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Preface

With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.†

John von Neumann

The purpose of this monograph is to propose and develop a new concep-
tual framework for approximate Dynamic Programming (DP) and Rein-
forcement Learning (RL). This framework centers around two algorithms,
which are designed largely independently of each other and operate in syn-
ergy through the powerful mechanism of Newton’s method. We call these
the o↵-line training and the on-line play algorithms; the names are bor-
rowed from some of the major successes of RL involving games. Primary
examples are the recent (2017) AlphaZero program (which plays chess), and
the similarly structured and earlier (1990s) TD-Gammon program (which
plays backgammon). In these game contexts, the o↵-line training algorithm
is the method used to teach the program how to evaluate positions and to
generate good moves at any given position, while the on-line play algo-
rithm is the method used to play in real time against human or computer
opponents.

† From the meeting of Freeman Dyson and Enrico Fermi (p. 273 of the Segre

and Hoerlin biography of Fermi, The Pope of Physics, Picador, 2017): “When

Dyson met with him in 1953, Fermi welcomed him politely, but he quickly put

aside the graphs he was being shown indicating agreement between theory and

experiment. His verdict, as Dyson remembered, was “There are two ways of doing

calculations in theoretical physics. One way, and this is the way I prefer, is to

have a clear physical picture of the process you are calculating. The other way is

to have a precise and self-consistent mathematical formalism. You have neither.”

When a stunned Dyson tried to counter by emphasizing the agreement between

experiment and the calculations, Fermi asked him how many free parameters he

had used to obtain the fit. Smiling after being told “Four,” Fermi remarked, “I

remember my old friend Johnny von Neumann used to say, with four parameters

I can fit an elephant, and with five I can make him wiggle his trunk.” See also

the paper by Mayer, Khairy, and Howard [MKH10], which provides a verification

of the von Neumann quotation.

ix



x Preface

Both AlphaZero and TD-Gammon were trained o↵-line extensively
using neural networks and an approximate version of the fundamental DP
algorithm of policy iteration. Yet the AlphaZero player that was obtained
o↵-line is not used directly during on-line play (it is too inaccurate due
to approximation errors that are inherent in o↵-line neural network train-
ing). Instead a separate on-line player is used to select moves, based on
multistep lookahead minimization and a terminal position evaluator that
was trained using experience with the o↵-line player. The on-line player
performs a form of policy improvement, which is not degraded by neural
network approximations. As a result, it greatly improves the performance
of the o↵-line player.

Similarly, TD-Gammon performs on-line a policy improvement step
using one-step or two-step lookahead minimization, which is not degraded
by neural network approximations. To this end it uses an o↵-line neural
network-trained terminal position evaluator, and importantly it also ex-
tends its on-line lookahead by rollout (simulation with the one-step looka-
head player that is based on the position evaluator).

Thus in summary:

(a) The on-line player of AlphaZero plays much better than its extensively
trained o↵-line player. This is due to the beneficial e↵ect of exact
policy improvement with long lookahead minimization, which corrects
for the inevitable imperfections of the neural network-trained o↵-line
player, and position evaluator/terminal cost approximation.

(b) The TD-Gammon player that uses long rollout plays much better
than TD-Gammon without rollout. This is due to the beneficial ef-
fect of the rollout, which serves as a substitute for long lookahead
minimization.

An important lesson from AlphaZero and TD-Gammon is that the
performance of an o↵-line trained policy can be greatly improved by on-line
approximation in value space, with long lookahead (involving minimization
or rollout with the o↵-line policy, or both), and terminal cost approximation
that is obtained o↵-line. This performance enhancement is often dramatic
and is due to a simple fact, which is couched on algorithmic mathematics
and is the focal point of this work:

(a) Approximation in value space with one-step lookahead minimization

amounts to a step of Newton’s method for solving Bellman’s equation.

(b) The starting point for the Newton step is based on the results of o↵-

line training, and may be enhanced by longer lookahead minimization

and on-line rollout .

Indeed the major determinant of the quality of the on-line policy is the
Newton step that is performed on-line, while o↵-line training plays a sec-
ondary role by comparison.
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Significantly, the synergy between o↵-line training and on-line play
also underlies Model Predictive Control (MPC), a major control system
design methodology that has been extensively developed since the 1980s.
This synergy can be understood in terms of abstract models of infinite
horizon DP and simple geometrical constructions, and helps to explain the
all-important stability issues within the MPC context.

An additional benefit of policy improvement by approximation in
value space, not observed in the context of games (which have stable rules
and environment), is that it works well with changing problem param-
eters and on-line replanning, similar to indirect adaptive control. Here
the Bellman equation is perturbed due to the parameter changes, but ap-
proximation in value space still operates as a Newton step. An essential
requirement within this context is that a system model is estimated on-line
through some identification method, and is used during the one-step or
multistep lookahead minimization process.

In this monograph we will aim to provide insights (often based on
visualization), which explain the beneficial e↵ects of on-line decision mak-
ing on top of o↵-line training. In the process, we will bring out the strong
connections between the artificial intelligence view of RL, and the control
theory views of MPC and adaptive control. Moreover, we will show that in
addition to MPC and adaptive control, our conceptual framework can be
e↵ectively integrated with other important methodologies such as multia-
gent systems and decentralized control, discrete and Bayesian optimization,
and heuristic algorithms for discrete optimization.

One of our principal aims is to show, through the algorithmic ideas
of Newton’s method and the unifying principles of abstract DP, that the
AlphaZero/TD-Gammon methodology of approximation in value space and
rollout applies very broadly to deterministic and stochastic optimal control
problems. Newton’s method here is used for the solution of Bellman’s equa-
tion, an operator equation that applies universally within DP with both dis-
crete and continuous state and control spaces, as well as finite and infinite
horizon. In this connection, we note that the mathematical complications
associated with the formalism of Newton’s method for nondi↵erentiable op-
erators have been dealt with in the literature, using sophisticated methods
of nonsmooth analysis. We have provided in an appendix a convergence
analysis for a finite-dimensional version of Newton’s method, which applies
to finite-state problems, but conveys clearly the underlying geometrical in-
tuition and points to infinite-state extensions. We have also provided an
analysis for the classical linear-quadratic optimal control problem, the as-
sociated Riccati equation, and the application of Newton’s method for its
solution.

While we will deemphasize mathematical proofs in this work, there is
considerable related analysis, which supports our conclusions, and can be
found in the author’s recent RL books [Ber19a], [Ber20a], and the abstract
DP monograph [Ber22a]. In particular, the present work may be viewed as
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a more intuitive, less mathematical, visually oriented exposition of the core
material of the research monograph [Ber20a], which deals with approxima-
tion in value space, rollout, policy iteration, and multiagent systems. The
abstract DP monograph [Ber22a] develops the mathematics that support
the visualization framework of the present work, and is a primary resource
for followup mathematical research. The RL textbook [Ber19a] provides a
more general presentation of RL topics, and includes mathematical proof-
based accounts of some of the core material of exact infinite horizon DP, as
well as approximate DP. Much of this material is also contained, in greater
detail, in the author’s DP textbook [Ber12]. A mix of material contained
in these books forms the core of the author’s web-based RL course at ASU.

This monograph, as well as my earlier RL books, were developed
while teaching several versions of my course at ASU over the last four
years. Videolectures and slides from this course are available from my
website

http://web.mit.edu/dimitrib/www/RLbook.html

and provide a good supplement and companion resource to the present
book. The hospitable and stimulating environment at ASU contributed
much to my productivity during this period, and for this I am very thankful
to my colleagues and students for useful interactions. My teaching assis-
tants, Sushmita Bhattacharya, Sahil Badyal, and Jamison Weber, during
my courses at ASU have been very supportive. I have also appreciated
fruitful discussions with colleagues and students outside ASU, particularly
Moritz Diehl, who provided very useful comments on MPC, and Yuchao Li,
who proofread carefully the entire book, collaborated with me on research
and implementation of various methods, and tested out several algorithmic
variants.

Dimitri P. Bertsekas, 2022

dimitrib@mit.edu
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2 AlphaZero, Off-Line Training, and On-Line Play Chap. 1

In this work we will aim to provide a new conceptual framework for re-
inforcement learning and approximate dynamic programming. These two
fields, through the synergy of their ideas in the 1980s and 1990s, and in con-
junction of the emergence of machine learning, gave rise to a far-reaching
synthesis that would eventually have a major impact on the field of algo-
rithmic optimization.

In this chapter we provide an outline of the motivation and the al-
gorithmic justification of our framework, and its connection to AlphaZero
and related game programs, as well as Newton’s method for solving fixed
point problems. In subsequent chapters, we will flesh out our framework,
drawing on the theory of abstract DP, related visualizations, ideas of adap-
tive, model predictive, and linear quadratic control, as well as paradigms
from discrete and combinatorial optimization.

The development of the AlphaZero program by DeepMind Inc, as de-
scribed in the papers [SHS17], [SSS17], is perhaps the most impressive suc-
cess story in reinforcement learning (RL) todate. AlphaZero plays Chess,
Go, and other games, and is an improvement in terms of performance and
generality over the earlier AlphaGo program [SHM16], which plays the
game of Go only. AlphaZero, and other chess programs based on similar
principles, play as well or better than all competitor computer programs
available in 2021, and much better than all humans. These programs are
remarkable in several other ways. In particular, they have learned how to
play without human instruction, just data generated by playing against
themselves. Moreover, they learned how to play very quickly. In fact, Al-
phaZero learned how to play chess better than all humans and computer
programs within hours (with the help of awesome parallel computation
power, it must be said).

We should note also that the principles of the AlphaZero design have
much in common with the TD-Gammon programs of Tesauro [Tes94],
[Tes95], [TeG96] that play backgammon (a game of substantial compu-
tational and strategical complexity, which involves a number of states es-
timated to be in excess of 1020). Tesauro’s programs stimulated much
interest in RL in the middle 1990s, and one of these programs exhibits sim-
ilarly different and better play than human backgammon players. A related
program for the (one-player) game of Tetris, based on similar principles,
is described by Scherrer et al. [SGG15], together with several antecedents,
including algorithmic schemes dating to the 1990s, by Tsitsiklis and Van-
Roy [TsV96], and Bertsekas and Ioffe [BeI96]. The backgammon and Tetris
programs, while dealing with less complex games than chess, are of spe-
cial interest because they involve significant stochastic uncertainty, and are
thus unsuitable for the use of long lookahead minimization, which is widely
believed to be one of the major contributors to the success of AlphaZero,
and chess programs in general.

Still, for all of their brilliant implementations, these impressive game
programs are couched on well established methodology, from optimal and
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suboptimal control, which is portable to far broader domains of engineering,
economics, and other fields. This is the methodology of dynamic program-
ming (DP), policy iteration, limited lookahead minimization, rollout, and
related approximations in value space. The aim of this work is to propose
a conceptual, somewhat abstract framework, which allows insight into the
connections of AlphaZero and TD-Gammon with some of the core problems
in decision and control, and suggests potentially far-reaching extensions.

To understand the overall structure of AlphaZero and related pro-
grams, and their connections to the DP/RL methodology, it is useful to
divide their design into two parts:

(a) Off-line training, which is an algorithm that learns how to evaluate
chess positions, and how to steer itself towards good positions with a
default/base chess player.

(b) On-line play, which is an algorithm that generates good moves in
real time against a human or computer opponent, using the training
it went through off-line.

An important empirical fact is that the on-line player of AlphaZero plays
much better than its extensively trained off-line player . This supports a
conceptual idea that applies in great generality and is central in this book,
namely that the performance of an off-line trained policy can be greatly
improved by on-line play. We will next briefly describe the off-training and
on-line play algorithms, and relate them to DP concepts and principles,
focusing on AlphaZero for the most part.

1.1 OFF-LINE TRAINING AND POLICY ITERATION

An off-line training algorithm like the one used in AlphaZero is the part
of the program that learns how to play through self-training that takes
place before real-time play against any opponent. It is illustrated in Fig.
1.1.1, and it generates a sequence of chess players and position evaluators .
A chess player assigns “probabilities” to all possible moves at any given
chess position: these may be viewed as a measure of “effectiveness” of the
corresponding moves. A position evaluator assigns a numerical score to
any given chess position, and thus predicts quantitatively the performance
of a player starting from any position. The chess player and the position
evaluator are represented by neural networks, a policy network and a value
network , which accept as input a chess position and generate a set of move
probabilities and a position evaluation, respectively.†

† Here the neural networks play the role of function approximators. By

viewing a player as a function that assigns move probabilities to a position, and

a position evaluator as a function that assigns a numerical score to a position,
the policy and value networks provide approximations to these functions based
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Policy Improvement
Policy Improvement

erent! Approximate Value Function Player Features Mappinerent! Approximate Value Function Player Features Mappin

Self-Learning/Policy Iteration Constraint Relaxation
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Figure 1.1.1 Illustration of the AlphaZero off-line training algorithm. It gener-
ates a sequence of position evaluators and chess players. The position evaluator
and the chess player are represented by two neural networks, a value network and
a policy network, which accept a chess position and generate a position evaluation
and a set of move probabilities, respectively.

In the more conventional DP-oriented terms of this work, a position is
the state of the game, a position evaluator is a cost function that gives (an
estimate of) the optimal cost-to-go at a given state, and the chess player
is a randomized policy for selecting actions/controls at a given state.†

The overall training algorithm is a form of policy iteration, a DP
algorithm that will be of primary interest to us in this work. Starting from
a given player, it repeatedly generates (approximately) improved players,
and settles on a final player that is judged empirically to be “best” out of
all the players generated. Policy iteration may be separated conceptually
into two stages (see Fig. 1.1.1).

(a) Policy evaluation: Given the current player and a chess position, the
outcome of a game played out from the position provides a single data
point. Many data points are thus collected, and are used to train a
value network, whose output serves as the position evaluator for that
player.

on training with data. Actually, AlphaZero uses the same neural network for

training both value and policy. Thus there are two outputs of the neural net:
value and policy. This is pretty much equivalent to having two separate neural

nets and for the purposes of this work, we prefer to explain the structure as

two separate networks. AlphaGo uses two separate value and policy networks.
Tesauro’s backgammon programs use a single value network, and generate moves

when needed by one-step or two-step lookahead minimization, using the value
network as terminal position evaluator.

† One more complication is that chess and Go are two-player games, while

most of our development will involve single-player optimization. While DP theory
and algorithms extend to two-player games, we will not discuss these extensions,

except in a very limited way in Chapter 6. Alternatively, a chess program can

be trained to play well against a fixed opponent, in which case the framework of
single-player optimization applies.



Sec. 1.1 Off-Line Training and Policy Iteration 5

(b) Policy improvement : Given the current player and its position evalua-
tor, trial move sequences are selected and evaluated for the remainder
of the game starting from many positions. An improved player is then
generated by adjusting the move probabilities of the current player
towards the trial moves that have yielded the best results.

In AlphaZero (as well as AlphaGo Zero, the version that plays the
game of Go) the policy evaluation is done by using deep neural networks.
The policy improvement uses a complicated algorithm called Monte Carlo
Tree Search (MCTS for short), a form of randomized multistep lookahead
minimization that enhances the efficiency of the multistep lookahead oper-
ation, by pruning intelligently the multistep lookahead graph.

We note, however, that deep neural networks and MCTS, while lead-
ing to some performance gains, are not of fundamental importance. The
approximation quality that a deep neural network can achieve can also be
achieved with a shallow neural network, perhaps with reduced sample ef-
ficiency. Similarly MCTS cannot achieve better lookahead accuracy than
standard exhaustive search, although it may be more efficient computation-
ally. Indeed, policy improvement can be done more simply without MCTS,
as in Tesauro’s TD-Gammon program: we try all possible move sequences
from a given position, extend forward to some number of moves, and then
evaluate the terminal position with the current player’s position evaluator.
The move evaluations obtained in this way are used to nudge the move
probabilities of the current player towards more successful moves, thereby
obtaining data that is used to train a policy network that represents the
new player.†

Regardless of the use of deep neural networks and MCTS, it is impor-
tant to note that the final policy and the corresponding policy evaluation
produced by approximate policy iteration and neural network training in
AlphaZero involve serious inaccuracies, due to the approximations that are
inherent in neural network representations . The AlphaZero on-line player
to be discussed next uses approximation in value space with multistep
lookahead minimization, and does not involve any neural network, other
than the one that has been trained off-line, so it is not subject to such
inaccuracies. As a result, it plays much better than the off-line player.

† Quoting from the paper [SSS17] (p. 360): “The AlphaGo Zero selfplay
algorithm can similarly be understood as an approximate policy iteration scheme

in which MCTS is used for both policy improvement and policy evaluation. Policy
improvement starts with a neural network policy, executes a MCTS based on that

policy’s recommendations, and then projects the (much stronger) search policy

back into the function space of the neural network. Policy evaluation is applied
to the (much stronger) search policy: the outcomes of selfplay games are also

projected back into the function space of the neural network. These projection

steps are achieved by training the neural network parameters to match the search
probabilities and selfplay game outcome respectively.”
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Figure 1.2.1 Illustration of an on-line player such as the one used in AlphaGo,
AlphaZero, and Tesauro’s backgammon program [TeG96]. At a given position,
it generates a lookahead graph of multiple moves up to some depth, then runs
the off-line obtained player for some more moves, and evaluates the effect of the
remaining moves by using the position evaluator of the off-line player.

1.2 ON-LINE PLAY AND APPROXIMATION IN VALUE SPACE
- TRUNCATED ROLLOUT

Consider the “final” player obtained through the AlphaZero off-line train-
ing process. It can play against any opponent by generating move proba-
bilities at any position using its off-line trained policy network, and then
simply play the move of highest probability. This player would play very
fast on-line, but it would not play good enough chess to beat strong human
opponents. The extraordinary strength of AlphaZero is attained only after
the player obtained from off-line training is embedded into another algo-
rithm, which we refer to as the “on-line player.”† In other words AlphaZero
plays on-line much better than the best player it has produced with sophis-
ticated off-line training. This phenomenon, policy improvement through
on-line play, is centrally important for our purposes in this work.

Given the policy network/player obtained off-line and its value net-
work/position evaluator, the on-line algorithm plays roughly as follows (see
Fig. 1.2.1). At a given position, it generates a lookahead graph of all possi-

† Quoting from the paper [SSS17] (p. 354): “The MCTS search outputs

probabilities of playing each move. These search probabilities usually select much

stronger moves than the raw move probabilities of the neural network.” To elabo-
rate, this statement refers to the MCTS algorithm that is used on line to generate

the move probabilities at each position encountered in the course of a given game.

The neural network referred to is trained off-line, also using in part the MCTS
algorithm.
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ble multiple move and countermove sequences, up to a given depth. It then
runs the off-line obtained player for some more moves, and evaluates the
effect of the remaining moves by using the position evaluator of the value
network.

The middle portion, called “truncated rollout,” may be viewed as an
economical substitute for longer lookahead minimization. Actually trun-
cated rollout is not used in the published version of AlphaZero [SHS17];
the first portion (multistep lookahead minimization) is very long and im-
plemented efficiently (partly through the use of MCTS), so that the rollout
portion is not essential. Rollout has been used in AlphaGo, the AlphaZero
predecessor [SHM16]. Moreover, chess and Go programs (including Alp-
haZero) typically use a well-known limited form of rollout, called “quies-
cence search,” which aims to resolve imminent threats and highly dynamic
positions through simulated multi-move piece exchanges, before invoking
the position evaluator. Rollout is instrumental in achieving high perfor-
mance in Tesauro’s 1996 backgammon program [TeG96]. The reason is
that backgammon involves stochastic uncertainty, so long lookahead mini-
mization is not possible because of rapid expansion of the lookahead graph
with every move.†

In control system design, similar architectures to the ones of Alp-
haZero and TD-Gammon are employed in model predictive control (MPC).
There, the number of steps in lookahead minimization is called the control
interval , while the total number of steps in lookahead minimization and
truncated rollout is called the prediction interval ; see e.g., Magni et al.
[MDM01]. (The MATLAB toolbox for MPC design explicitly allows the
user to choose these two intervals.) The benefit of truncated rollout in pro-
viding an economical substitute for longer lookahead minimization is well
known within this context. We will discuss further the structure of MPC
and its similarities with the AlphaZero architecture in Chapter 5.

Dynamic programming frameworks with cost function approxima-
tions that are similar to the on-line player illustrated in Fig. 1.2.1, are
also known as approximate dynamic programming , or neuro-dynamic pro-

† Tesauro’s rollout-based backgammon program [TeG96] uses only a value

network, which was trained using an approximate policy iteration scheme devel-

oped several years earlier [Tes94]. This network is used to generate moves for the
truncated rollout via a one-step or two-step lookahead minimization. Thus the

value network also serves as a substitute for the policy network during the roll-
out operation. The position evaluation used at the end of the truncated rollout

is also provided by the value network. The middle portion of Tesauro’s scheme

(truncated rollout) is important for achieving a very high quality of play, as it
effectively extends the length of lookahead from the current position (the player

with rollout [TeG96] plays much better than the player without rollout [Tes94]).

In backgammon circles, Tesauro’s program with truncated rollout is viewed as
essentially “optimal.”
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gramming , and will be central for our purposes. They will be generically
referred to as approximation in value space in this work.†

Note also that in general, off-line training and on-line policy imple-
mentation may be designed independently of each other. For example the
off-line training portion may be very simple, such as using a known heuristic
policy for rollout without truncation, or without terminal cost approxima-
tion. Conversely, a sophisticated process may be used for off-line training of
a terminal cost function approximation, which is used following the looka-
head minimization in a value space approximation scheme.

1.3 THE LESSONS OF ALPHAZERO

The AlphaZero and TD-Gammon experiences reinforce an important con-
clusion that applies more generally to decision and control problems: de-
spite the extensive off-line effort that may have gone into the design of
a policy, performance may be greatly improved by on-line approximation
in value space, with extra lookahead involving minimization and/or with
rollout using this policy, and terminal cost approximation.

In the following chapters, we will aim to amplify on this theme and
to focus on the principal characteristics of AlphaZero-like architectures,
within a broader context of optimal decision and control. We will make
use of intuitive visualization, and the central role of Newton’s method for
solving Bellman’s equation.‡ Briefly, our central point will be that on-line
approximation in value space amounts to a step of Newton’s method for
solving Bellman’s equation, while the starting point for the Newton step is
based on the results of off-line training; see Fig. 1.3.1. Moreover, this start-
ing point may be enhanced by several types of on-line operations, including
longer lookahead minimization, and on-line rollout with a policy obtained
through off-line training, or heuristic approximations.

† The names “approximate dynamic programming” and “neuro-dynamic pro-

gramming” are often used as synonyms to RL. However, RL is often thought to

also subsume the methodology of approximation in policy space, which involves
search for optimal parameters within a parametrized set of policies. The search is

done with methods that are largely unrelated to DP, such as for example stochas-

tic gradient or random search methods (see the author’s RL textbook [Ber19a]).
Approximation in policy space may be used off-line to design a policy that can

be used for on-line rollout. However, as a methodological subject, approximation
in policy space has little connection to the ideas of the present work.

‡ Bellman’s equation, the centerpiece of infinite horizon DP theory, is viewed

here as a functional equation, whose solution is the cost of operating the system
viewed as a function of the system’s initial state. We will give examples of

Bellman’s equation in Chapter 2 for discounted and other problems, and we will

also provide in Chapter 3 abstract forms of Bellman’s equation that apply more
generally.
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Figure 1.3.1 Illustration of the connections between off-line training, on-line play,
and Newton’s method for solving Bellman’s equation. On-line play is viewed as
a Newton step, while off-line training provides the starting point for the New-
ton step. The Newton step starts with a cost approximation J̃ , which may be
enhanced on-line by additional lookahead minimization and/or rollout, and pro-
duces the cost function of the on-line player.

This interpretation will be the basis for powerful insights into issues
of stability, performance, and robustness of the on-line generated policy.
In particular, we will aim to show that feedback control, based on approx-
imation in value space and the underlying off-line training/on-line play
structure, offers benefits that go well beyond the conventional wisdom that
“feedback corrects for uncertainty, and modeling errors.” The reason is that
by overlaying on-line play on top of off-line training, we gain significantly in
performance, by correcting (through the Newton step) for the errors that
are inherent in off-line training with approximation architectures such as
neural networks.

Our mathematical framework is couched on unifying principles of ab-
stract DP, including abstract forms of Bellman’s equation, and the value
and policy iteration algorithms (see the author’s books [Ber12], [Ber22a]).
However, in this work, we will deemphasize mathematical proofs. There is
considerable related analysis, which supports our conclusions and can be
found in the author’s recent RL books [Ber19a], [Ber20a].

In summary, our discussion will aim to highlight the following points:

Summary

(a) Approximation in value space, with one-step lookahead mini-
mization, is an exact step of Newton’s method for solving Bell-
man’s equation. This step may be preceded by on-line adjust-
ments and/or value iterations, which enhance its starting point.

(b) The starting point for the Newton step of (a) is obtained by some
unspecified off-line methodology, which may involve the solution
of a related but simpler problem, and/or training with data that
makes use of neural networks or feature-based architectures.
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(c) The on-line play and off-line training parts of the AlphaZero/TD-
Gammon design structure correspond to (a) and (b) above, re-
spectively.

(d) The on-line player of AphaZero plays much better than its deep
neural network-trained player for the same reason that the New-
ton step (a) improves substantially on its starting point (b),
namely the underlying superlinear convergence property that is
typical of Newton’s method.

(e) !-step lookahead minimization can be viewed as one-step looka-
head minimization where ! − 1 value iterations are used to en-
hance the starting point of the Newton step of (a) above. It is
important to perform the first step of the lookahead exactly, but
for the last !− 1 steps, approximations may be tolerated.

(f) The algorithmic processes for (a) and (b) above can be designed
by a variety of methods, and independently of each other. For
example:

(1) The implementation of the Newton step (a) may or may
not involve any of the following: truncated rollout, on-
line Monte Carlo simulation, MCTS or other efficient graph
search techniques, forms of continuous space optimization,
on-line policy iteration, etc.

(2) The computation of the starting point (b) may or may
not involve any of the following: Q-learning, approximate
policy iteration based on temporal differences or aggrega-
tion, neural networks, feature-based function approxima-
tion, policies trained off-line by approximation in policy
space, including policy gradient methods or policy random
search, etc. Moreover, the details of this computation may
vary broadly without affecting significantly the effective-
ness of the overall scheme, which is primarily determined
by the Newton step (a).

(g) An efficient implementation of the Newton step (a) is often criti-
cal in order to meet real-time constraints for generating controls,
and to allow longer lookahead minimization, which enhances the
starting point of the Newton step and its performance. By con-
trast, off-line training algorithms used for (b) have much less
stringent real-time constraints, and the issues of sample efficiency
and fine tuned performance, while important, are not critical.

(h) The efficient implementation of the Newton step may benefit
from the use of distributed computation and other simplifica-
tions. A case in point is multiagent problems, which we will
discuss later (see Chapter 3).



Sec. 1.3 The Lessons of AlphaZero 11

(i) Approximation in value space addresses effectively issues of ro-
bustness and on-line replanning for problems with changing pa-
rameters. The mechanism is similar to the one of indirect adap-
tive control: changing problem parameters are estimated on-line
and a Newton step is used in place of an expensive full reoptimiza-
tion of the controller. In the presence of changing parameters,
the Bellman equation changes, but the Newton step itself remains
powerful and aims at the optimal solution that corresponds to
the estimated system parameters.

(j) Model predictive control (MPC) has a conceptually similar struc-
ture to the AlphaZero-like programs, and entails an on-line play
component involving multistep lookahead minimization, forms
of truncated rollout, and an off-line training component to con-
struct terminal cost approximations, and “safe” state space re-
gions or reachability tubes to deal with state constraints. The
success of MPC may be attributed to these similarities and to its
resilience to changing problem parameters as per (i) above.

(k) On-line rollout with a stable policy yields a good starting point
for the Newton step (a): it improves the stability properties of the
policy obtained by approximation in value space, and provides
an economical substitute for long lookahead minimization.

(l) Because the ideas outlined above are couched on principles of
DP that often hold for arbitrary state and control spaces, they
are valid within very general contexts: continuous-spaces con-
trol systems, discrete-spaces Markov decision problems, control
of hybrid systems, decision making in multiagent systems, and
discrete and combinatorial optimization.

The preceding points are meant to highlight the essence of the connec-
tions between AlphaZero and TD-Gammon, approximation in value space,
and decision and control. Naturally in practice there are exceptions and
modifications, which need to be worked out in the context of particular ap-
plications, under appropriate assumptions. Moreover, while some results
and elaborations are available through the research that has been done on
approximate DP and on MPC, several of the results suggested by the anal-
ysis and insights of the present work remain to be rigorously established
and enhanced within the context of specific problems.

1.4 A NEW CONCEPTUAL FRAMEWORK FOR
REINFORCEMENT LEARNING

In this work we will emphasize the distinct roles of off-line training and on-
line play algorithms within the structure of approximate sequential decision
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making and approximation in value space schemes. In doing so, we will aim
for a new conceptual framework for RL, which is based on the synergism
and complementarity of off-line training and on-line play, and the analytical
framework of Newton’s method.

We will implicitly assume that the time available for off-line training
is very long (practically limitless), but that the problem at hand is such that
exact DP algorithms, like policy iteration and Q-learning, are impossible
for one (or both) of the following two reasons:

(a) There are too many states (either an infinite number as in continuous
space problems, or very large as in chess). As a result a lookup table
representation of policies, value functions, and/or Q-factors is impos-
sible, and the only practical alternative is a compact representation,
via a neural network or some other approximation architecture.

(b) The system model is changing over time as in adaptive control, so even
if an exactly optimal policy is computed off-line under some nominal
problem assumptions, it becomes suboptimal when the problem pa-
rameters change.

In this work, we will not discuss training algorithms and their associated
sample efficiency issues, and we will refer to the many available sources,
including the author’s RL books [Ber19a], [Ber20a].

On the other hand, we will assume that there is limited time for
on-line decision making, because of hard practical constraints on the real
time that is available between decisions. These constraints are highly prob-
lem dependent: for some problems, following the observation of the state,
we may need to produce the next decision within a fraction of a second,
whereas for others we may have hours at our disposal. We will assume
that whatever time is available, it will be used to provide quite accurate
(nearly exact) one-step or multistep lookahead minimization, and time per-
mitting, to extend as much as possible the combined length of the lookahead
minimization and the truncated rollout with an off-line computed policy.
We will thus implicitly take it as given that longer (as well as more accu-
rate) lookahead minimization is better for the performance of the policy
obtained,† although the division of effort between lookahead minimization
and truncated rollout with a policy is a design decision that may depend
on the circumstances. Note that parallel and distributed computation can
play an important role in mitigating practical on-line time constraints.

The central fact in our conceptual framework is that approximation
in value space with one-step lookahead minimization constitutes a single
Newton step for solving Bellman’s equation. Contrary to other Newton-
like steps that may have been part of the off-line training process, this

† It is possible to construct artificial problems, where longer lookahead results

in worse performance (see [Ber19a], Section 2.2), but such problems are rare in
practice.
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single Newton step is accurate: all the approximation has been shifted to
its starting point . Moreover, the Newton step can be very powerful, and
its starting point can be enhanced by multistep lookahead minimization
or by truncated rollout. From an algorithmic point of view, the Newton
step converges superlinearly without the need for differentiability of the
Bellman operator T : it takes advantage of the monotonicity and concavity
structure of T (see the Appendix, where we will discuss Newton’s method
without differentiability assumptions).

To summarize, both off-line training and on-line play are subject to
fundamental limits: the former’s limit is the constrained power of the ap-
proximation architecture, while the latter’s limit is the constrained on-line
computation time. The former limit cannot be easily overcome, but the
latter limit can be stretched a lot thanks to the power of the Newton step,
supplemented by long lookahead minimization and truncated rollout, as
well as through the use of parallel and distributed computation.

Our design philosophy in a nutshell is the following:

(1) The major determinant of the quality of the controller obtained by
our schemes is the Newton step that is performed on-line. Stated
somewhat bluntly, off-line training is secondary by comparison, in
the sense that without on-line one-step or multistep lookahead mini-
mization, the quality of the policy obtained by off-line training alone
is often unacceptably poor. In particular, whether done by neural net-
works, feature-based linear architectures, temporal difference meth-
ods, aggregation, policy gradient, policy random search, or whatever
other reasonable approach, off-line training principally serves the pur-
pose of providing a good or reasonable starting point for the Newton
step. This is the principal lesson from AlphaZero and TD-Gammon in
our view. This philosophy also underlies MPC, where on-line looka-
head minimization has traditionally been the principal focus, perhaps
supplemented by truncated rollout, with off-line calculations playing
a limited subsidiary role.†

(2) The Newton step is often powerful enough to smooth out differences
in various off-line training methods. In particular, methods such as
TD(λ) with different values of λ, policy gradient, linear programming,
etc, all give different, but more or less equally good starting points
for the Newton step. The conclusion from this is that off-line train-
ing with a very large number of samples, and sophisticated ways to
improve sample efficiency may not be very useful, beyond a certain
point, because gains in efficiency and accuracy tend to be washed up
by the Newton step.

† Incidentally, this is a major reason why there is an apparent disconnect

between the MPC community, which is mostly focused on on-line play, and the
RL community, which is mostly focused on off-line training.
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(3) The on-line Newton step also works well in the context of adaptive
control, as long as it is calculated on the basis of the currently correct
model parameters (so this requires an on-line parameter identification
algorithm). The reason is that when problem parameters change, the
Bellman operator changes, but the Newton step is executed on the
basis of the correct Bellman operator. This is also a principal reason
why MPC schemes have been used with success in adaptive control
contexts.

We will return to these points repeatedly in the course of our presentation.

1.5 NOTES AND SOURCES

The theory of DP dates to the late 40s and 50s, and provides the founda-
tion for our subject. Indeed RL may be viewed as an approximate form of
the exact DP methodology. The author’s DP textbook [Ber17a] provides
an extensive discussion of finite horizon DP, and its applications to discrete
and continuous spaces problems, using a notation and style that is consis-
tent with the present book. The books by Puterman [Put94] and by the
author [Ber12] provide detailed treatments of infinite horizon finite-state
Markovian decision problems.

Continuous spaces infinite horizon problems are covered in the au-
thor’s book [Ber12], while some of the more complex mathematical as-
pects of exact DP are discussed in the monograph by Bertsekas and Shreve
[BeS78] (particularly the probabilistic/measure-theoretic issues associated
with stochastic optimal control).†

† The rigorous mathematical theory of stochastic optimal control, including
the development of an appropriate measure-theoretic framework, dates to the
60s and 70s. It culminated in the monograph [BeS78], which provides the now
“standard” framework, based on the formalism of Borel spaces, lower semiana-
lytic functions, and universally measurable policies. This development involves
daunting mathematical complications, which stem, among others, from the fact
that when a Borel measurable function F (x, u), of the two variables x and u, is
minimized with respect to u, the resulting function

G(x) = min
u

F (x, u)

need not be Borel measurable (it is lower semianalytic). Moreover, even if the
minimum is attained by several functions/policies µ, i.e., G(x) = F

(

x,µ(x)
)

for
all x, it is possible that none of these µ is Borel measurable (however, there
does exist a minimizing policy that belongs to the broader class of universally
measurable policies). Thus, starting with a Borel measurability framework for
cost functions and policies, we quickly get outside that framework when executing
DP algorithms, such as value and policy iteration. The broader framework of
universal measurability is required to correct this deficiency, in the absence of
additional (fairly strong) assumptions.
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The third edition of the author’s abstract DP monograph [Ber22a],
expands on the original 2013 first edition, and aims at a unified development
of the core theory and algorithms of total cost sequential decision problems.
It addresses simultaneously stochastic, minimax, game, risk-sensitive, and
other DP problems, through the use of abstract DP operators (or Bellman
operators as they are often called in RL). The abstract framework is impor-
tant for some the visualization insights and the connections to Newton’s
method that are central for the purposes of this book.

The approximate DP and RL literature has expanded tremendously
since the connections between DP and RL became apparent in the late
1980s and early 1990s. In what follows, we will provide a list of textbooks,
research monographs, and broad surveys, which supplement our discus-
sions, express related viewpoints, and collectively provide a guide to the
literature.

RL Textbooks

Two books were written in the 1990s, setting the tone for subsequent de-
velopments in the field. One in 1996 by Bertsekas and Tsitsiklis [BeT96],
which reflects a decision, control, and optimization viewpoint, and another
in 1998 by Sutton and Barto, which reflects an artificial intelligence view-
point (a 2nd edition, [SuB18], was published in 2018). We refer to the
former book and also to the author’s DP textbooks [Ber12], [Ber17a] for a
broader discussion of some of the topics of this book, including algorithmic
convergence issues and additional DP models, such as those based on aver-
age cost and semi-Markov problem optimization. Note that both of these
books deal with finite-state Markov decision models and use a transition
probability notation, as they do not address continuous spaces problems,
which are also of major interest in this book.

More recent books are by Gosavi [Gos15] (a much expanded 2nd
edition of his 2003 monograph), which emphasizes simulation-based op-
timization and RL algorithms, Cao [Cao07], which focuses on a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-

The monograph [BeS78] provides an extensive treatment of these issues,

while Appendix A of the DP textbook [Ber12] provides a tutorial introduction.
The followup work by Huizhen Yu and the author [YuB15] resolves the special

measurability issues that relate to policy iteration, and provides additional anal-
ysis relating to value iteration. In the RL literature, the mathematical difficulties

around measurability are usually neglected (as they are in the present book), and

this is fine because they do not play an important role in applications. Moreover,
measurability issues do not arise for problems involving finite or countably infinite

state and control spaces. We note, however, that there are quite a few published

works in RL as well as exact DP, which purport to address measurability issues
with a mathematical narrative that is either confusing or plain incorrect.
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cus [CFH13] (a 2nd edition of their 2007 monograph), which emphasizes
finite-horizon/multistep lookahead schemes and adaptive sampling, Buso-
niu, Babuska, De Schutter, and Ernst [BBD10a], which focuses on func-
tion approximation methods for continuous space systems and includes a
discussion of random search methods, Szepesvari [Sze10], which is a short
monograph that selectively treats some of the major RL algorithms such as
temporal difference methods, armed bandit methods, and Q-learning, Pow-
ell [Pow11], which emphasizes resource allocation and operations research
applications, Powell and Ryzhov [PoR12], which focuses on specialized top-
ics in learning and Bayesian optimization, Vrabie, Vamvoudakis, and Lewis
[VVL13], which discusses neural network-based methods and on-line adap-
tive control, Kochenderfer et al. [KAC15], which selectively discusses ap-
plications and approximations in DP, and the treatment of uncertainty,
Jiang and Jiang [JiJ17], which addresses adaptive control and robustness
issues within an approximate DP framework, Liu, Wei, Wang, Yang, and Li
[LWW17], which deals with forms of adaptive dynamic programming, and
topics in both RL and optimal control, and Zoppoli, Sanguineti, Gnecco,
and Parisini [ZSG20], which addresses neural network approximations in
optimal control as well as multiagent/team problems with nonclassical in-
formation patterns.

There are also several books that, while not exclusively focused on
DP and/or RL, touch upon several of the topics of this book. The book by
Borkar [Bor08] is an advanced monograph that addresses rigorously many
of the convergence issues of iterative stochastic algorithms in approximate
DP, mainly using the so called ODE approach. The book by Meyn [Mey07]
is broader in its coverage, but discusses some of the popular approximate
DP/RL algorithms. The book by Haykin [Hay08] discusses approximate
DP in the broader context of neural network-related subjects. The book
by Krishnamurthy [Kri16] focuses on partial state information problems,
with discussion of both exact DP, and approximate DP/RL methods. The
textbooks by Kouvaritakis and Cannon [KoC16], Borrelli, Bemporad, and
Morari [BBM17], and Rawlings, Mayne, and Diehl [RMD17] collectively
provide a comprehensive view of the MPC methodology. The book by Lat-
timore and Szepesvari [LaS20] is focused on multiarmed bandit methods.
The book by Brandimarte [Bra21] is a tutorial introduction to DP/RL that
emphasizes operations research applications and includes MATLAB codes.
The book by Hardt and Recht [HaR21] focuses on broader subjects of ma-
chine learning, but covers selectively approximate DP and RL topics as
well.

The present book is similar in style, terminology, and notation to the
author’s recent RL textbooks [Ber19a], [Ber20a], and the 3rd edition of
the abstract DP monograph [Ber22a], which collectively provide a fairly
comprehensive account of the subject. In particular, the 2019 RL text-
book includes a broader coverage of approximation in value space meth-
ods, including certainty equivalent control and aggregation methods. It
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also covers substantially policy gradient methods for approximation in pol-
icy space, which we will not address here. The 2020 book focuses more
closely on rollout, policy iteration, and multiagent problems. The abstract
DP monograph [Ber22a] is an advanced treatment of exact DP, which also
connects with intuitive visualizations of Bellman’s equation and related al-
gorithms. The present book is less mathematical and more conceptual in
character. It focuses on the connection of approximation in value space with
Newton’s method, relying on analysis first provided in the book [Ber20a]
and the paper [Ber22b], as well as on visualizations of abstract DP ideas
from the book [Ber22a].

Surveys and Short Research Monographs

In addition to textbooks, there are many surveys and short research mono-
graphs relating to our subject, which are rapidly multiplying in num-
ber. Influential early surveys were written, from an artificial intelligence
viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of RL). The volume by White and
Sofge [WhS92] also contains several surveys describing early work in the
field.

Several overview papers in the volume by Si, Barto, Powell, and Wun-
sch [SBP04] describe some approximation methods that we will not be
covering in much detail in this book: linear programming approaches (De
Farias [DeF04]), large-scale resource allocation methods (Powell and Van
Roy [PoV04]), and deterministic optimal control approaches (Ferrari and
Stengel [FeS04], and Si, Yang, and Liu [SYL04]). Updated accounts of
these and other related topics are given in the survey collections by Lewis,
Liu, and Lendaris [LLL08], and Lewis and Liu [LeL13].

Recent extended surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Szepesvari [Sze10] (which discusses approximation in value space from a
RL point of view), Deisenroth, Neumann, and Peters [DNP11], and Grond-
man et al. [GBL12] (which focus on policy gradient methods), Browne et
al. [BPW12] (which focuses on Monte Carlo Tree Search), Mausam and
Kolobov [MaK12] (which deals with Markov decision problems from an
artificial intelligence viewpoint), Schmidhuber [Sch15], Arulkumaran et al.
[ADB17], Li [Li17], Busoniu et al. [BDT18], the author’s [Ber05] (which
focuses on rollout algorithms and model predictive control), [Ber11] (which
focuses on approximate policy iteration), and [Ber18b] (which focuses on
aggregation methods), and Recht [Rec18] (which focuses on continuous
spaces optimal control).
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Research Content of this Book

The research focus of this book is to propose and develop a new conceptual
framework, which the author believes is fundamental within the context of
DP-based RL methodology. This framework centers around the division of
the design process of an RL scheme into the off-line training and the on-
line play algorithms, and shows that these algorithms operate in synergy
through the powerful mechanism of Newton’s method.

The style of the book is different than the style of the author’s more
mathematically oriented RL books [Ber19a] and [Ber20a], and abstract DP
book [Ber22a]. In particular, the present book emphasizes insights through
visualization rather than rigorous proofs. At the same time, the book
makes careful distinctions between provable and speculative claims. By
highlighting the exceptional behavior that may occur, the book also aims to
emphasize the need for serious mathematical research and experimentation
into broad classes of problems, beyond the relatively well-behaved finite
horizon and discounted/contractive problems.

Book Organization

The book is structured as follows. In Chapter 2, we review the theory of
classical infinite horizon optimal control problems, in order to provide some
orientation and an analytical platform for what follows in subsequent chap-
ters. In Chapter 3, we introduce an abstract DP framework that will set
the stage for the conceptual and visual interpretations of approximation in
value space in terms of Newton’s method. In this chapter, we also present
new research relating to on-line policy iteration, which aims to improve
the on-line approximation in value space algorithm by using training data
that is collected on-line. In Chapter 4, we illustrate our analysis within the
simple and intuitive framework of linear quadratic problems, which admit
visualizations through the Riccati equation operators. In Chapter 5, we
discuss various issues of changing problem parameters, adaptive control,
and MPC. In Chapter 6, we extend the ideas of earlier chapters to finite
horizon problems and discrete optimization, with a special focus on roll-
out algorithms and their variations. This chapter also includes a section on
approximation in value space schemes for deterministic continuous-time op-
timal control. Finally, in the Appendix, we outline the convergence theory
of Newton’s method, and explain how the theory applies to nondifferen-
tiable fixed point problems, such as the solution of Bellman’s equation in
DP. We also describe how the connection with Newton’s method can be
used to derive new and more realistic error bounds for approximation in
value space and approximate policy iteration.
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This is the first textbook that fully explains the neuro-dynamic pro-
gramming/reinforcement learning methodology, a breakthrough in the prac-
tical application of neural networks and dynamic programming to complex
problems of planning, optimal decision making, and intelligent control.

From the review by George Cybenko for IEEE Computational Sci-
ence and Engineering, May 1998:

“Neuro-Dynamic Programming is a remarkable monograph that in-
tegrates a sweeping mathematical and computational landscape into a co-
herent body of rigorous knowledge. The topics are current, the writing is
clear and to the point, the examples are comprehensive and the historical
notes and comments are scholarly.”

“In this monograph, Bertsekas and Tsitsiklis have performed a Her-
culean task that will be studied and appreciated by generations to come.
I strongly recommend it to scientists and engineers eager to seriously un-
derstand the mathematics and computations behind modern behavioral
machine learning.”

Among its special features, the book:

• Describes and unifies a large number of NDP methods, including sev-
eral that are new

• Describes new approaches to formulation and solution of important
problems in stochastic optimal control, sequential decision making,
and discrete optimization

• Rigorously explains the mathematical principles behind NDP

• Illustrates through examples and case studies the practical applica-
tion of NDP to complex problems from optimal resource allocation,
optimal feedback control, data communications, game playing, and
combinatorial optimization

• Presents extensive background and new research material on dynamic
programming and neural network training
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This book explores the common boundary between optimal control
and artificial intelligence, as it relates to reinforcement learning and simu-
lation-based neural network methods. These are popular fields with many
applications, which can provide approximate solutions to challenging se-
quential decision problems and large-scale dynamic programming (DP).
The aim of the book is to organize coherently the broad mosaic of methods
in these fields, which have a solid analytical and logical foundation, and
have also proved successful in practice.

The book discusses both approximation in value space and approx-
imation in policy space. It adopts a gradual expository approach, which
proceeds along four directions:

• From exact DP to approximate DP: We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

• From finite horizon to infinite horizon problems: We first discuss
finite horizon exact and approximate DP methodologies, which are
intuitive and mathematically simple, and then progress to infinite
horizon problems.

• From model-based to model-free implementations: We first discuss
model-based implementations, and then we identify schemes that can
be appropriately modified to work with a simulator.

The mathematical style of this book is somewhat different from the
one of the author’s DP books, and the 1996 neuro-dynamic programming
(NDP) research monograph, written jointly with John Tsitsiklis. While
we provide a rigorous, albeit short, mathematical account of the theory
of finite and infinite horizon DP, and some fundamental approximation
methods, we rely more on intuitive explanations and less on proof-based
insights. Moreover, our mathematical requirements are quite modest: cal-
culus, a minimal use of matrix-vector algebra, and elementary probability
(mathematically complicated arguments involving laws of large numbers
and stochastic convergence are bypassed in favor of intuitive explanations).

The book is supported by on-line video lectures and slides, as well
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This book develops in greater depth some of the methods from the
author’s Reinforcement Learning and Optimal Control textbook (Athena
Scientific, 2019). It presents new research, relating to rollout algorithms,
policy iteration, multiagent systems, partitioned architectures, and dis-
tributed asynchronous computation.

The application of the methodology to challenging discrete optimiza-
tion problems, such as routing, scheduling, assignment, and mixed integer
programming, including the use of neural network approximations within
these contexts, is also discussed.

Much of the new research is inspired by the remarkable AlphaZero
chess program, where policy iteration, value and policy networks, approxi-
mate lookahead minimization, and parallel computation all play an impor-
tant role.

Among its special features, the book:

• Presents new research relating to distributed asynchronous computa-
tion, partitioned architectures, and multiagent systems, with applica-
tion to challenging large scale optimization problems, such as combi-
natorial/discrete optimization, as well as partially observed Markov
decision problems.

• Describes variants of rollout and policy iteration for problems with
a multiagent structure, which allow the dramatic reduction of the
computational requirements for lookahead minimization.

• Establishes connections of rollout algorithms and model predictive
control, one of the most prominent control system design methodol-
ogy.

• Expands the coverage of some research areas discussed in the author’s
2019 textbook Reinforcement Learning and Optimal Control.

• Provides the mathematical analysis that supports the Newton step
interpretations and the conclusions of the present book.

The book is supported by on-line video lectures and slides, as well
as new research material, some of which has been covered in the present
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