by combining the forward and
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backward paths of each labeled node and by comparing the resulting origin-
to-destination paths, one can obtain a shortest path (see Exercise 3.8). For
many problems, this approach can lead to a dramatic reduction in the to-
tal number of iterations. However, this two-sided labeling approach does not
work when there are multiple destinations.

Label Correcting

Unfortunately, when label correcting methods are used, it may not be easy
to realize the savings just discussed in connection with label setting. The
difficulty is that even after we discover several paths to the destination t
(each marked by an entrance of t into V ), we cannot be sure that better
paths will not be discovered later. In the presence of additional problem
structure, however, the number of times various nodes will enter V can be
reduced considerably.

Suppose that at the start of the algorithm we have, for each node i, an
underestimate ui of the shortest distance from i to t (we require ut = 0). For
example, if all arc lengths are nonnegative we may take ui = 0 for all i. (We
do not exclude the possibility that ui = −∞ for some i, which corresponds
to the case where no underestimate is available for the shortest distance of
i.) The following algorithm is a modified version of the generic shortest path
algorithm.

Initially
V = {1},

d1 = 0, di = ∞, ∀ i 	= 1.

The algorithm proceeds in iterations and terminates when V is empty. The
typical iteration (if V is assumed nonempty) is as follows.

Typical Iteration of the Generic Single Origin/Single Destination Algorithm

Remove a node i from V . For each outgoing arc (i, j) ∈ A, with j �= 1, if

di + aij < min{dj , dt − uj}

set

dj := di + aij

and add j to V if it does not already belong to V .

The preceding iteration is the same as that of the generic algorithm,
except that the test di + aij < dj for entering a node j into V is replaced by
the more stringent test di + aij < min{dj, dt − uj}. (In fact, when the trivial
underestimate uj = −∞ is used for all j 	= t the two iterations coincide.) The
idea is as follows: The label dj corresponds at all times to the best path found
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thus far from 1 to j (cf. Prop. 3.2). Intuitively, the purpose of entering node j
in V when its label is reduced is to generate shorter paths to the destination
that pass through node j. If Pj is the path from 1 to j corresponding to
di + aij , then di + aij + uj is an underestimate of the shortest path length
among the set of paths Pj that first follow path Pj to node j and then follow
some other path from j to t. If

di + aij + uj ≥ dt,

then the current best path to t, which corresponds to dt, is at least as short
as any of the paths in Pj , which have Pj as their first component. It is
unnecessary to consider such paths, and for this reason node j need not be
entered in V . In this way, the number of node entrances in V may be sharply
reduced.

Figure 3.7 illustrates the algorithm. The following proposition proves
its validity.

Proposition 3.4: Consider the generic single origin/single destination al-
gorithm.

(a) At the end of each iteration, the following conditions hold:

(i) d1 = 0.

(ii) If dj < ∞ and j 	= 1, then dj is the length of some path that starts
at 1, never returns to 1, and ends at j.

(b) If the algorithm terminates, then upon termination, either dt < ∞, in
which case dt is the shortest distance from 1 to t, or else there is no path
from 1 to t.

(c) If the algorithm does not terminate, there exist paths of arbitrarily small
length that start at 1 and never return to 1.

Proof: (a) The proof is identical to the corresponding parts of Prop. 3.2.

(b) If upon termination we have dt = ∞, then the extra test di + aij +
uj < dt for entering V is always passed, so the algorithm generates the same
label sequences as the generic (many destinations) shortest path algorithm.
Therefore, Prop. 3.2(b) applies and shows that there is no path from 1 to t.

Let dj be the final values of the labels dj obtained upon termination and
suppose that dt < ∞. Assume, to arrive at a contradiction, that there is a path
Pt = (1, j1, j2, . . . , jk, t) that has length Lt with Lt < dt. For m = 1, . . . , k, let
Ljm be the length of the path Pm = (1, j1, j2, . . . , jm).

Let us focus on the node jk preceding t on the path Pt. We claim that
Ljk < djk . Indeed, if this were not so, then jk must have been removed at
some iteration from V with a label djk satisfying djk ≤ Ljk . If dt is the label
of t at the start of that iteration, we would then have

djk + ajkt ≤ Ljk + ajkt = Lt < dt ≤ dt,
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Iter. # Candidate List V Node Labels Node out of V

1 {1} (0,∞,∞,∞,∞) 1

2 {2, 3} (0, 2, 1,∞,∞) 2

3 {3, 5} (0, 2, 1,∞, 2) 3

4 {5} (0, 2, 1,∞, 2) 5

∅ (0, 2, 1,∞, 2)

Figure 3.7 Illustration of the generic single origin/single destination

algorithm. Here the destination is t = 5 and the underestimates of shortest

distances to t are ui = 0 for all i. Note that at iteration 3, when node 3 is

removed from V , the label of node 4 is not improved to d4 = 2 and node 4 is not

entered in V . The reason is that d3 +a34 (which is equal to 2) is not smaller than

d5 − u4 (which is also equal to 2). Note also that upon termination the label of a

node other than t may not be equal to its shortest distance (e.g. d4).

implying that the label of t would be reduced at that iteration from dt to
djk + ajkt, which is less than the final label dt – a contradiction.

Next we focus on the node jk−1 preceding jk and t on the path Pt. We use
a similar (though not identical) argument to show that Ljk−1 < djk−1 . Indeed,
if this were not so, then jk−1 must have been removed at some iteration from
V with a label djk−1 satisfying djk−1 ≤ Ljk−1 . If djk and dt are the labels of jk

and t at the start of that iteration, we would then have

djk−1 + ajk−1jk ≤ Ljk−1 + ajk−1jk = Ljk < djk ≤ djk , (3.17)

and since Ljk + ujk ≤ Lt < dt ≤ dt, we would also have

djk−1 + ajk−1jk < dt − ujk . (3.18)
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From Eqs. (3.17) and (3.18), it follows that the label of jk would be reduced
at that iteration from djk to djk + ajkt, which is less than the final label djk –
a contradiction.

Proceeding similarly, we obtain Ljm < djm for all m = 1, . . . , k, and in
particular a1j1 = Lj1 < dj1 . Since

a1j1 + uj1 ≤ Lt < dt,

and dt is monotonically nonincreasing throughout the algorithm, we see that
at the first iteration, j1 will enter V with the label a1j1 , which cannot be
less than the final label dj1 . This is a contradiction; the proof of part (b) is
complete.

(c) The proof is identical to the proof of Prop. 3.2(c). Q.E.D.

There are a number of possible implementations of the algorithm of this
subsection, which parallel the ones given earlier for the many destinations
problem. An interesting possibility to speed up the algorithm arises when an
overestimate vj of the shortest distance from j to t is known a priori . (We
require vt = 0; also vj = ∞ implies that no overestimate is known for j.) The
idea is that the method still works if the test di + aij < dt − uj is replaced
by the possibly sharper test di + aij < D − uj , where D is any overestimate
of the shortest distance from 1 to t with D ≤ dt (check the proof of Prop.
3.4). We can obtain estimates D that may be strictly smaller than dt by
using the scalars vj as follows: each time the label of a node j is reduced,
we check whether dj + vj < D; if this is so, we replace D by dj + vj . In this
way, we make the test for future admissibility into the candidate list V more
stringent and save some unnecessary node entrances in V . This idea is used
in some versions of the branch-and-bound method for integer programming;
see Section 1.4 of [Ber87].

1.3.5 Multiple Origin/Multiple Destination Methods

Consider now the all-pairs shortest path problem where we want to find a
shortest path from each node to each other node. The Floyd-Warshall algo-
rithm is specifically designed for this problem, and it is not any faster when
applied to the single destination problem. It starts with the initial condition

D0
ij =

{
aij, if (i, j) ∈ A
∞, otherwise

and generates sequentially for all k = 0, 1, . . . , N − 1, and all nodes i and j,

Dk+1
ij =

{
min

{
Dk

ij, Dk
i(k+1) + Dk

(k+1)j

}
, if j 	= i

∞, otherwise.
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An induction argument shows that Dk
ij gives the shortest distance from

node i to node j using only nodes from 1 to k as intermediate nodes. Thus, DN
ij

gives the shortest distance from i to j (with no restriction on the intermediate
nodes). There are N iterations, each requiring O(N 2) operations, for a total
of O(N 3) operations.

Unfortunately, the Floyd-Warshall algorithm cannot take advantage of
sparsity of the graph. It appears that for sparse problems it is typically better
to apply a single origin/all destinations algorithm separately for each origin.
If all the arc lengths are nonnegative, a label setting method can be used
separately for each origin. If there are negative arc lengths (but no negative
length cycles), one can of course apply a label correcting method separately
for each origin, but there is another alternative that results in a superior
worst-case complexity. It is possible to apply a label correcting method only
once to a single origin/all destinations problem and obtain an equivalent all-
pairs shortest path problem with nonnegative arc lengths; the latter problem
can be solved using N separate applications of a label setting method. This
alternative is based on the following proposition, which applies to the general
minimum cost flow problem.

Proposition 3.5: Every minimum cost flow problem with arc costs aij such
that all simple forward cycles have nonnegative cost is equivalent to another
minimum cost flow problem involving the same graph and nonnegative arc
costs âij of the form

âij = aij + di − dj, ∀ (i, j) ∈ A,

where the scalars di can be found by solving a single origin/all destinations
shortest path problem. The two problems are equivalent in the sense that
they have the same constraints, and the cost function of one is the same as
the cost function of the other plus a constant.

Proof: Let (N ,A) be the graph of the given problem. Introduce a new node
0 and an arc (0, i) for each i ∈ N , thereby obtaining a new graph (N′,A′).
Consider the shortest path problem involving this graph, with arc lengths aij

for the arcs (i, j) ∈ A and 0 for the arcs (0, i). Since all incident arcs of node
0 are outgoing, all simple forward cycles of (N′,A′) are also simple forward
cycles of (N ,A) and, by assumption, have nonnegative length. Since any
forward cycle can be decomposed into a collection of simple forward cycles
(cf. Exercise 1.5), all forward cycles (not necessarily simple) of (N′,A′) have
nonnegative length. Furthermore, there is at least one path from node 0 to
every other node i, namely the path consisting of arc (0, i). Therefore, the
shortest distances di from node 0 to all other nodes i can be found by a label
correcting method, and by Prop. 3.2, we have

âij = aij + di − dj ≥ 0, ∀ (i, j) ∈ A.
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Let us now view
∑

(i,j)∈A âijxij as the cost function of a minimum cost
flow problem involving the graph (N ,A) and the constraints of the original
problem. We have

∑
(i,j)∈A

âijxij =
∑

(i,j)∈A

(
aij + di − dj

)
xij

=
∑

(i,j)∈A
aijxij +

∑
i∈N

di

⎛
⎝ ∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji

⎞
⎠

=
∑

(i,j)∈A
aijxij +

∑
i∈N

disi,

where si is the given supply of node i. Thus, the two cost functions
∑

(i,j)∈A âijxij

and
∑

(i,j)∈A aijxij differ by the constant
∑

i∈N disi. Q.E.D.

It can be seen now that the all-pairs shortest path problem can be solved
by using a label correcting method to solve the single origin/all destinations
problem described in the above proof, thereby obtaining the scalars di and
âij , and by then applying a label setting method N times to solve the all-pairs
shortest path problem involving the nonnegative arc lengths âij . The shortest
distance Dij from i to j is obtained by adding di − dj to the shortest distance
from i to j found by the label setting method.

Still another possibility for solving the all-pairs shortest path problem
is to solve N separate single origin/all destinations problems but to also use
the results of the computation for one origin to start the computation for the
next origin. This can be done efficiently in the context of the simplex method
presented in the next chapter; see also [GaP86], [GaP88].

E X E R C I S E S

Exercise 3.1

Consider the graph of Fig. 3.8. Find a shortest path from 1 to all nodes using

the binary heap method, Dial’s algorithm, and the D’Esopo-Pape algorithm.

Exercise 3.2

Consider the graph of Fig. 3.8. Find a shortest path from node 1 to node 6

using the generic single origin/single destination method of Section 1.3.4 with

all distance underestimates equal to zero.
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Figure 3.8 Graph for Exercises 3.1 and 3.2. The arc lengths are the

numbers shown next to the arcs.

Exercise 3.3 (Shortest Path Tree Construction)

Consider the single origin/all destinations shortest path problem and assume

that all cycles have nonnegative length. Consider the generic algorithm of

Section 1.3.1, and assume that each time a label dj is decreased to di +aij the

arc (i, j) is recorded in an array PRED(j ). Consider the subgraph of the arcs

PRED(j ), j ∈ N , j �= 1. Show that after the first iteration this subgraph is a

tree rooted at the origin, and that upon termination it is a shortest path tree.

Exercise 3.4 (The Bellman-Ford Algorithm)

Consider the single origin/all destinations shortest path problem. Assume

that there is a path from the origin to all destinations, and that all cycles

have nonnegative length. The Bellman-Ford algorithm starts with the initial

conditions

d0
1 = 0, d0

j = ∞, ∀ j �= 1

and generates dk
j , k = 1, 2, . . ., according to

dk
1 = 0, dk

j = min
(i,j)∈A

{dk−1
i + aij}, ∀ j �= 1.

(a) Show that for all k, dk
j is the shortest distance from 1 to j using paths

with k arcs or less.

(b) Show that the algorithm terminates after at most N iterations, in the

sense that for some k ≤ N we have dk
j = dk−1

j for all j. Conclude that

the running time of the algorithm is O(NA).
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(c) Consider a label correcting method that operates in cycles of iterations.

In each cycle the nodes are scanned in a fixed order, and when a node

i is found to belong to V an iteration removing i from V is performed

(thus, there are as many as N iterations in a single cycle). Show that if

d
k

j is the label of node j at the end of the kth cycle then d
k

j ≤ dk
j , where

dk
j are the iterates of the Bellman-Ford algorithm. Conclude that this

label correcting method has an O(NA) running time.

Exercise 3.5 (Min-Path/Max-Tension Theorem)

For a price vector p = (p1, . . . , pN ), define the tension of arc (i, j) as tij = pi−pj

and the tension of a forward path P as TP =
∑

(i,j)∈P+ tij . Show that the

shortest distance between two nodes i1 and i2 is equal to the maximal tension

TP over all forward paths P starting at i1 and ending at i2, and all price vectors

p satisfying the constraint tij ≤ aij for all arcs (i, j). Interpret this as a duality

result. Note: An intuitive explanation of this result in terms of a mechanical

model is given in Section 4.3; see Fig. 3.1 of that section.

Exercise 3.6 (Path Bottleneck Problem)

Consider the framework of the shortest path problem. For any path P , define

the bottleneck arc of P as an arc that has maximum length over all arcs of

P . Consider the problem of finding a path connecting two given nodes and

having minimum length of bottleneck arc. Derive an analog of Prop. 3.1 for

this problem. Consider also a single origin/all destinations version of this

problem. Develop an analog of the generic algorithm of Section 1.3.1, and

prove an analog of Prop. 3.2. Hint: Replace di + aij with max{di, aij}.

Exercise 3.7 (Complexity of the Generic Algorithm)

Consider the generic algorithm, and assume that all arc lengths are nonnega-

tive.

(a) Consider a node j satisfying at some time

dj ≤ di, ∀ i ∈ V.

Show that this relation will be satisfied at all subsequent times and that

j will never again enter V . Furthermore, dj will remain unchanged.

(b) Suppose that the algorithm is structured so that it removes from V a

node of minimum label at least once every k iterations (k is some inte-

ger). Show that the algorithm will terminate in at most kN iterations.
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(c) Show that the running time of the threshold algorithm is O(NA). Hint:
Define a cycle to be a sequence of iterations between successive repar-

titionings of the candidate list V . In each cycle, the node of V with

minimum label at the start of the cycle will be removed from V during

the cycle.

Exercise 3.8 (Two-Sided Label Setting)

Consider the shortest path problem from an origin node 1 to a destination node

t, and assume that all arc lengths are nonnegative. This exercise considers an

algorithm where label setting is applied simultaneously and independently

from the origin and from the destination. In particular, the algorithm main-

tains a subset of nodes W , which are permanently labeled from the origin,

and a subset of nodes V , which are permanently labeled from the destination.

When W and V have a node i in common the algorithm terminates. The idea

is that a shortest path from 1 to t cannot contain a node j /∈ W ∪V ; any such

path must be longer than a shortest path from 1 to i followed by a shortest

path from i to t (unless j and i are equally close to both 1 and to t).

Consider two subsets of nodes W and V with the following properties:

(1) 1 ∈ W and t ∈ V .

(2) W and V have nonempty intersection.

(3) If i ∈ W and j /∈ W , then the shortest distance from 1 to i is less than

or equal to the shortest distance from 1 to j.

(4) If i ∈ V and j /∈ V , then the shortest distance from i to t is less than or

equal to the shortest distance from j to t.

Let d1
i be the shortest distance from 1 to i using paths all the nodes of which,

with the possible exception of i, lie in W (d1
i = ∞ if no such path exists), and

let dt
i be the shortest distance from i to t using paths all the nodes of which,

with the possible exception of i, lie in V (dt
i = ∞ if no such path exists).

(a) Show that such W , V , d1
i , and dt

i can be found by applying a label

setting method simultaneously for the single origin problem with origin

node 1 and for the single destination problem with destination node t.

(b) Show that the shortest distance D1t from 1 to t is given by

D1t = min
i∈W

{
d1

i + dt
i

}
= min

i∈W∪V

{
d1

i + dt
i

}
= min

i∈V

{
d1

i + dt
i

}
.

(c) Show that the nonempty intersection condition (2) can be replaced by

the condition mini∈W

{
d1

i + dt
i

}
≤ maxi∈W d1

i + maxi∈V dt
i.
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Exercise 3.9 (k Shortest Node-Disjoint Paths)

Consider a graph with an origin 1, a destination t, and a length for each arc.

We want to find k paths from 1 to t which share no node other 1 and t and

which are such that the sum of the k path lengths is minimum. Formulate this

problem as a minimum cost flow problem. Hint: Replace each node i other

than 1 and t with two nodes i and i′ and a connecting arc (i, i′) with flow

bounds 0 ≤ xii′ ≤ 1.

Exercise 3.10 (The Doubling Algorithm)

The doubling algorithm for solving the all-pairs shortest path problem is given

by

D1
ij =

{
aij , if (i, j) ∈ A
0, if i = j

∞, otherwise

D2k
ij =

{
minm

{
Dk

im + Dk
mj

}
, if i �= j, k = 1, 2, . . . , 	log(N − 1)


0, if i = j, k = 1, 2, . . . , 	log(N − 1)
.
Show that for i �= j, Dk

ij gives the shortest distance from i to j using paths

with 2k−1 arcs or fewer. Show also that the running time is O
(
N 3 log m∗),

where m∗ is the maximum number of arcs in a shortest path.

Exercise 3.11 (Nonstandard Initial Conditions)

It is sometimes useful to start the generic algorithm with initial conditions

other than the standard V = {1}, d1 = 0, dj = ∞ for j �= 1. Such a possibility

arises, for example, when shortest paths with respect to slightly different arc

lengths are known from an earlier optimization. This exercise characterizes

initial conditions under which the algorithm maintains its validity.

(a) Suppose that the initial V and d in the generic algorithm satisfy condi-

tions (i), (ii), and (iii) of part (a) of Prop. 3.2. Show that the algorithm

is still valid in the sense that parts (b) and (c) of Prop. 3.2 hold.

(b) Use the result of part (a) to derive “promising” initial conditions for

application of the generic algorithm using paths from 1 to all other

nodes, which are shortest with respect to slightly different arc lengths.

Exercise 3.12 (Uniqueness of Solution of Bellman’s Equation)

Assume that all cycles have positive length. Show that if a vector d =

(d1, d2, . . . , dN ) satisfies

dj = min
(i,j)∈A

{di + aij}, ∀ j �= 1,
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d1 = 0,

then for all j, dj is the shortest distance from 1 to j. Show by example that

this need not be true if there is a cycle of length 0. Hint: Consider the arcs

(i, j) attaining the minimum in the above equation and consider the paths

formed by these arcs.

1.4 NOTES AND SOURCES

Network problems are discussed in many books ([BeG62], [Dan63], [BuS65],
[Iri69], [Hu69], [FrF70], [Chr75], [Mur76], [Law76], [Zou76], [BaJ78], [Min78],
[KeH80], [JeB80], [PaS82], [Chv83], [GoM84], [Lue84], [Roc84], [BJS90]). Sev-
eral of these books discuss linear programming first and develop linear network
optimization as a special case. An alternative approach that relies heavily on
duality, is given in [Roc84]. Bibliographies on the subject are provided in
[GoM77], [VoR82], and [VoR85].

1.1. The conformal realization theorem has been developed in different forms
in several sources [FoF62], [BuS65]. In our presentation we follow [Roc84].

1.2. The primal cost improvement approach for network optimization was
initiated by Dantzig [Dan51], who specialized the simplex method to the trans-
portation problem. The extensive subsequent work using this approach is
surveyed at the end of Chapter 2.

The max flow-min cut theorem was discovered independently in [DaF56],
[EFS56], and [FoF56b]. The proof that the Ford-Fulkerson algorithm with
breadth-first search has polynomial complexity O(NA2) (Exercise 2.10) is
due to [EdK72]. With proper implementation, this bound was improved
to O(N 2A) in [Din70], and to O(N 3) in [Kar74]. A number of algorithms
based on augmentation ideas were subsequently proposed ([Che77], [MKM78],
[Gal80], [GaN80]). A different approach, which bears a close connection to
the auction and ε-relaxation ideas discussed in Chapter 4, was proposed in
[Gol85b]; see also [GoT86], [AhO86].

The dual cost improvement approach was initiated by Kuhn [Kuh55]
who proposed the Hungarian method for the assignment problem. (The name
of the algorithm honors its connection with the research of the Hungarian
mathematician Egervary [Ege31].) Work using this approach is surveyed in
Chapter 3.

The auction approach was initiated by the author in [Ber79] for the
assignment problem, and in [Ber86a], [Ber86b] for the minimum cost flow
problem. Work using this approach is surveyed at the end of Chapter 4.

The feasible distribution theorem (Exercise 2.5) is due to [Gal57] and
[Hof60]. The maximal matching/minimal cover theorem is due to [Kon31]
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and [Ege31]. The theory of distinct representatives (Exercise 2.13) originated
with [Hal56]; see also [HoK56] and [MeD58].

1.3. Work on the shortest path problem is very extensive. Literature surveys
are given in [Dre69], [GPR82], and [DeP84]. The generic algorithm was first
explicitly suggested as a unifying framework of many of the existing shortest
path algorithms in [Pal84] and [GaP86].

The first label setting method was suggested in [Dij59], and also indepen-
dently in [Dan60] and [WhH60]. The binary heap and related implementa-
tions were suggested in [Joh77]. Dial’s algorithm was proposed in [Dia69]
and received considerable attention after the appearance of [DGK79]; see
also [DeF79]. For related algorithms using variable size buckets, see [Joh77],
[DeF79], and [AMO88].

Label correcting methods were proposed in [Bel57] and [For56]. The
D’Esopo-Pape algorithm appeared in [Pap74] based on an earlier suggestion
of D’Esopo. The threshold algorithm is developed in [GKP85a], [GKP85b],
and [GGK86a].

Two-sided label setting methods for the single origin/single destination
problem (Exercise 3.8) were proposed in [Nic66]; see also [HKS89], which con-
tains extensive computational results. A new type of two-sided label setting
method is described in Section 4.3 (Exercise 3.5).

The Floyd-Warshall algorithm was given in [Flo62] and uses a theorem
due to [War62]. Alternative algorithms for the all-pairs problem are given in
[Dan67] and [Tab73].





2

Simplex Methods

The main idea of primal cost improvement is to start with a feasible flow
vector x and to generate a sequence of other feasible flow vectors, each having
a smaller primal cost than its predecessor. The main idea is that if the current
flow vector is not optimal, an improved flow vector can be obtained by pushing
flow along a simple cycle C with negative cost, that is,

∑
(i,j)∈C+

aij −
∑

(i,j)∈C−

aij < 0,

where C+ and C− are the sets of forward and backward arcs of C, respectively
(see Prop. 2.1 in Section 1.2).

There are several methods for finding negative cost cycles, but the most
successful in practice are specialized versions of the simplex method for linear
programming. This chapter focuses on methods of this type.

Simplex methods are not only useful for algorithmic solution of the prob-
lem; they also provide constructive proofs of some important analytical re-
sults. Chief among these are duality theorems asserting the equality of the
primal and the dual optimal values, and the existence of optimal primal and
dual solutions which are integer if the problem data are integer (see Prop. 2.3
in Section 2.2 and Prop. 3.2 in Section 2.3).
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2.1 MAIN IDEAS IN SIMPLEX METHODS

To simplify the presentation, we first consider the version of the minimum
cost flow problem with only nonnegativity constraints on the flows:

minimize
∑

(i,j)∈A
aijxij (MCF–N)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1.1)

0 ≤ xij, ∀ (i, j) ∈ A, (1.2)

where aij , and si are given scalars.
We saw in Section 1.1.3 that the general minimum cost flow problem

with upper and lower bounds on the arc flows can be converted to one with
nonnegativity constraints. Thus, once we develop the main method for the
simpler problem above, its extension to the more general problem will be
straightforward.

The most important difference between the minimum cost flow problem
with nonnegativity constraints and the one with upper and lower bounds is
that the former can be unbounded . By this we mean that feasible flows may
take arbitrarily large values, while the corresponding cost takes arbitrarily
small (i.e., large negative) values. In particular, the problem is unbounded if it
is feasible and there exists a simple forward cycle with negative cost , since then
we can reduce the cost to arbitrarily large negative values by adding arbitrarily
large flow along the negative cost cycle to any feasible flow vector. [In fact,
we have seen an instance of this result in connection with the shortest path
problem; cf. the corresponding minimum cost flow problem (3.3) in Section
1.3.] The converse is also true: if the problem is unbounded, there must exist
a simple forward cycle with negative cost . This follows from Prop. 3.5 in
Section 1.3, which implies that if the cost of every simple forward cycle is
nonnegative, then the cost function of the problem is bounded from below by
some constant.

Spanning Trees and Basic Flow Vectors

The main idea of the simplex method is to generate negative cost cycles by
using a spanning tree of the given graph. Recall from Section 1.1 that a tree
is an acyclic connected graph, and that a spanning tree of a given graph is
a subgraph that is a tree and includes all nodes of the given graph. A leaf
node of a tree is defined to be a node with a single incident arc. Figure 1.1
illustrates a spanning tree and a leaf node. The following lemma proves some
important properties.



Simple cycle closed by
adding arc (i,j) to T

A leaf node

i

j

Sec. 2.1 Main Ideas in Simplex Methods 93

Figure 1.1 Illustration of a spanning tree T . Note that that there is a

unique simple path of T connecting any pair of nodes. Furthermore, the addition

of any arc to T [arc (i, j) in the figure] creates a unique simple cycle in which

(i, j) is a forward arc.

Lemma 1.1: Let T be a subgraph of a graph with N nodes.

(a) If T is acyclic and has at least one arc, then it must have at least one
leaf node.

(b) T is a spanning tree if and only if it is connected and has N nodes and
N − 1 arcs.

(c) If T is a tree, for any two nodes i and j of T there is a unique simple
path of T starting at i and ending at j. Furthermore, any arc e that is
not in T , when added to T , creates a unique simple cycle in which e is
a forward arc.

(d) If T is a tree and an arc (i, j) of T is deleted, the remaining arcs of T
form two disjoint trees, one containing i and the other containing j.

Proof: (a) Choose a node n1 of T with at least one incident arc e1 and let
n2 be the opposite node of that arc. If n2 is a leaf node, the result is proved;
else choose an arc e2 �= e1 that is incident to n2, and let n3 be the opposite
end node. If n3 is a leaf node, the result is proved; else continue similarly.
Eventually a leaf node will be found, for otherwise some node will be repeated
in the sequence, which is impossible since T is acyclic.

(b) Let T be a spanning tree. Then T has N nodes, and since it is connected
and acyclic, it must have a leaf node n1. (We assume without loss of generality
that N ≥ 2.) Delete n1 and its unique incident arc from T , thereby obtaining
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a connected graph T1, which has N − 1 nodes and is acyclic. Repeat the
process with T1 in place of T , obtaining T2, T3, and so on. After N − 1 steps
and N − 1 arc deletions, we will obtain TN−1, which consists of a single node.
This proves that T has N − 1 arcs.

Suppose now that T is connected and has N nodes and N − 1 arcs. If T
had a simple cycle, by deleting any arc of the cycle, we would obtain a graph T1

that would have N−2 arcs and would still be connected. Continuing similarly
if necessary, we obtain for some k ≥ 1 a graph Tk, which has N−k−1 arcs, and
is connected and acyclic (i.e., it is a spanning tree). This is a contradiction,
because we proved earlier that a spanning tree has exacly N − 1 arcs. Hence,
T has no simple cycle and must be a spanning tree.

(c) There is at least one simple path starting at a node i and ending at a
node j because T is connected. If there were a second path starting at i and
ending at j, by reversing this path so that it starts at j and ends at i, and by
concatenating it to the first path, we would form a cycle. It can be seen that
this cycle must contain a simple cycle, since otherwise the two paths would
be identical. This contradicts the hypothesis that T is a tree.

If arc e is added to T , it will form a simple cycle together with any
simple path that lies in T and connects its end nodes. Since there is only
one such path, it follows that e, together with the arcs of T , forms a unique
simple cycle in which e is a forward arc.

(d) It can be seen that removal of a single arc from any connected graph either
leaves the graph connected or else creates exactly two connected components.
The unique simple path of T connecting i to j consists of arc (i, j); with the
removal of this arc, no path connecting i to j remains, and the graph cannot
stay connected. Hence, removal of (i, j) must create exactly two connected
components, which must be trees since, being subgraphs of T , they must be
acyclic. Q.E.D.

Suppose that we have a feasible problem and we are given a spanning
tree T . A key property for our purposes is that there is a flow vector x,
satisfying the conservation of flow constraints (1.1), with the property that
only arcs of T can have a nonzero flow. Such a flow vector is called basic and
is uniquely determined by T , as the following proposition shows.

Proposition 1.1: Assume that
∑

i∈N si = 0. Then, for any spanning
tree T , there exists a unique flow vector x that satisfies the conservation of
flow constraints (1.1) and is such that all arcs not in T have zero flow. In
particular, if an arc (i, j) of T separates T into two components Ti and Tj ,
containing i and j respectively, we have

xij =
∑
n∈Ti

sn.
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Proof: To show uniqueness, note that for any flow vector x and arc (i, j) ∈ T
the flux across the cut [Ti,N − Ti] is equal to the sum of divergences of the
nodes of Ti [see Eq. (2.5) in Section 1.2.2]. Thus, if x satisfies the conservation
of flow constraints, the flux across the cut must be

∑
n∈Ti

sn. If in addition
all arcs of the cut carry zero flow except for (i, j), this flux is just xij , so we
must have

xij =
{ ∑

n∈Ti
sn if (i, j) ∈ T

0 if (i, j) /∈ T .

Thus, if a flow vector has the required properties, it must be equal to the
vector x defined by the preceding formula.

To show existence, i.e. that the flow vector x, defined by the preceding
formula, satisfies the conservation of flow constraints, we use a constructive
proof based on the algorithm of Fig. 1.2. (An alternative algorithm is outlined
in Exercise 1.4.) Q.E.D.

Note that a basic flow vector need not be feasible; some of the arc flows
may be negative, violating the lower bound constraints (see the example of
Fig. 1.2). If the corresponding basic flow vector is feasible, the spanning tree
will be called (with slight abuse of terminology) a feasible tree.

Overview of the Simplex Method

The simplex method starts with a feasible tree and proceeds in iterations,
generating another feasible tree and a corresponding feasible basic flow vector
at each iteration. The cost of each basic flow vector is no worse than the
cost of its predecessor. At each iteration (also called a pivot in the standard
terminology of linear programming), the method operates roughly as follows:

(a) It uses a convenient method to add one arc to the tree so as to generate
a simple cycle with negative cost.

(b) It pushes along the cycle as much flow as possible without violating
feasibility.

(c) It discards one arc of the cycle, thereby obtaining another feasible tree
to be used at the next iteration.

Thus, each tree T in the sequence generated by the simplex method
differs from its predecessor T by two arcs: the out-arc e, which belongs to T
but not to T , and the in-arc e, which belongs to T but not to T ; see Fig. 1.3.
We will use the notation

T = T + e − e

to express this relation. The arc e when added to T closes a unique simple
cycle in which e is a forward arc. This is the cycle along which we try to push
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Iteration # Leaf Node Selected Arc Flow Computed

1 1 x12 = 1

2 5 x53 = −1

3 3 x23 = −2

4 2 x24 = 1

Figure 1.2 Method for constructing the flow vector corresponding to T ,

starting from the arc incident to some leaf node and proceeding “inward.” The

algorithm maintains a tree R, a flow vector x, and scalars w1, . . . , wN . Upon

termination, x is the desired flow vector. Initially, R = T , x = 0, and wi = si for

all i ∈ N .

Step 1: Choose a leaf node i ∈ R. If (i, j) is the unique incident arc of i, set

xij := wi, wj := wj + wi;

if (j, i) is the unique incident arc of i, set

xji := −wi, wj := wj − wi.

Step 2: Delete i and its incident arc from R. If R now consists of a single node,

terminate; else, go to Step 1.

We now show that if
∑

n∈N sn = 0, the flow vector thus constructed satisfies

the conservation of flow equations. Consider the typical iteration where the leaf

node i of R is selected in Step 1. Suppose that (i, j) is the unique incident

arc of R [the proof is similar if (j, i) is the incident arc]. Then just before this

iteration, wi is equal by construction to si−
∑

{k �=j|(i,k)∈A} xik +
∑

{k|(k,i)∈A} xki, so

by setting xij to wi, the conservation of flow constraint is satisfied at node i. Upon

termination, it is seen that for the last node i of R, wi is equal to both
∑

n∈N sn

and si −
∑

{k|(i,k)∈A} xik +
∑

{k|(k,i)∈A} xki. Since
∑

n∈N sn = 0, the conservation

of flow constraint is satisfied at this last node as well.



Tree T together with in-arc e

Out-Arc eCycle C

In-Arc e

Tree T = T + e – e
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Figure 1.3 Successive trees T and T generated by the simplex method.

flow. (By convention, we require that the orientation of the cycle is the same
as the orientation of the arc e.)

Leaving aside for the moment the issue of how to select an initial feasible
tree, the main questions now are:

(1) How to select the in-arc so as to close a cycle with negative cost or else
detect that the current flow is optimal.

(2) How to select the out-arc so as to obtain a new feasible tree and associ-
ated flow vector.

(3) How to ensure that the method makes progress, eventually improving
the primal cost. (The problem here is that even if a negative cost cycle
is known, it may not be possible to push a positive amount of flow along
the cycle because some backward arc on the cycle has zero flow. Thus,
the flow vector may not change and the primal cost may not decrease
strictly at any one pivot; in linear programming terminology, such a
pivot is known as degenerate. Having to deal with degeneracy is the
price for simplifying the search for a negative cost cycle.)

We take up these questions in sequence.

2.1.1 Using Prices to Obtain the In-Arc

Despite the fact that the simplex method is a primal cost improvement algo-
rithm, it makes essential use of price vectors and duality ideas. In particular,
the complementary slackness (CS) conditions

pi − pj ≤ aij, ∀ (i, j) ∈ A, (1.3a)
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pi − pj = aij, for all (i, j) ∈ A with 0 < xij (1.3b)

[see Eqs. (2.11c) and (2.11d) in Section 1.2] will play an important role. If
x is feasible and together with p satisfies these CS conditions, then x is an
optimal solution of the problem (MCF-N) and p is an optimal solution of its
dual problem

maximize
∑
i∈N

sipi

subject to pi − pj ≤ aij, ∀ (i, j) ∈ A;

the proof of this closely parallels the proof of Prop. 2.4 in Section 1.2 and is
outlined in Exercise 2.11 in Section 1.2.

Along with a feasible tree T , the simplex method maintains a price vector
p = (p1, . . . , pN ) such that

pi − pj = aij, ∀ (i, j) ∈ T.

This is obtained as follows: Fix a node r, called the root of the tree, and set
pr to some arbitrary scalar value; for any node i, let Pi be the unique simple
path of T starting at the root node r and ending at i, and define pi by

pi = pr −
∑

(m,n)∈P+
i

amn +
∑

(m,n)∈P−
i

amn, (1.4)

where P+
i and P−

i are the sets of forward and backward arcs of Pi, respectively.
To see that with this definition of pi we have pi − pj = aij for all (i, j) ∈ T ,
write Eq. (1.4) for nodes i and j, subtract the two equations, and note that
the paths Pi and Pj differ by just the arc (i, j).

For an equivalent construction method, select pr arbitrarily, set the
prices of the outward neighbors j of r with (r, j) ∈ T to pj = pr − arj and
the prices of the inward neighbors j of r with (j, r) ∈ T to pj = pr + ajr, and
then repeat the process with the neighbors j replacing r. Figure 1.4 gives an
example.

It can be seen from Eq. (1.4), that for each pair of nodes i and j, the
price difference (pi − pj) is independent of the arbitrarily chosen root node
price pr; write Eq. (1.4) for node i and for node j, and subtract. Therefore,
for each arc (i, j), the scalar

rij = aij + pj − pi, (1.5)

called the reduced cost of the arc, is uniquely defined by the spanning tree T .
By the definition of p, we have

rij = 0, ∀ (i, j) ∈ T,
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Figure 1.4 Illustration of the prices associated with a spanning tree. The

root is chosen to be node 1, and its price is arbitrarily chosen to be 0. The other

node prices are then uniquely determined by the requirement pi − pj = aij for all

arcs (i, j) of the spanning tree.

so if in addition we have

rij ≥ 0, ∀ (i, j) /∈ T,

then the pair (x, p) satisfies the CS conditions (1.3a) and (1.3b). It then
follows from Prop. 2.5 of Section 1.2 (more precisely, from the version of that
proposition that applies to the problem with only nonnegativity constraints)
that x is an optimal primal solution and p is an optimal dual solution.

If on the other hand, we have

ri j < 0 (1.6)

for some arc e = (i, j) not in T , then we claim that the unique simple cycle
C formed by T and the arc (i, j) has negative cost. Indeed, the cost of C can
be written in terms of the reduced costs of its arcs as

∑
(i,j)∈C+

aij −
∑

(i,j)∈C−
aij =

∑
(i,j)∈C+

(
aij + pj − pi

)
−

∑
(i,j)∈C−

(
aij + pj − pi

)

=
∑

(i,j)∈C+

rij −
∑

(i,j)∈C−
rij .

(1.7)

Since rij = 0 for all (i, j) ∈ T [see Eq. (1.5)], and e is a forward arc of C by
convention, we have

Cost of C = ri j ,
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Figure 1.5 Obtaining a negative cost cycle in the simplex method. All

arcs of the cycle have zero reduced cost, so the reduced cost of the in-arc is also

the cost of the cycle, based on the calculation of Eq. (1.7). Thus, if the in-arc is

chosen to have negative reduced cost, the cost of the cycle is also negative.

which is negative by Eq. (1.6); see Fig. 1.5.
The role of the price vector p associated with a feasible tree now becomes

clear. By checking the sign of the reduced cost

rij = aij + pj − pi,

of all arcs (i, j) not in T , we will either verify optimality if rij is nonnegative
for all (i, j), or else we will obtain a negative cost cycle by discovering an arc
(i, j) for which rij is negative. The latter arc is the in-arc that will enter the
tree of the next iteration.

There is a great deal of flexibility for selecting the in-arc. For example,
one may search for an in-arc with most negative reduced cost; this rule requires
a lot of computation – a comparison of rij for all arcs (i, j) not in the current
tree. A simpler alternative is to search the list of arcs not in the tree and to
select the first arc with negative reduced cost. Most practical simplex codes
use an intermediate strategy. They maintain a candidate list of arcs, and
at each iteration they search through this list for an arc with most negative
reduced cost; in the process, arcs with nonnegative reduced cost are deleted
from the list. If no arc in the candidate list has a negative reduced cost,
a new candidate list is constructed. One way to do this is to scan the full
arc list and enter in the candidate list all arcs with negative reduced cost,
up to the point where the candidate list reaches a maximum size, which is
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chosen heuristically. This procedure can also be used to construct the initial
candidate list.

2.1.2 Obtaining the Out-Arc

Let T be a feasible tree generated by the simplex method with corresponding
flow vector x and price vector p which are nonoptimal. Suppose that we have
chosen the in-arc e and we have obtained the corresponding negative cost
cycle C formed by T and e. There are two possibilities:

(a) All arcs of C are oriented like e, that is, C− is empty. Then C is a for-
ward cycle with negative cost, indicating that the problem is unbounded.
Indeed, since C− is empty, we can increase the flows of the arcs of C
by an arbitrarily large common increment, while maintaining feasibility
of x. The primal cost function changes by an amount equal to the cost
of C for each unit flow change along C. Since C has negative cost, we
see that the primal cost can be decreased to arbitrarily small (i.e. large
negative) values.

(b) The set C− of arcs of C with orientation opposite to that of e is nonempty.
Then

δ = min
(i,j)∈C−

xij (1.8)

is the maximum increment by which the flow of all arcs of C+ can be
increased and the flow of all arcs of C− can be decreased, while still
maintaining feasibility. The simplex method computes δ and changes
the flow vector from x to x, where

xij =

⎧⎨
⎩

xij if (i, j) /∈ C
xij + δ if (i, j) ∈ C+

xij − δ if (i, j) ∈ C−.
(1.9)

Any arc e = (i, j) ∈ C− that attains the minimum in the equation
δ = min(i,j)∈C− xij satisfies xij = 0 and can serve as the out-arc; see Fig.
1.6. (A more specific rule for selecting the out-arc will be given later.)
The new tree is

T = T + e − e (1.10)

and its associated basic flow vector is x, given by Eq. (1.9).

Figures 1.7 and 1.8 illustrate the simplex method for some simple ex-
amples.

Note that the price vector p associated with the new tree T can be
conveniently obtained from p as follows: Let e = (i, j) be the in-arc and let
e be the out-arc. If we remove e from T we obtain two trees, Ti and Tj ,
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Figure 1.6 Choosing the out-arc in the simplex method. The in-arc (4, 5)

closes a cycle C. The arcs of C− are (3,2), (7,6) and (1,7), and define the flow

increment δ = min(i,j)∈C− xij . Out of these arcs, the ones attaining the minimum

are the candidates for out-arc, as shown.

containing the nodes i and j, respectively; see Fig. 1.9. Then it is seen from
the definition (1.4) that a price vector p associated with T is given by

pi =
{

pi if i ∈ Ti

pi − ri j if i ∈ Tj ,
(1.11)

where
ri j = ai j + pj − p i

is the reduced cost cost of the in-arc (i, j). Thus, to update the price vector,
one needs to increase the prices of the nodes in Tj by the common increment
(−ri j). We may also use any other price vector, obtained by adding the same
constant to all the prices pi defined above; it will simply correspond to a
different price for the root node. The formula

pi =
{

pi + ri j if i ∈ Ti

pi if i ∈ Tj,
(1.12)

involving a decrease of the prices of the nodes in Ti, is useful in some imple-
mentations.

Note that if the flow increment δ = min(i,j)∈C− xij [cf. Eq. (1.8)] is pos-
itive, then the cost corresponding to x will be strictly smaller than the cost
corresponding to x (by δ times the cost of the cycle C). Thus, when δ > 0,
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Figure 1.7 Illustration of the simplex method for the problem described in

figure (a). The starting tree consists of arcs (1, 3) and (2, 3) and the corresponding

flows and prices are as shown in figure (b). Arc (1, 2) has negative reduced cost

and is thus eligible to be an in-arc. Arc (1, 3) is the only arc eligible to be the

out-arc. The new tree is shown in figure (c). The corresponding flow is optimal

because the reduced cost of arc (1, 3) is positive.

Figure 1.8 Illustration of the simplex method for the problem described in

figure (a); this is an unbounded problem because the cycle (1, 3, 2, 1) has negative

cost. The starting tree consists of arcs (1, 3) and (2, 3) and the corresponding

flows and prices are as shown in figure (b). Arc (1, 2) has negative reduced cost

and is thus eligible to be an in-arc. However, all the arcs of the corresponding

cycle have the same orientation, so the problem is declared to be unbounded.
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Figure 1.9 Component trees T
i
and T

j
, obtained by deleting the out-arc

e from T , where e = (i, j) is the in-arc; these are the components that contain

i and j, respectively. Depending on the position of the out-arc e, the root node

may be contained in T
i
as in figure (a), or in T

j
as in figure (b).

the simplex method will never reproduce x and the corresponding tree T in
future iterations.

On the other hand, if δ = 0, then x = x, and the pivot is degenerate.
In this case there is no guarantee that the tree T will not be repeated after
several degenerate iterations with no interim improvement in the primal cost.
We thus need to provide for a mechanism that precludes this from happening.

2.1.3 Dealing with Degeneracy

Suppose that the feasible trees generated by the simplex method are all dis-
tinct (which is true in particular when all pivots are nondegenerate). Then,
since the number of distinct feasible trees is finite, the method will eventually
terminate. Upon termination, there are two possibilities:

(a) The final flow and price vectors are primal and dual optimal, respec-
tively.

(b) The problem is shown to be unbounded because at the final iteration,
the cycle closed by the current tree and the in-arc e has no arc with
orientation opposite to that of e.
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Unfortunately, if the tree sequence is not generated with some care, there
is no guarantee that a tree will not be repeated an infinite number of times.
To rule out this possibility, thereby ensuring termination of the method, we
will use feasible trees with a special property called strong feasibility . We
will make sure that the initial tree has this property, and we will choose the
out-arc in a way that the property is maintained by the algorithm.

Let us fix the root node r used to compute the price vectors associated
with feasible trees. Given a feasible tree T , we say that arc (i, j) ∈ T is
oriented away from the root if the unique simple path of T from the root to j
passes through i. A feasible tree T with corresponding flow vector x is said to
be strongly feasible if every arc (i, j) of T with xij = 0 is oriented away from
the root. Figure 1.10 illustrates strongly feasible trees.

Figure 1.10 Illustration of a strongly feasible tree. The tree in (a) is not

strongly feasible because the arc with zero flow on the tree is not oriented away

from the root. The tree in (b) is strongly feasible. Note that these two trees are

obtained from the strongly feasible tree in Fig. 1.6 by choosing a different out-arc.

The following proposition motivates the use of strongly feasible trees.

Proposition 1.2: If the feasible trees generated by the simplex method
are all strongly feasible, then these trees are distinct.

Proof: With each feasible tree T , with corresponding basic feasible vector
x and price vector p, we associate the two scalars

c(T ) =
∑

(i,j)∈A
aijxij (1.13)

w(T ) =
∑
i∈N

(
pr − pi

)
, (1.14)
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where r is the root node. [The price differences pr−pi are uniquely determined
by T according to

pr − pi =
∑

(m,n)∈P+
i

amn −
∑

(m,n)∈P−
i

amn

[see Eq. (1.4)], so w(T ) is uniquely determined by T . Note that, w(T ) may
be viewed as the “aggregate length” of T ; it is the sum of the lengths of the
paths Pi from the root to the nodes i along the tree T , where the length of an
arc (m, n) is amn or −amn depending on whether (m, n) is or is not oriented
away from the root, respectively.]

We will show that if T and T = T +e−e are two successive feasible trees
generated by the simplex method, then either c(T ) < c(T ) or else c(T ) = c(T )
and w(T ) < w(T ). This proves that no tree can be repeated.

Indeed, if the pivot that generates T from T is nondegenerate, we have
c(T ) < c(T ), and if it is degenerate we have c(T ) = c(T ). In the former case
the result is proved, so assume the latter case holds, and let e = (i, j) be
the in-arc. Then after the pivot, e still has zero flow, and since T is strongly
feasible, e must be oriented away from the root node r. This implies that r
belongs to the subtree Ti, and by Eq. (1.11) we have

w(T ) = w(T ) + |Tj |ri j , (1.15)

where ri j is the reduced cost of e, and |Tj | is the number of nodes in the
subtree Tj . Since ri j < 0, it follows that w(T ) < w(T ). Q.E.D.

The next proposition shows how to select the out-arc in a simplex iter-
ation so as to maintain strong feasibility of the generated trees.

Proposition 1.3: Let T be a strongly feasible tree generated by the simplex
method, let e = (i, j) be the in-arc, let C be the cycle formed by T and e,
suppose that C− is nonempty, let δ = min(i,j)∈C− xij , and let Ĉ be the set of
candidate out-arcs, that is, the set

Ĉ = {(i, j) ∈ C− | xij = δ}.

Define the join of C as the first node of C that lies on the unique simple path
of T that starts from the root and ends at i (see Fig. 1.11). Suppose that the
out-arc e is chosen to be the arc of Ĉ encountered first as C is traversed in the
forward direction (the direction of e) starting from the join node. Then the
next tree T = T + e− e generated by the simplex method is strongly feasible.

Proof: Since the arcs of T which are not in C will not change their flow
or orientation relative to the root, to check strong feasibility of T , we need
only be concerned with the arcs of C + e − e for which xij = 0. These will
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be the arcs of Ĉ − e and possibly arc e (in the case δ = 0). By choosing e to
be the first encountered arc of Ĉ, all of the arcs of Ĉ − e will be encountered
after e, and following the pivot, they will be oriented away from the join and
therefore also from the root. If δ = 0, the arcs (i, j) of Ĉ satisfy xij = 0, so
by strong feasibility of T , all of them, including e, must be encountered after
e as C is traversed in the direction of e starting from the join. Therefore, e
will also be oriented away from the root following the pivot. Q.E.D.

Figure 1.11 Maintaining a strongly feasible tree in the simplex method.

Suppose that the in-arc e = (i, j) is added to a strongly feasible T , closing the

cycle C. Let Ĉ be the set of candidates for out-arc (the arcs of C− attaining the

minimum in δ = min(i,j)∈C− xij), and let e be the out-arc. The arcs of T with

zero flow will be the arcs of Ĉ − e together with e if the pivot is degenerate. By

choosing as out-arc the first encountered arc of Ĉ as C is traversed in the direction

of e starting from the join, all of these arcs will be oriented away from the join

and also from the root, so strong feasibility is maintained. Note that if the pivot

is degenerate as in (b), then all arcs of Ĉ will be encountered after e (by strong

feasibility of T ), so the out-arc e must be encountered after e. Thus, the in-arc e

will be oriented away from the root in the case of a degenerate pivot, as required

for strong feasibility of T .

E X E R C I S E S

Exercise 1.1

Consider the tree of Fig. 1.11(a).
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(a) Suppose that the in-arc is (j, i) [instead of (i, j)]. Which arc should be

the out-arc?

(b) Suppose that the in-arc is the arc starting at the join and ending at j

[instead of (i, j)]. Which arc should be the out-arc in order to preserve

strong feasibility of the tree?

Exercise 1.2

Consider the minimum cost flow problem with nonnegativity constraints given

in Fig. 1.12 (supplies are shown next to the nodes, arc costs are immaterial).

Find all basic flow vectors and their associated trees. Specify which of these

are feasible and which are strongly feasible (the root node is node 1).

Figure 1.12 Graph for Exercise 1.2.

Exercise 1.3

Consider a feasible minimum cost flow problem such that the corresponding

graph is connected. Suppose we are given a feasible flow vector x. Construct

an algorithm that suitably modifies x to obtain a basic feasible flow vector

and an associated spanning tree. Hint: For a feasible flow vector x there are

two possibilities: (1) The subgraph S consisting of the set of arcs

Ax = {(i, j) ∈ A | xij > 0}

and the corresponding set of incident nodes is acyclic, in which case show that

x is basic. (2) The subgraph S is not acyclic, in which case show how to

construct a feasible flow vector x′ differing from x by a simple cycle flow, and

for which the arc set Ax′ has at least one arc less than the set Ax.
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Exercise 1.4

Consider the following algorithm that tries to construct a flow vector that

has a given divergence vector s, and is zero on arcs which are not in a given

spanning tree T . For any vector x, define the surplus of each node i by

gi =
∑

{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij + si.

The algorithm is initialized with x = 0. The typical iteration starts with a

flow vector x and produces another flow vector x that differs from x along

a simple path consisting of arcs of T . It operates as follows: a node i with

gi > 0 and a node j with gj < 0 are selected, and the unique path Pij that

starts at i, ends at j, and has arcs in T is constructed (if no such nodes i and

j can be found the algorithm stops). Then the flow of the forward arcs of

Pij are increased by δ and the flow of the backward arcs of Pij are decreased

by δ, where δ = min{gi,−gj}. Show that the algorithm terminates in a finite

number of iterations, and that upon termination, we have gi = 0 for all i if

and only if
∑

i∈N si = 0. Hint : Show that all the nodes with zero surplus with

respect to x also have zero surplus with respect to x. Furthermore, at least

one node with nonzero surplus with respect to x has zero surplus with respect

to x.

Exercise 1.5

Consider a transportation problem involving the set of sources S and the set

of sinks T (cf. Example 1.3 in Section 1.1). Suppose that there is no strict

subset S of S and strict subset T of T such that

∑
i∈S

αi =
∑
j∈T

βj .

Show that for every feasible tree, the corresponding flow of every arc of the tree

is positive. Conclude that if a feasible initial tree can be found, degeneracy

never arises in the simplex method.

2.2 THE BASIC SIMPLEX ALGORITHM

We are now ready to state formally the simplex algorithm based on the ideas
of the previous section.
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At the beginning of each iteration we have a strongly feasible tree T and
an associated basic flow vector x such that

xij = 0, ∀ (i, j) /∈ T (2.1)

and a price vector p such that

rij = aij + pj − pi = 0, ∀ (i, j) ∈ T. (2.2)

The iteration has three possible outcomes:

(a) We will verify that x and p are primal and dual optimal, respectively.

(b) We will determine that the problem is unbounded.

(c) We will obtain by the method of Prop. 1.3 a strongly feasible tree T =
T + e − e, differing from T by the in-arc e and the out-arc e.

Typical Simplex Iteration

Select an in-arc e = (i, j) /∈ T such that

ri j = ai j + p j − p i < 0.

(If no such arc can be found, terminate; x is primal-optimal and p is dual-

optimal.) Consider the cycle C formed by T and e. If C− is empty, terminate

(the problem is unbounded); else, obtain the out-arc e ∈ C− as described in

Prop. 1.3.

2.2.1 Justification of the Simplex Method

We now collect the facts already proved into a proposition that also deals with
the integrality of the solutions obtained.

Proposition 2.1: Suppose that the simplex method is applied to the min-
imum cost flow problem with the nonnegativity constraints, starting with a
strongly feasible tree.

(a) If the problem is not unbounded, the method terminates with an optimal
primal solution x and an optimal dual solution p, and the optimal primal
cost is equal to the optimal dual cost. Furthermore, if the supplies si are
all integer, the optimal primal solution x is integer; if the starting price
of the root node and the cost coefficients aij are all integer, the optimal
dual solution p is integer.

(b) If the problem is unbounded, the method verifies this after a finite num-
ber of iterations.
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Proof: (a) The trees generated by the method are strongly feasible, and by
Prop. 1.2 these trees are all distinct, so the method terminates. Termination
can only occur with either an optimal pair (x, p) or with the indication that
the problem is unbounded. Thus, if the problem is not unbounded, the only
possibility is termination with an optimal pair (x, p). Since upon termination
x and p satisfy complementary slackness, the equality of the optimal primal
and dual values follows from Prop. 2.3 in Section 1.2. Also, if the supplies si

are all integer, from Prop. 1.1 it follows that all basic flow vectors are integer,
including the one obtained at termination. If the starting price of the root
node and the cost coefficients aij are all integer, it can be checked that all
operations of the algorithm maintain the integrality of p.

(b) If the problem is unbounded, there is no optimal primal solution, so the
simplex method cannot terminate with an optimal pair (x, p). The only other
possibility is for the method to terminate with an indication that the problem
is unbounded. Q.E.D.

2.2.2 Choosing the Initial Strongly Feasible Tree – The
Big-M Method

In the absence of an apparent choice for an initial strongly feasible tree, one
may use the so called big-M method . In this method, some artificial variables
are introduced to simplify the choice of an initial basic solution, but the cost
coefficient M for these variables is chosen large enough so that the optimal
solutions of the problem are not affected.

In particular, we modify the problem by introducing an extra node,
labeled 0 and having zero supply s0 = 0, together with a set of artificial arcs
A consisting of an arc (i, 0) for each node i with si > 0, and an arc (0, i) for
each node i with si ≤ 0. The cost coefficient of all these arcs is taken to be
a scalar M , and its choice will be discussed shortly. We thus arrive at the
following problem, referred to as the big-M version of the original problem:

minimize
∑

(i,j)∈A
aijxij + M

⎛
⎝ ∑

(i,0)∈A

xi0 +
∑

(0,i)∈A

x0i

⎞
⎠

subject to ∑
{j|(i,j)∈A∪A}

xij −
∑

{j|(j,i)∈A∪A}

xji = si, ∀ i ∈ N ∪ {0},

0 ≤ xij, ∀ (i, j) ∈ A ∪A.

(2.3)

The artificial arcs constitute a readily available initial spanning tree for
the big-M version; see Fig. 2.1. It can be seen that the corresponding basic
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flow vector is given by

xi0 = si, for each i with si > 0

x0i = −si, for each i with si ≤ 0

xij = 0, ∀ (i, j) ∈ A

and is therefore feasible. Let us choose the root to be the artificial node 0.
The artificial arcs that carry zero flow are then oriented away from the root,
so the tree is strongly feasible.

Figure 2.1 Artificial arcs used to modify the problem so as to facilitate

the choice of an initial strongly feasible tree.

The cost M of the artificial arcs should be taken to be large enough
so that these arcs will carry zero flow at every optimal solution of the big-
M version. In this case, the flows of the nonartificial arcs define an optimal
solution of the original problem. The following proposition quantifies the
appropriate level of M for this to happen, and collects a number of related
facts.

Proposition 2.2: Consider the minimum cost flow problem with nonneg-
ativity constraints (referred to as the original problem), and consider also its
big-M version. Suppose that

2M >
∑

(i,j)∈P+

aij −
∑

(i,j)∈P−
aij (2.4)
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for all simple paths P of the original problem graph.

(a) If the original problem is feasible but not unbounded, the big-M version
has optimal solutions x, and each of these solutions is of the form

xij =
{

xij if (i, j) ∈ A
0 if (i, j) ∈ A,

(2.5)

where x is an optimal solution of the original. Furthermore, every opti-
mal solution x of the original problem gives rise to an optimal solution
x of the big-M version via the preceding relation.

(b) If the original problem is unbounded, the big-M version is also un-
bounded.

(c) If the original problem is infeasible, then in every feasible solution of the
big-M version some artificial arc carries positive flow.

Proof: (a) We first note that the big-M version cannot be unbounded unless
the original problem is. To prove this, we argue by contradiction. If the big-
M version is unbounded and the original problem is not, there would exist
a simple forward cycle with negative cost in the big-M version. This cycle
cannot consist of arcs of A exclusively, since the original is not unbounded.
On the other hand, if the cycle consisted of the arcs (m, 0) and (0, n), and a
simple path of the original graph, then by the condition (2.4) the cycle would
have positive cost, arriving at a contradiction.

Having proved that the big-M version is not unbounded, we now note
that, by Prop. 2.1(a), the simplex method starting with the strongly feasible
tree of all the artificial arcs will terminate with optimal primal and dual
solutions of the big-M version. Thus, optimal solutions of the big-M version
exist, and for every optimal solution x of the form (2.5), the corresponding
vector x = {xij | (i, j) ∈ A} with xij = xij for all (i, j) ∈ A is an optimal
solution of the original problem.

To prove that all optimal solutions x of the big-M version are of the
form (2.5), we argue by contradiction. Suppose that x is an optimal solution
such that some artificial arcs carry positive flow. Let

N+ = {m | sm > 0, xm0 > 0},

N− = {n | sn ≤ 0, x0n > 0}.
We observe that N+ and N− must be nonempty and that there is no unblocked
simple path P with respect to x that starts at some m ∈ N+ and ends at
some n ∈ N−; such a path, together with arcs (m, 0) and (0, n), would form an
unblocked simple cycle, which would have negative cost in view of condition
(2.4). Consider now the flow vector x = {xij | (i, j) ∈ A} with xij = xij for
all (i, j) ∈ A. Then, there is no path with respect to x of the original problem
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graph (N ,A), that is unblocked with respect to x and that starts at a node
of N+ and ends at a node of N−. By using a very similar argument as in the
proof of Prop. 2.2 of Section 1.2, we can show (see Exercise 2.14 in Section
1.2) that there must exist a saturated cut [S,N − S] such that N+ ⊂ S,
N− ⊂ N −S. The capacity of this cut is equal to the sum of the divergences
of the nodes i ∈ S,

∑
i∈S

yi =
∑
i∈S

⎛
⎝ ∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji

⎞
⎠ ,

which is also equal to∑
i∈S

(
si − xi0

)
=

∑
i∈S

si −
∑
i∈N+

xi0 <
∑
i∈S

si.

On the other hand, if the original problem is feasible, the capacity of any cut
[S,N − S] cannot be less than

∑
i∈S si, so we obtain a contradiction.

Finally, let x be an optimal solution of the original problem, and let x
be given by Eq. (2.5). We will show that x is optimal for the big-M version.
Indeed, every simple cycle that is unblocked with respect to x in the big-M
version either consists of arcs in A and is therefore unblocked with respect to
x in the original, or else consists of the arcs (m, 0) and (0, n), and a simple
path P that starts at n and ends at m. In the former case, the cost of the
cycle is nonnegative, since x is optimal for the original problem; in the latter
case, the cost of the cycle is positive by condition (2.4) (with the path P being
the reverse of path P ). Hence, x is optimal for the big-M version.

(b) Note that every feasible solution x of the original problem defines a feasible
solution x of equal cost in the big-M version via Eq. (2.5). Therefore, if the
cost of the original can be made arbitrarily large negative, the same is true of
the big-M version.

(c) Observe that any feasible solution of the big-M version having zero flow
on the artificial arcs defines a feasible solution x of the original via Eq. (2.5).
Q.E.D.

Note that to satisfy the condition (2.4), it is sufficient to take

M >
(N − 1)C

2
,

where C is the arc cost range C = max(i,j)∈A |aij |. Note also that if M does
not satisfy the condition (2.4), then the big-M version may be unbounded,
even if the original problem has an optimal solution (Exercise 2.2). Many
practical simplex codes use an adaptive strategy for selecting M , whereby a



Sec. 2.2 The Basic Simplex Algorithm 115

moderate value of M is used initially, and this value is gradually increased if
positive flows on the artificial arcs persist.

By combining the results of the preceding two propositions, we obtain
the following proposition.

Proposition 2.3: Assume that the minimum cost flow problem with non-
negativity constraints is feasible and is not unbounded. Then there exists an
optimal primal solution and an optimal dual solution, and the optimal primal
cost is equal to the optimal dual cost. Furthermore, if the supplies si are all
integer, there exists an optimal primal solution which is integer; if the cost
coefficients aij are all integer, there exists an optimal dual solution which is
integer.

Proof: Apply the simplex method to the big-M version with the initial
strongly feasible tree of all the artificial arcs, and with M sufficiently large
to satisfy condition (2.4). Then, by Prop. 2.2, the big-M version has optimal
solutions, so by Prop. 2.1 the simplex method will provide an optimal pair
(x, p), with x integer if the supplies are integer, and p integer if the cost
coefficients are integer. By Prop. 2.2, the vector x defined by xij = xij , for
all (i, j) ∈ A will be an optimal solution of the original problem, while the
price vector p defined by pi = pi, for all i ∈ N will satisfy the CS conditions
together with x. Hence, p will be an optimal dual solution. Q.E.D.

A Shortest Path Example

Consider a single origin/all destinations shortest path problem involving the
graph of Fig. 2.2. We will use this example to illustrate the simplex method
and some of its special properties when applied to shortest path problems.
The corresponding minimum cost flow problem is

minimize
∑

(i,j)∈A
aijxij

subject to ∑
{j|(1,j)∈A}

x1j −
∑

{j|(j,1)∈A}
xj1 = 3,

∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = −1, i = 2, 3, 4,

0 ≤ xij, ∀ (i, j) ∈ A.

We select as root the origin node 1. To deal with the problem of the
initial choice of a strongly feasible tree, we use a variant of the big-M method.
We introduce artificial arcs connecting the origin with each node i �= 1 with
very large cost M , and we use as an initial tree the set of artificial arcs with
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Figure 2.2 Example single origin/all destinations shortest path problem.

The arc lengths are shown next to the arcs.

root node the origin (with this choice, there will be two arcs connecting the
origin with each of its neighbors, but this should not cause any confusion).
In the corresponding flow vector, every artificial arc carries unit flow, so the
initial tree is strongly feasible (all arcs are oriented away from the root).

The corresponding price vector is (0,−M,−M,−M) and the associated
reduced costs of the nonartificial arcs are

r1j = a1j − M, ∀ (1, j) ∈ A,

rij = aij, ∀ (i, j) ∈ A, i �= 1, j �= 1.

One possible outcome of the first iteration is to select some arc (1, j) ∈ A as in-
arc, and to select the artificial arc connecting 1 and j as out-arc. The process
will then be continued, first obtaining the flow and price vectors corresponding
to the new tree, then obtaining the out-arc, then the in-arc, etc.

Figures 2.3 and 2.4 show two possible sequences of pivots. The following
can be noted:

(a) Each artificial arc eventually becomes the out-arc but never becomes the
in-arc.

(b) In all trees, all the arcs are oriented away from the origin and carry unit
flow.

(c) In Fig. 2.3, where the in-arc is selected to be the arc with minimum
reduced cost, there are exactly N − 1 (= 3) pivots, and each time the
out-arc is an artificial arc. In fact, in this case the simplex method works
exactly like Dijkstra’s method, permanently setting the label of one ad-
ditional node with every pivot; here, node labels should be identified
with the negative of node prices.
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Figure 2.3 A possible sequence of pivots for the simplex method. The

initial tree consists of the artificial arcs (1, 2), (1, 3), and (1, 4), each carrying one

unit of flow. The in-arc is selected to be the arc with minimum reduced cost and

the method behaves like Dijkstra’s method, requiring only three (= N −1) pivots.

It can be shown that observations (a) and (b) above hold in general for
the simplex method applied to feasible shortest path problems, and observa-
tion (c) also holds in general provided aij ≥ 0 for all arcs (i, j). The proof of
this is left as Exercise 2.8 for the reader.

The simplex method can also be used effectively to solve the all-pairs
shortest path problem. In particular, one may first use the simplex method
to solve the shortest path problem for a single origin, say node 1, and then
modify the final tree T1 to obtain an initial tree T2 for applying the simplex
method with another origin, say node 2. This can be done by deleting the
unique arc of T1 that is incoming to node 2, and replacing it with an artificial
arc from 2 to 1 that has a very large cost; see Fig. 2.5.
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Figure 2.4 Another possible sequence of pivots for the simplex method.

More than three pivots are required, in contrast with the sequence of Fig. 2.3.

E X E R C I S E S

Exercise 2.1

Use the simplex method with the big-M initialization to solve the problem in

Fig. 2.6.

Exercise 2.2

Construct an example where M does not satisfy the condition (2.4), and

the original problem has an optimal solution, while the big-M version is un-

bounded. Hint: It is sufficient to consider a graph with two nodes.

Exercise 2.3

Construct an example where M satisfies the condition (2.4), and the original

problem is infeasible, while the big-M version is unbounded. Hint: Consider
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Figure 2.5 Obtaining an initial tree T2 for the simplex method applied

to the shortest path problem with origin 2, from the final tree T1 of the simplex

method applied for origin 1. We delete the unique arc of T1 that is incoming to

node 2, and replace it with an artificial arc from 2 to 1 that has a very large

length.

Figure 2.6 Minimum cost flow problem with nonnegativity constraints for

Exercise 2.1.

problems that are infeasible and also contain a simple forward cycle of negative

cost.

Exercise 2.4 (An Example of Cycling [Chv83])

Consider an assignment problem with sources 1, 2, 3, 4 and sinks 5, 6, 7,

8. There is an arc between each source and each sink. The arc costs are as

follows:

a16 = a17 = a25 = a27 = a35 = a36 = a48 = 1, aij = 0 otherwise.
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Let the initial feasible tree consist of arcs (1,5), (1,6), (2,6), (2,8), (4,8), (4,7),

(3,7), with corresponding arc flows

x15 = x26 = x37 = x48 = 1, xij = 0 otherwise.

Suppose that the simplex method is applied without restriction on the choice

of the out-arc (so the generated trees need not be strongly feasible). Verify

that one possible sequence of in-arc/out-arc pairs is given by(
(1, 8), (2, 8)

)
,
(
(3, 6), (1, 6)

)
,
(
(4, 6), (4, 7)

)
,(

(3, 5), (3, 6)
)
,
(
(3, 8), (1, 8)

)
,
(
(2, 5), (3, 5)

)
,(

(4, 5), (4, 6)
)
,
(
(2, 7), (2, 5)

)
,
(
(2, 8), (3, 8)

)
,(

(1, 7), (2, 7)
)
,
(
(4, 7), (4, 5)

)
,
(
(1, 6), (1, 7)

)
,

and that after these twelve pivots we obtain the initial tree again.

Exercise 2.5 (Birchoff’s Theorem for Doubly Stochastic Matrices)

A doubly stochastic n×n matrix X = {xij} is a matrix such that the elements

of each of its rows and columns are nonnegative, and add to one, that is,

xij ≥ 0 for all i and j,
∑n

j=1 xij = 1 for all i, and
∑n

i=1 xij = 1 for all j. A

permutation matrix is a doubly stochastic matrix whose elements are either

one or zero, so that there is a single one in each row and each column, with

all other elements being zero.

(a) Show that given a doubly stochastic matrix X, there exists a permuta-

tion matrix X∗ such that, for all i and j, if x∗
ij = 1, then xij > 0. Hint:

View X as a feasible solution of the minimum cost flow version of an

assignment problem, and view X∗ as a feasible assignment.

(b) Use part (a) to show constructively that every doubly stochastic matrix

X can be written as
∑k

i=1 γiX
∗
i , where X∗

i are permutation matrices and

γi ≥ 0,
∑k

i=1 γi = 1. Hint: Define a sequence of matrices X0, X1, . . . , Xk,

which are nonnegative multiples of doubly stochastic matrices, such that

X0 = X, Xk = 0, and for all i, Xi − Xi+1 is a positive multiple of a

permutation matrix.

Exercise 2.6 (Hall’s Theorem for Perfect Matrices)

A perfect matrix is a matrix with nonnegative integer elements such that the

elements of each of its rows and each of its columns add to the same integer k.

Show that such a perfect matrix can be written as the sum of k permutation

matrices. Hint: Use the hints and constructions of the preceding exercise.
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Exercise 2.7 (Dual Feasibility Theorem)

Show that the dual problem is feasible, that is, there exists a price vector p

with

pi − pj ≤ aij , ∀ (i, j) ∈ A

if and only if all forward cycles have nonnegative cost. Hint: Assume without

loss of generality that the primal is feasible (take si = 0 if necessary), and

note that all forward cycles have nonnegative cost if and only if the primal

problem is not unbounded (see the discussion near the beginning of Section

2.1).

Exercise 2.8 (Relation of Dijkstra and Simplex for Shortest Paths)

Consider the single origin/all destinations shortest path problem

minimize
∑

(i,j)∈A

aijxij

subject to ∑
{j|(1,j)∈A}

x1j −
∑

{j|(j,1)∈A}

xj1 = N − 1,

∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = −1, ∀ i �= 1,

0 ≤ xij , ∀ (i, j) ∈ A.

Introduce an artificial arc (1, i) for all i �= 1 with very large cost M , and

consider the simplex method starting with the strongly feasible tree of artificial

arcs. Let the origin node 1 be the root node.

(a) Show that all the arcs of the trees generated by the simplex method are

oriented away from the origin and carry unit flow.

(b) How can a negative length cycle be detected with the simplex method?

(c) Assume that aij ≥ 0 for all (i, j) ∈ A and suppose that the in-arc is

selected to have minimum reduced cost out of all arcs that are not in

the tree. Use induction to show that after the kth pivot the tree consists

of a shortest path tree from node 1 to the k closest nodes to node 1,

together with the artificial arcs (1, i) for all i that are not among the

k closest nodes to node 1. Prove then that this implementation of the

simplex method is equivalent to Dijkstra’s method.
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2.3 EXTENSION TO THE PROBLEM WITH UPPER AND LOWER
BOUNDS

We now consider the extension of the simplex method of the previous section
to the general minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (3.1)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A. (3.2)

To simplify the presentation, we assume that bij < cij for all arcs (i, j); any
arc (i, j) with bij = cij can be eliminated, and its flow, which is equal to the
common bound, can be incorporated into the supplies si and sj . A nice aspect
of this problem is that we need not worry about unboundedness, since all arc
flows are constrained to lie in a bounded interval.

The extension of the simplex method to the problem with upper and
lower bounds is straightforward, and we will simply state the algorithm and
the corresponding results without much elaboration. In fact, one may derive
the simplex method for this problem by converting it to the minimum cost flow
problem with nonnegativity constraints (cf. Fig. 1.7 in Section 1.1.3), applying
the simplex method of the preceding section, and appropriately streamlining
the computations. We leave the verification of this as Exercise 3.2 for the
reader.

The method uses at each iteration a spanning tree T . Only arcs of T
can have flows that are neither at the upper bound nor at the lower bound.
However, to uniquely associate a basic flow vector with T , we must also specify
for each arc (i, j) /∈ T whether xij = bij or xij = cij . Thus, the simplex method
maintains a triplet

(T, L, U),

where

T is a spanning tree.

L is the set of arcs (i, j) /∈ T with xij = bij .

U is the set of arcs (i, j) /∈ T with xij = cij .

Such a triplet will be called a basis. It uniquely specifies a flow vector x,
called the basic flow vector corresponding to (T, L, U). In particular, if the
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arc (i, j) belongs to T and separates T into the subtrees Ti and Tj , we have

xij =
∑
n∈Ti

sn −
∑

{(m,n)∈L|m∈Ti,n∈Tj}
bmn −

∑
{(m,n)∈U |m∈Ti,n∈Tj}

cmn

+
∑

{(m,n)∈L|m∈Tj ,n∈Ti}
bmn +

∑
{(m,n)∈U |m∈Tj ,n∈Ti}

cmn.

If x is feasible, then the basis (T, L, U) is called feasible.
Similar to the previous section, we fix a root node r throughout the

algorithm. A basis (T, L, U) specifies a price vector p using the same formula
as in the previous section:

pi = pr −
∑

(m,n)∈P+
i

amn +
∑

(m,n)∈P−
i

amn, ∀ i ∈ N ,

where Pi is the unique simple path of T starting at the root node r and
ending at i, and P+

i and P−
i are the sets of forward and backward arcs of Pi,

respectively.
We say that the feasible basis (T, L, U) is strongly feasible if all arcs

(i, j) ∈ T with xij = bij are oriented away from the root and if all arcs
(i, j) ∈ T with xij = cij are oriented toward the root (that is, the unique
simple path from the root to i passes through j).

Given the strongly feasible basis (T, L, U) with a corresponding flow
vector x and price vector p, an iteration of the simplex method produces
another strongly feasible basis (T , L, U) as follows.

Typical Simplex Iteration

Find an in-arc e = (i, j) /∈ T such that either

rij < 0 if e ∈ L

or

rij > 0 if e ∈ U.

(If no such arc can be found, x is primal-optimal and p is dual-optimal.) Let

C be the cycle closed by T and e. Define the forward direction of C to be the

same as the one of e if e ∈ L and opposite to e if e ∈ U (that is, e ∈ C+ if

e ∈ L and e ∈ C− if e ∈ U). Also let

δ = min

{
min

(i,j)∈C−
{xij − bij}, min

(i,j)∈C+
{cij − xij}

}
,

and let Ĉ be the set of arcs where this minimum is obtained:

Ĉ =
{
(i, j) ∈ C− | xij − bij = δ

}
∪

{
(i, j) ∈ C+ | cij − xij = δ

}
.
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Define the join of C as the first node of C that lies on the unique simple path

of T that starts from the root and ends at i. Select as out-arc the arc e of

Ĉ that is encountered first as C is traversed in the forward direction starting

from the join node. The new tree is T = T + e − e, and the corresponding

flow vector x is obtained from x by

xij =

{
xij if (i, j) /∈ C

xij + δ if (i, j) ∈ C+

xij − δ if (i, j) ∈ C−.

Note that it is possible that the in-arc is the same as the out-arc, in
which case T is unchanged. In this case, the flow of this arc will simply move
from one bound to the other, affecting the sets L and U , and thus affecting
the basis. The proofs of the preceding section can be modified to show that
the algorithm maintains a strongly feasible tree.

The following proposition admits a very similar proof of Prop. 2.1.

Proposition 3.1: Assume that the minimum cost flow problem (MCF) is
feasible. The simplex method starting from a strongly feasible tree terminates
with an optimal primal solution x and an optimal dual solution p. Further-
more, the optimal primal cost is equal to the optimal dual cost. If the supplies
si and the flow bounds bij , cij are all integer, the optimal primal solution x is
integer; if the starting price of the root node and the cost coefficients aij are
all integer, the optimal dual solution p is integer.

If an initial strongly feasible tree is not readily available, we can solve
instead a big-M version of the problem with suitably large value of M . This
problem is

minimize
∑

(i,j)∈A
aijxij + M

⎛
⎝ ∑

(i,0)∈A

xi0 +
∑

(0,i)∈A

x0i

⎞
⎠

subject to ∑
{j|(i,j)∈A∪A}

xij −
∑

{j|(j,i)∈A∪A}

xji = si, ∀ i ∈ N ∪ {0},

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A,

0 ≤ xi0 ≤ si, ∀ i with si > 0,

0 ≤ x0i ≤ si, ∀ i with si ≤ 0,

where
si = si −

∑
{j|(i,j)∈A}

bij +
∑

{j|(j,i)∈A}
bji,
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si = −si +
∑

{j|(i,j)∈A}
bij −

∑
{j|(j,i)∈A}

bji.

The initial strongly feasible tree consists of the artificial arcs. The correspond-
ing basic flow vector x is given by xij = bij for all (i, j) ∈ A, xi0 = si, for all i
with si > 0, and x0i = −si, for all i with si ≤ 0.

Similar to the case of the problem with nonnegativity constraints, we
obtain the following.

Proposition 3.2: If the minimum cost flow problem (MCF) is feasible,
then it has at least one optimal solution, and its dual problem also has at least
one optimal solution. Furthermore, if the supplies si and the flow bounds bij ,
cij are all integer, there exists an optimal primal solution which is integer; if
the cost coefficients aij are all integer, there exists an optimal dual solution
which is integer.

E X E R C I S E S

Exercise 3.1

Use the simplex method to solve the minimum cost flow problem with the

data of Fig. 2.6, and with the arc flow bounds 0 ≤ xij ≤ 1 for all (i, j) ∈ A.

Exercise 3.2

Suppose that the problem of this section is transformed to a minimum cost

flow problem with nonnegativity constraints as in Fig. 1.7 of Section 1.1.3.

Show that the simplex method of the previous section, when applied to the

latter problem, is equivalent to the simplex method of the present section. In

particular, relate feasible trees, basic flow vectors, and price vectors generated

by the two methods, and show that they are in one-to-one correspondence.

2.4 IMPLEMENTATION ISSUES

To implement a network optimization algorithm efficiently it is essential to
exploit the graph nature of the problem using appropriate data structures.
There are two main issues here:

(a) Representing the problem in a way that facilitates the application of the
algorithm.
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(b) Using additional data structures that are well suited to the operations
of the algorithm.

For simplex methods, the appropriate representations of the problem
tend to be quite simple. However, additional fairly complex data structures
are needed to implement efficiently the various operations related to flow
and price computation, and tree manipulation. This is quite contrary to the
situation with the methods that will be discussed in the next two chapters,
where the appropriate problem representations are quite complex but the
additional data structures are simple.

Problem Representation for Simplex Methods

For concreteness, consider the following problem with zero lower flow bounds

minimize
∑

(i,j)∈A
aijxij (4.1)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N ,

0 ≤ xij ≤ cij , ∀ (i, j) ∈ A.

This has become the standard form for commonly available minimum cost
flow codes. As was mentioned in Section 1.1.3, a problem with nonzero lower
arc flow bounds bij can be converted to one with nonnegativity constraints by
using a flow translation (replacing xij by xij − bij and appropriately adjusting
cij , si, and sj).

One way to represent this problem, which is the most common in simplex
codes, is to use four arrays of length A and one array of length N :

START (a): The start node of arc a.

END(a): The end node of arc a.

COST (a): The cost coefficient of arc a.

CAPACITY (a): The upper flow bound of arc a.

SUPPLY (i): The supply of node i.

Figure 4.1 gives an example of a problem represented in this way.
An alternative representation is to store the costs aij and the upper flow

bounds cij in two-dimensional N ×N arrays (or in one-dimensional arrays of
length N 2, with the elements of each row stored contiguously). This wastes
memory and requires a lot of extra overhead when the problem is sparse
(A << N 2), but it may be a good choice for dense problems since it avoids
the storage of the start and end nodes of each arc.
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ARC START END COST CAPACITY

1 1 2 5 2

2 1 3 0 1

3 2 3 4 2

4 3 2 3 1

5 2 5 -2 10

6 2 4 2 1

7 3 4 2 3

8 5 4 0 5

9 4 5 -5 10

NODE SUPPLY

1 1

2 2

3 -2

4 0

5 -1

Figure 4.1 Representation of a minimum cost flow problem in terms of

the five arrays START , END , COST , CAPACITY , and SUPPLY .
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Data Structures for Tree Operations

Taking a closer look at the operations of the simplex method, we see that the
main computational steps at each iteration are the following:

(a) Finding an in-arc with negative reduced cost.

(b) Identifying the cycle formed by the current tree and the in-arc.

(c) Modifying the flows along the cycle and obtaining the out-arc.

(d) Recalculating the node prices.

As mentioned in Section 2.1.1, most codes maintain a candidate list, that
is, a subset of arcs with negative reduced cost; the arc with most negative
reduced cost from this list is selected as the in-arc at each iteration. The
maximum size of the candidate list is set at some reasonable level (chosen
heuristically), thereby avoiding a costly search and comparison of the reduced
costs of all the arcs.

To identify the cycle and the associated flow increment at each iteration,
simplex codes commonly use the following two arrays of length N :

(a) PRED(i): The arc preceding node i on the unique path from the root
to i on the current tree, together with an indication (such as a plus or a
minus sign) of whether this is an incoming or outgoing arc of i.

(b) DEPTH (i): The number of arcs of the unique path from the root to i
on the current tree.

The PRED array (together with the START and END arrays) is sufficient
both to represent the current tree and to construct the unique path on the
tree from any node i to any other node j. (Construct the paths from i to
the root and from j to the root, and subtract out the common portion of
these paths.) In particular, if (i, j) is the in-arc, the cycle formed by (i, j) and
the current tree could be obtained by finding the path joining i and j in this
way. By using the DEPTH array, however, the cycle can be constructed more
quickly without having to go from i to j all the way to the root. In particular,
one can start constructing the paths from i and j to the root simultaneously,
adding a new node to the path whose current end node has greater DEPTH
(ties are broken arbitrarily). The join of the cycle can then be identified as
the first encountered common node in the two paths. The following procedure
starting with the in-arc (i, j) accomplishes this. In this procedure, i and j
represent successive nodes of the paths starting at i and j, respectively, and
ending at the join of the cycle.

Identifying the Join of the Cycle Corresponding to the In-Arc (i, j)

Set i = i, j = j.



Sec. 2.5 Notes and Sources 129

Step 1: If DEPTH (i) ≥ DEPTH (j ), go to Step 2; else go to Step 3.

Step 2: Set i := START (PRED(i)) if PRED(i) is an incoming arc to i, and

set i := END(PRED(i)) if PRED(i) is an outgoing arc from i. Go to Step 4.

Step 3: Set j := START (PRED(j )) if PRED(j ) is an incoming arc to j, and

set i := END(PRED(j )) if PRED(j ) is an outgoing arc from j. Go to Step 4.

Step 4: If i = j, terminate; i is the join of the cycle corresponding to the

in-arc (i, j). Else go to Step 1.

The cycle corresponding to the in-arc consists of the arcs PRED(i) and
PRED(j ) encountered during this procedure. With a simple modification of
the procedure, we can simultaneously obtain the out-arc and calculate the flow
increment. With little additional work, we can also change the flow along the
cycle and update the PRED and DEPTH arrays consistently with the new
tree.

We must still provide for a mechanism to calculate efficiently the prices
corresponding to a given tree. This can be done iteratively, using the prices
of the preceding tree as shown in Section 1.1; cf. Eqs. (1.11) and (1.12). To
apply these equations, it is necessary to change the prices of the descendants
of the endnode of the out-arc that has the larger value of DEPTH ; cf. Fig. 4.2.
Thus, it is sufficient to be able to calculate the descendants of a given node i
in the current tree (the nodes whose unique path to the root passes through
i). For this it is convenient to use one more array, called THREAD . It defines
a traversal order of the nodes of the tree in depth-first fashion. To understand
this order, it is useful to think of the tree laid out in a plane, and to consider
visiting all nodes starting from the root, and going “top to bottom” and “left
to right”. An example is given in Fig. 4.3. It can be seen that every node
i appears in the traversal order immediately before all of its descendants.
Hence the descendants of i are all the nodes immediately following node i in
the traversal order up to the first node j with DEPTH (j ) ≤ DEPTH (i). The
array THREAD encodes the traversal order by storing in THREAD(i) the
node following node i; cf. Fig. 4.3. An important fact is that when the tree
changes, the THREAD array can be updated quite efficiently [with O(N)
operations]. The details, however, are too tedious and complicated to be
included here; for a clear presentation, see [Chv83], p. 314.

2.5 NOTES AND SOURCES

2.1. The first specialized version of the simplex method for the transporta-
tion problem problem was given in [Dan51]. This method was also described
and extended to the minimum cost flow problem in [Dan63]. A general pri-
mal cost improvement algorithm involving flow changes along negative cost
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Figure 4.2 The two subtrees obtained when the out-arc is deleted from

the current tree. The subtree containing the endnode of the out-arc with larger

DEPTH (node i in the example of the figure) consists of all the descendants of

that endnode.

cycles was given in [Kle67]. Strongly feasible trees and their use in resolving
degeneracy were introduced in [Cun76].

The subject of pivot selection has received considerable attention in the
literature. Examples of poor performance of the simplex method are given
in [Zad73a] and [Zad73b]. The performance of various pivot rules was stud-
ied empirically in [GSS77], [GoR77], [BBG77], [BGK77], [BGK78], [Mul78a],
[Mul78b], and [GGK83]. Generally, even with the use of strongly feasible
trees, it is possible that the number of successive degenerate pivots is not
polynomial. Pivot rules with guaranteed polynomial upper bounds on the
lengths of sequences of degenerate pivots are given in [Cun79] and [GHK87].
One of the simplest such rules maintains a strongly feasible tree and operates
as follows: if the in-arc at some iteration has start node i, the in-arc at the
next iteration must be the outgoing arc from node (i+k) modulo N that has
minimum reduced cost, where k is the smallest nonnegative integer such that
node (i + k) modulo N has at least one outgoing arc with negative reduced
cost. For a textbook discussion of a variety of pivot rules under which the
simplex method has polynomial running time, see [BJS90].

2.3. Specialized simplex methods have been developed for the assignment
problem; see [BGK77], [Hun83], [Akg86], [Bal85], [Gol85a], [Bal86]. For anal-
ysis and application of simplex methods in shortest path and max-flow prob-
lems, see [FuD55], [FNP81], [GKM84], [GHK86], and [GoH88].
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

THREAD(i) 5 1 2 6 4 9 14 7 8 0 12 13 10 11

Figure 4.3 Illustration of the THREAD array, which defines a depth-first

traversal order of the nodes in the tree. Given the set S of already traversed

nodes, the next node traversed is an immediate descendant of one of the nodes in

S, which has maximum value of DEPTH . For each node i, THREAD(i) defines

the successor of node i in this order (for the last node, THREAD is equal to 0).

2.4. The development of good implementation techniques played a crucial
role in the efficient use of the simplex method. Important contributions in this
area include [Joh66], [SrT73], [GKK74a], [GKK74b], [BBG77], and [BGK79].
Textbook presentations of these techniques that supplement ours are given in
[KeH80], [Chv83], and [BJS90].
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Dual Ascent Methods

3.1 DUAL ASCENT

In this chapter we focus on the minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1.1)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A. (1.2)

Throughout the chapter we will assume that the scalars aij , bij , cij , and si are
all integer. Usually, this is not an important practical restriction. However,
there are extensions of the algorithms of this chapter that handle noninteger
problem data, as will be discussed later.

The main idea of dual cost improvement (or dual ascent) algorithms is
to start with a price vector and successively obtain new price vectors with
improved dual cost value, with the aim of solving the dual problem. Recall
from Section 1.2.2 that this problem is

maximize q(p)
subject to no constraint on p,

(1.3)

133
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where the dual functional q is given by

q(p) =
∑

(i,j)∈A
qij(pi − pj) +

∑
i∈N

sipi, (1.4)

with

qij(pi − pj) = min
bij≤xij≤cij

{
(aij + pj − pi)xij

}
=

{
(aij + pj − pi)bij if pi ≤ aij + pj ,
(aij + pj − pi)cij if pi > aij + pj.

(1.5)

It is helpful here to introduce some terminology. For any price vector p,
we say that an arc (i, j) is

inactive if pi < aij + pj,

balanced if pi = aij + pj,

active if pi > aij + pj.

The complementary slackness (CS) conditions for a flow–price vector pair
(x, p), introduced in Section 1.2.2, can be restated as follows:

xij = bij , for all inactive arcs (i, j), (1.6)

bij ≤ xij ≤ cij , for all balanced arcs (i, j), (1.7)

xij = cij , for all active arcs (i, j), (1.8)

(see Fig. 1.1).
We restate for convenience the following basic duality result, proved in

Section 1.2.2.

Proposition 1.1: If a feasible flow vector x∗ and a price vector p∗ satisfy
the complementary slackness conditions (1.6)–(1.8), then x∗ is an optimal
solution of the minimum cost flow problem and p∗ is an optimal solution of
the dual problem (1.3).

The major dual ascent algorithms select at each iteration a connected
subset of nodes S, and change the prices of these nodes by equal amounts while
leaving the prices of all other nodes unchanged. In other words, each iteration
involves a price vector change along a direction of the form dS = (d1, . . . , dN ),
where

di =
{

1 if i ∈ S
0 if i /∈ S

(1.9)

and S is a connected subset of nodes. Such directions will be called elemen-
tary .
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Figure 1.1 Illustration of the complementary slackness conditions. For

each arc (i, j), the pair (xij , pi − pj) should lie on the graph shown.

To check whether dS is a direction of dual ascent, we need to calculate
the corresponding directional derivative of the dual cost along dS and check
whether it is positive. From the dual cost expression (1.4)-(1.5), it is seen
that this directional derivative is

q′(p; dS) = lim
α↓0

q(p + αdS) − q(p)
α

=
∑

(j,i) : active, j /∈S, i∈S
cji +

∑
(j,i) : inactive or balanced, j /∈S, i∈S

bji

−
∑

(i,j) : active or balanced, i∈S, j /∈S

cij −
∑

(i,j) : inactive, i∈S, j /∈S
bij

+
∑
i∈S

si. (1.10)

In words, the directional derivative q′(p; dS) is the difference between inflow
and outflow across the node set S when the flows of the inactive and active
arcs are set at their lower and upper bounds, respectively, and the flow of
each balanced arc incident to S is set to its lower or upper bound depending
on whether the arc is incoming to S or outgoing from S.

To obtain a suitable set S, with positive directional derivative q′
(
p, dS

)
,

it is convenient to maintain a flow vector x satisfying CS together with p. This
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helps to organize the search for an ascent direction and to detect optimality,
as will now be explained.

For a flow vector x, let us define the surplus gi of node i as the difference
between total inflow into i minus the total outflow from i, that is,

gi =
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij + si. (1.11)

We have∑
i∈S

gi =
∑

{(j,i)∈A|j /∈S, i∈S}
xji −

∑
{(i,j)∈A|i∈S, j /∈S}

xij +
∑
i∈S

si, (1.12)

and if x satisfies CS together with p, we obtain using Eqs. (1.10) and (1.12)∑
i∈S

gi = q′(p; dS) +
∑

(j,i) : balanced, j /∈S, i∈S

(xji − bji)

+
∑

(i,j): balanced, i∈S, j /∈S

(cij − xij)

≥ q′(p; dS).

(1.13)

We see, therefore, that only a node set S that has positive total surplus is a
candidate for generating a direction dS of dual ascent. In particular, if there
is no balanced arc (i, j) with i ∈ S, j /∈ S, and xij < cij , and no balanced arc
(j, i) with j /∈ S, i ∈ S, and bij < xij , then∑

i∈S
gi = q′(p; dS), (1.14)

so if S has positive total surplus then dS is an ascent direction. The fol-
lowing lemma expresses this idea and provides the basis for the subsequent
algorithms.

Lemma 1.1: Suppose that x and p satisfy the CS conditions, and let S be
a subset of nodes. Let dS = (d1, d2, . . . , dN ) be the vector with di = 1 if i ∈ S
and di = 0 otherwise, and assume that∑

i∈S
gi > 0.

Then either dS is a dual ascent direction, that is,

q′(p; dS) > 0,

or else there exist nodes i ∈ S and j /∈ S such that either (i, j) is a balanced
arc with xij < cij or (j, i) is a balanced arc with bji < xji.

Proof: Follows from Eq. (1.13). Q.E.D.
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Overview of Dual Ascent Algorithms

The algorithms of this chapter start with an integer flow–price vector pair
(x, p), satisfying CS, and operate in iterations. At the beginning of each
iteration, we have a subset of nodes S such that

∑
i∈S

gi > 0;

initially S consists of one or more nodes with positive surplus. According to
the preceding lemma, there are two possibilities:

(a) S defines a dual ascent direction dS = (d1, d2, . . . , dN ), where di = 1 if
i ∈ S, and di = 0 otherwise.

(b) S can be enlarged by adding a node j /∈ S with the property described
in Lemma 1.1, that is, for some i ∈ S, either (i, j) is a balanced arc with
xij < cij , or (j, i) is a balanced arc with bji < xji.

In case (b), there are two possibilities:

(1) gj ≥ 0, in which case,

∑
i∈S∪{j}

gi > 0,

and the process can be continued with

S ∪ {j}

replacing S.

(2) gj < 0, in which case, it can be seen that there is a path originating at
some node i of the starting set S and ending at node j that is unblocked ,
that is, all its arcs have room for a flow increase in the direction from i to
j (see Fig. 1.2). Such a path is called an augmenting path (generalizing
slightly the notion of an augmenting path used in the Ford-Fulkerson
algorithm for the max-flow problem). By increasing the flow of the
forward arcs (direction from i to j) of the path and by decreasing the
flow of the backward arcs (direction from j to i) of the path, we can
bring both surpluses gi and gj closer to zero by an integer amount while
leaving the surplus of all other nodes unaffected and maintaining CS.

Since the total absolute surplus
∑

i∈N |gi| cannot be indefinitely reduced
by integer amounts, it is seen that starting from an integer flow–price vector
pair satisfying CS, after at most a finite number of iterations in which flow
augmentations occur without finding an ascent direction, one of three things
will happen:
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Figure 1.2 Illustration of an augmenting path. The initial node i and the

final node j have positive and negative surplus, respectively. Furthermore, the

path is unblocked, that is, each arc on the path has room for flow change in the

direction from i to j. A flow change of magnitude δ > 0 in this direction reduces

the total absolute surplus
∑

m∈N |gm| by 2δ provided δ ≤ min{gi,−gj}.

(a) A dual ascent direction will be found; this direction can be used to
improve the dual cost by an integer amount.

(b) gi = 0 for all i; in this case the flow vector x is feasible, and since it
satisfies CS together with p, by Prop. 1.1, x is primal-optimal and p is
dual-optimal.

(c) gi ≤ 0 for all i but gi < 0 for at least one i; since by adding Eq. (1.12)
over all i ∈ N we have

∑
i∈N si =

∑
i∈N gi it follows that

∑
i∈N si < 0,

so the problem is infeasible.

Thus, for a feasible problem, the procedure just outlined can be used to find
a dual ascent direction and improve the dual cost starting at any nonoptimal
price vector. Figure 1.3 provides an illustration for a very simple problem.

In the next two sections, we discuss two different dual ascent methods.
The first, known as primal-dual , in its classical form, tries at each iteration
to use the steepest ascent direction, that is, the elementary direction with
maximal directional derivative. This method can also be implemented by
means of a shortest path computation. The second method, called relaxation,
is usually faster in practice. It tries to use directions that are not necessarily
steepest, but can be computed more quickly than the steepest ascent direction.

3.2 PRIMAL-DUAL (SEQUENTIAL SHORTEST PATH) METHODS

The primal-dual algorithm starts with any integer pair (x, p) satisfying CS.
One possibility is to choose the integer vector p arbitrarily and to set xij = bij

if (i, j) is inactive or balanced, and xij = cij otherwise. (Prior knowledge
could be built into the initial choice of x and p using, for example, the results
of an earlier optimization.) The algorithm preserves the integrality and CS
property of the pair (x, p) throughout.
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Figure 1.3 Illustration of a dual ascent method for the simple problem described in

(a). Initially, x = (0, 0) and p = (0, 0, 0) as shown in (b).

The first iteration starts with S = {1}. It can be seen using Eq. (1.13), that the

directional derivative q′(p; dS) is -4, so dS = (1, 0, 0) is not a direction of ascent. We

thus enlarge S by adding node 2 using the balanced arc (1, 2). Since there is no incident

balanced arc to S = {1, 2}, the direction dS = (1, 1, 0) is a direction of ascent [using Eq.

(1.13), q′(p; dS) = 1]. We thus increase the prices of the nodes in S by a common increment

γ, and we choose γ = 1 because this is the increment that maximizes the dual function along

the direction dS starting from p; this can be seen by checking the directional derivative of q

at the price vector (γ, γ, 0) along the direction dS and finding that it switches from positive

(= 1) to negative (= −4) at γ = 1 where the arc (2, 3) becomes balanced.

The second iteration starts again with S = {1}. As in the first iteration, S is

enlarged to S = {1, 2}. Since the corresponding direction dS = (1, 1, 0) is not a direction

of ascent [q′(p; dS) = −4], we explore the balanced incident arc (2, 3) and we discover the

negative surplus node 3. The augmenting path (1, 2, 3) has now been obtained, and the

corresponding augmentation sets the flows of the arcs (1, 2) and (2, 3) to 1. Since now

all node surpluses become zero, the algorithm terminates; x = (1, 1) is an optimal primal

solution and p = (1, 1, 0) is an optimal dual solution.
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At the start of the typical iteration, we have an integer pair (x, p) sat-
isfying CS. The iteration indicates that the primal problem is infeasible, or
else indicates that (x, p) is optimal, or else transforms this pair into another
pair satisfying CS. In particular, if gi ≤ 0 for all i, then in view of the fact∑

i∈N gi =
∑

i∈N si [see Eq. (1.12) with S = N ], there are two possibilities:
(1) gi < 0 for some i, in which case

∑
i∈N si < 0 and the problem is infeasible,

or (2) gi = 0 for all i, in which case x is feasible and therefore also optimal,
since it satisfies CS together with p. In either case, the algorithm terminates.

If on the other hand we have gi > 0 for at least one node i, the iteration
starts by selecting a nonempty subset I of nodes i with gi > 0. The iteration
maintains two sets of nodes S and L, with S ⊂ L. Initially, S is empty and
L consists of the subset I. We use the following terminology.

S: Set of scanned nodes (these are the nodes whose incident arcs have been
“examined” during the iteration).

L: Set of labeled nodes (these are the nodes that have either been scanned
during the iteration or are current candidates for scanning).

In the course of the iteration we continue to add nodes to L and S until either
an augmenting path is found or L = S, in which case dS will be shown to
be an ascent direction. The iteration also maintains a label for every node
i ∈ L− I, which is an incident arc of i. The labels are useful for constructing
augmenting paths (see Step 3 of the following iteration).

Typical Primal-Dual Iteration

Step 0 (Initialization): Select a set I of nodes i with gi > 0. [If no such

node can be found, terminate; the pair (x, p) is optimal if gi = 0 for all i;

otherwise the problem is infeasible.] Set L := I and S := empty, and go to

Step 1.

Step 1 (Choose a Node to Scan): If S = L, go to Step 4; else select a

node i ∈ L − S, set S := S ∪ {i}, and go to Step 2.

Step 2 (Label Neighbor Nodes of i): Add to L all nodes j /∈ L such that

either (j, i) is balanced and bji < xji or (i, j) is balanced and xij < cij ; also for

every such j, give to j the label “(j, i)” if (j, i) is balanced and bji < xji, and

otherwise give to j the label “(i, j).” If for all the nodes j just added to L we

have gj ≥ 0, go to Step 1. Else select one of these nodes j with gj < 0 and go

to Step 3.

Step 3 (Flow Augmentation): An augmenting path P has been found

that begins at a node i belonging to the initial set I and ends at the node

j identified in Step 2. The path is constructed by tracing labels backward

starting from j, and is such that we have

xmn < cmn, ∀ (m, n) ∈ P +
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xmn > bmn, ∀ (m, n) ∈ P−

where P + and P− are the sets of forward and backward arcs of P , respectively.

Let

δ = min
{
gi,−gj ,

{
cmn − xmn | (m, n) ∈ P +}

,
{
xmn − bmn | (m, n) ∈ P−}}

.

Increase by δ the flows of all arcs in P +, decrease by δ the flows of all arcs in

P−, and go to the next iteration.

Step 4 (Price Change): Let

γ = min
{
{pj + aij − pi | (i, j) ∈ A, xij < cij , i ∈ S, j /∈ S},
{pj − aji − pi | (j, i) ∈ A, bji < xji, i ∈ S, j /∈ S}

}
.

(2.1)

Set

pi :=

{
pi + γ, if i ∈ S
pi, otherwise.

Add to L all nodes j for which the minimum in Eq. (2.1) is attained by an

arc (i, j) or an arc (j, i); also for every such j, give to j the label “(i, j)” if the

minimum in Eq. (2.1) is attained by an arc (i, j), and otherwise give to j the

label “(j, i).” If for all the nodes j just added to L we have gj ≥ 0, go to Step

1. Else select one of these nodes j with gj < 0 and go to Step 3. [Note: If

there is no arc (i, j) with xij < cij , i ∈ S, and j /∈ S, or arc (j, i) with bji < xji,

i ∈ S, and j /∈ S, the problem is infeasible and the algorithm terminates; see

Prop. 2.1 that follows.]

Note the following regarding the primal-dual iteration:

(a) All operations of the iteration preserve the integrality of the flow–price
vector pair.

(b) The iteration maintains CS of the flow–price vector pair. To see this,
note that arcs with both ends in S, which are balanced just before a price
change, continue to be balanced after a price change. This means that a
flow augmentation step, even if it occurs following several executions of
Step 4, changes only flows of balanced arcs, so it cannot destroy CS. Also,
a price change in Step 4 maintains CS because no arc flow is modified
in this step and the price increment γ of Eq. (2.1) is such that no arc
changes status from active to inactive or vice versa.

(c) At all times we have S ⊂ L. Furthermore, when Step 4 is entered, we
have S = L and L contains no node with negative surplus. Therefore,
based on the logic of Step 2, there is no balanced arc (i, j) with xij < cij ,
i ∈ S, and j /∈ S, and no balanced arc (j, i) with bji < xji, i ∈ S, and
j /∈ S. It follows from the discussion preceding Lemma 1.1 [cf. Eq.
(1.14)] that dS is an ascent direction.
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(d) Only a finite number of price changes occur at each iteration, so each
iteration executes to completion, either terminating with a flow aug-
mentation in Step 3, or with an indication of infeasibility in Step 4. To
see this, note that between two price changes, the set L is enlarged by
at least one node, so there can be no more than N price changes per
iteration.

(e) Only a finite number of flow augmentation steps are executed by the al-
gorithm, since each of these reduces the total absolute surplus

∑
i∈N |gi|

by an integer amount [by (a) above], while price changes do not affect
the total absolute surplus.

(f) The algorithm terminates. The reason is that each iteration will execute
to completion [by (d) above], and will involve exactly one augmentation,
while there will be only a finite number of augmentations [cf. (e) above].

The following proposition establishes the validity of the method.

Proposition 2.1: Consider the minimum cost flow problem and assume
that aij , bij , cij , and si are all integer.

(a) If the problem is feasible, then the primal-dual method terminates with
an integer optimal flow vector x and an integer optimal price vector p.

(b) If the problem is infeasible, then the primal-dual method terminates
either because gi ≤ 0 for all i and gi < 0 for at least one i or because
there is no arc (i, j) with xij < cij , i ∈ S, and j /∈ S, or arc (j, i) with
bji < xji, i ∈ S, and j /∈ S in Step 4.

Proof: The algorithm terminates as argued earlier, and there are three pos-
sibilities:

(1) The algorithm terminates because all nodes have zero surplus. In this
case the flow–price vector pair obtained upon termination is feasible and
satisfies CS, so it is optimal.

(2) The algorithm terminates because gi ≤ 0 for all i and gi < 0 for at least
one i. In this case the problem is infeasible, since for a feasible problem
we must have

∑
i∈N gi = 0.

(3) The algorithm terminates because there is no arc (i, j) with xij < cij ,
i ∈ S, and j /∈ S, or arc (j, i) with bji < xji, i ∈ S, and j /∈ S in Step
4. Then the flux across the cut Q = [S,N − S] is equal to the capacity
C(Q) and is also equal to the sum of the divergences of the nodes of S,
which is

∑
i∈S(si − gi) [cf. Eq. (1.11)]. Since gi ≥ 0 for all i ∈ S, gi > 0

for the nodes i ∈ I, and I ⊂ S, we see that

C(Q) <
∑
i∈S

si.
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This implies that the problem is infeasible, since for any feasible flow
vector we must have∑

i∈S
si = F (Q) ≤ C(Q),

where F (Q) is the corresponding flux across Q. [Another way to show
that the problem is infeasible in this case is to observe that dS is a
dual ascent direction, and if no arc (i, j) with the property stated exists,
the rate of increase of the dual function remains unchanged as we move
indefinitely along dS starting from p. This implies that the dual optimal
value is infinite or equivalently (by Prop. 3.2 in Section 2.3) that the
primal problem is infeasible.]

Since termination can occur only under the above circumstances, the
desired conclusion follows. Q.E.D.

There are a number of variations of the primal-dual method, using dif-
ferent choices of the initial set I of positive surplus nodes. The two most
common possibilities are:

(1) I consists of a single node i with gi > 0.

(2) I consists of all nodes i with gi > 0.

The primal-dual method was originally proposed with the latter choice. In this
case, whenever there is a price change, the set S contains all nodes with pos-
itive surplus, and from the directional derivative formulas (1.13) and (1.14),
it follows that the ascent direction used in Step 4 has the maximum pos-
sible directional derivative among elementary directions. This leads to the
interpretation of the primal-dual method as a steepest ascent method.

Figure 2.1 traces the steps of the primal-dual method for a simple ex-
ample.

The Shortest Path Implementation

We will now provide an alternative implementation of the primal-dual method
in terms of a shortest path computation. This is known as the sequential
shortest path method ; it will be seen to be mathematically equivalent with
the primal-dual method given earlier in the sense that it produces the same
sequence of flow–price vector pairs.

Given a pair (x, p) satisfying CS, define the reduced cost of an arc (i, j)
by

rij = aij + pj − pi. (2.2)

Recall that an unblocked path P with respect to x is a path such that xij < cij

for all forward arcs (i, j) ∈ P+ and bij < xij for all backward arcs (i, j) ∈ P−.
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Figure 2.1 Example illustrating the primal-dual method, starting with zero prices.

(a) Problem data.

(b) Initial flows, prices, and surpluses.

(c) Augmenting path and price changes Δpi of first iteration (I = {1}).
(d) Flows, prices, and surpluses after the first iteration.

(e) Augmenting path and price changes Δpi of second iteration (I = {2}).
(f) Flows, prices, and surpluses after the second iteration.

(g) Augmenting path and price changes Δpi of third iteration (I = {2}). There are two

price changes here: first p2 increases by 2, and then p1, p2, and p3 increase by 2.

(h) Flows, prices, and surpluses after the third iteration. The algorithm terminates with

an optimal flow–price pair, since all node surpluses are zero.
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Furthermore, P is an augmenting path if its start and end nodes have positive
and negative surplus, respectively. We define the length of an unblocked path
P by

LP =
∑

(i,j)∈P+

rij −
∑

(i,j)∈P−
rij . (2.3)

Note that since (x, p) satisfies CS, all forward arcs of an unblocked path P
must be inactive or balanced, while all backward arcs of P must be active or
balanced [cf. Eqs. (1.6)-(1.8)], so we have

rij ≥ 0, ∀ (i, j) ∈ P+, (2.4)

rij ≤ 0, ∀ (i, j) ∈ P−. (2.5)

Thus, the length of P is nonnegative.
The sequential shortest path method starts each iteration with an integer

pair (x, p) satisfying CS and with a set I of nodes i with gi > 0, and proceeds
as follows.

Sequential Shortest Path Iteration

Construct an augmenting path P with respect to x that has minimum length

over all augmenting paths with respect to x that start at some node i ∈
I. Then, carry out an augmentation along P (cf. Step 3 of the primal-dual

iteration) and modify the node prices as follows: let d be the length of P and

for each node m ∈ N , let dm be the minimum of the lengths of the unblocked

paths with respect to x that start at some node in I and end at m (dm = ∞
if no such path exists). The new price vector p is given by

pm = pm + max{0, d − dm}, ∀ m ∈ N . (2.6)

The method terminates under the following circumstances:

(a) All nodes i have zero surplus; in this case it will be seen that the current
pair (x, p) is primal and dual optimal.

(b) gi ≤ 0 for all i and gi < 0 for at least one i; in this case the problem is
infeasible, since

∑
i∈N si =

∑
i∈N gi < 0.

(c) There is no augmenting path with respect to x that starts at some node
in I; in this case it will be seen that the problem is infeasible.

We will show shortly that the method preserves the integrality and the
CS property of the pair (x, p), and that it terminates.

It is important to note that the shortest path computation can be ex-
ecuted using the standard shortest path algorithms described in Section 1.3.
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The idea is to use rij as the length of each forward arc (i, j) of an unblocked
path, and to reverse the direction of each backward arc (i, j) of an unblocked
path and to use −rij as its length [cf. the unblocked path length formula (2.3)].
In particular, the iteration can be executed using the following procedure.

Consider the residual graph, which has the same node set N of the
original problem graph, and has

an arc (i, j) with length rij for every arc (i, j) ∈ A with xij < cij,

an arc (j, i) with length −rij for every arc (i, j) ∈ A with bij < xij.

[If this creates two arcs in the same direction between two nodes, discard the
arc with the larger length (in case of a tie, discard either arc).] Find a path P
that is shortest among paths of the residual graph that start at some node in I
and end at some node with negative surplus. Find also the shortest distances
dm from nodes of I to all other nodes m [or at least to those nodes m with
dm less than the length of P ; cf. Eq. (2.6)].

Figure 2.2 illustrates the sequential shortest path method and shows the
sequence of residual graphs for the example worked out earlier (cf. Fig. 2.1).

Note here that by Eqs. (2.4) and (2.5), the arc lengths of the residual
graph are nonnegative, so Dijkstra’s method can be used for the shortest
path computation. Since all forward paths in the residual graph correspond
to unblocked paths in the original problem graph, and corresponding paths
have the same length, it is seen that the shortest path P is an augmenting
path as required and that the shortest distances dm yield the vector p defined
by Eq. (2.6). We now prove the validity of the method.

Proposition 2.2: Consider the minimum cost flow problem and assume
that aij , bij , cij , and si are all integer. Then, for the sequential shortest path
method, the following hold:

(a) Each iteration maintains the integrality and the CS property of the pair
(x, p).

(b) If the problem is feasible, then the method terminates with an integer
optimal flow vector x and an integer optimal price vector p.

(c) If the problem is infeasible, then the method terminates either because
gi ≤ 0 for all i and gi < 0 for at least one i, or because there is no
augmenting path starting at some node of the set I and ending at some
node with negative surplus.

Proof: (a) We will show that if the starting pair (x, p) of an iteration is
integer and satisfies CS, the same is true for a pair (x, p) produced by the
iteration. Indeed, a flow augmentation maintains the integrality of the flows,
since the upper and lower flow bounds are assumed integer. Furthermore, the
arc lengths of the residual graph are integer, so by Eq. (2.6), p is integer.
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Figure 2.2 The sequential shortest path method applied to the problem of

Fig. 2.1, starting with all zero prices. The sequences of flows, prices, and surpluses

are the same as those generated by the primal-dual method.

(a) Problem data.

(b) Initial residual graph with the arc lengths shown next to the arcs. The nodes

with positive, zero, and negative surplus are indicated by “+”, “0”, and “−”,

respectively.

(c) Shortest augmenting path and changed prices of first iteration (I = {1}).
(d) Residual graph with the arc lengths shown next to the arcs after the first

iteration.

(e) Shortest augmenting path and changed prices of second iteration (I = {2}).
(f) Residual graph with the arc lengths shown next to the arcs after the second

iteration.

(g) Shortest augmenting path and changed prices of third (and final) iteration

(I = {2}).
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To show that (x, p) satisfies CS, consider an arc (i, j) for which xij < cij .
We will show that pi − pj ≤ aij . We distinguish two cases:

(1) xij = cij . In this case, we have bij < xij , the direction of (i, j) is reversed
in the residual graph, and the reverse arc (j, i) lies on the shortest aug-
menting path P . Hence, we have

di ≤ d, dj ≤ d, di = dj − rij .

Using these equations, and Eqs. (2.2) and (2.6), we obtain

pi − pj = pi − pj + max{0, d − di} − max{0, d − dj}
= pi − pj − (di − dj) = pi − pj + rij = aij.

(2) xij < cij . In this case we have

dj ≤ di + rij ,

since (i, j) is an arc of the residual graph with length rij . Using this
relation and the nonnegativity of rij , we see that

max{0, d − di} ≤ max{0, d − dj + rij}
≤ max{rij , d − dj + rij} = max{0, d − dj} + rij .

Hence, we have

pi−pj = pi−pj+max{0, d−di}−max{0, d−dj} ≤ pi−pj+rij = aij.

Thus, in both cases we have pi − pj ≤ aij . We can similarly show that if
bij < xij , then pi − pj ≥ aij , completing the proof of the CS property of the
pair (x, p).

(b) and (c) Every completed iteration in which a shortest augmenting path is
found reduces the total absolute surplus

∑
i∈N |gi| by an integer amount, so

termination must occur. Part (a) shows that at the start of each iteration,
the pair (x, p) satisfies CS. There are two possibilities:

(1) gi ≤ 0 for all i. In this case, either gi = 0 for all i in which case x is
feasible, and x and p are primal and dual optimal, respectively, since
they satisfy CS, or else gi < 0 for some i, in which case the problem is
infeasible.

(2) gi > 0 for at least one i. In this case we can select a nonempty set I of
nodes with positive surplus, form the residual graph, and attempt the
corresponding shortest path computation. There are two possibilities:
either a shortest augmenting path is found, in which case the iteration
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will be completed with an attendant reduction of the total absolute
surplus, or else there is no unblocked path with respect to x from a
node of I to a node with negative surplus. In the latter case, we claim
that the problem is infeasible. Indeed, by Prop. 2.2 in Section 1.2 (more
accurately, the generalization given in Exercise 2.12 in Section 1.2), there
exists a saturated cut Q = [S,N −S] such that all nodes of I belong to
S and all nodes with negative surplus belong to N −S. The flux across
Q is equal to the capacity C(Q) of Q and is also equal to the sum of
the divergences of the nodes of S, which is

∑
i∈S(si − gi) [cf. Eq. (1.11)].

Since gi ≥ 0 for all i ∈ S, gi > 0 for the nodes i ∈ I, and I ⊂ S, we see
that

C(Q) <
∑
i∈S

si.

This implies that the problem is infeasible, since for any feasible flow
vector we must have

∑
i∈S si = F (Q) ≤ C(Q), where F (Q) is the corre-

sponding flux across Q.

Thus, termination of the algorithm must occur in the manner stated in the
proposition. Q.E.D.

By appropriately adapting the shortest path algorithms of Section 1.3,
one can obtain a variety of implementations of the sequential shortest path
iteration. Here is an example, which adapts the generic single origin/single
destination algorithm of Section 1.3.4 and supplements it with a labeling
procedure that constructs the augmenting path. We introduce a candidate
list V , a label di for each node i, a shortest distance estimate d, and a node j
whose initial choice is immaterial. Given a pair (x, p) satisfying CS and a set
I of nodes with positive surplus, we set initially

V = I, d = ∞,

di = 0, ∀ i ∈ I, di = ∞, ∀ i /∈ I.

The shortest path computation proceeds in steps and terminates when V is
empty. The typical step (assuming V is nonempty) is as follows:

Typical Shortest Path Step in a Sequential Shortest Path Iteration

Remove a node i from V . For each outgoing arc (i, j) ∈ A, with xij < cij , if

di + rij < min{dj , d},

give the label “(i, j)” to j, set

dj := di + rij ,
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add j to V if it does not already belong to V , and if gj < 0, set d = di + rij

and j = j. Also, for each incoming arc (j, i) ∈ A, with bji < xji, if

di − rji < min{dj , d},

give the label “(j, i)” to j, set

dj := di − rji,

add j to V if it does not already belong to V , and if gj < 0, set d = di − rji

and j = j.

When the shortest path computation terminates, an augmenting path
of length d can be obtained by tracing labels backward from the node j to
some node i ∈ I. The new price vector p is obtained via the equation pm =
pm + max{0, d − dm} for all m ∈ N [cf. Eq. (2.6)]. Note that if the node i
removed from V has the minimum label property

di = min
j∈V

dj,

the preceding algorithm corresponds to Dijkstra’s method.
We finally note that the primal-dual method discussed earlier and the

sequential shortest path method are mathematically equivalent in that they
produce identical sequences of pairs (x, p), as shown by the following propo-
sition (for an example, compare the calculations of Figs. 2.1 and 2.2). In fact
with some thought, it can be seen that the primal-dual iteration amounts to
the use of a form of Dijkstra’s algorithm to calculate the shortest augmenting
path and the corresponding distances.

Proposition 2.3: Suppose that a primal-dual iteration starts with a pair
(x, p), and let I be the initial set of nodes i with gi > 0. Then:

(a) An augmenting path P may be generated in the augmentation Step 3 of
the iteration (through some order of operations in Steps 1 and 2) if and
only if P has minimum length over all augmenting paths with respect
to x that start at some node in I.

(b) If p is the price vector produced by the iteration, then

pm = pm + max{0, d − dm}, ∀ m ∈ N , (2.7)

where d is the length of the augmenting path P of the iteration and for
each m ∈ N , dm is the minimum of the lengths of the unblocked paths
with respect to x that start at some node in I and end at m.

Proof: Let k ≥ 0 be the number of price changes of the iteration. If k = 0,
i.e., no price change occurs, then any augmenting path P that can be produced
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by the iteration consists of balanced arcs, so its length is zero. Hence P has
minimum length as stated in part (a). Furthermore, p = p, which verifies Eq.
(2.7).

Assume that k ≥ 1, let Sk, k = 1, . . . , k, be the set of scanned nodes S
when the kth price change occurs, and let γk, k = 1, . . . , k, be the correspond-
ing price increment [cf. Eq. (2.1)]. Let also Sk+1 be the set S at the end of
the iteration. We note that the sets Sk (and hence also γk) depend only on
(x, p) and the set I, and are independent of the order of operations in Steps 1
and 2. In particular, S1 − I is the set of all nodes j such that there exists an
unblocked path of balanced arcs [with respect to (x, p)] that starts at some
node i ∈ I and ends at j. Thus, S1 and also γ1, is uniquely defined by I and
(x, p). Proceeding inductively, it is seen that Sk+1 − Sk is the set of all nodes
j such that there exists an unblocked path of balanced arcs [with respect to
(x, pk), where pk is the price vector after k price changes] that starts at some
node i ∈ Sk and ends at j. Thus, Sk+1 and γk+1 are uniquely defined by I and
(x, p) if S1, . . . ,Sk and γ1, . . . , γk are.

It can be seen from Eq. (2.1) that for all k,

γk =minimum over the lengths of all (single arc) unblocked paths
starting at a node i ∈ Sk and ending at a node j /∈ Sk.

Using this property, and an induction argument (left for the reader), we
can show that dm, which is defined as the minimum over the lengths of all
unblocked paths that start at some node i ∈ I and end at node m, satisfies
for all k,

dm = γ1 + γ2 + . . . + γk, ∀ m ∈ Sk+1 − Sk. (2.8)

Furthermore, the length of any unblocked path that starts at some node i ∈ I
and ends at a node m /∈ Sk+1 is larger than γ1 + γ2 + . . . + γk. In particular,
the length of any augmenting path produced by the iteration is

γ1 + γ2 + . . . + γk,

so it has the property stated in part (a). Also, the price vector p produced
by the primal-dual iteration is given by

pm =
{

pm + γ1 + γ2 + . . . + γk if m ∈ Sk+1 − Sk, k = 1, . . . , k,
pm otherwise,

which in view of Eq. (2.8), agrees with Eq. (2.7). Q.E.D.
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E X E R C I S E S

Exercise 2.1

Use the primal-dual method and the sequential shortest path method to solve

the problem of Fig. 2.3. Verify that the two methods yield the same sequence

of flows and prices (with identical initial data and appropriate choices of the

initial sets I and augmenting paths).

Figure 2.3 Minimum cost flow problem for Exercise 2.1.

Exercise 2.2 (Relation of Primal-Dual and Ford-Fulkerson)

Consider the Ford-Fulkerson algorithm for the max-flow problem, where bij =

0 for all (i, j) ∈ A. Show that the method can be interpreted as an application

of the primal-dual method to the minimum cost flow formulation of the max-

flow problem of Example 1.2 in Section 1.1, starting with p = 0 and x = 0

[except for the flow of the artificial arc (t, s), which must be at its upper

bound to satisfy CS]. Show in particular that all iterations of the primal-dual

method start at s and terminate with an augmentation along a path ending

at t. Furthermore, the method will execute only one price change, which

will occur after a minimum cut is identified. The last iteration consists of an

augmentation along the artificial arc (t, s).

Exercise 2.3 (Relation of Primal-Dual and Dijkstra)

Consider the shortest path problem with node 1 being the origin and all other

nodes being destinations. Formulate this problem as a minimum cost flow

problem with the origin having supply N − 1 and all destinations having

supply −1. Assume that all arc lengths are nonnegative. Start with all flows

and prices equal to zero, and apply the primal-dual method. Show that the
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method is equivalent to Dijkstra’s algorithm. In particular, each augmentation

uses a shortest path from the origin to some destination, the augmentations

are done in the order of the destinations’ proximity to the origin, and upon

termination, p1 − pi gives the shortest distance from 1 to each destination i

that can be reached from the origin via a forward path.

Exercise 2.4 (Noninteger Problem Data)

Verify that the primal-dual method terminates even when the arc costs are

noninteger. (Note, however, that the arc flow bounds must still be integer;

the max-flow example of Exercise 2.9 in Section 1.2 applies to the primal-dual

method as well, in view of the relation described in Exercise 2.2.) Modify the

primal-dual method so that augmenting paths have as few arcs as possible.

Show that with this modification, the arc flow bounds need not be integer for

the method to terminate. How should the sequential shortest path method be

modified so that it terminates even when the problem data are not integer?

3.3 THE RELAXATION METHOD

This method admits a similar implementation as the primal-dual method but
computes ascent directions much faster. In particular, while in the primal-
dual method we continue to enlarge the scanned set S until it is equal to the
labeled set L (in which case we are sure that dS is an ascent direction), in the
relaxation method we stop adding nodes to S immediately after dS becomes an
ascent direction [this is done by computing the directional derivative q′(p; dS)
using an efficient incremental method and by checking its sign]. In practice,
S often consists of a single node, in which case the ascent direction is a single
price coordinate, leading to the interpretation of the method as a coordinate
ascent method . Unlike the primal-dual method, the relaxation method cannot
be implemented using a shortest path computation.

As in the primal-dual method, at the start of the typical iteration we
have an integer pair (x, p) satisfying CS. The iteration indicates that the
primal problem is infeasible, or else indicates that (x, p) is optimal, or else
transforms this pair into another pair satisfying CS. In particular, if gi ≤ 0
for all i, then there are two possibilities: (1) gi < 0 for some i, in which case∑

i∈N si < 0 and the problem is infeasible, or (2) gi = 0 for all i, in which case
x is feasible and therefore also optimal, since it satisfies CS together with p.
In either case, the algorithm terminates.

If on the other hand we have gi > 0 for at least one node i, the iteration
starts by selecting a node i with gi > 0. As in the primal-dual method, the
iteration maintains two sets of nodes S and L, with S ⊂ L. At the start of the
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iteration, S is empty and L consists of the node i with gi > 0. The iteration
also maintains a label for every node i ∈ L except for the starting node i; the
label is an incident arc of i.

Typical Relaxation Iteration

Step 0 (Initialization): Select a node i with gi > 0. [If no such node can

be found, terminate; the pair (x, p) is optimal if gi = 0 for all i; otherwise the

problem is infeasible.] Set L := {i} and S := empty, and go to Step 1.

Step 1 (Choose a Node to Scan): If S = L, go to Step 4; else select a

node i ∈ L − S, set S := S ∪ {i}, and go to Step 2.

Step 2 (Label Neighbor Nodes of i): If

q′(p; dS) > 0, (3.1)

go to Step 4; else add to L all nodes j /∈ L such that either (j, i) is balanced

and bji < xji or (i, j) is balanced and xij < cij ; also for every such j, give to j

the label “(j, i)” if (j, i) is balanced and bji < xji, and otherwise give to j the

label “(i, j).” If for every node j just added to L, we have gj ≥ 0, go to Step

1; else select one of these nodes j with gj < 0 and go to Step 3.

Step 3 (Flow Augmentation): An augmenting path P has been found that

begins at the starting node i and ends at the node j identified in Step 2. The

path is constructed by tracing labels backward starting from j, and is such

that we have

xmn < cmn, ∀ (m, n) ∈ P +, (3.2)

xmn > bmn, ∀ (m, n) ∈ P−, (3.3)

where P + and P− are the sets of forward and backward arcs of P , respectively.

Let

δ = min
{
gi,−gj , {cmn − xmn | (m, n) ∈ P +}, {xmn − bmn | (m, n) ∈ P−}

}
.

Increase by δ the flows of all arcs in P +, decrease by δ the flows of all arcs in

P−, and go to the next iteration.

Step 4 (Price Change): Set

xij = cij , ∀ balanced arcs (i, j) with i ∈ S, j /∈ S, (3.4)

xji = bji, ∀ balanced arcs (j, i) with i ∈ S, j /∈ S. (3.5)
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Let

γ = min
{
{pj + aij − pi | (i, j) ∈ A, xij < cij , i ∈ S, j /∈ S},
{pj − aji − pi | (j, i) ∈ A, bji < xji, i ∈ S, j /∈ S}

}
.

(3.6)

Set

pi :=

{
pi + γ, if i ∈ S
pi, otherwise.

(3.7)

Go to the next iteration. [Note: As in the case of the primal-dual iteration,

if after the flow adjustments of Eqs. (3.4) and (3.5) there is no arc (i, j) with

xij < cij , i ∈ S, and j /∈ S, or arc (j, i) with bji < xji, i ∈ S, and j /∈ S, the

problem is infeasible and the algorithm terminates.]

It can be seen that the relaxation iteration is quite similar to the primal-
dual iteration. However, there are two important differences. First, in the
relaxation iteration, after a price change in Step 4, we do not return to Step
1 to continue the search for an augmenting path like we do in the primal-dual
method. Thus, the relaxation iteration terminates either with an augmenta-
tion as in Step 3 or with a price change as in Step 4, in contrast with the
primal-dual iteration, which can only terminate with an augmentation. The
second and more important difference is that in the relaxation iteration, a
price change may be performed in Step 4 even if S �= L [cf. Eq. (3.1)]. It is
because of this feature that the relaxation method identifies ascent directions
faster than the primal-dual method. Note that in contrast with the primal-
dual method, the total absolute surplus

∑
i∈N |gi| may increase as a result of

a relaxation iteration.

An important property of the method is that each time we enter Step 4,
dS is an ascent direction. To see this note that there are two possibilities: (1)
we have S = L (cf. Step 1) in which case dS is an ascent direction similar to
the corresponding situation in the primal-dual method, or (2) we have S �= L
(cf. Step 2) in which case by Eq. (3.1) dS is an ascent direction.

It is possible to “combine” several iterations of the relaxation method
into a single iteration in order to save computation time, and this is done
judiciously in the RELAX codes, which are public domain implementations
of the relaxation method [BeT88], [BeT90]. Figure 3.1 traces the steps of the
method for a simple example.

The following proposition establishes the validity of the method.

Proposition 3.1: Consider the minimum cost flow problem and assume
that aij , bij , cij , and si are all integer. If the problem is feasible, then the
relaxation method terminates with an integer optimal flow vector x and an
integer optimal price vector p.
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Figure 3.1 An illustration of the relaxation method, starting with all zero prices.

(a) Problem data.

(b) Initial flows, prices, and surpluses.

(c) After the first iteration, which consists of a price change of node 1.

(d) After the second iteration, which consists of another price change of node 1 [note the

flow change of arc (1,3); cf. Eq. (3.4)].

(e) After the third iteration, which consists of a price change of nodes 1 and 2.

(f) After the fourth iteration, which consists of an augmentation along the path (1, 2, 4).

(g) After the fifth iteration, which consists of a price change of nodes 1 and 2.

(h) After the sixth iteration, which consists of an augmentation along the path (2, 3, 4).

(i) After the seventh iteration, which consists of an augmentation along the path (3, 4).
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Proof: The proof is similar to the corresponding proof for the primal-dual
method (cf. Prop. 2.1). We first note that all operations of the iteration
preserve the integrality of the flow–price vector pair. To see that CS is also
maintained, note that a flow augmentation step changes only flows of balanced
arcs and therefore cannot destroy CS. Furthermore, the flow changes of Eqs.
(3.4) and (3.5), and the price changes of Eqs. (3.6) and (3.7) maintain CS,
because they set the flows of the balanced arcs that the price change renders
active (or inactive) to the corresponding upper (or lower) bounds.

Every time there is a price change in Step 4, there is a strict improvement
in the dual cost by the integer amount γq′(p; dS) [using the CS property, it
can be seen that γ > 0, and as argued earlier, dS is an ascent direction
so q′(p; dS) > 0]. Thus, for a feasible problem, we cannot have an infinite
number of price changes. On the other hand, it is impossible to have an
infinite number of flow augmentations between two successive price changes,
since each of these reduces the total absolute surplus by an integer amount. It
follows that the algorithm can execute only a finite number of iterations, and
must terminate. Since upon termination x is feasible and satisfies CS together
with p, it follows that x is primal-optimal and p is dual-optimal. Q.E.D.

If the problem is infeasible, the method may terminate because gi ≤ 0
for all i and gi < 0 for at least one i, or because after the flow adjustments of
Eqs. (3.4) and (3.5) in Step 4, there is no arc (i, j) with xij < cij , i ∈ S, and
j /∈ S, or arc (j, i) with bji < xji, i ∈ S, and j /∈ S. However, there is also the
possibility that the method will execute an infinite number of iterations and
price changes, with the prices of some of the nodes increasing to ∞. Exercise
3.2 shows that, when the problem is feasible, the node prices stay below a
certain precomputable bound in the course of the algorithm. This fact can be
used as an additional test to detect infeasibility.

It is important to note that the directional derivative q′(p; dS) needed
for the ascent test (3.1) in Step 2 can be calculated incrementally (as new
nodes are added one-by-one to S) using the equation

q′(p; dS) =
∑
i∈S

gi −
∑

(j,i): balanced, j /∈S, i∈S

(xji − bji)

−
∑

(i,j): balanced, i∈S, j /∈S

(cij − xij);
(3.8)

cf. Eq. (1.13). Indeed, it follows from this equation that, given q′(p; dS) and a
node i /∈ S, one can calculate the directional derivative corresponding to the
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enlarged set S ∪ {i} using the formula

q′(p; dS∪{i}) = q′(p; dS) +
∑

{j|(i,j): balanced, j∈S}

(xij − bij)

+
∑

{j|(j,i): balanced, j∈S}

(cji − xji)

−
∑

{j|(j,i): balanced, j /∈S}

(xji − bji)

−
∑

{j|(i,j): balanced, j /∈S}

(cij − xij).

(3.9)

This formula is convenient because it involves only the incident balanced arcs
of the new node i, which must be examined anyway while executing Step 2.

In practice, the method is implemented using iterations that start from
both positive and negative surplus nodes. This seems to improve substantially
the performance of the method. It can be shown that for a feasible problem,
the algorithm terminates properly under these circumstances (Exercise 3.3).
Another important practical issue has to do with the initial choice of flows
and prices. One possibility is to try to choose an initial price vector that is
as close to optimal as possible (for example, using the results of some earlier
optimization); one can then choose the arc flows to satisfy the CS conditions.

Line Search and Coordinate Ascent Iterations

The stepsize γ of Eq. (3.6) corresponds to the first break point of the piece-
wise linear dual function along the ascent direction dS . It is also possible to
calculate through a line search an optimal stepsize that maximizes the dual
function along dS . We leave it for the reader to verify that this computation
can be done quite economically, using Eq. (1.10) or Eq. (1.13) to test the sign
of the directional derivative of the dual function at successive break points
along dS . Computational experience shows that a line search is beneficial in
practice. For this reason, it has been used in the RELAX codes [BeT88],
[BeT90].

Consider now the case where there is a price change via Step 4 and the
set S consists of just the starting node, say node i. This happens when the
iteration scans the incident arcs of i at the first time Step 2 is entered and finds
that the corresponding coordinate direction leads to a dual cost improvement
[q′

(
p; d{i}

)
> 0]. If line search of the type just described is performed, the

price pi is changed to a break point where the right derivative is nonpositive
and the left derivative is nonnegative (cf. Fig. 3.2).

A precise description of this single-node relaxation iteration with line
search, starting from a pair (x, p) satisfying CS, is as follows:
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Figure 3.2 Illustration of single-node relaxation iteration. Here, node i

has four incident arcs (1, i), (3, i), (i, 2), and (i, 4) with flow ranges [0, 20], [0, 20],

[0, 10], and [0, 30], respectively, and supply si = 0. The arc costs and current

prices are such that

p1 − a1i ≤ p2 + ai2 ≤ p3 − a3i ≤ p4 + ai4,

as shown in the figure. The break points of the dual cost along the price pi

correspond to the values of pi at which one or more incident arcs to node i become

balanced. For values between two successive break points, there are no balanced

arcs. For any price pi to the left of the maximizing point, the surplus gi must be

positive to satisfy CS. A single-node iteration with line search increases pi to the

maximizing point.

Single-Node Relaxation Iteration

Choose a node i with gi > 0. Let

B+
i = {j | (i, j) : balanced, xij < cij}, (3.10)

B−
i = {j | (j, i) : balanced, bji < xji}. (3.11)
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Step 1: If

gi ≥
∑
j∈B+

i

(cij − xij) +
∑
j∈B−

i

(xji − bji),

go to Step 4. Otherwise, if gi > 0, choose a node j ∈ B+
i with gj < 0 and go

to Step 2, or choose a node j ∈ B−
i with gj < 0 and go to Step 3; if no such

node can be found, or if gi = 0, go to the next iteration.

Step 2 (Flow Adjustment on Outgoing Arc): Let

δ = min{gi,−gj , cij − xij}.

Set

xij := xij + δ, gi := gi − δ, gj := gj + δ

and if xij = cij , delete j from B+
i ; go to Step 1.

Step 3 (Flow Adjustment on Incoming Arc): Let

δ = min{gi,−gj , xji − bji}.

Set

xji := xji − δ, gi := gi − δ, gj := gj + δ

and if xji = bji, delete j from B−
i ; go to Step 1.

Step 4 (Increase Price of i): Set

gi := gi −
∑
j∈B+

i

(cij − xij) −
∑
j∈B−

i

(xji − bji), (3.12)

xij = cij , ∀ j ∈ B+
i , (3.13)

xji = bji, ∀ j ∈ B−
i , (3.14)

pi := min
{
{pj + aij | (i, j) ∈ A, pi < pj + aij},
{pj − aji | (j, i) ∈ A, pi < pj − aji}

}
.

(3.15)

If after these changes gi > 0, recalculate the sets B+
i and B+

i using Eqs. (3.10)

and (3.11), and go to Step 1; else, go to the next iteration. [Note: If the set

of arcs over which the minimum in Eq. (3.15) is calculated is empty, there are

two possibilities: (a) gi > 0, in which case it can be shown that the dual cost

increases without bound along pi and the primal problem is infeasible, or (b)

gi = 0, in which case the cost stays constant along pi; in this case we leave p

unchanged and go to the next iteration.]



Sec. 3.3 The Relaxation Method 161

Note that the single-node iteration may be unsuccessful in that it may
fail to change either x or p. In this case, it should be followed by a regular
relaxation iteration that labels the appropriate neighbors of node i, etc. Ex-
perience has shown that the most efficient way to implement the relaxation
iteration is to first attempt its single-node version; if this fails to change x or
p, then we proceed with the multiple node version, while salvaging whatever
computation is possible from the single-node attempt. The RELAX codes
[BeT88], [BeT90] make use of this idea. Experience shows that single-node
iterations are very frequent in the early stages of the relaxation algorithm and
account for most of the total dual cost improvement, but become much less
frequent near the algorithm’s termination.

A careful examination of the single-node iteration logic shows that in
Step 4, after the surplus change of Eq. (3.12), the surplus gi may be equal
to zero; this will happen if gi = 0 and simultaneously there is no balanced
arc (i, j) with xij < cij , or balanced arc (j, i) with bji < xji. In this case, it
can be shown (see also Fig. 3.2) that the price change of Eq. (3.15) leaves the
dual cost unchanged, corresponding to movement of pi along a flat segment
to the next breakpoint of the dual cost, as shown in Fig. 3.3. This is known
as a degenerate ascent iteration. Computational experience has shown that it
is generally preferable to allow such iterations whenever possible. For special
types of problems such as assignment, the use of degenerate ascent iterations
can reduce dramatically the overall computation time.

We finally note that single-node relaxation iterations may be used to
initialize the primal-dual method. In particular, one may start with several
cycles of single-node iterations, where each node with nonzero surplus is taken
up for relaxation once in each cycle. The resulting pair (x, p) is then used as
a starting pair for the primal-dual method. Experience has shown that this
initialization procedure is very effective.

E X E R C I S E S

Exercise 3.1

Use the relaxation method to solve the problem of Fig. 2.3.

Exercise 3.2 (An Infeasibility Test for the Relaxation Method)

Consider the relaxation method, let p0
i be the initial price of node i, and let M

be the set of nodes that have negative surplus initially. For every simple path

P that ends at a node j ∈ M, let HP be the sum of the costs of the forward

arcs of the path minus the sum of the costs of the backward arcs of the path,

and let H = maxP HP . Show that, if the problem is feasible, then during the
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Figure 3.3 Illustration of a degenerate price increase. The difference

between this example and the example of Fig. 3.2 is that the feasible flow range

of arc (3, i) is now [0, 10] instead of [0, 20]. Here, there is a flat segment of the

graph of the dual cost along pi, corresponding to maximizing points. A degenerate

price increase moves pi from the extreme left maximizing point to the extreme

right maximizing point.

course of the algorithm, the price of any positive surplus node cannot exceed

its initial price by more than H + maxj∈M p0
j − mini∈N p0

i . Discuss how to use

this bound to test for problem infeasibility in the relaxation method. Hint:
Observe that at any point in the algorithm the prices of all nodes with negative

surplus have not changed since the start of the algorithm. Show also that if

i is a node with positive surplus, there must exist some node with negative

surplus j and an unblocked path starting at i and ending at j.

Exercise 3.3

Write the form of the relaxation iteration starting from both positive and

negative surplus nodes. Show that the method terminates at an optimal flow–

price vector pair if a feasible solution exists. Hint : Show that each price



Sec. 3.4 Implementation Issues 163

change improves the dual cost by an integer amount, while there can be only

a finite number of flow augmentations between successive price changes.

3.4 IMPLEMENTATION ISSUES

For the application of the methods of this chapter, one can represent the prob-
lem using the five arrays START , END , COST , CAPACITY , and SUPPLY ,
as in simplex methods (cf. Section 2.4). For an efficient implementation, how-
ever, it is essential to provide additional data structures that facilitate the
labeling operations, the ascent steps of Step 4, and the shortest path com-
putations. In particular, it is necessary to have easy access to the set of all
incident arcs of each node. This can be done with the help of the following
four additional arrays.

FIRST IN (i): The first arc incoming to node i (= 0 if i has no incoming
arcs).

FIRST OUT (i): The first arc outgoing from node i (= 0 if i has no
outgoing arcs).

NEXT IN (a): The arc following arc a with the same end node as a (= 0
if a is the last incoming arc of the end node of a).

NEXT OUT (a): The arc following arc a with the same start node as a
(= 0 if a is the last outgoing arc of the start node of a).

Figure 5.1 illustrates these arrays. As an example of their use, suppose
that we want to scan all the incoming arcs of node i. We first obtain the
arc a1 = FIRST IN(i), then the arc a2 = NEXT IN(a1), then the arc a3 =
NEXT IN(a2), etc., up to the arc ak for which NEXT IN(ak) = 0.

It is possible to forgo the use of the array NEXT OUT if the arcs are
stored in the order of their starting node, that is, the arcs outgoing from each
node i are arcs FIRST OUT (i) to FIRST OUT (i + 1 ) − 1 . Then the array
FIRST OUT is sufficient to generate all arcs outgoing from any one node.
Some codes (for example the assignment codes of Appendixes A.4 and A.5)
use this device; they require that the arcs of the problem be ordered by starting
node, thereby saving storage of one array (and usually some computation as
well). The drawback to this idea is that it complicates sensitivity analysis. In
particular, if the problem data are changed to add or remove some arcs, all
the arrays describing the problem, except for SUPPLY , must be recompiled.

An additional data structure, useful primarily for the relaxation method,
stores the balanced incident arcs of each node so as to facilitate the labeling
step (Step 2). These arcs can be stored in two arrays of length N and two ar-
rays of length A, much like the arrays FIRST IN , FIRST OUT , NEXT IN ,



4/2

0/1

2/1

-5/10

Cost/upper flow 
bound shown
next to each arc

5/2

2/3

3/1

-2/10

0/51

2

1

2

1 4

3

2

5

0

164 Dual Ascent Methods Chap. 3

ARC START END COST CAPACITY NEXT IN NEXT OUT

1 1 2 5 2 4 2

2 1 3 0 1 3 0

3 2 3 4 2 0 5

4 3 2 3 1 0 7

5 2 5 -2 10 0 6

6 2 4 2 1 7 0

7 3 4 2 3 8 0

8 5 4 0 5 0 0

9 4 5 -5 10 5 0

NODE SUPPLY FIRST IN FIRST OUT

1 1 0 1

2 2 1 3

3 -2 2 4

4 0 6 9

5 -1 9 8

Figure 4.1 Representation of the data of a minimum cost flow problem in

terms of the nine arrays START , END , COST , CAPACITY , SUPPLY , FIRST IN ,

FIRST OUT , NEXT IN , and NEXT OUT .
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and NEXT OUT . However, as the set of balanced arcs changes in the course
of the algorithm, the arrays used to store this set must be updated. We will
not go into further details, but the interested reader can study the RELAX
codes [BeT88], [BeT90] to see how this can be done efficiently.

Overall it can be seen that dual ascent methods require more arrays
of length A than simplex methods, and therefore also more storage space
(roughly twice as much).

3.5 NOTES AND SOURCES

3.1. A dual ascent method that we did not cover here is the dual simplex
method. This is a general linear programming method that has been special-
ized to the minimum cost flow problem by several authors (see e.g. [HeK77],
[JeB80]) but has not achieved much popularity.

3.2. The primal-dual method was first proposed in [Kuh55] for assignment
problems under the name “Hungarian method.” The method was generalized
to the minimum cost flow problem in [FoF56a] and [FoF57]. A further gen-
eralization, the out-of-kilter method, was proposed independently in [FoF62]
and [Min60]; see [Law76], [Roc84], and [BJS90] for detailed discussions. The
out-of-kilter method can get started with any flow–price vector pair, not nec-
essarily one that satisfies CS. It appears, however, that there isn’t much that
can be gained in practice by this extra flexibility, since for any given flow–price
vector pair one can modify very simply the arc flows to satisfy CS. A method
that is closely related to the primal-dual method and emphasizes the shortest
path implementation was given by [BuG61]. An extension of the primal-dual
method to network problems with gains was given in [Jew62], and extensions
of the primal-dual and out-of-kilter methods to network flow problems with
separable convex cost functions are given in [Roc84]. Primal-dual methods for
the assignment problem are discussed in [Eng82], [McG83], [Der85], [CaS86],
[CMT88]. Combinations of naive auction and sequential shortest path meth-
ods are discussed in [Ber81], [JoV86], [JoV87]; the code of Appendix A.5 is
based on these references. Variations of the Hungarian and the primal-dual
methods that are well suited for parallel computation have been developed in
[BMP89], [BeC90a], and [BeC90b].

One can show a pseudopolynomial worst-case bound on the running
time of the primal-dual method. The (practical) average running time of
the method, however, is much better than the one suggested by this bound.
It is possible to convert the algorithm to a polynomial one by using scaling
procedures; see [EdK72] and [BlJ85]. Unfortunately, these procedures do not
seem to improve the algorithm’s performance in practice.

Despite the fundamentally different principles underlying the simplex
and primal-dual methods (primal cost versus dual cost improvement), these
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methods are surprisingly related. It can be shown that the big-M version
of the simplex method with a particular pivot selection rule is equivalent to
the steepest ascent version of the primal-dual method [Zad79]. This suggests
that the simplex method with the empirically best pivot selection rule should
be more efficient in practice than the primal-dual method. Computational
experience tends to agree with this conjecture. However, in many practical
contexts, the primal-dual method has an advantage: it can easily use a good
starting flow and price vector pair, obtained for example from the solution of
a slightly different problem by modifying some of the arc flows to satisfy CS;
this is true of all the methods of this chapter. Simplex methods are generally
less capable of exploiting such prior knowledge; see also the discussion on
sensitivity analysis in Section 5.5.

3.3. The relaxation method was first proposed in the context of the assign-
ment problem by the author in [Ber81]. Its extension to the general minimum
cost flow problem was given in [Ber82b]. References [BeT85] and [Tse86]
consider the case where the problem data are noninteger. The relaxation
method has been extended to network flow problems with gains ([BeT85]
and [Tse86]), to general linear programs ([Tse86] and [TsB87a]), to network
flow problems with convex arc cost functions [BHT87], and to monotropic
programming problems [TsB87b]. When the arc cost functions are strictly
convex, the method is particularly well suited for parallel implementation; see
[BeE87a], [BHT87], [ElB89], [ChZ90], and [TBT90].

Extensive computational experience shows that the relaxation method
typically outperforms primal-dual methods substantially for general minimum
cost flow problems. In fact, primal-dual methods can often be speeded up con-
siderably by initialization with a number of single-node relaxation iterations,
although not to the point of challenging the relaxation method. The compari-
son between the relaxation method and simplex methods is less clear, although
the relaxation method seems much faster for randomly generated problems.
The relaxation method is also more capable of exploiting prior knowledge
about an optimal solution; this advantage is shared with the primal-dual
method. On the other hand, in contrast with the simplex method, the re-
laxation method requires that the problem data be integer; modified versions
that can handle noninteger problem data ([BeT85] and [Tse86]), need not
terminate, although they yield optimal solutions asymptotically.

3.4. The data structures for implementation of primal-dual methods briefly
discussed in this section were proposed in [AaM76], and were used in the
construction of an efficient out-of-kilter code. They are well suited for most
types of dual ascent methods.



4

Auction Algorithms

In this chapter we will first focus on the assignment problem. We will discuss
and analyze the auction algorithm described in Section 1.2.3, and some of its
variations. We will then present an auction-like algorithm for shortest path
problems. Finally, we will extend the auction algorithm to the minimum cost
flow problem and some of its special cases.

4.1 THE AUCTION ALGORITHM FOR THE ASSIGNMENT
PROBLEM

Recall the assignment problem where we want to match n persons and n
objects on a one-to-one basis. We are given a value or benefit aij for matching
person i with object j, and we want to assign persons to objects so as to
maximize the total benefit. The set of objects to which person i can be
assigned is a nonempty set denoted A(i). An assignment S is a (possibly
empty) set of person-object pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S; for
each person i there can be at most one pair (i, j) ∈ S; and for every object j
there can be at most one pair (i, j) ∈ S. Given an assignment S, we say that
person i is assigned if there exists a pair (i, j) ∈ S; otherwise we say that i
is unassigned . We use similar terminology for objects. An assignment is said
to be feasible if it contains n pairs, so that every person and every object is
assigned; otherwise the assignment is called partial .

167
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4.1.1 The Main Auction Algorithm

The auction algorithm, described somewhat loosely in Section 1.2.3, proceeds
iteratively and terminates when a feasible assignment is obtained. At the start
of the generic iteration we have a partial assignment S and a price vector p
satisfying ε-complementary slackness (ε-CS). This is the condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S (1.1)

introduced in Section 1.2.3. As an initial choice, one can use an arbitrary set of
prices together with the empty assignment, which trivially satisfies ε-CS. The
iteration consists of two phases: the bidding phase and the assignment phase
described in the following. We will show later that the iteration preserves the
ε-CS condition.

Bidding Phase

Let I be a nonempty subset of persons i that are unassigned under the assign-

ment S. For each person i ∈ I:

1. Find a “best” object ji having maximum value, that is,

ji = arg max
j∈A(i)

{aij − pj},

and the corresponding value

vi = max
j∈A(i)

{aij − pj}, (1.2)

and find the best value offered by objects other than ji

wi = max
j∈A(i), j �=ji

{aij − pj}. (1.3)

[If ji is the only object in A(i), we define wi to be −∞, or for computa-

tional purposes, a number that is much smaller than vi.]

2. Compute the “bid” of person i given by

biji = pji + vi − wi + ε = aiji − wi + ε. (1.4)

[We characterize this situation by saying that person i bid for object ji,

and that object ji received a bid from person i. The algorithm works if

the bid has any value between pji + ε and pji + vi − wi + ε, but it tends

to work fastest for the maximal choice of Eq. (1.4).]
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Assignment Phase

For each object j, let P (j) be the set of persons from which j received a bid

in the bidding phase of the iteration. If P (j) is nonempty, increase pj to the

highest bid,

pj := max
i∈P (j)

bij , (1.5)

remove from the assignment S any pair (i, j) (if j was assigned to some i under

S), and add to S the pair (ij , j), where ij is a person in P (j) attaining the

maximum above.

Note that there is some freedom in choosing the subset of persons I
that bid during an iteration. One possibility is to let I consist of a single
unassigned person. This version, known as the Gauss-Seidel version because
of its similarity with Gauss-Seidel methods for solving systems of nonlinear
equations, usually works best in a serial computing environment. The version
where I consists of all unassigned persons, is the one best suited for parallel
computation; it is known as the Jacobi version because of its similarity with
Jacobi methods for solving systems of nonlinear equations.

During an iteration, the objects whose prices are changed are the ones
that received a bid during the iteration. Each price change involves an increace
of at least ε. To see this, note that from Eqs. (1.2) to (1.4) we have

biji = aiji − wi + ε ≥ aiji − vi + ε = pji + ε,

so each bid for an object, including the winning bid, exceeds the object’s cur-
rent price by at least ε. At the end of the iteration, we have a new assignment
that differs from the preceding one in that each object that received a bid is
now assigned to some person that was unassigned at the start of the iteration.
However, the assignment at the end of the iteration need not have more pairs
than the one at the start of the iteration, because it is possible that all objects
that received a bid were assigned at the start of the iteration.

The choice of bidding increment vi −wi + ε for a person i [cf. Eq. (1.4)]
is such that ε-CS is preserved by the algorithm, as shown by the following
proposition (in fact, it can be seen that it is the largest bidding increment for
which this is so).

Proposition 1.1: The auction algorithm preserves ε-CS throughout its
execution; that is, if the assignment and the price vector available at the start
of an iteration satisfy ε-CS, the same is true for the assignment and the price
vector obtained at the end of the iteration.

Proof: Suppose that object j∗ received a bid from person i and was assigned
to i during the iteration. Let pj and p′j be the object prices before and after
the assignment phase, respectively. Then we have [see Eqs. (1.4) and (1.5)]

p′j∗ = aij∗ − wi + ε.
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Using this equation, we obtain

aij∗ − p′j∗ = wi − ε = max
j∈A(i), j �=j∗

{aij − pj} − ε.

Since p′j ≥ pj for all j, this equation implies that

aij∗ − p′j∗ ≥ max
j∈A(i)

{aij − p′j} − ε, (1.6)

which shows that the ε-CS condition (1.1) continues to hold after the assign-
ment phase of an iteration for all pairs (i, j∗) that entered the assignment
during the iteration.

Consider also any pair (i, j∗) that belonged to the assignment just before
the iteration, and also belongs to the assignment after the iteration. Then, j∗

must not have received a bid during the iteration, so p′j∗ = pj∗ . Therefore, Eq.
(1.6) holds in view of the ε-CS condition that held prior to the iteration and
the fact p′j ≥ pj for all j. Hence, the ε-CS condition (1.1) holds for all pairs
(i, j∗) that belong to the assignment after the iteration, proving the result.
Q.E.D.

The next result establishes the validity of the algorithm. The proof relies
on the following facts:

(a) Once an object is assigned, it remains assigned throughout the remainder
of the algorithm’s duration. Furthermore, except at termination, there
will always exist at least one object that has never been assigned, and
has a price equal to its initial price. The reason is that a bidding and
assignment phase can result in a reassignment of an already assigned
object to a different person, but cannot result in the object becoming
unassigned.

(b) Each time an object receives a bid, its price increases by at least ε [see
Eqs. (1.4) and (1.5)]. Therefore, if the object receives a bid an infinite
number of times, its price increases to ∞.

(c) Every |A(i)| bids by person i, where |A(i)| is the number of objects in
the set A(i), the scalar vi defined by the equation

vi = max
j∈A(i)

{aij − pj} (1.7)

decreases by at least ε. The reason is that a bid by person i either
decreases vi by at least ε, or else leaves vi unchanged because there is
more than one object j attaining the maximum in Eq. (1.7). However,
in the latter case, the price of the object ji receiving the bid will increase
by at least ε, and object ji will not receive another bid by person i until
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vi decreases by at least ε. The conclusion is that if a person i bids an
infinite number of times, vi must decrease to −∞.

Proposition 1.2: If at least one feasible assignment exists, the auction
algorithm terminates with a feasible assignment that is within nε of being
optimal (and is optimal if the problem data are integer and ε < 1/n).

Proof: We argue by contradiction. If termination did not occur, the subset
J∞ of objects that received an infinite number of bids is nonempty. Also, the
subset of persons I∞ that bid an infinite number of times is nonempty. As
argued in (b) above, the prices of the objects in J∞ must tend to ∞, while
as argued in (c) above, the scalars vi = maxj∈A(i){aij − pj} must decrease to
−∞ for all persons i ∈ I∞. This implies that

A(i) ⊂ J∞, ∀ i ∈ I∞. (1.8)

The ε-CS condition (1.1) states that aij − pj ≥ vi − ε for every assigned pair
(i, j), so after a finite number of iterations, each object in J∞ can only be
assigned to a person from I∞. Since after a finite number of iterations at
least one person from I∞ will be unassigned at the start of each iteration, it
follows that the number of persons in I∞ is strictly larger than the number
of objects in J∞. This contradicts the existence of a feasible assignment,
since by Eq. (1.8), persons in I∞ can only be assigned to objects in J∞.
Therefore, the algorithm must terminate. The feasible assignment obtained
upon termination satisfies ε-CS by Prop. 1.1, so by Prop. 2.3 of Section 1.2.3,
this assignment is within nε of being optimal. Q.E.D.

Consider now the case of an infeasible assignment problem. In this case,
the auction algorithm cannot possibly terminate; it will keep on increasing the
prices of some objects by increments of at least ε. Furthermore, some persons
i will be submitting bids infinitely often, and the corresponding maximum
values

vi = max
j∈A(i)

{aij − pj}

will be decreasing toward −∞. One can detect this situation by making use
of a precomputable lower bound on the above values vi, which holds when
the problem is feasible; see Exercise 1.5. Once vi gets below this bound for
some i, we know that the problem is infeasible. Unfortunately, it may take
many iterations for some vi to reach this bound. An alternative method to
detect infeasibility is to convert the problem to a feasible problem by adding
artificial arcs to the assignment graph. The values of these arcs should be very
small (i.e. large negative), so that they never participate in an optimal assign-
ment unless the problem is infeasible. Exercise 1.6 quantifies the appropriate
threshold for the values of the artificial arcs.
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4.1.2 The Approximate Coordinate Descent Interpretation

The Gauss-Seidel version of the auction algorithm resembles coordinate de-
scent algorithms, and the relaxation method of the previous chapter in par-
ticular, because it involves the change of a single object price with all other
prices held fixed. In contrast with the relaxation method, however, such a
price change may worsen strictly the value of the dual function

q(p) =
n∑

i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj,

which was introduced in Prop. 2.4 of Section 1.2.
Generally we can interpret the bidding and assignment phases as a si-

multaneous “approximate” coordinate descent step for all price coordinates
that increase during the iteration. The coordinate steps are aimed at mini-
mizing approximately the dual function. In particular, we claim that the price
pj of each object j that received a bid during the assignment phase is increased
to either a value that minimizes q(p) when all other prices are kept constant
or else exceeds the largest such value by no more than ε. Figure 1.1 illustrates
this property and outlines its proof.

Figure 1.1 suggests that the amount of deterioration of the dual cost is
at most ε. Indeed, for the Gauss-Seidel version of the algorithm this can be
deduced from the argument given in Figure 1.1 and is left for the reader as
Exercise 1.1.

4.1.3 Computational Aspects – ε-Scaling

The auction algorithm can be shown to have an O
(
A(n + nC/ε)

)
worst-case

running time, where A is the number of arcs of the assignment graph and

C = max
(i,j)∈A

|aij |

is the maximum absolute object value; see [BeE88], [BeT89]. Thus, the
amount of work to solve the problem can depend strongly on the value of
ε as well as C. In practice, the dependence of the running time on ε and C
is often significant, particularly for sparse problems; this dependence can also
be seen in the example of Section 1.2.3 (cf. Fig. 2.14), and in Exercise 1.4.

The practical performance of the auction algorithm is often considerably
improved by using ε-scaling , which consists of applying the algorithm several
times, starting with a large value of ε and successively reducing ε up to an
ultimate value that is less than 1/n; cf. the discussion in Section 1.2.3. Each
application of the algorithm, called a scaling phase, provides good initial prices
for the next application. In the auction code of Appendix A.4, the integer
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Figure 1.1 Form of the dual cost along the price coordinate pj . From the definition

of the dual cost q, the right directional derivative of q along pj is

d+
j = 1 − (number of persons i with j ∈ A(i) and pj < yij),

where

yij = aij − max
k∈A(i), k �=j

{aik − pk}

is the level of pj below which j is the best person for person i. The break points are yij for

all i such that j ∈ A(i). Let y = max{i|j∈A(i)}{aij − pj}, let i be a person such that y = y
ij
,

let ŷ = max{i|j∈A(i), i�=i}{aij − pj}, let î be a person such that î �= i and ŷ = yîj . Note that

the interval [ŷ, y] is the set of points that minimize q along the coordinate pj .

Let pj be the price of j just before an iteration at which j receives a bid and let p′j
be the price of j after the iteration. We claim that ŷ ≤ p′j ≤ y + ε. Indeed, if i is the person

that bids and wins j during the iteration, then p′j = yij + ε, implying that p′j ≤ y + ε. To

prove that p′j ≥ ŷ, we note that if pj ≥ ŷ, we must also have p′j ≥ ŷ, since p′j ≥ pj . On the

other hand, if p′j < ŷ, there are two possibilities:

1. At the start of the iteration, i was not assigned to j. In this case, either i was unassigned

in which case i will bid for j so that p′j = y + ε, or else i was assigned to an object j �= j,

in which case by ε-CS,

a
ij
− pj − ε ≤ a

i j
− p

j
≤ max

k∈A(i), k �=j

{a
ik
− pk} = a

ij
− y.

Thus, pj ≥ y − ε, implying that p′j ≥ y (since a bid increases a price by at least ε). In both

cases we have p′j ≥ y ≥ ŷ.

2. At the start of the iteration, i was assigned to j. In this case, î was not assigned to j,

so by repeating the argument of the preceding paragraph with î and ŷ replacing i and y,

respectively, we obtain p′j ≥ ŷ.
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benefits aij are first multiplied by n + 1 and the auction algorithm is applied
with progressively lower values of ε, to the point where ε becomes 1 or smaller
(because aij has been scaled by n+1, it is sufficient for optimality of the final
assignment to have ε ≤ 1). The sequence of ε values used is

ε(k) = max{1,Δ/θk}, k = 0, 1, . . . ,

where Δ and θ are parameters set by the user with Δ > 0 and θ > 1. (Typical
values for sparse problems are C/5 ≤ Δ ≤ C/2 and 4 ≤ θ ≤ 10. For nonsparse
problems, sometimes Δ = 1, which in effect bypasses ε-scaling, works quite
well.) The auction code of Appendix A.4 also uses an adaptive form of ε-
scaling, whereby, within the kth scaling phase, the value of ε is gradually
increased to the value ε(k) given above, starting from a relatively small value,
based on the results of the computation.

For integer data, it can be shown that the worst-case running time
of the auction algorithm using scaling and appropriate data structures is
O

(
nA log(nC)

)
; see [BeE88], [BeT89]. For randomly generated problems,

the running time of the algorithm seems to grow proportionally to something
like A log n or A log n log(nC); see also Exercise 1.3.

E X E R C I S E S

Exercise 1.1

Consider the Gauss-Seidel version of the auction algorithm, where only one

person can bid at each iteration. Show that, as a result of a bid, the dual cost

can be degraded by at most ε.

Exercise 1.2 (A Refinement of the Termination Tolerance [Ber79])

Show that the assignment obtained upon termination of the auction algorithm

is within (n − 1)ε of being optimal (rather than nε). Also, for every n ≥ 2,

construct an example of an assignment problem with integer data such that

the auction algorithm terminates with a nonoptimal assignment when ε =

1/(n − 1). (Try first n = 2 and n = 3, and generalize.) Hint : Modify slightly

the algorithm so that when the last object is assigned, its price is increased

by vi − wi (rather than vi − wi + ε). Then the assignment obtained upon

termination satisfies the ε-CS condition for n−1 objects and the CS condition

(ε = 0) for the last object. Modify the proof of Prop. 2.6 in Section 1.2.
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Exercise 1.3

This problem uses a rough (and flawed) argument to estimate the average

complexity of the auction algorithm. We assume that at each iteration, only

one person submits a bid (that is, the Gauss-Seidel version of the algorithm

is used). Furthermore, every object is the recipient of a bid with equal prob-

ability (1/n), independently of the results of earlier bids. (This assumption

clearly does not hold, but seems to capture somewhat the real situation where

the problem is fairly dense and ε-scaling is used.)

(a) Show that when k objects are unassigned the average number of itera-

tions needed to assign a new object is n/k.

(b) Show that, on the average, the number of iterations is n(1 + 1/2 + · · ·+
1/n), which can be estimated as O(n log n).

(c) Assuming that the average number of bids submitted by each person

is the same for all persons, show that the average running time is

O(A log n).

Exercise 1.4

Consider the auction algorithm applied to assignment problems with benefits

in the range [0, C], starting with zero prices.

(a) Show that for dense problems (every person can bid for every object)

an object can receive a bid in at most 1 + C/ε iterations.

(b) [Cas91] Use the example of Fig. 1.2 to show that, in general, some objects

may receive a bid in a number of iterations that is proportional to nC/ε.

Exercise 1.5 (Detecting Infeasibility)

Consider application of the auction algorithm to a feasible assignment problem

with initial object prices {p0
j}. Let

vi = max
j∈A(i)

{aij − pj}

be the maximum object value for person i in the course of the algorithm. Show

that for any unassigned person i we have at all times

vi ≥ −(2n − 1)C − (n − 1)ε − max
j

{p0
j},

where C = max(i,j)∈A |aij |, and describe how this lower bound can be used to

detect that a problem is infeasible. Hint : Show that if the problem is feasible

and i is unassigned, there must exist an augmenting path starting from i and

ending at some unassigned object. Add the ε-CS condition along this path.
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Figure 1.2 Assignment problem for which some objects receive a number

of bids that is proportional to nC/ε. The arc values are shown next to the

corresponding arcs.

Exercise 1.6 (Dealing with Infeasibility by Using Artificial Arcs)

Suppose that we add to the arc set A of an assignment problem a set A
of artificial arcs (possibly for the purpose of guaranteeing that the problem

becomes feasible). Suppose also that we obtain an optimal assignment for

the modified problem using the auction algorithm with initial object prices

{p0
j}. Show that if the original problem was feasible, no arc (i, j) ∈ A will

participate in the optimal assignment, provided

aij < −(2n − 1)C − (n − 1)ε + p0
j − max

k
{p0

k}, ∀ (i, j) ∈ A,

where C = max(i,j)∈A |aij |. Hint : Use the result of Exercise 1.5.

Exercise 1.7 (Implementation of the Auction Algorithm [BeT91])

Frequently in the auction algorithm the two best objects for a given person do

not change between two successive bids of that person. This exercise develops

an implementation idea that attempts to exploit this fact by using a test to

check whether the two best objects from the previous bid continue to be best.

If the test is passed, the computation of the values aij − pj of the remaining

objects is unnecessary. The implementation is used in the code for asymmetric

assignment of Appendix A.4.

Suppose that at a given iteration, when we calculate the bid of the person

i on the basis of a price vector p we compute the best value vi = maxj∈A(i){aij−
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pj}, the best object j1 = arg maxj∈A(i){aij − pj}, the second best value wi =

maxj∈A(i), j �=j1{aij −pj}, the second best object j2 = arg maxj∈A(i), j �=j1{aij −pj},
and the third best value yi = maxj∈A(i), j �=j1, j �=j2{aij − pj}. Suppose that at a

subsequent iteration when person i bids based on a price vector p, we have

aij1 − pj1
≥ yi and aij2 − pj2

≥ yi. Show that j1 and j2 continue to be the two

best objects for i (although j1 need not be better than j2).

4.2 REVERSE AUCTION AND INEQUALITY CONSTRAINED
ASSIGNMENT PROBLEMS

In the auction algorithm, persons compete for objects by bidding and raising
the price of their best object. It is possible to use an alternative form of the
auction algorithm, called reverse auction, where, roughly, the objects compete
for persons by essentially offering discounts.

To describe this algorithm, we introduce a profit variable πi for each
person i. Profits play for persons a role analogous to the role prices play
for objects. We can describe reverse auction in two equivalent ways: one
where unassigned objects lower their prices as much as possible to attract
an unassigned person or lure a person away from its currently held object
without violating ε-CS, and another where unassigned objects select a best
person and raise his or her profit as much as possible without violating ε-CS.
For analytical convenience, we will adopt the second description rather than
the first, leaving the proof of their equivalence as Exercise 2.1 for the reader.

Let us consider the following ε-CS condition for a (partial) assignment
S and a profit vector π:

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S, (2.1)

where B(j) is the set of persons that can be assigned to object j,

B(j) = {i | (i, j) ∈ A}.

For feasibility, we assume that this set is nonempty for all j. Note the sym-
metry of this condition with the corresponding one for prices; cf. Eq. (1.1).
The reverse auction algorithm starts with and maintains an assignment and
a profit vector π satisfying the above ε-CS condition. It terminates when
the assignment is feasible. At the beginning of each iteration, we have an
assignment S and a profit vector π satisfying the ε-CS condition (2.1).
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Typical Iteration of Reverse Auction

Let J be a nonempty subset of objects j that are unassigned under the as-

signment S. For each object j ∈ J :

1. Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.2)

and find

ωj = max
i∈B(j), i�=ij

{aij − πi}. (2.3)

[If ij is the only person in B(j), we define ωj to be −∞ or, for compu-

tational purposes, a number that is much smaller than βj .]

2. Each object j ∈ J bids for person ij an amount

bij j = πij + βj − ωj + ε = aij j − ωj + ε. (2.4)

3. For each person i that received at least one bid, increase πi to the highest

bid,

πi := max
j∈P (i)

bij , (2.5)

where P (i) is the set of objects from which i received a bid; remove from

the assignment S any pair (i, j) (if i was assigned to some j under S),

and add to S the pair (i, ji), where ji is an object in P (i) attaining the

maximum above.

Note that reverse auction is identical to (forward) auction with the roles
of persons and objects and those of profits and prices interchanged. Thus, by
using the corresponding (forward) auction result (cf. Prop. 1.2), we have the
following proposition.

Proposition 2.1: If at least one feasible assignment exists, the reverse
auction algorithm terminates with a feasible assignment that is within nε of
being optimal (and is optimal if the problem data are integer and ε < 1/n).
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Combined Forward and Reverse Auction

One of the reasons we are interested in reverse auction is to construct algo-
rithms that switch from forward to reverse auction and back. Such algorithms
must simultaneously maintain a price vector p satisfying the ε-CS condition
(1.1) and a profit vector π satisfying the ε-CS condition (2.1). To this end we
introduce an ε-CS condition for the pair (π, p), which (as we will see) implies
the other two. Maintaining this condition is essential for switching gracefully
between forward and reverse auction.

Definition 2.1: An assignment S and a pair (π, p) are said to satisfy ε-CS
if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.6a)

πi + pj = aij, ∀ (i, j) ∈ S. (2.6b)

We have the following proposition.

Proposition 2.2: Suppose that an assignment S together with a profit-
price pair (π, p) satisfy ε-CS. Then:

(a) S and π satisfy the ε-CS condition

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S. (2.7)

(b) S and p satisfy the ε-CS condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (2.8)

(c) If S is feasible, then S is within nε of being an optimal assignment.

Proof: (a) In view of Eq. (2.6b), for all (i, j) ∈ S, we have pj = aij − πi, so
Eq. (2.6a) implies that aij − πi ≥ akj − πk − ε for all k ∈ B(j). This shows
Eq. (2.7).

(b) The proof is the same as the one of part (a) with the roles of π and p
interchanged.

(c) Since by part (b) the ε-CS condition (2.8) is satisfied, by Prop. 2.6 of
Section 1.2, S is within nε of being optimal. Q.E.D.

We now introduce a combined forward/reverse auction algorithm. The
algorithm starts with and maintains an assignment S and a profit-price pair
(π, p) satisfying the ε-CS condition (2.6). It terminates when the assignment
is feasible.
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Combined Forward/Reverse Auction Algorithm

Step 1 (Run forward auction): Execute several iterations of the forward

auction algorithm (subject to the termination condition), and at the end of

each iteration (after increasing the prices of the objects that received a bid)

set

πi = aiji − pji (2.9)

for every person-object pair (i, ji) that entered the assignment during the

iteration. Go to Step 2.

Step 2 (Run reverse auction): Execute several iterations of the reverse

auction algorithm (subject to the termination condition), and at the end of

each iteration (after increasing the profits of the persons that received a bid)

set

pj = aij j − πij (2.10)

for every person-object pair (ij , j) that entered the assignment during the

iteration. Go to Step 1.

Note that the additional overhead of the combined algorithm over the
forward or the reverse algorithm is minimal; just one update of the form (2.9)
or (2.10) is required per iteration for each object or person that received a bid
during the iteration. An important property is that these updates maintain
the ε-CS condition (2.6) for the pair (π, p), and therefore, by Prop. 2.2, main-
tain the required ε-CS conditions (2.7) and (2.8) for π and p, respectively.
This is shown in the following proposition.

Proposition 2.3: If the assignment and the profit-price pair available at
the start of an iteration of either the forward or the reverse auction algorithm
satisfy the ε-CS condition (2.6), the same is true for the assignment and the
profit-price pair obtained at the end of the iteration, provided Eq. (2.9) is
used to update π (in the case of forward auction), and Eq. (2.10) is used to
update p (in the case of reverse auction).

Proof: Assume for concreteness that forward auction is used, and let (π, p)
and (π, p) be the profit-price pair before and after the iteration, respectively.
Then, pj ≥ pj for all j (with strict inequality if and only if j received a bid
during the iteration). Therefore, we have πi + pj ≥ aij − ε for all (i, j) such
that πi = πi. Furthermore, we have πi + pj = πi + pj = aij for all (i, j) that
belong to the assignment before as well as after the iteration. Also, in view
of the update (2.9), we have πi + pji

= aiji for all pairs (i, ji) that entered the
assignment during the iteration. What remains is to verify that the condition

πi + pj ≥ aij − ε, ∀ j ∈ A(i) (2.11)
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holds for all persons i that submitted a bid and were assigned to an object,
say ji, during the iteration. Indeed, for such a person i, we have, by Eq. (1.4),

pji
= aiji − max

j∈A(i), j �=ji
{aij − pj} + ε,

which implies that

πi = aiji − pji
≥ aij − pj − ε ≥ aij − pj − ε, ∀ j ∈ A(i).

This shows the desired relation (2.11). Q.E.D.

Note that during forward auction the object prices pj increase while the
profits πi decrease, but exactly the opposite happens in reverse auction. For
this reason, the termination proof that we used for forward and for reverse
auction does not apply to the combined method. Indeed, it is possible to
construct examples of feasible problems where the combined method never
terminates if the switch between forward and reverse auctions is done arbi-
trarily. However, it is easy to guarantee that the combined algorithm termi-
nates for a feasible problem; it is sufficient to ensure that some “irreversible
progress” is made before switching between forward and reverse auction. One
easily implementable possibility is to refrain from switching until the number
of assigned person-object pairs increases by at least one.

The combined forward/reverse auction algorithm often works substan-
tially faster than the forward version. It seems to to be affected less by “price
wars,” that is, protracted sequences of small price rises by a number of persons
bidding for a smaller number of objects (cf. Fig. 2.13 in Section 1.2). Price
wars can still occur in the combined algorithm, by they arise through more
complex and unlikely problem structures than in the forward algorithm. For
this reason the combined forward/reverse auction algorithm depends less on
ε-scaling for good performance than its forward counterpart; in fact, starting
with ε = 1/(n + 1), thus bypassing ε-scaling, is often the best choice.

4.2.1 Auction Algorithms for Asymmetric Assignment
Problems

Reverse auction can be used in conjunction with forward auction to provide
algorithms for solving the asymmetric assignment problem, where the number
of objects n is larger than the number of persons m. Here we still require
that each person be assigned to some object, but we allow objects to remain
unassigned. As before, an assignment S is a (possibly empty) set of person-
object pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S; for each person i there
can be at most one pair (i, j) ∈ S; and for every object j there can be at most
one pair (i, j) ∈ S. The assignment S is said to be feasible if all persons are
assigned under S.
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The corresponding linear programming problem is

maximize
∑

(i,j)∈A
aijxij

subject to ∑
j∈A(i)

xij = 1, ∀ i = 1, . . . , m, (2.12)

∑
i∈B(j)

xij ≤ 1, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A.

We can convert this program to the minimum cost flow problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to ∑
j∈A(i)

xij = 1, ∀ i = 1, . . . , m, (2.13)

∑
i∈B(j)

xij + xsj = 1, ∀ j = 1, . . . , n,

n∑
j=1

xsj = n − m,

0 ≤ xij, ∀ (i, j) ∈ A,

0 ≤ xsj, ∀ j = 1, . . . , n,

by replacing maximization by minimization, by reversing the sign of aij , and
by introducing a supersource node s, which is connected to each object node
j by an arc (s, j) of zero cost and feasible flow range [0,∞) (see Fig. 2.1).

Using the theory of Section 1.2 (cf. Prop. 2.5 and Exercise 2.11 of that
section), it can be seen that the corresponding dual problem is

minimize
m∑

i=1

πi +
n∑

j=1

pj − (n − m)λ

subject to
πi + pj ≥ aij, ∀ (i, j) ∈ A, (2.14)
λ ≤ pj, ∀ j = 1, . . . , n,

where we have converted maximization to minimization, we have used −πi in
place of the price of each person node i, and we have denoted by λ the price
of the supersource node s.
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Figure 2.1 Converting an asymmetric assignment problem into a minimum

cost flow problem involving a supersource node s and a zero cost artificial arc

(s, j) with feasible flow range [0,∞) for each object j.

We now introduce an ε-CS condition for an assignment S and a pair
(π, p).

Definition 2.2: An assignment S and a pair (π, p) are said to satisfy ε-CS
if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.15a)
πi + pj = aij, ∀ (i, j) ∈ S, (2.15b)

pj ≤ min
k: assigned under S

pk, ∀ j : unassigned under S. (2.15c)

The following proposition clarifies the significance of the preceding ε-CS
condition.

Proposition 2.4: If a feasible assignment S satisfies the ε-CS conditions
(2.15) together with a pair (π, p), then S is within mε of being optimal for
the asymmetric assignment problem. The triplet (π̂, p̂, λ), where

λ = min
k: assigned under S

pk, (2.16a)
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π̂i = πi + ε, ∀ i = 1, . . . , m, (2.16b)

p̂j =
{

pj, if j is assigned under S,
λ, if j is unassigned under S

∀ j = 1, . . . , n, (2.16c)

is within mε of being an optimal solution of the dual problem (2.14).

Proof: For any feasible assignment {(i, ki) | i = 1, . . . , m} and for any triplet
(π, p, λ) satisfying the dual feasibility constraints πi+pj ≥ aij for all (i, j) ∈ A
and λ ≤ pj for all j, we have

m∑
i=1

aiki ≤
m∑

i=1

πi +
m∑

i=1

pki
≤

m∑
i=1

πi +
n∑

j=1

pj − (n − m)λ.

By maximizing over all feasible assignments {(i, ki) | i = 1, . . . , m} and by
minimizing over all dual-feasible triplets (π, p, λ), we see that

A∗ ≤ D∗,

where A∗ is the optimal assignment value and D∗ is the minimal dual cost.
Let now S = {(i, ji) | i = 1, . . . , m} be the given assignment satisfying

ε-CS together with (π, p), and consider the triplet (π̂, p̂, λ) defined by Eq.
(2.16). Since for all i we have π̂i + p̂ji = aij + ε, we obtain

A∗ ≥
m∑

i=1

aiji =
m∑

i=1

π̂i +
m∑

i=1

p̂ji − mε ≥
m∑

i=1

π̂i +
n∑

j=1

p̂j − (n − m)λ − mε

≥ D∗ − mε,

where the last inequality holds because the triplet (π̂, p̂, λ) is feasible for the
dual problem. Since we showed earlier that A∗ ≤ D∗, the desired conclusion
follows. Q.E.D.

Consider now trying to solve the asymmetric assignment problem by
means of auction. We can start with any assignment S and pair (π, p) satisfy-
ing the first two ε-CS conditions (2.15a) and (2.15b), and perform a forward
auction (as defined earlier for the symmetric assignment problem) up to the
point where each person is assigned to a distinct object. For a feasible prob-
lem, by essentially repeating the proof of Prop. 1.2 for the symmetric case,
it can be seen that this will yield, in a finite number of iterations, a feasible
assignment S satisfying the first two conditions (2.15a) and (2.15b). However,
this assignment may not be optimal, because the prices of the unassigned ob-
jects j are not minimal; that is, they do not satisfy the third ε-CS condition
(2.15c).

To remedy this situation, we use a modified form of reverse auction to
lower the prices of the unassigned objects so that, after several iterations in
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which persons may be reassigned to other objects, the third condition, (2.15c),
is satisfied. We will show that the assignment thus obtained satisfies all the
ε-CS conditions (2.15a)-(2.15c), and by Prop. 2.4, is optimal within mε (and
thus optimal if the problem data are integer and ε < 1/m).

The modified reversed auction starts with a feasible assignment S and
with a pair (π, p) satisfying the first two ε-CS conditions (2.15a) and (2.15b).
[For a feasible problem, such an S and (π, p) can be obtained by regular
forward or reverse auction, as discussed earlier.] Let us denote by λ the
minimal assigned object price under the initial assignment,

λ = min
j: assigned under the initial assignment S

pj. (2.17)

The typical iteration of modified reverse auction is the same as the one of
reverse auction, except that only unassigned objects j with pj > λ participate
in the auction. In particular, the algorithm maintains a feasible assignment
S and a pair (π, p) satisfying Eqs. (2.15a) and (2.15b), and terminates when
all unassigned objects j satisfy pj ≤ λ, in which case it will be seen that the
third ε-CS condition (2.15c) is satisfied as well. The scalar λ is kept fixed
throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Asymmetric Assignment:

Select an object j that is unassigned under the assignment S and satisfies

pj > λ (if no such object can be found, the algorithm terminates). Find a

“best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.18)

and find

ωj = max
i∈B(j), i�=ij

{aij − πi}. (2.19)

[If ij is the only person in B(j), we define ωj to be −∞.] If λ ≥ βj − ε, set

pj := λ and go to the next iteration. Otherwise, let

δ = min{βj − λ, βj − ωj + ε}. (2.20)

Set

pj := βj − δ, (2.21)

πij := πij + δ, (2.22)
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add to the assignment S the pair (ij , j), and remove from S the pair (ij , j
′),

where j ′ is the object that was assigned to ij under S at the start of the

iteration.

Note that the formula (2.20) for the bidding increment δ is such that the
object j enters the assignment at a price which is no less that λ [and is equal
to λ if and only if the minimum in Eq. (2.20) is attained by the first term].
Furthermore, when δ is calculated (that is, when λ > βj − ε) we have δ ≥ ε,
so it can be seen from Eqs. (2.21) and (2.22) that, throughout the algorithm,
prices are monotonically decreasing and profits are monotonically increasing.
The following proposition establishes the validity of the method.

Proposition 2.5: The modified reverse auction algorithm for the asym-
metric assignment problem terminates with an assignment that is within mε
of being optimal.

Proof: In view of Prop. 2.4, the result will follow once we prove the follow-
ing:

(a) The modified reverse auction iteration preserves the first two ε-CS con-
ditions (2.15a) and (2.15b), as well as the condition

λ ≤ min
j: assigned under the current assignment S

pj, (2.23)

so upon termination of the algorithm (necessarily with the prices of all
unassigned objects less or equal to λ) the third ε-CS condition, (2.15c),
is satisfied.

(b) The algorithm terminates.

We will prove these facts in sequence.
We assume that the conditions (2.15a), (2.15b), and (2.23) are satisfied

at the start of an iteration, and we will show that they are also satisfied at the
end of the iteration. First consider the case where there is no change in the
assignment, which happens when λ ≥ βj − ε. Then Eqs. (2.15b), and (2.23)
are automatically satisfied at the end of the iteration; only pj changes in the
iteration according to

pj := λ ≥ βj − ε = max
i∈B(j)

{aij − πi} − ε,

so the condition (2.15a) is also satisfied at the end of the iteration.
Next consider the case where there is a change in the assignment during

the iteration. Let (π, p) and (π, p) be the profit-price pair before and after the
iteration, respectively, and let j and ij be the object and person involved in the
iteration. By construction [cf. Eqs. (2.21) and (2.22)], we have πij + pj = aijj

and since πi = πi and pk = pk for all i �= ij and k �= j, we see that the
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condition (2.15b) (πi + pk = aik) is satisfied for all assigned pairs (i, k) at the
end of the iteration.

To show that the condition (2.15a) is satisfied at the end of the iteration,
that is,

πi + pk ≥ aik − ε, ∀ (i, k) ∈ A, (2.24)

consider first objects k �= j. Then, pk = pk and since πi ≥ πi for all i,
the above condition holds, since our hypothesis is that at the start of the
iteration we have πi + pk ≥ aik − ε for all (i, k). Consider next the case k = j.
Then condition (2.24) holds for i = ij , since πij + pj = aijj . Also using Eqs.
(2.18)-(2.21) and the fact δ ≥ ε, we have for all i �= ij

πi + pj = πi + pj ≥ πi + βj − (βj − ωj + ε)

= πi + ωj − ε ≥ πi + (aij − πi) − ε = aij − ε,

so condition (2.24) holds for i �= ij and k = j, completing the proof of Eq.
(2.24). To see that condition (2.23) is maintained by the iteration, note that
by Eqs. (2.18), (2.19), and (2.21), we have

pj = βj − δ ≥ βj − (βj − λ) = λ.

Finally, to show that the algorithm terminates, we note that in the
typical iteration involving object j and person ij there are two possibilities:

(1) The price of object j is set to λ without the object entering the assign-
ment; this occurs if λ ≥ βj − ε.

(2) The profit of person ij increases by at least ε [this is seen from the
definition (2.20) of δ; we have λ < βj − ε and βj ≥ ωj , so δ ≥ ε].

Since only objects j with pj > λ can participate in the auction, possibility
(1) can occur only a finite number of times. Thus, if the algorithm does not
terminate, the profits of some persons will increase to ∞. This is impossible,
since when person i is assigned to object j we must have by Eqs. (2.15b) and
(2.23)

πi = aij − pj ≤ aij − λ,

so the profits are bounded from above by max(i,j)∈A aij−λ. Thus the algorithm
must terminate. Q.E.D.

Note that one may bypass the modified reverse auction algorithm by
starting the forward auction with all object prices equal to zero. Upon termi-
nation of the forward auction, the prices of the unassigned objects will still be
at zero, while the prices of the assigned objects will be nonnegative. Therefore
the ε-CS condition (2.15c) will be satisfied, and the modified reverse auction
will be unnecessary (see Exercise 2.2).
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Unfortunately the requirement of zero initial object prices is incompat-
ible with ε-scaling. The principal advantage offered by the modified reverse
auction algorithm is that it allows arbitrary initial object prices for the for-
ward auction, thereby also allowing the use of ε-scaling. This can be shown
to improve the theoretical worst-case complexity of the method, and is often
beneficial in practice, particularly for sparse problems.

Reverse auction can be used also in the context of other types of network
flow problems. One example is the variation of the asymmetric assignment
problem where persons (as well as objects) need not be assigned if this de-
grades the assignment’s value (see Exercise 2.3). Another class of assignment-
like problems is described in the next subsection.

4.2.2 Auction Algorithms for Multiassignment Problems

An interesting type of assignment problem is described by the linear program

maximize
∑

(i,j)∈A
aijxij

subject to∑
j∈A(i)

xij ≥ 1, ∀ i = 1, . . . , m, (2.25)

∑
i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

0 ≤ xij, ∀ (i, j) ∈ A,

where m < n. For feasibility, we assume that the sets A(i) and B(j) are
nonempty for all i and j. This is known as the multiassignment problem,
and is characterized by the possibility of assignment of more than one object
to a single person. Problems of this type arise in military applications such
as multi-target tracking with sensors of limited resolution [Bla86], [BaF88],
where objects correspond to tracked moving objects and persons correspond
to data points each representing at least one object (but possibly more than
one because of the sensor’s limited resolution). The multiassignment problem
results when we try to associate data points with moving objects so as to
match as closely as possible these data points with our prior knowledge of the
objects’ positions.

We can convert the multiassignment problem to the minimum cost flow
problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to
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j∈A(i)

xij − xsi = 1, ∀ i = 1, . . . , m, (2.26)

∑
i∈B(j)

xij = 1, ∀ j = 1, . . . , n,

m∑
i=1

xsi = n − m,

0 ≤ xij, ∀ (i, j) ∈ A,

0 ≤ xsi, ∀ i = 1, . . . , n,

by replacing maximization by minimization, by reversing the sign of aij , and
by introducing a supersource node s, which is connected to each person node
i by an arc (s, i) of zero cost and feasible flow range [0,∞) (see Fig. 2.2).

Figure 2.2 Converting a multiassignment problem into a minimum cost

flow problem involving a supersource node s and a zero cost artificial arc (s, i)

with feasible flow range [0,∞) for each person i.

Again using the theory of Section 1.2 and appropriately redefining the
price variables corresponding to the nodes, it can be seen that the correspond-
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ing dual problem is

minimize
m∑

i=1

πi +
n∑

j=1

pj + (n − m)λ

subject to
πi + pj ≥ aij, ∀ (i, j) ∈ A, (2.27)
λ ≥ πi, ∀ i = 1, . . . , m.

We define a multiassignment S to be a set of pairs (i, j) ∈ A such that
for each object j, there is at most one pair (i, j) in S. A person i for which
there are more than one pairs (i, j) in S is said to be multiassigned under
S. We now introduce an ε-CS condition for a multiassignment S and a pair
(π, p).

Definition 2.3: A multiassignment S and a pair (π, p) are said to satisfy
ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.28a)

πi + pj = aij, ∀ (i, j) ∈ S, (2.28b)

πi = max
k=1,...,m

πk, if i is multiassigned under S. (2.28c)

We have the following result.
Proposition 2.6: If a feasible multiassignment S satisfies the ε-CS condi-
tions (2.28) together with a pair (π, p), then S is within nε of being optimal
for the multiassignment problem. The triplet (π̂, p, λ̂), where

π̂i = πi + ε, ∀ i = 1, . . . , m,

λ̂ = max
k=1,...,m

π̂k,

is within nε of being an optimal solution of the dual problem (2.27).
Proof: Very similar to the proof of Prop. 2.4 – left for the reader. Q.E.D.

Consider now trying to solve the multiassignment problem by means of
auction. We can start with any multiassignment S and profit-price pair (π, p)
satisfying the first two ε-CS conditions (2.28a) and (2.28b), and perform a
forward auction up to the point where each person is assigned to a (single)
distinct object, while satisfying the conditions (2.28a) and (2.28b). However,
this multiassignment will not be feasible, because some objects will still be
unassigned.

To make further progress, we use a modified reverse auction that starts
with the final results of the forward auction (that is, a multiassignment S,
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where each person is assigned to a single distinct object) and with a pair
(π, p) satisfying the first two ε-CS conditions (2.28a) and (2.28b). Let us
denote by λ the maximal initial person profit,

λ = max
i=1,...,m

πi. (2.29)

The typical iteration, given below, is the same as the one of reverse auction,
except that unassigned objects j that bid for a person may not necessarily
displace the object assigned to the person but may instead share the person
with its already assigned object(s); this will happen if and only if the person’s
profit has reached the upper bound λ.

The algorithm maintains a multiassignment S, for which each person is
assigned to at least one object, and a pair (π, p) satisfying Eqs. (2.28a) and
(2.28b); it terminates when all unassigned objects j have been assigned. It
will be seen that upon termination, the third ε-CS condition (2.28c) will be
satisfied as well. The scalar λ is kept fixed throughout the algorithm.

Typical Iteration of Modified Reverse Auction for Multiassignment

Select an object j that is unassigned under the multiassignment S (if all objects

are assigned, the algorithm terminates). Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi}, (2.30)

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.31)

and find

ωj = max
i∈B(j), i�=ij

{aij − πi}. (2.32)

[If ij is the only person in B(j), we define ωj to be −∞.] Let

δ = min{λ − πij , βj − ωj + ε}. (2.33)

Add (ij , j) to the multiassignment S, set

pj := βj − δ, (2.34)

πij := πij + δ, (2.35)

and, if δ > 0, remove from the multiassignment S the pair (ij , j
′), where j ′

was assigned to ij under S.

Note that in an iteration the number of assigned objects increases by
one if and only if δ = 0 [which is equivalent to πij = λ, since the second
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term βj − ωj + ε in Eq. (2.33) is always greater or equal to ε]. The following
proposition establishes the validity of the method.
Proposition 2.7: The modified reverse auction algorithm for the multias-
signment problem terminates with a feasible multiassignment that is within
nε of being optimal.

Proof: In view of Prop. 2.6, the result will follow once we prove the follow-
ing:

(a) The modified reverse auction iteration preserves the ε-CS conditions
(2.28), as well as the condition

λ = max
i=1,...,m

πi. (2.36)

(b) The algorithm terminates (necessarily with a feasible multiassignment).
To show (a) we use induction. In particular, we will show that if the

conditions (2.28) and (2.36) are satisfied at the start of an iteration, they are
also satisfied at the end of the iteration. This is easily seen to be true for
Eqs. (2.28a) and (2.28b). Equations (2.28c) and (2.36) are preserved, since
we have λ = maxi=1,...,m πi at the start of the iteration and the only profit that
changes is πij , which by Eqs. (2.33) and (2.35) is set to something that is less
or equal to λ, and is set to λ if and only if ij is multiassigned at the end of
the iteration.

To show termination, we observe that a person i can receive a bid only a
finite number of times after the profit πi is set to λ, since at each of these times
the corresponding object will get assigned to i without any object already
assigned to i becoming unassigned. On the other hand, by Eqs. (2.33) and
(2.35), at an iteration where a person receives a bid, his or her profit is either
set equal to λ or else increases by at least ε. Since profits are bounded above
by λ throughout the algorithm, it follows that each person can receive only a
finite number of bids; this proves termination. Q.E.D.

When the problem data are integer, Prop. 2.7 shows that the auction
algorithm terminates with an optimal multiassignment provided ε < 1/n. It is
possible to strengthen this result and show that it is sufficient that ε < 1/m for
optimality of the final multiassignment. This, however, requires a somewhat
different proof argument than the one we have used so far; see Prop. 4.1 and
Exercises 4.6 and 4.7 in Section 4.4.

E X E R C I S E S

Exercise 2.1 (Equivalence of Two Forms of Reverse Auction)

Show that the iteration of the Gauss-Seidel version of the reverse auction algo-

rithm for the (symmetric) assignment problem can equivalently be described
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by the following iteration, which maintains an assignment and a pair (π, p)

satisfying the ε-CS condition (2.6):

Step 1: Choose an unassigned object j.

Step 2: Decrease pj to the highest level for which two or more persons will

increase their profit by at least ε after assignment to j, that is, set pj to the

highest level for which aij − pj ≥ πi + ε for at least two persons i, where πi is

the profit of i at the start of the iteration.

Step 3: From the persons in Step 2, assign to j a person ij that experiences

maximum profit increase after assignment to j, and cancel the prior assignment

of ij if he or she was assigned at the start of the iteration. Set the profit of ij
to aij j − pj .

Exercise 2.2

Consider the asymmetric assignment problem and apply forward auction start-

ing with the zero price vector and the empty assignment. Show that, for a

feasible problem, the algorithm terminates with a feasible assignment that is

within mε of being optimal. Note: Because this method must start with the

zero price vector, it does not admit ε-scaling.

Exercise 2.3 (A Variation of the Asymmetric Assignment Problem)

Consider a problem which is the same as the asymmetric assignment problem

with the exception that in a feasible assignment S there can be at most one

incident arc for every person and at most one incident arc for every object

(that is, there is no need for every person, as well as for every object, to be

assigned). The corresponding linear program is

maximize
∑

(i,j)∈A

aijxij

subject to∑
j∈A(i)

xij ≤ 1, ∀ i = 1, . . . , m,

∑
i∈B(j)

xij ≤ 1, ∀ j = 1, . . . , n,

0 ≤ xij , ∀ (i, j) ∈ A.

(a) Show that this problem can be converted to an asymmetric assignment

problem where all persons must be assigned. Hint: For each person i

introduce an artificial object i′ and a zero cost arc (i, i′).
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(b) Adapt and streamline the auction algorithm of Section 4.2.1 to solve the

problem.

Exercise 2.4

Consider the multiassignment problem. Derive a combined forward/reverse

auction algorithm similar to the one for the symmetric assignment problem.

Forward auction iterations should be used only when there are unassigned

persons, and reverse auction iterations should be such that the quantity λ =

maxi πi is never increased.

Exercise 2.5 (A Refinement of the Optimality Conditions)

(a) Consider the asymmetric assignment problem with integer data, and

suppose that we have a feasible assignment S and a pair (π, p) satisfying

the first two ε-CS conditions (2.15a) and (2.15b) with ε < 1/m. Show

that in order for S to be optimal it is sufficient that

pk ≤ pt

for all k and t such that k is unassigned under S, t is assigned under S,

and there exists a path (k, i1, j1, . . . , iq, jq, iq+1, t) such that (ir, jr) ∈ S

for r = 1, . . . , q, and (iq+1, t) ∈ S. Hint : Consider the existence of cycles

with positive value along which S can be modified.

(b) Consider the multiassignment problem. Derive a result analogous to

the one of part (a), with the condition pk ≤ pt replaced by the condition

πk ≥ πt, where k is any multiassigned person and t is any person for

which there exists a path (k, j1, i1, . . . , jq, iq, jq+1, t) such that (k, j1) ∈ S

and (ir, jr+1) ∈ S for r = 1, . . . , q.

4.3 AN AUCTION ALGORITHM FOR SHORTEST PATHS

In this section we consider an algorithm for finding a shortest path from several
origins to a single destination in a directed graph (N ,A). We will see later
that this algorithm can also be viewed as an application of the naive auction
algorithm (this is the auction algorithm with ε = 0, discussed in Section 1.2.4)
to a special type of assignment problem that is equivalent to the shortest path
problem.
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We will assume throughout this section that all cycles have positive
length. When all the arc lengths are nonnegative, the cycle positivity as-
sumption can be weakened to a nonnegativity assumption at the expense of
complicating the algorithm somewhat; see Exercise 3.3.

To simplify the presentation, we also assume that each node except for
the destination has at least one outgoing incident arc; any node not satisfying
this condition can be connected to the destination with a very high length arc
without materially changing the problem and the subsequent algorithm.

For the single origin case the algorithm is very simple. It maintains a
single path starting at the origin. At each iteration, the path is either extended
by adding a new node or contracted by deleting its terminal node. When the
destination becomes the terminal node of the path, the algorithm terminates.

To get an intuitive sense of the algorithm, think of a person moving
in a graph-like maze, trying to reach a destination. The person criss-crosses
the maze, either advancing or backtracking along the current path. Each
time the person backtracks from a node, he or she records a measure of the
desirability of revisiting and advancing from that node in the future (this
will be implemented with the help of a price variable). The person revisits
and proceeds forward from a node when the node’s measure of desirability
is judged superior to those of other nodes. The algorithm of this section
emulates this search process efficiently, using simple data structures.

Similar to the algorithms of Section 1.3, complementary slackness condi-
tions are fundamental for the algorithm of this section. However, it is helpful
for our purposes to reformulate these conditions in terms of node prices pi

rather than the node labels di used in Section 1.3.
In particular, given a simple (forward) path P and a price vector p

consisting of prices pi, we say that the pair (P, p) satisfies complementary
slackness (CS) if

pi ≤ aij + pj, ∀ (i, j) ∈ A, (3.1a)

pi = aij + pj, for all pairs of successive nodes i and j of P . (3.1b)

[When we say that the pair (P, p) satisfies CS, we implicitly assume that P is
simple.]

The CS conditions given above are equivalent to the CS conditions for
the shortest path problem given in Prop. 3.1 in Section 1.3, with the labels
di of that proposition replaced by the negative prices −pi. It follows that if a
pair (P, p) satisfies CS, then the portion of P between any node i ∈ P and any
node k ∈ P is a shortest path from i to k, while pi − pk is the corresponding
shortest distance. This can also be seen directly by observing that by Eq.
(3.1b), pi − pk is the length of the portion of P between i and k, and every
path connecting i to k must have length at least equal to pi − pk [add Eq.
(3.1a) along the arcs of the path].
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There is an interesting interpretation of the CS conditions in terms of
a mechanical model [Min57]. Think of each node as a ball, and for every arc
(i, j) ∈ A, connect i and j with a string of length aij . (This requires that
aij = aji > 0, which we assume.) Let the resulting balls-and-strings model be
at an arbitrary position in three-dimensional space, and let pi be the vertical
coordinate of node i. Then the CS condition pi − pj ≤ aij clearly holds for
all arcs (i, j), as illustrated in Fig. 3.1(b). If the model is picked up and left
to hang from the origin node (by gravity – strings that are tight are perfectly
vertical), then for all the tight strings (i, j) we have pi − pj = aij , so any tight
chain of strings corresponds to a shortest path between the endnodes of the
chain, as illustrated in Fig. 3.1(c). In particular, the length of the tight chain
connecting the origin node 1 to any other node i is p1 −pi and is also equal to
the shortest distance from 1 to i. (This result is essentially the min path/max
tension theorem described in Exercise 3.5 of Chapter 1.)

Figure 3.1 Illustration of the CS conditions. If each node is a ball, and for

every arc (i, j) ∈ A, nodes i and j are connected with a string of length aij , the

vertical coordinates pi of the nodes satisfy pi − pj ≤ aij , as shown in (b) for the

problem given in (a). If the model is picked up and left to hang from the origin

node 1, then p1 − pi gives the shortest distance to each node i, as shown in (c).

The algorithm of this section can be interpreted in terms of the balls-
and-strings model, as we will see shortly. As a prelude to this, it is interesting
to note that Dijkstra’s algorithm can also be interpreted in terms of this
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model, as shown in Fig. 3.2. At each iteration of the algorithm, the model is
lifted by the origin node to the level where at least one more string becomes
tight. Note that this interpretation leads to an interesting two-sided version
of Dijkstra’s algorithm for the single origin/single destination problem. In
particular, it can be seen that a solution can be obtained by lifting the model
upward from the origin, and simultaneously pulling the model downward from
the destination. The corresponding algorithm is given in Exercise 3.5.

Figure 3.2 Interpretation of Dijkstra’s algorithm in terms of the balls-

and-strings model for the shortest path problem of Fig. 3.1. The model initially

rests on a flat surface. It is then picked up from the origin and lifted in stages.

At each stage the origin is raised to the next higher level at which one more node

is ready to be lifted off the surface. Thus at each stage the shortest distance to

at least one more node is found. Furthermore, the shortest distances of the nodes

are obtained in the order of the nodes’ proximity to the origin.

4.3.1 Algorithm Description and Analysis

We describe the algorithm in its simplest form for the case of a single origin
and a single destination, and we defer the discussion of other and more efficient
versions.

Let node 1 be the origin node and let t be the destination node. The
algorithm maintains at all times a simple path P = (1, i1, i2, . . . , ik). (When
we refer to a path in this section, we implicitly assume that the path is forward ;
that is, all the arcs of the path are forward arcs.) The node ik is called the
terminal node of P . The degenerate path P = (1) may also be obtained
in the course of the algorithm. If ik+1 is a node that does not belong to a
path P = (1, i1, i2, . . . , ik) and (ik, ik+1) is an arc, extending P by ik+1 means
replacing P by the path (1, i1, i2, . . . , ik, ik+1), called the extension of P by
ik+1. If P does not consist of just the origin node 1, contracting P means
replacing P by the path (1, i1, i2, . . . , ik−1).
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The algorithm maintains also a price vector p satisfying CS together
with P . We assume that an initial pair (P, p) satisfying CS is available. This
is not a restrictive assumption when all arc lengths are nonnegative, since
then one can use the default pair

P = (1), pi = 0, ∀ i.

When some arcs have negative lengths, an initial choice of a pair (P, p) satis-
fying CS may not be obvious or available, but Exercise 3.2 provides a general
method for finding such a pair.

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS.
The algorithm proceeds in iterations, transforming a pair (P, p) satisfying
CS into another pair satisfying CS. At each iteration, the path P is either
extended by a new node or else contracted by deleting its terminal node. In
the latter case the price of the terminal node is increased strictly. A degenerate
case occurs when the path consists by just the origin node 1; in this case the
path is either extended or is left unchanged with the price p1 being strictly
increased. The iteration is as follows.

Typical Iteration

Let i be the terminal node of P . If

pi < min
(i,j)∈A

{
aij + pj

}
, (3.2)

go to Step 1; else go to Step 2.

Step 1 (Contract path): Set

pi := min
(i,j)∈A

{
aij + pj

}
, (3.3)

and if i �= 1, contract P . Go to the next iteration.

Step 2 (Extend path): Extend P by node ji where

ji = arg min
(i,j)∈A

{
aij + pj

}
. (3.4)

If ji is the destination t, stop; P is the desired shortest path. Otherwise, go

to the next iteration.

Note that following an extension (Step 2), P is a simple path from 1 to
ji; if this were not so, then adding ji to P would create a cycle, and for every
arc (i, j) of this cycle we would have pi = aij + pj . By adding this condition
along the cycle, we see that the cycle should have zero length, which is not
possible by our assumptions.
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Figure 3.3 illustrates the algorithm. As can be seen from the example of
this figure, the terminal node traces the tree of shortest paths from the origin
to the nodes that are closer to the origin than the given destination. This
behavior is typical when the initial prices are all zero as we will show shortly.
We now derive the properties of the algorithm and establish its validity.

Proposition 3.1: The pairs (P, p) generated by the algorithm satisfy CS.
Furthermore, for every pair of nodes i and j, and at all iterations, pi − pj is
an underestimate of the shortest distance from i to j.

Proof: We first show by induction that (P, p) satisfies CS. Indeed, the initial
pair satisfies CS by assumption. Consider an iteration that starts with a pair
(P, p) satisfying CS and produces a pair (P̄ , p̄). Let i be the terminal node of
P . If

pi = min
(i,j)∈A

{aij + pj}, (3.5)

then P̄ is the extension of P by a node ji and p̄ = p, implying that the CS
condition (3.1b) holds for all arcs of P as well as arc (i, ji) [since ji attains
the minimum in Eq. (3.5); cf. Eq. (3.4)].

Suppose next that

pi < min
(i,j)∈A

{aij + pj}.

Then if P is the degenerate path (1), the CS condition holds vacuously. Oth-
erwise, P̄ is obtained by contracting P , we have p̄i > pi, and for all nodes
j ∈ P̄ , we have p̄j = pj , implying the CS conditions (3.1a) and (3.1b) for arcs
outgoing from nodes of P̄ . Also, for the terminal node i, we have

p̄i = min
(i,j)∈A

{aij + pj},

implying the CS condition (3.1a) for arcs outgoing from that node as well.
Furthermore, since p̄i > pi and p̄k = pk for all k �= i, we have p̄k ≤ akj + p̄j

for all arcs (k, j) outgoing from nodes k /∈ P . This completes the induction
proof that (P, p) satisfies CS.

Finally consider any path from a node i to a node j. By adding the CS
condition (3.1a) along that path, we see that the length of the path is at least
pi − pj , proving the last assertion of the proposition. Q.E.D.

Proposition 3.2: If P is a path generated by the algorithm, then P is a
shortest path from the origin to the terminal node of P .

Proof: This follows from the CS property of the pair (P, p) shown in Prop.
3.1; see the remarks following the CS conditions (3.1). In particular, by the
CS condition (3.1b), P has length p1 − pi, and by the CS condition (3.1a),
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Iteration # Path P prior Price vector p prior Type of action

to the iteration to the iteration during the iteration

1 (1) (0, 0, 0, 0) contraction at 1

2 (1) (1, 0, 0, 0) extension to 2

3 (1, 2) (1, 0, 0, 0) contraction at 2

4 (1) (1, 2, 0, 0) contraction at 1

5 (1) (2, 2, 0, 0) extension to 3

6 (1, 3) (2, 2, 0, 0) contraction at 3

7 (1) (2, 2, 2, 0) contraction at 1

8 (1) (3, 2, 2, 0) extension to 2

9 (1, 2) (3, 2, 2, 0) extension to 4

10 (1, 2, 4) (3, 2, 2, 0) stop

Figure 3.3 An example illustrating the algorithm starting with P = (1)

and p = 0.
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every path connecting 1 and i must have length at least equal to p1 − pi.
Q.E.D.

Interpretations of the Algorithm

The algorithm can be interpreted in terms of a balls-and-strings model where
nodes are raised in stages as illustrated in Fig. 3.4. All nodes are resting
initially on a flat surface. At each stage, we raise the last node in a tight
chain that starts at the origin to the level at which at least one more string
becomes tight. This should be contrasted with Dijkstra’s algorithm (cf. Fig.
3.2), where we raise the entire set of nodes that are connected with the origin
via a tight chain.

For an alternative interpretation, denote for each node i,

Di = shortest distance from the origin 1 to node i, (3.6)

with D1 = 0 by convention. By Prop. 3.1, we have throughout the algorithm

p1 − pj ≤ Dj, ∀ j ∈ N ,

while by Prop. 3.2, we have

p1 − pi = Di, for all i ∈ P .

The preceding two relations imply that

Di + pi − pt ≤ Dj + pj − pt, ∀ i ∈ P, and j ∈ N .

Since by Prop. 3.1 pj − pt is an estimate of the shortest distance from j to t,
we may view the quantity

Dj + pj − pt

as an estimate of the shortest distance from 1 to t using only paths passing
through j. Thus, intuitively, it makes sense to consider a node j as “most
desirable” for inclusion in the algorithm’s path if Dj + pj − pt is minimal.

Based on the preceding interpretation, it can be seen that:

(a) The algorithm maintains a path consisting of “most desirable” candi-
dates for participation in a shortest path from 1 to t.

(b) The algorithm extends P by a node j if and only if j is a “most desirable”
candidate.

(c) The algorithm contracts P if the terminal node i has no neighbor that
is “most desirable.” Then, the estimate of i’s shortest distance to t is
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Figure 3.4 Illustration of the algorithm of this section in terms of the

balls-and-strings model for the problem shown in (a). The model initially rests on

a flat surface, and various balls are then raised in stages. At each stage we raise a

single ball i �= t, which is at a lower level than the origin and can be reached from

the origin through a sequence of tight strings; i should not have any tight string

connecting it to another ball, which is at a lower level, that is, i should be the last

ball in a tight chain hanging from the origin. (If the origin does not have any tight

string connecting it to another ball, which is at a lower level, we use i = origin.)

We then raise i to the first level at which one of the strings connecting it to a ball

at a lower level becomes tight. Each stage corresponds to a contraction. The ball

i, which is being raised, corresponds to the terminal node of the path.
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improved (i.e., is increased), and i is not “most desirable” (since Di+pi−
pt is not minimal anymore), thus justifying its deletion from P . Node
i will be revisited only after Di + pi − pt becomes minimal again, after
sufficiently large increases of the prices of the currently “most desirable”
nodes.

The preceding interpretation suggests also that the nodes become ter-
minal for the first time in the order of the initial values Dj + p0

j − p0
t , where

p0
i = initial price of node i. (3.7)

To formulate this property, denote for every node i

di = Di + p0
i . (3.8)

Index the iterations by 1, 2, . . ., and let

ki = the first iteration at which node i becomes the terminal node, (3.9)

where by convention, k1 = 0 and ki = ∞ if i never becomes a terminal node.

Proposition 3.3:

(a) At the end of iteration ki we have p1 = di.

(b) If ki < kj , then di ≤ dj .

Proof: (a) At the end of iteration ki, P is a shortest path from 1 to i by
Prop. 3.2, while the length of P is p1 − p0

i .

(b) By part (a), at the end of iteration ki we have p1 = di, while at the end of
iteration kj we have p1 = dj . Since p1 is monotonically nondecreasing during
the algorithm and ki < kj , the result follows. Q.E.D.

Note that the preceding proposition shows that when all arc lengths are
nonnegative, and the default initialization p = 0 is used, the nodes become
terminal for the first time in the order of their proximity to the origin. This
property is also evident from the interpretation of the algorithm in terms of
the balls-and-strings model; cf. Fig. 3.4.

Termination – Running Time of the Algorithm

The following proposition establishes the validity of the algorithm.

Proposition 3.4: If there exists at least one path from the origin to the
destination, the algorithm terminates with a shortest path from the origin to
the destination. Otherwise the algorithm never terminates and p1 → ∞.
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Proof: Assume first that there is a path from node 1 to the destination t.
Since by Prop. 3.1 p1 − pt is an underestimate of the (finite) shortest distance
from 1 to t, p1 is monotonically nondecreasing, and pt is fixed throughout the
algorithm, it follows that p1 must stay bounded. We next claim that pi must
stay bounded for all i. Indeed, in order to have pi → ∞, node i must become
the terminal node of P infinitely often, implying (by Prop. 3.1) that p1 − pi

must be equal to the shortest distance from 1 to i infinitely often, which is a
contradiction since p1 is bounded.

We next show that the algorithm terminates. Indeed, it can be seen
with a straightforward induction argument that for every node i, either pi is
equal to its initial value or else pi is the length of some path starting at i
plus the initial price of the final node of the path; we call this the modified
length of the path. Every path starting at i can be decomposed into a simple
path and a finite number of cycles, each having positive length by assumption
(Exercise 1.5 in Section 1.1), so the number of distinct modified path lengths
within any bounded interval is bounded. Now, pi was shown earlier to be
bounded. Furthermore, each time i becomes the terminal node by extension
of the path P , pi is strictly larger over the preceding time i became the
terminal node of P , corresponding to a strictly larger modified path length. It
follows that the number of times i can become a terminal node by extension
of the path P is bounded. Since the number of path contractions between
two consecutive path extensions is bounded by the number of nodes in the
graph, the number of iterations of the algorithm is bounded, implying that
the algorithm terminates.

Assume now that there is no path from node 1 to the destination. Then
the algorithm will never terminate, so by the preceding argument some node
i will become the terminal node by extension of the path P infinitely often,
and pi → ∞. At the end of iterations where this happens, p1 − pi must be
equal to the shortest distance from 1 to i, implying that p1 → ∞. Q.E.D.

We will now estimate the running time of the algorithm, assuming that
all the arc lengths and initial prices are integer. Our estimate involves the set
of nodes

I = {i | di ≤ dt}; (3.10)

by Prop. 3.3, these are the only nodes that ever become terminal nodes of the
paths generated by the algorithm. Let us denote

I = number of nodes in I, (3.11)

G = max
i∈I

gi, (3.12)

where gi is the number of outgoing incident arcs of node i, and let us also
denote by E the product

E = I · G. (3.13)
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Proposition 3.5: Assume that there exists at least one path from the
origin 1 to the destination t, and that the arc lengths and initial prices are all
integer. The worst case running time of the algorithm is O

(
E

(
Dt + p0

t − p0
1

))
.

Proof: Each time a node i becomes the terminal node of the path, we have
pi = p1 −Di (cf. Prop. 3.2). Since at all times we have p1 ≤ Dt + p0

t (cf. Prop.
3.1), it follows that

pi = p1 − Di ≤ Dt + p0
t − Di.

Using the definitions dt = Dt + p0
t and di = Di + p0

i , and the fact di ≥ d1 (cf.
Prop. 3.3), we see that throughout the algorithm we have

pi − p0
i ≤ dt − di ≤ dt − d1 = Dt + p0

t − p0
1, ∀ i ∈ I.

Therefore, since prices increase by integer amounts, Dt + p0
t − p0

1 + 1 bounds
the number of times that each price pi increases (with an attendant path
contraction if i �= 1). The computation per iteration is bounded by a con-
stant multiple of the number of outgoing arcs of the terminal node of the
path, so the computation corresponding to contractions and price increases is
O

(
E

(
Dt + p0

t − p0
1

))
.

The number of path extensions with i ∈ I becoming the terminal node of
the path is bounded by the number of increases of pi, which in turn is bounded
by Dt +p0

t −p0
1 +1. Thus the computation corresponding to extensions is also

O
(
E

(
Dt + p0

t − p0
1

))
. Q.E.D.

The actual running time of the algorithm can indeed, in the worst case,
depend strongly on the shortest distance Dt, as suggested by the estimate of
the preceding proposition. This is illustrated in Fig. 3.5 with a graph involving
a cycle with relatively small length. It is possible to use scaling to turn
the algorithm into one that is polynomial (see [Ber90]), but in practice this
device does not seem particularly effective, because the practical performance
of the algorithm is typically much better than suggested by the preceding
running time estimate. In fact, for randomly generated problems, it appears
that the number of iterations can be estimated quite reliably (within a small
multiplicative factor) by

nt − 1 +
∑

i∈I, i�=t

(2ni − 1), (3.14)

where ni is the number of nodes in a shortest path from 1 to i. For example,
for the problem of Fig. 3.3 the above estimate is exact; see also Exercise 3.4.
Note also that the number of iterations is reduced substantially when the
algorithm is implemented in a forward/reverse mode, as discussed in the next
subsection.



1 2 3

4

5
1 1

11

L
Origin Destination

206 Auction Algorithms Chap. 4

Assuming that the estimate (3.14) on the number of iterations is correct
(within a constant factor) the running time of the algorithm depends critically
on the number of nodes ni in the shortest path to node i averaged over all
nodes i. If the shortest paths are very long as in graphs with large diameter,
the average number of arcs on a shortest path is O(N), and the running
time of the algorithm is usually O(NA), where A is the number of arcs [a
more accurate estimate is O(NE), where E bounds the number of arcs in
the subgraph of nodes that are closer to the origin than the destination t, cf.
Eqs. (3.10)-(3.13)]. If on the other hand the shortest paths are short as in
graphs with small diameter, the average number of arcs on a shortest path is
O(1), and the running time of the algorithm is usually O(A) [a more accurate
estimate is O(E)].

Figure 3.5 Example graph for which the number of iterations of the

algorithm is not polynomially bounded. The lengths are shown next to the arcs

and L > 1. By tracing the steps of the algorithm starting with P = (1) and

p = 0, we see that the price of node 3 will be first increased by 1 and then it

will be increased by increments of 3 (the length of the cycle) as many times as is

necessary for p3 to reach or exceed L.

The Case of Multiple Destinations or Multiple Origins

To solve the problem with multiple destinations and a single origin, one can
simply run the algorithm until every destination becomes the terminal node of
the path at least once. Also, to solve the problem with multiple origins and a
single destination, one can combine several versions of the algorithm – one for
each origin. However, the different versions can share a common price vector,
since regardless of the origin considered, the condition pi ≤ aij + pj is always
maintained. There are several ways to operate such a method; they differ in
the policy used for switching between different origins. One possibility is to
run the algorithm for one origin and, after the shortest path is obtained, to
switch to the next origin (without changing the price vector), and so on, until
all origins are exhausted. Another possibility, which is probably preferable in
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most cases, is to rotate between different origins, switching from one origin to
another, if a contraction at the origin occurs or the destination becomes the
terminal node of the current path.

4.3.2 Efficient Implementation – Forward/Reverse Algorithm

The main computational bottleneck of the algorithm is the calculation of

min
(i,j)∈A

{
aij + pj

}
,

which is done every time node i becomes the terminal node of the path. We
can reduce the number of these calculations using the following observation.
Since the CS condition pi ≤ aij + pj is maintained at all times for all arcs
(i, j), if some (i, ji) satisfies

pi = aiji + pji

it follows that
aiji + pji = min

(i,j)∈A

{
aij + pj

}
,

so the path can be extended by ji if i is the terminal node of the path. This
suggests the following implementation strategy: each time a path contraction
occurs with i being the terminal node, we calculate

min
(i,j)∈A

{
aij + pj

}

together with an arc (i, ji) such that

ji = arg min
(i,j)∈A

{
aij + pj

}
.

At the next time node i becomes the terminal node of the path, we check
whether the condition pi = aiji + pji is satisfied, and if it is we extend the
path by node ji without going through the calculation of min(i,j)∈A

{
aij + pj

}
.

In practice this device is very effective, typically saving from a third to a half
of the calculations of the preceding expression. The reason is that the test
pi = aiji +pji rarely fails; the only way it can fail is if the price pji is increased
between the two successive times i became the terminal node of the path.

The preceding idea can be strengthened further. Suppose that whenever
we compute the “best neighbor”

ji = arg min
(i,j)∈A

{
aij + pj

}
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we also compute the “second best neighbor” ki, given by

ki = arg min
(i,j)∈A, j �=ji

{
aij + pj

}
,

and the corresponding “second best level”

wi = aiki + pki .

Then, at the next time node i becomes the terminal node of the path, we can
check whether the condition aiji + pji ≤ wi is satisfied, and if it is we know
that ji still attains the minimum in the expression

min
(i,j)∈A

{
aij + pj

}
,

thereby obviating the calculation of this minimum. If on the other hand we
have aiji + pji > wi (due to an increase of pji subsequent to the calculation
of wi), we can check to see whether we still have wi = aiki + pki ; if this is so,
then ki becomes the “best neighbor,”

ki = arg min
(i,j)∈A

{
aij + pj

}
,

thus again obviating the calculation of the minimum.
With proper implementation the devices outlined above can typically

reduce the number of calculations of the expression min(i,j)∈A
{
aij + pj

}
by a

factor that is typically in the range from 3 to 5, thereby dramatically reducing
the total computation time.

Forward/Reverse Algorithm

In shortest path problems, one can exchange the roles of origins and desti-
nations by reversing the directions of all arcs. It is therefore possible to use
a destination-oriented version of our algorithm that maintains a path R that
ends at the destination and changes at each iteration by means of a contrac-
tion or an extension. This algorithm, presented below and called the reverse
algorithm, is equivalent to the earlier algorithm, which will henceforth be re-
ferred to as the forward algorithm. The CS conditions for the problem with
arc directions reversed are

pj ≤ aij + pi, ∀ (i, j) ∈ A,

pj = aij + pi, for all pairs of successive nodes i and j of R,

where p is the price vector. By replacing p by −p, we obtain the CS conditions
in the form pi ≤ aij+pj , thus maintaining a common CS condition for both the
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forward and the reverse algorithm. The following description of the reverse
algorithm also replaces p by −p, with the result that the prices are decreasing
instead of increasing. To be consistent with the assumptions made regarding
the forward algorithm, we assume that each node except for the origin has at
least one incoming arc.

In the reverse algorithm, initially, R is any path ending at the destina-
tion, and p is any price vector satisfying the CS conditions (3.1) together with
R; for example,

R = (t), pi = 0, ∀ i

if all arc lengths are nonnegative.

Typical Iteration of the Reverse Algorithm

Let j be the starting node of R. If

pj > max
(i,j)∈A

{
pi − aij

}
,

go to Step 1; else go to Step 2.

Step 1 (Contract path): Set

pj := max
(i,j)∈A

{
pi − aij

}
and, if j �= t, contract R (that is, delete the starting node j of R). Go to the

next iteration.

Step 2 (Extend path): Extend R by node ij , (that is, make ij the starting

node of R, preceding j), where

ij = arg max
(i,j)∈A

{
pi − aij

}
.

If ij is the origin 1, stop; R is the desired shortest path. Otherwise, go to the

next iteration.

The reverse algorithm is really the forward algorithm applied to a re-
verse shortest path problem, so by the results of Section 4.3.1, it is valid and
terminates with a shortest path, if at least one path exists from 1 to t.

We now consider combining the forward and the reverse algorithms into
one. In this combined algorithm, we initially have a price vector p, and two
paths P and R, satisfying CS together with p, where P starts at the origin and
R ends at the destination. The paths P and R are extended and contracted
according to the rules of the forward and the reverse algorithms, respectively,
and the combined algorithm terminates when P and R have a common node.
Since P and R satisfy CS together with p throughout the algorithm, it is seen
that when P and R meet, say at node i, the composite path consisting of the
portion of P from 1 to i and the portion of R from i to t will be shortest.
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Combined Algorithm

Step 1 (Run forward algorithm): Execute several iterations of the forward

algorithm (subject to the termination condition), at least one of which leads

to an increase of the origin price p1. Go to Step 2.

Step 2 (Run reverse algorithm): Execute several iterations of the reverse

algorithm (subject to the termination condition), at least one of which leads

to a decrease of the destination price pt. Go to Step 1.

To justify the combined algorithm, note that p1 can only increase and pt

can only decrease during its course, and that the difference p1 − pt can be no
more than the shortest distance between 1 and t. Assume that the arc lengths
and the initial prices are integer, and that there is at least one path from 1 to t.
Then, p1 and pt can change only by integer amounts, and p1 − pt is bounded.
Hence, p1 and pt can change only a finite number of times, guaranteeing
that there will be only a finite number of executions of Steps 1 and 2 of the
combined algorithm. By the results of Section 4.3.1, each Step 1 and Step 2
must contain only a finite number of iterations of the forward and the reverse
algorithms, respectively. It follows that the algorithm must terminate. Note
that this argument relies on the requirement that p1 increases at least once
in Step 1 and pt decreases at least once in Step 2. Without this requirement,
one can construct examples showing that the combined algorithm may never
terminate.

In practice, it appears that the combined algorithm is typically much
faster than either the forward or the reverse algorithm (often by a factor of
the order of ten or more). In particular, the running time of the (exclusively)
forward algorithm is typically proportional to the product mF hF , where mF is
the number of nodes reached by the algorithm, and hF is the average number
of nodes on the shortest paths from the origin to these nodes [cf. Eq. (3.14)].
Similarly, the running time of the (exclusively) reverse algorithm is typically
proportional to the product mRhR, where mR is the number of nodes reached
by the algorithm, and hR is the average number of nodes on the shortest paths
from these nodes to the destination. The running time of the forward/reverse
algorithm is typically proportional to mF hF +mRhR, where the terms mF , hF ,
and mR, hR are analogously defined, and correspond to the forward and the
reverse portions of the algorithm, respectively. For many types of problems it
appears that mF + mR is much less than both mF and mR, while hF + hR is
roughly comparable to hF and hR. This explains the experimentally observed
faster running time of the forward/reverse algorithm.

Note that the forward/reverse algorithm can also be interpreted in terms
of the balls-and-strings model. Just as the forward algorithm can be viewed
as a sequence of stages where some ball is lifted upward as in Fig. 3.4, the
reverse algorithm can be viewed as a sequence of stages where some ball is
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pulled downward. In the forward/reverse algorithm, we switch from raising to
lowering balls and reversely. It is apparent that the algorithm works provided
we make sure that, once in a while, the vertical distance between the origin
and the destination increases either because the origin is raised or because the
destination is lowered.

Forward/Reverse Algorithm for Multiple Origins

One may use the combined algorithm for the problem with multiple origins
and a single destination using an algorithm that combines a separate forward
version of the algorithm for each origin, and a reverse algorithm, which is
common for all origins. The same price vector can be used for all forward
versions, since the condition pi ≤ aij+pj is always maintained. One possibility
is to rotate between different origins and the destination, switching from a
forward algorithm for one origin to the reverse algorithm, then to another
origin, and so on. The switch is made if a contraction at the origin (in the
forward algorithm case) or the destination (in the reverse algorithm case)
occurs, or if the destination becomes the terminal node of the current path
(in the forward algorithm case). The code given in Appendix A.2 uses this
scheme.

4.3.3 Relation to Naive Auction and Dual Coordinate
Ascent

We now explain how our (forward) single origin/single destination algorithm
can be viewed as an instance of application of the naive auction algorithm to
a special type of assignment problem.

The naive auction algorithm was described in Section 1.2.4 for max-
imization assignment problems, where we want to maximize the benefit of
matching n persons and n objects on a one-to-one basis. It is convenient here
to reformulate the problem and the algorithm in terms of minimization by
reversing the signs of the cost coefficients and the prices, and by replacing
maximization by minimization. In particular, suppose that there is a cost cij

for assigning person i with object j and we want to assign persons to objects
so as to minimize the total cost. Mathematically, we want to find a feasible
assignment that minimizes the total cost

∑n
i=1 ciji , where by a feasible assign-

ment we mean a set of person-object pairs (1, j1), . . . , (n, jn) such that the
objects j1, . . . , jn are all distinct and (i, ji) ∈ A for all i.

The naive auction algorithm proceeds in iterations and generates a se-
quence of price vectors p and (partial) assignments. At the beginning of each
iteration, the complementary slackness condition

ciji + pji = min
(i,j)∈A

{cij + pj} (3.15)
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is satisfied for all pairs (i, ji) of the assignment [cf. Eq. (2.8) in Section 1.2.3].
The initial price vector–assignment pair is required to satisfy this condition,
but is otherwise arbitrary. If all persons are assigned, the algorithm termi-
nates. If not, some person who is unassigned, say i, is selected. This person
finds an object ji, which is best in the sense

ji = arg min
(i,j)∈A

{cij + pj},

and then:

(a) Gets assigned to the best object ji; the person that was assigned to ji

at the beginning of the iteration (if any) becomes unassigned.

(b) Sets the price of ji to the level at which he or she is indifferent between
ji and the second best object – that is, he or she sets pji to

pji + wi − vi,

where vi is the cost for acquiring the best object (including payment of
the corresponding price),

vi = min
(i,j)∈A

{cij + pj},

and wi is the cost for acquiring the second best object,

wi = min
(i,j)∈A, j �=ji

{cij + pj}.

This process is repeated in a sequence of iterations until each person is assigned
to an object.

The naive auction algorithm differs from the auction algorithm in the
choice of the increment of the price increase. In the auction algorithm the
price pji is increased by wi − vi + ε, where ε is a positive constant. Thus,
the naive auction algorithm is the same as the auction algorithm, except
that ε = 0. This is, however, a significant difference. As shown in Section
1.2.4 (cf. Fig. 2.10), whereas the auction algorithm is guaranteed to terminate
if at least one feasible assignment exists, the naive auction algorithm may
cycle indefinitely, with some objects remaining unassigned. If, however, the
naive auction algorithm terminates, the feasible assignment obtained upon
termination is optimal (cf. Prop. 2.4 in Section 1.2.3).

Formulation of the Shortest Path Problem as an Assignment
Problem

Given the shortest path problem of this section with node 1 as origin and
node t as destination, we formulate the following assignment problem.
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Let 2, . . . , N be the “object” nodes, and for each node i �= t introduce a
“person” node i′. For every arc (i, j) of the shortest path problem with i �= t
and j �= 1, introduce the arc (i′, j) with cost aij in the assignment problem.
Introduce also the zero cost arc (i′, i) for each i �= 1, t. Figure 3.6 illustrates
the assignment problem and shows how, given the partial assignment that
assigns object i to person i′ for i �= 1, t, paths from 1 to t can be associated
with augmenting paths that start at 1′ and end at t.

Figure 3.6 A shortest path problem (the origin is 1, the destination is t = 4)

and its corresponding assignment problem. The arc lengths and the assignment

costs are shown next to the arcs. Consider the partial assignment that assigns

object i to person i′ for i �= 1, t. Then a shortest path can be associated with an

optimal augmenting path that starts at 1′ and ends at t.

Consider now applying the naive auction algorithm starting from a price
vector p satisfying the CS condition (3.1a), that is,

pi ≤ aij + pj, ∀ (i, j) ∈ A (3.16)

and the partial assignment

(i′, i), ∀ i �= 1, t.

This initial pair satisfies the corresponding complementary slackness condition
(3.15), because the cost of the assigned arcs (i′, i) is zero.

We impose an additional rule for breaking ties in the naive auction
algorithm: if at some iteration involving the unassigned person i′ the arc (i′, i)
is the best arc and is equally desirable with some other arc (i′, ji) (i.e., pi =
aiji +pji = min(i,j)∈A{aij +pj}), then the latter arc is preferred, that is, (i′, ji)
is added to the assignment rather than (i′, i). Furthermore, we introduce an
inconsequential modification of the naive auction iteration involving a bid of
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person 1′, in order to account for the special way of handling a contraction
at the origin in the shortest path algorithm. In particular, the bid of 1′ will
consist of finding an object j1 attaining the minimum in

min
(1,j)∈A

{a1j + pj},

assigning j1 to 1′, and deassigning the person assigned to j1 (in the case
j1 �= t), but not changing the price pj1 .

It can now be shown that the naive auction algorithm with the preceding
modifications is equivalent to the (forward) shortest path algorithm of Section
4.3.1. In particular, the following can be verified by induction:

(a) The CS condition (3.16) is preserved by the naive auction algorithm.

(b) Each assignment generated by the naive auction algorithm consists of a
sequence of the form

(1′, i1), (i′1, i2), . . . , (i
′
k−1, ik),

together with the additional arcs

(i′, i), for i �= i1, . . . , ik, t;

this sequence corresponds to a path P = (1, i1, . . . , ik) generated by the
shortest path algorithm. As long as ik �= t, the (unique) unassigned
person in the naive auction algorithm is person i′k, corresponding to the
terminal node of the path. When ik = t, a feasible assignment results,
in which case the naive auction algorithm terminates, consistently with
the termination criterion for the shortest path algorithm.

(c) In an iteration corresponding to an unassigned person i′ with i �= 1, the
arc (i′, i) is always a best arc; this is a consequence of the complementary
slackness condition (3.16). Furthemore, there are three possibilities:

(1) (i′, i) is the unique best arc, in which case (i′, i) is added to the
assignment, and the price pi is increased by

min
(i,j)∈A

{cij + pj} − pi;

this corresponds to contracting the current path by the terminal
node i.

(2) There is an arc (i′, ji) with ji �= t, which is equally preferred to
(i′, i), that is,

pi = aiji + pji ,

in which case, in view of the tie-breaking rule specified earlier,
(i′, ji) is added to the assignment and the price pji remains the
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same. Furthermore, the object ji must have been assigned to j′i
at the start of the iteration, so adding (i′, ji) to the assignment
[and removing (j′i, ji)] corresponds to extending the current path
by node ji. (The positivity assumption on the cycle lengths is
crucial for this property to hold.)

(3) The arc (i′, t) is equally preferred to (i′, i), in which case the hereto-
fore unassigned object t is assigned to i′, thereby terminating the
naive auction algorithm; this corresponds to the destination t be-
coming the terminal node of the current path, thereby terminating
the shortest path algorithm.

We have thus seen that the shortest path algorithm may be viewed
as an instance of the naive auction algorithm. However, the properties of
the former algorithm do not follow from generic properties of the latter. As
shown in Section 1.2.4 (see Fig. 2.12), the naive auction algorithm need not
terminate in general. In the present context it does terminate, thanks to the
special structure of the corresponding assignment problem, and also thanks
to the positivity assumption on all cycle lengths.

We finally note that the forward/reverse version of the shortest path
algorithm is equivalent to a combined forward/reverse version of naive auction,
with the minor modifications described earlier; see the algorithm of Section
4.2 with ε = 0.

Relation to Dual Coordinate Ascent

We next explain how the single origin/single destination algorithm can be
viewed as a dual coordinate ascent method.

As was seen in Section 1.3 [see Eq. (1.3) of that section], the shortest
path problem can be written in the minimum cost flow format as follows:

minimize
∑

(i,j)∈A
aijxij

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (3.17)

0 ≤ xij, ∀ (i, j) ∈ A,

where
s1 = 1, st = −1

si = 0, ∀ i �= 1, t.

The dual problem is (cf. Exercise 2.11 in Section 1.2)

maximize p1 − pt

subject to pi − pj ≤ aij, ∀ (i, j) ∈ A.
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Let us associate with a given path P = (1, i1, i2, . . . , ik) the flow

xij =
{ 1 if i and j are successive nodes in P

0 otherwise.

Then, the CS conditions (3.1a) and (3.1b) are equivalent to the complemen-
tary slackness conditions

pi ≤ aij + pj, ∀ (i, j) ∈ A,

pi = aij + pj, for all (i, j) ∈ A with 0 < xij

for the preceding minimum cost flow problem. For a pair (x, p), the above
conditions together with primal feasibility [the conservation of flow constraint
(3.17) for all i ∈ N , which in our case translates to the terminal node of
the path P being the destination node] are necessary and sufficient for x to
be primal-optimal and p to be dual-optimal. Thus, upon termination of the
shortest path algorithm, the price vector p is an optimal dual solution.

To interpret the algorithm as a dual ascent method, note that a path
contraction and an attendant price increase of the terminal node i of P , corre-
sponds to a step along the price coordinate pi that leaves the dual cost p1 −pt

unchanged if i �= 1. Furthermore, an increase of the origin price p1 by an
increment δ improves the dual cost by δ. Thus, the algorithm may be viewed
as a dual coordinate ascent algorithm, except that true ascent steps occur
only when the origin price increases; all other ascent steps are “degenerate,”
producing a price increase but no change in dual cost.

The above interpretation can also be visualized in terms of the balls-
and-strings model of Fig. 3.4. The dual cost is the vertical distance p1 − pt

between the balls representing the origin and the destination. In the forward
algorithm, the destination stays fixed at its initial position, and this vertical
distance increases only at the stages where the origin is raised; these are the
1st, 3rd, and 4th stages in the example of Fig. 3.4. In the forward/reverse
version of the algorithm, the vertical distance increases only at the stages
where either the origin is raised or the destination is lowered; at all other
stages it stays unchanged.

E X E R C I S E S

Exercise 3.1

Apply the forward/reverse algorithm to the example of Fig. 3.5, and show

that it terminates in a number of iterations that does not depend on the large

arc length L. Construct a related example for which the number of iterations

of the forward/reverse algorithm is not polynomially bounded.
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Exercise 3.2 (Finding an Initial Price Vector [Ber90])

In order to initialize the shortest path algorithm of this section, one needs a

price vector p satisfying the condition

pi ≤ aij + pj , ∀ (i, j) ∈ A. (3.18)

Such a vector may not be available if some arc lengths are negative. Fur-

thermore, even if all arc lengths are nonnegative, there are many cases where

it is important to use a favorable initial price vector in place of the default

choice p = 0. This possibility arises in a reoptimization context with slightly

different arc length data, or with a different origin and/or destination. This

exercise gives an algorithm to obtain a vector p satisfying the condition (3.18),

starting from another vector p satisfying the same condition for a different set

of arc lengths aij .

Suppose that we have a vector p̄ and a set of arc lengths {āij}, satisfying

pi ≤ aij + pj for all arcs (i, j), and we are given a new set of arc lengths {aij}.
(For the case where some arc lengths aij are negative, this situation arises

with p = 0 and aij = max{0, aij}.) Consider the following algorithm that

maintains a subset of arcs E and a price vector p, and terminates when E is

empty. Initially

E = {(i, j) ∈ A | aij < āij , i �= t}, p = p̄.

The typical iteration is as follows:

Step 1 (Select arc to scan): If E is empty, stop; otherwise, remove an arc

(i, j) from E and go to Step 2.

Step 2 (Add affected arcs to E): If pi > aij + pj , set

pi := aij + pj

and add to E every arc (k, i) with k �= t that does not already belong to E .

Assuming that each node i is connected to the destination t with at

least one path, and that all cycle lengths are positive, show that the algorithm

terminates with a price vector p satisfying

pi ≤ aij + pj , ∀ (i, j) ∈ A with i �= t.

Exercise 3.3 (Extension for the Case of Zero Length Cycles)

Extend the algorithms of this section for the case where all arcs have nonneg-

ative length but some cycles may consist exclusively of zero length arcs. Hint:
Any cycle of zero length arcs generated by the algorithm can be treated as a

single node.
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Exercise 3.4

Consider the two single origin/single destination shortest path problems shown

in Fig. 3.7.

(a) Show that the number of iterations required by the forward algorithm

is estimated accurately by the formula given in Section 4.3.1,

nt − 1 +
∑

i∈I, i�=t

(2ni − 1),

where ni is the number of nodes in a shortest path from 1 to i. Show

also that the corresponding running times are O(N 2).

(b) Show that for the problem of Fig. 3.7(a) the running time of the for-

ward/reverse algorithm (with a suitable “reasonable” rule for switching

between the forward and reverse algorithms) is O(N 2) (the number of

iterations is roughly half the corresponding number for the forward al-

gorithm). Show also that for the problem of Fig. 3.7(b) the running

time of the forward/reverse algorithm is O(N).

Figure 3.7 Shortest path problems for Exercise 3.4. In problem (a) arc

lengths are equal to 1. In problem (b), the length of each arc (1, i) is i, and the

length of each arc (i, t) is N .

Exercise 3.5 (A Forward/Reverse Version of Dijkstra’s Algorithm)

Consider the single origin/single destination shortest path problem and assume

that all arc lengths are nonnegative. Let node 1 be the origin, let node t be

the destination, and assume that there exists at least one path from 1 to
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t. This exercise provides a forward/reverse version of Dijkstra’s algorithm,

which is motivated by the balls-and-strings model analogy of Figs. 3.1 and

3.2. In particular, the algorithm may be interpreted as alternately lifting the

model upward from the origin (the following Step 1), and pulling the model

downward from the destination (the following Step 2).

The algorithm maintains a price vector p and two node subsets W1 and

Wt. Initially, p satisfies the CS condition

pi ≤ aij + pj , ∀ (i, j) ∈ A, (3.19)

W1 = {1}, and Wt = {t}. One may view W1 and Wt as the sets of permanently

labeled nodes from the origin and from the destination, respectively. The

algorithm terminates when W1 and Wt have a node in common. The typical

iteration is as follows:

Step 1 (Forward Step): Find

γ+ = min{aij + pj − pi | (i, j) ∈ A, i ∈ W1, j /∈ W1}

and let

V1 = {j /∈ W1 | γ+ = aij + pj − pi for some i ∈ W1}.

Set

pi :=

{
pi + γ+, if i ∈ W1

pi, if i /∈ W1.

Set

W1 := W1 ∪ V1.

If W1 and Wt have a node in common, terminate the algorithm; otherwise, go

to Step 2.

Step 2 (Backward Step): Find

γ− = min{aji + pi − pj | (j, i) ∈ A, i ∈ Wt, j /∈ Wt}

and let

Vt = {j /∈ Wt | γ+ = aji + pi − pj for some i ∈ Wt}.

Set

pi :=

{
pi − γ−, if i ∈ Wt

pi, if i /∈ Wt.

Set

Wt := Wt ∪ Vt.
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If W1 and Wt have a node in common, terminate the algorithm; otherwise, go

to Step 1.

(a) Show that throughout the algorithm, the condition (3.19) is maintained.

Furthermore, for all i ∈ W1, p1−pi is equal to the shortest distance from

1 to i. Similarly, for all i ∈ Wt, pi − pt is equal to the shortest distance

from i to t. Hint : Show that if i ∈ W1, there exists a path from 1 to i

such that pm = amn + pn for all arcs (m, n) of the path.

(b) Show that the algorithm terminates and that upon termination, p1 − pt

is equal to the shortest distance from 1 to t.

(c) Show how the algorithm can be implemented so that its running time

is O(N 2). Hint : Let dmn denote the shortest distance from m to n.

Maintain the labels

v+
j = min{d1i + aij | i ∈ W1, (i, j) ∈ A}, ∀ j /∈ W1,

v−
j = min{aji + dit | i ∈ Wt, (j, i) ∈ A}, ∀ j /∈ Wt.

Let p0
j be the initial price of node j. Show that

γ+ = min

{
min

j /∈W1, j /∈Wt

(
v+

j + p0
j

)
, pt + min

j /∈W1, j∈Wt

(
v+

j + djt

)}
− p1, (3.20)

γ− = min

{
min

j /∈W1, j /∈Wt

(
v−

j − p0
j

)
, −p1 + min

j∈W1, j /∈Wt

(
v−

j + d1j

)}
+ pt. (3.21)

Use these relations to calculate γ+ and γ− in O(N) time.

(d) Show how the algorithm can be implemented using binary heaps so that

its running time is O(A log N). Hint : One possibility is to use four heaps

to implement the minimizations in Eqs. (3.20) and (3.21).

(e) Apply the two-sided version of Dijkstra’s algorithm of Exercise 3.8 of

Section 3.1 with arc lengths aij + pj − pi and with the termination cri-

terion of part (c) of that exercise. Show that the resulting algorithm is

equivalent to the one of the present exercise.

Exercise 3.6 (A Generalized Auction Algorithm)

Consider the shortest path problem, and assume that all cycles have positive

length and that there is at least one path from each node to each other node.

Let p be a price vector satisfying the CS condition

pi ≤ aij + pj , ∀ (i, j) ∈ A (3.22)
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and let dmn be the shortest distance from m to n. For each node m define the

chain of m to be the subset of nodes

Tm(p) = {m} ∪ {n | pm − pn = dmn}.

(a) Show that n ∈ Tm(p) if and only if either n = m or else for every shortest

path P from m to n we have

pi = aij + pj , for all pairs of successive nodes i and j of P .

Hint : Think in terms of the balls-and-strings model of Fig. 3.1.

(b) Define a price rise of node m to be the operation that increases the

prices of the nodes in Tm(p) by the increment

γ = min
{
aij + pj − pi | (i, j) ∈ A, i ∈ Tm(p), j /∈ Tm(p)

}
.

Show that γ > 0 and that a price rise maintains the CS condition (3.22).

Interpret a price rise in terms of the balls-and-strings model of Fig. 3.1.

(c) Let 1 be the origin node and let t be the destination node. Consider an

algorithm that starts with a price vector satisfying Eq. (3.22), performs

price rises of nodes m such that t /∈ Tm(p) (in any order), and terminates

when t ∈ T1(p). Show that the algorithm terminates and that upon

termination, p1 − pt is the shortest distance from 1 to t.

(d) Show that the (forward) shortest path algorithm of this section is a

special case of the algorithm of part (c).

(e) Adapt the algorithm of part (c) for the all origins/single destination

problem, and discuss its potential for parallel computation. Hint : Note

that if p1 and p2 are two price vectors satisfying

p1
i ≤ aij + p1

j , p2
i ≤ aij + p2

j , ∀ (i, j) ∈ A,

then

max
{
p1

i , p
2
i

}
≤ aij + max

{
p1

j , p
2
j

}
, ∀ (i, j) ∈ A.

(f) Develop an algorithm similar to the one of part (c) but involving price

decreases in place of price increases. Develop also an algorithm in-

volving both price increases and price decreases, which contains the

forward/reverse algorithm of this section as a special case.
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4.4 A GENERIC AUCTION ALGORITHM FOR THE MINIMUM
COST FLOW PROBLEM

We will now generalize the auction idea and apply it to the minimum cost
flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (4.1)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A, (4.2)

where aij, bij , cij , and si are given integers. For a given flow vector x, the
surplus of each node i is denoted by

gi =
∑

{j|(j,i)∈A}
xji −

∑
{j|(i,j)∈A}

xij + si.

The algorithm to be described shortly maintains at all times a capacity-
feasible flow vector x and a price vector p satisfying the ε-CS condition

pi − pj ≤ aij + ε for all (i, j) ∈ A with xij < cij, (4.3a)

pi − pj ≥ aij − ε for all (i, j) ∈ A with bij < xij, (4.3b)

(see Fig. 4.1). The usefulness of ε-CS is due in large measure to the following
proposition.

Proposition 4.1: If ε < 1/N , where N is the number of nodes, x is feasible,
and x and p satisfy ε-CS, then x is optimal for the minimum cost flow problem
(MCF).

Proof: If x is not optimal, then by Prop. 2.1 in Section 1.2, there exists a
simple cycle Y that has negative cost, i.e.,

∑
(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij < 0, (4.4)

and is unblocked with respect to x, i.e.,

xij < cij, ∀ (i, j) ∈ Y +,

bij < xij, ∀ (i, j) ∈ Y −.
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Figure 4.1 Illustration of ε-CS. All pairs of arc flows xij and price differences

pi − pj should either lie on the thick lines or in the shaded area between the thick

lines.

By ε-CS [cf. Eq. (4.3)], the preceding relations imply that

pi ≤ pj + aij + ε, ∀ (i, j) ∈ Y +,

pj ≤ pi − aij + ε, ∀ (i, j) ∈ Y −.

By adding these relations over all arcs of Y (whose number is no more than
N), and by using the hypothesis ε < 1/N , we obtain

∑
(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij ≥ −Nε > −1.

Since the arc costs aij are integer, we obtain a contradiction of Eq. (4.4).
Q.E.D.

Exercises 4.5-4.7 provide various improvements of the tolerance ε < 1/N
in some specific contexts.
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Some Basic Algorithmic Operations

We now define some terminology and computational operations that can be
used as building blocks in various algorithms. Each of these definitions as-
sumes that (x, p) is a flow–price vector pair satisfying ε-CS, and will be used
only in that context.

Definition 4.1: An arc (i, j) is said to be ε+-unblocked if

pi = pj + aij + ε and xij < cij. (4.5)

An arc (j, i) is said to be ε−-unblocked if

pi = pj − aji + ε and bji < xji. (4.6)

The push list of a node i is the (possibly empty) set of outgoing arcs (i, j)
that are ε+- unblocked, and incoming arcs (j, i) that are ε−-unblocked.

In the algorithms of this chapter, flow is allowed to increase only along
ε+-unblocked arcs and is allowed to decrease only along ε−-unblocked arcs.
The next two definitions specify the type of flow changes considered.

Definition 4.2: For an arc (i, j) [or arc (j, i)] of the push list of node i, let
δ be a scalar such that 0 < δ ≤ cij − xij (0 < δ ≤ xji − bji, respectively). A
δ-push at node i on arc (i, j) [(j, i), respectively] consists of increasing the flow
xij by δ (decreasing the flow xji by δ, respectively), while leaving all other
flows, as well as the price vector unchanged.

In the context of the auction algorithm, a δ-push (with δ = 1) cor-
responds to assigning an unassigned person to an object; this results in an
increase of the flow on the corresponding arc from 0 to 1. The next operation
consists of raising the prices of a subset of nodes by the maximum common
increment γ that will not violate ε-CS.

Definition 4.3: A price rise of a nonempty, strict subset of nodes I (i.e.,
I �= ∅, I �= N ) consists of leaving the flow vector x and the prices of nodes
not belonging to I unchanged, and increasing the prices of the nodes in I by
the amount γ given by

γ =
{

min{S+, S−}, if S+ ∪ S− �= ∅
0, if S+ ∪ S− = ∅, (4.7)

where S+ and S− are the sets of scalars given by

S+ = {pj + aij + ε − pi | (i, j) ∈ A such that i ∈ I, j /∈ I, xij < cij}, (4.8)

S− = {pj − aji + ε − pi | (j, i) ∈ A such that i ∈ I, j /∈ I, bji < xji}. (4.9)
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In the case where the subset I consists of a single node i, a price rise of the
singleton set {i} is also referred to as a price rise of node i. If the price
increment γ of Eq. (4.7) is positive, the price rise is said to be substantive; if
γ = 0, the price rise is said to be trivial . (A trivial price rise changes nothing;
it is introduced in order to facilitate the statement of some of the algorithms
given below.)

Note that every scalar in the sets S+ and S− of Eqs. (4.8) and (4.9) is
nonnegative by the ε-CS conditions (4.3a) and (4.3b), respectively, so we have
γ ≥ 0, and we are indeed dealing with price rises.

The generic algorithm to be described shortly consists of a sequence of δ-
push and price rise operations. The following proposition lists some properties
of these operations that are important in the context of this algorithm.

Proposition 4.2: Let (x, p) be a flow–price vector pair satisfying ε-CS.

(a) The flow–price vector pair obtained after a δ-push or a price rise satisfies
ε-CS.

(b) Let I be a subset of nodes such that
∑

i∈I gi > 0. Then if the sets of
scalars S+ and S− of Eqs. (4.8) and (4.9) are empty, the problem is
infeasible.

Proof: (a) By the definition of ε-CS, the flow of an ε+-unblocked and an
ε−-unblocked arc can have any value within the feasible flow range. Since a δ-
push only changes the flow of an ε+-unblocked or ε−-unblocked arc, it cannot
result in violation of ε-CS. Let p and p′ be the price vectors before and after
a price rise of a set I, respectively. For arcs (i, j) with i ∈ I, and j ∈ I, or
with i /∈ I and j /∈ I, the ε-CS condition (4.3) is satisfied by (x, p′), since it
is satisfied by (x, p) and we have pi − pj = p′i − p′j . For arcs (i, j) with i ∈ I,
j /∈ I and xij < cij we have, using Eqs. (4.7) and (4.8),

p′i − p′j = pi − pj + γ ≤ pi − pj + (pj + aij + ε − pi) = aij + ε, (4.10)

so the ε-CS condition (4.3a) is satisfied. For arcs (j, i) with i ∈ I, j /∈ I and
xji > bji the ε-CS condition (4.3b) is similarly satisfied.

(b) Since S+ ∪ S− is empty,

xij = cij , for all (i, j) ∈ A with i ∈ I, j /∈ I, (4.11)

xji = bji, for all (j, i) ∈ A with i ∈ I, j /∈ I. (4.12)

We have

0 <
∑
i∈I

gi =
∑
i∈I

si −
∑

{(i,j)∈A|i∈I, j /∈I}
xij +

∑
{(j,i)∈A|i∈I, j /∈I}

xji, (4.13)
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and by combining Eqs. (4.11)-(4.13), it follows that

0 <
∑
i∈I

si −
∑

{(i,j)∈A|i∈I, j /∈I}
cij +

∑
{(j,i)∈A|i∈I, j /∈I}

bji.

For any feasible vector, the above relation implies that the sum of the diver-
gences of nodes in I exceeds the capacity of the cut [I,N − I], which is a
contradiction. Therefore, the problem is infeasible. Q.E.D.

The Generic Algorithm

Suppose that the minimum cost flow problem (MCF) is feasible, and consider
a pair (x, p) satisfying ε-CS. Suppose that for some node i we have gi > 0.
There are two possibilities:

(a) The push list of i is nonempty, in which case a δ-push at node i is
possible.

(b) The push list of i is empty, in which case the set S+∪S− corresponding to
the set I = {i} [cf. Eqs. (4.8) and (4.9)] is nonempty, since the problem
is feasible [cf. Prop. 4.2(b)]. Therefore, from Eqs. (4.7)-(4.9), a price rise
of node i will be substantive.

Thus, if gi > 0 for some i and the problem is feasible, then either a δ-push or
a substantive price rise is possible at node i.

The preceding observations motivate a method, called generic algorithm,
which starts with a pair (x, p) satisfying ε-CS and performs a sequence of δ-
pushes and substantive price rises. The algorithm keeps ε at a fixed positive
value and terminates when gi ≤ 0 for all nodes i.

Typical Iteration of the Generic Algorithm

Perform in sequence and in any order a finite number of δ-pushes and sub-

stantive price rises; there should be at least one δ-push but not necessarily at

least one price rise. Each δ-push should be performed at some node i with

gi > 0, and the flow increment δ must satisfy δ ≤ gi. Furthermore, each price

rise should be performed on a set I with gi ≥ 0 for all i ∈ I.

The following proposition establishes the validity of the generic algo-
rithm.

Proposition 4.3: Assume that the minimum cost flow problem (MCF)
is feasible. If the increment δ of each δ-push is integer, then the generic
algorithm terminates with a pair (x, p) satisfying ε-CS. The flow vector x is
feasible, and is optimal if ε < 1/N .
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Proof: We first make the following observations.

(a) The algorithm preserves ε-CS; this is a consequence of Prop. 4.2.

(b) The prices of all nodes are monotonically nondecreasing during the al-
gorithm.

(c) Once a node has nonnegative surplus, its surplus stays nonnegative
thereafter. The reason is that a δ-push at a node i cannot drive the
surplus of i below zero (since δ ≤ gi), and cannot decrease the surplus
of neighboring nodes.

(d) If at some time a node has negative surplus, its price must have never
been increased up to that time, and must be equal to its initial price.
This is a consequence of (c) above and of the assumption that only nodes
with nonnegative surplus can be involved in a price rise.

Suppose, to arrive at a contradiction, that the algorithm does not ter-
minate. Then, since there is at least one δ-push per iteration, an infinite
number of δ-pushes must be performed at some node i on some arc (i, j).
Since for each δ-push, δ is integer, an infinite number of δ-pushes must also
be performed at node j on the arc (i, j). This means that arc (i, j) becomes
alternately ε+-unblocked with gi > 0 and ε−-unblocked with gj > 0 an infinite
number of times, which implies that pi and pj must increase by amounts of
at least 2ε an infinite number of times. Thus we have pi → ∞ and pj → ∞,
while either gi > 0 or gj > 0 at the start of an infinite number of δ-pushes.

Let N∞ be the set of nodes whose prices increase to ∞. To preserve
ε-CS, we must have, after a sufficient number of iterations,

xij = cij for all (i, j) ∈ A with i ∈ N∞, j /∈ N∞, (4.14)

xji = bji for all (j, i) ∈ A with i ∈ N∞, j /∈ N∞. (4.15)

After some iteration, by (d) above, every node in N∞ must have nonnegative
surplus, so the sum of surpluses of the nodes in N∞ must be positive at the
start of the δ-pushes where either gi > 0 or gj > 0. It follows using the
argument of the proof of Prop. 4.2(b) [cf. Eqs. (4.11)-(4.13)] that

0 <
∑

i∈N∞
si −

∑
{(i,j)∈A|i∈N∞, j /∈N∞}

cij +
∑

{(j,i)∈A|i∈N∞, j /∈N∞}
bji.

For any feasible vector, the above relation implies that the sum of the diver-
gences of nodes in N∞ exceeds the capacity of the cut [N∞,N −N∞], which
is impossible. It follows that there is no feasible flow vector, contradicting
the hypothesis. Thus the algorithm must terminate. Since upon ternination
we have gi ≤ 0 for all i and the problem is assumed feasible, it follows that
gi = 0 for all i. Hence the final flow vector x is feasible and by (a) above it
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satisfies ε-CS together with the final p. By Prop. 4.1, if ε < 1/N , x is optimal.
Q.E.D.

The example of Fig. 4.2 shows how the generic algorithm may never
terminate even for a feasible problem, if we do not require that it performs at
least one δ-push per iteration.

Figure 4.2 Example of a feasible problem where the generic algorithm does

not terminate, if it does not perform at least one δ-push per iteration. Initially,

all flows and prices are zero. Here, the first iteration raises the price of node 1 by

ε. Subsequent iterations consist of a price rise of node 2 by an increment of 2ε

followed by a price rise of node 1 by an increment of 2ε.

Consider now what happens when the problem is infeasible. Let us
assume that the generic algorithm is operated so that for each δ-push, δ is
integer. Then either the algorithm will terminate with gi ≤ 0 for all i and
gi < 0 for at least one i, in which case infeasibility will be detected, or else
it will perform an infinite number of iterations and, consequently, an infinite
number of δ-pushes. In the latter case, from the proof of Prop. 4.3 it can be
seen that the prices of the nodes involved in an infinite number of δ-pushes
will diverge to infinity. This, together with a bound on the total price change
of a node given in Exercise 4.9, can be used to detect infeasibility. It may also
be possible to detect infeasibility by discovering in the course of the algorithm
a subset of nodes I such that

∑
i∈I gi > 0, and the sets of scalars S+ and S−

of Eqs. (4.8) and (4.9) are empty [cf. Prop. 4.2(b)]. There is no guarantee,
however, that such a set will be encountered during the algorithm’s execution.

The generic algorithm can be applied in different ways to a variety of
problems with special structure, yielding a variety of specific algorithms. In
particular, it yields as a special case the auction algorithm for the symmetric
assignment problem (see Exercise 4.1). The next section discusses an algo-
rithm for the general minimum cost flow problem. We give here an example
for an important class of transportation problems. Several related possibilities
are explored in Exercises 4.1-4.4.
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Example 4.1. Transportation Problems with Unit Sources

Consider a transportation problem where all the sources have unit supply. It

has the form

minimize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = 1, ∀ i = 1, . . . , m,

∑
{i|(i,j)∈A}

xij = βj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A.

Here aij are integers, and βj are positive integers satisfying
∑n

j=1 βj = m.

The following algorithm is a special case of the generic algorithm. (With

a little thought it can also be seen to be equivalent to the auction algorithm

with similar objects, given in Exercise 4.2.) At the start of each iteration, we

have a pair (x, p) satisfying ε-CS and also the following two properties:

(a) xij = 0 or xij = 1 for all arcs (i, j).

(b) gi = 0 or gi = 1 for all sources i, and gj ≤ 0 for all sinks j.

During the typical iteration, we do the following.

Step 1: Select a source i with gi = 1 and an arc (i, ji) with pji + aiji =

min(i,j)∈A{pj + aij}.
Step 2: Perform a price rise of i (to the level pji + aiji + ε), then a 1-push

operation at node i along the arc (i, ji), then another price rise of i (to the

level min(i,j)∈A, j �=ji
{pj + aij} + ε).

Step 3: Let mi be such that

mi = arg min
{m|(m,ji)∈A, xmji

=1}
{pm − amji},

perform a price rise of ji (to the level pmi − amiji + ε); if gji = 1 (after the

1-push operation of Step 2) perform a 1-push operation at node ji along arc

(mi, ji), and then perform a price rise of ji.

It can be seen that the properties (a) and (b) mentioned above, as well

ε-CS, are preserved by the iteration. Furthermore, each iteration qualifies as

an iteration of the generic algorithm, because a finite number of 1-pushes and

price rises are performed, while at least one 1-push is performed. Therefore,

Prop. 4.3 applies and asserts termination, if the problem is feasible. The flow
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vector obtained upon termination will be optimal if ε < 1/(m+n). (Actually,

for optimality it is sufficient that ε < 1/2n; see Exercise 4.6.)

It is possible to derive auction algorithms for other types of transporta-

tion problems similar to the one just given. For example, a generalization

for the case where the supplies of the sources can be greater than 1 is given

in Exercise 4.8. Other generalizations, based on the reverse auction ideas of

Section 4.2, can be used to solve various transportation problems involving

inequality constraints. Finally, algorithms for problems with unit sinks are

possible (see [BeC90a] and Exercise 4.3), as well as algorithms for the general

transportation problem (see [BeC90a] and Exercise 4.4).

E X E R C I S E S

Exercise 4.1 (Relation to the Auction Algorithm for Assignment)

Describe how the auction algorithm for the symmetric assignment problem is

a special case of the generic algorithm of this section. Hint: Introduce a price

variable for each person. Show that a bid by a person i can be described as a

price rise of i, followed by a 1-push operation along the arc (i, j) corresponding

to the person’s preferred object j, followed by another price rise of i, followed

by a 1-push operation along arc (i′, j) (if j is already assigned to i′), followed

by a price rise of j.

Exercise 4.2 (Auction Algorithm with Similar Objects [BeC89a])

Given a symmetric assignment problem, we say that two objects j and j ′ are

similar, and write j ∼ j ′, if for all persons i = 1, . . . , n we have

j ∈ A(i) ⇒ j ′ ∈ A(i) and aij = aij′ .

For each object j, the set of all objects similar to j is called the similarity class
of j and is denoted M(j). Consider a variation of the auction algorithm that

is the same as the one of Section 4.1 except for one difference: in the bidding

phase, wi is defined now as

wi = max
j∈A(i), j /∈M(ji)

{aij − pj}

(instead of wi = maxj∈A(i), j �=ji
{aij − pj}).

(a) Show that if the initial assignment S satisfies ε-CS together with the

initial vector p̂ defined by

p̂j = min
k∈M(j)

pk, j = 1, . . . , n,
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that is,

aij − p̂j ≥ max
k∈A(i)

{aik − p̂k} − ε, ∀ (i, j) ∈ S,

the same is true of the assignment and the vector p̂ obtained at the end

of each assignment phase.

(b) Show also that the algorithm is equivalent to the algorithm of Example

4.1, and that for integer problem data it terminates with an optimal

assignment if ε < 1/n. (Actually, it is sufficient that ε < 1/m, where m

is the number of similarity classes, but proving this requires an argument

of the type given in the proof of Prop. 4.1; see also the subsequent

Exercise 4.6.)

Exercise 4.3

Derive an algorithm similar to the one of Example 4.1 for the transportation

problem, where all sinks have unit demand. Hint: At the start of each iteration

we must have xij = 0 or xij = 1 for all arcs (i, j), gi ≥ 0 for all sources i, and

gj = 0 or gj = −1 for all sinks j.

Exercise 4.4 (Auction for Transportation Problems [BeC89a])

Consider the symmetric assignment problem. We say that two persons i and

i′ are similar, and write i ∼ i′, if for all objects j = 1, . . . , N we have

j ∈ A(i) ⇒ j ∈ A(i′) and aij = ai′j .

The set of all persons similar to i is called the similarity class of i.

(a) Generalize the auction algorithm with similar objects given in Exercise

4.2 so that it takes into account both similar persons and similar objects.

Hint: Consider simultaneous bids by all persons in the same similarity

class.

(b) Show how the algorithm of part (a) can be applied to transportation

problems.

Exercise 4.5 (Improved Optimality Condition [BeE87b])

Show that if x is feasible, and x and p satisfy ε-CS, then x is optimal for the

minimum cost flow problem, provided

ε < min
All simple cycles Y

{
− Cost of Y

Number of arcs of Y

∣∣∣ Cost of Y < 0
}

,
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where

Cost of Y =
∑

(i,j)∈Y +

aij −
∑

(i,j)∈Y −
aij .

Show that this is true even if the problem data are not integer.

Exercise 4.6 (Termination Tolerance for Transportation Problems)

Consider a transportation problem with m sources and n sinks and integer

data. Show that in order for a feasible x to be optimal it is sufficient that it

satisfies ε-CS together with some p and

ε <
1

2min{m, n}

[instead of ε < 1/(m + n)]. Hint : Modify the proof of Prop. 4.1 or use the

result of Exercise 4.5.

Exercise 4.7 (Termination Tolerance for Multiassignment)

Consider the multiassignment problem of Section 4.2.2, and assume that the

problem data are integer. Show that in order for the modified reverse auction

algorithm to yield an optimal multiassignment it is sufficient that ε < 1/m

(instead of ε < 1/n). Hint : Observe the similarity with Exercises 4.5 and 4.6.

Exercise 4.8 (Auction for Capacitated Transportation Problems)

Consider the transportation problem

minimize
∑

(i,j)∈A

aijxij

subject to∑
{j|(i,j)∈A}

xij = αi, ∀ i = 1, . . . , m,

∑
{i|(i,j)∈A}

xij = βj , ∀ j = 1, . . . , n,

0 ≤ xij ≤ 1, ∀ (i, j) ∈ A,

where the problem data are all integer, and αi > 0, βj > 0 for all i and j,

respectively. The following algorithm starts with a flow–price vector pair (x, p)

such that ε-CS is satisfied, each xij is either 0 or 1, and∑
{j|(i,j)∈A}

xij ≤ αi, ∀ i,



Sec. 4.4 A Generic Auction Algorithm for the Minimum Cost Flow Problem 233∑
{i|(i,j)∈A}

xij ≤ βj , ∀ j.

In the typical iteration, we select a source i with
∑

{j|(i,j)∈A} xij < αi (if no

such source can be found the algorithm terminates). Then, we find

p̂i = min{z | the number of sinks j with z ≥ aij + pj + ε is greater than αi},

p̃i = min{z | the number of sinks j with z ≥ aij + pj + ε is no less than αi}.

We also consider sinks j with xij = 0 and p̃i ≥ aij + pj + ε, and we find a

subset T , which consists of αi −
∑

{j|(i,j)∈A} xij such sinks and includes all sinks

j with p̃i > aij + pj + ε. We then set pi = p̂i and xij = 1 for all j ∈ T . After

these changes, for each j ∈ T with
∑

{k|(k,j)∈A} xkj ≥ βj , we find

p̃j = min
{k|xkj=1}

{pk − akj + ε},

and a source k̃ that attains the above minimum. If
∑

{k|(k,j)∈A} xkj = βj , we

set pj = p̃j ; otherwise, we also find

p̂j = min
{k|xkj=1, k �=k̃}

{pk − akj + ε},

and we set pj = p̂j and xk̃j = 0.

(a) Show that the algorithm is a special case of the generic algorithm, and

for a feasible problem, it terminates with a pair (x, p) satisfying ε-CS.

Show also that when αi = 1 and βj = 1 for all i and j, respectively,

the algorithm reduces to the (forward) auction algorithm for symmetric

assignment problems.

(b) Derive a reverse and a combined forward/reverse version of the algo-

rithm.

(c) Consider an asymmetric version of the problem where the equality con-

straints
∑

{i|(i,j)∈A} xij = βj are replaced by the inequality constraints

∑
{i|(i,j)∈A}

xij ≤ βj .

Derive a forward/reverse auction algorithm along the lines of the asym-

metric assignment algorithm of Section 4.2.
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Exercise 4.9 (Dealing with Infeasibility)

Consider the generic algorithm applied to a feasible minimum cost flow prob-

lem with initial prices p0
i .

(a) Show that the total price increase (pi − p0
i ) of any node i prior to termi-

nation of the algorithm satisfies

pi − p0
i ≤ (N − 1)(C + ε) + max

j∈N
p0

j − min
j∈N

p0
j ,

where C = max(i,j)∈A |aij |. Hint: Let x0 be a feasible flow vector and let

(x, p) be the flow–price vector pair generated by the algorithm prior to

its termination. Show that there exist nodes t and s such that gt > 0

and gs < 0, and a simple path H starting at s and ending at t such that

xij −x0
ij > 0 for all (i, j) ∈ H+ and xij −x0

ij < 0 for all (i, j) ∈ H−. Now

use ε-CS to assert that

pj + aij ≤ pi + ε, ∀ (i, j) ∈ H+,

pi ≤ pj + aij + ε, ∀ (i, j) ∈ H−.

Add these conditions along H to obtain

pt − ps ≤ (N − 1)(C + ε).

Use the fact ps = p0
s to conclude that

pt − p0
t ≤ (N − 1)(C + ε) + ps − p0

s ≤ (N − 1)(C + ε) + max
j∈N

p0
j − min

j∈N
p0

j .

(b) Discuss how the result of part (a) can be used to detect infeasibility.

(c) Suppose we introduce some artificial arcs to guarantee that the problem

is feasible. Discuss how to select the cost coefficients of the artificial arcs

so that optimal solutions are not affected in the case where the original

problem is feasible; cf. Exercise 1.6 in Section 4.1.

Exercise 4.10 (Suboptimality of a Feasible Flow Satisfying ε-CS)

Let x∗ be an optimal flow vector for the minimum cost flow problem and let

x be a feasible flow vector satisfying ε-CS together with a price vector p.

(a) Show that the cost of x is within ε
∑

(i,j)∈A |xij − x∗
ij | from the optimal.

Hint : Show that (x − x∗) satisfies CS together with p for a minimum

cost flow problem with arcs (i, j) having flow range [bij − x∗
ij , cij − x∗

ij ]

and arc cost âij that differs from aij by no more than ε.

(b) Show by example that the suboptimality bound ε
∑

(i,j)∈A |cij − bij | de-

duced from part (a) is tight. Hint : Consider a graph with two nodes and

multiple arcs connecting these nodes. All the arcs have cost ε except for

one that has cost −ε.
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4.5 THE ε-RELAXATION METHOD

We now describe the ε-relaxation method, which is a special case of the generic
algorithm of the previous section, where, at each iteration, all δ-pushes and
price rises involve a single node. The ε-relaxation method may also be viewed
as a mathematically equivalent method to the auction algorithm for the assign-
ment problem of Section 4.1. Indeed the auction algorithm can be obtained as
a special case of ε-relaxation (see Exercise 5.3). Conversely, we can convert the
minimum cost flow problem to a transportation problem (see Example 1.3 in
Section 1.1), and then convert the latter problem to an assignment problem
(by creating enough duplicate persons and objects). The reader can verify
that when the auction algorithm is applied to this assignment problem, and
the computation is appropriately streamlined, one obtains the ε-relaxation
method.

We assume that the problem is feasible. In practice, the method could be
supplemented with additional mechanisms to detect infeasibility, as discussed
in the preceding section (see also Exercise 4.9).

We use a fixed positive value of ε, and we start with a pair (x, p) satis-
fying ε-CS. Furthermore, the starting arc flows are integer, and it will be seen
that the integrality of the arc flows is preserved thanks to the integrality of
the node supplies and the arc flow bounds. (Implementations that have good
worst case complexity also require that all initial arc flows be at either their
upper or their lower bound; see e.g. [BeT89]. This can be easily enforced,
although it does not seem to be very important in practice.)

At the start of a typical iteration we have a flow–price vector pair (x, p)
satisfying ε-CS and we select a node i with gi > 0; if no such node can be
found, the algorithm terminates. During the iteration we perform several δ-
push and price rise operations of the type described in the previous section
involving node i.

Typical Iteration of the ε-Relaxation Method

Step 1: If the push list of node i is empty, go to Step 3; else select an arc a

from the push list of i and go to Step 2.

Step 2: Let j be the end-node of arc a, which is opposite to i. Let

δ =

{
min{gi, cij − xij} if a = (i, j)

min{gi, xji − bji} if a = (j, i).
(5.1)

Perform a δ-push of i on arc a. If as a result of this operation we obtain gi = 0,

go to Step 3; else go to Step 1.

Step 3: Perform a price rise of node i. If gi = 0, go to the next iteration; else

go to Step 1.
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Some insight into the ε-relaxation iteration can be obtained by noting
that in the limit as ε → 0 it yields the single node relaxation iteration of Sec-
tion 3.3. Figure 5.1 illustrates the sequence of price rises in an ε-relaxation
iteration; this figure should be compared with the corresponding Fig. 3.2 in
Section 3.3 for the single node relaxation iteration. As Fig. 5.1 illustrates,
the ε-relaxation iteration can be interpreted as an approximate coordinate
ascent or Gauss-Seidel relaxation iteration. This interpretation parallels the
approximate coordinate descent interpretation of the mathematically equiva-
lent auction algorithm, cf. Fig. 1.1 in Section 4.1.

We now establish the validity of the ε-relaxation method by using the
analysis of the preceding section. In particular, we claim that the above
iteration consists of a finite (but positive) number of δ-pushes with δ integer,
and a finite (possibly zero) number of price rises at nodes with nonnegative
surplus. Indeed, since the starting arc flows, the node supplies, and the arc
flow bounds are integer, the flow increments δ of all δ-pushes will be positive
integers throughout the algorithm. Furthermore, from Eq. (5.1) it is seen that
the condition δ ≤ gi of the generic algorithm is satisfied. We also note that
at most one δ-push per incident arc of node i is performed at each iteration
because from Eq. (5.1) it is seen that a δ-push on arc a in Step 2 either sets
the arc flow to the corresponding flow bound, which causes arc a to drop
out of the push list of i through the end of the iteration, or else results in
gi = 0, which leads the iteration to branch to Step 3 and subsequently stop.
Therefore, the number of δ-pushes per iteration is finite. In addition we have
gi > 0 at the start and gi = 0 at the end of an iteration, so at least one δ-push
must occur before an iteration can stop.

Regarding price rises, it is seen that Step 3 can be reached under two
conditions:

(a) The push list of i is empty and gi > 0, in which case the price rise in
Step 3 will be substantive [in view of the assumption that the problem
is feasible and Prop. 4.2(b)], and the iteration will branch to Step 1 with
the push list of i having at least one new arc, or

(b) gi = 0, in which case the iteration will stop after a (possibly trivial)
price rise in Step 3.

Thus, all price rises involve a node with nonnegative surplus as required in
the generic algorithm. Since after each substantive price rise with gi > 0 at
least one δ-push must be performed, it follows that the number of substantive
price rises per iteration is finite.

From the preceding observations it is seen that, if the problem is feasible,
the ε-relaxation method is a special case of the generic algorithm and satisfies
the assumptions of Prop. 4.3. Therefore, it must terminate with a feasible
flow vector, which is optimal if ε < 1/N .
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Figure 5.1 Illustration of the price rises of the ε-relaxation iteration.

Here, node i has four incident arcs (1, i), (3, i), (i, 2), and (i, 4) with flow ranges

[0, 20], [0, 20], [0, 10], and [0, 30], respectively, and supply si = 0. The arc costs

and current prices are such that

p1 − a1i ≤ p2 + ai2 ≤ p3 − a3i ≤ p4 + ai4,

as shown in the figure. The break points of the dual cost along the price pi

correspond to the values of pi at which one or more incident arcs to node i become

balanced. For values between two successive break points, there are no balanced

arcs. Each price rise of the ε-relaxation iteration increases pi to the point which is

ε to the right of the next break point larger than pi, (assuming that the starting

price of node i is to the left of the maximizing point by more than ε). In the

example of the figure, there are two price rises, the second of which sets pi at the

point which is ε to the right of the maximizing point, leading to the approximate

(within ε) coordinate ascent interpretation.
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Scaling

The ε-relaxation method, with the use of some fairly simple data structures
(the so called sweep implementation), but without the use of scaling, can be
shown to have an

O
(
N 3 + N 2L/ε)

)
(5.2)

worst-case running time, where L is the maximum over the lengths of all
simple paths, with the length of each arc (i, j) being the absolute reduced
cost value |pj + aij − pi|, and p being the initial price vector. (The sweep
implementation together with the above estimate were first given in [Ber86a];
see [BeE88] and [BeT89] for a detailed description and analysis.) Thus, the
amount of work to solve the problem can depend strongly on the values of ε
and L.

The ε-scaling technique discussed for the auction algorithm in Section
5.1 is also important in the context of the ε-relaxation method, and improves
both the practical and the theoretical worst-case performance of the method.
Although ε-scaling was first proposed in [Ber79] in connection with the auction
algorithm, its first analysis was given in [Gol87] and [GoT90]. These references
provided an O

(
NA log(N) log(NC)

)
running time estimate for a scaled ver-

sion of ε-relaxation that uses some complicated data structures called dynamic
trees. By using ε-scaling and the sweep implementation referred to earlier, the
worst-case running time of the algorithm for integer data can be shown to be
O

(
N 3 log(NC)

)
, where C = max(i,j)∈A |aij |; see [BeE87b], [BeE88], [BeT89].

These references actually analyze an alternative form of scaling, known as
cost scaling , which is based on successively representing the cost coefficients
by an increasing number of bits. Cost scaling and ε-scaling admit a very sim-
ilar complexity analysis. Their practical performance is roughly comparable,
although ε-scaling is somewhat easier to implement. For this reason, ε-scaling
was used in the codes of Appendix A.4 and Appendix A.7.

Surplus Scaling

When applying the ε-scaling technique, except for the last scaling phase, it
is not essential to reduce the surpluses of all nodes to zero; it is possible to
terminate a scaling phase prematurely, and reduce ε further, in an effort to
economize on computation. A technique that is typically quite effective is
to iterate only with nodes whose surplus exceeds some threshold, which is
gradually reduced to zero with each scaling phase. The threshold is usually
set by some heuristic scheme.

Negative Surplus Node Iterations

It is possible to define a symmetric form of the ε-relaxation iteration that starts
from a node with negative surplus and decreases (rather than increases) the
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price of that node. Furthermore, one can mix positive surplus and negative
surplus iterations in the same algorithm; this is analogous to the combined
forward/reverse auction algorithm for assignment and the forward/reverse
auction algorithm for shortest paths. However, if the two types of iterations
are mixed arbitrarily, the algorithm is not guaranteed to terminate even for
a feasible problem; for an example, see [BeT89], p. 373. For this reason,
some care must be exercised in mixing the two types of iterations in order to
guarantee that the algorithm eventually makes progress.

Application to the Max-Flow Problem

The ε-relaxation method can be applied to the max-flow problem, once this
problem is converted to the minimum cost flow format, involving a feedback
arc connecting the sink with the source, and having cost −1 (see Example 1.2
in Section 1.2). Since all other arc costs are zero, the maximum path length L
used in Eq. (5.2) is equal to 1, assuming a zero initial price vector. Therefore,
the complexity estimate of Eq. (5.2) becomes

O
(
N 3 + N 2/ε

)
. (5.3)

One can solve the problem without using scaling by taking ε = 1/(N + 1), so
in this case the preceding estimate yields an O(N 3) worst-case running time.
With the use of more sophisticated data structures, this running time can be
considerably improved; see the references at the end of the chapter.

In practice, the ε-relaxation method initialized with zero flow and zero
price vectors often finds a minimum cut very quickly. It may then work quite
a bit more to set the remaining positive surpluses to zero. Thus, if one is
interested in just a minimum cut or just the value of the maximum flow, it is
worth testing periodically to see whether a minimum cut can be determined
before the algorithm terminates. A method for detecting whether a minimum
cut has been found is outlined in Exercise 5.4 and is used in the code of
Appendix A.6. Given a minimum cut, one may find a maximum flow by
continuing the algorithm until all node surpluses are zero, or by employing
a version of the Ford-Fulkerson algorithm to return the positive surpluses to
the source (see Exercise 5.4).

E X E R C I S E S

Exercise 5.1

Apply the ε-relaxation method to the problem of Fig. 2.3 of Section 3.2 with

ε = 1. Comment on the optimality of the solution obtained.
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Exercise 5.2 (Degenerate Price Rises)

In this exercise, we consider a variation of the ε-relaxation method that in-

volves degenerate price rises. A degenerate price rise changes the price of a

node that currently has zero surplus to the maximum possible value that does

not violate ε-CS with respect to the current flow vector (compare with de-

generate price increases in the context of the single-node relaxation iteration

where ε = 0, as illustrated in Fig. 3.3 of Section 3.3). One example of such

a price rise occurs when Step 3 of the ε-relaxation iteration is executed with

gi = 0.

Consider a variation of the ε-relaxation method where there are two

types of iterations: (1) regular iterations, which are of the form described in

the present section, and (2) degenerate iterations, which consist of a single

degenerate price rise.

(a) Show that if the problem is feasible and the number of degenerate iter-

ations is bounded by a constant times the number of regular iterations,

then the method terminates with a pair (x, p) satisfying ε-CS.

(b) Show that the assumption of part (a) is essential for the validity of the

method. Hint : Consider the example of Fig. 4.2.

Exercise 5.3 (Deriving Auction from ε-Relaxation)

Consider the assignment problem formulated as a minimum cost flow problem

(see Example 1.1 in Section 1.1). We say that source i is assigned to sink j if

(i, j) has positive flow. We consider a version of the ε–relaxation algorithm in

which ε-relaxation iterations are organized as follows: between iterations (and

also at initialization), only source nodes i can have positive surplus. Each

iteration finds any unassigned source i (i.e., one with positive surplus), and

performs an ε-relaxation iteration at i, and then takes the sink j to which i

was consequently assigned and performs an ε-relaxation iteration at j, even if

j has zero surplus. (If j has zero surplus, such an iteration will consist of just

a degenerate price rise; see Exercise 5.2.)

More specifically, an iteration by an unassigned source i works as follows:

(1) Source node i sets its price to pj + aij + ε, where j minimizes pk + aik + ε

over all k for which (i, k) ∈ A. It then sets xij = 1, assigning itself to j.

(2) Node i then raises its price to pj′ + aij′ + ε, where j ′ minimizes pk + aik + ε

for k �= j, (i, k) ∈ A.

(3) If sink j had a previous assignment xi′j = 1, it breaks the assignment

by setting xi′j := 0. (One can show inductively that if this occurs, pj =

pi′ − ai′j + ε.)
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(4) Sink j then raises its price pj to

pi − aij + ε = pj′ + aij′ − aij + 2ε.

Show that the corresponding algorithm is equivalent to the Gauss-Seidel

version of the auction algorithm.

Exercise 5.4 (Detecting a Minimum Cut Using ε-Relaxation)

Consider the max-flow problem with zero lower arc flow bounds. Suppose that

we have a pair (x, p) satisfying the 1-CS condition

pi − pj ≤ 1 for all (i, j) ∈ A with xij < cij ,

pi − pj ≥ −1 for all (i, j) ∈ A with 0 < xij ,

ps = pt + N + 2.

[These are the 1-CS conditions for the equivalent minimum cost flow problem

obtained by introducing an artificial arc (t, s) with cost −(N + 1).] Suppose

also that we have a cut Q = [S,N − S] with s ∈ S and t /∈ S, which is

saturated with respect to x. Finally, suppose that the surplus of all nodes in

S except s is nonnegative, while the surplus of all nodes in N − S except t is

nonpositive.

(a) Show that Q is a minimum cut. Hint : Apply the ε-relaxation method

with ε = 1 starting with (x, p). Argue that the flux across Q will not

change.

(b) Given Q, show that a maximum flow can be found by solving two fea-

sibility problems (which are in turn equivalent to some other max-flow

problems; cf. Exercise 2.5 in Section 1.2). One feasibility problem should

involve just the nodes of S and the other should involve just the nodes

not in S.

(c) Construct algorithms based on augmentations that solve the feasibility

problems in part (b), thereby yielding a maximum flow.

4.6 IMPLEMENTATION ISSUES

The main operations of auction algorithms involve scanning the incident arcs
of nodes; this is a shared feature with dual ascent methods. For this reason
the data structures and implementation ideas discussed in connection with
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dual ascent methods, also apply to auction algorithms. In particular, for
the max-flow and the minimum cost flow problems, using the FIRST IN ,
FIRST OUT , NEXT IN , and NEXT OUT arrays, described in Section 3.5,
is convenient. In addition, a similar set of arrays can be used to store the arcs
of the push lists in the ε-relaxation method; see the code given in Appendix
A.7.

4.7 NOTES AND SOURCES

4.1. The auction algorithm, and the notions of ε-complementary slackness
and ε-scaling were first proposed by the author in [Ber79] (see also [Ber85]
and [Ber88]). Reference [BeE88] surveys coordinate step methods based on ε-
complementary slackness and derives the worst-case complexity of the auction
algorithm; see also [BeT89]. The parallel implementation aspects of the auc-
tion algorithm have been explored by several authors; see [BeC89c], [KKZ89],
[PhZ88], [WeZ90], and [Zak90]. Exercise 1.3 that deals with the average com-
plexity of the auction algorithm was inspired by [Sch90], which derives related
results for the Jacobi version of the algorithm and its potential for parallelism.

4.2. The reverse auction algorithm and its application in inequality con-
strained assignment problems is due to [BCT91], which discusses additional
related algorithms and gives computational results. Note that aside from
faster convergence, the combined forward/reverse algorithm has potential for
greater concurrency in a parallel machine than the forward algorithm.

4.3. The auction algorithm for shortest paths is due to the author [Ber90].
This reference also discusses an arc length scaling technique that can be used
to make the algorithm polynomial. In practice, this scaling technique does
not seem to be very useful, primarily because pseudopolynomial practical
behavior appears to be unlikely, particularly for the forward/reverse version
of the algorithm. The MS thesis [Pol91] discusses the parallelization aspects
of the method. The interpretation of the forward/reverse version of Dijkstra’s
algorithm of Exercise 3.5 and the generalized auction algorithm of Exercise
3.6 are new.

4.4. The generic auction algorithm for minimum cost flow problems is due
to [BeC89b]. Reference [BeC89a] describes various special cases involving
bipartite graphs; see also Exercises 4.2 and 4.4.

4.5. The ε-relaxation method is due to the author; it was first published in
[Ber86a] and [Ber86b], although it was known much earlier (since the devel-
opment of the equivalent auction algorithm). Various implementations of the
method aimed at improved worst-case complexity can be found in [BeE87b],
[BeE88], [BeT89], [Gol87], and [GoT90]. The worst-case complexity of ε-
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scaling was first analyzed in [Gol87] in connection with various implementa-
tions of the ε-relaxation method. Computational experience suggests, how-
ever, that the complexity analysis of the ε-relaxation method is not very useful
in predicting practical behavior. In particular, despite its excellent polynomial
complexity, the method is typically outperformed by the relaxation method of
the previous chapter, which can be shown to have pseudopolynomial complex-
ity. However, the ε-relaxation method is better suited for parallel computation
than the other minimum cost flow methods described in this book; see [BeT89]
for a discussion of related issues.

When the ε-relaxation method is applied to the max-flow problem, it
bears a close resemblance with an O(N 3) max-flow algorithm first proposed
in [Gol85b]; see also [GoT86], which describes a similar max-flow algorithm
that achieves a more favorable worst-case complexity using sophisticated data
structures. These max-flow algorithms were derived from a different point of
view that is unrelated to duality or ε-CS. They use node “labels,” which in the
context of the ε-relaxation approach can be viewed as prices. The max-flow
version of the ε-relaxation method, first given in [Ber86a], is simpler than the
algorithms of [Gol85] and [GoT86] in that it obtains a maximum flow in one
phase rather than two. It can also be initialized with arbitrary prices, whereas
in the max-flow algorithms of [Gol85], [GoT86] the initial prices must satisfy
pi ≤ pj + 1 for all arcs (i, j). Related max-flow algorithms are discussed in
[AhO86], [ChM87], and [AMO89].





5

Performance and Comparisons

Several methods for solving minimum cost flow problems have been discussed,
and it is important to know how they compare with one another in practice.
Naturally, it is difficult to provide fully reliable guidelines, since one can only
compare specific coded implementations of algorithms and not the algorithms
themselves. Furthermore, the relative performance of various codes depends
considerably on the sample problems used for testing, and also depends to
some extent on the computer and the compiler used.

This chapter summarizes some of the computational experience using
the codes of the appendixes and some other noncommercial codes, which are
available from various sources. The codes were compiled and run on a 16 MHz
Mac Plus using the widely available Absoft compiler. With the exception of
assignment problems, the graphs of the test problems were randomly gener-
ated using the widely available public-domain generator NETGEN ([KNS74],
version used is dated 1988). To reproduce these test problems, one should
use the same random seed number as in [KNS74]. The results given are very
limited but they are representative of a much broader experimentation with
NETGEN problems.

The test problems are fairly similar to problems randomly generated
with other generators that the author has tried. There seems to be nothing
very peculiar about the way NETGEN generates problems. It obtains integer
data using a uniform distibution over the specified range, and it tends to
produce graphs with relatively small diameter. To guarantee that the problem
is feasible, it builds the graph starting with a spanning tree of arcs with high
capacity. These features are common in random problem generators.

245
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On the other hand, special types of practical problems may have a struc-
ture that is not captured by random generators. As a result, two codes may
compare quite differently for randomly generated problems and for specific
types of practical problems. In particular, it should be mentioned that the
graphs of some practical minimum cost flow problems tend to have a diameter
that is much larger than the diameters of many types of randomly generated
graphs. Practical experience has shown that such a structure enhances the
performance of the primal-simplex method in comparison with the dual as-
cent and auction methods. A plausible conjecture here is that when the graph
diameter is large, the cycles that the simplex method constructs, as well the
augmenting paths that the dual ascent methods use, tend to have many arcs.
This has an adverse effect on the amount of computation needed by both
types of methods, but the effect on the dual ascent methods seems to be more
serious. A related phenomenon may be conjectured for the case of auction
algorithms.

Having warned the reader about the skepticism with which computa-
tional comparisons should be viewed, we give some running times obtained by
several different methods on various types of randomly generated problems.
In the last section of the chapter, we briefly discuss some issues of sensitivity
analysis.

5.1 SHORTEST PATH PROBLEMS

We first consider shortest path problems with a single origin and with all
other nodes being destinations. Table 1.1 gives times required to solve such
problems with the following two codes due to Gallo and Pallotino [GaP88]:

(a) HEAP-ALL-DEST: This is an implementation of the binary heap
label setting method given in [GaP88] as code SHEAP.

(b) PAPE-ALL-DEST: This is an implementation of a variation of the
D’Esopo-Pape label correcting method given in [GaP88] as L2QUEUE.
This code is included in Appendix A.2 with the kind permission of Pro-
fessors Gallo and Pallotino.

We next consider shortest path problems with a single origin and a
selected set of destinations. Tables 1.2 and 1.3 give times required to solve
such problems with the following two codes given in Appendix A.2:

(a) HEAP-SELECT-DEST: This is the preceding binary heap label set-
ting method, adapted to find shortest paths to a selected set of destina-
tions.
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N A HEAP-ALL-DEST PAPE-ALL-DEST

1000 5000 0.417 0.333

2000 10000 0.883 0.700

3000 15000 1.400 1.150

4000 20000 1.900 1.367

5000 25000 2.400 3.350

Table 1.1 Times in secs required to solve single origin (node 1) to all destinations

shortest path problems with arc lengths drawn from the range [1,100] using a uniform

distribution.

(b) AUCTION-SELECT-DEST: This is a forward/reverse auction al-
gorithm for finding shortest paths to a selected set of destinations (see
Section 4.3).

N A HEAP-SELECT-DEST AUCTION-SELECT-DEST

1000 5000 0.400 0.050

2000 10000 0.300 0.033

3000 15000 0.583 0.033

4000 20000 0.767 0.117

5000 25000 0.175 0.025

Table 1.2 Times in secs required to solve one origin to one destination shortest path

problems with arc lengths drawn from the range [1,100] using a uniform distribution.

The origin was node 1 and the destination was node N .

5.2 MAX-FLOW PROBLEMS

Here, we consider max-flow problems with node 1 being the source and node
N being the sink. Table 2.1 gives times required to solve such problems with
the following two codes given in Appendix A.6.
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N A HEAP-SELECT-DEST AUCTION-SELECT-DEST

1000 5000 0.400 0.066

2000 10000 0.717 0.133

3000 15000 1.283 0.167

4000 20000 1.867 0.383

5000 25000 1.300 0.125

Table 1.3 Times in secs required to solve single origin to several destinations

shortest path problems with arc lengths drawn from the range [1,100] using a uniform

distribution. The origin was node 1. There were five destinations, nodes N , N − 100,

N − 200, N − 300, N − 400.

(a) FORD-FULKERSON: This is an implementation of the Ford-Fulker-
son method (see Section 1.2.2).

(b) ε-RELAX-MF: This is an implementation of the ε-relaxation method
for the max-flow problem (see Section 4.5). Here, ε = 1 throughout the
algorithm. The code may be operated so that it identifies a minimum
cut but not necessarily a maximum flow.

N A FORD-FULKERSON ε-RELAX-MF (C) ε-RELAX-MF (F)

1000 5000 3.350 0.600 455.0

1000 15000 5.750 0.417 0.417

1500 10000 15.67 1.117 1397.0

1500 30000 29.03 0.767 0.767

Table 2.1 Times in secs required to solve max-flow problems with node 1 being

the source and node N being the sink. For ε-RELAX-MF, we give the times needed to

identify a minimum cut [column labeled ε-RELAX-MF (C)] and the total time needed

to find a maximum flow [column labeled ε-RELAX-MF (F)]. The upper arc flow bounds

were drawn from the range [10,1000] using a uniform distribution.

Table 2.1 shows that for very sparse problems, the ε-relaxation method
can require a very long time to find a maximum flow after quickly finding
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a minimum cut. This is due to a price war induced by the lack of scaling
(ε = 1 throughout). Once ε-scaling is used, the uneven performance of the
method is rectified, but then the time to find a minimum cut tends to increase
to a level roughly competitive with that of the Ford-Fulkerson method. For
reasonably dense randomly generated problems, scaling seems unnecessary;
the ε-relaxation method typically finds a maximum flow at roughly the same
amount of time as a minimum cut, and substantially outperforms the Ford-
Fulkerson method.

5.3 ASSIGNMENT PROBLEMS

Here we consider n×n symmetric assignment problems. Table 3.1 gives times
required to solve such problems with the following four codes:

(a) AUCTION-AS: This is an implementation of the (forward) auction
algorithm with ε-scaling given in Appendix A.4 (see Section 4.1). The
starting ε was max(i,j)∈A |aij |/2 and the reduction factor for ε was 5.

(b) AUCTION-FR: This is an implementation of the forward/reverse auc-
tion algorithm (see Section 4.2). The code is given in Appendix A.4. We
used ε = 1, so ε-scaling was bypassed.

(c) AUCTION-SSP: This is an implementation of the sequential shortest
path method, preceded by a naive auction initialization phase given in
Appendix A.5.

(d) SSP: This is the same as AUCTION-SSP with the naive auction part
of the initialization discarded (that is, the parameter AUCTNUM in the
code of Appendix A.5 was set to zero).

5.4 MINIMUM COST FLOW PROBLEMS

Here, we consider minimum cost flow problems of different types. Tables 4.1
and 4.2 give times required to solve such problems with the following codes:

(a) RELAX: This is an implementation of the relaxation method due to
P. Tseng and the author. The code is available from the author; see the
appendixes. An earlier version of this code may be found in [BeT88].

(b) RELAX-SSP: This is an implementation of the sequential shortest
path method, preceded by a single-node relaxation initialization phase.
The code is available from the author.
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n A AUCTION-AS AUCTION-FR AUCTION-SSP SSP

500 2500 1.600 0.400 2.033 2.283

1000 5000 5.467 0.967 8.450 8.933

2000 10000 6.233 2.883 20.03 22.22

3000 15000 10.87 3.050 51.10 54.70

4000 20000 12.97 3.650 70.05 77.07

5000 25000 20.53 5.583 119.5 127.9

Table 3.1 Times in secs required to solve symmetric assignment problems with

arc costs drawn from the range [1,100] using a uniform distribution. The problems were

generated using the built-in generators of the codes.

(c) SSP: This is the same as RELAX-SSP with the single node relaxation
initialization discarded. The code is available from the author.

(d) ε-RELAX: This is the implementation of the ε-relaxation method of
Appendix A.7. The starting ε was max(i,j)∈A |aij |/2 and the reduction
factor for ε was 5.

(e) ε-RELAX-N: This is an implementation of the ε-relaxation method
that involves iterations from negative as well as positive surplus nodes.
We used the same parameters in the ε-scaling procedure as for the pre-
ceding ε-RELAX code. The code is available from the author.

(f) NETFLO: This is the big-M primal-simplex code due to Kennington
and Helgason. A listing of this code appears in [KeH80]. We used the
most recent version that differs slightly from the code given in [KeH80].

5.5 SENSITIVITY ANALYSIS

In many practical situations, one may wish to vary slightly the problem data
and observe the effect on the optimal solution. This is known as sensitivity
analysis and may be motivated by a number of reasons. For example, one may
wish to check if the optimal solution is “stable” with respect to parameter
variations (small parameter variations result in small changes in the optimal
cost or the optimal solution structure). In other cases, some of the problem
parameters may be controllable and we may want to know if by changing them
we can favorably influence the optimal solution. Still in other situations, the
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N A RELAX RELAX-SSP SSP ε-RELAX ε-RELAX-N NETFLO

200 1300 1.700 5.417 13.03 5.967 7.083 3.317

200 1500 1.417 5.067 10.85 6.433 8.333 2.800

200 2000 2.033 7.517 14.70 7.317 9.150 3.883

200 2200 1.767 9.167 17.62 8.600 11.68 4.067

200 2900 2.383 8.633 20.98 9.500 14.42 5.150

1000 4800 5.433 21.53 43.33 20.35 23.57 20.20

1500 4342 8.650 44.95 73.85 35.42 40.03 24.88

1500 4385 8.750 44.27 50.73 41.00 41.37 32.57

1500 5107 9.317 36.82 49.27 36.63 36.98 37.57

1500 5730 9.433 45.03 62.37 40.02 34.25 40.52

Table 4.1 Times in secs required to solve minimum cost flow problems. These are

the standard NETGEN problems 1 through 5 (first five problems in the table), and 31

through 35 (second five problems in the table), whose more detailed characteristics are

given in the original source [KNS74]. The first five problems are symmetric transporta-

tion problems, and the second five problems are uncapacitated or lightly capacitated

transshipment problems.

N A RELAX RELAX-SSP SSP ε-RELAX ε-RELAX-N NETFLO

400 1000 2.950 13.12 19.75 17.37 14.72 6.283

1000 5000 9.867 112.2 217.9 68.68 58.40 51.72

2000 10000 23.18 551.2 801.1 251.9 178.2 212.0

3000 15000 37.38 724.5 1599.0 230.1 222.6 508.6

Table 4.2 Times in secs required to solve large symmetric transportation

problems. The cost range is [1,100] and the total supply is 500 × N .

parameter values used may be estimates of some unknown true values, and
we may want to evaluate the effect of the corresponding estimation errors.

In order to do sensitivity analysis efficiently, it is important to be able
to use the computed optimal solution of a problem as a starting point for
solving slightly different problems. The dual ascent and auction algorithms
are generally much better suited for this purpose than the simplex method.
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For example, suppose we solve a problem and then modify it by changing a
few arc capacities or costs, and/or some node supplies. To solve the modified
problem using a dual ascent or auction algorithm, we can use as starting node
prices the prices obtained from the earlier solution, and set to the appropriare
bounds the arc flows that violate the new arc flow bounds or the CS or the
ε-CS conditions. Typically, this starting flow-price vector pair is close to
optimal, and solution of the modified problem is extremely fast. By contrast,
to solve the modified problem using the simplex method one must provide a
starting feasible tree. The optimal tree obtained from the previous problem
will often be infeasible for the modified problem. As a result, a new starting
tree must be constructed, and there are no simple ways to choose this tree to
be nearly optimal.
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[BCT91] Bertsekas, D. P., Castañon, D. A., and Tsaknakis, H., 1991. “Reverse
Auction and the Solution of Inequality Constrained Assignment Problems,”
Unpublished Report.

[BGK77] Barr, R., Glover, F., and Klingman, D., 1977. “The Alternating
Basis Algorithm for Assignment Problems,” Math. Programming, Vol. 13,
pp. 1-13.

[BGK78] Barr, R., Glover, F., and Klingman, D., 1978. “Generalized Alter-
nating Path Algorithm for Transportation Problems,” Euro. J. of Operations
Research, Vol. 2, pp. 137-144.

[BGK79] Barr, R., Glover, F., and Klingman, D., 1979. “Enhancement of
Spanning Tree Labeling Procedures for Network Optimization,” INFOR, Vol.
17, pp. 16-34.

[BHT87] Bertsekas, D. P., Hossein, P., and Tseng, P., 1987. “Relaxation Meth-
ods for Network Flow Problems with Convex Arc Costs,” SIAM J. on Control
and Optimization, Vol. 25, pp. 1219-1243.

[BJS90] Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D., 1990. Linear Pro-
gramming and Network Flows (2nd edition), Wiley, N. Y.

[BMP89] Balas, E., Miller, D., Pekny, J., and Toth, P., 1989. “A Parallel
Shortest Path Algorithm for the Assignment Problem,” Management Science
Report MSRR 552, Carnegie Mellon Univ., Pittsburgh, PA.

[BaF88] Bar-Shalom, Y., and Fortman, T. E., 1988. Tracking and Data Asso-
ciation, Academic Press, N. Y.

[BaJ78] Bazaraa, M. S., and Jarvis, J. J., 1978. Linear Programming and
Network Flows, Wiley, N. Y.

[Bal85] Balinski, M. L., 1985. “Signature Methods for the Assignment Prob-
lem,” Operations Research, Vol. 33, pp. 527-537.

[Bal86] Balinski, M. L., 1986. “A Competitive (Dual) Simplex Method for the
Assignment Problem,” Math. Programming, Vol. 34, pp. 125-141.

[BeC89a] Bertsekas, D. P., and Castañon, D. A., 1989. “The Auction Algo-
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